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Abstract

Artificial intelligence in games performs computationally expensive searches in
large state spaces, i.e. for pathfinding and strategic decisions. Breaking the state
space down into regions, with clear connections, can greatly benefit these algo-
rithms, allowing decision making on a higher level and guiding searches in a
more focused way through the search space. We present an improved heuristic
for pathfinding search that takes advantage of such decompositions, as well as
a fully automated method for identifying meaningful strategic regions in game
maps. Empirical evaluation shows that our automatic decomposition method re-
sults in intuitive regions of comparable quality to the current state of the art, when
run on game maps taken from commercial video games. Its implementation also
runs faster than the current standard and the approach is conceptually intuitive and
readily understandable. Furthermore we show that significant improvement can be
made to pathfinding search effectiveness using an algorithm that takes advantage
of the map decomposition.
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Svæðaskipting korta til að bæta leit að stystu leið

Kári Halldórsson

desember 2015

Útdráttur

Gervigreind í leikjum inniheldur stórar leitir í sérhæfðum leitarrýmum, m.a. til að
finna stystu leið í korti og við áætlanagerð. Niðurbrot leitarrýmisins niður í svæði
með skýrar tengingar getur bætt slík reiknirit verulega með því að leyfa ákvarð-
anatöku á hærra plani og stýra leitum á nákvæmari hátt gegnum leitarrýmið. Við
kynnum bætt matsfall fyrir leit að stystu leið sem notfærir sér slík niðurbrot, og auk
þess alsjálfvirka aðferð til að skipta leikjakortum upp í svæði á skilmerkilegan hátt.
Tilraunir keyrðar á kortum úr tölvuleikjum sýna að sjálfvirka niðurbrotsreikniritið
skilar skýrum svæðum af sambærilegum gæðum og það sem best þekkist. Útfærsl-
an okkar keyrir líka hraðar en núverandi aðferðir og er þar að auki auðskiljanleg og
einföld í útfærslu. Ennfremur sýnum við fram á að hraða leitar að stystu leið í korti
má bæta umtalsvert með reikniriti sem tekur mið af slíku niðurbroti korts.
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Preface

The research on improved heuristics for pathfinding search described in Chapter 2 was pre-
viously published in Improved Heuristics for Optimal Pathfinding on Game Maps by Yngvi
Björnsson and Kári Halldórsson [1].

The research on map decomposition described in Chapter 3 was previously published in
Automated Decomposition of Game Maps by Kári Halldórsson and Yngvi Björnsson [2].

A graphics user interface to analyze and edit decompositions, and visualize pathfinding
searches step-by-step was written by Gabríel Arthúr Pétursson as part of an independent
study in the spring of 2015. It is referred to in the text as our analysis tool.
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Chapter 1

Introduction

Real-Time Strategy (RTS) games pose interesting challenges for computer-controlled (and
human) players. Modern computer game worlds are getting larger and more complex ev-
ery year, both in terms of the map size and the number of units existing in the world. In
RTS games there can be hundreds of units navigating the world simultaneously, and Artifi-

cial intelligence (AI) constructed agents must in real-time ceaselessly take a wide range of
non-trivial decisions pertaining to both short and long term planning issues. In addition to
micro-managing multiple units, an effective AI agent also needs to consider questions such
as: how to effectively gather in-game resources, in which order to build units and advance
technology, how to secure the home-base, and how to attack the opponents, to name a few.
Also, calculating paths for all these units in real-time is computationally demanding.

In RTS games the AI decisions are more often than not influenced by geospatial attributes
of the game-world terrain. Terrain analysis is thus a vital part of any successful RTS game AI
and an important component of such analysis is to decompose the game map into strategic
regions, for example with respect to suitability for building a home base or setting up military
outposts. The connections between such regions are of a special importance, for example the
presence or absence of choke-points when mobilizing multiple units at once. A strategically
decomposed game map thus is beneficial not only for tactical decision making, but also for
making unit pathfinding and navigation more effective.

In this thesis we devise new methods for addressing the aforementioned tasks. On the
one hand we introduce new pathfinding heuristics that use map decomposition information
to significantly speed up the computation process, while preserving path optimality. On
the other hand a new computationally effective algorithm is introduced for automatically
decomposing game maps into human intuitive strategic regions.

The thesis is structured as follows. Chapter 2 describes heuristics that benefit from a
good spatial abstraction of the search space, primarily the gateway heuristic which uses
pre-calculated distances between gates in the map to guide and speed up an A* pathfind-
ing search. Chapter 3 describes an automated decomposition method that uses distances
between traversable and non-traversable (wall) tiles in a map to group tiles into areas in
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order to build a set of gates between them, which can in turn be used by various AI sys-
tems, including the gateway heuristic A* search. In Chapter 4 we empirically evaluate the
pathfinding and decomposition in conjunction on a wide selection of computer game maps.
Finally we discuss related work and conclude.

Background

We assume grid-based maps of arbitrary width and height consisting of tiles. A tile can be
either traversable (also empty) or non-traversable (also wall or obstacle). A region (or zone)
is a set of connected traversable tiles of any size or shape. The process of decomposing (or
partitioning) a map is to cluster the tiles into meaningful regions. Although adjacent regions
may initially have irregular boundaries, we refine them to be line segments (connecting
walls), called gates. Gates are represented by their end points.

The term decomposition is used throughout the text, to describe an abstraction of the
game map state space used in our work, or the action of building such an abstraction, either
manually or automatically. In our setting, a meaningful decomposition ideally creates zones
that help the game AI make strategic and pathfinding decisions. Conversely, it should avoid
creating zones influenced by irrelevant textures and purely aesthetic structures.

The process of finding a valid path between two tiles, start and goal, in a map is called
pathfinding. Each traversable tile has a set of possible moves, each move taking the current
state to an adjacent tile by moving either horizontally or vertically, at cost 1, or diagonally,
at cost

√
2, and the product of the search is a list of moves between adjacent traversable tiles,

forming a path between the start and goal tiles.

The de facto industry standard for pathfinding in games is the A∗ algorithm [3]. Whereas
the state-space representation may differ from game to game (a grid or a mesh both being
common), A∗ search or a variant thereof is generally the algorithm of choice. Informed
search methods such as A∗ use a heuristic, a function that returns an estimate of the length
of a shortest path from the current state to a goal state. Generally, the closer the heuristic
value is to the true length of the shortest path, the less exploration the search will perform.
A perfect heuristic is a heuristic that always returns the correct length of the shortest path
and will result in a search method that never explores a node outside the actual shortest path.

In order to make sure an A∗ search is optimal, that it always finds an actual shortest path,
the heuristic must never overestimate. A heuristic that always returns an estimate equal or
shorter than the true length of the shortest path from every state to every possible goal is
called admissible. If, for every two adjacent tiles, the cost of going from one to the other
added to the the heuristic estimate for the second one is never greater than the heuristic
estimate of the first one alone, the heuristic is also termed consistent. An A∗ search using an
inconsistent heuristic must expect the possibility of re-expanding a search node, that is re-
estimating a tile with a different path towards it, from the start, but when using a consistent
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heuristic it is guaranteed that once a node has been expanded, the shortest path to that node
has been found, and so subsequent possibilities of travelling through that tile can be ignored.

A common heuristic in grid-based pathfinding is the octile distance, similar to a manhat-
tan distance but allowing diagonal moves, which is a correct estimate of the shortest path,
given that there are no obstacles in the map. The octile distance is both admissible and
consistent, but in maps with many obstacles or complex wall structures such a simplistic
heuristic often cannot offer sufficiently targeted guidance, resulting in the search exploring
almost the entire map when finding a shortest path between two distant map locations.
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Chapter 2

Improved Heuristics in Pathfinding

As stated earlier, the octile distance can be an overly simplistic estimate for path lengths in
large and complex grid maps. One technique used to overcome this problem is hierarchical

pathfinding. Instead of having only a single representation of the state space, additional
higher-level abstractions are used as well. Each level in the hierarchy uses an increasingly
abstract view of the game map, and can subsequently be represented using a smaller state
space. When answering a pathfinding query an approximate path is found in one of the
higher-level layers (and then possibly refined using small local searches in the base layer).
This results in much faster processing because A∗ searches a smaller state space. The main
drawback of this approach is that the paths returned are not necessarily optimal. This is
because some of the finer details of the map typically get lost in the abstraction process.
However, this is generally of a little consequence for game-play if the paths are only slightly
sub-optimal. Fortunately, this is most often the case. However, with increased number of
units and other dynamic obstacles on the map the risk of the paths becoming seriously sub-
optimal increases. This is because a search performed in an abstract state-space usually does
not (and cannot) take these dynamic obstacles into account.

Our approach reduces state-space exploration while still making it possible to account
for dynamic obstacles. Instead of using state-space abstraction to create hierarchical views,
we use it to provide an improved heuristic function for guiding a regular A∗ search. The chal-
lenge is to devise heuristics that can be computed efficiently, yet provide improved search
guidance. We introduce two such new heuristics, both of which are admissible and thus
preserve optimality.

In the next section we describe the new heuristic functions and provide both detailed
examples and pseudo-code. Following is a section summarizing the results of our original
empirical evaluation of the heuristics using real game maps. Finally there is a summary of
our work on pathfinding heuristics.



6 CHAPTER 2. IMPROVED HEURISTICS IN PATHFINDING

Figure 2.1: Example map: locations explored by A∗ are shown in dark gray.

2.1 Improved Heuristics

The map in Figure 2.1 depicts an outdoor/cave scene typical of a role-playing game. The
world consists of multiple areas that are connected via narrow passes and tunnels.

When finding a shortest path between two distant locations in this map a naive heuristic
based on octile distance would explore more or less all the locations on the map. This is in
part because it has no way of telling beforehand whether there exists a pathway through any
given room that leads to a shortcut to the desired destination. To demonstrate this better we
have marked in dark gray all the tiles in the map that A∗ using the octile heuristic explores
when finding an optimal path between two far apart locations. The optimal path is shown
in darker gray, the start is to the left and the goal to the right. The algorithm spends a lot of
effort exploring areas that — as is immediately obvious to us — cannot possibly be relevant,
because they result in either dead-ends or clearly inferior paths.

The first heuristic presented here, the dead-end heuristic, seeks to alleviate this problem
by identifying and excluding beforehand all areas (in our case rooms) that cannot possibly
be on an optimal path between two given locations. It avoids areas that lead to a dead-end
by excluding these entire areas from the search space.

The idea behind the second heuristic, the gateway heuristic, is to better guide the search
by storing pre-calculated distances between certain key points, or gates, in the map and then
use it to better recognize which areas are more likely to lead to optimal paths than others.
Computing the heuristic is a two-phase process. In the first phase the map is preprocessed
and an abstract view created. This is done by automatically decomposing the map into
smaller areas and then computing path information. This calculation is done offline and
only once for each map. In the second phase the abstract view from the preprocessing phase
is used to derive improved heuristic estimates for the pathfinding search. The heuristic is
calculated in real-time and efficiency is therefore important.
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2.1.1 Dead-End Heuristic

The dead-end heuristic can immediately tell if the search enters a room which eventually
leads to a dead-end, that is, there is no pathway from this room to the goal (except back out
via the entrances we came in through). Clearly there is no need to explore such rooms.

Figure 2.2: Dead-end heuristic: area decomposition (left) and relevant areas and nodes
explored (right).

2.1.1.1 Preprocessing Phase

The preprocessing phase continues in two steps. In the first step the game map is decom-
posed into several smaller areas, representing in this case rooms and corridors. The result
of running our ad-hoc decomposition algorithm (See Appendix B) on the example map is
shown to the left in Figure 2.2.

The second step in this phase is to construct a high-level graph for representing the
different areas and the inter-connections between them. A node in the graph represents
an area and an edge between nodes represents an entrance between the two corresponding
areas. Note that there are possibly more than one entrance connecting the same two rooms,
resulting in more than one edge connecting a pair of nodes in the graph. The graph is
therefore a so-called undirected multi-graph. The graph along with the area information is
stored with the game map.

2.1.1.2 Runtime Phase

When the map is loaded into the game, the data from the preprocessing phase accompanies
the map. This does result in some additional memory usage, but with a careful implementa-
tion this can be minimized.

When we get a pathfinding query asking for the shortest path between a start and a
goal location, two searches are performed. First a search is performed in the multi-graph
to identify the subset of areas in the map that are relevant for the query; other areas, the
so-called dead-end areas, can be excluded from the pathfinding search altogether. Let nodes
S and G in the multi-graph stand for the nodes representing the areas holding the start and
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goal locations in the map, respectively. We do a search in the multi-graph to find all possible
paths from node S to node G to identify the relevant areas. Note that during this search we
need to mark all edges we have visited to prevent loops and other duplicate search effort. A
simple depth-first search proved the most effective for this task, both because of how small
the multi-graph is and the fact that we have to find all possible paths.

Once we have identified the subset of relevant areas a regular A∗ like pathfinding search
is performed. The only difference is that we use an improved heuristic function that returns
a value of infinity for grid cells that are located in non-relevant areas. This can be done quite
effectively. Each grid cell is marked by the area it belongs to (using a few extra bits) so we
can trivially in constant time ask if the area is relevant. One of the main strengths of the
dead-end heuristic is that it can be computed very efficiently.

This approach is fundamentally different from hierarchical pathfinding because we have
not committed to any high-level path beforehand. For example, in hierarchical pathfinding,
if such a high-level path is blocked by a dynamic obstacle this typically does not get noticed
until in the path-following phase, and the search may have to be executed again. In our case
however, other possible paths are kept open and the A∗ search will find another path if one
exists.

The effectiveness of this method in terms of reducing exploration of the state-space de-
pends greatly on the structure of the map. On the one hand, for maps consisting mainly of
areas connected via relatively few possible pathways, this simple heuristic has the potential
of giving significant improvements. However, the more alternative pathways there are the
less effective the heuristic becomes. For example, if we were to open up a new pathway
through the top rooms in our example map, then the dead-end heuristic would be able to
eliminate only a few small areas from the search.

Also, one needs to be a bit careful with the automatic decomposition of the map because
if the generated areas become too small, the abstract multi-graph will be large. The overhead
of the multi-graph search may then become significant. This overhead can of course be
avoided in real-time by preprocessing all the relevant area calculations, although at the cost
of extra memory usage.

The heuristic we introduce next suffers from neither of the above problems.

2.1.2 Gateway Heuristic

The gateway heuristic (GH) pre-calculates the distances between entrances/exits of the areas.
It also proceeds in two phases.

2.1.2.1 Preprocessing Phase

The map is decomposed into areas in an identical way as for the dead-end heuristic. The
original version of this heuristic expects gates to be either vertical or horizontal. In the re-



2.1. IMPROVED HEURISTICS 9

Figure 2.3: Nodes explored by the gateway heuristic. The error in the heuristic is due to the
length of gates.

implementation we use in Chapter 4 they can also be diagonal at an angle of exactly 45°.
Next we use multiple A∗ searches or multi-goal breadth-first searches to pre-calculate the
(static) shortest distance between gates. For each gateway we calculate the path distance
to all the other gateways (cost of infinity if no path exists). Alternatively, one could cal-
culate only the distances between gateways within each room and then use a small search
to accumulate the total cost during run-time. However, our approach results in more accu-
rate heuristic estimates and faster run-time access (admittedly though at the cost of extra
memory).

In this implementation of our approach, four different costs are stored for each pair of
gateways (in-in, in-out, out-in, out-out). Each gate is 2-way because we are interested in
knowing separate distances for each possibility of departing from and arriving to a gate.
This refinement can in some maps decrease the number of nodes expanded, but it is by no
means necessary for the approach to work.

The reason for this is that while the shortest distances between gates are accurate, as
they are preprocessed and stored, and in general the octile distance within a single zone is
correct, the distance travelled along the length of a gate is absent in GH’s calculated value.
The search can thus be pulled towards a gate because the best heuristic value will be derived
from the shortest path to one end of a gate and the shortest path from the other end of the
gate to the goal, not taking into account the cost of moving along the length of the gate. By
forcing the gates to be used only as an exit in the preprocessing searches, we eliminate this
type of underestimates. This is only of consequence when the map decomposition includes
many long gates. If only short gates are used, which is in general preferable, the 2-way gate
refinement is unnecessary.

In this original implementation of the gateway heuristic we used 2-way gates and four
separate pre-calculation pathfinding searches for each pair of gates (this is done offline so
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the extra time does not affect the search time). In these pathfinding searches we are not

allowed to pass through the departing and arriving gates.

2.1.2.2 Runtime Phase

The runtime phase is a regular A* search that uses the heuristic function below:

hG(n, g) = min
i,j

(hl(n,Gi) +H(Gi, Gj) + hl(Gj, g))

The heuristic hl(n,G) calculates the octile distance from grid cell n to the nearest point
in gate G. This can be computed trivially as a distance from a point to a horizontal/vertical
line. The term H(Gi, Gj) stands for the pre-calculated shortest distances between gateways
Gi and Gj (in practice we would also have to pass in the gate directions but we have omitted
that from the notation here for clarity). Finally hl(G, g) calculates the shortest octile distance
from gate G to the goal tile, g. We need to look at all gates in the current area and compare
each of them to all gates in the goal area, and take the minimum cost.

The accuracy and computing efficiency of GH is independent of the total number of
gates (although that affects the memory usage). The efficiency of computing the heuristic
estimates is mainly affected by the number of gates in the areas we pass through, in partic-
ular the area where the goal resides. This is because at each state we select the minimum
estimated distance among all pairs of gates with the former gate in the current room and
the latter in the goal room (see the heuristic function equation). The heuristic accuracy, on
the other hand, is affected by two things: the shape of the rooms and the size of individ-
ual gates. Because we use the octile heuristic for estimating the distance from the current
state (and the goal) to the nearest gate, we are prone to underestimate errors introduced by
the octile heuristic. However, because short distances are typically being estimated, these
underestimates will not have a significant effect on the overall distance estimate. Also, the
area decomposition algorithm used in the original implementation tends to split maps up
into convex areas where the octile heuristic gives accurate estimates. The other type of un-
derestimation taking place has to do with the gate sizes. When calculating distances from
a state to a gate we always use the closest point on the gate to ensure admissibility. This is
not necessarily the same gate point that was used in our gate distance pre-calculations. The
distance between these two points is a source of underestimation. The larger a gate is, the
further we risk these two points being apart. In Chapter 3 we introduce a map decomposition
algorithm that seeks to minimize the average length of gates while still splitting the area into
relevant and generally convex regions.

In addition to causing an underestimation in the heuristic, the fact that the length of the
gates is ignored causes GH to be inconsistent. This inconsistency is only present between
tiles in different regions, but it is enough to cause a fair amount of re-expansions, as we will
see in later evaluation in Chapter 4.
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Figure 2.4: The largest game map (244 x 192).

The gateway heuristic is not dependent on whether there are dead-ends or not in the
map. If the map is well divided the heuristic will pull the search quickly towards the correct
gateways and hence onto the shortest path. Take for example a situation where a path needs
to be found between opposite banks of a river and the only way to cross is over a bridge
some way to either direction. An A* search using only octile distances as a heuristic will
search almost the full distance from start to the bridge in all directions, including straight
away from the goal. The dead-end heuristic will not be able to eliminate much of the search
space since this is a relatively open area and therefore not do much better. If however both
ends of the bridge are considered gates in the gateway heuristic the heuristic value will be
the sum of an estimate from start to the bridge, the pre-calculated length of the bridge and
the estimate from the bridge to the goal. This estimate is much better than the relatively
straight line of the octile distance and the search will therefore hardly expand a single extra
node.

2.2 Initial Evaluation

We evaluated the effectiveness of the new heuristics by running them on computer game
maps, both created by us and taken from popular commercial role-playing games. All ex-
periments were run on 3.0 GHz CPU personal computers.

Table 2.1 shows the result of our pathfinding experiments where the octile and the two
new heuristics are compared. On each map 1,000 searches were performed using randomly
chosen start and goal positions. The top section includes experimental data from searching
our demo map (Figure 2.2) and the middle section data from nine different maps from the
popular game Baldurs Gate II (Figure B.2). In the last section we show separately data
for a particularly large game map, also from Baldur’s Gate II (Figure 2.4). Horizontal and
vertical moves have the cost of 100 whereas diagonal moves were rounded to a cost of 150.
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Table 2.1: Pathfinding statistics (averages).

Demo map Octile Dead-end Gateway
all path cost 7430 7430 7430

estimate 3940 3940 7241
nodes 955 579 220
time (ms.) 18.6 14.7 13.2

top 10% path cost 14373 14373 14373
estimate 6605 6605 14179
nodes 2397 1352 487
time (ms.) 42.9 30.4 28.0
Game maps Octile Dead-end Gateway

all path cost 10339 10339 10339
estimate 7788 7788 9884
nodes 1231 1120 723
time (ms.) 27.3 24.6 22.6

top 10% path cost 20468 20468 20468
estimate 13290 13290 19731
nodes 3701 3370 2313
time (ms.) 69.2 60.7 54.5
Large map Octile Dead-end Gateway

top 10% path cost 30463 30463 30463
estimate 17201 17201 30002
nodes 5961 4536 2361
time (ms.) 110.1 84.0 71.3

In all map types the new heuristics are on average clearly superior to the standard octile
heuristic, both in terms of number of nodes expanded and total running time. Overall, the
gateway heuristic is the best. We can also see that the time overhead in calculating the
dead-end heuristic is close to negligible because the time saving corresponds roughly to the
node savings. This was achieved because the multi-graphs paths were pre-calculated. For
the gateway heuristic the node reductions are particularly impressive. The search time does
however not decrease relatively as much as the number of nodes expanded. This is due to
the complexity of the new heuristic functions compared to calculating the octile distance.
The time savings are none the less significant, and may be further improved with a careful
implementation.

We were also interested in looking closer at how the heuristics perform on longer paths.
The top 10% sections give the result for longer than average paths (for each map we ran-
domly generated 10,000 paths and included the 10% longest)

These are the paths that are likely to cause a problem. The performance improvement
of the new heuristics is now even more profound. Also of interest is to see how close the
gateway heuristic estimates are to the true path lengths.
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2.3 Summary

We presented two admissible heuristic functions for guiding heuristic search in pathfinding
on large game maps. The initial results with these heuristics are promising, showing that
both heuristics outperform the standard octile distance heuristic. The results in this chapter
are from [1] and are somewhat outdated. Also, the map decomposition algorithm used in that
work was ad hoc and tailor made for room-like structures (see Appendix B). In Chapter 4
we do rerun some of the experiments using contemporary computer hardware and larger
and more up-to-date game maps. Also, we use a more sophisticated map decomposition
algorithm, introduced in the next chapter.
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Chapter 3

Automatic Decomposition of Game Maps

Terrain analysis for RTS (and other) video games has received considerable research atten-
tion in the past [1], [4]–[9]. Typically one of the most important steps in such analysis is the
decomposition (or partitioning) of the game map into strategic regions. This is useful for
the game AI not only for spatial reasoning at a higher abstraction level than otherwise pos-
sible, but also to speed up pathfinding. Computing paths for multiple units in real-time on
large game maps is computationally demanding, even for modern-day computer hardware.
Furthermore, pathfinding queries are not only useful for unit navigation, but also for assist-
ing with answering queries pertaining to strategic planning (e.g., how far to an important
resource).

In this chapter we describe a new algorithm for decomposing game maps. One key
advantage of our algorithm, in addition to its effectiveness, is how intuitive it is conceptually,
thus resulting in predominantly human-like partitions. This is a valuable quality as the
partitions are more likely to harmonize with the objectives and intentions of the game-map
designer(s).

3.1 Decomposition

Our decomposition algorithm is conceptually easy to understand. First, we create a depth-
map from the original map, where each non-traversable tile is at a ground level and each
traversable tile at a sub-ground level: the further its distance to the nearest non-traversable
tile the deeper its level. This depthmap forms a carved out 3D landscape where traversable
tiles form valleys of different depths, possibly separated by ridges. These ridges form can-
didates for boundaries between regions. Second, our algorithm locates the (most prominent)
ridges, for which it uses a technique simulating a rising ground-water level. As the water
level rises, lakes start to form and grow in the valleys and gradually start to unite, overflow-
ing ridges. This amalgamation of lakes is used to identify the ridges. The contours of the
identified ridges can, as in nature, have some twists and turns. The final step of the algorithm
is thus to approximate the ridges by straight line segments, which are easier for the game AI
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Figure 3.1: Four images of maps during intermediate stages of the algorithm’s processing.
The image in the top left corner is the original map with traversable tiles in white and non-
traversable wall tiles in black. The other images, top-right, bottom-left and bottom-right
show the maps corresponding to the output of Algorithms 1, 2 and 3, respectively.

to work with. A more detailed explanation of the algorithm follows, and the main steps are
visualized in Figure 3.1.

3.1.1 Algorithm

We start by building a depthmap where the depth of each tile is a function of its distance to
the nearest wall. The further away from any wall a tile is, the deeper its level, as shown in
algorithm 1.

Algorithm 1 Depth mapping

for all tiles (x, y) in map do
determine depth of tile (see Algorithms 4 & 5)
write depth into depthmap at (x, y)

end for
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After building the depthmap we begin building a zone map as well as a gate cluster map.
The zone map is a grid where each tile has a label; zones are composed of every tile with
the same label and the gate cluster map is just used to keep track of which tiles are right on
the boundaries between adjacent zones.

Algorithm 2 shows the water level decomposition where the water level is a variable
starting at the maximum depth found during depth mapping. Each tile at that depth is la-
belled; a unique label is given to tiles that stand alone, but tiles adjacent to previously la-
belled tiles inherit their neighbor’s label. If a tile has two or more neighbors with different
labels then it is located where two zones meet (on a ridge); the tile is marked as a gate tile
and becomes part of a gate cluster.

Algorithm 2 Water level decomposition
currentWaterLevel ← maxDepth
while currentWaterLevel ≥ 0 do

for all tiles (x, y) at depth currentWaterLevel do
if (x, y) has > 1 labelled neighbors then

if neighbors have different labels then
mark (x, y) as gate tile

end if
give (x, y) same label as any neighbor

else if tile has 1 labelled neighbor then
give tile same label as neighbor

else
give tile new label

end if
end for
currentWaterLevel ← currentWaterLevel − 1

end while

The final step, shown in algorithm 3, is building gates from the irregularly shaped gate
clusters and adding them to the gate list. Two end points are detected for each gate cluster.
Having found these end points we can rasterize straight lines between them and use these to
flood-fill the zones again for our final zone mapping, if needed.

Algorithm 3 Build gate list

for all tiles (x, y) in map do
if (x, y) is marked as gate tile then

FloodFill cluster of connected gate tiles
Remove all tiles not adjacent to wall
Select one tile from each remaining connected cluster
Build gate from two selected tiles
Add gate to list of gates
Remove remaining tiles from cluster

end if
end for
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3.1.2 Implementation Details

The depth map is in fact two structures: a) the depth map; a map indexed on grid position to
find the depth of each tile, and b) the depth tile list; a vector indexed on depths where each
element is a list of grid positions that have the same depth. This way the depth map can be
accessed in near constant time from any part of the algorithm, whether it needs the depth of
particular coordinates or the set of coordinates at a particular depth.

To aid in building this depth map faster we use a temporary structure which is indexed
on octile distances and has elements which list all (x,y)-grid offsets that add that particular
octile distance. When mapping the depth of each tile we check each octile distance, starting
at zero, add each offset in that distance’s list to the current tile coordinates and check if there
is a wall at that location. A further optimization is to not start this offset at zero distance
each time, but at one horizontal movement less than the previous depth found.

Algorithm 4 Determine depth of tile - simple version

(x, y)← tile
currentDepth← lastFoundDepth− 1 (0 first pass)
while depth not found do

for all offsetCoord of currentDepth do
if (x, y) + offsetCoord is wall tile then
depth(x, y)← currentDepth
break while

end if
end for
currentDepth← currentDepth+ 1

end while

3.1.3 Refinements

One artifact of the algorithm is that it detects gates that close off tiny spaces that have little
or no effect on the search strategy, especially in noisy maps and maps with wavy or uneven
walls. To reduce this noise we add parameters to the algorithm for tweaking the depth-
mapping. The wall threshold is used to average out the depths by not registering the depth
of a tile as soon as the search finds a wall, but rather after finding a number of walls equal to
the threshold. This adds several more iterations of the grid-offset search, but the smoothness
in the output outweighs the performance concerns. To further smooth the output we group
depth values together by dividing by a distance denominator and flooring the result. This
makes each depth line wider and helps even out noise in the depth mapping.

Instead of manually setting these parameters, we opted for a fully automated approach
by tuning them dynamically at runtime. This also prevents erratic results when maps are
unusually tight and crowded or wide and open. The algorithm dynamically sets the wall
threshold for each tile when processing it. The value is a function of the distance to the
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Figure 3.2: Images of two different depth mappings and the resulting water level ridges
which become gates. At the top is a pure distance to closest wall tile and at the bottom the
dynamic wall threshold is used alone.

first wall found and the map size. The dynamic distance denominator is set to the base 2
logarithm of the distance, floored, resulting in depth areas that are progressively wider the
further they are away from walls. This way the algorithm is less likely to close off little
useless pockets in the map, but still retaining meaningful details of small and intricate areas
within the maps. Algorithm 4 shows a way of determining the depth of each tile without any
refinements. Compare that to algorithm 5 which shows the same process, except with the
two aforementioned refinements included.

The previous chapter describes a heuristic function for A* pathfinding search that uses
precalculated data derived from a decomposition of the map to quickly and closely estimate
path distances between locations in the map. It uses gates to separate zones, however, the
gates must be either vertical, horizontal, or 45°. On the other hand, our decomposition
method can generate gates of any orientation. Thus, to make our partitioning compatible,
we added a pre-processing phase where all gates are rotated so that they have either 0°,
45°or 90°orientation. In each rotation step the algorithm selects a line-segment end to move
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Figure 3.3: Images of two different depth mappings and the resulting water level ridges
which become gates. At the top the dynamic distance denominator is used alone and in the
bottom images we use the dynamic wall threshold and the dynamic distance denominator
together which is the method used throughout the final executions.

such that there is as little change as possible to the length and overall position of the gate.
This refinement has no significant effect on speed, but without it the evaluation function
can overestimate distances resulting in non-optimal path lengths in some cases. To keep the
heuristic admissible, when used in pathfinding searches, this rotation is necessary.

In order for the precalculated data to remain within a manageable size it is important not
to create redundant or unnecessary gates. It is also important to keep the average width of
the gates small as the maximum error of the heuristic depends on the size of the gates. Thus
we seek to have our algorithm split the map where it is obviously of help to the AI systems
that use it, but to make as few splits as possible beyond that.

3.1.3.1 Suboptimal decompositions

There are a few rare cases where the decomposition can have a negative effect on the search
speed. This happens mainly if one of the following two properties applies. The first case is
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Algorithm 5 Determine depth of tile - refined version

(x, y)← tile
currentDepth← lastFoundDepth− 1 (0 first pass)
while depth not found do

for all offsetCoord of currentDepth do
if (x, y) + offsetCoord is wall tile then

if first time a wall tile is found then
wallThreshold← (maxDepth− currentDepth)/28 + 1

end if
if wall tile has been found wallThreshold times then
depth(x, y)← blog2(currentDepth) + 1c
break while

end if
end if

end for
currentDepth← currentDepth+ 1

end while

where a single zone is connected to many gates. An example of this could be a long hallway
connecting to many rooms, where the hallway ends up as a single zone in the decomposition.
When either the goal or the currently evaluated state is in this zone the amount of precal-
culated distances that need to be compared becomes very high and the time for each node
expansion grows. If a zone like this sees a lot of traffic - if it is a big part of many search
paths - the average expansion time can get high enough to negate the effect of significantly
fewer expansions, even resulting in the method becoming slower than the traditional A*.

The second case is when gates become very wide, especially in large open maps where
the traditional octile distance heuristic is giving very good evaluations to begin with. Then
the large gates result in uninformed heuristics, thus not helping in guiding the search. In
both these cases it is possible to fix the decomposition manually, in the first case by adding
gates, splitting these super connected zones into smaller zones with fewer connections each,
and in the second case by removing these long gates allowing the large open zones to remain
undivided, as the regular octile distance is usually a good estimate within them anyway.

3.2 Initial Evaluation

In order to provide empirical evidence of the algorithm’s effectiveness we select maps from
a standard test-suite of game maps from commercial RTS (and role-playing) games [10],
run the algorithm on each one, then visualize and contrast the resulting map partitions to
both computer- and human-made ones, as well as demonstrating how the partitions improve
pathfinding efficiency. First, we collect various logistics about the decomposition process,
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Figure 3.4: The decomposition used in the original improved heuristic study, zones shown
in different colors vs. our decomposition, zones split by gates shown as grey lines. Not only
does it look cleaner and more intuitive, but it also resulted in a further 20% performance
gain over an already improved search method.

Table 3.1: Map decomposition statistics.

Map Time (s) Size Gates Speedup low-res time (s)
AcrosstheCape 7.71 768x768 57 4.1 0.14
ArcticStation 10.15 768x768 82 2.8 0.40
Backwoods 3.59 768x512 79 4.2 0.07
BigGameHunters 2.26 512x512 20 3.1 0.044
BlackLotus 5.01 768x768 63 6.9 0.12
BlastFurnace 9.55 768x768 68 3.5 0.17
BrokenSteppes 12.23 768x768 86 2.8 0.27
Brushfire 1.14 512x512 29 4.9 0.045
CatwalkAlley 4.56 512x512 98 1.1 0.12
Cauldron 18.70 1024x1024 140 7.9 0.66
Crossroads 8.91 768x768 54 2.8 0.19
DarkContinent 4.92 512x768 46 2.9 0.12
Elderlands 10.54 768x768 42 2.0 0.19
Enigma 4.16 768x768 64 5.6 0.12
FireWalker 1.35 512x384 16 4.3 0.03
FloodedPlains 8.83 768x768 85 3.6 0.26
GladiatorPits 6.49 768x512 76 3.9 0.13
AR0205SR 1.31 512x512 41 - -
AR0406SR 0.73 512x512 60 - -
Byzantium 3.0 2.35 512x512 29 - -

then we visualize the resulting partitions and contrast them with those generated by other
computerized methods reported in the literature, as well as with those generated by skilled
humans.
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Table 3.1 lists the maps we use for our experiments. Apart from the last three maps,
we used two versions of each map, one from the Grid-Based Pathfinding Benchmark Test-
Suite [10] and the other the buildable tile structure of the map, which is of a lower resolution,
with each tile being 16 (4x4) tiles from the original map. We compare the running time of
the decomposition algorithm to the BWTA module [11] which uses the method from [8] and
runs its analysis on the full resolution map, but we wanted to compare running our algorithm
directly on the low-res buildable map as well. Figure 3.7 shows the similarities in output
between running on the different resolutions. Our dynamic refinement variables adapt to the
resolution or tightness of a tile’s surroundings in a map and so no changes are done in the
algorithm or its input variables between the runs. However, since there is detail lost, we are
not confident enough to base our decomposition, especially for pathfinding search, on these
maps, but it does give a certain indication of possible future optimizations.

Looking at Table 3.1, the first column shows the name of the map, the second column
the time in seconds it takes to decompose the map and the third column is the map size. The
forth column shows the number of gates the decomposition algorithm generates, and the last
column shows the relative speedup compared to [8]. The final column is the time it takes
to decompose the maps using the lower resolution buildable tile structure of the map. The
maps are taken from StarCraft (the first group, 17 maps), Baldur’s Gate II (the second group,
2 maps) and Starcraft II (the third group, 1 map). The last map (Byzantium 3.0) is the demo
map used throughout the [8] paper and is included to allow for a direct comparison to that
work. The entire pathfinding test-suite contains hundreds of maps from various games, but
we use only a small subset of those to make it feasible for us to visually inspect all partition
results. We included the Baldur’s gate maps (ARxx) to allow for a more direct comparison
to the ad hoc decomposition algorithm in [1].

All the experiments were run on a computer with a Quad Core Intel i5 CPU with 16
GB of memory (one core used). We used the offline BWTA2 module [11] to run and time
Perkins’ algorithm. For fairness, we timed only the map decomposition relevant parts of
the BWTA analysis (that is, generation and pruning Voronoi diagrams and the subsequent
detection of chokepoints and regions).

3.2.1 Decomposition Statistics

Table 3.1 shows, for each map, the run-time of the decomposition and the number of gates
generated. First, we note that it typically takes only a few seconds to decompose a map, and
no more than 10-12 seconds for the larger and more computationally demanding maps, and
in one case around 18 seconds, on a very large and complex map that took almost eight times
as long to run in BWTA. This is a sizable speedup compared to [8], where our method runs
more than four times faster on average and close to eight times faster on the largest map,
using the full resolution version of the map.
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Figure 3.5: The maps in the top row are decomposed using our method, but the maps in the
bottom row are done by contrasting decomposition methods: the one on the left by [1] (see
Appendix B), the one in the middle by [8], and the one to the right by humans.

Figure 3.6: Side by side comparison of the decomposition done by our algorithm (left) and
a manual decomposition (right).

We also experimented with running our algorithm on the low-res version of the maps, in
order to determine if the results were comparable to running it on the full resolution maps.
Figures 3.7 and 3.8 shows comparisons between the outputs on these different resolutions.
While we cannot at the moment confirm that the full detail of navigability in the maps is kept
in the low resolution maps, the resulting decomposition is very similar, and could probably
be transferred to the full resolution map. This is achieved because of the dynamic nature
of the noise-reducing refinement variables, used when the depth map is built. When run
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Figure 3.7: Decompositions on different resolutions. On the left are the versions from the
benchmark suite [10] but on the right the low-res maps, which are of 16 (4x4) times lower
resolution. In many cases the low-res runs are cleaner and less affected by noise than the
high-res ones, in addition to being between one and two orders of magnitude faster (See
table 3.1).

thus, on the low-res maps, the decomposition times are between one tenth and one half of
a second. Such a fast decomposition approach opens up for the possibility of using the
decomposition in real-time settings for dynamically changing maps; for example, when new
regions become reachable (e.g., in Warcraft when foresting connects new regions) or when
regions become non-reachable (e.g., when a bridge collapses). Even when running on the
high resolution maps the times are short enough to consider this. It may not be feasible to
run the decomposition too frequently during gameplay, but in most games such partition-
altering events only occur sporadically. Finally, we note that the number of gates per map
is relatively small, which is preferred for these maps in terms of creating human-intuitive
regions.
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Figure 3.8: Decompositions on different resolutions cont’d.

3.2.2 Decomposition Output

We contrasted the partitioning output of our algorithm to that of the partition algorithm’s
introduced in [1] and [8], as well as to human-made partitioning. Figure 3.5 shows rep-
resentative results from that comparison. Essentially, our partitioning looks more intuitive
than that of [1] and yields very similar partitions to both [8] and the human-made ones.

It is not surprising that we do better than the decomposition method introduced in [1],
because it was steered towards room-like maps. Also, the focus of that work was primarily
on a pathfinding algorithm that uses the partitions, as opposed to the map decomposition
algorithm itself. What is of more interest is that our method generates almost identical
partitions to those of Perkin’s state-of-the-art method, despite being both simpler and more
computationally efficient. We also recruited a few avid RTS players among our students,
all with some game-development background, and asked them to partition four different
game maps into regions of interest for a game AI. Not only were the humans surprisingly
consistent with their labeling among themselves, but the partitions were also almost identical
to the ones produced by our automated decomposition method. The bottom rightmost map
in Figure 3.5 shows one manual decomposition and Figure 3.6 pictures another example.

3.3 Summary

We introduced a fully automated method for map decomposition that is both computation-
ally efficient and yields intuitive partitions comparable in quality to the state-of-the-art.
Also, an added appeal of the new method is its simplicity and good run-time efficiency.
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The empirical evaluations clearly demonstrate the viability of our method for automated
map decomposition. Not only does it generate partitions that are intuitive and human-like,
but it also compares favorably with an existing state-of-the-art automated decomposition
method; that is, it produces similar quality partitions, but in a more computationally efficient
manner. The resulting partitioning can also be used to speed up pathfinding.

In the next chapter we use our new decomposition method in conjunction with the
pathfinding heuristics introduced in chapter 2 to further demonstrate its usefulness with a
specific application in mind. We will also seek to point out specific maps and scenarios
where the decomposition output is not optimal, but can be fixed with minimal intervention.
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Chapter 4

Empirical Evaluation

In order to evaluate the aforementioned methods in context with each other we built a full
pre-processing system that decomposes a tile based game map, calculates the shortest dis-
tances between gates and stores the resulting data in files formatted to be read and utilized
by a search using the gateway heuristic.

4.1 Setup

The experiments were run on an A* search using a re-implementation of the gateway heuris-
tic (GH). We did not use the 2-way gate refinement, as the map decompositions are now
refined enough that it was expected to have minimal benefit. However, another small refine-
ment was added that partially addresses the same problem as the 2-way gates, that is, we
ensure that the heuristic at least never returns a lower estimate than a pure octile distance.

4.2 Measurement results

Most of the testing was performed on a set of 30 StarCraft maps, provided by the pathfind-
ing benchmark test suite [10]. The maps were selected by taking the first 30 maps in the
test suite, alphabetically. The main measurement was one batch where all 30 maps were
automatically decomposed and pre-processed for GH, then every search from the scenario
file was run on the respective maps, using A* search with octile and gateway heuristics,
respectively. All numbers are averages over the entire run; time is measured in seconds and
speedup is defined as the relative increase in problems solved per time unit, e.g. if an al-
gorithm solves a set of problems twice as fast as a baseline algorithm, it constitutes 100%
speedup.

The memory needed at runtime to store the necessary pre-calculated data is generally
small, and dominated by the mapping of tiles to zones (2 bytes per tile allows for 65K
gates). The data structure for storing gate information dwarves in comparison. For example,
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for the largest map in our test suite, 1024x1024, the total memory needed is slightly over
2MB. If we limit the number of gates to 256 the memory requirements would be cut in half.

A closer look at the data showed that some maps were showing a much more significant
speedup, while others were showing none, and in rare cases even showing slow-down when
using GH. By looking at the decomposition it was apparent that there was scope for im-
provement, and by minor manual enhancements to the decomposition, many of the negative
results could be avoided. Although we would ideally like to have a fully automated robust
decomposition this shows that there is still scope for further improvement.

The results using the original and adjusted maps are shown in Tables 4.1, 4.2 and 4.3.
We see that the speedup is 22% using all the original maps, 50% only looking at the best
21 maps and 40% using all maps, but now with some manually enhanced decompositions.
These results, combined with the original results now showed a 40% speedup over the entire
set of 30 maps, which must be considered a good result in light of the fact that only 5 out of
the 9 maps showed improved results after the manual fix.

Table 4.1: Pathfinding searches in StarCraft maps using 30 first maps, alphabetically.

Heuristic Avg len Avg time (s) Avg exp Searches Speedup
Octile 551.32 0.605 48033 77190
Gateway 0.495 32002 22%

Table 4.2: Searches using the 21 best StarCraft maps out of the set of 30.

Heuristic Avg len Avg time (s) Avg exp Searches Speedup
Octile 570.7 0.65 51784 55950
Gateway 0.433 29555 50%

Table 4.3: Searches in using all 30 maps, some of them with manually fixed decompositions.

Heuristic Avg len Avg time (s) Avg exp Searches Speedup
Octile 551.32 0.604 48033 77190
Gateway 0.43 29327 40%

We also ran the decomposition and search on 38 randomly selected maps from Baldur’s
Gate II, upscaled versions taken from the test suite [10], resulting in a 34% speedup overall.
The result is shown in Table 4.4. For more details, corresponding information for each
individual map is provided in Appendix A. Additional data on re-expansions is there as
well.

We profiled the program code during one run to see how expensive computation-wise
GH is in contrast to the octile distance heuristic. We ran a full scenario (close to 3000
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Table 4.4: Pathfinding searches in Baldur’s Gate II maps.

Heuristic Avg len Avg time (s) Avg exp Searches Speedup
Octile 252.79 0.09 8369 47821
Gateway 0.067 5856 34%

Figure 4.1: Side by side comparison of the open and closed lists (grey area) of an A* search
using standard octile distance (left) and the gateway heuristic search (right). The resulting
shortest path is shown in blue.

searches) on a typical map (AcrossTheCape) using both heuristics. Using the octile distance
2.5% of the total run time is spent computing the heuristic, while GH consumes 15% of the
total run time.

4.3 Problematic Map Structures

While the vast majority of maps lends itself nicely to the decomposition algorithm, and the
gateway heuristic will in most cases result in an improved search speed, there are certain
cases that can result in a slower search.

One thing to keep in mind is that GH is inconsistent so the search must allow for the
re-expansion of nodes. This stems from the fact that the length of a gate is not included
in the estimate (as that could make it inadmissible) but only the estimated or true distances
towards and away from it. This can present the search with fake shortcuts in the evaluations,
which it will follow, only to have to re-evaluate those same nodes later in the search. When
evaluating certain bad searches in the StarCraft map CrashSites we realized just how much of
a problem this could be, as the worst searches would often be showing significantly smaller
open/closed lists at the end of the search, but the amount of re-expansions would take the
total number of expansions far above that of the regular octile heuristic search, resulting in a
decrease in search speed. Knowing this though, it is possible to restructure the problematic
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Figure 4.2: Refinement of gates from the raw water level fringes (top-left) to gates with
two end points (top-right). This refinement is a problem in and of itself, and while in most
cases our algorithm for it results in clean looking gates, we can see in this image that it can
sometimes lead to unexpected results and can definitely be improved on, aesthetic-wise.

Figure 4.3: Comparison between open/closed lists after a search in the Aurora map. The
search on the left uses an octile distance heuristic while the search on the right uses the
gateway heuristic. The first image also shows the automatically generated and processed
gates for the search, while the second one shows manually added gates as well.

gates and build a decomposition that gives a purely positive result. For example, for the
Crash Sites map this manual enhancement had a very positive effect (see Table A.2).

4.3.1 The Aurora map

The Starcraft map Aurora (see Figure 4.2) is in many ways interesting for our methods of
decomposition and pathfinding search. There is a long and winding hallway that is more or
less of equal width its entire length. The decomposition ends up applying a single zone to
the entire hallway. This zone has two problematic characteristics. Firstly, it is a complex and
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non-convex zone, which is a bad fit for the octile heuristic (used within zones). Second, the
one zone is connected to a huge amount of gates, which means that whenever a tile in that
zone is associated with an evaluation, the O(n2) complexity makes the evaluation function
slow. We used our analysis tool to manually add gates that split this single zone into more
manageable parts and then re-calculated and re-ran our searches for this map. These added
gates can be see in the rightmost image in Figure 4.3.

Table 4.5: Pathfinding searches in the Aurora map using different heuristics.

Heuristic Avg len Avg time Avg exp Searches
Octile 807.886 1.15897 88877.2 20
Gateway (automatic gates only) 807.886 1.92989 73402.5 20
Gateway (manually added gates) 807.886 0.688802 41168.2 20
Octile 444.021 0.360433 29981.2 200
Gateway (automatic gates only) 444.021 0.541439 21696.1 200
Gateway (manually added gates) 444.021 0.26021 17107.0 200
Octile 623.98 0.711368 56551.5 100
Gateway (automatic gates only) 623.98 1.16034 43569.8 100
Gateway (manually added gates) 623.98 0.431784 27382.3 100
Octile 813.996 1.25323 96780.5 50
Gateway (automatic gates only) 813.996 2.31715 99914.7 50
Gateway (manually added gates) 813.996 0.764092 46856.3 50
Octile 1005.86 1.91269 140632.0 10
Gateway (automatic gates only) 1005.86 3.35622 131430 10
Gateway (manually added gates) 1005.86 1.32063 72936.5 10
Octile 1195.73 2.89316 213212.0 20
Gateway (automatic gates only) 1195.73 5.88037 243459 20
Gateway (manually added gates) 1195.73 1.70679 101122.0 20

Table 4.5 shows detailed data on different searches in the Aurora map. When using GH
with only the automatically decomposed gates, we see that there are fewer node expansions
per search, but that the average time per expansion (not shown) is so high, because of the
high number of gates in the main hallway zone and the O(n2) evaluation function, that
the time spent searching is in fact significantly higher. Once some gates have been added
manually in order to decompose the hallway itself a little bit better the time drops and in fact
the adjusted decomposition results in fewer node expansions as well, in this case.

With the manually added gates the pathfinding search went from being slower using GH,
to showing a 79% speedup compared to using the octile distance only.

4.4 Summary

The empirical evaluation shows that using GH on a map decomposed with the water level
decomposition on average yields a sizable increase in search speed over a standard A* us-
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ing an octile distance heuristic. It works well on the rather simple maps of Baldur’s gate,
and even better on the larger and more complex maps of StarCraft, even though a few of
them were given enhanced decompositions. It is worth noting that this does not dimin-
ish their usability as general decompositions in strategic planning, even though they ended
up with characteristics that badly affected their usefulness in this particular way of using
pre-calculated data in a pathfinding heuristic. We also identified these characteristics and
proposed ways to eliminate them.
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Chapter 5

Related Work

Our work bears similarity to previous work on hierarchical pathfinding [12], [13], in particu-
lar the idea of using abstractions and map preprocessing. For example, the HPA∗ algorithm
[12] decomposes game maps into room-like structures, uses gates, and pre-calculates path
distances. There is however a clear fundamental difference between our approach and the
hierarchical ones: we use the abstract map view to improve heuristic state evaluation, but
not to alter the representation of the search space. Our work bears in that respect more
resemblance to work on heuristic evaluation improvement in other problem domains [14].

Some work has been done on heuristics that utilize search space abstractions and true
distances stored in memory to better guide heuristic functions in pathfinding since the orig-
inal publication of the Gateway Heuristic (GH) [1] in 2006. [15], [16] provide an overview
of these ideas and implementations of search algorithms and heuristics using a similar ap-
proach. None of these implementations provide a method for pathfinding that gives a con-
sistently better heuristic estimate than GH.

[17] describes the Portal Heuristic (PH), which works very similarly to GH. The differ-
ence is that instead of using each gate as a single line with two end points, every tile along
the gate is stored as a portal and the distance between every pair of portals is stored in mem-
ory, while GH stores distances between pairs of gates. For any given map decomposition
this would lead to the number of portals being the average length of gates times larger than
the number of gates, and with the number of distances stored in memory being N*(N-1) (N
being the number of gates or portals) the amount of memory needed for PH will be bigger
than that needed by GH by a factor of the average length of gates squared. Given unlimited
memory PH will give a more accurate estimate, as the length of gates does not introduce an
error but given the huge memory requirements PH has been implemented using a memory-
limited partitioning algorithm. This algorithm builds a single gate at a time, selecting its
position based on the highest betweenness centrality [18], [19] of the currently largest par-
tition, making a portal out of each tile along the gate, continuing until a maximum memory
criterion is met. Given the same memory needed to store GH’s pre-calculated distance data
PH would have to have as few or fewer portals than GH has gates, resulting in significantly
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fewer partitions and thus a much coarser abstraction of the search space, likely to yield a
worse heuristic on average. Additionally the average and maximum number of portals per
region, a number shown to have a significantly negative effect (see Section 4.3.1) on the
effectiveness of the estimate function, is much higher in PH than in GH.

In [8] a method is presented for detecting choke points and decomposing a game map
into region polygons. It starts by recognizing separate obstacle polygons, using them to
build a Voronoi Diagram that is then pruned and evaluated in order to find regions and
choking points in the traversable area of the map. These choking points represent the shortest
distances between obstacle polygons where congestions could happen when moving great
numbers of units through. This method yields a similar result to our algorithm but seems
very intricate. It requires the reduction of map tile clusters into polygons before building its
decomposition and also needs to prune its results and finally convert back into the original
format of the map.
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Chapter 6

Conclusions and Future Work

Here we have described one of the first methods of using distance data stored in memory to
improve the heuristic estimate used in an optimal A* pathfinding search, a method that has
since been referenced, replicated and improved on. The gateway heuristic still uses memory
efficiently to significantly improve the speed of A* search, as compared to the octile distance
A*, which is still the most common implementation of optimal pathfinding search. We have
also addressed the problem of building consistent and intuitive map decompositions that
support this heuristic. The decomposition has also been shown to work at least equally well
as previous methods of decomposing for strategic AI in real time strategy games.

The methods used together are a fully automated system and have been shown to outper-
form a standard A* search in terms of search time, and even more significantly in the number
of nodes expanded during the search which can in large searches reduce the memory needed,
even though the heuristic itself requires some amount of memory to store pre-calculated dis-
tance data. The performance of the search method can be further improved in some cases by
manually tweaking the decompositions to fit that purpose more exactly. This type of heuris-
tic, coined true-distance heuristics, has since given rise to what are now the fastest optimal
pathfinding searches.

The decomposition method itself has been shown to outperform the current standard
method, used on a popular AI testing and competing platform, in terms of decomposition
speed, and to give very similar results in terms of quality of decomposition and placement
of gates. It is in fact our intention to test the water-level decomposition on that very platform
with the purpose of replacing it to hopefully give a faster and more robust map analysis
overall.

As for future work it has been pointed out that a possible enhancement to our decompo-
sition as well as [8] would be to identify gates at both ends of hallways, even though they
are of the same width throughout, marking the hallway not only as a path between zones,
but as a zone itself. Implementing this enhancement would be beneficial if the algorithm is
to be added to the BWTA library, as it would not only improve the speed of the analysis, as
it already does, but the quality of the decomposition as well.
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We also feel that there is room for optimization in order to further increase the speed of
the decomposition algorithm and that the intermediate data collected during its execution,
such as distance to nearest wall, could also be beneficial for strategic AI agents. Further
work on utilizing this data in strategic AI in real time strategy games would be of interest to
the field.

It would be of interest to better identify the types of maps and decompositions that the
gateway heuristic does not work well with and build a system that applies different methods
of decomposition when needed. For example a maze with corridors of even width throughout
might not get an optimal decomposition using the water level algorithm, but our original ad
hoc algorithm (see Appendix B) works especially well for that type of map.

Finally, various research can be done to explore possibilities of using a similar approach
to decompose or analyze different state spaces, such as 3D game levels, real map data (rather
than tile-based game maps) and partial analysis, such as continuous decomposition of maps
that are gradually being explored.

We believe the methods here described, and the ideas behind them, are an important
addition to modern research in game AI and that they can without doubt favorably impact
implementations of pathfinding and tactical strategy AI.
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Appendix A

Data from search execution

Tables A.1-A.4 show average search times for each of 30 StarCraft and 38 Baldur’s Gate
maps. The columns are map name, average path length, avg. search time in seconds, avg.
nodes expanded, thereof how many re-expansions, and number of searches in the scenario.

Table A.1: Pathfinding searches in StarCraft maps using different heuristics.

Map (heuristic) Avg len Avg time (s) Avg exp Avg reexp Searches
AcrosstheCape (octile) 592.002 0.699794 54869.5 0 2940
AcrosstheCape (gateway) 592.002 0.399497 26281.1 4285.77 2940
Aftershock (octile) 366.007 0.241077 19871.6 0 1810
Aftershock (gateway) 366.007 0.215062 14074.9 1406.74 1810
Archipelago (octile) 436.004 0.313657 25803.4 0 2160
Archipelago (gateway) 436.004 0.327068 23288.5 9621.68 2160
ArcticStation (octile) 823.982 1.36052 109318 0 4100
ArcticStation (gateway) 823.982 0.839048 58532.7 29480.9 4100
Aurora (octile) 601.977 0.911096 70297.2 0 2990
Aurora (gateway) 601.977 1.46451 59310.5 18799.8 2990
Aurora (octile - manual fix) 601.977 0.906402 70297.2 0 2990
Aurora (gateway - man. fix) 601.977 0.504679 31343.2 9183.33 2990
Backwoods (octile) 490.006 0.342409 28910.2 0 2430
Backwoods (gateway) 490.006 0.194723 13196 2257.62 2430
BigGameHunters (octile) 362.028 0.211085 17816.6 0 1790
BigGameHunters (gateway) 362.028 0.140646 11010.4 1833.26 1790
BlackLotus (octile) 756.024 0.940296 76370.6 0 3760
BlackLotus (gateway) 756.024 0.697397 46351.5 23181.2 3760
BlastFurnace (octile) 615.973 0.811672 64061.2 0 3060
BlastFurnace (gateway) 615.973 0.606275 39593.8 12323.4 3060
BrokenSteppes (octile) 559.994 0.632492 48071.1 0 2780
BrokenSteppes (gateway) 559.994 0.457259 30901.7 9781.41 2780
Brushfire (octile) 433.974 0.261745 22253.5 0 2150
Brushfire (gateway) 433.974 0.156646 11869.6 2685.6 2150
Caldera (octile) 342.003 0.183796 15232.4 0 1690
Caldera (gateway) 342.003 0.196134 14141.4 3483.71 1690
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Table A.2: Pathfinding searches in StarCraft maps using different heuristics.

Map (heuristic) Avg len Avg time (s) Avg exp Avg reexp Searches
CatwalkAlley (octile) 531.982 0.668454 55933.2 0 2640
CatwalkAlley (gateway) 531.982 0.408368 29066.9 6112.36 2640
Cauldron (octile) 803.988 1.40978 106068 0 4000
Cauldron (gateway) 803.988 1.02744 66193.6 19834 4000
CrashSites (octile) 566.027 0.502942 38740.1 0 2810
CrashSites (gateway) 566.027 0.961835 63996.8 39018.4 2810
CrashS. (octile - manual fix) 566.027 0.502431 38740.1 0 2810
CrashS. (gateway - man. fix) 566.027 0.366918 25281 3350.96 2810
CrescentMoon (octile) 371.949 0.245615 20151.9 0 1840
CrescentMoon (gateway) 371.949 0.23686 17359.8 4366.6 1840
Crossroads (octile) 558.019 0.552763 42992.7 0 2770
Crossroads (gateway) 558.019 0.351565 24824.1 2870.88 2770
DarkContinent (octile) 509.998 0.575449 45563.6 0 2530
DarkContinent (gateway) 509.998 0.415035 29244 11173.2 2530
Desolation (octile) 376.035 0.219499 18618.7 0 1860
Desolation (gateway) 376.035 0.170364 12633.6 1067.22 1860
EbonLakes (octile) 399.969 0.341353 27962.2 0 1980
EbonLakes (gateway) 399.969 0.231499 16850.2 5691.17 1980
Elderlands (octile) 489.992 0.345453 27669.8 0 2430
Elderlands (gateway) 489.992 0.254552 17517.3 2584.97 2430
Enigma (octile) 657.994 0.575297 48160.2 0 3270
Enigma (gateway) 657.994 0.402283 27563.4 4195.12 3270
Entanglement (octile) 337.968 0.183081 15114.6 0 1670
Entanglement (gateway) 337.968 0.205483 12634.4 2065.53 1670
Entang. (octile - manual fix) 337.968 0.182213 15114.6 0 1670
Entang. (gateway - man. fix) 337.968 0.144462 10070.3 2320.58 1670
Eruption (octile) 362.04 0.250424 20710.9 0 1790
Eruption (gateway) 362.04 0.189911 13250.9 2689.88 1790
Expedition (octile) 641.952 0.628432 47379.6 0 3190
Expedition (gateway) 641.952 0.673775 40329.1 11063.3 3190
Exp. (octile - manual fix) 641.952 0.626712 47379.6 0 3190
Exp. (gateway - man. fix) 641.952 0.615473 40322.1 12094.6 3190
FireWalker (octile) 507.999 0.387968 33734 0 2520
FireWalker (gateway) 507.999 0.23202 18072.9 615.409 2520
FloodedPlains (octile) 551.988 0.568366 43909 0 2740
FloodedPlains (gateway) 551.988 0.252242 16846.9 2041.14 2740
GhostTown (octile) 463.98 0.402711 33159.1 0 2300
GhostTown (gateway) 463.98 0.441651 29283.1 8071.04 2300
GhostT. (octile - manual fix) 463.98 0.401836 33159.1 0 2300
GhostT. (gateway - man. fix) 463.98 0.3914 24846.5 3904.62 2300
GladiatorPits (octile) 524.031 0.601765 46781.4 0 2600
GladiatorPits (gateway) 524.031 0.342251 24235.1 9119.68 2600
GreenerPastures (octile) 521.99 0.582307 46374.7 0 2590
GreenerPastures (gateway) 521.99 0.727395 52587.8 24208.2 2590
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Table A.3: Pathfinding searches in Baldur’s Gate maps using different heuristics.

Map (heuristic) Avg len Avg time (s) Avg exp Avg reexp Searches
AR0011SR (octile) 256.401 0.123364 10769.3 0 1280
AR0011SR (gateway) 256.401 0.0826659 6410.2 917.714 1280
AR0012SR (octile) 256.237 0.131738 11041.3 0 1280
AR0012SR (gateway) 256.237 0.0830003 5603.82 372.948 1280
AR0016SR (octile) 244.874 0.0879769 7431.08 0 1221
AR0016SR (gateway) 244.874 0.0706569 5462.57 462.928 1221
AR0017SR (octile) 256.228 0.13387 10865.4 0 1280
AR0017SR (gateway) 256.228 0.0717539 5648.26 320.147 1280
AR0018SR (octile) 256.336 0.144329 12109.9 0 1280
AR0018SR (gateway) 256.336 0.0931953 6641.14 566.82 1280
AR0020SR (octile) 252.415 0.0579244 6572.05 0 1260
AR0020SR (gateway) 252.415 0.0595243 6161.12 16.3333 1260
AR0041SR (octile) 256.26 0.0666819 8151.08 0 1280
AR0041SR (gateway) 256.26 0.067017 8151.08 0 1280
AR0042SR (octile) 256.248 0.0736799 9115.91 0 1280
AR0042SR (gateway) 256.248 0.0739851 9115.91 0 1280
AR0043SR (octile) 256.293 0.0739815 9019.86 0 1280
AR0043SR (gateway) 256.293 0.0743828 9019.86 0 1280
AR0044SR (octile) 256.336 0.0687899 8539.81 0 1280
AR0044SR (gateway) 256.336 0.0701139 8538.38 0 1280
AR0045SR (octile) 256.25 0.0790795 8584.53 0 1280
AR0045SR (gateway) 256.25 0.0790443 8375.34 0 1280
AR0046SR (octile) 256.249 0.0701734 7785.29 0 1280
AR0046SR (gateway) 256.249 0.0622718 6999.26 0 1280
AR0070SR (octile) 256.394 0.102312 9045.7 0 1280
AR0070SR (gateway) 256.394 0.0538736 4439.68 298.205 1280
AR0071SR (octile) 256.343 0.0972062 8732.79 0 1280
AR0071SR (gateway) 256.343 0.0628387 5065.22 420.396 1280
AR0072SR (octile) 256.284 0.099796 8941.24 0 1280
AR0072SR (gateway) 256.284 0.0544059 4692.12 244.905 1280
AR0201SR (octile) 256.251 0.0439098 4410.46 0 1280
AR0201SR (gateway) 256.251 0.034195 3164.3 28.25 1280
AR0202SR (octile) 256.394 0.0744752 6884.3 0 1280
AR0202SR (gateway) 256.394 0.0540976 4364.9 699.648 1280
AR0203SR (octile) 256.206 0.086117 8356.96 0 1280
AR0203SR (gateway) 256.206 0.0830677 7868.46 0.005 1280
AR0205SR (octile) 256.256 0.0977825 8582.24 0 1280
AR0205SR (gateway) 256.256 0.0536145 4163.01 522.891 1280
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Table A.4: Pathfinding searches in Baldur’s Gate maps using different heuristics.

Map (heuristic) Avg len Avg time (s) Avg exp Avg reexp Searches
AR0206SR (octile) 235.484 0.089751 7767.53 0 1175
AR0206SR (gateway) 235.484 0.0552508 4800.83 299.206 1175
AR0300SR (octile) 256.326 0.0944994 8591.98 0 1280
AR0300SR (gateway) 256.326 0.0592571 4559.64 788.565 1280
AR0302SR (octile) 247.245 0.0968242 8437.84 0 1233
AR0302SR (gateway) 247.245 0.078864 6263.26 80.0032 1233
AR0304SR (octile) 255.341 0.102257 8956.08 0 1275
AR0304SR (gateway) 255.341 0.0845309 6630.94 1110.6 1275
AR0306SR (octile) 256.239 0.129114 11153.3 0 1280
AR0306SR (gateway) 256.239 0.0740074 5899.42 215.141 1280
AR0308SR (octile) 256.272 0.142172 12231.3 0 1280
AR0308SR (gateway) 256.272 0.121287 8718.59 1368.3 1280
AR0400SR (octile) 256.507 0.0862324 7950.09 0 1280
AR0400SR (gateway) 256.507 0.0643287 5468.58 488.905 1280
AR0404SR (octile) 256.307 0.083377 7719.69 0 1280
AR0404SR (gateway) 256.307 0.0861535 6985.98 2193.13 1280
AR0405SR (octile) 256.367 0.139003 12144 0 1280
AR0405SR (gateway) 256.367 0.056619 4557.31 383.082 1280
AR0406SR (octile) 256.355 0.0800421 7411.41 0 1280
AR0406SR (gateway) 256.355 0.0453323 3617.57 345.277 1280
AR0412SR (octile) 256.23 0.0959357 8729.73 0 1280
AR0412SR (gateway) 256.23 0.0759473 6291.02 921.25 1280
AR0418SR (octile) 175.064 0.0197142 2643.4 0 874
AR0418SR (gateway) 175.064 0.0198274 2643.4 0 874
AR0500SR (octile) 256.352 0.0847354 7662.76 0 1280
AR0500SR (gateway) 256.352 0.0771017 5933.25 1248.11 1280
AR0526SR (octile) 234.007 0.0809273 7489.05 0 1168
AR0526SR (gateway) 234.007 0.0671157 5931.95 1.647 1168
AR0600SR (octile) 256.266 0.0376544 3630.59 0 1280
AR0600SR (gateway) 256.266 0.0372316 3441.07 0 1280
AR0602SR (octile) 256.484 0.0727776 6844.94 0 1280
AR0602SR (gateway) 256.484 0.0483633 3922.25 514.718 1280
AR0605SR (octile) 243.527 0.0660797 6918.65 0 1215
AR0605SR (gateway) 243.527 0.062921 6515.35 0 1215
AR0700SR (octile) 256.341 0.105874 9291.59 0 1280
AR0700SR (gateway) 256.341 0.0863231 5755.05 754.923 1280
AR0711SR (octile) 256.297 0.0583396 5422.74 0 1280
AR0711SR (gateway) 256.297 0.0405665 3650.61 28.1312 1280
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Appendix B

Ad Hoc Decomposition Algorithm

In the original publishing of [1] we used an ad hoc decomposition algorithm in order to
have a fully automated pre-calculation phase, although we had not yet implemented a so-
phisticated method. The initial results presented in Chapter 2 are from executions on maps
decomposed with the algorithm described here.

The algorithm that divides the map into zones is a sort of flood-filling algorithm. Instead
of having to input boundaries though, the algorithm automatically builds borders as it en-
counters tiles that satisfy certain conditions. The algorithm requires no input other than the
tile-based map with information for each tile about whether it is passable or not. The output
is information for each tile stating which zone it belongs to (or that it is non-traversable).

Pseudo-code for the decomposition method is shown as Algorithm 6. When creating a
zone the algorithm starts by finding the top leftmost tile that is passable and has not yet been
assigned to a zone. From that tile the algorithm starts flood-filling to the right until it hits
a non-free tile. Both previously assigned and impassable tiles are regarded as non-free tiles
(lines 9-15). It then proceeds to the next row, selecting a start point as far left as possible
using similar stop criteria as for the right side (lines 27-36). It will then start filling to the
right again, repeating the process.

The algorithm detects whether the right and the left borders grow or shrink from one line
to the next (lines 17-26 and 37-42). If a border regrows after having shrunk the flood-filling
for that zone is stopped (possibly having to undo the last line filled (lines 20-24)).

Figure B.1 shows examples of how the decomposition algorithm works. The top left
image shows an undivided map, and in the image to its right the flood-filling has begun. The
fourth row has stopped because the area opens upwards. It would be unwise to proceed in
such cases as the line would cut right through another potential zone. This is the later stop
condition in line 12 of the algorithm ((x + 1, y − 1) 6= free). In the bottom left image the
algorithm has finished filling the zone. In the line immediately below the zone the algorithm
has the chance to extend the zone to the right. However, as the zone has already shrunk from
the right and regrowing is prohibited the zone filling stops. This ensures that zones have
fairly regular shapes. In the last image two more zones have been similarly filled.
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Algorithm 6 Automatic Map Decomposition
for all passable tiles in map do
zone(tile)← free

end for
currZone← 1
repeat
(xLeft, y)← top and leftmost free tile on the map
shrunkR← shrunkL← false
repeat

{Mark line until hit wall or area opens upwards}
x← xLeft
zone(x, y)← currZone
while (x+ 1, y) = free ∧ (x+ 1, y − 1) 6= free do
x← x+ 1
zone(x, y)← currZone

end while
{Stop filling area if right border regrowing}
if (x+ 1, y − 1) = currZone then
shrunkR = true

else if (x, y − 1) 6= currZone ∧ shrunkR then
{Undo line markings}
while (x, y) = currZone do
zone(x, y)← free
x← x− 1

end while
break

end if
{Goto same initial x-pos in next line}
(x, y)← (xLeft, y + 1)
{If on obstacle, go right in zone until empty}
while (x, y) 6= free ∧ zone(x, y − 1) = currZone do
x← x+ 1

end while
{Move further left until wall or opens upward}
while (x− 1, y) = free ∧ (x− 1, y − 1) 6= free do
x← x− 1

end while
{Stop filling area if left border regrowing}
if (x− 1, y − 1) = currZone then
shrunkL = true

else if (x, y − 1) 6= currZone ∧ shrunkL then
break

end if
until break
currZone← currZone+ 1

until no free tiles are found in map
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Figure B.1: Zone generation border criteria.

Figure B.2: Decomposed game map (212 x 214).
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