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Abstract

Trawl-doors are one of the main contributor of resistant produced by trawlers
fishing gear, that has considerable effects on fuel consumption. A key fac-
tor in reducing that consumption is by implement computational models in
the design process. This study presents a robust two dimensional computa-
tional fluid dynamics models, that are able to capture the non-linear flow past
multi-element hydrofoils. Efficient optimization algorithms are applied to
the design of trawl-doors, using problem formulation that captures true char-
acteristics of the design space where lift-to-drag ratio is maximized. Four
to seven design variables are used in the optimization process depending on
the model, they control angle of attack, position and orientation of a slat or
slat and flap. The optimization process involves both multi-point space map-
ping, and mixed modelling techniques that utilizes space mapping to create
a physics-based surrogate model. The results demonstrate that lift-to-drag
maximization is more appropriate than lift-constraint drag minimization and
that local search using multi-point space mapping can yield satisfactory de-
sign at low computational cost. By using Global search with mixed mod-
elling a solution with higher quality will be obtained, but it is not as compu-
tationally efficient as multi-point space mapping



Bestun á lögun toghlera með rýmis-vörpuðum Kriging líkönum
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Útdráttur

Toghlerar eru einn af þeim meigin þáttum sem hafa áhrif á mótstöðu í veiðar-
færum togara, og hafa þeir því talsverð áhrif á eldsneytiseiðslu þeirra. Lykil
þáttur í að draga úr eldsneytiseyðslunni er að innleiða straumfræðileg tölvulíkön
í hönnunarferlið. Í þessari ritgerð eru kynnt traust tvívíð tölvulíkön sem eru
næm á ólínuleika í streymi yfir samsett vængsnið. Skilvirkum bestunar al-
grímum er beitt við hönnun á toghlerum, þar sem hönnunar forsendan er
bætt hlutfall á milli lyfti- og mótstöðu stuðuls. Notast er við fjórar til sjö
hönnunarbreytur í bestunar ferlinu eftir því hvaða lögun verið er að skoða,
þar sem breyturnar stjórna aðfallshorni, staðsetningu og halla á slatta og/eða
flappsa. Við bestunarferlið er notast við fjölpunkta svæðis kortlagningu, og
samsett líkan sem einnig notast við svæðis kortlagningu við gerð staðgöngu
líkans. Niðurstöðurnar sýna fram á að bestun þar sem markmiðið er að
hámarka hlutfallið á milli lyfti- og mótstöðu stuðuls á betur við en að lág-
marka mótstöðu með skorður á lyfti stuðli ásamt því að aðferð fjölpunkta
svæðis kortlagningar skilar ásættanlegum niðurstöðum mjög skilvirkt ef litið
er til reiknitíma. Með blandaða líkaninu náðist hinsvegar betri lausn á van-
damálinu, en ekki með jafn skilvirkum hætti og fyrri aðferð.
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Chapter 1

Introduction

1.1 Motivation and Background

Rising fuel prices have a significant impact on fisheries operating costs. Fuel consumed by
the European Union fishing fleet alone was over 1,6 billion liters in 2011, and the second
largest independent item of expenditure with 24 % share of fisheries total operating cost
[4].

The fisheries mobile gear segments are the heaviest fuel consumers. The trawlers have
to tow the fishing gear which generates a large flow resistance. Therefore these vessels
are equipped with high power engines that consume large amounts of fuel during towing.
This fuel consumption is depends on the efficiency of the fishing gear, engines, and the
vessels itself. Even though trawlers often travel greater distances to fishing grounds, the
fuel consumed during trawling is up to 80 % of the total consumption [5]. Thus, the design
of the fishing gear is key for reducing the overall fuel consumption.

Typical trawlers fishing gear assembly consist of a large net, a pair of trawl doors (that
serve the purpose of keeping the net open during trawling), and cables (which connect
the net and the trawl doors to the trawler) as seen on Fig. 1.1. The net alone can be up
to 160 m deep and 240 m wide [6] , and the size of the trawl doors varies from 1− 20 m2

depending on how much force is needed to keep the net open [7]. The cables on each side
of the trawl gear varies in length from 150− 2.000 m depending on the size of the fishing
gear and method [8].

Resent work by Jonsson et al. [9] and Leifsson et al. [10] has demonstrated that hy-
drodynamic efficiency of modern trawl doors can be improved considerably using com-
putational fluid dynamics (CFD) models and automated optimization techniques. CFD
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Trawl doors

Figure 1.1: Typical assembly of trawlers fishing gear (Figure source from website1).

Figure 1.2: Typical trawl-door manufactured from highly cambered steel plates (Figure
source from website2).

offers the capability of accurately analyzing the fluid flow past the trawl-door shapes to
predict their performance characteristics. However, high-fidelity CFD models are com-
putationally expensive. Since the design of trawl-door shapes involves a moderately large
design space (typically, less than 10 design parameters), using CFD models directly with
conventional optimization techniques (such as gradient-based ones) can be impractical.
Therefore, prior work on trawl-door shape optimization [9, 10] has investigated the use of
surrogate-based optimization (SBO) techniques [11, 12, 13, 14], to accelerate the design
process.

1 Source: http://njscuba.net/artifacts/ship_fishing.html
2 Source: http://thyboron-trawldoor.dk/products/semipelagic-trawldoors/

el-casador-xstream
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In Jonsson et al. [9], a variable-fidelity optimization method is used to speed up the design
process. In particular, the method utilizes space mapping and low-fidelity CFD models to
construct fast and reliable surrogates of computationally heavy high-fidelity CFD models.
Satisfactory designs are obtained at low computational cost. However, the approach can
be sensitive to numerical noise associated with the low-fidelity CFD model (the numerical
noise levels are typically low in the high-fidelity models). Significant numerical noise
present in the computational models may impact the optimization process since the design
space will be multi-modal, and the low-fidelity model will not follow the overall trend of
the high-fidelity model. In both these situations, the optimized designs may be different
than the ones obtained by optimizing the high-fidelity model directly.

Leifsson et al. [10] used an iterative scheme with local response surface approximation
(RSA) models of the expensive CFD trawl-door model constructed in each iteration. The
RSA models are constructed using CFD data sparsely sampled in the vicinity of the cur-
rent design, and a low-order polynomial approximation (to reduce the influence of the
CFD model numerical noise on the optimization, as well as minimizing the number of
required data samples). The size of the vicinity (i.e., the RSA model domain) is automat-
ically adjusted in each iteration based on the performance of the model. The approach
is efficient and yields good results at a relatively low cost. Nevertheless, the method uti-
lizes only high-fidelity CFD model evaluations. There should be room for improving the
optimization cost by utilizing variable-fidelity models.

1.2 Research Objectives and Contributions

The objectives of this research work are to address the following areas of trawl-door shape
optimization:

1. Improve the CFD simulations: A major part of this work is to enhance the grid
generation of the CFD modeling to more accurately capture the nonlinearity of the
flow past multi-element trawl-door shapes. This will yield more accurate and robust
CFD analysis of trawl-door shapes. The enhanced CFD model will be validated
against experimental data of the flow past multi-element airfoil shapes since data
for trawl-door shapes is not publicly available.

2. Investigate an alternative problem formulation: Prior work in this area have
used the drag coefficient as the figure of merit and used the lift coefficient as a
constraint, i.e., lift-constrained drag minimization. In this work, we will improve
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the performance of trawl-door shapes by maximizing the lift-to-drag ratio. Thus,
the optimization problem is converted from being constrained to unconstrained.

3. Improve the surrogate modeling: Use a mixed surrogate-based modeling ap-
proach to trawl-door shape optimization, i.e., construct a function approximation
surrogate using physics-based models of varying fidelity. This approach has been
successfully applied to simulation-based optimization in other areas such as mi-
crowave antenna and filter design [14]. In this thesis work, the space mapping tech-
nique is utilized to create a fast surrogate based on high- and low-fidelity model
data. Then, the variable-fidelity surrogate is used to construct a global surrogate
model of the design space using a function approximation technique, in this case
kriging interpolation. This approach should alleviate some of the limitations of
using only space mapping without compromising computational cost.

The contributions of the research are the combined outcomes of objectives 1, 2 and 3 and
will yield a more robust and reliable SBO approach for design of trawl-door shapes.

1.3 Thesis Outline

The formulation of the design problem (Objective 2) is given in Chapter 2. In Chapter 3,
the computational fluid dynamics modeling and validation results are described (Objective
1). Chapter 4 presents the optimization and surrogate modeling approach (Objective 3).
Results of applications of the optimization approaches are given in Chapter 5 (Objectives
1, 2, and 3). Chapter 6 concludes the thesis. Further details and results of several aspects
of the work are given in the Appendices.
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Chapter 2

Problem Formulation

The objective of this work is to optimize the shape and configuration of trawl-doors,
where they are treated as an independent system. The conventional trawl-doors are not
considered since recent studies have revealed that airfoil-shaped trawl-doors, as proposed
by Jonsson [15] and Hermannsson [16] are much more efficient than the conventional
shape. Here we consider trawl-doors that are constructed from airfoil-shaped elements
with multi-element configurations. Three sets of configurations are presented, main ele-
ment with leading-edge slat, trailing edge flap or both as shown in 2.1.

In this study there are two separate objective functions. First we minimize the drag co-
efficient for given lift. The problem is formulated as in study performed by Leifsson et

al. [10]. That study is used as a comparative benchmark for the computational efficiency
and quality of the solution acquired in this study.The subsequent objective function is to
maximize the ratio between lift and drag, without any additional constraints.

Then the optimization problem is formulated as

θslat

yslat/c

xslat/c xflap/c

V∞
α θflap yflap/c

x

y

Figure 2.1: Two dimensional view of multi-element trawl-door constructed from airfoil
shaped elements
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max Cl(x)/Cd(x), (2.1)

where Cl is the lift coefficient, Cd is the drag coefficient, and x is the vector of design
variables.

Here the shape of each element and the free-stream velocity V∞ is held constant through
the optimization process. The inclination and position of the leading-edge flap and the
trailing-edge slat, as well as angle of attack are designable parameters. Then the vector
of design variables for multi element trawl-door with leading-edge slat and trailing-edge
flap can be written as

x = [ xslat/c yslat/c θslat xflap/c yflap/c θflap α ]T , (2.2)

where xslat/c is the slat leading-edge position on the x-axis, yslat/c is the slat leading-
edge position on the y-axis, θslat is the inclination of the slat relative to the x-axis, xflap/c
is the flap leading edge position on the x-axis, yflap/c is the flap leading-edge position on
the y-axis, θflap is the inclination of the flap relative to the x-axis, α is the angle of attack
relative to the x-axis and c is the chord length of the main element. Through this study the
shape of the elements are normalized, so that c = 1. All design variables are subjected to
bounds, that is l ≤ x ≤ u, where u is the upper bound of the design variable vector and l

is the lower bound.

Then the problem can be re-written as

x∗ = arg min
x
H(f(x)), (2.3)

where f is the high-fidelity model response, described in Chapter 4, andH is the objective
function. The model response f(x) = [Cl,f Cd,f ]T where Cl,f and Cd,f are the lift and
drag coefficients obtained by the high-fidelity model. Then for lift over drag maximization
the objective function takes the form H(f(x)) = −Cl,f (x)/Cd,f (x).
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Chapter 3

Computational Fluid Dynamics
Modeling

This chapter describes the computational fluid dynamics (CFD) modeling for trawl-door
flow analysis in two-dimensions. In particular, the governing equations, computational
grid, and flow solver are described. Furthermore, the chapter gives results of grid inde-
pendence studies, validation studies, and numerical noise analysis.

3.1 Governing Equations

The flow is assumed steady, incompressible, and viscous. Governing equations are the
Reynolds-Averaged Navier-Stokes (RANS) equations, derived from the conservation of
mass and momentum principles.

The mass conservation (continuity) equation can be written as [17]

∂ρ

∂t
+∇(ρu) = 0 (3.1)

where ρ is the fluid density, u is the velocity and∇ is the Nabla operator (∂/∂y, ∂/∂x, ∂/∂z).
Since the working fluid is water the flow is considered incompressible, then equation 3.1
reduces to

∇u = 0. (3.2)

The conservations of momentum equation can be written as

∂(ρu)

∂t
(ρ−→u ) +∇(ρ−→u−→u ) = −∇p+∇τ (3.3)
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∂

∂t
(ρ−→u ) +∇(ρ−→u−→u ) = −∇p+∇τ (3.4)

where p is the fluid pressure, and τ is the stress tensor given by

τ = µ

[(
∇−→u +∇−→u T

)
− 2

3
∇−→u I

]
. (3.5)

Here µ is the dynamic viscosity and I is the unit tensor. Since compressibility and
heat transfer is not considered in this study, the energy conservation equation is not
solved.

To be able to effectively model the effect of turbulence, equations 3.1 and 3.1 are split-
up to mean and fluctuating components ui = ūi + u′i, where ūi and u′i are the mean
and fluctuating components resulting in the Reynolds-averaged Navier-Stokes equations
[18].

∂ui
∂xi

= 0 (3.6)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− ρu′iu′j

]
(3.7)

The term −ρu′iu′j represents the Reynolds stresses, that has to be modelled with a turbu-
lence model.

The Menter’s Shear-Stress Transport (SST) k − ω turbulence model was used to model
this turbulence. The model is considered more accurate and reliable for flow over airfoils
than the standard k − ω model. The transport equations used to obtain the turbulence
kinetic energy k and the specific dissipation rate ω are written as [18]

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k

∂xj

)
+Gk − Yk + Sk (3.8)

and
∂

∂t
(ρω) +

∂

∂xj
(ρωuj) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω +Dω + Sω. (3.9)

Here the term Gk stands for production of turbulence kinetic energy, Yk and Yω is the
dissipation of k and ω caused by turbulence, Gω represents generation of ω, Sk and Sω

are source terms defined by the user and Dω is the cross-diffusion term, Γk and Γω are the
effective diffusivity of k and ω. Refer to Tannehil et al. [19] for further details on the SST
k − ω turbulence model.
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3.2 Flow Solver

For solving the governing equations in 3.1 the commercial computer code ANSYS Fluent
14.0 [20] is used. The solver is coupled velocity-pressure-based formulation. The spatial
discretization schemes are second order for all flow variables and the gradient is found by
node based Green-Gauss method [18] . Due to complex flow condition at high angles of
attack a psuedo-transient option and high-order relaxation terms are used to obtain stable
convergence.

The working fluid were water, set with density of 998.2 kg/m3 and dynamic viscosity
1.003× 10−3Pa s. The free-stream flow velocity for all optimization processes were set
to 2m/s with Reynolds number Re = 2 × 106 to simulate the trawl-doors expected flow
conditions [16].
The solution controls were set with Flow Courant number CFL as 40, momentum and
pressure relaxation factors were 0.10. The under relaxation factors for both turbulent
kinetic energy and specific dissipation rate were set to 0.8, while higher order term relax-
ation factor for flow variables were set to 0.25.

3.3 Computational Grid

The goal was to have a grid with good quality, that could be generated both automatically
and robustly according to updated geometries proposed by an optimizer. The far-field
was configured with a box-topology, extending 100 main element chord-lengths c in all
directions from the leading edge of the main element that was located in the center of the
box, as seen on figure 3.1. The far-field has to be located relatively far away from the
trawl-door so that the flow generated by the boundary conditions is fully developed at the
trawl-door for consistency of the flow solution.

The grid was generated with the commercial code ICEM CFD [21]. Unstructured trian-
gular grid was chosen, it is generated more automatically and robustly when dealing with
complex geometries than structured grids [22]. The triangular grid is clustered around
the trawl-door geometry, and grows in size as it gets closer to the far-field where the
maximum size is defined as 10c. The initial size of the triangular grid, closest to the
trawl-door is defined by the spacing between elements of the prismatic inflation layer that
is extruded from all geometry surfaces. The inflation layer is to capture characteristics of
the boundary-layer and spacing between elements in stream-wise direction is determined
by performing a grid convergence study, as described in chapter 3.4. 10 prismatic layers
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0 0.5 1
−0.1−5 · 10−205 · 10−20.1

c
c’

200c

200c

Velocity Inlet

Velocity Inlet

Velocity Inlet

Pressure
Outlet

Figure 3.1: Configuration of the solution domain and boundary conditions. The leading
edge of the trawl-door main element is located in the centre, and the box is extended 100
chord lengths c in all directions.

were extruded from the geometry with exponential growth ratio of 1.2 and the initial layer
height were set to 2.5e−5 for the optimized geometries so that the non-dimensional wall
distance y+ < 1.

Both upper and lower curves of each element of the airfoil-shaped geometry are split in
two curves, so that high quality inflation layer can be generated robustly at the leading-
edge where there is high curvature and around the sharp trailing edge. In addition the
spacing between nodes at both the leading and trailing edges are 0.5 times the general
spacing, resulting in denser regions where the flow is more complex. an example grid can
be seen on figure 3.2.

3.4 Convergence Study

Iterative convergence were monitored by examining convergence history of the lift coef-
ficient Cl, drag coefficient Cd and the residuals that are the sum of the L2 norms of the
governing equations summed over all nodes. The convergence criteria were that the solu-
tion was converged after it had reached 6,000 iterations, or if the residuals had dropped by
six orders in magnitude. After the solution were converged according to the criteria, the
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(a) Farfield

(b) Trawl-door configuration (c) Prism layer

(d) Main elements sharp trailing edge (e) Leading edge slat

Figure 3.2: Example grid for multi-element trawl-door with leading edge slat and trailing
edge flap

solution were considered acceptable if the residuals had dropped by 4 orders in magnitude
and visual inspection of Cl and Cd had confirmed that the solution were stable. Figures
3.3 to 3.5 show an example of how the solution changes over number of iterations for
grids with variable density.
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Figure 3.3: Convergence of lift coefficient Cl for ten grids with variable density
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Figure 3.4: Convergence of drag coefficient Cd for ten grids with variable density

A grid convergence study were performed for all optimized geometries. At lest three
grids were required to perform a convergence study. A representative cell size h for two
dimensional grid is defined as [23]

h =

[
1

N

N∑
i=1

(∆Ai)

]1/2
, (3.10)
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Figure 3.5: Solution residuals for ten grids used in the grid convergence study

where N is the total number of cells in the grid and ∆Ai is the area of the i-th cell.
Then the grid refinement factor r between two computational grids can be calculated
with,

r =
hcoarse
hfine

(3.11)

where hcoarse stands for the coarser grid and hfine represents the finer grid. The value
of r close to 1 are inconvenient since the changes in the solution will be very small, and
r close to 2 can be too large. Stern et.al [24] suggest r =

√
2, while Celik et.al [23]

suggests r > 1.3 based on experience. Since the grid used in this study is unstructured a
constant r between grids that is r12 = r23 = rn+1 where n is the n-th grid is not feasible,
since the number of cells in each grid were dependant of number of stream-wise nodes
on the main element, as seen in section 3.3. In this study, number of stream-wise nodes
on main element were doubled between each grid refinement starting on a coarse grid.
The grid were refined until variables of interest Cl and Cd appeared stable, resulting in an
refinement factor on the range 1.2 < r < 1.4 that were considered acceptable.

To identify the solution convergence condition, the solution change ε, defined as

εk21 = Sk2 − Sk1

εk32 = Sk3 − Sk2

(3.12)

where Sk is the simulated solution for the k′th grid triplet and the subscript 1 represents
the finest grid, 2 the medium grid and 3 the coarsest. Then the convergence condition Rk
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is the ratio between the solution change, defined [23]

Rk =
ε21
ε32

(3.13)

The convergence ratio indicates the convergence conditions [23]:

1. Monotonic convergence, 0 < Rk < 1

2. Oscillatory convergence, Rk < 0

3. Divergence, Rk > 1

In this study all solutions experienced oscillatory convergence somewhere in the grid
refinement process, that is due to slight noise in the unstructured grid. An uncertainty
estimation were performed as proposed by Celik et.al [23] for oscillatory convergence,
where uncertainties Uk are estimated with

Uk =
1

2
(SU − SL), (3.14)

where SU is the upper bound and SL is the lower bound of the oscillating solutions. In
this case the sign and magnitude of the error can not be estimated [23].

Figure 3.7 shows a grid convergence study performed with a grid generated as described
in chapter 3.3, for a trawl-door with a main element and a leading edge slat as seen on
figure 3.6. The main element is NACA 2412 and the leading edge slat is NACA 3210
placed at x = −0.18 y = −0.08. The length of the slat were 20% of the length of the
main element and at an angle of 35◦. The assembly were placed at an angle of attack of
5◦ and the velocity were set at 2m/s. The uncertainty for each grid triplet were estimated
with the procedure above.

−0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

x/c

y/
c

Figure 3.6: Trawl-door geometry used for the grid convergence study

Table 3.1 summarizes the result of the convergence study. It can be seen that the first
three grid triplets consists of coarse and unreliable grids inheriting high uncertainties. The
uncertainty reduces as the grids get finer and the solution more stabled, until it reaches
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Figure 3.7: Grid convergence study for a trawl-door with uncertainty estimation

a minimum at grid triplet seven where the solution is considered converged. For that
reason grid number 9 with 4,800 elements distributed over the main element in stream-
wise direction, resulting in total number of approximately 517,000 elements were chosen
for the optimization process for this geometry. Additional convergence studies for other
trawl-door geometries can be found in appendix B.

Table 3.1: Results of the grid convergence study for variables Cl and Cd, uncertainty
estimation and conversion ratio for all grid triplets

k Rlift Lift count ULc Rdrag Drag count UDc

Grids 1 - 3 5.8 49.92 ± 16,10 0.53 436.0 ±263,6
Grids 2 - 4 0.68 68.47 ± 23,01 1.1 232.2 ±192,7
Grids 3 - 5 0.094 70.22 ± 10,15 0.073 217.4 ±109,3
Grids 4 - 6 -3.0 64.93 ± 2,644 -1.9 246.4 ±14,54
Grids 5 - 7 0.33 63.19 ± 3,515 0.85 271.1 ±26,87
Grids 6 - 8 0.063 63.08 ± 0,926 -0.17 267.0 ±12,33
Grids 7 - 9 10 61.93 ± 0,627 -1.2 271.8 ±2,398

Grids 8 - 10 -1.5 63.70 ± 0,882 -0.27 268.3 ±2,398

Since efficient computational time is one of the objectives of this research the grid conver-
gence study can be used to evaluate the efficiency of the grid chosen, and demonstrates
the importance of limiting high fidelity evaluations in the optimization process. Figure
3.8 shows how the computational time increases as the total number of elements grow,
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resulting in a computational time of 170 minutes for the grid chosen, with convergence
criteria as explained in chapter 3.4.
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Figure 3.8: Computational time as a function of grid density

3.5 Validation

The purpose of the model validation is to estimate how the CFD model performs com-
pared analytical or physical data. The first comparison were made using only one element,
NACA 0012 since it has simple geometry being symmetric over the chord line and well
documented [1, 25, 2]. The grid were structured according to section 3.3 and a grid con-
vergence study were performed as seen in section 3.4. The CFD model were compared
to wind tunnel data from Abbot and Von Doenhoff from Theory of Wing Sections [1],
and data from Ladson [2]. The Ladson data is for Re = 4.0e6 instead of Re = 3.0e6

like the other cases. His data for Re = 2.0e6 show that the effect of Re in this region is
negligible, therefore the results for Re = 4.0e6 were considered comparable in the vali-
dation process. In the Ladson data the transition were fixed at 0.05 c at both the upper and
lower surfaces of the airfoil, the data used for comparison in this study are with grit No.
60-W. Figure 3.9 shows comparison on the lift coefficient Cl as a function of α between
the CFD data and the wind tunnel data. The Thin Airfoil Theory lift curve is plotted for
comparison as well.

There is a good agreement between the CFD model and the experimental data. Ladson
experiences stalling at slightly lower α, the difference is under one degree while the CFD
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Figure 3.9: Model validation for NACA 0012 airfoil at Re = 3.0e6 showing Cl as a func-
tion of alpha. The red line represents the lift slope according to the Thin Airfoil Theory.
The blue dots represent the CFD data and the black triangles are wind tunnel data obtained
by Abbott et.al. [1]. The magenta boxes represent the Ladson data where the boundary
layer transition were fixed at 0.05c [2].

model stall angle is similar to the Abbot and Von Doenhoff data. The main difference is
in Cl,max, where that Abbot and Von Doenhoff measure Cl,max over 1.54 compared
to 1.21 in Ladsons study, while the CFD model lies between the two experiments with
Cl,max = 1.32.

Thin Airfoil Theory tell us that symmetric airfoils have zero lift at α = 0, and the lift slope
should be symmetric about the origin. The CFD model should show these characteristics
in the case of NACA 0012 airfoil, if the model is correctly implemented. At α = 0 the
CFD model estimates Cl = 0.0009498 that is close to zero and shows sign of numerical
noise at third to fourth decimal point. Figure 3.10 shows the difference in symmetry
about α = 0 and Cl = 0, by comparing the absolute values of Cl and α. The model
shows signs of negligible noise while the flow is attached at third to fourth decimal point,
similar to α = 0. When the flow starts to separate near αstall, the lift curves show more
sign of numerical noise. Still the difference in Cl is within 0.025 where it is the most at
α = 15.

If the drag coefficient is examined as seen in figure 3.11, that shows a drag polar compar-
ison between the CFD model, Ladson and Abbot, Von Doenhoff experimental data. For
comparison a solution for Cd were calculated for a flat plate at zero angle of attack with
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Figure 3.10: Difference in lift coefficient symmetry about α = 0 and Cl = 0 for NACA
0012 airfoil at Re = 3.0e6. The red circles represents CFD data for α ≤ 0, while the black
circles represent data for α ≥ 0.

equation 3.15 that estimates the frictional drag coefficient [26]

Cf =
xcr
c

1.328√
Recr

+
0.074

Re1/5
− xcr

c

0.074

Re
1/5
cr

. (3.15)

Here Recr is the critical Reynolds number where the transition as said to occur and xcr is
the point of transition between the laminar and the turbulent flow, estimated with

xcr =
µRecr
ρV∞

. (3.16)

ReL is the Reynolds number for flow over flat plate defined,

Re =
ρV∞L

µ
. (3.17)

where ρ is the fluid density, V∞ is the free stream velocity and L is the plate length.

The critical Reynolds number used were Re = 1.0e6 [17]. The pressure drag coefficient
Cpd were considered to be 15% of Cf , as found out in Lombardi et al. [25] results for
the NACA 0012 airfoil, that is considered reasonable for a blunt object at zero angle
of attack [17]. Abbot and Von Doenhoff measure Cd considerably lower than the CFD
model and Ladson, and even lower than in case of the flat plate. The location of boundary
layer transition is hard to predict and can vary between experiments. Since Ladson fixed
the location of transition it can be assumed from this comparison that Abbot and Von
Doenhoff experience boundary layer transition further down the wing, even further than
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in case of the flat plate where the transition occurs at 0.16c. The CFD model lies between
Abbot and Von Doenhoff results and ladsons, where the CFD model lies near ladsons
results at lower angles of attack where the lift is moderate and then deviates towards
Abbot and Von Doenhoff results as α increases.
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Figure 3.11: Model validation drag polar for NACA 0012 airfoil at Re = 3.0e6. The
blue dots represent the CFD data and the black triangles are wind tunnel data obtained by
Abbott et.al. [1]. The magenta boxes represent the Ladson data where the boundary layer
transition were fixed at 0.05 c [2]. The red triangle is an estimation of Cd over a flat plate
at α = 0.

The CFD model is more extensively validated by comparing its results to wind tunnel
tests of a NASA supercritical airfoils, performed by the Boeing Company for the National
Aeronautics and Space Administration NASA [27]. The report contains extensive collec-
tion of 2D wind tunnel data for several models at various angles of attack and Reynolds
numbers. The models of interest in this study is single ME, ME with flap, ME with slat
and ME with slat and flap since they resemble the trawl door geometry the most.

The example validation presented here consists of a main element with a trailing edge
flap as seen on figure 3.12, or Model B N1WC1F1 as named in the NASA report. The
CFD model were constructed with a mesh as described in chapter 3.3, the convergence
criteria were according to chapter 3.4 and convergence study performed according to same
chapter. The grid were considered converged after stream-wise nodes on the main element
had reached 4,800 nodes, resulting in a total of 603,880 elements. Comparable data were
lift coefficient Cl as a function of angle of attack as seen on figure 3.13, lift coefficient as
a function of the drag coefficient Cd as senn on figure 3.14 and the pressure coefficient
Cp over both the main element and the flap for −10◦, 0◦ and 9◦ angle of attack as seen on
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figure D.4. Experimental results obtained atRe = 2.01×6 were chosen for the validation
process, since it close to the flow conditions used for the optimization process where the
free stream velocity V∞ is 2m/s.
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Figure 3.12: Geometry of NASA Model B N1WC1F1 airfoil used for the validation pro-
cess

−14−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14
−0.5

0

0.5

1

1.5

2

2.5

3

alpha

C
l

Nasa data
CFD data

Figure 3.13: Cl as a function of α comparison between experimental data using NASA
Model B N1WC1F1 airfoil and the CFD model

Agreement between the experimental data and the CFD model is good. The lift curve
slope is shows minor deviations at α ≤ −10◦, that will not affect the optimization since
it is at negative angle. The polar plot shows slightly more deviations. Since Cd is close
to zero, the lift and drag ratio Cl/Cd is sensitive to minor changes in the drag coefficient.
Drag forces can be hard to predict accurately, and the deviation considered to be within
acceptable bounds. The Cp plots show excellent agreement whether the angle of attack
is at a negative, zero or positive angle, that supports the decision that the quality of the
CFD model is within acceptable bounds. More validation runs can be found in appendix
D.
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Figure 3.14: Drag polar plot comparison between experimental data of NASA Model B
N1WC1F1 airfoil and the CFD model
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(a) α = −8◦
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(b) α = 0◦
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Figure 3.15: Comparison between experimental data and the CFD model on pressure
coefficient Cp over surface of a NASA Model B N1WC1F1 airfoil, consisting of a main
element and a flap at three angles of attack
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3.6 Numerical Noise Analysis

A numerical noise analysis was performed on the same trawl-door model as the grid con-
vergence study in 3.4. The purpose was to determine the quality of the solution obtained
by the optimization process, choose a low-fidelity CFD model that fulfilled the quality
needed and verify that the noise in the high-fidelity model were negligible compared to
the low-fidelity one.

The noise in value of merit Cl/Cd were investigated in terms of design variables xslat/c,
yslat/c, θslat and α. Noise in each design variable is examined for eight potential low-
fidelity models with 24, 000, 33, 000, 42, 000, and 50, 000 elements where the model were
considered converged after 1, 500 iterations, or when residuals had dropped by 5× 10−3.
And for the same grids where the model were considered converged after 2, 000 iterations,
or when residuals had dropped by 5× 10−4. In addition the noise were examined for the
high-fidelity model chosen in chapter 3.4.

The noise study is performed by varying each design variable independently while mon-
itoring the lift-to-drag ratio. Changes in design variables have to be small enough so that
the analysis captures the noise in the model instead of the overall trend. Configuration
of the trawl-door were chosen to be in close proximity of an optimized configuration
of an initial optimization run (see appendix A). The baseline configuration and range
for each design variables were xslat/c = −0.200 ± 0.020, yslat/c = −0.0467 ± 0.020,
θslat = 25.33 ± 0.25 deg and α = 9.33 ± 0.25 deg. 40 simulation points were then
distributed evenly over the range for all variables.

Noise results for the low-fidelity models are presented in table 3.2, and comparison of
computational time for the models are shown in figure 3.16. The coarsest grids contain
high level of noise, or up to 9 Cl/Cd. Even though the computational time is shortest for
the coarsest grids they were considered infeasible for the optimization process. The im-
proved convergence criteria also reduces the noise level, implying that the relaxed conver-
gence criteria is not suitable. Only one case did not converge before reaching maximum
number of iterations. Almost 6 minute peak in computational time figure 3.16, can be
explained by poor quality of the grid that leads to inadequate solution convergence where
the residuals oscillate between 5× 10−3 and 5× 10−3.

The model chosen as a low-fidelity model for the optimization process were the finest one,
with 50, 000 elements and the model were considered converged after 2, 000 iterations, or
when residuals had dropped by 5 × 10−4, with highest noise level in variable x/c of 1.2

Cl/Cd. Figure 3.17 shows the noise of each design variable for the model chosen and
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figure 3.18 for the high-fidelity model, that had maximum noise level at design variable
x/c of approximately 0.8 Cl/Cd. Other results for models simulated in this study can be
found in appendix C.

Table 3.2: Estimated noise in Cl/Cd for each design variable of a low-fidelity model

Number of elements
Design Variable 24.000 33.000 42.000 50.000

Converged after 2,000 iteration or residuals ≤ 5× 10−4

x/c 4.464 4.616 2.064 1.213
y/c 9.079 4.120 1.973 1.312
θ 2.772 3.495 1.005 1.150
α 1.803 0.373 0.093 0.304

Converged after 1,500 iteration or residuals ≤ 5× 10−3

x/c 3.963 4.883 2.979 1.619
y/c 8.239 4.999 2.012 1.660
θ 3.448 4.012 1.356 0.907
α 1.968 0.311 0.969 0.210

104 105
0

1

2

3

4

5

6

Number of elements

R
un

tim
e

[m
in

]

Convergence criteria, 2000 iterations or residuals <5e-4
Convergence criteria, 1500 iterations or residuals <5e-3

Figure 3.16: Low-fidelity model computational time example, obtained in the noise anal-
ysis process
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Figure 3.17: Noise in lift-to-drag ratio of the low-fidelity model chosen for the optimiza-
tion process
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Figure 3.18: Noise in lift-to-drag ratio of the high-fidelity model chosen for the optimiza-
tion process
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3.7 Sensitivity Analysis

Sensitivity analysis were performed to estimate the effect (sensitivity) of each design vari-
able on the lift-to-drag ratio, as well as to give an idea on how the design space close to
optimum looks like. The sensitivity analysis is performed similar to the noise analysis in
3.6, except that the range of each design variables is much larger to capture the trend of
the Cl/Cd curve.
Here the baseline configuration is the same as before, but the range were xslat/c =

−0.200±0.050, yslat/c = −0.0467±0.050, θslat = 25.33±0.50 deg and α = 9.33±0.50

deg and the simulation points were reduced down to 10. Four models were sampled with
the same grids as before, but only one convergence criteria were tested, that is conver-
gence after 2,000 iterations or when residuals have reached 5× 10−4.

Figure 3.19 shows the results of the sensitivity analysis, where the noise in the coarser
models is apparent, confirming the results of the noise analysis. Design variable α is the
most sensitive of the design variables, it should be noted that abrupt changes in lift-over-
drag is expected near αstall after flow separation occurs. Solutions for the finest grid, used
as a low-fidelity model gives relatively smooth solution in the interval chosen, with no
signs of unexpected local min- or maximums.
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Figure 3.19: Sensitivity in design variables of a low-fidelity model at various grid densi-
ties
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Chapter 4

Optimization Methodology

In this chapter, optimization methodology for trawl-door shape design is described. The
chapter starts by describing the problem formulation and the surrogate-based optimiza-
tion (SBO) approach. A general discussion of surrogate modeling is given, including the
approximation- and physics-based approaches. The details of approximation-based sur-
rogate modeling using kriging interpolation as well as physics-based surrogate modeling
with multi-points space mapping. The chapter concludes with a description of a mixed
surrogate modeling approach.

4.1 Formulation of the Optimization Problem

We will denote the response of the high-fidelity computational fluid dynamics (CFD)
simulation model by f(x). f represents an evaluation of the performance characteristics
of interest, and the vector x = [x1 x2 . . . xn]T represents the designable parameters to be
adjusted (see Chapter 2 for the definitions of the characteristics and design variables). The
simulation-driven design task is usually formulated as a nonlinear minimization problem
of the following form (same equation as in 2, renumbered for fullnesses of this chapter
)

x∗ = arg min
x
H(f(x)) (4.1)

where H is the scalar merit function encoding the design specifications, whereas x∗ is
the optimum design to be found. The composition H(f(x)) will be referred to as the
objective function. The function H is implemented so that a better design x corresponds
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to a smaller value of H(f(x)). It is assumed that obtaining H(f(x)) is computationally
expensive.

4.2 Surrogate-Based Optimization

Conventional numerical optimization techniques, such as gradient-based search, are well
established and robust methods. However, their applicability for solving contemporary
design problems is limited due to the fundamental challenge of the high computational
cost of accurate, high-fidelity simulations. Difficulties of the conventional optimization
techniques, in the context of simulation-driven design, were the main incentives for de-
veloping alternative design methods. Perhaps the most promising way to address these
issues, in particular, to conduct parametric optimization of expensive simulation models
in a reasonable timeframe, is surrogate-based optimization (SBO) [11, 12, 13, 14].
The main concept behind SBO is to replace direct optimization of an expensive compu-
tational model by an iterative process in which a sequence of designs approximating the
solution to the original optimization problem equation 4.1 is generated by means of op-
timizing a fast yet reasonably accurate representation of the high-fidelity model, referred
to as a surrogate. In each iteration, the surrogate model is updated using the high-fidelity
model evaluation at the most recent design (and, sometimes, some other suitably selected
designs). Formally speaking, the surrogate-based optimization process can be written as
[28]

x(i+1) = arg min
x
H(s(i)(x)) (4.2)

where x(i), i = 0, 1, . . . , is a sequence of approximate solutions to the original problem
(1), whereas s(i) is the surrogate model at the ith iteration. x(0) is the initial design. Figure
4.1 shows the SBO process graphically using a high-fidelity CFD model.

The main prerequisite for the process 4.2 to be computationally efficient is the surrogate
model s being significantly faster than the high-fidelity model f. At the same time, the
surrogate has to be sufficiently accurate (in terms of representing the high-fidelity model).
In case of local search methods, reasonable accuracy is only requested in the vicinity of
the current design x(i). If both conditions are satisfied, the algorithm 4.2 is likely to
quickly converge to the high-fidelity model optimum x∗.
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Figure 4.1: SBO work flow. [3]

4.3 Surrogate Modeling

Surrogate models can be roughly divided into two categories: (i) approximation (or
functional) and (ii) physics-based ones. Approximation-based surrogate models are con-
structed through approximations of the high-fidelity model data obtained in the process
of sampling the design space using appropriate design of experiments (DOE) method-
ologies. Approximation-based surrogates can be considered as generic models that are
independent of the physics or any other knowledge about the problem at hand. The
other class of models is based on exploitation of some knowledge about the system under
consideration, usually embedded in a physics-based low-fidelity model. In the case of
aero/hydrodynamic problems, the low-fidelity model can be obtained using simplified an-
alytical description of the structure under design or from coarse-discretization CFD sim-
ulations. The surrogate itself is constructed by appropriate correction of the low-fidelity
model, usually based on limited amount of high-fidelity model data.

4.3.1 Approximation-Based Surrogates

Approximation-based surrogates are constructed from sampled high-fidelity model data.
Figure 4.2 shows the modeling flowchart for this type of models. The first stage is design
of experiments (DOE) [29, 30, 31], which is essentially a strategy of allocating required
number of samples in the design space. Having acquired high-fidelity model data, the
model identification is performed using a selected approximation method. The surrogate
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has to be verified to ensure sufficient accuracy, particularly its generalization capability,
i.e., the quality of model predictions at the designs not seen during the identification
stage. For that reason, model testing is normally performed using a separate set of testing
samples. In practice, the modeling process may be iterative with the flow depicted in Fig.
4.2 constituting a single iteration. Upon validation of the surrogate, new set up samples
together with the corresponding high-fidelity model data is then used to re-identify the
model and such an adaptive sampling scheme is continued until the accuracy goals are
met. In an optimization context, the surrogate model update may also be oriented towards
finding better designs rather than towards ensuring global accuracy.

Figure 4.2: Approximation-based surrogate model construction flowchart [3]

Probably the most popular DOE for (relatively) uniform sample distributions is Latin
Hypercube Sampling (LHS) [32]. In order to allocate p samples with LHS, the range for
each parameter is divided into p bins, which for n design variables, yields a total number
of pn bins in the design space. The samples are randomly selected in the design space
so that (i) each sample is randomly placed inside a bin, and (ii) for all one-dimensional
projections of the p samples and bins, there is exactly one sample in each bin. Figure
4.3d shows an example LHS realization of 20 samples for two design variables (n = 2).
It is worth noticing that the standard LHS may lead to non-uniform distributions (for
example, samples allocated along the design space diagonal satisfy both the condition (i)
and (ii)).

4.3.2 Physics-Based Surrogates

The main idea behind physics-based surrogates is the exploitation of the knowledge about
the system of interest embedded in an underlying low-fidelity model, denoted here as c(x).
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(a) One of possible factorial de-
signs (star distribution)

(b) Random sampling

(c) Uniform grid sampling (d) Latin Hypercube Sampling
(LHS)

Figure 4.3: Popular design of experiments techniques [3].
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The latter is a simplified representation of the system. It is computationally cheaper but,
at the same time, less accurate than the high-fidelity model. The low-fidelity model can
be obtained, for example, from the same simulator as the one used for the high-fidelity
model but using a coarse discretization. Alternatively, the low-fidelity model can be based
on simplified physics, or on a significantly different physical description; in some cases
formulated using analytical or semi-empirical formulas. Because of its limited accuracy,
the low-fidelity model has to be corrected to create a reliable surrogate.

The main advantage of physics-based models is that because of exploiting some knowl-
edge embedded in the low-fidelity model a limited amount of high-fidelity data is neces-
sary to ensure decent accuracy. For the same reason, physics-based surrogates are charac-
terized by good generalization capability, i.e., they can provide reliable prediction of the
high-fidelity model response at the designs not used in the training process. These advan-
tages are normally translated into better efficiency (in particular, lower CPU cost) when
physics-based surrogates are used in the design optimization process. It should be noted
that the evaluation of a physics-based surrogate may involve, for example, the numeri-
cal solution of partial differential equations, or even actual measurements of the physical
system.

Here we use Pattern search optimization, that is a derivative-free method, based on as-
sessing the objective function within a bounded area exploring it with a structured set of
points. The initial area is then modified during the optimization. This method is consid-
ered robust and relatively immune to numerical noise[3]. Figure 4.4 shows a simplified
process of pattern search optimization where the structured set of points has been simpli-
fied to rectangular grid around the initial design. Once a more feasible solution compared
to the initial one has been found, the optimizer moves to the improved solution and defines
a new search area. The process is iterated until the optimizer fails to find improved solu-
tion, then the search area is reduced allowing smaller steps. The determination criteria is
typically user defined, here the optimisation process was terminated once the search area
had reduced under the numerical noise level of the CFD simulations used for the process.

4.4 Approximation-Based Surrogates via Kriging Inter-
polation

Kriging is a widely used technique to construct approximation-based surrogates [33, 34,
35]. Kriging is a Gaussian process based modeling method, which is compact and cheap
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Figure 4.4: Simplified Pattern Search Optimization process [3]

to evaluate [36]. In its basic formulation, kriging assumes that the function of interest is
of the following form [33, 34]:

f(x) = g(x)Tβ + Z(x), (4.3)

where g(x) = [g1(x) g2(x) . . . gK(x) ]T are known (e.g., constant) functions, β = [β1β2 . . . βk]T

are the unknown model parameters (hyperparameters), and Z(x) is a realization of a nor-
mally distributed Gaussian random process with zero mean and variance σ2. The regres-
sion part g(x)Tβ is a trend function for f, and Z(x) takes into account localized variations.
The covariance matrix of Z(x) is given as

Cov
[
Z(x(i))(x(j))

]
= σ2R

([
R(x(i), x(j))

])
, (4.4)

where R is a p × p correlation matrix with Rij = R(x(i), x(j)). Here, R(x(i), x(j)) is the
correlation function between sampled data points x(i) and x(j). The most popular choice
is the Gaussian correlation function

R(x, y) = exp

[
−

n∑
k=1

θk |xk − yk|

]
, (4.5)

where θk are the unknown correlation parameters, and xk and yk are the kth components
of the vectors x and y, respectively. The kriging predictor is defined as

s(x) = g(x)Tβ + rT (x)R−1(f−Gβ), (4.6)
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where r(x) =
[
R(x, x(1)) . . . R(x, x(p))

]T , f =
[
f(x(1))f(x(2)) . . . f(x(p))

]T , and G is a
p×K matrix with Gij = gj(x(i)). The vector of model parameters β can be computed as
β = (GTR−1G)−1GTR−1f. Model fitting is accomplished by maximum likelihood for θk

[33]. An important property of kriging is that the random process Z(x) gives information
on the approximation error that can be used for improving the surrogate, e.g., by allocating
additional training samples at the locations where the estimated model error is the highest
[12, 33].

4.5 Physics-Based Surrogates via Multi-Point Space Map-
ping

A generic space mapping surrogate at iteration i in (4.2)

s(i)(x) = s(x,p(i)), (4.7)

where the parameters p are found by parameter extraction by solving a nonlinear mini-
mization problem of the form

p(i) = arg min
P

i∑
k=0

wi,k ‖ f(x(k))− s(x(k),p) ‖2, (4.8)

where wi,k are weighting coefficients. For aero/hydrodynamic responses from CFD mod-
els, Koziel and Leifsson [37] suggested the following output space mapping surrogate
form

s(i)(x) = A(i) ◦ c(x)+D(i)+q(i) =
[
al

(i)Cl.c(x) + dl
(i) + ql

(i) ad
(i)Cd.c(x) + dd

(i) + qd
(i)
]T
,

(4.9)

where ◦ denotes component-wise multiplication, c is the low-fidelity model, and the re-
sponse correction parameters A(i) and D(i) are obtained by solving [38]

[
A(i),D(i)

]
= arg min

[A,D]

i∑
k=0

‖ f(x(k))− A ◦ c (x(k)) + D ‖2 . (4.10)
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The response scaling improves the matching for all points previously iterated. The addi-
tive response correction term q(i) is defined as

q(i) = f(x(i))−
[
A(i) ◦ c(x(i)) + D(i)

]
(4.11)

to make sure that there is perfect matching between the surrogate and the high-fidelity
model at zero order consistency condition x(i), s(i)(x(i)) = f(x(i)).

The response correction parameters A(i), D(i) and the response scaling q(i) can be calcu-
lated analytically

[
al

(i)

dl
(i)

]
= (CT

l Cl)
−1CT

l Fl

[
ad

(i)

dd
(i)

]
= (CT

d Cd)
−1CT

d Fd

(4.12)

where

Cl =

[
Cl.c(x(0)) Cl.c(x(1)) · · · Cl.c(x(i))

1 1 · · · 1

]T

Fl =

[
Cl.f (x(0)) Cl.f (x(1)) · · · Cl.f (x(i))

1 1 · · · 1

]T (4.13)

and

Cd =

[
Cd.c(x(0)) Cd.c(x(1)) · · · Cd.c(x(i))

1 1 · · · 1

]T

Fd =

[
Cd.f (x(0)) Cd.f (x(1)) · · · Cd.f (x(i))

1 1 · · · 1

]T (4.14)

That is the least-square optimal solution to the linear regression problem Cla
(i)
l +d

(i)
l = Fl

and Cda
(i)
d + d

(i)
d = Fd, equivalent to equation 4.17
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4.6 Surrogates via Mixed Modeling

The surrogate model constructed for the mixed modeling approach were the same as in
4.5, except the low-fidelity model c(x) is replaced by the approximation Kriging model s̃.
Then the output space mapping surrogate, equivalent to equation 4.15 will be

s(i)(x) = A(i) ◦ s̃(x)+D(i)+q(i) =
[
al

(i)Cl.c(x) + dl
(i) + ql

(i) ad
(i)Cd.c(x) + dd

(i) + qd
(i)
]T
,

(4.15)

and the responce correcton parameters A(i) and D(i) are obtained by solving

[
A(i),D(i)

]
= arg min

[A,D]

i∑
k=0

‖ f(x(k))− A ◦ s̃ (x(k)) + D ‖2 . (4.16)

Then the additive response correction term q(i) is defined as

q(i) = f(x(i))−
[
A(i) ◦ s̃(x(i)) + D(i)

]
. (4.17)

The response correction parameters A(i) and D(i) are obtained analytically as in 4.5.
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Chapter 5

Results

This chapter gives the results of numerical optimization of trawl-door shapes using the
methodology presented in Chapter 4. The first section gives results of performing local
search using the multi-point space mapping algorithm (Chapter 4.5) for lift-constrained
drag minimization, and lift-to-drag maximization. The second section gives results of
global search using mixed modeling (Chapter 4.6) for lift-to-drag maximization. The
chapter ends with discussion and comparison of the approaches.

5.1 Local Search Using Multi-Point Space Mapping

5.1.1 Lift-Constrained Drag Minimization with Main Element and
Leading-Edge Slat

In following optimization run consisting of a main element and leading edge slat, the
high-fidelity model were selected with about 517,000 elements (grid 9). The flow solver
convergence criteria were set to 5,000 iterations, or when residuals had dropped by six
orders of magnitude. The low-fidelity model were the same as the high-fidelity one,
but with coarser mesh discretization and relaxed convergence criteria. The selected grid
had about 15,000 elements (grid 4) and the model were considered converged after fixed
number of 500 iterations. The low fidelity model resulted in being around 78 times faster
than the high-fidelity one.

The objective is to minimize the drag coefficient Cd subject to constraint on the section
lift coefficient, Cl ≥ 1.2. The design variables are xslat/c and yslat/c locations of the
leading edge of the slat with respect to the main element leading edge, rotation of the slat
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θ with respect to the main-element chord line and the angle attack α. The search domain
were set as: −0.35 ≤ xflap/c ≤ −0.17, −0.08 ≤ yflap/c ≤ 0.07, 10 ≤ θflap ≤ 40 deg,
5.0 ≤ α ≤ 35 deg. The initial design were xflap/c = −0.2, yflap/c = −0.08, θflap = 25

deg and α = 8 deg.

The optimization results are shown in table 5.1, and the initial and optimized trawl-
door shapes are shown in figure 5.1. The optimized design has xslat/c = −0.200,
yslat/c = −0.0633, θslat = 24.1 deg, and α = 8.4 deg, with Cl = 1.20 and Cd = 0.0153

giving a lift-to-drag ratio of 78.4. Compared to the initial design that has Cl = 1.13 and
Cd = 0.015 giving a lift-to-drag ratio of 74.4, the lift coefficient has increased about 6.2%

and the drag coefficient stays similar between the designs, resulting in an increase of ap-
proximately 5.2% of the lift-to-drag ratio. The SM optimizer required 14 high-fidelity
model evaluations and 400 low-fidelity ones, yielding a total runtime of approximately
55 hours. Figure 5.2 shows convergence history of the optimization process. Initially
the design is infeasible but the optimizer quickly approaches the lift constraint value and
finally converges on the objective value change after 11 iterations.

Table 5.2 shows the optimized results compared to previous study of this particular prob-
lem from Leifsson et al. [10] using local surrogates, constructed from high-fidelity mod-
els. The previous design is improved significantly, where the drag coefficient is reduced
by 12.2 % while the lift coefficient is held similar due to constraints, resulting in a increase
of the lift-to-drag ratio of approximately 12.2%. Previous study required 110 high-fidelity
evaluations to converge compared to 14 high-fidelity and 400 low-fidelity ones by the SM
algorithm, resulting in reduction of the optimization cost by 79%.

Table 5.1: Comparison of initial and optimized results of a trawl-door with a main element
and leading edge slat. The objective is to minimize Cd subject to constraint on the section
lift coefficient using multi-point space mapping

Initial Optimized Relative difference

x/cslat -0,200 -0,200 -
y/cslat -0,080 -0,063 -
θ 25,00 24,11 -
α 8,000 8,375 -
Cl 1,126 1,200 6.2%
Cd 0,015 0,015 0%
Cl/Cd 74,38 78,44 5.2%
Evaluations HF/LF - 14/400 -
Runtime gain ratio - ≈ 78 -
Total runtime [hours] - ≈ 55 -
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Figure 5.1: Comparison of initial and optimized trawl-door shape of a trawl-door with
main element and leading edge slat. The objective is to minimize Cd subject to constraint
on the section lift coefficient using multi-point space mapping. The flow is parallel to the
x/c axis
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(c) Evolution of the lift coefficient and the con-
straint bound
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(d) Evolution of the drag coefficient

Figure 5.2: Optimization history of a trawl-door with main element and a leading edge
slat. The objective is to minimize Cd subject to constraint on the section lift coefficient
using multi-point space mapping.
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(a) Initail configuration (b) Optimized configuration

(c) Initail configuration (d) Optimized configuration

Figure 5.3: Flow velocity contour plots for initial and optimized wing configurations of
a trawl-door with main element and leading edge slat. The objective is to minimize Cd

subject to constraint on the section lift coefficient using multi-point space mapping.
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Figure 5.4: Pressure distribution comparison between initial and optimized shapes of a
trawl-door with main element and leading-edge slat. The objective is to minimize Cd

subject to constraint on the section lift coefficient using multi-point space mapping.
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Table 5.2: Comparison of SM optimization results with approach using local surrogates

Previous study [39] Current results Relative difference

x/cslat -0,2289 -0,200 -
y/cslat -0,0066 -0,063 -
θ 20,4968 24,11 -
α 8,2758 8,375 -
Cl 1,1985 1,200 0.1%
Cd 0,0174 0,015 -13,7%
Cl/Cd 68,8793 78,44 12,2%
Iterations 9 11 -
Evaluations HF/LF 110 14/400 -
Total runtime [hours] ≈ 262 ≈ 55 -79.0%
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5.1.2 Lift-to-Drag Maximization with Main Element and Leading-
Edge Slat

Following optimization run has the same trawl-door geometry as the case before. The
high-fidelity model were selected with about 517,000 elements (grid 9). The flow solver
convergence criteria were set to 5,000 iterations, or when residuals had dropped by six
orders of magnitude. The low-fidelity model were the same as the high-fidelity one,
but with coarser mesh discretization and relaxed convergence criteria. The selected grid
had about 50,000 elements (located between grid points 5 and 6) and the model were
considered converged after 2,000 iterations, or when residuals had dropped by 4 orders
in magnitude. The low fidelity model resulted in being around 18 times faster than the
high-fidelity one.

The objective is to maximize the lift-to-drag ratio Cl/Cd with no additional constraints.
The design variables are xslat/c and yslat/c locations of the leading edge of the slat with
respect to the main element leading edge, rotation of the slat θ with respect to the main-
element chord line and the angle attack α. The search domain were set as: −0.40 ≤
xslat/c ≤ −0.20, −0.08 ≤ yslat/c ≤ 0.03, 20 ≤ θslat ≤ 50 deg, 0.0 ≤ α ≤ 20 deg. The
initial design were xslat/c = −0.2, yslat/c = −0.08, θslat = 25 deg and α = 5 deg.

The optimization results are shown in table 5.3, and the initial and optimized trawl-
door shapes are shown in figure 5.5. The optimized design has xslat/c = −0.200,
yslat/c = −0.0800, θslat = 29.3 deg, and α = 12.3 deg, with Cl = 1.67 and Cd = 0.0204

giving a lift-to-drag ratio of 81.8. Compared to the initial design that has Cl = 0.699 and
Cd = 0.0185 giving a lift-to-drag ratio of 37.8, the lift coefficient has increased about
58.1% and the drag coefficient increased about 9.31%, resulting in an increase of approx-
imately 53.8% of the lift-to-drag ratio. The SM optimizer required 4 high-fidelity model
evaluations and 83 low-fidelity ones, yielding a total runtime of approximately 19 hours.
Figure 5.7 shows convergence history of the optimization process. Initially the design is
infeasible but the optimizer approaches more feasible solution after only two iterations
and converges on the objective value after 4 iterations.
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Table 5.3: Comparison of initial and optimized results of a trawl-door with a main element
and leading edge slat. The objective is to maximize Cl/Cd with no additional constraints
using multi-point space mapping

Initial Optimized Relative difference

x/cslat -0.200 -0.200 -
y/cslat -0.0800 -0.0800 -
θ 25.0 29.3 -
α 5.00 12.3 -
Cl 0.699 1.67 58.1%
Cd 0.0185 0.0204 9.31%
Cl/Cd 37.8 81.8 53.8%
Iterations - 4 -
Evaluations HF/LF - 4/83 -
Runtime gain ratio - ≈ 18 -
Total runtime [hours] - ≈ 19 -
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Figure 5.5: Comparison of initial and optimized trawl-door shape of a trawl-door with
main element and leading edge slat. The objective is to maximize Cl/Cd with no addi-
tional constraints, using multi-point space mapping. The flow is parallel to the x/c axis
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(b) Evolution of the lift coefficient
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(c) Evolution of the drag coefficient
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(d) Evolution of lift over drag

Figure 5.6: Lift-to-Drag optimization history of a trawl-door with main element and
leading-edge slat. The objective is to maximize Cl/Cd with no additional constraints,
using multi-point space mapping.
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(a) Initail configuration (b) Optimized configuration

(c) Initail configuration (d) Optimized configuration

Figure 5.7: Flow velocity contour plots for initial and optimized wing configurations of a
trawl-door with main element and leading-edge slat. The objective is to maximize Cl/Cd

with no additional constraints, using multi-point space mapping.
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Figure 5.8: Pressure distribution comparison between initial and optimized shapes of a
trawl-door with main element and leading-edge slat. The objective is to maximize Cl/Cd

with no additional constraints, using multi-point space mapping.
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5.1.3 Lift-to-Drag Maximization With Main Element, Leading Edge
Slat, and Trailing-Edge Flap

Following optimization run consists of a trawl-door with main element, leading edge
slat and trailing-edge flap. The High-fidelity model selected were with approximately
315,000 elements (grid 8). The flow solver convergence criteria were set to 6,000 itera-
tions, or when residuals had dropped by five orders of magnitude. The low-fidelity model
were the same as the high-fidelity one, but with coarser mesh discretization and relaxed
convergence criteria. The selected grid had about 60,000 elements (located between grid
points 5 and 6) and the model were considered converged after 2,000 iterations, or when
residuals had dropped by 4 orders in magnitude. The low fidelity model resulted in being
around 15 times faster than the high-fidelity one.

The objective is maximize the lift-to-drag ratio Cl/Cd with no additional constraints. The
design variables are xslat/c and yslat/c locations of the leading edge of the slat with respect
to the main element leading edge, rotation of the slat θslat with respect to the main-element
chord line, xflap/c and yflap/c locations of the leading edge of the flap with respect to the
main element leading edge, rotation of the flap θflap with respect to the main-element
chord line, and the angle attack α.

The search domain were set as: −0.40 ≤ xslat/c ≤ −0.20, −0.30 ≤ yslat/c ≤ 0.30,
20 ≤ θslat ≤ 50 deg, 0.90 ≤ xflap/c ≤ 1.20, −0.20 ≤ yflap/c ≤ 0.00, −30 ≤ θflap ≤ 0

deg, 0.0 ≤ α ≤ 15 deg. The initial design were based on previously optimized results
where the configuration of the flap and slat were optimized independently. The were
chosen as: xslat/c = −0.20, yslat/c = −0.0633, θslat = 24.1 deg, xflap/c = 1.00,
yflap/c = −0.0222, θflap = −17.3 deg, α = 8 deg.

The optimization results are shown in table 5.4, and the initial and optimized trawl-door
shapes are shown in figure 5.9. The optimized design has xslat/c = −0.200, yslat/c =

−0.0630, θslat = 27.1 deg, xflap/c = 1.00, yflap/c = −0.0222, θflap = −18.3 deg
and α = 6.00 deg, with Cl = 2.23 and Cd = 0.0230 giving a lift-to-drag ratio of 97.2.
Compared to the initial design that has Cl = 2.46 and Cd = 0.0275 giving a lift-to-
drag ratio of 89.6, the lift coefficient has decreased about 10.3% and the drag coefficient
decreased even more, or about 10.6% resulting in an increase of approximately 7.82% of
the lift-to-drag ratio. The SM optimizer required 4 high-fidelity model evaluations and 90
low-fidelity ones, yielding a total runtime of approximately 22 hours. Figure 5.10 shows
convergence history of the optimization process. The lift-to-drag ratio increases gradually
as the optimizer approaches more feasible solution. After only 4 iterations the optimizer
converges after the objective value falls within numerical noise level.
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Table 5.4: Comparison of initial and optimized results of a trawl-door with a main ele-
ment, leading edge slat and trailing edge flap. The objective is to maximize Cl/Cd with
no additional constraints using multi-point space mapping

Initial Optimized Relative difference

x/cslat -0.200 -0,200 -
y/cslat -0.0633 -0,0633 -
θslat 24.1 27,1 -
x/cflap 1.00 1,00 -
y/cflap -0.0222 -0.0222 -
θflap -17.3 -18.3 -
α 8,000 6.00 -
Cl 2.46 2.23 -10.3%
Cd 0.0275 0.0230 -19.6%
Cl/Cd 89.6 97.2 7.82%
Iterations - 4 -
Evaluations HF/LF - 4/90 -
Runtime gain ratio - ≈ 15 -
Total runtime [hours] - ≈ 22 -
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Figure 5.9: Comparison of initial and optimized trawl-door shape of a trawl-door with
main element, leading edge slat and trailing edge flap. The objective is to maximizeCl/Cd

with no additional constraints, using multi-point space mapping. The flow is parallel to
the x/c axis
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(b) Evolution of the lift coefficient

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
·10−2

Iteration Index

D
ra

g
C

oe
ffi

ci
en

t

(c) Evolution of the drag coefficient

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

86

88

90

92

94

96

98

100

Iteration Index

C
l/C

d

(d) Evolution of lift over drag

Figure 5.10: Lift-to-Drag optimization history of a trawl-door with main element, leading-
edge slat and trailing edge flap. The objective is to maximize Cl/Cd with no additional
constraints, using multi-point space mapping.
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Figure 5.11: Pressure distribution comparison between initial and optimized shapes of a
trawl-door with main element, leading-edge slat and trailing edge flap. The objective is
to maximize Cl/Cd with no additional constraints, using multi-point space mapping.
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5.2 Global Search Using Mixed Modeling

5.2.1 Lift-to-Drag Maximization With Main Element and Leading-
Edge Slat

One trawl-door geometry consisting of a main element and leading edge slat were opti-
mized using Kriging interpolation as a surrogate model. The low-fidelity model used to
construct the kriging model were the same as used in chapter 5.1.2, with approximately
50,000 elements, and considered converged after 2,000 iterations or after the residuals
have dropped by 4 orders in magnitude. 900 low-fidelity evaluations were used to con-
struct the model.

The objective is to maximize the lift-to-drag ratio Cl/Cd with no additional constraints.
The design variables are xslat/c and yslat/c locations of the leading edge of the slat with
respect to the main element leading edge, rotation of the slat θ with respect to the main-
element chord line and the angle attack α. The model were constructed within upper and
lower bounds of −0.25 ≤ xslat/c ≤ −0.15, −0.10 ≤ yslat/c ≤ 0.00, 20 ≤ θslat ≤ 30

deg, 5.0 ≤ α ≤ 15 deg.

The optimization results are shown in table 5.5 and figure 5.12 shows a slice parallel to
the xslat/c, yslat/c surface of the Kriging model at optimum location of θ and α, where
a black dot represents the optimum design on the surface. The optimized design has
xslat/c = −0.205, yslat/c = −0.0558, θslat = 25.5 deg, and α = 10.7 deg, withCl = 1.48

and Cd = 0.0180 giving a lift-to-drag ratio of 82.8 and the optimum trawl-door shape can
be seen on figure 5.14. Figure 5.13 shows similar slices through the Kriging model as
before, but at proximity of the optimum design.
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(a) The black dot represents the optimum solution

(b) Closer view

Figure 5.12: Slice parallel to the xslat/c, yslat/c surface of the Kriging model at optimum
location of θ = 20.5 and α = 10.7.
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Table 5.5: Optimized results of a trawl-door with a main element and leading edge slat.
The objective is to maximize Cl/Cd with no additional constraints using mixed modeling

Optimized

x/cslat -0.205
y/cslat -0.0558
θslat 25.5
α 10,7
Cl 1.48
Cd 0.0180
Cl/Cd 82.1
Evaluations HF/LF 1/900
Total runtime [hours] 67

(a) θ = 25, α = 8 (b) θ = 25, α = 14

(c) θ = 28, α = 8 (d) θ = 28, α = 14

Figure 5.13: Slices parallel to the xslat/c, yslat/c surface of the Kriging model at proximity
of optimum design of θ and α
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Figure 5.14: Optimized trawl-door shape of a trawl-door with main element and leading
edge slat. The objective is to maximize Cl/Cd with no additional constraints, using mixed
modeling. The flow is parallel to the x/c axis
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Figure 5.15: Pressure distribution over optimized shape of trawl-door with main element
and leading-edge slat. The objective is to maximize Cl/Cd with no additional constraints,
using mixed modeling.
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Figure 5.16: Velocity contour plot of the optimized design of trawl-door with main el-
ement and leading-edge slat. The objective is to maximize Cl/Cd with no additional
constraints, using mixed modeling.
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5.3 Discussion

When all optimization results for a trawl-door with main element and leading edge slat
are examined, they all yield satisfactory results. In all of the cases, optimum result for
design variable xslat/c is within the range of −0.200 ≤ xslat/c ≤ −0.205 and yslat/c
within −0.0558 ≤ xslat/c ≤ −0.0800 whether the objective is to maximize Cl/Cd or
minimize Cd. Even though the consistency is not as good between simulation results for
design variables θ and α, the solutions are considered valid. The reason is that there are
more than one equally good solutions for the problem being solved. Table 5.6 summarizes
the optimization results.

The highest lift-to-drag ratio of 82.1 is obtained by using mixed modelling methods. How-
ever the difference between the two methods is negligible considering the noise analysis
conducted in chapter 3.6, where the noise in the high-fidelity model was found to be up
to 0.80 Cl/Cd in design variable xslat/c. The case where the objective is to minimize Cd

for given lift is not considered comparable in context of lift-to-drag values. Even though
the nature of the problem requires the solution to be on top part of the lift-to-drag curve
it is not constraint to the highest point. If case of a trawl-door with both leading-edge slat
and trailing-edge flap is taken into account it, as expected obtains the highest lift-to-drag
ratio of 97.2.

If computational efficiency of the optimization runs is examined, the Kriging model needs
the longest computational time. Then reason is the high number of low-fidelity evalua-
tions, even though the low-fidelity model is computationally inexpensive compared to the
high-fidelity one the high number of 900 evaluations take over 63 hours to compute. The
advantages to this method are that number of evaluations are directly related to the size
of the design space (i.e. Smaller design space equals fewer evaluations). Another advan-
tage is that only one high-fidelity evaluation is needed after the Kriging model has been
constructed.

There is also much difference in computational time of the optimization process using
multi-point SM. The case that minimizes Cd needs much higher number of both low- and
high-fidelity evaluations. In that optimization run the low-fidelity model is of poorer qual-
ity than in other cases, but instead the computational time for each low-fidelity evaluation
is much smaller. This difference is also effected by the objective value needed for the
model to be converged. The objective is to minimize Cd that is a value, very close to zero
and does not inherit much noise. That means that the solution value change has to be set
to very small value (0.001) for the optimization process to be converged. When maximiz-
ing Cl/Cd, the objective value convergence criteria has to be relaxed so that the value is
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Table 5.6: Comparison of all optimum designs of a trawl-door with main element and
leading-edge slat

Local Search I Local Search II Global Search

Objective min Cd, Cl ≥ 1.2 max Cl/Cd max Cl/Cd

x/cslat -0.200 -0.200 -0.205
y/cslat -0.0630 -0.0800 -0.0558
θ 24.1 29.3 -25.5
α 8.38 12.3 -10.7
Cl 1.20 1.67 1.48
Cd 0.0150 0.0204 0.0180
Cl/Cd 78.4 81.8 82.1
Evaluations HF/LF 14/400 4/83 1/900
Runtime gain ratio ≈ 78 ≈ 18 -
Total runtime [hours] ≈ 55 ≈ 19 ≈ 67

close to the noise in Cl/Cd. According to noise analysis of the low-fidelity used in case of
Cl/Cd maximization, the numerical noise is around 1.3 Cl/Cd making the model easier
to converge.
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Chapter 6

Conclusion

Robust and efficient optimization framework for the hydrodynamic design of multi-element
trawl-door shapes using accurate high-fidelity two-dimensional computational fluid dy-
namics (CFD) models are presented in this thesis. The particular contributions of the
work are as follows:

• Robust grid generation for multi-element hydrofoils has been developed. Thus, the
CFD analysis becomes stable and accurate enough to capture the nonlinear fluid
flow past the hydrofoils. Moreover, the robust CFD analysis makes the surrogate-
based optimization (SBO) process smoother.

• A problem formulation capturing the true characteristics of the design space has
been presented. The objective function is transformed from a constrained one to
an unconstrained one by maximizing the lift-to-drag ratio in place of minimizing
the drag for a given lift. The proposed formulation creates a design space which is
easier to search using SBO.

• Surrogate construction using mixed modeling has been applied to the global opti-
mization of trawl-door shapes. The approach utilizes space mapping to create a fast
physics-based surrogate model using low- and high-fidelity data. The surrogate is
then used to build an approximation-based surrogate model using kriging to search
the design space globally.

Numerical design studies of multi-element trawl-door shapes using the framework illus-
trate the following:

• Lift-to-drag maximization is more appropriate than lift-constrained drag minimiza-
tion for trawl-door shape optimization.
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• Local search using multi-point space mapping very efficient and can yield satisfac-
tory design at a low cost.

• Global search using mixed modeling is more computationally expensive than lo-
cal search using multi-point space mapping but is capable of yielding designs with
higher quality. The mixed modeling approach, however, provides a cost-effective
way of performing global search. Using only high-fidelity data would be impracti-
cal.

Future work in this research area could consider the following:

• Three-dimensional CFD models need to be developed to capture more accurately
the nonlinear flow physics of trawl-doors, especially due to the tip vortex shedding.

• Rigorous model validation is needed. In particular, experimental data for trawl-door
shapes is required for the validation. A combination of wind tunnel experiments
(which can be cheap and fast using the wind tunnels at Reykjavik University and
rapid prototyping using, for example, three-dimensional printing) and tow-tank ex-
periments (which are more time consuming and expensive since a such facility is
not available in Iceland) can be used.

• The three-dimensional CFD model simulation time is expected to be at least an
order of magnitude higher. Thus, search using multi-point space mapping would
be promising, especially if faster low-fidelity models can be developed. Simplified
physics models, such as panel methods, should be considered. The mixed modeling
approach can be used, but it should be used in a quasi-global-way, i.e., when a
promising design has been identified the mixed modeling approach can used to
build a surrogate to investigate the vicinity and accurately find the optimum design.

• Adjoint sensitivity information can be used to build more accurate surrogate models
(both for local and global search) as well as accelerating the optimization process.
Additionally, larger design spaces can be handled. The Stanford University Un-
structured code, which is open-source, can be used for the flow simulations and
calculating the adjoints.

• Unsteady CFD simulations should be considered to capture more accurately loads
acting on the trawl-doors. This will support more accurate structural design when
it comes to manufacturing.
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Appendix A

Initial Optimization Results Using
Multi-Point Space Mapping

In this section initial optimization results are presented, where evolution of the pattern
search optimization process is shown and a comparisons between the initial and optimized
trawl-door design is evaluated. For the initial optimization run all trawl-door shapes with
main element and trailing-edge flap or leading-edge slat are considered.

A.1 Main Element With Trailing Edge Flap

In case of the trawl-door with a main element and trailing edge flap, the high-fidelity
model were selected with about 400,000 elements (grid 9). The flow solver convergence
criteria were set to 5,000 iterations, or when residuals had dropped by five orders of mag-
nitude. The low-fidelity model were the same as the high-fidelity one, but with coarser
mesh discretization and relaxed convergence criteria. The selected grid had about 25,000
elements (grid 4) and the model were considered converged after 1,000 iterations, or when
residuals had dropped by three orders of magnitude. The low fidelity model resulted in
being around 52 times faster than the high-fidelity one.

The objective is to maximize the lift over drag ratio L/D. The design variables are xflap/c
and yflap/c locations of the leading edge of the flap with respect to the main element lead-
ing edge, rotation of the flap θ with respect to the main-element chord line and the angle
attack α. The search domain were set as: 0.90 ≤ xflap/c ≤ 1.20, −0.20 ≤ yflap/c ≤ 0.0,
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Table A.1: Comparison of initial and optimized results of a trawl-door with a main el-
ement and trailing edge flap. The objective is to maximize Cl/Cd with no additional
constraints using multi-point space mapping

Initial Optimized Relative difference

x/cflap 1.20 1.00 -
y/cflap -0.200 -0.0222 -
θ 30.0 17.3 -
α 5.00 5.89 -
Cl 1.30 2.04 36.3%
Cd 0.0180 0.0223 18.8%
Cl/Cd 72.5 91.6 20.9%
Iterations - 13 -
Evaluations HF/LF - 13/256 -
Runtime gain ratio - ≈ 52 -
Total runtime [hours] - ≈ 39 -

0.0 ≤ θflap ≤ 30.0 deg, 0.00 ≤ α ≤ 15.0 deg. The initial design were xflap/c = 1.20,
yflap/c = −0.20, θflap = 10.0 deg and α = 5.0 deg. It is known that the initial design
is infeasible, the trailing edge flap is placed far behind and under the main element to see
how efficiently the algorithm approaches more feasible design. Trust region algorithm
were not active during these initial runs.

The initial and optimized results are shown in table A.1 and corresponding trawl-door
shapes are shown in figure A.1. The optimized design has xflap/c = 1.00, yflap/c =

−0.0222, θflap = 17.3 and α = 5.89 with Cl = 2.04 and Cd = 0.0222 giving a lift-to-
drag ratio of 91.6. Compared to the initial design that has Cl = 1.30 and Cd = 0.0180

giving a lift-to-drag ratio of 72.5, the lift coefficient has increased about 36.3% and the
drag coefficient increased about 18.8% resulting in an increase of 20.9% of the lift-to-
drag ratio. The optimization algorithm required 13 high-fidelity model evaluations and
256 low fidelity ones in a runtime of approximately 39 hours.

Figure A.2 shows convergence history of the optimization process. Initially the design
is infeasible and the optimizer quickly approaches more feasible design on the first six
iterations. After that oscillations can be observed in the objective function as the model
is iterated, and finally converges on the objective value change on a Cl/Cd value slightly
under the highest one obtained in the iteration process.

The flow physics behind the hydrodynamic performance increase is seen on figure A.3
that shows velocity contour plots of both the initial and optimized design, and figure A.4
that shows pressure coefficient distribution Cp over the trawl-door surface. The stagnation
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Figure A.1: Comparison of initial and optimized trawl-door shape of a trawl-door with
main element and leading edge slat. The objective is to maximize Cl/Cd with no addi-
tional constraints, using multi-point space mapping. The flow is parallel to the x/c axis
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(b) Evolotion of the lift coefficient
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(c) Evolution of the drag coefficient
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Figure A.2: Lift-to-Drag optimization history of a trawl-door with main element and
trailing-edge flap. The objective is to maximize Cl/Cd with no additional constraints,
using multi-point space mapping.

point has shifted slightly to the right, under the element resulting in velocity increase at
the leading edge of the upper surface of the airfoil as the flow accelerates over the leading
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(a) Initial

(b) Optimized

Figure A.3: Velocity contour comparison between the initial and optimized design of a
trawl-door shape with main element and a trailing edge flap

edge that causes a pressure decrease on the top surface. Effects of the flap can bee seen
on the pressure distribution on the main element trailing edge where the Cp curves have
shifted to both higher negative and positive values, .
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Figure A.4: Pressure distribution comparison between initial and optimized shapes of a
trawl-door with main element and trailing edge flap. The objective is to maximize Cl/Cd

with no additional constraints, using multi-point space mapping.
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A.2 Main Element With Trailing Edge Flap Using Multi-
step Approach

Because of convergence oscillations in the results above, a multi-step optimization ap-
proach were carried out. The purpose were both to find out if the optimization process
would be smoother using fewer design variables in the beginning of the process, and if
it would have an effect later in the process if some of the design variables were all ready
close to optimum design. The sett up were the same as before, except that the optimization
process were carried out in following three steps.

1. Step 1: Design variables for the first optimization step are xflap/c and yflap/c loca-
tions of the leading edge of the flap with respect to the main element leading edge.
The search domain were set as 0.90 ≤ xflap/c ≤ 1.20 and −0.20 ≤ yflap/c and the
initial design were xflap/c = 1.20, yflap/c = −0.20, θflap = 10.0 deg and α = 5.0

deg where θflap and α were held constant.

2. Step 2: In the second optimization step the design variables are xflap/c, yflap/c
and rotation of the flap θ with respect to the main-element chord line. The search
domain were set as 0.90 ≤ xflap/c ≤ 1.20, −0.20 ≤ yflap/c ≤ 0.0 and 0.0 ≤
θflap ≤ 30.0. The initial design for xflap/c and yflap/c were based on results
obtained in step 1, θflap were set to 10.0 and the angle of attack were constant
as α = 5.0 deg.

3. Step 3: In the third step the design variables are xflap/c, yflap/c, θ and the angle at-
tack α. The search domain were set as: 0.90 ≤ xflap/c ≤ 1.20, −0.20 ≤ yflap/c ≤
0.0, 0.0 ≤ θflap ≤ 30.0 deg, 0.00 ≤ α ≤ 15.0 deg. The initial design for xflap/c,
yflap/c and θ were based on results obtained in step 2 and the angle of attack were
set to 5.0 deg.

The objective is to maximize the lift-to-drag ratio with no additional constraints.

The optimization results are shown in table A.2, and the initial and optimized trawl-door
shapes are shown in figure A.5. The optimized design has xslat/c = 0.981, yslat/c =

−0.0259, θslat = 15.1 deg, and α = 3.56 deg, with Cl = 1.65 and Cd = 0.0179 giving
a lift-to-drag ratio of 91.7. The SM optimizer required 3 high-fidelity model evaluations
and 64 low-fidelity ones for the first step, 3 high-fidelity model evaluations and 64 low-
fidelity ones for the second step and 6 high-fidelity model evaluations and 118 low-fidelity
ones for the last step resulting in a total of 12 high-fidelity model evaluations and 242 low-
fidelity ones. The number of high-fidelity evaluations could have been reduced by 2, if
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the initial evaluation of runs 2 and 3 would have had knowledge of what happened in
steps 1 and 2. The overall runtime were approximately 34 hours, with a runtime gain
ratio of 53.9. Figure A.15 shows convergence history of the optimization process for each
step.

Table A.2: Comparison of initial and optimized results of a trawl-door with a main el-
ement and trailing edge flap. The objective is to maximize Cl/Cd with no additional
constraints using multi-point space mapping with multi-step approach

Step 1 Step 2 Step 3 Total

x [ x y ]T [ x y θ ]T [ x y θ α ]T -
x/cslat 0.981 0.981 0.981 -
y/cslat -0.0259 -0.0259 -0.0259 -
θ -10.0 -12.8 -15.1 -
α 5.00 5.00 3.56 -
Cl 1.57 1.71 1.65 -
Cd 0.0176 0.0188 0.0179 -
Cl/Cd 89.4 91.0 91.7 -
Iterations 3 3 6 12
Evaluations HF/LF 3/64 3/60 6/118 12/242
Total runtime [hours] ≈ 10.4 ≈ 8.1 ≈ 15.5 ≈ 34.0
Runtime Gain Ratio ≈ 72 ≈ 50.3 ≈ 46.4 ≈ 53.9
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Figure A.5: Comparison of initial and optimized trawl-door shape of a trawl-door with
main element and trailing edge flap. The objective is to maximize Cl/Cd with no addi-
tional constraints, using multi-point space mapping. The flow is parallel to the x/c axis
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(b) Evolution of the lift coefficient from step 1 to 3
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(c) Evolution of the drag coefficient from step 1 to 3
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(d) Evolution of lift-to-drag from step 1 to 3

Figure A.6: Lift-to-Drag optimization history of a trawl-door with main element and
leading-edge slat. The objective is to maximize Cl/Cd with no additional constraints,
using multi-point space mapping.



76 Trawl-Door Shape Optimization Using Space-Mapping-Enhanced Kriging Surrogates

(a) Inital

(b) Optimized, step 1

(c) Optimized, step 2

(d) Optimized, step 3

Figure A.7: Velocity contour comparison between the initial and optimized designs of
each step in sequential approach.
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Figure A.8: Pressure distribution comparison between initial and optimized shapes of a
trawl-door with main element and trailing edge flap. The objective is to maximize Cl/Cd

with no additional constraints, using multi-point space mapping.
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Table A.3 shows comparison between the result obtained by the single- and multi-step
approaches. The results are similar regarding location of the flap, but there is some dif-
ference in rotation of the flap and angle of attack. Still the lift-to-drag between ratio for
these results is similar.

Table A.3: Optimization result comparison for trawl-door with main element and flap
with both using the single- and multi-level approaches

Initial Optimized Optimized
Multi-step Approach

x/cslat 1.200 1.00 0.981
y/cslat -0.200 -0.0222 -0.0259
θ -10.0 -17.3 -15.1
α 5.00 5.89 3.56
Cl 1.5 2.04 1.65
Cd 0.0176 0.0223 0.0179
Cl/Cd 89.4 91.6 92.0
Iterations - 13 12
Evaluations (HF/LF) - 13/256 12/242
Total runtime [hours] - ≈ 39.0 ≈ 34.0
Runtime Gain Ratio - ≈ 52.2 ≈ 53.9

Figure A.9 show the optimizers path for the first step. Here the cyan circles represents
where high-fidelity evaluations were performed in the xflap/c, yflap/c plane while the
lines represent the path. The magenta dots represent where low-fidelity evaluations were
made. The optimizer moves quickly from infeasible initial location of the flap after only
few low-fidelity evaluations, to a more feasible area where the model converges. The
Cl/Cd contour represents the low-fidelity model.

Figure A.10 shows the performance of Cl/Cd as a function of α (the most sensitive design
variable) for the initial, optimized in one step and optimized using multi-step approach
trawl-door shapes with main element and flap. We can see that the performance has
improved considerably from the initial shape, but still we should be able to obtain even
better results. The optimization using single-step approach gives better results, but the
peak on Cl/Cd curve were not located by the optimizer. The multi-step approach gives
the highest Cl/Cd value and the optimizer locates the top of the curve, but still the one-
step shape has m ore potential in obtaining higher Cl/Cd value
This behaviour is considered to be a cause of numerical noise in the low fidelity model
that makes the optimizer oscillate in a noisy solution near the optimum value. It is clear
that refinement of the low-fidelity model is needed.
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Figure A.9: Optimizers path for step 1 using multi-step approach
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Figure A.10: Cl/Cd performance as a function of angle of attack for the optimized trawl-
door geometries with main element and trailing edge flap
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A.3 Main Element With Leading Edge Slat

Following optimization run has the same trawl-door geometry as the case before. The
high-fidelity model were selected with about 517,000 elements (grid 9). The flow solver
convergence criteria were set to 5,000 iterations, or when residuals had dropped by six
orders of magnitude. The low-fidelity model were the same as the high-fidelity one, but
with coarser mesh discretization and relaxed convergence criteria. The selected grid had
about 20,000 elements and the model were considered converged after 1,000 iterations,
or when residuals had dropped by 3 orders in magnitude. The low fidelity model resulted
in being around 75 times faster than the high-fidelity one.

The objective is to maximize the lift over drag ratio L/D. The design variables are xflap/c
and yflap/c locations of the leading edge of the slat with respect to the main element lead-
ing edge, rotation of the slat θ with respect to the main-element chord line and the angle at-
tack α. The search domain were set as: −0.40 ≤ xflap/c ≤ 0.20, −0.20 ≤ yflap/c ≤ 0.0,
0.0 ≤ θflap ≤ 30.0 deg, 0.00 ≤ α ≤ 15.0 deg. The initial design were xflap/c = −0.20,
yflap/c = −0.08, θflap = 25.0 deg and α = 5.0 deg.

The initial and optimized results are shown in table A.4 and corresponding trawl-door
shapes are shown in figure A.11. The optimized design has xslat/c = −0.20, yslat/c =

−0.0467, θflap = 25.3 and α = 9.33 with Cl = 1.32 and Cd = 0.0165 giving a lift-to-
drag ratio of 79.8. Compared to the initial design that has Cl = 0.698 and Cd = 0.0188

giving a lift-to-drag ratio of 37.1, the lift coefficient has increased about 47.1% and the
drag coefficient decreased about 13.9% resulting in an increase of 53.5% of the lift-to-
drag ratio. The optimization algorithm required 4 high-fidelity model evaluations and 78

low fidelity ones in a runtime of approximately 14 hours.
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Table A.4: Comparison of initial and optimized results of a trawl-door with a main el-
ement and leading edge slat. The objective is to maximize Cl/Cd with no additional
constraints using multi-point space mapping

Initial Optimized Relative difference

x/cslat -0.200 -0.200 -
y/cslat -0.0800 -0.0467 -
θ 25.0 25.3 -
α 5,00 9.33 -
Cl 0.698 1.32 47.1%
Cd 0.0188 0.0165 -13.9%
Cl/Cd 37.1 79.8 53.5%
Evaluations HF/LF - 4/78 -
Runtime gain ratio - ≈ 75 -
Total runtime [hours] - ≈ 14 -
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Figure A.11: Comparison of initial and optimized trawl-door shape of a trawl-door with
main element with leading edge slat. The objective is to maximize Cl/Cd with no addi-
tional constraints, using multi-point space mapping. The flow is parallel to the x/c axis
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(b) Evolotion of the lift coefficient
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(c) Evolution of the drag coefficient
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(d) Evolution of lift over drag

Figure A.12: Lift-to-Drag optimization history of a trawl-door with main element and
leading-edge slat. The objective is to maximize Cl/Cd with no additional constraints,
using multi-point space mapping.
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Figure A.13: Pressure distribution comparison between initial and optimized shapes of a
trawl-door with main element and leading-edge slat. The objective is to maximize Cl/Cd

with no additional constraints, using multi-point space mapping.
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A.4 Main Element with Leading Edge Slat Using Multi-
Step Approach

Because of convergence oscillations in the results above, a multi-step optimization ap-
proach were carried out. The purpose were the same is in the case of main element with
leading edge flap, to both to find out if the optimization process would be smoother using
fewer design variables in the beginning of the process, and if it would have an effect later
in the process if some of the design variables were already close to optimum design. The
sett up were the same as before, except that the optimization process were carried out in
following three steps.

1. Step 1: Design variables for the first optimization step are xslat/c and yslat/c loca-
tions of the leading edge of the slat with respect to the main element leading edge.
The search domain were set as −0.40 ≤ xslat/c ≤ 0.20 and −0.30 ≤ yslat/c0.3

and the initial design were xslat/c = −0.20, yslat/c = −0.08, θslat = 25.0 deg and
α = 8.00 deg where θslat and α were held constant.

2. Step 2: In the second optimization step the design variables are xslat/c, yslat/c and
rotation of the slat θ with respect to the main-element chord line. The search domain
were set as −0.40 ≤ xslat/c ≤ 0.20 and −0.30 ≤ yslat/c0.3 and 20.0 ≤ θslat ≤
50.0. The initial design for xslat/c and yslat/c were based on results obtained in
step 1, θslat were set to 25.0 and the angle of attack were constant as α = 8.0 deg.

3. Step 3: In the third step the design variables are xslat/c, yslat/c, θ and the angle
attack α. The search domain were set as −0.40 ≤ xslat/c ≤ 0.20 and −0.30 ≤
yslat/c0.3, 20.0 ≤ θslat ≤ 50.0 deg, 0.00 ≤ α ≤ 20.0 deg. The initial design for
xslat/c, yslat/c and θ were based on results obtained in step 2 and the angle of attack
were set to 8.0 deg.

The objective is to maximize the lift-to-drag ratio with no additional constraints.

The optimization results are shown in table A.5, and the initial and optimized trawl-door
shapes are shown in figure A.14.The optimized design has xslat/c = −0.180, yslat/c =

−0.0430, θslat = 23.7 deg, and α = 8.33 deg, with Cl = 1.21 and Cd = 0.0155 giving
a lift-to-drag ratio of 78.1. The SM optimizer required 3 high-fidelity model evaluations
and 66 low-fidelity ones for the first step, 4 high-fidelity model evaluations and 90 low-
fidelity ones for the second step and 3 high-fidelity model evaluations and 71 low-fidelity
ones for the last step resulting in a total of 10 high-fidelity model evaluations and 227
low-fidelity ones. The number of high-fidelity evaluations could have been reduced by
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2, if the initial evaluation of runs 2 and 3 would have had knowledge of what happened
in steps 1 and 2. The overall runtime were approximately 35 hours, with a runtime gain
ratio of 80. Figure A.15 shows convergence history of the optimization process for each
step.

Figure A.17 shows a lift-to-drag contour plot obtained by the low-fidelity model rep-
resenting solution change as a function of xslat/c and yslat/c for the same trawl-door
shape as optimized in run 1. It is emphasized that the low-fidelity model is a cheap rep-
resentation of the high-fidelity one. According to the plot a feasible area is in vicin-
ity of xslat/c ≈ −0.18 and yslat/c ≈ −0.04, Compared to xslat/c = −0.177 and
yslat/c = −0.0430 found by the optimizer.

Table A.5: Comparison of initial and optimized results of a trawl-door with a main el-
ement and leading edge slat. The objective is to maximize Cl/Cd with no additional
constraints using multi-point space mapping

Step 1 Step 2 Step 3 Total

x [ x y ]T [ x y θ ]T [ x y θ α ]T -
x/cslat -0.177 -0.180 -0.180 -
y/cslat -0.0430 -0.0430 -0.0430 -
θ 25.0 23.7 23.7 -
α 8.00 8.00 8.33 -
Cl 1.16 1.17 1.21 -
Cd 0.0153 0.0152 0.0155 -
Cl/Cd 76.1 77.1 78.1 -
Iterations 3 4 3 10
Evaluations HF/LF 3/66 4/90 3/71 10/227
Total runtime [hours] ≈ 10.4 ≈ 14.2 ≈ 10.4 ≈ 35
Runtime Gain Ratio ≈ 85.9 ≈ 83.3 ≈ 85.7 ≈ 80
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Figure A.14: Comparison of initial and optimized trawl-door shape of a trawl-door with
main element and leading edge slat. The objective is to maximize Cl/Cd with no addi-
tional constraints, using multi-point space mapping. The flow is parallel to the x/c axis
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(a) Argument convergence from step 1 to 3
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(b) Evolution of the lift coefficient from step 1 to 3
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(c) Evolution of the drag coefficient from step 1 to 3
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(d) Evolution of lift-to-drag from step 1 to 3

Figure A.15: Lift-to-Drag optimization history of a trawl-door with main element and
leading-edge slat. The objective is to maximize Cl/Cd with no additional constraints,
using multi-point space mapping.
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Figure A.16: Pressure distribution comparison between initial and optimized shapes of a
trawl-door with main element and leading-edge slat. The objective is to maximize Cl/Cd

with no additional constraints, using multi-point space mapping.



Ingi Mar Jónsson 89

Figure A.17: Lift-to-drag contour plot obtained by the low fidelity model

Table A.6 shows comparison between the result obtained by the single- and multi-step
approaches. The results are similar regarding location of the slat in yslat/c, but there are
some difference in xslat/c direction, rotation of the slat and angle of attack. Still the lift-to-
drag between ratio for these results is similar, but the single-step approach obtains higher
lift-to-drag ratio that is in contrast with a trawl-door with main element and trailing edge
flap. There is also large difference in computational time where the multi-step approach
is more than two times longer to compute than the single-step one.

Figure A.18 shows the performance of Cl/Cd as a function of α for the initial shape, op-
timized shape for drag minimization subjected to constraints on lift and optimized shape
where the objective is to maximize Cl/Cd. The performance has improved considerably
from the initial shape, but still we should be able to obtain even better results. Again
the optimizer fails to identify the true maximum at the top of the lift-to-drag curve, even
further confirming that the noise in the low-fidelity model is unacceptable.
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Table A.6: Optimization result comparison for trawl-door with main element and slat
between the single- and multi-level approaches

Initial Optimized Optimized
Multi-step Approach

x/cslat -0.20 -0.20 -0.180
y/cslat -0.080 -0.0467 -0.0430
θ 25.0 25.3 23.7
α 5.00 9.33 8.33
Cl 0.698 1.32 1.21
Cd 0.0188 0.0165 0.0155
Cl/Cd 37.1 79.8 78.1
Iterations - 4 10
Evaluations (HF/LF) - 4/78 10/227
Total runtime [hours] - ≈ 14 ≈ 35
Runtime Gain Ratio - ≈ 75 ≈ 80
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Figure A.18: Cl/Cd performance as a function of angle of attack for the optimized trawl-
door geometries with main element and leading edge slat
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Appendix B

Grid Convergence Studies

Grid convergence study results shown here are in accordance with methods described in
chapter 3.4.

B.1 Main Element and Trailing Edge Flap

Table B.1 Shows location of design variables during the study.

Table B.1: Location of flap during grid convergence study

Loacation

x/cflap 1.02
y/cflap -0.0200
θ -10.0
α 8.00
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Figure B.1: Convergence of lift coefficient Cl for ten grids with variable density
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Figure B.2: Convergence of lift coefficient Cd for ten grids with variable density
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Figure B.3: Solution residuals for ten grids used in the grid convergence study
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Figure B.4: Grid convergence study for a trawl-door with uncertainty estimation
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Figure B.5: Computational time as a function of grid density
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B.2 Main Element With Leading Edge Slat and Trailing
Edge Flap

Table B.2 Shows location of design variables during the study.

Table B.2: Location of slat and flap during grid convergence study

Loacation

x/cslat -0.200
y/cslat -0.0800
θslat 25.0
x/cflap 1.01
y/cflap -0.02
θ -10.0
α 5.00
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Figure B.6: Convergence of lift coefficient Cl for ten grids with variable density
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Figure B.7: Convergence of lift coefficient Cd for ten grids with variable density
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Figure B.8: Solution residuals for ten grids used in the grid convergence study
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Figure B.10: Computational time as a function of grid density
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Appendix C

Noise Analysis

Models in this chapter were considered to have to coarse grids, since the level of noise
were considerable. The results were obtained according to chapter 3.6, where additional
information of the analysis can be found.
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Figure C.1: Noise in design variable x/c of the low fidelity model at different grid dis-
cretization, the model is considered converged after 1500 iterations or when residuals
have reached 5e-3
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Figure C.2: Noise in design variable y/c of the low fidelity model at different grid dis-
cretization, the model is considered converged after 1500 iterations or when residuals
have reached 5e-3
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Figure C.3: Noise in design variable θ of the low fidelity model at different grid dis-
cretization, the model is considered converged after 1500 iterations or when residuals
have reached 5e-3
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Figure C.4: Noise in design variable α of the low fidelity model at different grid dis-
cretization, the model is considered converged after 1500 iterations or when residuals
have reached 5e-3
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Figure C.5: Noise in design variable x/c of the low fidelity model at different grid dis-
cretization, the model is considered converged after 2.000 iterations or when residuals
have reached 5e-4



104 Trawl-Door Shape Optimization Using Space-Mapping-Enhanced Kriging Surrogates

−4.85 −4.8 −4.75 −4.7 −4.65 −4.6 −4.55 −4.5

·10−2

100

102

104

106

108

110

112

114

116

118

120

122

y/c

C
l
/C

d

CFD data
Least Squares fit
95% confidence interval
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Figure C.6: Noise in design variable y/c of the low fidelity model at different grid dis-
cretization, the model is considered converged after 2.000 iterations or when residuals
have reached 5e-4
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Figure C.7: Noise in design variable θ of the low fidelity model at different grid dis-
cretization, the model is considered converged after 2.000 iterations or when residuals
have reached 5e-4
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Figure C.8: Noise in design variable α of the low fidelity model at different grid dis-
cretization, the model is considered converged after 2.000 iterations or when residuals
have reached 5e-4
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Appendix D

Additional Validation Data

Validation results shown here are in accordance with methods described in chapter 3.5.

D.1 Model NASA A L1N1WT
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Figure D.1: Geometry of NASA Model A L1N1WT airfoil used for the validation
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Figure D.2: Cl as a function of α comparison between experimental data using NASA
Model A L1N1WT airfoil and the CFD model
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Figure D.3: Drag polar plot comparison between experimental data of NASA Model A
L1N1WT airfoil and the CFD model
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(b) α = 8◦
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Figure D.4: Comparison between experimental data and the CFD model on pressure co-
efficient Cp over surface of a NASA Model A L1N1WT airfoil, consisting of a main
element and slat at three angles of attack
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