
PERFORMANCE PROFILING OF
CACHE SYSTEMS AT SCALE

May 2014
Trausti Sæmundsson

Master of Science in Computer Science

PERFORMANCE PROFILING
OF CACHE SYSTEMS AT SCALE

Trausti Sæmundsson
Master of Science
Computer Science
May 2014
School of Computer Science
Reykjavík University

M.Sc. PROJECT REPORT
ISSN 1670-8539

Performance Profiling of Cache Systems at Scale

by

Trausti Sæmundsson

Project report submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science in Computer Science

May 2014

Project Report Committee:

Ýmir Vigfússon, Supervisor
Assistant Professor, Reykjavík University

Gregory Chockler
Reader in Computer Science ,
University of London, Royal Holloway

Björn Þór Jónsson
Associate Professor, Reykjavík University

Copyright
Trausti Sæmundsson

May 2014

Date

Ýmir Vigfússon, Supervisor
Assistant Professor, Reykjavík University

Gregory Chockler
Reader in Computer Science ,
University of London, Royal Holloway

Björn Þór Jónsson
Associate Professor, Reykjavík University

The undersigned hereby certify that they recommend to the School of
Computer Science at Reykjavík University for acceptance this project report
entitled Performance Profiling of Cache Systems at Scale submitted by
Trausti Sæmundsson in partial fulfillment of the requirements for the degree
of Master of Science in Computer Science.

Date

Trausti Sæmundsson
Master of Science

The undersigned hereby grants permission to the Reykjavík University Li-
brary to reproduce single copies of this project report entitled Performance
Profiling of Cache Systems at Scale and to lend or sell such copies for
private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the project report, and except as herein before provided,
neither the project report nor any substantial portion thereof may be printed
or otherwise reproduced in any material form whatsoever without the
author’s prior written permission.

Performance Profiling of Cache Systems at Scale

Trausti Sæmundsson

May 2014

Abstract

Large scale in-memory object caches such as memcached are widely used to
accelerate popular web sites and to reduce the burden on backend databases.
Operation and development teams tuning a cache tier would benefit from
knowing answers to questions such as “how much total memory should be
allocated to the cache tier?” and “what is the minimum cache size for a given
hit rate?”

We propose a new lightweight online profiler, MIMIR, that hooks into the re-
placement policy of each cache server and periodically produces histograms
of the overall cache hit rate as a function of memory size. It predicts smaller
cache sizes with 99% accuracy on average at high performance. In order
to predict the hit rate for larger cache sizes than the current allocation,
the metadata for some evicted keys must be available. Keeping track of
the metadata for all evicted keys is memory expensive and under intensive
workloads will fill up the disk space quickly. We propose a new, fast and
memory efficient method for storing a specific amount of evicted metadata
with automatic flushing using Counting Filters, an extension of Bloom Filters
to support removals. This method predicts the hit rate of a larger cache with
95% accuracy on average. Experiments on the profiler within memcached
showed that dynamic hit rate histograms are produced with relatively low
drop in throughput. Thus our evaluation suggests that online cache profiling
can be a practical tool for improving provisioning of large caches.

Árangursvöktun á stórum flýtiminniskerfum

Trausti Sæmundsson

Maí 2014

Útdráttur

Stór flýtiminniskerfi eins og memcached eru notuð víða til þess að auka
hraða á vinsælum vefsíðum og minnka álag á gagnagrunna. Kerfisstjórar
myndu njóta góðs af því að hafa svör á reiðum höndum við spurningum
líkt og “hversu mikið minni þarf fyrir flýtiminnisþjónustuna?” og “hver er
lágmarksstærð á flýtiminni fyrir gefna nýtni?”

Við kynnum til sögunnar MÍMI. MÍMIR er ný vöktunarþjónustuna sem
tengist við sérhvern flýtiminnisþjón og framleiðir nýtnigröf í rauntíma.
Gröfin sýna nýtni þjónustunnar sé stærð hennar breytt. Nákvæmnin er yfir
99% að meðaltali fyrir minnkun á flýtiminniskerfinu og yfir 95% að meðaltali
fyrir stækkun með litlum aukakostnaði. Til þess að spá fyrir um nýtni við
stækkun á flýtimininskerfinu þyrfti að halda utan um fingrafar af eyddum
gögnum sem getur þurft mikið af minni. Við kynnum nýja aðferð til þess
að halda utan um takmarkað magn af fingraförum með sjálfvirkri eyðingu
með svokölluðum teljarasíum (e. Counting Filters) sem er útgáfa af Bloom
síum (e. Bloom Filters) sem styðja einnig eyðingu. Tilraunir á MÍMI sýna
að rauntímamæling á flýtiminni sé hagnýt leið til þess að stilla af vélbúnað
fyrir stórar flýtiminnisþjónustur.

TILEINKAÐ AFA TRAUSTA

fyrir að leyfa mér að spila

Tetris í MS-DOS

vii

Acknowledgements

I want to thank the following people for supporting me throughout the research project:

Ýmir Vigfússon for allowing me to work on this project, being ready to share his vision
and experience any time of day, lots of discussions and meetings on caching, and least but
not least his vast amount of patience.

Sigrún María Ammendrup and Björn Þór Jónsson for their support over the last two years
and providing me with the great opportunity to do my Masters’s studies at Reykjavík
University.

Gregory Chockler for guidance, lots of discussions, many meetings on Google Hangouts,
workplace in Egham and watching Gunnar Nelson on UFC fight in the UK after the initial
draft of the ROUNDER algorithm was ready.

Hjörtur Björnsson for setting up the experiments on the cluster at Reykjavík University
and great feedback and improvements on ROUNDER.

Páll Melsted for insightful discussions on Bloom Filters, Counting Filters and good ideas
for optimizing the ghost list.

Rajesh Nishtala for discussions on memcached at Facebook and methods for an efficient
ghost list implementation.

Song Jiang for access to the workloads from the LIRS and Clock-PRO papers.

The CloudPhysics team for great overall feedback on the research, on related work, on
the algorithms and pointing out to us the missing memory overhead analysis.

Bjarki Ágúst Guðmundsson for the Flask web interface skeleton, implementing the AVL
tree and support with setting things up.

Freysteinn Alfreðsson for granting us high priority access to the cluster at Reykjavík
University.

viii

Helgi Kristvin Sigurbjarnarson for helpful discussions on the background thread in
memcached.

For using lots of their precious time in proofreading this thesis and helping me getting
it into good shape I want to thank: Björn Þór Jónsson, Bjarki Águst Guðmundsson,
Ýmir Vigfússon, Hafsteinn Baldvinsson, Arnar Jónsson and Gunnar Helgi Gunnsteins-
son.

I am grateful for the all the help, inspiration and support I have received from people
throughout this project and for those I forgot to mention, thank you also. This research
would have been impossible without you.

Some of the ideas and results described in this thesis appeared in the following
publication:

ix

Publications

Hjörtur Björnsson, Gregory Chockler, Trausti Sæmundsson, and Ýmir Vigfússon. "Dy-
namic performance profiling of cloud caches." In Proceedings of the 4th annual Sympo-
sium on Cloud Computing, p. 59. ACM, 2013.

The publication was a short paper (and a poster) describing the ideas behind the
ROUNDER and STACKER algorithms (described in Section 3.3), with accuracy micro-
benchmark results and first results from the experimental evaluation in memcached.
My contributions to this publication was to the design of ROUNDER and STACKER. I
implemented ROUNDER and STACKER in Python and C, and ran all microbenchmarks
and accuracy evaluations.

This thesis develops the algorithms further and presents additional performance evalua-
tion. Aside from subsection 3.3.3, which contains an analytic optimality result, all of the
ideas, algorithms and results in this thesis are my own.

x

xi

Contents

List of Figures xiii

List of Tables xvi

1 Introduction 1
1.1 Cache Systems at Scale . 1
1.2 Automatic Scaling . 2
1.3 Contributions . 2

2 Background 5
2.1 Cache Replacement Policies . 6

2.1.1 OPT: Belady’s algorithm . 7
2.1.2 LRU: Least Recently Used . 7
2.1.3 Randomized LRU . 9
2.1.4 LFU: Least Frequently Used . 9
2.1.5 CLOCK . 10
2.1.6 ARC: Adaptive Replacement Cache 11
2.1.7 LIRS: Low Inter-reference Recency Set 11
2.1.8 Clock-PRO . 12
2.1.9 Hit Rate and Throughput Comparison 12

2.2 Memcached . 12

3 Methods 15
3.1 Introduction . 15
3.2 Creating an HRC for the LRU Policy . 17
3.3 Estimating Cache Utility for n ≤ N . 19

3.3.1 The Intuition behind ROUNDER and STACKER 19
3.3.2 Pseudo-Code . 20
3.3.3 Proof of Bounded Accuracy . 23

xii

3.4 Estimating Cache Utility for n > N . 25
3.4.1 Bloom Filters and Counting Filters 25
3.4.2 Intuition behind COUNTINGGHOST 26
3.4.3 COUNTINGGHOST Algorithm Details 27
3.4.4 Pseudo-code . 28

3.5 Comparison to Related Work . 30
3.5.1 Previous Methods . 30
3.5.2 Performance Comparison . 31

4 Implementation 33
4.1 MIMIR Profiling Framework . 33
4.2 Related Work Experiment: C++ Simulator 34
4.3 Implementation in Memcached . 35

4.3.1 Memory Overhead . 35
4.3.2 Joining HRCs from Different Slab Classes 36

4.4 Potential Optimizations . 36
4.5 Availability . 37

5 Experiments 39
5.1 Workloads . 39

5.1.1 Extreme Workloads . 39
5.1.2 Smooth Workloads . 40

5.2 Accuracy . 41
5.2.1 Experimental Setup . 41
5.2.2 ROUNDER . 41
5.2.3 STACKER . 42
5.2.4 COUNTINGGHOST . 44
5.2.5 Different Cache Replacement Algorithms 48

5.3 Overhead . 52
5.3.1 Experimental Setup . 52
5.3.2 ROUNDER . 52
5.3.3 MIMIR Profiling Framework . 53

5.4 Summary . 54

6 Conclusions 57

A Appendix 67

xiii

List of Figures

2.1 Cache and database. Typical request flow from a web server to a
database and cache. 6

2.2 Illustrative diagram showing how the optimum cache replacement algo-
rithm, OPT, handles the request stream A,B,C,D,C,A,F . The numbers
above show the time until the next request and the elements are ordered
by that number. 7

2.3 Illustration of how the LRU cache replacement algorithm handles the
request stream A,B,C,D,C,A,F . The numbers above show the stack
distance. 8

2.4 Illustrative diagram showing how the LFU cache replacement algorithm
handles the request stream A,B,C,D,C,A,F 9

2.5 Illustrative diagram showing how the CLOCK cache replacement algo-
rithm handles the request stream A,B,C,D,C,A,F . The arrows indicate
the CLOCK hand. 10

3.1 Hit rate curve example. Diagram showing normalized hit rate achieved
for different cache sizes than currently allocated. 16

3.2 The MIMIR profiling framework is notified of HIT, MISS, SET and
EVICT events in the cache and produces a HRC when requested. 16

3.3 Overhead comparison of regular LRU, LRU represented as an AVL
tree [57, 56] and LRU with Mattson’s algorithm [38]. The AVL tree
proposes 73.8% overhead on regular LRU and Mattson’s algorithm
proposes 282.7% overhead. The LRU cache has capacity for 5000

elements in this experiment and the bars show the standard deviation from
10 runs. 18

3.4 Illustration of ROUNDER. Updates to the hit rate curve and the bucket
lists of the LRU stack when element e is hit in the cache. 19

xiv

3.5 Illustration showing elements inserted into the ghost list and how the
filters rotate. Each filter has a maximum capacity of 2 and the cache
has a maximum capacity of 4. The cache replacement policy in the main
cache is LRU. 28

3.6 Overhead comparison of regular LRU, LRU with ROUNDER, LRU rep-
resented as an AVL tree [57, 56] and LRU with Mattson’s algorithm [38].
ROUNDERwas set to use 8 buckets and places 6.3% overhead on regular
LRU, the AVL tree causes 73.8% overhead and Mattson’s algorithm
yields 282.7% overhead. The LRU cache has capacity for 5000 elements
in this experiment and the bars show the standard deviation from 10 runs. 32

4.1 MIMIR’s interface: Communication between the cache and the profiling
framework. 34

4.2 Recursive formula from [57] to calculate the number of younger elements
than a given node n. LC(n) is the left child of n and ANC(n) is either
NULL or the nearest ancestor m of n such that m’s left child is neither
n nor n’s ancestor. The intuition behind the formula is to sum up the the
sizes of the left sub-trees up the path from n to the root of the tree. 34

4.3 Formula for joining HRCs from different slab classes in memcached. C
is the cache size in bytes. 36

5.1 HRCs for the first 6 slab class after running the YCSB b2 workload. . . . 40
5.2 Accuracy graphs Hit rate curves of ROUNDER on LRU (top row) and

CLOCK (bottom row) with varying bucket sizes (B) on three workloads.
The true LRU and CLOCK hit rate curves are also shown. 44

5.3 Accuracy graphs Hit rate curves of STACKER on LRU (top row) and
CLOCK (bottom row) with varying bucket sizes (B) on three workloads.
The true LRU and CLOCK hit rate curves are also shown. 47

5.4 The accuracy of the Counting Filter ghost list predicting the hit rate for
a cache of size n using only n/2 elements. This is a visual representation
of the hit rate data from Table 5.5 and Table 5.6. The black dotted line
is the real LRU hit rate for a cache of each size. The red filled line is the
predicted hit rate from a cache of half the size. Under a perfect prediction
the two lines would coincide. 50

5.5 HRC from MIMIR hooked into ARC, CLOCK, LFU, LRU3, LRU and
RANDOM with a cache size of 1500 items on the postgres workload.
The red dots show the real hit rate and the blue line is the predicted HRC. 51

5.6 Overhead of ROUNDER with different bucket sizes. 53

xv

5.7 Overhead of the full MIMIR profiling framework within memcached . . 53

A.1 The hit rate of LRU vs CLOCK in the Python simulator. Note that the hit
rate of CLOCK decreases as the cache size increases from 2000 elements
to 2200 elements. This phenomeon is called Belady’s anomaly [14] . . . 68

A.2 The throughput of LRU vs CLOCK in the Python simulator. 69
A.3 Hit rate comparison on the default Redis cache replacement policy,

volatile-lru. This policy mixes LRU with (Time To Live) TTL expiry,
but in this simulation we ignore the TTL. We simulated with 3 and 10
random samples here denoted LRU3 and LRU10, respectively. The hit
rate is compared to that of RANDOM and LRU. 70

A.4 Comparison of the hit rate of LRU, LFU, OPT, ARC, LIRS, RANDOM
and LRU3 for the extreme workloads in the Python simulator. 71

A.5 Comparison of the throughput of LRU, LFU, OPT, ARC, LIRS, RAN-
DOM and LRU3 for the extreme workloads in the Python simulator. . . . 72

A.6 The hit rate of RANDOM, LRU, OPT, ARC and LRU3 for workloads
from a varnish LRU cache for video chunks at the Icelandic startup
company OZ. 73

xvi

xvii

List of Tables

2.1 Read access latency of computer hardware [22, 1]. 5

3.1 Description of MIMIR’s interface. 17
3.2 Overview of methods for creating an LRU histogram. N is the cache size,

time complexity is per request, for the tree compression e′ = 1
1+e

where e
is the desired accuracy of the reuse distance, LB is the size of the largest
bucket for ROUNDER and STACKER. With ROUNDER only the size of
last bucket can grow above N/B. 32

4.1 Number of bytes required per item in each data structure. 35

5.1 Accuracy of ROUNDER running on LRU: Each result is given as a
percentage (results generally have around 0-5% error). 42

5.2 Accuracy of ROUNDER running on CLOCK: Each result is given as a
percentage (results generally have around 0-8% error). 43

5.3 Accuracy of STACKER running on LRU: Each result is given as a
percentage (results generally have around 0-5% error). 45

5.4 Accuracy of STACKER running on CLOCK. Each result is given as a
percentage (results generally have around 0-8% error). 46

5.5 Accuracy of COUNTINGGHOST running on LRU. Each entry in the table
shows the actual hit rate of LRU on cache size n and the predicted hit rate
of LRU running at size n/2 with ghost list of capacity n/2. The average
accuracy of all the 64 entries in the table is 95.8%. 48

5.6 Table 5.5 continued. All estimates (except 5) have over 90% accuracy and
the average accuracy is 95.8%. 49

5.7 Overview of the MAE for MIMIR running on the extreme postgres
workload at cache size 1400 predicting the HRC from all cache sizes
between 0 and 3000. The maximum discrepancy is the Kolmogorov-
Smirvnov [55] distance between the HRCs which measures the largest
vertical distance of the two curves. 50

xviii

1

Chapter 1

Introduction

1.1 Cache Systems at Scale

Large-scale websites serve a great number of requests, many of which are identical.
Serving each request by fetching data from a database causes contention and does not
suffice under high load. Since these websites cannot scale with a database only, a new
service called memcached was created. Memcached serves all data from main memory,
thus responding faster than a database which has to touch disk. The typical use case for
memcached is to store newly generaed pages so they need not to be re-rendered on every
request. Memcached thus acts both as a memory speedup for databases and as a storage
for those queries that require many CPU cycles to generate a response. The service thus
simultaneously decreases response time and reduces load on the databases.

Owing to its benefits, memcached is popular all over the world and is used so
heavily at Facebook that more than one billion requests per second are served directly
from memcached. Caching systems, like memcached and Redis, have become a de
facto standard as a layer between web servers and database back-ends. Using those
caching systems, however, comes at a cost as they require an expensive resource: main
memory.

Because a single computer cannot unilaterally handle significant load, many of today’s
companies invest explicitly in a special “caching” tier comprised of multiple cache
servers, each of which has a large mount of main memory. Buying more cache servers
increases the hit rate in the cache tier and can greatly reduce the load on the database
backends preventing them from overloading. Cache servers are expensive and used in
large numbers; Facebook, e.g., stored over 20TB of data in over 800 memcached servers

2 Performance Profiling of Cache Systems at Scale

making it the world’s heaviest memcached user already in 2008 [58]. Running at such a
large scale makes it an important question to understand how many computers are required
to satisfy service goals.

1.2 Automatic Scaling

To shield the databases properly from load, cache operators typically add more mem-
cached servers manually or increase the memory on existing servers to ensure that
the hit rate in the cache tier is high enough. Blindly adding servers without knowing
exactly how many cache servers would be needed to achieve this goal can waste valuable
resources.

We therefore address this allocation problem from the automation perspective and aim
to help cache operators with this manual tuning by predicting how each cache server
would operate with different resources. This thesis describes a new profiling framework,
MIMIR, designed for profiling LRU cache systems. The system generates so called hit
rate curves in real-time that describe the efficacy of each cache server as a function of
cache size.

Algorithms for creating hit rate curves have been studied before, most methods focus on
creating accurate hit rate curves with considerable overhead. Our method sacrifices 5
percentage points of accuracy in order to minimize the overhead.

In order to predict the hit rate for larger cache sizes than the current allocation, the meta-
data for some keys that have been evicted from the cache must be available. A data
structure to store this meta-data is called a ghost list. For some workloads, such as those
seen at Facebook [8], queries for small keys dominate: the average query is for a 31
byte key and a 2 byte value. Since the keys in this case are much larger than the values,
storing just the keys in a ghost list produces too much memory overhead to be applicable.
To address this issue we propose a new memory efficient ghost list for storing a specific
amount of evicted meta-data with Counting Filters.

1.3 Contributions

The main contributions of this work are the following:

• A new algorithm to calculate the efficacy of a cache as a function of resources
used, especially main memory. This is done by generating so called hit rate curves,

Trausti Sæmundsson 3

defined in Chapter 3, that predict how many queries would have been responded to
from the cache if the cache system would have those resources.

• Proof of the accuracy of the hit rate curve algorithm.

• Extensive implementation and experimental analysis of the hit rate curve generator
both through micro-benchmarks and through implementation within the popular
memcached system. The experiments show that the approach is fast compared to
alternatives, and achieves high throughput and high accuracy while giving extensive
flexibility to understand the cost benefits of the system at a granular level in terms
of cache size.

• A new data structure for analyzing requests to cache keys that have been evicted
from the cache. This data structure achieves space efficiency in exchange for
modest drop in accuracy and low to sometimes significant drop in performance.

The remaining of this thesis is organized as follows. The background required for
understanding this thesis is presented in Chapter 2. Chapter 3 provides definitions,
introduces related work and the methods contributed in this thesis. Implementation
details are discussed in Chapter 4. Experiments are evaluated in Chapter 5, and we offer
concluding thoughts in Chapter 6. Finally, the Appendix contains multiple additional
graphs.

4

5

Chapter 2

Background

The notion of caching is to store data from a slow memory in a faster memory. This
is done to minimize the requests to the slow memory and thus reduce memory access
latency. Caches are used in various applications: in hard disks, web servers, databases
and CPUs to name a few. The performance improvements can be enormous. Table 2.1
is indicative of the speed hierarchy of computer memories. The L1 and L2 caches on
the CPU are fastest, with a speed of 10x to 100x versus that of main memory. Reading
1MB from memory is 120x faster than reading 1MB from disk and is the reason why
in-memory cache systems, introduced later in this chapter, are so fast.

L1 cache reference 0.5 ns
L2 cache reference 7 ns
Main memory reference 100 ns
Read 1MB from memory 250,000 ns
Read 1MB from a Solid State Drive 1,000,000 ns
Hard Disk Drive seek 10,000,000 ns
Read 1MB from a Hard Disk Drive 30,000,000 ns

Table 2.1: Read access latency of computer hardware [22, 1].

Big companies, such as Facebook and Twitter, alleviate their database load by using cache
systems that store hot key value pairs in memory and serve the values via network when
keys are requested. The most common cache systems are memcached [43] and Redis [7].
Figure 2.1 shows relations between a web server, database and cache. The web server
first checks whether the data required is found in the cache and if not, loads the data from
the database. The cache systems at Facebook and Twitter are composed of many cache
servers and intermediary proxies. The load is distributed between the cache servers by
partitioning the data on the keys with a method called consistent hashing. Consistent

6 Performance Profiling of Cache Systems at Scale

memcached

database

web server Fast

Slow

Figure 2.1: Cache and database. Typical request flow from a web server to a database
and cache.

hashing enables operators to add and remove cache servers to the cache tier without
needing to relocate keys on existing servers.

The framework presented in this thesis is aimed to augment large cache systems and
predict accurately how the systems would behave under a different setting. One of the
key differences in the performance of those systems is the mechanism by which they
replace old elements when the cache memory has been filled [31], the topic of the much
studied field of cache replacement policies.

2.1 Cache Replacement Policies

Replacement policies (cache algorithms) are used to choose which element to remove
from the cache when space for a new element is needed. The element that the replacement
policy chooses is then removed from the cache; this is called evicting the element from the
cache. When we get a request to retrieve an element we first check whether the element
is stored in the cache. If the element is in the cache a cache hit occurs; otherwise a cache

miss occurs and the element must be fetched from a slow memory. Cache algorithms that
do not depend on knowing the future are called online algorithms, while those that require
on knowledge of future accesses are called offline algorithms.

Trausti Sæmundsson 7

A
 5

Requests:
A
B
C
D
C
A
F

A
 4 ∞

B

C A B

C A B D

A C B D

A C D B

A C D F

 2 3 ∞

 1 2 ∞ ∞

 1 ∞ ∞ ∞

 ∞ ∞ ∞ ∞

 ∞ ∞ ∞ ∞

t1

t2

t3

t4

t5

t6

t0

Time until next
request is shown
above

Figure 2.2: Illustrative diagram showing how the optimum cache replacement algorithm,
OPT, handles the request stream A,B,C,D,C,A,F . The numbers above show the time
until the next request and the elements are ordered by that number.

We now give an overview of cache algorithms, starting with an optimal one and working
towards more practical ones.

2.1.1 OPT: Belady’s algorithm

L. A. Belady described an optimal cache algorithm (OPT) in 1966 [13]. When the cache
is full and a new element must be inserted, OPT replaces the element that will not get a
cache request for the longest period of time in the future, see Figure 2.2 for an example
of how OPT works.

In practice, cache sequences arrive in an online fashion and future requests cannot be
known or inferred. OPT thus cannot be used in practice, but still provides an important
baseline against which to compare other cache replacement algorithms.

2.1.2 LRU: Least Recently Used

A particularly popular cache replacement policy is the Least Recently Used (LRU)
algorithm, which replaces the element that was least recently used onan eviction; see
Figure 2.3 for an example of how LRU works. The extensive literature on this algorithm
dates back to at least 1965 [39].

Definition 1. The LRU stack distance of an element e in an LRU stack is the
number of different elements between the head of the LRU stack and the element
e. If e is not in the LRU stack, the stack distance is defined to be infinite.

8 Performance Profiling of Cache Systems at Scale

A
 0

head tail

B
 0 1

A

C
 0 1

B A

D
 0 1 2 3

C B A

C
 0 1 2 3

D B A

A
 0 1 2 3

C D B

F
 0 1 2 3

A C D

t0

t1

t2

t3

t4

t5

t6

Requests:
A
B
C
D
C
A
F

The stack distance
 is shown above

Figure 2.3: Illustration of how the LRU cache replacement algorithm handles the request
stream A,B,C,D,C,A,F . The numbers above show the stack distance.

LRU handles many workloads well because in practice, recently used data tends to be
reused in the near future. The algorithm is based on a similar idea to OPT, namely using
the requests to elements to determine which elements to keep in the cache. Nevertheless,
LRU is an online algorithm as opposed to the offline nature of OPT.

LRU is usually implemented with a doubly linked list. This is a drawback because
moving elements to the most recently used position in the linked list at every request
is expensive and does not lend itself easily to parallelism. Modifying a doubly linked list
when many threads are accessing it at the same time typically requires locks and which
further degrades the performance.

Another drawback of LRU is that many workloads use some elements more frequently
than others and LRU does not make use of frequency information at all. LRU is also
vulnerable to a scan of data, i.e., a sequence of requests to elements that are not requested
again, a scan may replace all the elements in the cache regardless of whether the elements
will be used again or not.

There are several algorithms related to LRU. Databases typically have access patterns
where LRU performs poorly and the algorithms LRU-K [47] and 2Q [35] improve on
LRU for such patterns. LRU-K keeps track of the last k references of hot items in a
priority queue and evicts the item with the oldest k-th access. When k = 1 this algorithm
is LRU but when k > 1 this algorithm is not vulnerable to scans. 2Q uses two queues
to provide similar results as LRU-K when k = 2 but with constant time overhead versus
logarithmic time complexity of a priority queue. Another relative is S4LRU [31] which is
made of four LRU stacks and items get promoted when they are hit again.

Trausti Sæmundsson 9

A
 1

B
 1 1

A

C
 1 1 1

B A

D
 1 1 1 1

C B A

C
 2 1 1 1

D B A

A
 2 2 1 1

C D B

A
 2 2 1 1

C D F

t0

t1

t2

t3

t4

t5

t6

Requests:
A
B
C
D
C
A
F

The frequency
is shown above

Figure 2.4: Illustrative diagram showing how the LFU cache replacement algorithm
handles the request stream A,B,C,D,C,A,F .

2.1.3 Randomized LRU

This replacement policy is the default replacement policy in the Redis key-value store [7].
It fetches m random (m = 3 by default) elements and evicts the oldest one. On a cache
hit the timestamp of the element is updated.

This method saves the memory and the maintenance of a linked list but trades off
computation time by calling the random number generator several times.

By configuring Redis to choose more sample elements, specifically to increase m, this
policy converges to the LRU policy which chooses the oldest element of all elements to
evict. Figure A.3 in the Appendix shows this phenomenon on a variety of workloads
by comparing regular LRU against Randomized LRU with m = 3 and m = 10, called
LRU3 and LRU10 respectively here (not to be confused with LRU-K). This figure shows
that using only 10 random samples produces hit rate performance very close to that of
LRU.

2.1.4 LFU: Least Frequently Used

Another one of the earliest caching algorithms is LFU, Least Frequently Used, which
dates back to at least 1971 [39]. LFU evicts the least frequently used item when the cache
is full; see Figure 2.4 for an example of how LFU works.

LFU is not vulnerable to scans of requests and captures the frequency of workloads.

10 Performance Profiling of Cache Systems at Scale

A
 0

 0

 0

 0

A
 1 B

 0

 0

 1

A
 1 B

C
 0

 1

 1

 t1

 t0

 t2
A

 1 B
C

D
 1

 1

 1

A
 1 B

C

D
 1

 1

 1

A
 1 B

C

D
 1

 1

 1

F
 1 B

C

D
 0

 0

 0

 t3

 t4

 t5

 t6

Figure 2.5: Illustrative diagram showing how the CLOCK cache replacement algorithm
handles the request stream A,B,C,D,C,A,F . The arrows indicate the CLOCK hand.

However, implementing LFU requires keeping track of the request frequency of each
element in the cache. Usually this is done with some number of bits for each element,
where the number of bits limits how accurately the frequency is monitored. Regardless of
the number of bits, finding the element with the lowest frequency is usually implemented
with a priority queue resulting in logarithmic complexity for all operations. Another
approach is to use two nested doubly linked lists, as described in [50], which transforms
the time complexity of all operations to O(1).

2.1.5 CLOCK

Introduced in 1968 by F. J. Corbato [20], the CLOCK algorithm arranges cache elements
in a circle and captures the recency of a workload, similar to LRU but with much less
effort.

Every element has an associated bit called the recently used bit, which is set every time
an element is accessed. The clock data structure has one hand. When an element needs
to be evicted from the cache, we check whether the recently used bit is set on the element
e to which the hand points. If the recently used bit is not set on e, we replace e with the
new element. However if the recently bit is set on e, we unset the bit on e and advance the
hand to the next element. We repeat this until we find an element that does not have the
recently used bit set. In the worst case the hand must traverse an entire circle and remove
the element to which it pointed originally. This is precisely what happens at time t6 in
Figure 2.5, where A is evicted to give space for F .

Trausti Sæmundsson 11

CLOCK uses the recency of elements, similar to LRU, but without requiring locks in
parallel systems. The retrieval time for each element is lower because there is no un-
linking and linking required. The removal time depends, however, on how far the hand
has to traverse. CLOCK also handles more requests per time unit because it does not
move elements to a new position in a list at every request. Figure A.2 shows head-to-head
throughput comparison between the algorithms.

The hit rate of CLOCK is close to that of LRU even though CLOCK uses only one bit to
capture the recency, see Figure A.1 for a hit rate comparison between the methods.

2.1.6 ARC: Adaptive Replacement Cache

The Adaptive Replacement Cache (ARC) algorithm introduced in 2003 [40] provides
good performance on workloads where the access pattern is based on recency and
frequency. To achieve this performance ARC combines LRU and LFU and is furthermore
resistant to scans. It also adapts in real-time to the recency or frequency access pattern of
the workload.

ARC uses two lists L1 and L2. L1 stores elements that have been seen only once recently
but L2 stores elements that have been seen at least twice, recently. It is useful to think of
L1 as the LRU list and L2 as the LFU list. ARC then adaptively changes the number of
elements stored in the cache from L1 and L2. This is done to meet the access pattern of
the workload. The elements in L1 and L2 that are not in the cache are said to be in the
ghost list. Ghost lists are discussed further in Chapter 3.

Since L2 contains elements that have been seen at least twice recently it does not have
logarithmic complexity on each request like LFU. Both L1 and L2 suffer from the same
problem as LRU, as every action requires a reordering of the elements in the list. To
address this issue another similar algorithm called Clock with Adaptive Replacement
(CAR) [10] was proposed in 2004. It uses the clever solution from the CLOCK algorithm
of using circular lists to reduce the computational complexity. Both ARC and CAR are
patented by IBM [42, 11].

2.1.7 LIRS: Low Inter-reference Recency Set

Since its introduction in 2002, the Low Inter-reference Recency Set algorithm (LIRS) [34]
has seen some popularity, including being used in the popular MySQL open source
database [32]. LIRS is similar to LRU, but does not use recency as a measure to evict

12 Performance Profiling of Cache Systems at Scale

elements. Instead, it uses the more insightful reuse distance for eviction decisions, more
precisely LIRS evicts the element with the largest reuse distance.

Definition 2. The reuse distance of a request r1 to an element e is the number
of different requests between r1 and the last request r2 to the same element e. If
r1 is the first request to e then the reuse distance is defined to be infinite.

Let us now look at the request stream: a, b, b, c, a. The first time a is requested it has
infinite reuse distance but the second time a is requested the reuse distance is 2 because
there are two elements, b and c, requested in between. In the same manner, the reuse
distance of b is infinite the first time it is requested and 0 the second time it is requested.
The reuse distance of c is infinite.

Lemma 1. An element is contained in an LRU cache of size N if the reuse
distance of the element is at most N . This is true because the reuse distance is
equal to the stack distance in an infinite LRU stack.

Internally, LIRS uses a stack S and a list Q. The stack S can grow unboundedly in size
which could eat up a lot of memory.

2.1.8 Clock-PRO

For the same reason that CLOCK was proposed to speed up LRU, and CAR was proposed
to speed up ARC, an algorithm called CLOCK-Pro was introduced in 2005 [33] to
optimize LIRS. At the foundation, CLOCK-Pro is based on LIRS but uses circular lists.
The CLOCK-Pro algorithm has been used in the NetBSD operating system [32] and in
the Linux kernel [33].

2.1.9 Hit Rate and Throughput Comparison

Graphs showing hit rate and throughput comparison of the LRU, LFU, OPT, ARC, LIRS,
RANDOM and LRU3 cache replacement algorithms can be seen in the Appendix, hit rate
in Figure A.4 and throughput in Figure A.5.

2.2 Memcached

A wide variety of caching systems exist that rely on those algorithms. One particularly
popular implementation is the memcached (www.memcached.org), which uses the LRU

Trausti Sæmundsson 13

policy. Improvements to memcached use the CLOCK policy [26] because it is faster and
works better with multiple threads, while providing a similar hit rate to LRU. Because
of their popularity we will focus on these two cache replacement policies (LRU and
CLOCK) in the remainder of the thesis.

Memcached is an open source [44] key-value store written in approximately 10.000 lines
of C code, developed initially by Brad Fitzpatrick for the website LiveJournal.com
at Danga Interactive. Early versions of memcached used the default malloc from glibc
for storing items but because of internal fragmentation the servers stalled the CPU after
a week of up-time [28]. The memcached team then implemented their own memory
allocator to address this problem.

The memory allocator puts items into different slab classes, each containing its own LRU
linked list. Each slab class owns several 1MB pages split into equally sized chunks, with
the chunk size depending on the slab class. The default settings of memcached uses 42
slab classes. The slab class sizes increase exponentially with factor 1.25 (can be changed
with the -f parameter). The first is responsible for 96B items (henceforth B refers to
bytes), the second 120B items, and the last 1MB items. Each item is put in the slab class
with the smallest possible chunk size. Depending on the distribution of the value sizes,
this factor must be configured manually to balance items evenly across the slab classes.
When a slab class is full, a new 1MB page is requested. If all pages are in use, the server
evicts the least recently used item from the slab class. Expiration of elements via a Time-
To-Live (TTL) flag is supported and if an item has been hit very recently, it is not moved
to the LRU head.

If the workload is dynamic, some slab classes might become stale, which is referred
to as “slab calcification”. This issue has been solved in the latest versions of the open
source memcached by removing pages from other slab classes. Twitter has an open
source modification of memcached, called twemcache, with a different solution with
configurable strategies to reassign pages between slabs. At Facebook a page is moved
to a slab class if the next item to be evicted was used at least 20% more recently than
the average of the LRU tail in other slab classes [45]. The page that is moved is the one
containing the overall least recently used element.

The memcached server uses 4 threads by default; increasing the number of threads does
not improve the performance, due to internal locking [30]. One global lock guards the
LRU cache and another lock guards the hash table. This has been improved by Fan et

al. in the MemC3 [26] system where the LRU cache replacement was replaced with the
CLOCK cache replacement and the hash table was changed to concurrent cuckoo hashing,

LiveJournal.com

14 Performance Profiling of Cache Systems at Scale

developed by the same team. This removes the thread scalability bottleneck and improves
the throughput of memcached by 3x.

Facebook has been using memcached since August 2005, when Mark Zuckerberg
installed it on Facebook’s web servers. In 2013 they had around 1000 memcached servers
handling billions of requests per second to serve over 28 terabytes of data to alleviate this
load from the back-end MySQL databases [49]. Since then, Facebook has customized and
improved the memcached code and contributed some of the improvements to the open
source version of memcached [45].

15

Chapter 3

Methods

3.1 Introduction

In a setup with multiple cache servers we would like to monitor the performance of each
server and predict what would happen if resources for the servers would be changed.
Resources can be changed by adding or removing a cache server. But also, the memory
of a server can be increased or decreased and this affects the performance of the cache
tier. Our goal in this thesis is to profile the performance of each cache server and produce
efficacy graphs showing how the hit rate would change if resources were changed. In order
to do that we must know how the cache server would perform if memory was increased
or decreased. To assess the effects of changes we generate, in real-time, so called hit rate
curves that describe the efficacy of each cache server as a function of cache size. More
precisely:

Definition 3. Let H(n) be the hit rate for cache size n. We call H the hit rate
function. A hit rate curve (HRC) is a plot of the hit rate function as a function
of cache size. For a cache is running at size N , it is possible to generate the HRC
for all cache sizes n, where 0 < n ≤ kN ; in the thesis we focus on k = 2.

See Figure 3.1 for an example of a hit rate curve showing the hit rate for smaller and
larger cache sizes than the current allocation.

To solve this problem we propose the MIMIR profiling framework. This framework
collects data from each cache server and produces hit rate curves. Figure 3.2 shows
how the cache server contacts the interface of MIMIR. The framework is notified when
an element encounters one of four possible events: HIT; MISS; SET; and EVICT. The
functions for those events are described in detail in Table 3.1. All functions take an

16 Performance Profiling of Cache Systems at Scale

0 1000 2000 3000
Cache size (items)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
u
m

u
la

ti
v
e
 h

it
 r

a
te

current hit rate

Current allocation

LRU

Figure 3.1: Hit rate curve example. Diagram showing normalized hit rate achieved for
different cache sizes than currently allocated.

cache MIMIR

Hit(e)

Miss(key)

Set(e)

Evict(e)

Hit Rate Curve

u
p

d
at

e

Figure 3.2: The MIMIR profiling framework is notified of HIT, MISS, SET and EVICT

events in the cache and produces a HRC when requested.

element as an argument except the MISS function which takes a key. We store a timestamp
on each element and need to access it on HIT; MISS and SET. On a miss, however, no
element is available and we only have the key.

How to handle those events correctly depends on the cache replacement policy; in this
thesis we describe an implementation of this interface that works with high accuracy
when running either the LRU or the CLOCK cache replacement policy.

Handling the four events happens synchronously inside MIMIR and results in an update
to an internal data structure in the framework. When the HRC is requested, it is generated
asynchronously from the internal data structure and served to the cache operator who can
then display it for each cache server in a web interface.

Trausti Sæmundsson 17

HIT(e) Accessing the requested element e causes a cache hit
MISS(key) Accessing the key key causes a cache miss
SET(e) An element e is set in the cache
EVICT(e) A currently cached element e is being evicted from the cache

Table 3.1: Description of MIMIR’s interface.

3.2 Creating an HRC for the LRU Policy

To generate a hit rate curve for an LRU cache we use Lemma 1 from Section 2.1.7 on
page 12. The lemma states that an element is contained in an LRU cache of size N if the
reuse distance is at most N . The reuse distance is equivalent to the stack distance and this
gives us an inclusion property for the LRU cache replacement policy:

Lemma 2. Contents of an LRU cache of size N are contained in an LRU cache
of size M if N ≤M .

To see why this is true, consider how an LRU stack orders elements by access time; an
LRU stack of size N is the prefix of all LRU stacks of size M where M ≥ N . This
inclusion property holds for other stack algorithms such as LFU and OPT [38] but not for
a First In First Out (FIFO) algorithm [14].

Using Lemma 2 we now highlight an important concept. By tracking the stack distance
of every element we can create a hit rate curve, because the number of hits in a cache of
size n is the number of items hit with stack distance less or equal to n.

This means that creating a hit rate curve for n ≤ N simply boils down to tracking stack
distances for elements in the cache. Creating hit rate curves for n > N requires tracking
elements that have been evicted, but the principle is the same.

This is a previously studied problem dating back to at least 1970 when Mattson described
an intuitive approach, referred to in this thesis as Mattson’s algorithm [38]. This
algorithm assumes that the LRU cache is represented as a linked list. On a cache hit
to element e, we traverse the linked list from the head and count how many elements are
located in front of e. This is inefficient since the worst case time complexity is linear in
the cache size.

Another approach is to organize the LRU linked list in a balanced binary tree ordered by
the access time [56, 57]. This lowers the worst case time complexity to be O(logN).
The stack distance is retrieved from the tree by counting the sizes of sub-trees with earlier
access times than the requested element.

18 Performance Profiling of Cache Systems at Scale

0

500000

1000000

1500000

2000000
T
h
ro

u
g
h
p
u
t

[O
P
S
/s

]
Statistics algorithms

lru
lru+avl
lru+mattson

Figure 3.3: Overhead comparison of regular LRU, LRU represented as an AVL tree [57,
56] and LRU with Mattson’s algorithm [38]. The AVL tree proposes 73.8% overhead on
regular LRU and Mattson’s algorithm proposes 282.7% overhead. The LRU cache has
capacity for 5000 elements in this experiment and the bars show the standard deviation
from 10 runs.

Both of those approaches are non-trivial to parallelize. Also, figure 3.3, shows that the
overhead of both approaches is non-negligible. The figure shows the throughput of a
C++ simulator (described in Chapter 4) for the P10 workload (presented in Chapter 5)
for LRU with no distance tracking, and with distance tracking using both an AVL tree
and Mattson’s algorithm. As the Figure shows, the overhead of both algorithms is very
significant and much too high for the methods to be usable in practice.

We propose to trade off some accuracy in order to maximize performance, by splitting
the LRU stack dynamically into a fixed number of buckets. When an element is hit in
the cache we find the bucket it belongs to and estimate its LRU stack distance range by
summing up the number of items in buckets with lower stack distances. Note that the
number of buckets is independent of the cache size; thus the average number of elements
per bucket increases with increasing cache sizes.

In order to facilitate performance, the size of each bucket can vary. In Section 3.3, we
propose two efficient algorithms for dynamically maintaining the buckets. In Section 3.4,
we then propose an efficient algorithm for approximating stack distances for items that
have been evicted from the cache. Finally, in Section 3.5, we compare our methods to the
related work.

Trausti Sæmundsson 19

g,h,u e,r,tf b,c,d,a

Bucket #0 1 2 3

HRC

(i) LRU list before

hit on item e

(iii) After request

(ii) HRC update

4 buckets (B=4)

(iv) After aging

e,g,h,u r,tf b,c,d,a

g,h,u f r,t,b,c,d,ae

Stack distance

E
st

im
a

te
d

 #
 o

f
h

it
s

Figure 3.4: Illustration of ROUNDER. Updates to the hit rate curve and the bucket lists of
the LRU stack when element e is hit in the cache.

3.3 Estimating Cache Utility for n ≤ N

We now introduce simple yet efficient methods to minimize the overhead of retrieving
stack distances for elements in the cache. The methods group items together in buckets
and produce stack distance estimates. The accuracy is tunable with the number of buckets,
but using fewer buckets yields higher performance. The methods are called ROUNDER

and STACKER, the former of which is designed for higher performance and the latter is
designed for higher accuracy.

3.3.1 The Intuition behind ROUNDER and STACKER

The basic idea is to split the LRU stack into buckets. When an item is hit, we find the
region represented by the bucket and update the corresponding part of the HRC with unit
volume.

ROUNDER accumulates elements in the first bucket. When this front bucket is full, all
buckets are shifted down the list, bottom two buckets are merged and the first bucket is
freed. This aging method distributes the items across all buckets by limiting the number
of elements in the first bucket. The process is illustrated for the ROUNDER algorithm in
Figure 3.4. When element e is hit, it is located in the third bucket (buckets are numbered
from 0). The element is then removed from the third bucket and inserted into the first
(head) bucket. Now the first bucket is full and aging is performed. The aging merges the
last two buckets, so that afterwards it contains items r, t and b, c, d, a from the second-

20 Performance Profiling of Cache Systems at Scale

to-last and the last bucket respectively. Now the first bucket is shifted down and a new
empty bucket appears in front. Finally we insert e into the new bucket. We keep a 4
byte timestamp per item to know which bucket the item belongs to. To make the aging as
fast as possible, instead of aging every element, we shift the frame of reference, update
the timestamp for the first bucket and increasing a cyclical index into a circular array of
bucket counters, all in constant time.

The last bucket can get filled up with an adversarial workload. We designed the STACKER

algorithm to prevent such cases. STACKER accumulates elements in the first bucket, like
ROUNDER, but when the first bucket is full we shift some items down one bucket, i.e. we
only shift elements that correspond to the hot part of the LRU stack. The intuition here is
that when an element e is hit in a regular LRU stack, all items with lower stack distances
than e get shifted one position down the stack but elements below e’s original position are
not moved. Now if the bottom of the stack is never being hit, those elements should not
be moved to a lower bucket, and the aging routine prevents it from happening. ROUNDER

is incapable of doing this since all items are shifted down every time the aging routine is
called.

3.3.2 Pseudo-Code

To update the HRC in constant time we use an intermediate array, called DELTA. We
update the DELTA array with the updateDELTA routine, see Algorithm 1. It takes a
startpoint and an endpoint and updates two locations in the DELTA array. The scale and
offset arguments are used when creating a HRC for larger cache sizes than the current
allocation using a ghost list, described and defined in Section 3.4. The scale parameter
is used to scale down the estimated hit value because the ghost list is probabilistic and
the offset is used to update the ghost list part of the HRC, after the end of the main
cache.

Algorithm 1 The updateDELTA routine.

UPDATEDELTA(start , end , scale, offset)

1 start = start + offset
2 end = end + offset
3 val = 1.0/(end − start)
4 val = val · scale
5 DELTA[start] = DELTA[start] + val
6 // every value i ≥ start in the HRC should be incremented by val
7 DELTA[end] = DELTA[end]− val
8 // every value i ≥ end in the HRC should be decremented by val

Trausti Sæmundsson 21

The makeHRC routine, shown in Algorithm 2, creates the HRC directly from the DELTA
array without using a PDF array. Notice that the resulting HRC is not normalized. HRCs
are often normalized by the number of requests to the cache so that the values range from
0 to 1.

Algorithm 2 The makeHRC routine. Updates the HRC from the intermediate DELTA
array.

MAKEHRC()

1 HRC = [0, 0, . . . , 0]
2 for i = 1 to DELTA. length − 1
3 HRC [i] = HRC [i− 1] + DELTA[i]

The ROUNDER algorithm is initialized according to Algorithm 3, by saving the cache
sizes and the number of buckets, lines 1-2. We then initialize bucket counters to 0 in
line 3 and set the head and tail bucket indices to their initial values in lines 4-5.

Algorithm 3 The Initialization routine for ROUNDER.

INITIALIZATION(cachesize, numbuckets)

1 N = cachesize
2 B = numbuckets
3 buckets = [0, 0, . . . , 0] // B buckets
4 head = B -1
5 tail = 0

The HIT routine for the ROUNDER algorithm, see Algorithm 4, takes an element as an
argument. It resets the activity of the value to the current tail if it has fallen behind, in
lines 1-2. We next retrieve the current stack distance for the element and use it to update
the DELTA array in line 5. Finally we get the correct bucket index for the element and
remove it from the current bucket by decrementing the correct bucket counter, lines 7-8.
Next we set the activity of the item to the head value and update the counter for the head
bucket, lines 9-10. Notice the circular indexing into the buckets array, this trick saves us
space and time by reusing the array after every aging phase.

The SET routine for the ROUNDER algorithm, see Algorithm 5, performs aging if
required, in line 2. It also sets the activity of the item in line 3 and updates the bucket
counter for the head bucket.

The EVICT routine for the ROUNDER algorithm, see Algorithm 6, updates the correct
bucket counter where the element is located.

The age routine in ROUNDER, see Algorithm 7, shifts the frame of reference, merges the
last two buckets and frees up one bucket.

22 Performance Profiling of Cache Systems at Scale

Algorithm 4 The HIT routine for ROUNDER.

HIT(e)

1 if e.activity < tail
2 e.activity = tail
3 if buckets [head] ≥ N/B
4 AGE()
5 (start , end) = getStackDistance(e)
6 UPDATEDELTA(start , end , 1, 0)
7 i = e.activity mod B
8 buckets [i] = buckets [i]− 1
9 e.activity = head

10 buckets [head mod B] = buckets [head mod B] + 1

Algorithm 5 The SET routine for ROUNDER.

SET(e)

1 if buckets [head mod B] ≥ N/B
2 AGE()
3 e.activity = head
4 buckets [head] = buckets [head] + 1

Algorithm 6 The EVICT routine for ROUNDER.

EVICT(e)

1 if e.activity < tail
2 e.activity = tail
3 i = e.activity mod B
4 buckets [i] = buckets [i]− 1

Algorithm 7 The internal age routine in ROUNDER.

AGE()

1 // merge the two bottom buckets and empty the top bucket
2 buckets [(tail + 1) mod B] = buckets [(tail + 1) mod B] + buckets [tail mod B]
3 head = head + 1
4 buckets [head mod B] = 0
5 tail = tail + 1

Trausti Sæmundsson 23

The getStackDistance routine in ROUNDER, see Algorithm 8, calculates the estimated
stack distance from the bucket counters.

The routines for STACKER are highly similar to the routines for ROUNDER except for
the age function, which loops through all the cache and ages only the items that have
an activity lower than a running average of items recently hit in the cache. They are not
shown in this thesis.

Algorithm 8 The internal getStackDistance routine in ROUNDER.

GETSTACKDISTANCE(e)

1 start = 0
2 end = 0
3 for i = head to tail
4 end = end + buckets [i mod B]
5 if e.activity == i
6 break
7 start = start + buckets [i mod B]
8 return (start , end)

3.3.3 Proof of Bounded Accuracy

This section provides a proof of bounded accuracy for bucket algorithms. The proof uses
the Mean Average Error (MAE) to provide bounds on the bucket sizes. The MAE is
calculated by the following formula, Where M is the size of the HRC:

MAE(HRCa,HRCb) =
1

M

M∑
x=1

|HRCa(x)− HRCb(x)| . (3.1)

The following theorem shows that the accuracy of the HRC is limited by the size of the
largest bucket:

Theorem 3. For an LRU cache of size M during a trace of R requests,
ROUNDER and STACKER with B buckets have a mean average prediction error
(MAE) bounded by the largest bucket size during the trace, divided by M/2.
Consequently, if no bucket grows larger than αM/B for α ≥ 1 during the trace,
then the MAE for ROUNDER and STACKER is at most 2α

B
.

Proof. We consider R cache requests to have true reuse distance r1, r2, . . . , rR. It suffices
to consider only requests that result in LRU hits, so ri ≤ N for all i. Define δt(x) = 1 if

24 Performance Profiling of Cache Systems at Scale

x = rt and δt(x) = 0 otherwise. Then the optimal hit rate curve HRC∗ satisfies:

HRC∗(x) =
1

R

R∑
t=1

x∑
z=0

δt(z)

In STACKER, there are B buckets with variable boundaries over time. For request t
with true reuse distance rt, we estimate the reuse distance over an interval [at, bt] that
includes rt. Furthermore, we assign uniform probability to all possible distances within
that interval. Define ct(x) = 1

bt−at when x ∈ [at, bt) and ct(x) = 0 otherwise. Then the
hit rate curve for our algorithm satisfies:

HRC(x) =
1

R

R∑
t=1

x∑
z=0

ct(z)

We obtain the following upper bound on the mean average error for the two HRCs.

MAE(HRC,HRC∗) =
1

M

M−1∑
x=0

|HRC(x)− HRC∗(x)|

=
1

MR

M−1∑
x=0

∣∣∣∣∣
R∑
t=0

x∑
z=0

δt(z)− ct(z)

∣∣∣∣∣ ≤ 1

MR

R∑
t=1

bt∑
x=at

x∑
z=0

|δt(z)− ct(z)|

≤ 1

MR

R∑
t=1

bt∑
x=at

x∑
z=0

(|δt(z)|+ |ct(z)|) ≤
1

MR

R∑
t=1

bt∑
x=at

(1 + 1)

=
1

MR

R∑
t=1

2(bt − at) ≤
2

M
sup

t=1,...,R
(bt − at).

The result enables operators to dynamically track the MAE of the HRC estimate even
without computing the optimal hit rate curve. The algorithm could be extended to
adaptively add or remove buckets depending on changes in the MAE so that resolution is
maintained.

Note that the supremum in the last expression measures the size of the largest bucket
during the workload. In some cases, as we have seen in our experiments, the least-
significant bucket which tracks the largest reuse distances can consume a significant
portion of the cache. Instead, the average bucket size for hits 2

R

∑R
t=1(bt − at) can be

tracked and used as a stronger upper bound.

Trausti Sæmundsson 25

3.4 Estimating Cache Utility for n > N

How can we predict whether the cache needs to grow in size? Typically, data-less items
called ghosts [25] are used as placeholders to record accesses to items whose data would

have been included in the cache if more memory had been available [48]. The ghosts are
contained in a ghost list:

Definition 4. A ghost list is a data structure for storing items that have been
evicted from a cache.

Placeholders consume a small amount of memory relative to the data normally stored by
items, so their memory overhead can be viewed as a “tax” on elements actually stored in
the LRU list. Thus when an item is evicted from the primary LRU list, it is added to a
ghost LRU stack. The last ghost is also popped off and discarded. This method is at the
heart of recent breakthroughs in cache replacement algorithms, including the ARC, CAR,
LIRS and Clock-PRO policies [41, 12, 34, 33]. But if the values are very small relative
to key size, e.g., as seen at Facebook [8], the tax can be significant. In this section we
describe a solution to this issue. The solution is to use approximate filters to estimate the
presence of items in the cache. We propose to use Counting Filters, which are a variant of
Bloom Filters. In the following, we first describe these filters before moving on to present
the algorithm, called COUNTINGGHOST.

While hits in the ghost list are still cache misses because no data could be returned to the
user, statistics of the item itself can be gathered. Recall that H is the hit rate function and
H(n) is the hit rate for cache size n. In summary, to estimate H(n) for cache memories
larger than the current allocation, that is N ≤ n ≤ k ·N , we employ a ghost list of length
(k − 1) ·N .

3.4.1 Bloom Filters and Counting Filters

A Bloom Filter [17] is a compressed hash set which trades off space for less certainty in
query answers. When a Bloom Filter is queried for a specific key it returns either “no”
with full certainty or “yes” with high certainty. A false “yes” is defined as a false positive;
the certainty can be increased by using more memory for the filter.

Internally the Bloom Filter uses an array A[0, ...,m − 1] of size m and l hash func-
tions:

h1, h2, . . . , hl.

26 Performance Profiling of Cache Systems at Scale

To insert a key into the filter, the key is hashed with the l hash functions to produce l hash
values:

h1(key), h2(key), . . . , hl(key)

and then the bits in the corresponding locations are set to 1, i.e.:

A[h1(key) mod m] = 1

A[h2(key) mod m] = 1

...

A[hl(key) mod m] = 1

To check whether a key is present in the filter, the same hashing is done as with an insert
but instead of setting the bits to 1 we check if they are all set to 1. If they are all set to 1,
we return yes but otherwise no. It is easy to see that even though all the keys are set to 1

the key was not necessarily inserted into the filter. Perhaps some other keys were mapped
to the same locations and set the bits to 1. That event is called a false positive and the
probability of a false positive is tuned with the size of the filter and the number of hash
functions. The lowest false positive rate is achieved with the number of hash functions
equal to:

l =
m

n
ln 2

where n is the expected number of keys in the filter.

There is no good way to remove a key from a Bloom Filter without possibly damaging the
presence of other keys. To solve this issue, Counting Filters were introduced in 1998 by
Fan et al. [27]. Instead of using an array of bits, it is replaced with an array of counters.
On insertion, the l counters (at the hashed locations) are incremented and on removal the
same l counters are decremented. To check for a key in the filter, we simply check if the
l counters are non-zero.

3.4.2 Intuition behind COUNTINGGHOST

COUNTINGGHOST is based on ROUNDER but must handle evictions on its own since it
is also a ghost list. We use three filters to represent the buckets. When the first filter is
full, we empty the last filter and make it the new first filter, the old first filter becomes the

Trausti Sæmundsson 27

second filter and the old second filter becomes the last filter. The first two filters therefore
have capacity for the entire ghost list but the last filter is used as an evictable buffer to
handle the evictions.

When an element is missed in the main cache, we check if its key is found in any of the
three filters. If found, we update the corresponding region in the intermediate DELTA
array which is the base for the HRC. We then remove the element’s key from the filter
since we expect it to be inserted in the main cache after a miss. Notice that if we were
using Bloom Filters we could not perform this removal.

There is a subtle addition here to balance the false positive rate of the Counting Filter.
When we update the DELTA array, we scale the value with 1.0 − FPP_RATE because
we want the total sum of the DELTA array to equal the number of hits and we would
overestimate the number of hits without scaling.

3.4.3 COUNTINGGHOST Algorithm Details

COUNTINGGHOST is a sufficient ghost list that uses three Counting Filters instead of
three buckets. Each bucket has capacity for half the cache size. The last bucket is a buffer
to flush out old keys. With a cache of size N , the ghost list keeps track of the footprint for
at least (k − 1) · N extra elements (k = 2 is default). It uses three counting filters, each
with a capacity of (k−1) ·N/2 elements. The last filter of (k−1) ·N/2 elements ensures
that we are able to flush the last filter and make it the first filter while still keeping track
of (k − 1) ·N elements in the ghost list. We do this because we need to evict some keys
from the ghost list but we do not know the keys themselves. When there is a miss in the
main cache, the function MISS in the ghost list interface is called. Upon an eviction, the
function EVICT is called.

We use the dablooms [16] Counting Filter library from bit.ly. They use it to efficiently
check whether an URL is malicious or not. This library is written in C and offers Python
bindings and we use both. We set the false positive rate to 1% in all our experiments.

Now let us walk through the illustration of COUNTINGGHOST in Figure 3.5. This
illustration assumes that the cache has size for 4 items and runs the LRU policy. The
COUNTINGGHOST algorithm contains 3 Counting Filters, each with capacity for 2 items.
Here we assume that each get request is followed by a set request after a cache miss.

Part (a) of the illustration is the initial setup. Part (b) shows what happens after a get
request for d, it is moved from the LRU tail to the LRU head, HIT(d) is called, and
nothing happens in the ghost list. Part (c) shows what happens after a get request for m

28 Performance Profiling of Cache Systems at Scale

(a) Initial setup.

Cache: a,b,c,d filter #1: e filter #2: g,h filter #3: k,l

(b) After a get request for d.

Cache: d,a,b,c filter #1: e filter #2: g,h filter #3: k,l

(c) After a get and a set request for m.

Cache: m,d,a,b filter #1: c,e filter #2: g,h filter #3: k,l

(d) After a get and a set request for h.

Cache: h,m,d,a filter #1: b filter #2: c,e filter #3: g

Figure 3.5: Illustration showing elements inserted into the ghost list and how the filters
rotate. Each filter has a maximum capacity of 2 and the cache has a maximum capacity
of 4. The cache replacement policy in the main cache is LRU.

which is neither in the cache nor in the ghost list, MISS(m.key) is called. This forces
the cache to evict the least recently used item c, EVICT(c) is called, and insert it into the
ghost list. The ghost list puts c into the first filter. Part (d) shows what happens after a get
request for h. It is not located in the cache, MISS(h.key) is called, but it is found in the
second filter. It is removed from the second filter and inserted at the LRU head and the
LRU tail, item b, is evicted, EVICT(b) is called. Now the first filter is full so we rotate the
filters and then insert b into the new and empty first filter.

3.4.4 Pseudo-code

The COUNTINGGHOST algorithm is initialized, see Algorithm 9, by allocating three
Counting Filters each with a capacity of half the cache size, lines 7-9.

The MISS routine in COUNTINGGHOST, see Algorithm 10, takes a key as an argument.
The routine looks up the key in the three filters and updates the HRC accordingly.

The EVICT routine for the COUNTINGGHOST, see Algorithm 11, rotates the filter if
necessary and inserts the key into the first filter.

The rotateFilters routine in the COUNTINGGHOST, see Algorithm 12, flushes the last
filter and makes it the new empty filter. This method serves the same purpose as the age
routine in ROUNDER, see Algorithm 7.

Trausti Sæmundsson 29

Algorithm 9 The Initialization routine for COUNTINGGHOST.

INITIALIZATION(capacity)

1 capacityPerFilter = capacity/2.0
2 counters = [0, 0, 0]
3 firstFilter = 0
4 secondFilter = 1
5 thirdFilter = 2
6 filters = array of three Counting Filters
7 filters [firstFilter].allocateCapacity(capacityPerF ilter)
8 filters [secondFilter].allocateCapacity(capacityPerF ilter)
9 filters [thirdFilter].allocateCapacity(capacityPerF ilter)

Algorithm 10 The MISS routine for COUNTINGGHOST.

MISS(key)

1 scale = (1.0− FPP_RATE)
2 if filters [firstFilter].contains(key)
3 UPDATEDELTA(0, counters [firstF ilter], scale, cachesize)
4 elseif filters [secondFilter].contains(key)
5 start = counters [firstF ilter]
6 end = start + counters [secondFilter]
7 UPDATEDELTA(start , end , scale, cachesize)
8 filters [secondFilter].remove(key)
9 filters [firstFilter].insert(key)

10 counters [thirdFilter] = counters [secondFilter]− 1
11 counters [firstFilter] = counters [firstFilter] + 1
12 elseif filters [thirdFilter].contains(key)
13 // If the first two filters are not full, the third filter is responsible
14 start = counters [firstF ilter] + counters [secondFilter]
15 end = start + counters [thirdF ilter]
16 UPDATEDELTA(start , end , scale, cachesize)
17 filters [thirdFilter].remove(key)
18 filters [firstFilter].insert(key)
19 counters [thirdFilter] = counters [thirdFilter]− 1
20 counters [firstFilter] = counters [firstFilter] + 1

Algorithm 11 The EVICT routine for COUNTINGGHOST.

EVICT(key)

1 // If the first filter is full, rotate the filters
2 if counters [firstFilter] ≥ capacityPerF ilter
3 ROTATEFILTERS()
4 // Insert the element into the first filter
5 counters [firstFilter] = counters [firstFilter] + 1
6 filters [firstFilter].insert(key)

30 Performance Profiling of Cache Systems at Scale

Algorithm 12 The internal rotateFilters in COUNTINGGHOST.

ROTATEFILTERS()

1 filters [lastF ilter].flush()
2 counters [lastFilter] = 0
3 // The other counters are maintained
4 firstFilter = lastFilter
5 secondFilter = (firstFilter + 1) mod 3
6 lastFilter = (firstFilter + 2) mod 3

3.5 Comparison to Related Work

Much work has been put into creating the HRC for the entire working set. We are looking
at creating the HRC for just the cache size along with the size of the ghost list. We also
want to do this online so we cannot do a prepass through all the data like much of the
related work does. A prepass is to go through the workload and store alongside each
request to an element e the last reference to e. We now give a brief overview of the highly
related algorithms to our approach.

3.5.1 Previous Methods

In 1970, Mattson et al. [38] studied stack algorithms in cache management and defined
the concept of stack distance. They described the first measurement algorithm for reuse
distance using a stack represented as a list. The time complexity of the algorithm is linear
in the cache size and traverses the stack to find the element.

Several papers [57, 46, 56] have been written on measuring reuse distances with AVL
trees. Those methods have the logarithmic time complexity in common due to the AVL
tree which is ordered by access times.

Bennett and Kruskal introduced [15] a method called blocked hashing to preprocess the
workload in a single pass and then create the reuse distance histogram by splitting the
workload into segments. Using this method for our purposes is impossible due to the
prepass. Olken [46] improved Bennett and Kruskal’s method by using an AVL tree for
the entire workload, which is logarithmic in the length of the workload and not applicable
in our setting.

Ding and Zhong described a compression method in 2003 [24]. They store reuse distance

intervals as tree nodes and store multiple items per node. The height of the tree is
logarithmic in the cache size and the compression guarantees log log time complexity.

Trausti Sæmundsson 31

The complexity of this method is much higher than our method and making it parallel
would not be trivial.

Kim et al. [36], and later systems in cache architecture such as RapidMRC [53] and PATH
[9], partition the LRU list into groups to reduce cost of maintaining distances, which is
conceptually similar to our approach except the group sizes are fixed as powers of two.
Our variable sized buckets approach affords substantially higher accuracy in trade for
modest overhead.

3.5.2 Performance Comparison

Making trees parallel has been the subject of intricate work, suggesting parallelizing
an AVL tree or the methods from [46, 24]. ROUNDER is highly parallel while being
simple, but has a weakness with the last bin getting too big. In our experiments, however,
presented in Chapter 5, this was not an issue.

STACKER is similar to ROUNDER but has a better aging method and is thus more accurate,
but the overhead of running STACKER over the cache replacement policy is higher than
running ROUNDER. The time complexity of the aging function is O(N), but is called
in worst case every N/B requests. Assuming that the total number of requests in the
workload is Q, then the number of aging operations is

Q/(N/B) =
Q ·B
N

and the total time spent in the aging function is then

O

(
Q ·B
N
·N
)

= O(Q ·B)

which is O(B) amortized per request over the Q requests.

It is worth taking a moment to notice that the O(B) time complexity of ROUNDER is
independent of the cache size. Table 3.2 shows a comparison of the performance of
ROUNDER and STACKER to the previous work, focusing on those methods that do not
require preprocessing. To compare the overhead head to head, we implemented the
following methods in C++: LRU, LRU with ROUNDER, LRU represented as an AVL
tree [56, 57] and LRU with Mattson’s algorithm [38]. We did not implement STACKER in
C++ since it is slower than ROUNDER and we wanted to focus on the high performance
of ROUNDER in this comparison. Figure 3.6 shows a throughput comparison of these
methods. As the figure shows, using ROUNDER with LRU ROUNDER has the lowest

32 Performance Profiling of Cache Systems at Scale

Method Time complexity Accuracy
Mattson’s algorithm[38] O(N) 100%
AVL-Tree [56, 57] O(log(N)) 100%
Dynamic Tree Compression(e) [24] O

(
log2(log1+e′(N))

)
e× 100%

SC2 [18] O(1) Low
ROUNDER O(B) ≤ 100× 2LB/N %
STACKER Amortized O(B) ≤ 100× 2LB/N %

Table 3.2: Overview of methods for creating an LRU histogram. N is the cache size,
time complexity is per request, for the tree compression e′ = 1

1+e
where e is the desired

accuracy of the reuse distance, LB is the size of the largest bucket for ROUNDER and
STACKER. With ROUNDER only the size of last bucket can grow above N/B.

0

500000

1000000

1500000

2000000

T
h
ro

u
g
h
p
u
t

[O
P
S
/s

]

Statistics algorithms

lru
lru+rounder
lru+avl
lru+mattson

Figure 3.6: Overhead comparison of regular LRU, LRU with ROUNDER, LRU repre-
sented as an AVL tree [57, 56] and LRU with Mattson’s algorithm [38]. ROUNDERwas set
to use 8 buckets and places 6.3% overhead on regular LRU, the AVL tree causes 73.8%
overhead and Mattson’s algorithm yields 282.7% overhead. The LRU cache has capacity
for 5000 elements in this experiment and the bars show the standard deviation from 10
runs.

overhead while, using Mattson’s algorithm reduces the throughput much more than an
AVL tree. We evaluate the accuracy and overhead of ROUNDER further in Chapter 5.

33

Chapter 4

Implementation

4.1 MIMIR Profiling Framework

The MIMIR profiling framework hooks into the replacement policy with a simple
interface consisting of four commands: HIT, MISS, SET and EVICT. MIMIR provides a
ghost list to contain meta-data on evicted keys if the cache service does not provide that
functionality already. After an eviction from the main cache, the item is added to the ghost
list MIMIR consists of two algorithms. ROUNDER is responsible for generating the HRC
for cache sizes smaller than the current allocation. COUNTINGGHOST is responsible for
cache sizes larger than the current allocation.

The manner by which MIMIR hooks into the replacement policy and contacts ROUNDER

and COUNTINGGHOST is described in Figure 4.1.

Notice that the calls to the ghost list on MISS and EVICT, if the item is found in the ghost
list after a miss in the cache, the HRC is updated. All commands take an element as an
argument except the MISS command which takes a key. The reason is that on a cache
miss, no element is available.

The Python implementation of MIMIR consists of three components. The first two are
ROUNDER and STACKER described in Chapter 3. The third component is COUNTING-
GHOST also described in Chapter 3.

Our C implementation of MIMIR is focused on high performance in highly parallel
systems and therefore we omit STACKER which has higher time complexity than
ROUNDER.

34 Performance Profiling of Cache Systems at Scale

cache statistics

Hit(e)

Miss(key)

Set(e)

ghostlist

Evict(e)

Miss(key)

Evict(e)

HRC

Figure 4.1: MIMIR’s interface: Communication between the cache and the profiling
framework.

LD(n) =

{
0 if n = NULL

LD(ANC(n)) + size(LC(n)) + 1 if n 6= NULL

Figure 4.2: Recursive formula from [57] to calculate the number of younger elements
than a given node n. LC(n) is the left child of n and ANC(n) is either NULL or the
nearest ancestor m of n such that m’s left child is neither n nor n’s ancestor. The intuition
behind the formula is to sum up the the sizes of the left sub-trees up the path from n to
the root of the tree.

4.2 Related Work Experiment: C++ Simulator

To compare the overhead of related work we implemented a few methods. We chose C++
to use an AVL tree implementation [52] based on the Introduction to Algorithms by MIT
on Open Courseware [23] written by an Icelandic competitive programmer. The workload
used is P10 described in Section 5.1 and the cache size is 5000 elements.

The baseline with respect to efficiency is LRU without HRC collection. To calculate
the stack distance with the AVL tree we used the recursive formula, see Equation 4.2
from [57]. Each AVL node contains a timestamp used for comparing items, the LRU
head is located at the leftmost leaf and the LRU tail is located at the rightmost leaf in the
tree. The baseline with respect to efficiency is LRU without collecting the HRC.

The implementation of Mattson’s algorithm is a 33 LOC (Lines of Code) add-on to LRU
by walking the linked list. The AVL tree implementation extended with formula 4.2 is
in total 445 LOC. The C++ ROUNDER implementation totals to 243 LOC but the multi-
threaded C implementation of ROUNDER and COUNTINGGHOST together, discussed in
Section 4.3, is 503 LOC.

Trausti Sæmundsson 35

Rounder Stacker Regular LRU ghost list Countingghost
Activity counter 4B 4B 0B 5B

Pointers 0B 0B 8B 0B

Table 4.1: Number of bytes required per item in each data structure.

4.3 Implementation in Memcached

Since memcached is widely used as a key-value store to speed up web sites and it uses
the LRU replacement policy, it was a good fit to evaluate the overhead of the MIMIR
profiling framework which is designed for LRU. The memcached server uses 4 threads
by default and in order to handle multiple threads we made MIMIR highly parallel with
CAS operations and GCC atomic builtins. Each thread updates a local copy of the HRC
to prevent locks and the HRCs are joined together when requested. To serve the HRC
we added the stats hrc command to our fork of memcached and to visualize it we use
the Flask [29] web framework to poll the HRC and plot it client side in the browser with
D3.js [21].

4.3.1 Memory Overhead

Table 4.1 shows the memory overhead of our methods. Memcached uses a 56 byte
header for each item; we add a 4B timestamp for STACKER and ROUNDER.

The HRC itself is compressed to contain only 100 floating point numbers per slab class
per thread, totalling 16.8KB independent of the cache size. When we get a hit in the
statistics, we map the corresponding region to the correct range in the 100 element HRC
in the thread local array (actually we use the intermediate PLUS array and generate the
HRC when requested).

The counting filter uses approximately 5 bytes per element when the false positive rate is
1%. With the Facebook workload with 31 byte keys and 2 byte values in mind this makes
it an affordable memory tax. Using a regular linked list in the ghost list would require
8 bytes for pointers and 31 bytes for the key, a total of 39 bytes which is not reasonable
since the values are so small.

We run one instance of ROUNDER for every slab class since each slab class has its own
LRU but one instance of COUNTINGGHOST since when a miss occurs the size of the item
is unknown and we do not know which slab class it belongs to.

36 Performance Profiling of Cache Systems at Scale

4.3.2 Joining HRCs from Different Slab Classes

Since memcached uses by default 42 slab classes to store differently sized items there are
several ways to join the HRCs, represented as HRCi, 1 ≤ i ≤ 42, from each slab class
into a single HRC. Each slab class has its own LRU linked list so we hook one instance
of ROUNDER to each slab class. If we had one instance of COUNTINGGHOST per slab
class we would need 42 lookups on a cache miss since the value size is not known when a
cache miss occurs. Thus we only run one instance of COUNTINGGHOST and assume that
all items have equal sizes.

We assume that the least recently used item in each slab class has similarly “low recency”.
Our formula aims to join the HRCs together into a single HRC that would have been made
if there was only one global LRU running in memcached. To join the 42 HRCs together
we use the following formula:

globalHRC(n) =
42∑
i=1

HRCi

(n
C
· 100

)

Figure 4.3: Formula for joining HRCs from different slab classes in memcached. C is
the cache size in bytes.

Notice that since each HRCi is a compressed 100 bucket histogram, and we have to map
the index to the correct bucket. The intuition behind the formula is that we take the same
fraction of bytes from each slab class and sum up the hits for each histogram at the correct
index.

4.4 Potential Optimizations

The 23-41% throughput degradation of MIMIR within memcached can be improved
with several steps. We integrated MIMIR into memcached 1.4.15 but in memcached
1.4.18 the default hash function has been changed to MurmurHash which is the hash
function used by the ghost list. Reusing the hash value and reusing the key length on a
cache miss to skip a call to strlen would lower the performance costs. Also introduced
in memcached 1.4.18 is a new background thread called lru_crawler, using this thread
to alleviate some of the work from MIMIR off the critical path could also significantly
reduce the overhead.

Trausti Sæmundsson 37

4.5 Availability

Most of the code used in this this thesis is available under a BSD License on GitHub
at https://www.github.com/trauzti/mimir. The Python simulator supports
several replacement policies and the basic functionality, of get and set from the mem-
cached API (without support for flags and expiry times).

The Python simulator is not ready for a production environment at the moment but is
ready for experimenting with different replacement policies and the MIMIR profiling
framework. It uses Twisted [37] for asynchronous network I/O. The MIMIR profiling
framework is available inside the Python simulator and also hooked into memcached-
1.4.15. Like memcached augmented with the MIMIR profiling framework, the Python
simulator also supports the stats hrc command. To visualize the HRCs from either the
Python simulator or memcached the repository contains a Flask web interface that pools
HRCs via stats hrc.

https://www.github.com/trauzti/mimir

38

39

Chapter 5

Experiments

In this chapter we evaluate the proposed algorithms. We first evaluate the accuracy using a
Python simulator and then evaluate overhead of the framework within memcached.

5.1 Workloads

A workload is a history of cache requests saved for future use and offline analysis. Here
we present two types of workloads, extreme and smooth. The hit rate for the extreme
workloads is harder to predict than the hit rate for the smooth workloads. The reason
is that the slope of the hit rate curve for extreme workloads is increases and decreases
irregularly while the slope for smooth workloads increases or decreases regularly.

5.1.1 Extreme Workloads

We use workloads and benchmarks that are commonly used by the cache replacement
algorithm community [34, 33, 41]. The workloads 2pools, glimpse, cpp, cs, ps and
sprite were collected respectively from a synthetic multi-user database, the glimpse
text information retrieval utility, the GNU C compiler pre-processor, the cs program
examination tool, join queries over four relations in the postgres relational database,
and requests to file server in the Sprite network file system [34, 33]. The workloads
multi1, multi2 and multi3 are obtained by executing multiple workloads together
[34].

The P1-P10 workloads are captured from IBM SAN controllers at customer premises
[41] and were collected by disk operations on different workstations over several months.

40 Performance Profiling of Cache Systems at Scale

Figure 5.1: HRCs for the first 6 slab class after running the YCSB b2 workload.

WebSearch1 consists of disk read accesses by a large search engine in response to
web search requests over an hour, and Financial1 and Financial2 are extracted from
a database server at a large financial institution [41].

While these workloads are from a variety of sources, they present workloads whose hit
rate curves are hard to approximate. The difficulty stems from abundance of sequential
and looping references in the buffer cache that are characteristic of file-system accesses
[36]. We refer to those workloads as extreme because of the sharp increases and decreases
in the slope of the LRU hit rate curve while running those workloads. They are well suited
to test the edge cases of our algorithms

5.1.2 Smooth Workloads

Workloads seen in cloud caches tend to be smooth as they do not have irregularly
increasing and decreasing slope like the extreme workloads.

An example is the YCSB b2 [19] which occupies only one slab class in memcached
with default settings, namely slab class #6 and the smooth HRC can be seen on
Figure 5.1.

The OZ workloads are from a varnish cache [4] serving video chunks. The cache is set up
to use the LRU replacement policy. To see how different cache replacement algorithms
handle this workload see Figure A.6. As can be seen from the figure this workload has no
spikes or cliffs as seen in the extreme workloads.

Again the workloads are smooth because the slope of the LRU hit rate curve does not
change abruptly as the cache size increases.

Trausti Sæmundsson 41

5.2 Accuracy

5.2.1 Experimental Setup

We measured the accuracy of ROUNDER, STACKER and COUNTINGGHOST in a Python
simulator. For the accuracy experiments on ROUNDER and STACKER on the first nine
workloads, we use identical cache set-up as the authors of the LIRS algorithm [34].

5.2.2 ROUNDER

This section evaluates the accuracy of ROUNDER which was introduced in Chapter 3.
To get a feel for how the accuracy changes with different number of buckets we vary
the bucket sizes on a variety of workloads and run the algorithm on top of LRU and
CLOCK.

Tables 5.1 and 5.2 summarize the results for LRU and CLOCK respectively and hand
picked lines from those tables are presented in Figure 5.2.

Running on LRU, the overall MAE is 1.93% on average for all the workloads when using
only 8 buckets but goes down to 0.95% with 128 buckets. The worst performance is on
the cs and WebSearch1 workloads with 5.41% and 4.02% respectively using 8 buckets
but goes down to 0.93% and 4.02% with 128 buckets for the same workloads. In fact the
accuracy of WebSearch1 does not change with more buckets.

Running on CLOCK, the overall MAE is 1.08% on average for all the workloads when
using only 8 buckets but goes down to 0.80% with 128 buckets. The worst performance
occurs on the postgres and glimpse workloads with 7.93% and 6.46% respectively using
8 buckets but goes down to 5.98% and 4.94% with 128 buckets.

Ultimately this experiment shows that ROUNDER is very accurate in estimating the real
HRC of LRU achieving a worst case MAE of 5.41% with very few buckets. With
CLOCK, on the other hand the worst case MAE is 7.93% with as little as 8 buckets.
Using 128 buckets the worst cases are 4.02% and 5.98% respectively. This shows that
ROUNDER works better on LRU in the worst case but better on CLOCK on average.
Recalling from Section 2.1.5 that CLOCK has very similar performance to LRU we
conclude that ROUNDER works well on both LRU and CLOCK, still being designed for
LRU.

42 Performance Profiling of Cache Systems at Scale

Workload Requests Cache size B = 8 B = 16 B = 32 B = 64 B = 128
2pools 100K 450 0.52 0.30 0.20 0.18 0.18
cpp 9K 900 1.92 1.17 0.72 0.47 0.33
cs 7K 1K 5.41 2.21 1.68 1.32 0.93
glimpse 6K 3K 4.34 2.94 1.83 1.48 1.38
multi1 16K 2K 3.56 3.83 3.48 3.16 3.00
multi2 26K 3K 2.11 1.82 1.52 1.34 1.14
multi3 30K 4K 1.14 0.86 0.73 0.54 0.45
postgres 10K 3K 3.47 1.67 1.16 0.85 0.61
sprite 134K 1K 2.09 1.82 1.65 1.57 1.53
Financial1 1M 50K 2.02 0.85 0.37 0.09 0.05
Financial2 3M 50K 1.82 0.98 0.77 0.74 0.78
WebSearch1 1M 50K 4.02 4.02 4.02 4.02 4.02
P1 3M 50K 1.64 1.30 1.19 1.14 1.12
P2 666K 50K 0.93 0.84 0.80 0.80 0.77
P3 239K 50K 0.76 0.42 0.28 0.24 0.21
P4 967K 50K 1.01 0.78 0.58 0.53 0.45
P5 1M 50K 1.08 0.81 0.68 0.57 0.51
P6 520K 50K 1.31 1.18 0.98 0.86 0.80
P7 751K 50K 0.93 0.69 0.58 0.50 0.44
P8 2M 50K 2.24 2.21 2.20 2.17 2.15
P9 682K 50K 0.97 0.80 0.68 0.63 0.60
P10 1M 50K 1.16 0.85 0.74 0.62 0.58
P12 547K 50K 0.94 0.67 0.60 0.58 0.56
P13 1M 50K 0.82 0.66 0.56 0.50 0.46
Average (%) 1.93 1.40 1.17 1.08 0.96

Table 5.1: Accuracy of ROUNDER running on LRU: Each result is given as a percentage
(results generally have around 0-5% error).

5.2.3 STACKER

This section evaluates the accuracy of STACKER, which was also introduced in Chapter 3.
To get a feel for how the accuracy changes with different number of buckets we vary
the bucket sizes on a variety of workloads and run the algorithm on top of LRU and
CLOCK.

Tables 5.3 and 5.4 summarize the results for LRU and CLOCK respectively and hand
picked lines from those tables are presented in Figure 5.3.

Running on LRU, the overall MAE is 1.73% on average for all the workloads when
using only 8 buckets but goes down to 0.20% with 128 buckets. The worst performance
is on the cs and WebSearch1 workloads with 5.30% and 4.02% respectively using 8

Trausti Sæmundsson 43

Workload Requests Cache size B = 8 B = 16 B = 32 B = 64 B = 128
2pools 100K 450 1.49 1.66 1.74 1.77 1.78
cpp 9K 900 1.81 1.40 1.10 0.94 0.83
cs 7K 1K 3.14 1.15 0.91 0.84 0.64
gli 6K 3K 6.46 5.74 5.19 5.01 4.94
multi1 16K 2K 2.10 2.88 2.61 2.38 2.28
multi2 26K 3K 2.31 2.43 2.29 2.19 2.07
multi3 30K 4K 1.77 1.91 1.90 1.76 1.70
ps 10K 3K 7.93 6.86 6.28 6.08 5.98
sprite 134K 1K 1.52 1.27 1.14 1.08 1.05
Financial1 1M 50K 0.02 0.01 0.01 0.01 0.01
Financial2 3M 50K 0.02 0.01 0.01 0.01 0.01
WebSearch1 1M 50K 0.07 0.07 0.07 0.07 0.07
WebSearch2 5M 50K 0.00 0.00 0.00 0.00 0.00
WebSearch3 4M 50K 0.00 0.00 0.00 0.00 0.00
P1 3M 50K 0.02 0.01 0.01 0.01 0.01
P2 666K 50K 0.02 0.02 0.02 0.02 0.02
P3 239K 50K 0.09 0.04 0.03 0.02 0.02
P4 967K 50K 0.04 0.03 0.02 0.02 0.02
P5 1M 50K 0.05 0.03 0.02 0.02 0.02
P6 520K 50K 0.05 0.03 0.02 0.01 0.01
P7 751K 50K 0.05 0.03 0.02 0.02 0.02
P8 2M 50K 0.03 0.03 0.03 0.03 0.03
P9 682K 50K 0.03 0.02 0.02 0.02 0.02
P10 1M 50K 0.05 0.03 0.03 0.02 0.02
P12 547K 50K 0.04 0.03 0.03 0.02 0.02
P13 1M 50K 0.04 0.03 0.02 0.02 0.02
P14 4M 50K 0.02 0.02 0.02 0.02 0.01
Average (%) 1.08 % 0.95 % 0.87 % 0.83 % 0.80 %

Table 5.2: Accuracy of ROUNDER running on CLOCK: Each result is given as a
percentage (results generally have around 0-8% error).

buckets but using the same workloads this decreases down to 0.20% and 4.34% with 128

buckets.

Running on CLOCK, the overall MAE is 1.04% on average for all the workloads when
using only 8 buckets but goes down to 0.75% with 128 buckets. The worst performance
occurs on the postgres and glimpse workloads with 7.42% and 5.55% respectively using
8 buckets and goes down to 5.65% and 4.60% with 128 buckets.

As with ROUNDER, the bucket parameter trades off overhead for accurate HRCs, and
the improvement in accuracy is evident as we increase the number of buckets B in the
algorithms. Like with ROUNDER, this experiment shows that STACKER is very accurate

44 Performance Profiling of Cache Systems at Scale

0 500 1000 1500 2000 2500
Cache size (items)

0.00

0.25

0.50

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

LRU

(a) ROUNDER, glimpse, LRU

0 600 1200 1800 2400 3000
Cache size (items)

0.0

0.3

0.6

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

LRU

(b) ROUNDER, postgres, LRU

0 10000 20000 30000 40000 50000
Cache size (items)

0.00

0.25

0.50

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

LRU

(c) ROUNDER, Financial1, LRU

0 500 1000 1500 2000 2500
Cache size (items)

0.00

0.25

0.50

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

CLOCK

(d) ROUNDER, glimpse, CLOCK

0 600 1200 1800 2400 3000
Cache size (items)

0.0

0.3

0.6

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

CLOCK

(e) ROUNDER, postgres, CLOCK

0 10000 20000 30000 40000 50000
Cache size (items)

0.00

0.25

0.50

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

CLOCK

(f) ROUNDER, Financial1, CLOCK

Figure 5.2: Accuracy graphs Hit rate curves of ROUNDER on LRU (top row) and
CLOCK (bottom row) with varying bucket sizes (B) on three workloads. The true LRU
and CLOCK hit rate curves are also shown.

in estimating the real HRC of LRU, achieving even better accuracy than ROUNDER. The
worst case MAE of 5.30% is better than the worst case MAE of 5.41 when using only
8 buckets with ROUNDER. With CLOCK and 8 buckets the worst case MAE is 7.42%

compared to 7.93% with ROUNDER.

Using STACKER and 128 buckets, the worst cases are 0.82% and 4.6% respectively
compared to 4.02% and 5.98% respectively with ROUNDER and 128 buckets. STACKER

has much higher accuracy than ROUNDER on the workload WebSearch1 and the accuracy
increases with more buckets as opposed to the fixed accuracy with ROUNDER.

5.2.4 COUNTINGGHOST

Although the use of ghost list is intuitive there are settings where maintaining the ghost
list structure imposes significant overhead on the memory cache. For instance, according
to [8], the vast majority of values in the Facebook memory cache occupy only a few
bytes making them significantly smaller than the keys themselves. In Section 3.4.3 we
introduced the algorithm COUNTINGGHOST to attack this problem and in this section we
evaluate the accuracy of this algorithm. In Section 3.4.3 we introduced a mechanism that

Trausti Sæmundsson 45

Workload Requests Cache size B = 8 B = 16 B = 32 B = 64 B = 128
2pools 100K 450 0.59 0.31 0.11 0.07 0.05
cpp 9K 900 1.90 1.07 0.54 0.28 0.16
cs 7K 1K 5.30 1.56 0.88 0.42 0.20
glimpse 6K 3K 2.56 1.62 1.03 0.42 0.21
multi1 16K 2K 3.43 3.56 2.19 1.29 0.82
multi2 26K 3K 2.16 1.47 0.92 0.67 0.42
multi3 30K 4K 1.23 0.72 0.56 0.38 0.37
postgres 10K 3K 3.77 1.78 1.00 0.50 0.23
sprite 134K 1K 1.47 0.46 0.19 0.14 0.08
Financial1 1M 50K 1.97 0.85 0.34 0.07 0.03
Financial2 3M 50K 1.85 0.85 0.44 0.25 0.20
WebSearch1 1M 50K 4.02 0.73 0.72 0.75 0.34
P1 3M 50K 1.11 0.51 0.33 0.28 0.17
P2 666K 50K 0.70 0.31 0.25 0.25 0.24
P3 239K 50K 0.76 0.34 0.21 0.15 0.10
P4 967K 50K 1.05 0.59 0.28 0.13 0.07
P5 1M 50K 1.00 0.51 0.26 0.15 0.11
P6 520K 50K 1.09 0.61 0.32 0.21 0.15
P7 751K 50K 0.82 0.39 0.20 0.12 0.10
P8 2M 50K 0.92 0.41 0.34 0.22 0.21
P9 682K 50K 0.94 0.42 0.17 0.08 0.10
P10 1M 50K 1.13 0.69 0.45 0.34 0.24
P12 547K 50K 1.01 0.60 0.30 0.21 0.09
P13 1M 50K 0.79 0.34 0.17 0.12 0.07
Average (%) 1.73 0.86 0.51 0.32 0.20

Table 5.3: Accuracy of STACKER running on LRU: Each result is given as a percentage
(results generally have around 0-5% error).

improves on the regular ghost list by being more space and time efficient, in exchange for
accuracy, in cases where keys are significantly longer than the values.

As opposed to ROUNDER and STACKER, which have a tunable number of buckets, this
algorithm contains 3 hypothetical buckets represented as Counting Filters to maintain the
ghost list. To get a feel for the accuracy of this algorithm predicting what would happen
if the cache size would be doubled, we run the algorithm on the extreme workloads on
top of LRU.

In this experiment we measured the accuracy of this method by running the ghost list with
LRU on some of the extreme workloads. For reference a regular ghost list for LRU,
implemented as a linked list using Mattson’s algorithm for evaluating stack distances,
would have predicted the hits in the ghost list with 100% accuracy.

46 Performance Profiling of Cache Systems at Scale

Workload Requests Cache size B = 8 B = 16 B = 32 B = 64 B = 128
2pools 100K 450 1.45 1.61 1.68 1.70 1.73
cpp 9K 900 1.70 1.33 1.07 0.98 0.88
cs 7K 1K 3.04 0.80 0.45 0.26 0.10
gli 6K 3K 5.55 5.02 4.85 4.68 4.60
multi1 16K 2K 2.79 2.75 2.63 2.23 2.19
multi2 26K 3K 2.32 2.33 2.11 2.08 2.12
multi3 30K 4K 2.29 2.19 2.14 2.18 2.10
ps 10K 3K 7.42 7.13 6.45 5.89 5.65
sprite 134K 1K 0.95 0.42 0.42 0.47 0.50
Financial1 1M 50K 0.02 0.01 0.01 0.01 0.01
Financial2 3M 50K 0.01 0.01 0.01 0.01 0.01
WebSearch1 1M 50K 0.07 0.05 0.05 0.05 0.05
WebSearch2 5M 50K 0.00 0.00 0.00 0.00 0.00
WebSearch3 4M 50K 0.00 0.00 0.00 0.00 0.00
P1 3M 50K 0.01 0.01 0.01 0.01 0.01
P2 666K 50K 0.02 0.02 0.02 0.02 0.02
P3 239K 50K 0.09 0.04 0.03 0.02 0.02
P4 967K 50K 0.04 0.03 0.02 0.02 0.02
P5 1M 50K 0.05 0.03 0.02 0.02 0.02
P6 520K 50K 0.05 0.03 0.02 0.01 0.01
P7 751K 50K 0.05 0.03 0.03 0.03 0.03
P8 2M 50K 0.01 0.01 0.01 0.01 0.01
P9 682K 50K 0.03 0.02 0.02 0.02 0.02
P10 1M 50K 0.05 0.04 0.03 0.02 0.02
P12 547K 50K 0.04 0.03 0.03 0.03 0.03
P13 1M 50K 0.04 0.03 0.03 0.02 0.02
P14 4M 50K 0.02 0.02 0.02 0.02 0.02
Average (%) 1.04 % 0.89 % 0.82 % 0.77 % 0.75 %

Table 5.4: Accuracy of STACKER running on CLOCK. Each result is given as a
percentage (results generally have around 0-8% error).

We ran the experiment with different cache sizes containing N elements and with a ghost
list capacity for another extra N elements. To measure the accuracy of the predicted hit
rate, we ran another simulation with a cache of size 2N and compared the two hit rate
values.

The estimated hit rate for several different values of N along with the real hit rate for a
cache of sizeN are shown in Table 5.5 and Table 5.6. The table also contains the accuracy
of each prediction and the average of all the 64 accuracy 64 entries in the table is 95.8%.
The results are presented visually in Figure 5.4. If we look at individual data points in
the table we can see that there are a few notable outliers. For example in multi1 at cache
size 1500 the ghost list falsely predicts hit rate to surge 67% where hit rate actually stays

Trausti Sæmundsson 47

0 500 1000 1500 2000 2500
Cache size (items)

0.00

0.25

0.50

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

LRU

(a) STACKER, glimpse, LRU

0 600 1200 1800 2400 3000
Cache size (items)

0.0

0.3

0.6

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

LRU

(b) STACKER, postgres, LRU

0 10000 20000 30000 40000 50000
Cache size (items)

0.00

0.25

0.50

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

LRU

(c) STACKER, Financial1, LRU

0 500 1000 1500 2000 2500
Cache size (items)

0.00

0.25

0.50

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

CLOCK

(d) STACKER, glimpse, CLOCK

0 600 1200 1800 2400 3000
Cache size (items)

0.0

0.3

0.6

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

CLOCK

(e) STACKER, postgres, CLOCK

0 10000 20000 30000 40000 50000
Cache size (items)

0.00

0.25

0.50

C
u

m
u

la
ti

v
e
 h

it
 r

a
te

B=8

B=16

B=32

B=64

CLOCK

(f) STACKER, Financial1, CLOCK

Figure 5.3: Accuracy graphs Hit rate curves of STACKER on LRU (top row) and CLOCK
(bottom row) with varying bucket sizes (B) on three workloads. The true LRU and
CLOCK hit rate curves are also shown.

at 49% The sharp incline in the hit rate suggests that the underlying workload has scans
which the ghost list is not sensitive enough to pick up and instead averages the incline
over a wider area. This experiment shows how the algorithm predicts the hit rate for a
cache size of size 2N when running a cache of size N . Here N = 1500. Each of the
three counting filters contains between 0 and 500 elements. They contribute to the hit rate
curve at different intervals depending on how many elements are in each filter. Thus the
algorithm is able to predict all hit rates for cache sizes between N and 2N , not only for
2N like shown in this experiment.

This experiment shows that COUNTINGGHOST is fairly accurate in predicting the hit rate
of LRU if the cache size would be doubled. On 5 out of 64 different settings the accuracy
drops below 90% but stays above 90% for all other settings. Those outliers happen when
there is a looping pattern in the underlying workload, creating a sudden steep increase in
the hit rate as the cache size increases. Using only three filters is not enough to capture
those events.

Overall the average accuracy is 95.8% and we conclude that the method provides high
accuracy on a variety of workloads, suggesting that Counting Filters are effective in
minimizing space and time overhead of ghost lists.

48 Performance Profiling of Cache Systems at Scale

Workload Cache size Hit rate Predicted hit rate Accuracy [%]
2pools 500 51.06200 51.86246 98.5
2pools 1000 54.41500 55.32395 98.4
2pools 1500 56.87700 57.96308 98.1
2pools 2000 59.32600 60.48172 98.1
2pools 2500 61.64600 62.82262 98.1
2pools 3000 64.00100 65.13756 98.3
2pools 3500 66.27000 67.33176 98.4
2pools 4000 68.52100 69.39331 98.7
cpp 500 84.77948 85.34166 99.3
cpp 1000 86.40433 86.48657 99.9
cpp 1500 86.48171 86.47950 100.0
cpp 2000 86.48171 86.48093 100.0
cpp 2500 86.48171 86.48171 100.0
cpp 3000 86.48171 86.48171 100.0
cpp 3500 86.48171 86.48171 100.0
cpp 4000 86.48171 86.48171 100.0
cs 500 1.82864 2.69002 68.0
cs 1000 1.82864 2.92361 62.5
cs 1500 79.22135 78.47663 99.1
cs 2000 79.22135 78.47663 99.1
cs 2500 79.22135 78.44743 99.0
cs 3000 79.22135 79.22135 100.0
cs 3500 79.22135 79.22135 100.0
cs 4000 79.22135 79.22135 100.0
gli 500 0.94747 1.95096 48.6
gli 1000 11.20346 18.02892 62.1
gli 1500 36.55253 38.65043 94.6
gli 2000 57.39694 56.17803 97.9
gli 2500 57.94548 57.13414 98.6
gli 3000 57.94548 57.74801 99.7
gli 3500 57.94548 57.83278 99.8
gli 4000 57.94548 57.93999 100.0

Table 5.5: Accuracy of COUNTINGGHOST running on LRU. Each entry in the table
shows the actual hit rate of LRU on cache size n and the predicted hit rate of LRU running
at size n/2 with ghost list of capacity n/2. The average accuracy of all the 64 entries in
the table is 95.8%.

5.2.5 Different Cache Replacement Algorithms

Now we know the profiling framework works well on LRU and that the framework
without a ghostlist works relatively well on CLOCK. But how does it perform on other
cache replacement policies?

Trausti Sæmundsson 49

Workload Cache size Hit rate Predicted hit rate Accuracy [%]
multi1 500 46.50650 47.35654 98.2
multi1 1000 48.22802 48.83510 98.8
multi1 1500 48.55593 68.65450 70.7
multi1 2000 83.21352 82.02087 98.6
multi1 2500 83.56665 82.31082 98.5
multi1 3000 83.56665 82.69214 99.0
multi1 3500 83.56665 83.56596 100.0
multi1 4000 83.56665 83.56312 100.0
multi2 500 35.97735 37.29596 96.5
multi2 1000 47.80130 48.28133 99.0
multi2 1500 48.31059 48.84664 98.9
multi2 2000 48.99852 52.92984 92.6
multi2 2500 61.24815 68.13827 89.9
multi2 3000 71.17935 71.49249 99.6
multi2 3500 71.88248 72.28809 99.4
multi2 4000 74.72920 73.03455 97.7
ps 500 48.54518 48.74933 99.6
ps 1000 48.54518 50.98038 95.2
ps 1500 52.58423 52.97023 99.3
ps 2000 70.48239 64.91884 92.1
ps 2500 70.48239 70.36026 99.8
ps 3000 70.48239 70.38869 99.9
ps 3500 70.49196 70.38869 99.9
ps 4000 70.49196 70.51082 100.0
sprite 500 78.30234 75.18021 96.0
sprite 1000 90.63853 89.44534 98.7
sprite 1500 92.48410 92.22287 99.7
sprite 2000 93.47667 93.44312 100.0
sprite 2500 93.85579 93.92417 99.9
sprite 3000 94.16102 94.19080 100.0
sprite 3500 94.26028 94.32896 99.9
sprite 4000 94.32147 94.35735 100.0

Table 5.6: Table 5.5 continued. All estimates (except 5) have over 90% accuracy and the
average accuracy is 95.8%.

This experiment tests the accuracy of MIMIR on the extreme postgres workload
described in Section 5.1 running on several cache replacement algorithms. In particular
we ran ARC, CLOCK, LRU, LFU, LRU3 and RANDOM within the Python simulator
with the MIMIR profiling framework producing HRCs at the same time. We ran
each simulation with a 1500 element cache and set k = 2 to produce a HRC for
all cache sizes up to 3000 elements. Internally ROUNDER was set to use 64 buckets
and COUNTINGGHOST was set to use 3 filters. We then ran the cache replacement

50 Performance Profiling of Cache Systems at Scale

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Workload: 2pools

LRU
Predicted

(a) 2pools

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Workload: cpp

LRU
Predicted

(b) cpp

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Workload: cs

LRU
Predicted

(c) cs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Workload: gli

LRU
Predicted

(d) glimpse

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Workload: multi1

LRU
Predicted

(e) multi1

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Workload: multi2

LRU
Predicted

(f) multi2

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Workload: ps

LRU
Predicted

(g) postgres

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Workload: sprite

LRU
Predicted

(h) sprite

Figure 5.4: The accuracy of the Counting Filter ghost list predicting the hit rate for a
cache of size n using only n/2 elements. This is a visual representation of the hit rate
data from Table 5.5 and Table 5.6. The black dotted line is the real LRU hit rate for a
cache of each size. The red filled line is the predicted hit rate from a cache of half the
size. Under a perfect prediction the two lines would coincide.

algorithm on cache sizes which are multiples of 100 elements ranging from 100 to 3000

elements.

Now results from the experiment can be seen in Figure 5.5 and MAE values for the
corresponding Figure are in Table 5.7. The real hit rate in the figure is marked as red
dots and the predicted HRC is a blue line. Ideally the red dots would be located on the
predicted blue line.

LRU has the lowest MAE in this experiment which should be intuitive since the profiling
framework was designed for LRU. If we look at the blue and red curves for LRU we
see that we curves are aligned for cache sizes smaller than 1500 items but not so well

Cache replacement algorithm Maximum discrepancy MAE
ARC 6.7% 2.1%

CLOCK 18.0% 5.5%
LFU 13.3% 4.9%

LRU3 10.2% 1.7%
LRU 8.5% 1.5%

RANDOM 13.7% 2.4%

Table 5.7: Overview of the MAE for MIMIR running on the extreme postgres workload
at cache size 1400 predicting the HRC from all cache sizes between 0 and 3000. The
maximum discrepancy is the Kolmogorov-Smirvnov [55] distance between the HRCs
which measures the largest vertical distance of the two curves.

Trausti Sæmundsson 51

0 500 1000 1500 2000 2500 3000
Cache size (# items)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

Algorithm: ARC, trace: ps and base from 1500 items

(a) ARC

0 500 1000 1500 2000 2500 3000
Cache size (# items)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

Algorithm: CLOCK, trace: ps and base from 1500 items

(b) CLOCK

0 500 1000 1500 2000 2500 3000
Cache size (# items)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

Algorithm: LFU, trace: ps and base from 1500 items

(c) LFU

0 500 1000 1500 2000 2500 3000
Cache size (# items)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

Algorithm: LRU3, trace: ps and base from 1500 items

(d) LRU3

0 500 1000 1500 2000 2500 3000
Cache size (# items)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

Algorithm: LRU, trace: ps and base from 1500 items

(e) LRU

0 500 1000 1500 2000 2500 3000
Cache size (# items)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u

m
u

la
ti

v
e

 h
it

 r
a

te

Algorithm: RANDOM, trace: ps and base from 1500 items

(f) RANDOM

Figure 5.5: HRC from MIMIR hooked into ARC, CLOCK, LFU, LRU3, LRU and
RANDOM with a cache size of 1500 items on the postgres workload. The red dots
show the real hit rate and the blue line is the predicted HRC.

aligned for cache sizes larger than 3000 items. This is because ROUNDER was set to use
64 buckets but COUNTINGGHOST only uses 3 filters. When the cache size increases to
2000 items, a high increase in hit rate occurs (the red dots) and 3 filters do not capture this
steep increase but smooth it out. It is indeed the same effect as described in Section 5.2.4.
This issue also appeared in our experiments with the SC2 algorithm [18] since it uses only
2 recency values, either the least recently used bit is set to 0 or 1. If we would increase
the number of filters for COUNTINGGHOST we would be able to capture steep increases
better, just like with ROUNDER and STACKER.

Regarding the other cache replacement algorithms, MIMIR does a fairly good job to
predict them all with respect to MAE but the maximum discrepancy is high (except for
ARC).

52 Performance Profiling of Cache Systems at Scale

5.3 Overhead

5.3.1 Experimental Setup

We ran all our experiments on memcached-1.4.15 extended with the MIMIR profiling
framework. We chose to use ROUNDER instead of STACKER for higher performance and
because ROUNDER is simpler to parallelize. We deployed libmemcached 1.0.16 on 4
nodes and used the built-in workload generator. Each node requests 2 million random 16
byte unique keys and 32 byte values via 10 threads and 60 connections. The proportion
of GET requests to SET requests is 9:1, and we bundle 100 GETs together in a single
MULTI-GET request. Our experimental set-up follows Fan et al. [26].

We ran each experiment 10 times and present the average throughput of the 10 runs with
error bars showing the standard deviation.

5.3.2 ROUNDER

This section evaluates the overhead of ROUNDER running in memcached.

We measured the impact on performance in memcached with and without ROUNDER,
running at several bucket sizes. Figure 5.6 shows the total throughput from the clients to
the central memcached server, each point measuring throughput in a 2 minute benchmark
averaged over 10 runs.

The throughput of our augmented memcached is 2.2% lower than that of the original
memcached implementation with B = 4 buckets, running on a 8GB cache size. The
highest overhead is 14.6% with a 4GB cache and 4 buckets for ROUNDER.

We observe a paradoxical drop in throughput for all three services as cache size increases.
This stems from memory management inefficiencies and coarse-grained lock contention
within memcached [54, 26] as the hit rate rises from ∼ 40% at 1GB to effectively 100%
at 4GB and up.

A larger number of buckets, B = 128, to produce more granular statistics does not
significantly impair throughput in the experiment. When using 4 buckets and a 8GB

or 16GB cache ROUNDER is extremely lightweight, only taking a < 3% throughput
tax.

Trausti Sæmundsson 53

1024 2048 4096 8192 16384
Memory MB

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

T
h
ro
u
g
h
p
u
t
O
P
/s

5.2%

7.8%

8.0%

2.2% 2.7%

6.4%

9.6%

8.6%

3.1% 2.6%

7.8%

10.5%

9.2%
2.2% 3.1%

7.5%

12.7%

14.6%
4.2% 4.8%

Throughput overhead of Rounder

Unmodified
Rounder B=4
Rounder B=8
Rounder B=16
Rounder B=32

Figure 5.6: Overhead of ROUNDER with different bucket sizes.

1024 2048 4096 8192 16384
Memory MB

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

T
h
ro
u
g
h
p
u
t
O
P
/s

23.0%

25.8%

29.4%

27.2%

41.0%

26.6%

27.4%

30.3%

26.2%

39.4%

27.8%

26.4%

29.4%

28.3%

41.9%

26.7%

28.7%

31.1%

29.0%

43.0%

Throughput overhead of rounder and the counting filter ghostlist

Unmodified
Rounder(B=4)+Ghostlist
Rounder(B=8)+Ghostlist
Rounder(B=16)+Ghostlist
Rounder(B=32)+Ghostlist

Figure 5.7: Overhead of the full MIMIR profiling framework within memcached

5.3.3 MIMIR Profiling Framework

This section evaluates the overhead of the full MIMIR profiling framework running in
memcached.

We measured the impact on performance in memcached with and without MIMIR
running at several bucket sizes for ROUNDER while keeping COUNTINGGHOST fixed
with 3 filters. Figure 5.7 shows the total throughput from the clients to the central
memcached server, each point measuring throughput in a 2 minute benchmark averaged

54 Performance Profiling of Cache Systems at Scale

over 10 runs. The throughput of our augmented memcached is 23% lower than the
original memcached implementation with B = 4 buckets, running on a 1GB cache size.
The highest overhead is 43.0% with a 16GB cache and 32 buckets for ROUNDER.

Providing a HRC for all cache sizes up to double the cache size requires in the worst
case a 41% throughput degradation within memcached. We have plans to optimize this
significantly as described in Section 4.4. Running at 1GB it requires an overhead of
23%.

5.4 Summary

We evaluated the accuracy and overhead of our three algorithms, ROUNDER, STACKER

and COUNTINGGHOST, to understand how well ROUNDER, STACKER and COUNTING-
GHOST would perform in a real world setting and thus how MIMIR would perform in
this setting.

The bucket parameter trades off accuracy in ROUNDER and STACKER for performance.
More buckets result in higher accuracy but worse performance.

ROUNDER is precise in estimating the real HRC of LRU, achieving over 94% accuracy
on all workloads in low-profile mode, but achieving over 92% accuracy on all workloads
in low-profile mode when running on CLOCK.

STACKER is more accurate than ROUNDER. STACKER achieves over 94% accuracy on all
workloads in low-profile mode when running on LRU, but achieves over 92% accuracy
on all workloads in low-profile mode when running on CLOCK. Like with ROUNDER,
our experiments shows that STACKER is very accurate in estimating the real HRC of
LRU achieving over 99% accuracy on all our workloads with 128 buckets when running
on LRU. However STACKER has a higher time complexity and in practice ROUNDER

is a more suitable algorithm, still guaranteeing over 95% accuracy when running with
128 buckets. To minimize overhead one would choose ROUNDER with 8 buckets or less,
which results in at least 94% accuracy in the worst case.

Assuming the cache server contains its own meta-data collection on evicted keys with
a ghost list, e.g., an extended LRU stack without values when running LRU, either
ROUNDER or STACKER suffices to produce hit rate curves for smaller and larger cache
sizes. However if no meta-data is collected in the cache server and values are small
compared to keys, using a regular ghost list is memory inefficient and COUNTINGGHOST

was designed to tackle this problem. Our micro-benchmark for COUNTINGGHOST show

Trausti Sæmundsson 55

that we predict the hit rate for twice the current allocation with over 90% accuracy on
most workloads (59 out of 64 different workload and cache size combinations).

Since memcached uses the LRU policy it was a good ground to evaluate the MIMIR
profiling framework. We connected the framework to memcached and evaluated the
performance before and after. Our test bed was made up of a single server and multiple
clients using several connections. The result is that the framework takes only a small toll,
3-8%, on the server when generating hit rate curves with ROUNDER for smaller cache
sizes but a little higher, 23-41%, when evaluating hit rate curves for smaller and larger
cache sizes with ROUNDER and COUNTINGGHOST.

The framework was designed for LRU but we tried it on other cache replacement policies,
and as could be expected this resulted in lower accuracy. To achieve higher accuracy on
other cache replacement policies like ARC, RANDOM, LRU3, LFU, CLOCK, ARC our
method would have be customized specifically for every algorithm.

56

57

Chapter 6

Conclusions

In this thesis we asked two questions particularly relevant to many cache operators
managing large distributed caches:

“how much total memory should be allocated to the cache tier?”

and

“what is the minimum cache size for a given hit rate?”.

In order not to overload databases and to maximize performance, operators often err on
the side of caution by scaling up rather than scaling out. Scaling up means adding servers
or increasing memory on existing servers while scaling out means removing servers
or decreasing memory on existing servers. To figure out cache performance under a
different allocation, operators can conduct offline simulations on the current setup and
add resources progressively until performance goals are reached. However, this is not
acceptable due to a number of reasons. First, it may not give up to date results. Second,
it disrespects dynamicity of workloads. Third, it is manually labor intensive. And fourth,
offline simulations require request logs of cache requests which use a lot of disk space
when the request rate in the cache tier is high.

To enable cache operators to dynamically profile cache resources in distributed caches, we
propose a new cache profiling framework called MIMIR that generates efficacy graphs
from each cache server in the cache tier. This happens in real-time so there is no
offline simulation of the cache tier necessary to understand how it would perform under
a different setting. The efficacy graphs are called hit rate curves that describe the hit rate
of allocated cache servers as a function of cache size. Our framework currently supports
both the LRU and CLOCK cache replacement policies.

58 Performance Profiling of Cache Systems at Scale

To generate the hit rate curves we track stack distance estimates for each cached element.
Generating hit rate curves for the LRU cache replacement policy from stack distances
is a widely studied problem but previous methods have significant overhead and lend
themselves poorly to concurrency. Most prominent are Mattson’s algorithm that requires
linear traversal of elements in the cache on every access and commands 283% throughput
overhead on a regular cache implementation. Using balanced trees such as AVL trees
improves the throughput but still commands a 74% percent overhead in our micro-
benchmarks.

To find an efficient method for dynamic profiling we trade off some accuracy in order
to minimize the overhead, on the cache server and produce the hit rate curves in highly
concurrent systems. The overhead is 6.3% in the same setup as Mattson’s algorithm and
the AVL tree.

To estimate stack distances we introduced three algorithms: ROUNDER, STACKER and
COUNTINGGHOST. ROUNDER and STACKER estimate stack distances for all elements
in the cache with over 95% accuracy on all workloads we used in our evaluation. In
the case where you want to estimate efficiency for cache sizes larger than the current
allocation. Implies that meta-data for evicted keys must be tracked. A list of data-less
keys is called a ghost list. If the cache server contains its own meta-data collection on
evicted keys with a ghost list, e.g., an extended LRU stack without values when running
LRU, either ROUNDER or STACKER suffices to produce hit rate curves for smaller and
larger cache sizes.

Maintaining a ghost list requires storing some amount of evicted keys in memory and can
be viewed as a tax on the currently cached elements. Some workloads, however, like seen
at Facebook have smaller values than keys and in this setting the memory tax overhead is
too high for a ghost list to be an option. To address this problem we proposed the third
algorithm, COUNTINGGHOST, to compress the data structure for the keys and provide a
memory efficient ghost list to support a workload with small values. In our evaluations
on COUNTINGGHOST for predicting the hit rate if the cache size would be doubled show
that the algorithm predicts the hit rate with 95% accuracy on average.

The accuracy is thus high for our methods. On the other hand, in order to evaluate
the overhead of our methods we integrated them into the popular memcached cache
server. When running our parallel implementation of ROUNDER within memcached we
propose a maximum of 8.0% overhead when running it in low-profile mode. Running
the COUNTINGGHOST algorithm within memcached proposes higher overhead, at most
41.0% in our evaluations.

Trausti Sæmundsson 59

There are many avenues for future work. First we aim to either optimize the COUNTING-
GHOST algorithm or move it to a background thread, whichever makes the overhead more
acceptable. Also, memcached is only one of many caching services and the methods
described in MIMIR can be extended to profile other services. LRU and its variants,
such as CLOCK, are among the most studied and widely deployed cache replacement
algorithms. Profiling performance of other policies is an understudied area and the topic
of future work. Cache profiling also opens a new window to look at cost-benefit analysis
of cloud services and could be extended to provide performance analysis of CPUs, hard
drives and other tunable components in today’s highly dynamic cloud environments.
Cost benefit analysis of resources could expand the usability and minimize pricing in
multi-tenant [18, 51] services like Heroku [6], Amazon ElastiCache [2] or Google’s App
Engine [5]. Virtualization management is already being made easier by CloudPhysics [3]
and integration with such a framework is a viable option.

60

61

Bibliography

[1] https://gist.github.com/2864150. [Online; accessed 21-November-
2012].

[2] AWS | Amazon ElastiCache – in-memory cache service. https://aws.

amazon.com/elasticache/.

[3] CloudPhysics. https://www.cloudphysics.com.

[4] Front page | varnish community. http://www.varnish-cache.org/.

[5] Google App Engine. https://appengine.google.com.

[6] Heroku | Cloud Application Platform. https://www.heroku.com.

[7] Redis key-value store. http://www.redis.io.

[8] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload analysis of a large-scale key-value store. In ACM SIGMETRICS Perfor-

mance Evaluation Review, volume 40, pages 53–64. ACM, 2012.

[9] Reza Azimi, Livio Soares, Michael Stumm, Thomas Walsh, and Angela Demke
Brown. PATH: page access tracking to improve memory management. In ISMM

’07, pages 31–42, 2007.

[10] S. Bansal and D.S. Modha. CAR: Clock with adaptive replacement. In Proceedings

of the 3rd USENIX Conference on File and Storage Technologies, pages 187–200,
2004.

[11] S. Bansal and D.S. Modha. Method and system of clock with adaptive cache
replacement and temporal filtering, September 30 2004. US Patent App. 10/955,201.

[12] Sorav Bansal and Dharmendra S Modha. Car: Clock with adaptive replacement. In
FAST, volume 4, pages 187–200, 2004.

[13] L. A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal, 5(2):78–101, 1966.

https://gist.github.com/2864150
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://www.cloudphysics.com
http://www.varnish-cache.org/
https://appengine.google.com
https://www.heroku.com
http://www.redis.io

62 Performance Profiling of Cache Systems at Scale

[14] Laszlo A Belady, Robert A Nelson, and Gerald S Shedler. An anomaly in space-time
characteristics of certain programs running in a paging machine. Communications

of the ACM, 12(6):349–353, 1969.

[15] B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM Journal of Research

and Development, 19(4):353–357, July 1975.

[16] bit.ly. dablooms on github. https://github.com/bitly/dablooms/.

[17] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[18] G Chockler, G Laden, and Y Vigfusson. Design and implementation of caching
services in the cloud. IBM Journal of Research and Development, 55(6):9:1–9:11,
2011.

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In SoCC ’10, pages 143–
154, 2010.

[20] F. J. Corbato. A paging experiment with the multics system. MIT Project MAC

Report MAC-M-384, May 1968.

[21] D3. D3.js - Data-Driven Documents. http://d3js.org/, May 2014. [Online;
accessed 06-May-2014].

[22] Jeff Dean. Software engineering advice from building large-scale
distributed systems. http://research.google.com/people/jeff/

stanford-295-talk.pdf, 2007.

[23] Eric Demaine and Srinivas Devadas. MIT Course Number 6.006, Introduction to
Algorithms (Massachusetts Institute of Technology: MIT OpenCouseWare). http:
//ocw.mit.edu, December 2011. [Online; accessed 15-January-2014. License:
Creative Commons BY-NC-SA].

[24] Chen Ding and Yutao Zhong. Predicting whole-program locality through reuse
distance analysis. In PLDI ’03, pages 245–257, 2003.

[25] M. R. Ebling, L. B. Mummert, and D. C. Steere. Overcoming the network bottleneck
in mobile computing. In WMCSA ’94, pages 34–36, 1994.

[26] Bin Fan, David G Andersen, and Michael Kaminsky. Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing. Proc. 10th

USENIX NSDI, 2013.

https://github.com/bitly/dablooms/
http://d3js.org/
http://research.google.com/people/jeff/stanford-295-talk.pdf
http://research.google.com/people/jeff/stanford-295-talk.pdf
http://ocw.mit.edu
http://ocw.mit.edu

Trausti Sæmundsson 63

[27] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: A
scalable wide-area web cache sharing protocol. In ACM SIGCOMM Computer

Communication Review, volume 28, pages 254–265. ACM, 1998.

[28] Brad Fitzpatrick. Distributed caching with memcached. Linux journal, (124):72–74,
2004.

[29] Flask. Welcome | Flask (A Python Microframework). http://flask.pocoo.
org/, May 2014. [Online; accessed 06-May-2014].

[30] Neil Gunther, Shanti Subramanyam, and Stefan Pravu. Hidden scalability gotchas
in memcached and friends. http://assets.en.oreilly.com/1/event/
44/Hidden%20Scalability%20Gotchas%20in%20Memcached%

20and%20Friends%20Presentation.pdf.

[31] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and
Harry C Li. An analysis of facebook photo caching. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, pages 167–181. ACM,
2013.

[32] Song Jiang. http://www.ece.eng.wayne.edu/~sjiang/. [Online;
accessed 18-November-2012].

[33] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: an effective improve-
ment of the CLOCK replacement. page 35, April 2005.

[34] Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference recency set
replacement policy to improve buffer cache performance. In ACM SIGMETRICS

Performance Evaluation Review, volume 30, pages 31–42. ACM, 2002.

[35] Theodore Johnson and Dennis Shasha. 2q: A low overhead high performance
buffer management replacement algorithm. In Proceedings of the 20th International

Conference on Very Large Data Bases, VLDB ’94, pages 439–450, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[36] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. A low-overhead high-performance unified buffer
management scheme that exploits sequential and looping references. In OSDI ’00,
pages 9–9, 2000.

[37] Twisted Matrix Labs. Twisted. http://twistedmatrix.com/trac/, May
2014. [Online; accessed 05-May-2014].

http://flask.pocoo.org/
http://flask.pocoo.org/
http://assets.en.oreilly.com/1/event/44/Hidden%20Scalability%20Gotchas%20in%20Memcached%20and%20Friends%20Presentation.pdf
http://assets.en.oreilly.com/1/event/44/Hidden%20Scalability%20Gotchas%20in%20Memcached%20and%20Friends%20Presentation.pdf
http://assets.en.oreilly.com/1/event/44/Hidden%20Scalability%20Gotchas%20in%20Memcached%20and%20Friends%20Presentation.pdf
http://www.ece.eng.wayne.edu/~sjiang/
http://twistedmatrix.com/trac/

64 Performance Profiling of Cache Systems at Scale

[38] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2):78–117, June 1970.

[39] N Megiddo and D. S. Modha. Adaptive Replacement Cache. http:

//www-vlsi.stanford.edu/smart_memories/protected/

meetings/spring2004/arc-fast.pdf, 2003. [Online; accessed 21-
November-2012].

[40] N. Megiddo and D.S. Modha. ARC: A self-tuning, low overhead replacement cache.
In Proceedings of the 2nd USENIX Conference on File and Storage Technologies,
pages 115–130, 2003.

[41] N. Megiddo and D.S. Modha. ARC: A self-tuning, low overhead replacement cache.
In FAST ’03, pages 115–130, 2003.

[42] N. Megiddo and D.S. Modha. System and method for implementing an adaptive
replacement cache policy, February 7 2006. US Patent 6,996,676.

[43] memcached. memcached - a distributed memory object caching system. http:

//www.memcached.org.

[44] memcached. memcached on github. https://github.com/memcached/

memcached.

[45] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Proceedings of the 10th USENIX conference on Net-

worked Systems Design and Implementation, pages 385–398. USENIX Association,
2013.

[46] Frank Olken. Efficient methods for calculating the success function of fixed-space
replacement policies. Technical report, Lawrence Berkeley Lab., CA (USA), 1981.

[47] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The lru-k page
replacement algorithm for database disk buffering. SIGMOD Rec., 22(2):297–306,
June 1993.

[48] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed
prefetching and caching. In SOSP ’95, pages 79–95, 1995.

[49] Paul Saab. Scaling memcached at facebook. https://www.facebook.com/
note.php?note_id=39391378919.

http://www-vlsi.stanford.edu/smart_memories/protected/meetings/spring2004/arc-fast.pdf
http://www-vlsi.stanford.edu/smart_memories/protected/meetings/spring2004/arc-fast.pdf
http://www-vlsi.stanford.edu/smart_memories/protected/meetings/spring2004/arc-fast.pdf
http://www.memcached.org
http://www.memcached.org
https://github.com/memcached/memcached
https://github.com/memcached/memcached
https://www.facebook.com/note.php?note_id=39391378919
https://www.facebook.com/note.php?note_id=39391378919

Trausti Sæmundsson 65

[50] Ketan Shah, Anirban Mitra, and Dhruv Matani. An O(1) algorithm for implementing
the LFU cache eviction scheme. Technical report, Technical report, 2010."
http://dhruvbird. com/lfu. pdf, 2010.

[51] David Shue, Michael J Freedman, and Anees Shaikh. Performance isolation and
fairness for multi-tenant cloud storage. In Proc. 10th USENIX Conference on

Operating Systems Design and Implementation, pages 349–362, 2012.

[52] SuprDewd. CompetitiveProgramming. https://github.com/

SuprDewd/CompetitiveProgramming/blob/master/code/

data-structures/avl_tree.cpp, January 2014. [Online; accessed
15-January-2014].

[53] David K Tam, Reza Azimi, Livio B Soares, and Michael Stumm. Rapidmrc:
approximating l2 miss rate curves on commodity systems for online optimizations.
In ACM SIGARCH Computer Architecture News, volume 37, pages 121–132. ACM,
2009.

[54] Alex Wiggins and Jimmy Langstone. Enhancing the scalability of
memcached. http://software.intel.com/en-us/articles/

enhancing-the-scalability-of-memcached-0.

[55] Wikipedia. Kolmogorov–Smirnov test — Wikipedia, The Free Encyclopedia, 2014.
[Online; accessed 20-June-2013].

[56] Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss. CRAMM:
virtual memory support for garbage-collected applications. In OSDI ’06, pages 103–
116, 2006.

[57] Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin Wang, Yingwei Luo, and Xi-
aoming Li. Efficient LRU-based working set size tracking. Michigan Technological

University Computer Science Technical Report, 2011.

[58] Mark Zuckerberg. Memcached tech talk (12/17/2008). https://www.

facebook.com/video/video.php?v=631826881803.

https://github.com/SuprDewd/CompetitiveProgramming/blob/master/code/data-structures/avl_tree.cpp
https://github.com/SuprDewd/CompetitiveProgramming/blob/master/code/data-structures/avl_tree.cpp
https://github.com/SuprDewd/CompetitiveProgramming/blob/master/code/data-structures/avl_tree.cpp
http://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached-0
http://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached-0
https://www.facebook.com/video/video.php?v=631826881803
https://www.facebook.com/video/video.php?v=631826881803

66

67

Appendix A

Appendix

This chapter contains performance and throughput graphs for several experiments to save
space from the main chapters of the thesis.

68 Performance Profiling of Cache Systems at Scale

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: 2pools.trc

LRU
CLOCK

(a) 2pools

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: cpp.trc

LRU
CLOCK

(b) cpp

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: cs.trc

LRU
CLOCK

(c) cs

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: gli.trc

LRU
CLOCK

(d) glimpse

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi1.trc

LRU
CLOCK

(e) multi1

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi2.trc

LRU
CLOCK

(f) multi2

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi3.trc

LRU
CLOCK

(g) multi3

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: ps.trc

LRU
CLOCK

(h) postgres

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: sprite.trc

LRU
CLOCK

(i) sprite

Figure A.1: The hit rate of LRU vs CLOCK in the Python simulator. Note that the hit rate
of CLOCK decreases as the cache size increases from 2000 elements to 2200 elements.
This phenomeon is called Belady’s anomaly [14]

Trausti Sæmundsson 69

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p

u
t
[r

e
q
u

e
s
ts

/s
]

Cache size (items)

Trace: 2pools.trc

LRU
CLOCK

(a) 2pools

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p

u
t
[r

e
q
u

e
s
ts

/s
]

Cache size (items)

Trace: cpp.trc

LRU
CLOCK

(b) cpp

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p

u
t
[r

e
q
u

e
s
ts

/s
]

Cache size (items)

Trace: cs.trc

LRU
CLOCK

(c) cs

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: gli.trc

LRU
CLOCK

(d) glimpse

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: multi1.trc

LRU
CLOCK

(e) multi1

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: multi2.trc

LRU
CLOCK

(f) multi2

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: multi3.trc

LRU
CLOCK

(g) multi3

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: ps.trc

LRU
CLOCK

(h) postgres

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: sprite.trc

LRU
CLOCK

(i) sprite

Figure A.2: The throughput of LRU vs CLOCK in the Python simulator.

70 Performance Profiling of Cache Systems at Scale

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: 2pools.trc

LRU
LRU3

LRU10
RANDOM

(a) 2pools

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: cpp.trc

LRU
LRU3

LRU10
RANDOM

(b) cpp

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: cs.trc

LRU
LRU3

LRU10
RANDOM

(c) cs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: gli.trc

LRU
LRU3

LRU10
RANDOM

(d) gli

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi1.trc

LRU
LRU3

LRU10
RANDOM

(e) multi1

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi2.trc

LRU
LRU3

LRU10
RANDOM

(f) multi2

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi3.trc

LRU
LRU3

LRU10
RANDOM

(g) multi3

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: ps.trc

LRU
LRU3

LRU10
RANDOM

(h) ps

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: sprite.trc

LRU
LRU3

LRU10
RANDOM

(i) sprite

Figure A.3: Hit rate comparison on the default Redis cache replacement policy, volatile-
lru. This policy mixes LRU with (Time To Live) TTL expiry, but in this simulation we
ignore the TTL. We simulated with 3 and 10 random samples here denoted LRU3 and
LRU10, respectively. The hit rate is compared to that of RANDOM and LRU.

Trausti Sæmundsson 71

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: 2pools.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(a) 2pools

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: cpp.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(b) cpp

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: cs.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(c) cs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: gli.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(d) gli

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi1.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(e) multi1

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi2.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(f) multi2

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: multi3.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(g) multi3

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: ps.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(h) ps

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 r

a
te

 [
%

]

Cache size (items)

Trace: sprite.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(i) sprite

Figure A.4: Comparison of the hit rate of LRU, LFU, OPT, ARC, LIRS, RANDOM and
LRU3 for the extreme workloads in the Python simulator.

72 Performance Profiling of Cache Systems at Scale

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g

h
p
u
t

[r
e

q
u
e

s
ts

/s
]

Cache size (items)

Trace: 2pools.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(a) 2pools

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g

h
p
u
t

[r
e

q
u
e

s
ts

/s
]

Cache size (items)

Trace: cpp.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(b) cpp

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g

h
p
u
t

[r
e

q
u
e

s
ts

/s
]

Cache size (items)

Trace: cs.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(c) cs

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: gli.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(d) gli

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: multi1.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(e) multi1

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: multi2.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(f) multi2

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: multi3.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(g) multi3

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: ps.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(h) ps

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Cache size (items)

Trace: sprite.trc

LRU
LFU
OPT
ARC
LIRS

RANDOM
LRU3

(i) sprite

Figure A.5: Comparison of the throughput of LRU, LFU, OPT, ARC, LIRS, RANDOM
and LRU3 for the extreme workloads in the Python simulator.

Trausti Sæmundsson 73

(a) OZ cache10 (b) OZ cache1 (c) OZ cache11 (d) OZ cache12

(e) OZ cache13 (f) OZ cache14 (g) OZ cache15 (h) OZ cache3

(i) OZ cache4 (j) OZ cache5 (k) OZ cache6 (l) OZ cache7

(m) OZ cache8 (n) OZ cache9 (o) OZ frontend1 (p) OZ frontend2

Figure A.6: The hit rate of RANDOM, LRU, OPT, ARC and LRU3 for workloads from
a varnish LRU cache for video chunks at the Icelandic startup company OZ.

74

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

	List of Figures
	List of Tables
	Introduction
	Cache Systems at Scale
	Automatic Scaling
	Contributions

	Background
	Cache Replacement Policies
	OPT: Belady's algorithm
	LRU: Least Recently Used
	Randomized LRU
	LFU: Least Frequently Used
	CLOCK
	ARC: Adaptive Replacement Cache
	LIRS: Low Inter-reference Recency Set
	Clock-PRO
	Hit Rate and Throughput Comparison

	Memcached

	Methods
	Introduction
	Creating an HRC for the LRU Policy
	Estimating Cache Utility for nN
	The Intuition behind Rounder and Stacker
	Pseudo-Code
	Proof of Bounded Accuracy

	Estimating Cache Utility for n>N
	Bloom Filters and Counting Filters
	Intuition behind CountingGhost
	CountingGhost Algorithm Details
	Pseudo-code

	Comparison to Related Work
	Previous Methods
	Performance Comparison

	Implementation
	MIMIR Profiling Framework
	Related Work Experiment: C++ Simulator
	Implementation in Memcached
	Memory Overhead
	Joining HRCs from Different Slab Classes

	Potential Optimizations
	Availability

	Experiments
	Workloads
	Extreme Workloads
	Smooth Workloads

	Accuracy
	Experimental Setup
	Rounder
	Stacker
	CountingGhost
	Different Cache Replacement Algorithms

	Overhead
	Experimental Setup
	Rounder
	MIMIR Profiling Framework

	Summary

	Conclusions
	Appendix

