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Either the well was very deep, or she fell very slowly, for she had
plenty of time as she went down to look about her and to wonder
what was going to happen next.

Narrator

Abstract

Over the years there have been many approaches to create dispatching rules for scheduling. Re-
cent past efforts have focused on direct search methods (e.g. genetic programming) or training
on data (e.g. supervised learning). The dissertation will examine the latter and give a framework
called Analysis & Learning Iterative Consecutive Executions (ALICE) on how to do it effectively.

Defining training data as { @ (x;(k)), yi(k) }2_, € D the dissertation will show: i) samples ¢ (x;)
should represent the induced data distribution D. This done by updating the learned model in
an active imitation learning fashion; i) y; is labelled using an expert policy via a solver; iii) data
needs to be balanced, as the set is unbalanced w.r.t. the dispatching step k, and iv) to improve
upon localised stepwise features @, it’s possible to incorporate (K — k) roll-outs where the learned
model can be construed as a deterministic pilot heuristic.

When querying an expert policy, there is an abundance of valuable information that can be
utilised for learning new models. For instance, it’s possible to seek out when the scheduling pro-
cess is most susceptible to failure. Furthermore, generally stepwise optimality (or classification
accuracy) implies good end performance, here minimising the final makespan. However, as the
impact of suboptimal moves is not fully understood, then the measure needs to be adjusted for
its intended trajectory.

Using these guidelines, it becomes easier to create custom dispatching rules for one’s particular
application. For this several different distributions of job-shop will be considered. Moreover,
the machine learning approach is based on preference learning, i.e., which post-decision state is
preferable to another. However, that could easily be substituted for other learning methods or
applied to other shop-constraints or family of scheduling problems that are based on iteratively

applying dispatching rules.



Nidur, nidur, nidur! Ztladi petta aldrei ad taka enda? Hvad skyldi
ég hafa hrapad marga kilémetra?

Lisa

Agrip

Til eru margar adferdir vid ad bua til dkvardanareglur fyrir 4eetlanagerd. Undanfarid hefur dher-
slan { fredunum verid 4 beina leit (t.d. gentiska bestun) eda gagnabpjalfun, en ein adferd vid
pad sidarnefnda er styrdur lerdémur. { ritgerdinni verdur st adferd skodud ndnar og sett fram
likan kallad Lerdémur itrekunarreiknirita og samtakagreining algrima (LISA) um hvernig megi
framkvema pessa greiningu 4 skilvirkan mata.

Latum pjalfunargdgnin vera {¢(x;(k)), yi(k) }&_, € D og ritgerdin mun syna: i) Grtdk @ (x;)
purfa ad vera { samremi vid gagnadreifinguna D sem verdur unnin ur henni. Petta er gert med
pvi ad uppfera lerda likanid med virku namsferli byggdu 4 eftirlikingum; ii) y; er merkt med pvi
ad nota endurgjof sérfredings (gert med bestun); iii) gdgnin purfa ad vera { jafnvaegi, par sem
gagnasettid er i djafnvegi med tilliti til skrefs k; einnig iv) til ad betrumbeeta lysingu 4 niverandi
stddu @, er hegt ad nota ttspilun fyrir nestu (K—k) skref, pad er ad endalokum dkvardanaferilsins.
b4 ma talka leerda likanid sem fyrirframakvedna utspilunarreglu.

Pegar sérfredingur er spurdur, verdur til mikid af gagnlegum upplysingum sem haegt er ad
nyta til ad lera ny likén. Til a8 mynda er heegt ad komast ad pvi hvenzr i dkvardanaferlinu er
liklegast ad mistdk eigi sér stad. Yfirleitt gefa hdar likur & pvi ad besta 4kvordun sé tekin (eda pjal-
funarnékvemni) til kynna géda lokaframmistddu, p.e. { pessu samhengi ad ldgmarka heildartima
fyrir allt dkvardanaferlid. Par sem afleidingar rangra dkvardana eru ekki alltaf pekktar, pa er betra
ad uppfera matid med tilliti til akvardanatokunnar sjélfrar.

Med pessari greiningu er einfaldara ad bua til sérhefdar dkvardanareglur fyrir hverja nyja
notkun. I ritgerdinni verda skodadar nokkrar mismunandi tegundir af verknidurrédun & vélar.
Par ad auki verdur vélnamid byggt 4 dkjosanlegri bestun, par sem gerdur er greinarmunur 4 pvi
hvada stodur eru betri kostur en adrar. Akjésanlegri bestun veri p6 hagt ad skipta 1t fyrir adrar
namsadferdir, haegt veeri ad beeta vid fleiri skordum 4 verkefnid eda beita sému namsadferd 4 adra

tegund af verkefnum af svipudum toga.

vi



Ithink I should understand that better, if I had it written down: but
I can'’t quite follow it as you say it.

Alice
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Listing of publications

This dissertation is based on the following publications, listed in chronological order:
Paper I Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling

Paper II Sampling Strategies in Ordinal Regression for Surrogate Assisted Evolutionary

Optimization

Paper III Determining the Characteristic of Difficult Job Shop Scheduling Instances for
a Heuristic Solution Method

Paper IV Evolutionary Learning of Linear Composite Dispatching Rules for Scheduling

Paper V Generating Training Data for Learning Linear Composite Dispatching Rules
for Scheduling

Paper VI Discovering Dispatching Rules From Data Using Imitation Learning

These publications will be referenced throughout using their Roman numeral. The thesis is di-
vided into two parts: Prologue, and Papers.  Prologue gives a coherent connection for the
publications, and elaborates on chosen aspects, written as a monograph, whereas, Papers contains
copies of the publications, reprinted with permission from the publishers.



Table 1: Summary of experimental designs in Part Il

Paper Problem Model Model parameters |Model[*
I JSp PREF  ®°PT ¥ qua K
II  R-fun. CMA-ES surrogate sampling strategies 1
III  JSpP SDR MWR 1
IV JSP,ESP CMA-ES ES.Cphax, ES.p 1

{®" : 7 € {OPT,MWR,RND, ES.p,ALL}}
{\I,r,equal 1re {a, b;ﬁp}}

{®" : = € {OPT,OPTe, DAi}}

{¥pp : b€ {equal,adjdbland}}

vV  JSP PREF

VI JSP,FSP PREF

*Models are either stepwise (i.e. total of K models) or fixed throughout the dispatching process.

MAPPING BETWEEN PART I AND PART I

The prologue will address the job-shop scheduling problem, detailed in Chapter 2 and corre-
spond to the application in Papers I and III to VI. The problem generators used are subsequently
described in Chapter 3. From there, we try do define problem difficulty in Chapter 4, improving
upon the ad hoc definition from Paper I11. There will be two algorithms considered: i) preference
learning in Chapter 8, which is a tailored algorithm, and ii) evolutionary search in Chapter s,
which is a general algorithm.

The latter was implemented in Paper IV, which could be improved by incorporating the
methodology from Paper II. Preference models on the other hand, are highly dependent on
training data, whose collection is addressed in Chapter 6 and Paper V using passive imitation
learning, whereas Chapter 10 and Paper VI included active imitation learning with greatly
improved results. Moreover, the training data contains an abundance of information that can
be used to determine the algorithm’s footprint in instance space, which was done for optimal
solutions in Paper VI, and in addition to that SDR based trajectories were inspected in Chapter 7
along with tying together the preliminary work in Paper III. Furthermore, Chapter 12 compares
two methodologies, as the preference models had been significantly improved since Paper IV.
An overview of experimental settings in Part II is given in Table 1. Chapter 13 concludes the

dissertation with discussion and addresses future work.
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Nomenclature

Rice’s Framework

R < >~ N 9

Problem space or instance space

Feature space, i.e., measurable properties of the instances in P
Algorithm space

Performance space, i.e., the outcome for P using an algorithm from A

Mapping for algorithm and feature space onto performance space

Job-shop Scheduling

n

Q

Pja

xs(j, a)
xf(j, a)
s(a, )
c
Crnax

X

number of jobs in shop

number of machines in shop

set of jobs, {Ji, ..., Jj,-. ., Ju}

set of machines, {M,, ..., M,,...,M;,}

processing time for job J; on machine M,

machine ordering for job J;

starting time for job J; on machine M,

finishing time for job J; on machine M,

slot between current and previous task on machine M,
ready-list of jobs that have unassigned tasks, L C J
makespan, i.e., maximum completion times for all tasks

sequence of dispatches J; to create (partial) schedule/solution

U(uy, u,) uniform distribution from the interval I = [u;,u,] C R

p
K

percentage relative deviation from optimality

number of dispatches needed for a complete schedule, K =n - m

xviii



Ordinal Regression

d number of distinct features, i.e., dimension of F

N number of problem instances

) training set

¥ preference set

l size of preference set, | = |S|

¢(k)  feature set, i.e., post-decision state, of a (partial) schedule at time k
) scaled feature set, such that ¢, € [—1,1] foralli € {1,..,d}
O®  setof optimal dispatches at time k

S®  set of suboptimal dispatches at time k

w linear weights for features @

h linear classification model, h(x) = (w - ¢(x))
Experimental Settings

®OPT  training data is guided by (random) optimum trajectory

@SPR) training data is guided by a single priority dispatching rule, where

(CMA-ES)

(DALL

SDR € {SPT,LPT,LWR, MWR, RND}

training data is guided by trajectory using by CMA-ES obtained weights, either
(DES-Cmax or q)ES.p

union of all aforementioned trajectories, i.e., QALL — QOPT | (SDR) | {CMA-ES)
preference set added w.r.t. basic ranking

preference set added w.r.t. full subsequent ranking

preference set added w.r.t. partial subsequent ranking

preference set containing all possible combination of rankings

all preferences sampled equally

preferences sampled proportional w.r.t. its stepwise optimality

preferences sampled reciprocally proportional w.r.t. its stepwise best case scenario of
suboptimal dispatches

Xix



we  preferences sampled reciprocally proportional w.r.t. its stepwise worst case scenario of

suboptimal dispatches

Subscripts and Superscripts

j refers to job J;

a refers to machine M,

k refers to dispatch/time step k for a schedule, k € {1,..,K}
) optimal job J,

S suboptimal job J

Acronyms

ALICE Analysis & Learning Iterative Consecutive Executions
JSP  Job-shop scheduling problem

FSP  Flow-shop scheduling problem

DR  dispatching rule

SDR  single priority dispatching rule

CDR composite priority dispatching rule

BDR blended composite priority dispatching rule

SPT  Shortest Processing Time rule

LPT Longest Processing Time rule

LWR Least Work Remaining rule

MWR Most Work Remaining rule

RND Random dispatches

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy
PREF Linear preference learning model

OPT (known) optimum

BKS  Dbest known solution



We're all mad here.

The Cat

Acknowledgements

This thesis owes its existence to the help, support, and inspiration of many. Firstly, I would
like to express my sincere appreciation and gratitude to my principal advisor, Prof. Témas Philip
Runarsson, who was abundantly patient and offered invaluable assistance and guidance. I hope
we continue our brainstorming sessions after my defence. Also, thanks for being perfectly fine
with me taking off to travel the world in between submission deadlines. Deepest gratitude are
also due to my doctoral committee: Prof. Gunnar Stefinsson & Prof. Michéle Sebag. I would
also want to give thanks to my opponents, Prof. Edmund Kieran Burke & Prof. Kate Smith-Miles,
for taking the time to review my work.

I would like to convey thanks to the Research Fund of the University of Iceland for granting
me a stipend during the first three years of my dissertation. A big thank you to my previous co-
workers at Valka, especially Einar and Helgi, for accommodating my doctoral work during my
three years balancing a career and pursuing a Ph.D. I also thank my current co-workers at AGR
Dynamics for being so patient with me leading up to my defence.

Special thanks to all my post-graduate friends Helgurnar og Teeknigardsmennirnir in room #217:
Oli Palli for helping with my tax woes and sharing notes during our years still doing regular course
work; Anna Helga and Sigran Helga for encouraging me when my teaching had the better of
me; Warsha [hans] Helga for inviting me to the most remarkable three day Indian wedding in
Fiji — an absolutely unforgettable experience, and for always being willing to quit early and head
out for Happy-Hour; Erla (an honorary Helga) for being interested to talk about handicrafts
and other passions close to my heart in the break room; Gunnar Geir for being my best pupil in
Operations Research and for not graduating before me; Bjarki for getting me over to the dark side:
the ggplot2 package on its own was worth the cross from MATLAB to R, but dplyr sealed the
deal, and Chris for believing in me that I could graduate from lower-case r to capital R capabilities.
For a non-statistician, my Shiny-app is pretty impressive!

Equally, thank you to Marta, Morgane, Snj6laug and especially Porbjérg for including me in
all engineering Ph.D. activities going on in VR-II. May we finally stitch’n’bitch about something
other than our Ph.D. projects from now on. I'm truly blessed for having known the doctoral
students in both neighbouring buildings, which despite their close proximity are quite divided.

XX



I owe special gratitude to my beloved family for continuous and unconditional support of all
my undertakings, scholastic or otherwise. I thank my uncle Arni for subtly planting the seed that
how good it would be for the family to have doctor in our midst, and more importantly my aunt
Gurry for making the annotation that a doctor could easily be a Ph.D. in my chosen field instead of
the proposed geriatrics. I'm grateful for my parents and grandparents always being vocal on how
they were proud of me pursuing an academic career. I'm blessed that both of my grandmothers
are here to witness the fruit of my labours after all these years.

Furthermore, I thank Jéna for helping me translate my abstract and all things Icelandic and be-
ing mynon Ph.D. affiliated friend that understands the appeal of this time- and energy-consuming
process. I hope you find the time to pursue your own doctoral degree in the future. I appreciate
Jake for continually reminding me that I'm a great aspiring academic whenever I felt succumbing
to imposter syndrome. Brennan thanks me for helping him to make contributions to science via
proofreading my conference papers. You are a tiny potato and you believe in me, I can do the
thing. In addition, I thank Gummi, Kristin & Sverrir for our after-work special Fostudagur til fidr
where we, the perpetual post-graduate students, tried to make time to finish off our studies after
punching out after our 9-5pm work regime. Without Kristin’s influence and weekly reminders
to keep my head in the game, this study would not have been successful (read: taken infinitely
longer). On that note, I thank the developers at GITHUB for creating the simple contribution
streak feature; a simple yet exceptionally effective carrot to keep me motivated. I also thank
Beyoncé for releasing the feminist anthem ***Flawless ft. Chimamanda Ngozi Adichie that played
on repeat for most part of writing this dissertation. Also, thank you Anna Margrét, for helping
me to channel my inner Queen B. This diamond, flawless. My diamond, flawless.

This dissertation pays homage to the mathematician Charles Lutwidge Dodgson, better known
by his pen name Lewis Carroll, and author of the literary classics Alice’s Adventures in Wonderland
(1865) and Through the Looking-Glass, and What Alice Found There (1871).

On to my main cheerleaders. I would like to thank my brother, Arni Heimir, for reluctantly
proofreading my manuscript (any grammatical mistakes can be blamed on him, as he has a proper
degree in English) and teaching me the way of the showgirl. Not forgetting my best friend, Birna,
who has always been there for me, and probably won’t ever read this thesis, for I've burdened her
enough with my emotional journey to get to this point. Finally, I would like to acknowledge my
amazing mother, Péra, for encouraging and believing in me throughout my entire education and
giving me the support and mentality that gave me the opportunity to pursue a doctoral degree.
This thesis is for you mamma.

Reykjavik, June 2016
Helga Ingimundardéttir

xxii



Partl

Prologue






Begin at the beginning and go on till you come to the end: then stop.
The King

Introduction

HAND CRAFTING HEURISTICS for NP-hard problems is a time consuming trial-and-error pro-
cess, requiring inductive reasoning or problem specific insights from their human designers.
Furthermore, within a problem class (such as scheduling) it is possible to construct problem

instances where one heuristic would outperform another.

Each heuristic performs distinctly to others depending on the underlying data distribution of
the problem. This is because any algorithm which has superior performance in one class of prob-
lems is inevitably inferior over another class, cf. no free lunch theorem (Wolpert and Macready,
1997). The success of a heuristic is how it manages to deal with and manipulate the characteris-
tics of its given problem instance. Thus, in order to understand more fully how a heuristic will
eventually perform, one needs to look into what kind of problem instances are being introduced
to the system. For this reason one needs to consider what defines a problem instance, e.g., what
are its key features? And how can they help with designing better heuristics? Once the problem
instances are fully understood, an appropriate learning algorithm can be implemented in order

to create heuristics that are self-adapting to those instances.

Given the ad hoc nature of the heuristic design process, there is clearly room for improvement.
A number of attempts have been made to automate heuristic design, and it is the ultimate goal
of this dissertation to automate optimisation heuristics via ordinal regression. The focal point
will be based on scheduling processes named job-shop scheduling problem (JSP), and one of its
subclasses, the flow-shop scheduling problem (ESP).



CHAPTER 1. INTRODUCTION

There are two main viewpoints on how to approach scheduling problems, namely,

Tailored algorithms or constructive methods,
by building schedules for one problem instance at a time.

General algorithms or iterative methods,

by building schedules for all problem instances at once.

For tailored algorithm construction: i) a simple construction heuristic is applied; ii) the sched-
ule’s features are collected at each dispatch iteration, and iii) from which a learning model will
inspect the feature set to discriminate which operations are preferred to others via ordinal regres-
sion. The focus is essentially on creating a meaningful preference set composed of features and
their ranks, as the learning algorithm is only run once to find suitable operators for the value func-
tion. However, for general algorithm construction, there is no feature set collected beforehand,
since the learning model is optimised directly via evolutionary search. This requires numerous
costly value function evaluations. In fact, it involves an indirect method of evaluation whether
one learning model is preferable to another w.r.t. which one yields the better expected mean.
Evolutionary search only requires the rank of the candidates, and therefore it is appropriate to
retain a sufficiently accurate surrogate for the value function during evolution in order to reduce
the number of costly true value function evaluations. In this paradigm, ordinal regression can
be used for surrogate assisted evolutionary optimisation, where models are ranked — whereas for

tailored algorithms, features are ranked.

1.1 RICE’'S FRAMEWORK FOR ALGORITHM SELECTION

The aim of this dissertation is to understand what underlying characteristics of the problem in-
stances distinguish ‘good” and ‘bad’ solutions when implementing a particular algorithm. Smith-
Miles and Lopes (2011) were interested in discovering whether synthetic instances were in fact
similar to real-world instances for timetabling scheduling. Moreover, Smith-Miles and Lopes
focused on how varying algorithms perform on different data distributions. Hence, the investiga-
tion of heuristic efficiency is closely intertwined with problem generation. The relation between
problem structure and heuristic efficiency, called footprints in instance space, will be addressed
in Chapters 4 and 7. In order to formulate the relationship for footprints, one can utilise Rice’s
framework for algorithm selection problem from 1976. The framework consists of four funda-

mental components:

Problem space or instance space P,

set of problem instances;
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Feature space F,

measurable properties of the instances in P;

Algorithm space A,

set of all algorithms under inspection;

Performance space ),
the outcome for P using an algorithm from A.

For a given problem instance x € P with d features ¢(x) = [9,(x), ..., 9,4(x)] e Fand using
algorithm a € A the performanceisy = Y(a,¢(x)) € YV, whereY : A X F — YVis
the mapping for algorithm and feature space onto the performance space. This data collection is
often referred to as meta-data.

In the context of Rice’s framework, the aforementioned approaches to scheduling problems

are to maximise its expected performance:

Tailored algorithms

max E{Y(a,cp(x))} (1.1)

FICF
The focal point is only using problem instances that represent the problem space, x €
P’ C P, in addition finding a suitable subset of the feature space, 7' C F|ps. If done
effectively, then the resulting learning model a € A needs only be run once via ordinal

regression.

General algorithms

max E{Y(a,qa(x))} (1.2)

acA
This is a straightforward approach as the algorithm a € A is optimised directly given the

entire instances space x € P dedicated for training. Alas, this comes at a great computa-

tional cost.

Note, the mappings ¢ : P +— Fand Y : A+ ) are the same for both paradigms.

A schematic flow-chart of the model selection process is illustrated in Fig. 1.1. Meta-data is
analysed to investigate problem structure and heuristic effectiveness, i.e., its footprint. Moreover,
the schematic details how the preference model, which is a tailored algorithm, from Chapter 8

will come into play in the framework.

1.2 PREVIOUS WORK

The literature in scheduling mainly focuses on different objectives, e.g., Chang (1996) minimised
the due-date tightness and Drobouchevitch and Strusevich (2000), Gao et al. (2007) looked
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Figure 1.1: Flow-chart for Rice's framework for algorithm selection

into solving for bottleneck machines, or even multi-objective JSP (Tay and Ho, 2008, Vizquez-
Rodriguez and Petrovic, 2009, Xia and Wu, 2005). In this dissertation only minimisation of the
maximum completion times for all tasks, commonly referred to as makespan, will be considered,
thus ignoring all due-date constraints. Model assumptions (i.e. shop floor constraints) can also
vary, e.g., Thiagarajan and Rajendran (2005) incorporate different earliness, tardiness and hold-
ing costs. Brandimarte (1993 ), Pezzella et al. (2008 ), Xia and Wu (2005 ) extend the classical JSP
set-up, called flexible job-shop, by allowing tasks to be processed by any machine from a given set,
i.e., adding assignment of operations to the constraints. Moreover, it is possible to reduce JSP to
a FSP, since in practice, most jobs in the job-shop use the machines in the same order (Guinet
and Legrand, 1998, Ho et al,, 2007). A formal mathematical model for JSP is given in Chapter 2.

In order to find an optimal (or near optimal) solution for scheduling problems one could either
use exact methods or heuristics methods. Exact methods guarantee an optimal solution, however,
job-shop scheduling is strongly NP-hard* (Garey et al., 1976). Any exact algorithm generally
suffers from the curse of dimensionality, which impedes the application in finding the global
optimum in a reasonable amount of time. Heuristics are generally more time efficient, but do
not necessarily attain the global optimum. Therefore, JSP has the reputation of being notoriously

difficult to solve. As aresult, it has been widely studied in deterministic scheduling theory and its

*NP stands for Non-deterministic Polynomial-time. If P#NP, then NP-hard problems cannot be solved by a
deterministic Turing machine in polynomial time.
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class of problems has been tested on a plethora of different solution methodologies from various
research fields (Meeran and Morshed, 2012), all from simple and straight forward dispatching
rules to highly sophisticated frameworks. Figure 1.2 summarises the main techniques applied to
solve JSP. The figure is based on Fig. 1 from Jain and Meeran (1999), but updated to reflect the
previous work relevant to this dissertation.

In the field of Artificial Intelligence, Meeran and Morshed (2012) point out that despite their
‘intelligent’ solutions, the effectiveness of finding the optimum has been rather limited. However,
combined with local-search methodologies, they can be improved upon significantly, as Meeran
and Morshed showed with the use of a hybrid method involving Genetic Algorithms (GA) and
Tabu Search (TS). This ends up getting the best of both worlds, namely: the diverse global
search obtained from GA, and being complemented with the intensified local search capabilities
of TS. Unfortunately, hybridisation of global and local methodologies is non-trivial. In general,
combination of the two improves performance. Unfortunately, they often come at a great com-
putational cost.

Various learning approaches have been applied to solving job-shop scheduling, such as: i)
reinforcement learning (Zhang and Dietterich, 1995); ii) evolutionary learning (Tay and Ho,
2008), and iii) supervised learning (Li and Olafsson, 2005, Malik et al., 2008). The approach
taken in this dissertation is a supervised learning classifier using ordinal regression.

A common way of finding a good feasible solution for JSP is applying construction heuristics
with some priority dispatching rule (DR), e.g., choosing a task corresponding to: i) longest or
shortest processing time; ii) most or least successors (i.e. operation number), or iii) ranked
positional weight, i.e., sum of processing times of its predecessors or successors. Ties are broken
in an arbitrary fashion or by another heuristic rule. A summary of over 100 classical dispatching
rules for scheduling can be found in Panwalkar and Iskander (1977), and it is noted that these clas-
sical dispatching rules are continually used in research. There is no dominant rule, but the most
effective have been single priority dispatching rules based on job processing attributes (Haupt,
1989). Tay and Ho (2008) showed that combining dispatching rules, with the aid of Genetic
Programming (GP), is promising. However, there is a large number of rules to choose from, thus
their combinations require expert knowledge or extensive trial-and-error process.

DRs are a very useful approach to dealing with scheduling environments because they
are quickly implemented (by computers and shop floor operators) and can cope with dynamic
changes. Furthermore, DRs are relatively easy to interpret which can be of paramount importance
for some end-users. For instance, Keane (2015) used GP to creates features for Case Based
Reasoning (CBR), which were hard do understand and cumbersome in implementation due to
their complexity. In order to mediate the process, the Espresso Algorithm from logic circuit design
was used for feature selection, as ‘espresso’ summarises the evolved features obtained by GP,

yielding a much simpler form that is more comprehensible for the end-user. The motivation for
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easily interpretable models, is particularly appealing, even necessary in some cases. For example,
in some paradigms they become essential for getting them sanctioned, e.g., due to legislation for
implementation of uninhabited aerial vehicles (i.e. drones).

Instead of using construction heuristics which create job-shop schedules by sequentially dis-
patching one job at a time, one could work with complete feasible schedules and iteratively re-
pairing them for a better result. Such was the approach by Zhang and Dietterich (1995) who
studied space shuttle payload processing by using reinforcement learning, in particular, tempo-
ral difference learning. Starting with a relaxed problem, each job was scheduled as early as its
temporal partial order would permit, there by initially ignoring any resource constraints on the
machines, yielding the schedule’s critical path. Then the schedule would be repaired so the re-
source constraints were satisfied in the minimum amount of iterations. This approach of a two
phased process of construction and improvement is also implemented in timetable scheduling,
where e.g., Asmuni et al. (2009) used a fuzzy approach in considering multiple heuristic ordering
in the construction process, and only allowed feasible schedules to be passed to the improvement
phase.

The alternative to hand-crafting heuristics, is to implement an automatic way of learning heur-
istics using a data driven approach. Data can be generated using a known heuristic, such an
approach is taken in Li and Olafsson (2005 for job-shop where a LPT-heuristic is applied. Af-
terwards, a decision tree is used to create a dispatching rule with similar logic. However, this
method cannot outperform the original LPT-heuristic used to guide the search. For instruction
scheduling, this drawback is confronted in Malik et al. (2008), Olafsson and Li (2010), Russell
et al. (2009), by using an optimal scheduler, computed off-line. The optimal solutions are used
as training data and a decision tree learning algorithm is applied as before. Preferring simple to
complex models, the resulting dispatching rules gave significantly better schedules than using
popular heuristics in that field, and a lower worst-case factor from optimality. A similar approach
is taken for timetable scheduling in Burke et al. (2006), using CBR, where training data is guided
by the two best heuristics in the field. Burke et al. point out that in order for their framework to
be successful, problem features need to be sufficiently explanatory and training data needs to be
selected carefully so they can suggest the appropriate solution for a specific range of new cases.

Again, stressing the importance of meaningful feature selection.

1.3 CONTRIBUTIONS

The initial goal of this Ph.D. project was to use sophisticated algorithms for preference learning
on hard problems, in particular job-shop scheduling, and find ways to mediate the computational
effort that they require. After painstaking parameter tuning, only complex models managed to

achieve high training accuracy. Alas, those complex models were severely overfitted to the train-
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ing instances — a simple linear model would suffice with similar performance, and for much less

overhead. Also, linear models come with the added benefit of easy interpretability.
Unfortunately, there is not much said about algorithms that fail (Smith-Miles and Bowly,

2015), as the focus tends to be on claiming superiority in performance to some previous approach.

So to quote a pioneer in scheduling,

“The only real mistake is the one from which we learn nothing.”

Henry Ford

In order to make the best of a bad situation, this derailment* designed the course of the body of
work presented in this dissertation, which is divided into two main phases: i) analysis, and ii)

machine learning based on the analysis.

ANALYSIS

One should always start by dwelling on optimal solutions and trying to understand their funda-
mental building blocks, and applying what one learns on simple models, before investing valuable
time and resources in implementing the current state-of-the-art algorithms. The research ques-
tions that are put forth are: i) how are optimal solutions supposed to behave — what are the key
indicators? ii) Where and when should there be emphasis on learning? And ultimately, iii) what
states of our problem are worth investigating further to achieve the desired result?

Hopefully, this preparatory work helps recognising any limitations, and will lead to better
algorithm design, or at least improved understanding of why the models are performing in the

way that they do.

LEARNING

The machine learning approach considered in this dissertation is a supervised one. In particular,
preference learning, which is a data driven approach which determines what feature states are
preferable to others. Defining the training data as {@(x;(k)), yi(k) }X_, € D then: i) samples x;
should represent the induced data distribution D. This can be achieved by updating the learned
model in an active imitation learning fashion, similar to the work of Ross and Bagnell (2010),
Ross et al. (2011), in particular their DAgger framework; ii) y; is labelled using a solver; iii) data
needs to be balanced, as the set is unbalanced w.r.t. dispatching step k, and iv) to improve upon
localised stepwise features @, it’s possible to incorporate (K—k) roll-outs where the learned model

can be construed as a deterministic pilot heuristic.

*This explains why Paper I is completely different from the other publications.
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ALICE

It’s the belief of the author, that the methodology of going about this can be applied to any kind
of optimisation problem which involves sequential decision making. As such, then it’s suitable to
name the framework: Analysis & Learning Iterative Consecutive Executions, or ALICE* for short.
For demonstration purposes, this dissertation will solely be focusing on applying ALICE to dis-
patching rules for job-shop scheduling.

The ALICE framework mainly involves inspecting the stepwise optimality, £, for a heuristic
policy 7 and it’s relation to its end-result (here the makespan), {_, as it defines its footprint in
instance space (detailed in Chapters 4 and 7). This is done for a set of benchmark algorithms
7 € A, during the analysis phase, which are then used to guide the training for subsequent learned
policy, 7. Finally, 7, can be post-processed in the same manner as done in the pre-processing
phase, i.e., inspect §; and { ..

1.4 SUPPLEMENTARY MATERIAL

The Prologue will mostly focus on traditional job-shop problem instances. However, in Chap-
ter 3 a greater variety of problem spaces are introduced, and when seen fit some of them will be
investigated as well in the subsequent chapters. Since most experiments have been run on all
proposed problem spaces, they can be inspected in the supplementary Shiny application written
in R. In addition, all source code and data is freely distributed from: https://github.com/
ALICE-InRu/ under the permissive creative commons share-alike licence.* Figure 1.3 displays

the code’s class diagram in relation to the thesis.

1.5 OUTLINE

The dissertation is oriented around job-shop scheduling, which is explained in detail in Chapter 2.
Due to scarcity of real-world data, we let random problem generators suffice. They are described
in Chapter 3. Moreover, the traditional OR-Library benchmark instances are similarly created,
although for a greater variety of problem sizes. Smith-Miles and Bowly (2015) warn that general
practice in the OR-community is over-tuning of algorithms to a relatively small set of agingt
instances. Obviously, the choice of data set has a direct influence of the proposed algorithm,
as they are developed with them specifically in mind. This is why robustness towards different
problem spaces, than initially trained on, is of so much value, as it indicates how applicable our

model is for real-world deployment.

*The hopefully catchy and very deliberate ‘backronym, pays homage to the wonderful literary character, Alice in
Wonderland-a personal favourite of the author.
**Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
+The OR-Library problem instances are mostly from the 1980s and 1990s, or earlier (cf. Table 3.3).
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Figure 1.3: Class diagram for ALICE, C# implementation available from github

The preliminary experiments done in Paper III investigated the characteristics of difficult job-
shop schedules for a single heuristic. Continuing with that research, Chapter 4 redefines the
measure and compares a set of widely used single priority dispatching rules on different problem
spaces. The analysis is done in more depth in Chapter 7 in the hopes of extrapolating where and
when an algorithm excels in order to aid its failing aspects, which will be beneficial information
for the creation of learning models in Chapter 8, as they are dependant on features based on those
same dispatching rules under investigation.

An approach based on supervised learning, mostly on optimal schedules will be investigated
and its effectiveness illustrated by improving upon well known dispatching rules for job-shop
scheduling in Chapters 8 to 11. The method of generating training data and its stepwise sampling
bias is critical for the success of the method, as shown in Sections 8.5 and 8.6. Moreover, models
should be created in an iterative fashion such that the learned state spaces correspond to ones that
the learned policy will eventually encounter, this is done in Chapter 10. Chapters 9 and 11, on
the other hand explore how the baseline preference model of 16 features progresses if you drop
or add additional features, respectively.

In addition to single priority dispatching rules, more sophisticated models obtained from di-
rect optimisation, namely evolutionary search from Chapter s, are used to compare the proposed
preference models. A comparison study using the OR-Library benchmark suite is done in Chap-

ter 12. Finally, the thesis concludes and proposes future work in Chapter 13.
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Read the directions and directly you will be directed in the right
direction.

Doorknob

Job-shop Scheduling Problem

CHEDULING PROBLEMS, which occur frequently in practice, are a category within combina-
Storial optimisation problems. A subclass of scheduling problems is job-shop (JSP), which
is widely studied in operations research. JSP deals with the allocation of tasks of competing
resources where its goal is to optimise one ore more objectives. Job-shop’s analogy is from the
manufacturing industry where a set of jobs are broken down into tasks that must be processed
on several machines in a workshop. Furthermore, its formulation can be applied on a wide vari-
ety of practical problems in real-life applications which involve decision making. Therefore, its
problem-solving capabilities have a high impact on many manufacturing organisations.

Deterministic JSP is the most general case for classical scheduling problems (Jain and Meeran,
1999). Many other scheduling problems can be reformulated as JSP. For instance, the travelling
salesman problem™ can be contrived as JSP: the salesman as a single machine in use; the cities to be
visited are the jobs to be processed, and distance is sequence dependent set-up time. The general
form of JSP assumes that each job can have its own distinctive flow pattern through the machines,
which is independent of the other jobs. In the case where all jobs share the same permutation
route, job-shop is reduced to a flow-shop scheduling problem (FSP) (Guinet and Legrand, 1998,
Tay and Ho, 2008). Therefore, without loss of generality, this dissertation is structured around

JSP.

*The travelling salesman problem (TSP) was formulated in the 1800s by the mathematicians W.R. Hamilton and
Thomas Kirkman (Biggs et al., 1986). The salesman has to visit a set of cities exactly once (i.e. Hamiltonian path),
with the objective of minimising the route, in terms of distance, between them.
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CHAPTER 2. JOB-SHOP SCHEDULING PROBLEM

Remark: Throughout the dissertation the FSP variation will not be a commonly used permuta-
tion flow-shop (PFSP) from the literature,* which has the added constraints of not allowing any
jobs to pass one another. Here, the jobs have to be processed in the same machine order. How-
ever, machines do not necessarily need to process jobs in the same order, as is implied in PFSP.
For PFSP the Manne (1960) model would be more appropriate, rather than the one described in

the following section.

2.1 MATHEMATICAL FORMULATION

Job-shop considered for this dissertation is when # jobs, J = {]j}?:u are scheduled on a finite
set, M = {M,}", of m machines, subject to the constraint that each job J; must follow a
predefined machine order (a chain of m operations, 6; = [0j;, 0ja, - - - , 0jm]) and that a machine
can handle at most one job at a time. The objective is to schedule jobs in such a manner as to
minimise the maximum completion times for all tasks, which is also known as the makespan,
Crnax-

A common notation for scheduling problems (cf. Chapter 2 in Pinedo, 2008) is given by a
triplet a|f|y, where: a describes the machine environment; f details any additional processing
characteristics and/or constraints, and finally ¥ lists the problem’s objective. Hence our family
of scheduling problems, i.e., a m machine JSP and FSP w.r.t. minimising makespan, is Jm||Cpax
and Fm||Cpay, respectively. An additional constraint commonly considered are job release-dates
and due-dates, and then the objective is generally minimising the maximum lateness, denoted
Jm|r;, dj| Liax. However, those shop-requirements will not be considered here.

Henceforth, the index j refers to a job J; € J, while the index a refers to a machine M, €
M. If a job requires a number of processing steps or operations, then the pair (j, a) refers to the
operation, i.e., processing the task of job J; on machine M,. Moreover, index k will denote the time
step of the operation. Note that once an operation is started it must be completed uninterrupted,
i.e., pre-emption is not allowed. Moreover, there are no sequence dependent set-up times.

For any given JSP each job J; has an indivisible processing time (or cost) on machine M, pj,,
which is assumed to be integral and finite.

The starting time of job J; on machine M, is denoted x,(j, @) and its completion or end time is

denoted x,(j, a) where,
xe(j,a) == x5(j,a) + pja (2.1)

Each job J; has a specified processing order through the machines, it is a permutation vector,

oj, of {1, .., m}, representing a job J; can be processed on Mg, () only after it has been completely

*Paper III wrongly states that it is used PFSP problem instances, it was in fact FSP.
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2.2. CONSTRUCTION HEURISTICS

processed on My (;,), i.e,

%:(js 0j(a)) = xe(j, oj(a — 1)) (2.2)
forallJ; € J anda € {2,..,m}. Note, that each job can have its own distinctive flow pattern
through the machines, which is independent of the other jobs. However, in the case that all jobs
share the same permutation route, JSP is reduced to a FSP.

The disjunctive condition that each machine can handle at most one job at a time is the fol-

lowing,
xs(j,a) > xe(j,a) or x(j,a) > x.(j,a) (2.3)

forallJ;,Jy € J, Jj # Jy and M, € M.
The objective function is to minimise its maximum completion times for all tasks, commonly

referred to as the makespan, Cpay, which is defined as follows,
Cax := max {xe(j, oj(m)) : J; € J} . (2.4)

Clearly, w.r.t. minimum makespan, it is preferred that schedules are non-delay, i.e., the machines
are not kept idle. The time in which machine M, is idle between consecutive jobs J; and ] is

called idle time, or slack,
s(a,j) = x5(j, a) — x.(j', a) (2.5)

where J; is the immediate successor of J; on M,. Although this is not a variable directly needed to
construct a schedule for JSP, it is a key attribute in order to measure the quality of the schedule.

Note, from a job-oriented viewpoint, for a job already dispatched J; € J the corresponding
set of machines already processed is M; C M. Similarly from the machine-oriented viewpoint,
M, € M with corresponding J, C J.

2.2 CONSTRUCTION HEURISTICS

Construction heuristics are designed in such a way that it limits the search space in a logical
manner, preferably without excluding the true optimum. Here, the construction heuristic, Y,
is to schedule the dispatches as closely together as possible, i.e., minimise the schedule’s idle
times. More specifically, once an operation (j, a) has been chosen from the job-list, £, by some
dispatching rule, it can placed immediately after (but not prior) x,(j, oj(a — 1)) on machine M,
due to Ineq. (2.2). However, to guarantee that Ineq. (2.3) is not violated, idle times M, are
inspected, as they create a slot which in J; can occupy. Bearing in mind that J; release time is
xe(j, 0j(a — 1)) one cannot implement Eq. (2.5) directly, instead it has to be updated as follows,

5(a,j) = x,(j", a) — max{w.(7, a), x.(j, oj(a—1))} (2.6)
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CHAPTER 2. JOB-SHOP SCHEDULING PROBLEM

for all already dispatched jobs J;, Ji» € J, where J; is ] successor on M,,. Since pre-emption is

not allowed, the only applicable slots are whose idle time can process the entire operation, i.e.,

Sju = {]j’ €J, : s(a,j) > pja} . (2.7)

There are several heuristic methods for selecting a slot from Eq. (2.7), e.g, if the main concern
were to utilise the slot space, then choosing the slot with the smallest idle time would yield a
closer-fitted schedule and leaving greater idle times undiminished for subsequent dispatches on
M,. However, dispatching J; in the first slot would result in its earliest possible release time, which
would be beneficial for subsequent dispatches for J;. Experiments favoured dispatching in the
earliest slot,* thus used throughout.

Note that the choice of slot is an intrinsic heuristic within Y. The focus of this dissertation,
however, is on learning the priority of the jobs on the job-list, for a fixed construction heuris-
tic. Hence, there could be some problem instances in which the optimum makespan cannot be
achieved, due to the limitations of Y of not being properly able to differentiate between which
slot from Eq. (2.7) is the most effective. Instead, hopefully, the learning algorithm will be able
to spot these problematic situations, should they arise, by inspecting the schedule’s features and
translate that into the jobs’ priorities.

DISPATCHING RULES

Dispatching rules (DR) are an integral part of a construction heuristics, as it determines the pri-
orities of the job-list, i.e., the jobs who still have operations unassigned. Starting with an empty
schedule, and sequentially adding one operation (or task) at a time. Then, for each time step k,
an operation is dispatched which has the highest priority of the job-list, LK C J. If there is
a tie, some other priority measure is used. However, let’s assume that ties are broken randomly.

Algorithm 1 outlines the pseudo code for the entire dispatching process of aJSP problem instance.

*Preliminary experiments of 500 JSP instances where inspected: First slot chosen could always achieve its known
optimum by implementing Algorithm 1, however, only 97% of instances when choosing the smallest slot.
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2.3. EXAMPLE

Algorithm 1 Pseudo code for constructing a JSP sequence using a deterministic scheduling
policy (or dispatching rule), , for a fixed construction heuristic, Y

1: procedure SCHEDULEJSP(7, Y)

2: x 0 > initial current dispatching sequence
3: fork< 1toK=n-mdo > at each dispatch iteration
4 forall J; € LK) c T do > inspect job-list
s: ¥ < {x f;ll UJ; > partial temporal schedule
6: ¢ 90X (¥) > features for post-descision state
7 IF (@) > priority for J;
8: end for
9 j* < argmaxic q0 {I} > choose highest priority
10: X < Ji* > dispatch j*
11: end for
12: return CZ . < Y(x) > makespan and final schedule

13: end procedure

Henceforth, we will adopt the following terminology: a sequence will refer to the sequential

ordering of the dispatches* of tasks to machines, namely,

X= {Xk}le = {(i, a) : Jj € ﬁ(k)}K (2.8)

k=1

The collective set of allocated tasks to machines, which is interpreted by its sequence, is referred
to as a schedule; and a scheduling policy (or dispatching rule) z will pertain to the manner in which
the sequence is manufactured: be it a SDR such as SPT or some other heuristic. Sequence and
schedule are often used interchangeably, as they are closely related. A complete schedule is also

known as K-solution** (Bertsekas et al., 1997).

2.3 EXAMPLE

There are many examples of job-shop for real-world application. For demonstration purposes,
let’s examine a hypothetical problem from the 18th century. Assume we are invited to the Mad
Hatter’s Tea Party in Wonderland, illustrated in Fig. 2.1. There are four guests attending: J, ) Alice;
J.) March Hare; J,) Dormouse, and of course our host J, ) Mad Hatter. During these festivities,
there are several things each member of the party has to perform. They all have to: M, ) have wine
or pour tea; M, ) spread butter; M,) get a haircut; M, ) check the time of the broken watch for

themselves, and M) say what they mean, e.g., asking a riddle or reciting a poem to the group.

*Note, only a sequence of J; is needed, since the corresponding M, can be obtained by reading o
**A partial schedule, at step k; is called k-solution.
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CHAPTER 2. JOB-SHOP SCHEDULING PROBLEM

Table 2.1: Example of 4 x 5 JSP

Guest Job  Machine ordering o Processing times p

Alice i |+ 2 3 4 5 |26 25 40 15 42
MarchHare J, |+ 2 3 4 5 |18 86 86 68 84
Dormouse J; |+ 3 2 4 5 |20 59 23 33 96
MadHatter ], |4 3 1 § 2 40 47 55 13 99

The guests are very particular creatures, and would like to do these task in a very specific order,
e.g., March Hare insists on doing them alphabetically. Each would rather wait than breaking their
habit. They tend to be absent-minded, so each task takes them a different amount of time. Let’s

assume their processing times and ordering are given in Table 2.1.

Unfortunately, Alice can’t stay long. She must leave as soon as possible to play croquet with the
Red Queen, and she mustn’t be late for that very important date. Otherwise, it’s off with some-
one’s head! However, Alice, had a proper upbringing and won’t leave the table until everyone
has finished their tasks. How should the guests go about their tea-party, in order for Alice to be

on-time?

AT
Wb

Figure 2.1: The Mad Hatter's Tea Party, from Alice’s Adventures in Wonderland by Carroll
(1865). lllustration by John Tenniel (1820-1914).
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2.3. EXAMPLE

The problem faced by Alice and her new friends is in what order should they rotate their tasks
between themselves so that they all finish as soon as possible? This can be considered as is a
typical four-job and five-machine job-shop, where: our guests are the jobs; their tasks are the
machines, and our objective is to minimise Cp,y, i.e., when Alice can leave.

Let’s assume we’ve come to the party, after 10 operations have already been made (i.e. strikeout

entries in Table 2.1), by using the following job sequence,*

X= {Xi}:c:_ll = {]47]27]3a]3a]17]1a]13]1,]17]4} (2.9)

1**

hence currently, at step k = 11, the job-list is £® = {J2, ], ], } indicating the 3 potentia
(i.e. denoted in bold in Table 2.1) to be dispatched, i.e.,, ¥, € £E),

This is a very compact form for the current partial solution, it’s easiest to comprehend it via

jobs

disjunctive graph (Roy and Sussmann, 1964) to model the work-flow of tasks to be scheduled.
Let’s encode: i) the operations as vertices; ii) horizontally aligning them w.r.t. each job Jj; iii )
connect vertices with directed edges according the Ineq. (2.2), and iv) by introducing dummy
vertices before and after, then the goal is to visit each vertex exactly once, or Hamiltonian path:
starting at the ‘source’ (i.e. empty schedule), and finishing at the sink (i.e. complete schedule).
The path gives the prescription of the order in which the jobs rotate between machines. Figure 2.2
depicts the path generation at the beginning, midway, and final stages for our Tea Party: i)
gray vertices are operations that haven’t yet been dispatched; ii) pink vertices are the ones that
correspond to x, and iii) pink directed edges indicate the current partial Hamiltonian path.

Now we're interested to know when each guest should start their task, i.e., the project schedule.
Figure 2.3 illustrates the temporal partial schedule (or k-solution) of Eq. (2.9) as a Gantt-chart:
i) numbers in the boxes represent the job identification j; ii) the width of the box illustrates the
processing times for a given job for a particular machine M, (on the vertical axis); iii) the dashed
boxes represent the resulting (k + 1)-solution for when a particular job is scheduled next, and iv)
the current Cp,y is denoted with a dotted line. Note, the disjunctive graph from Fig. 2.2b gives
the schedule in Fig. 2.3.

If the job with the shortest processing time were to be scheduled next, i.e., applying SPT-rule,
then J, would be dispatched. Similarly, for LPT-rule (longest processing time) then J, would be
dispatched. Other DRs use features not directly observable from looking at the k-solution (but
easy to keep record of ), e.g., by assigning jobs with most or least total processing time remaining,
i.e, MWR and LWR heuristics, who would yield ], and J,, respectively.

*In fact this is the sequence resulting from 10 dispatches following the SPT-rule, to be defined shortly.
**Alice is quite anxious to leave, so she has already completed everything, and therefore J, ¢ £,
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Source Sink

Source Sink

M, —> M, —> My —» M, —> M,
(b) k = K/ 2

M, M,—>M, MM,

M, — M, \ M, —M, M,
Source Sink
M, / M= M, > M, — M,

M1 Mz M3 M4 MS

HE B B B B B B E B EBE B =
=
=
=
=
=

(c)k=K

Figure 2.2: Graph representation of a 4 X 5 job-shop, where pink vertices are completed tasks,
and grey are unassigned. Moreover, grey arrows point to the operations that are next on the
job-list, L&+ and pink arrows (traversing from source towards sink) yield the sequence of
operations for the schedule, i.e., x.
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2.4. SINGLE PRIORITY BASED DISPATCHING RULES

2.4 SINGLE PRIORITY BASED DISPATCHING RULES

A single priority dispatching rule (SDR) is a function of attributes, or features, of the jobs and/or
machines of the schedule. The features can be constant or vary throughout the scheduling pro-

cess. For instance, priority may depend on job processing attributes, such as which job has,

Shortest immediate processing time (SPT)
greedy approach to finish shortest tasks first,

Longest immediate processing time (LPT)

greedy approach to finish longest tasks first,

Least work remaining (LWR)

whose intention is to complete jobs advanced in their progress, i.e., minimising £,

Most work remaining (MWR)
whose intention is to accelerate the processing of jobs that require a great deal of work,
yielding a balanced progress for all jobs during dispatching. However, in-process inventory

can be high.

These rules are the ones most commonly applied in the literature due to their simplicity and sur-
prising efficiency. Therefore, they will be referenced throughout the dissertation. However, there
are many more available, e.g., randomly selecting an operation with equal possibility (RND);
minimum slack time (MST); smallest slack per operation (S/OP); and using the aforementioned
dispatching rules with predetermined weights. A survey of more than 100 of such rules are pre-
sented in Panwalkar and Iskander (1977). However, the reader is referred to an in-depth survey
for SDRs by Haupt (1989).

To summarise, SDRs assign an index to each job of the job-list waiting to be scheduled, and
are generally only based on few features and simple mathematical operations. Continuing with
the example from Section 2.3, the final schedules for these main SDRs (and a possible optimal
schedule for reference) are depicted in Fig. 2.4. As we can see, MWR would have been the best

strategy for Alice and company, since it has the makespan closest to the optimum.

2.5 FEATURES FOR JOB-SHOP

A DR may need to perform a one-step look-ahead, and observe features of the partial schedule to
make a decision. For example by observing the resulting temporal makespan. These emanated

observed features are sometimes referred to as an after-state or post-decision state. A k-solution is
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Figure 2.3: Gantt chart of a partial JSP schedule after 10 dispatches: Solid and dashed boxes
represent x and L") respectively. Current Cpey denoted as dotted line.
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Figure 2.4: SDRs applied to the Tea Party example in Section 2.3. A possible optimal
solution is shown in the lower right corner as a reference.
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2.6. COMPOSITE DISPATCHING RULES

denoted x/ where J; is the latest dispatch, i.e., y, = J;, and its resulting features is denoted,

¢ = o(x). (2.10)

Features are used to grasp the essence of the current state of the schedule. Temporal scheduling
features applied in this dissertation are given in Table 2.2.

The features of particular interest were obtained from inspecting the aforementioned SDRs
from Section 2.4: namely ¢, and ¢, . Moreover, {g;}{_, and {g, }}% are job-related and machine-
related attributes of the current schedule, respectively.

Some features are directly observed from the k-solution, such as the job- and machine-related
features, namely, {¢,}!%, and they are only based on the current step of the schedule, i.e., sched-
ule’s local features, and might not give an accurate indication of how it will effect the schedule
in the long run. Therefore, a set of features are needed to estimate the schedule’s overall perfor-
mance, referred to as its global features.

The approach here is to use well known SDRs, {¢;}°,, as a benchmark by retrieving what

would the resulting Cp,x be given if that SDR would be implemented from that point forward.

24

Moreover, random completion of the k-solution are implemented, here {¢,};%,, corresponds to

statistics from 100 random roll-outs, which can be used to identify which features ¢ are promising

1

16 features will be considered,

on along-term basis. For the majority of the dissertation only {¢, }]

24

since the calculation of global features { ¢, };2, is somewhat computationally intensive. They will

be specifically addressed in Chapter 11.

2.6 COMPOSITE DISPATCHING RULES

Priority dispatching rules were originally introduced in Giffler and Thompson (1960) to resolve
conflicts of the job-list, and have made great headway since. They are especially attractive since
they are relatively simple to implement, fast and find good schedules. In addition, they are easy to
interpret, which makes them desirable for the end-user (i.e. shop floor operators). However, they
can also fail unpredictably. Jayamohan and Rajendran (2004 ) showed that a careful combination
of dispatching rules can perform significantly better. These are referred to as composite dispatching
rules (CDR), where the priority ranking is an expression of several DRs.

For instance, optimising ]1\ ]Lmax (Pinedo, 2008, see. chapter 14.2), one can combine SDRs
that are optimal for a different criteria of problem instances, which complement each other as a
CDR, e.g,, combining the SDRs: i) WSPT * (SPT weighted w.rt. 7 ), and ii) minimum slack
first (MS),** yields the CDR Apparent Tardiness Cost, which can work well on a broader set of

*WSPT is optimal when all release dates and due dates are zero.
**MS is optimal when all due dates are sufficiently loose and spread out.
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CHAPTER 2. JOB-SHOP SCHEDULING PROBLEM

Table 2.2: Feature space F for JSP where job J; on machine M, given the resulting temporal
schedule after dispatching (j, a).

() Feature description Mathematical formulation Shorthand
job related
?, job processing time Dja proc
@,  job start-time x5(j, a) startTime
¢,  jobend-time x:(j, a) endTime
¢,  jobarrival time xe(j,a —1) arrival
P, time job had to wait x5(j,a) — x.(j,a — 1) wait
?s total processing time for job > wcrt bia jobTotProcTime
?, total work remaining for job Dowe MM, Pia’ jobWrm
P4 number of assigned operations for job |M;| jobOps
machine related
?, when machine is next free max;y ¢ 7, {x. (G',a)} macFree
¢,  total processing time for machine > je g Pia macTotProcTime
P, total work remaining for machine Zj, e\TPia macWrm
P, number of assigned operations for machine | 74| macOps
9, change in idle time by assignment As(a,j) reducedSlack
¢, totalidle time for machine e sa, i) macSlack
9, total idle time for all machines D wem Zi’ e, s(a’,j) allSlack
¢,  current makespan MaX(7,a/) € T x M, {x(i',a’)}  makespan
final makespan related
., final makespan using SPT C,SJ;I @) SPT
P final makespan using LPT C;I;T(Xk) LPT
Py final makespan using LWR C;‘ka(xk) LWR
P final makespan using MWR Cm(xk> MWR
@rnp  fnal makespans using 100 random rollouts {CﬁI;IXD(xk) He
?. mean for @ o E { PrnD } RNDmean
¢,,  standard deviation for y, \/ E { PAND } —E { PrnD }2 RNDstd
9., minimum value for ¢, min{@gp} RNDmin
¢,,  maximum value for oy max{@pnp RNDmax
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2.6. COMPOSITE DISPATCHING RULES
problem instances than the original SDRs by themselves.

CDRs can deal with a greater number of more complicated functions constructed from the
schedules attributes. In short, a CDR is a combination of several DRs. For instance let & be a
CDR comprised of d DRs, then the index I for J; € £® using 7 is,

d
r= 3w (211)

where w; > oand Zfl: o Wi = 1, then w; gives the weight of the influence of 7; (which could be a
SDR or another CDR) to 7. Note, each 7; is function of J;’s attributes from the k-solution .

The composite priority dispatching rule presented in Eq. (2.11) can be considered as a special

case of a the following general linear value function,

d
w(x) = Y wio () = (w-¢/). (212)

when 7;(-) = ¢,(-), i.e., a composite function of the features from Table 2.2. Finally, the job to

be dispatched, ]+, corresponds to the one with the highest value, i.e.,

Jj» = argmax 7(¢/) (2.13)
JieL

Since we’re using a feature space based on job-attributes, then it’s trivial to interpret Eq. (2.12)
as the SDRs from Section 2.4. Then fori € {1,. .., d}, they’re simply,

—1 ifi=1
SPT: w; = { ] (2.14a)
o otherwise
i —
LPT: w; = { PRt (2.14b)
o otherwise
£ —
MWR: w; = { v 7_ (2.14¢)
o otherwise
T
LWR: w; = { PR 7_ (2.14d)
o otherwise
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AUTOMATED DISCOVERY OF CDRs

Generally the weights w in Eq. (2.12) are chosen by the algorithm designer a priori. A more
sophisticated approach would have the algorithm discover these weights autonomously. For
instance via preference-based imitation learning or evolutionary search, to be discussed in Chap-
ter 8 and Chapter s, respectively.

Ménch et al. (2013 ) stress the importance of automated discovery of DRs and named several
successful such implementations in the field of semiconductor wafer fabrication facilities. How-
ever, Monch et al. note that this sort of investigation is still in its infancy and subject for future
research.

A recent editorial of the state-of-the-art approaches in advanced dispatching rules for large-

scale manufacturing systems by Chen et al. (2013 ) points out that:

[..] most traditional dispatching rules are based on historical data. With the emer-
gence of data mining and on-line analytic processing, dispatching rules can now take

predictive information into account.

implying that there has not been much automation in the process of discovering new dispatch-
ing rules, which is the ultimate goal of this dissertation, i.e., automate creation of optimisation
heuristics for scheduling.

With meta heuristics one can use existing DRs and use for example portfolio-based algorithm
selection either based on a single instance (Gomes and Selman, 2001, Rice, 1976) or class of
instances (Xu et al., 2007) to determine which DR to choose from. Instead of optimising which
algorithm to use under what data distributions, such as the case of portfolio algorithms, the ap-
proach taken in this dissertation is more similar to that of meta learning (Vilalta and Drissi, 2002),
which is the study of how learning algorithms can be improved, i.e., exploiting their strengths and
remedy their failings, in order for a better algorithm design. Thus, creating an adaptable learning
algorithm that dynamically finds the appropriate dispatching rule to the data distribution at hand.

Kalyanakrishnan and Stone (2011) point out that meta learning can be very fruitful in rein-
forcement learning, and in their experiments they discovered some key discriminants between
competing algorithms for their particular problem instances, which provided them with a hybrid
algorithm which combines the strengths of the algorithms.

Nguyen et al. (2013) proposed a novel iterative dispatching rules for JSP which learns from
completed schedules in order to iteratively improve new ones. At each dispatching step, the
method can utilise the current feature space to ‘correctify’ some possible ‘bad’ dispatch made
previously (sort of reverse lookahead). Their method is straightforward, and thus easy to im-
plement and more importantly, computationally inexpensive, although Nguyen et al. stress that

there still remains room for improvement.
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2.7. RICE'S FRAMEWORK FOR JOB-SHOP

Korytkowski et al. (2013) implemented ant colony optimisation to select the best DR from a
selection of 9 DRs for JSP and their experiments showed that the choice of DR does affect the
results and that for all performance measures considered it was better to have all of the DRs to
choose from rather than just a single DR at a time.

Similarly, Lu and Romanowski (2013 ) investigate 11 SDRs for JSP to create a pool of 33 CDRs
that strongly outperformed the ones they were based on. The CDRs were created with multi-
contextual functions based either on machine idle time or job waiting time (similar to ¢ sandg
in Table 2.2), creating CDRs thate are a combination of those two key features of the schedule and
then the basic DRs. However, there are no combinations of the basic DR explored, only machine
idle time and job waiting time.

Yu et al. (2013) used priority rules to combine 12 existing DRs from the literature, in their
approach they had 48 priority rules combinations, yielding 48 different models to implement
and test.

It is intuitive to get a boost in performance by introducing new CDRs, since where one DR
might be failing, another could be excelling so combining them together should yield a better
CDR. However, these aforementioned approaches introduce fairly ad hoc solutions and there is

no guarantee the optimal combination of dispatching rules were found.

2.7 RICE’S FRAMEWORK FOR JOB-SHOP

Rice’s framework for algorithm selection (discussed in Section 1.1) has already been formulated
for job-shop (cf. Smith-Miles and Lopes (2011), Smith-Miles et al. (2009) and Paper III), as

follows,

Problem space P is defined as the union of N problem instances consisting of processing

time and ordering matrices, x = (p, @), for n-jobs and m-machines,
N
P={x : nxm},_, (2.15)
Problem generators for P are given in Chapter 3.

Feature space JF which was outlined in Section 2.5. Note, these are not the only possible
set of features. However, the local feature, {¢,}°, are built on the work by Smith-Miles
etal. (2009) and Paper I and deemed successful in capturing the essence of ajob-shop data

structure;
Algorithm space A is simply the scheduling policies under consideration, e.g., SDRs
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CHAPTER 2. JOB-SHOP SCHEDULING PROBLEM

from Section 2.4,

A = {SPT,LPT, LWR, MWR,RND, ... }. (2.16)

Performance space ) is based on the resulting Cy,y, defined by Eq. (2.4). The optimum
makespan is denoted CZ%, ., i.e,, following the expert policy 7., and the makespan obtained
from the scheduling policy # € 4 under inspection by C7 ... Since the optimal makespan
varies between problem instances the performance measure is the following,

T (T
_ Cmax Cmax

T
Crilax

p -100% (2.17)

which indicates the deviation from optimality, p. Thus ) is given as,
N
y = {Pi}i=1 (2'18)

Equation (2.17) measures the discrepancy between predicted value and true outcome, and

is commonly referred to as a loss function, which we would like to minimise for 7.

The mapping Y : A X F — ) is the step-by-step construction heuristic in Algorithm 1.
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If it had grown up, it would have made a dreadfully ugly child; but
it makes rather a handsome pig, I think.

Alice

Problem generators

YNTHETIC PROBLEM INSTANCES FOR JSP and FSP will be used throughout this dissertation.
The problem spaces are detailed in the Sections 3.1 and 3.2 for JSP and FSP, respectively.
Moreover, a brief summary is given in Table 3.2. Following the approach in Watson et al. (2002),
difficult problem instances are not filtered out beforehand. The problem spaces for Part II are
summarised in Table 3.1. Note, that the problem generators in Papers IV to VI are the same as

described here.

Although real-world instances are desirable, unfortunately they are scarce. Hence in some
experiments (mainly in Chapter 12), problem instances from OR-Library maintained by Beasley
(1990) will be used as benchmark problems. They are detailed in Section 3.3.

Table 3.1: JSP and FSP problems spaces used in Part Il

Paper Problem I = [u,u,]* size (n X m) name
I JSP [1,100], [s0,100] 6 X 6 j.rnd, j.rndn
III JSP [1,200] 6 X6 j.rnd
IV JSP,FSP [1,99],[45,55] 6 X 5,10 X 10 j.rnd,j.rndn,f.rnd, f.radn, f.jc
VvV JSP [1,99], [45,55] 6 x5 j.rnd, j.rndn
VI JSP,ESP [1,99], [45,55] 10 X 10 j.rnd, j.rndn, f.rnd

*Processing times are uniformly distributed from an interval I = [u,, u,],ie, p ~ U (u;, u,).
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CHAPTER 3. PROBLEM GENERATORS

It is noted, that some of the instances are also simulated, but the majority are based on real-

world instances, albeit sometimes simplified.

3.1 JOB-SHOP

Problem instances for JSP are generated stochastically by fixing the number of jobs and machines
and discrete processing time are i.i.d. and sampled from a discrete uniform distribution. Two

different processing times distributions were explored, namely,

nxXm
JSP random iornd

where p ~ U(1,99);

nXxXm

JSP random-narrow i rndn

where p ~ U(45,55).

The machine ordering is a random permutation of all of the machines in the job-shop. For each
JSP class Nipin and N instances were generated for training and testing, respectively. Values
for N are given in Table 3.2.

Although in the case of 73;_1;;" this may be an excessively large range for the uniform distribu-
tion, it is however, chosen in accordance with the literature (Demirkol et al., 1998) for creating
synthesised Jm||Cyax problem instances.

In order to inspect the impact of any slight change within the problem spaces, two mutated

. nxXm
versions were created based on v ) namely,
. . . . nxm
JSP random with job variation rnd,),

where the first job, J,, is always twice as long as its random counterpart, ie.,

Pra = 2 prgy Wherep € f;?, forall M, € M.

. . . . nxXm
JSP random with machine variation i nd,M,

where the first machine, M, is always twice as long as its random counterpart, i.e.,
Pjr = 2 - pji, where p EP;‘;;;", forallJ; € J.
Therefore making job J, and machine M, bottlenecks for ]"rflz I and 77].'?;2 ,» Tespectively.
Hildebrandt et al. (2010) argue that the randomly generated problem instances aren’t a
proper representative for real-world long-term job-shop applications, e.g., by the narrow choice
of release-dates, yielding schedules that are overloading in the beginning phases. However,
as stated in Chapter 2, release-dates constraints won't be considered here. In addition, w.r.t.
the machine ordering, one could look into a subset of JSP where the machines are partitioned
into two (or more) sets, where all jobs must be processed on the machines from the first set

(in some random order) before being processed on any machine in the second set, commonly
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3.2. FLOW-SHOP

denoted as Jm|2sets| Cax problems, but as discussed in Storer et al. (1992) this family of JSP is
considered ‘hard’ (w.r.t. relative error from best known solution) in comparison with the ‘easy’
or ‘unchallenging’ family with the general Jm||Cpmax set-up. This is in stark contrast to Watson
et al. (2002) whose findings showed that structured Fm||Cpax were much easier to solve than
completely random structures. Intuitively, an inherent structure in machine ordering should be
exploitable for a better performance. However, for the sake of generality, a random structure is
preferred as they correspond to difficult problem instances in the case of JSP. Whereas, structured

problem subclasses will be explored for FSP.

3.2 Frow-sHoP

Problem instances for FSP are generated using Watson et al. (2002) problem generator.* There
are two fundamental types of problem classes: non-structured versus structured.
Firstly, there are two ‘conventional’ random (i.e. non-structured) problem classes for FSP

where processing times are i.i.d. and uniformly distributed,

FSP random 79}? an?
where p ~ U (1, 99) whose instances are equivalent to Taillard (1993 )**;

FSP random narrow 77; vl

where p ~ U(45,55).

In the JSP context Py o and Py < are analogous to 73;';;21 and 73]";21 , respectively.
Secondly, there are three structured problem classes of FSP which are modelled after real-

world characteristics in flow-shop manufacturing, namely,

FSP job-correlated 77;’ jf "

where p is dependent on job index, however, independent of machine index.

FSP machine-correlated P; "

where p is dependent on machine index, however, independent of job index.

FSP mixed-correlated P"*™

.mxc

where p is dependent on machine and job indices.

In all cases, the (job, machine or mixed) correlation can be of degree 0 < a < 1. Whena = 0.0

the problem instances closely correspond to 73; ", hence the degree of a controls the transition

of random to structured. Let’s assume a = 1.

*Both code, written in C++, and problem instances used in their experiments can be found at: http://www.cs.
colostate.edu/sched/generator/
**Taillard’s generator is available from the OR-Library.
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Figure 3.1: Examples of job processing times for 6 x s of different FSP structures

An example of distribution of processing times are depicted in Fig. 3.1, where machine indices
are on the horizontal axis, job indices are shape-coded, and their corresponding processing times,
Pjas are on the vertical axis.

For each FSP class Nir,in and Niegt instances were generated for training and testing, respec-

tively. Values for N are given in Table 3.2.

3.3 BENCHMARK PROBLEM SUITE

A total of 82 and 31 benchmark problems for JSP and FSP, respectively, were obtained from the
Operations Research Library (OR-Library) maintained by Beasley (1990) and summarised in
Table 3.3. Given the high problem dimensions of some problems, the optimum is not known,
hence in those instances Eq. (2.17) will be reporting deviation from the latest best known solution
(BKS) from the literature, reported by Banharnsakun et al. (2012), Jain and Meeran (1999), and

for FSP consult Anciu (2012).

JoB-sHoP OR-LIBRARY

Fisher and Thompson (1963) had one of the more notorious benchmark problems for JSP, and
computationally expensive. However, now these instances have been solved to optimality. Similar
to the synthetic JSP problem spaces discussed earlier, Adams et al. (1988) introduce five JSP
instances with a random machine ordering and processing times p ~ U/(50, 100), for dimensions
10 X 10 and 20 X 15. Likewise, Yamada and Nakano (1992) consists of four 20 X 20 random

problem instances, where p ~ (10, 50). Storer et al. (1992) introduce a set of JSP problems

32
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Table 3.2: Problem space distributions used in experimental studies.

name size (n X M)  Niain Niest Dote
6
j_rxnfi 6 X5 500 500 random
03 6 X 0o oo random-narrow
j.rndn 5 N 5
6 o1 -
f :;Lfi J 6X5§ 500  soo random with job variation
- ’J1
6X5s . . e .
& i nd,M, 6X5§ soo 500 random with machine varjation
2
10 X10
i rnd 10 X 10 300 200 random
10X10
e 10 X 10 300 200 random-narrow
10 X10 . . . .
i nd,J, 10 X 10 300 200 random with job variation
j“;nX M 10 X 10 300 200 random with machine variation
6X5
Pt nd 6 X5 500 500 random
6X5s
Pt rndn 6 X5 500 3500 random-narrow
6 .
o, Pf.XS 6 X5 500 500 job-correlated
v -jc
B pexs hi lated
e 6 X5 500  soo machine-correlate
Pé;;c 6 X5 500 500 mixed-correlation
Pﬁnxdm 10 X 10 300 200 random

where p ~ U(1,100). There are a total of five problems in four dimension classes: i) 20 X 10;
ii) 20 X 15; iii) 50 X 10, and iv) s0 X 10. Where the first three classes are considered ‘hard’
and the last one as ‘easy’. Easy problems are ones corresponding to random machine ordering,
whereas hard problems are partitioned in such a way the jobs must be processed on the first half of
the machines before starting on the second half, i.e., Jm|2sets| Cpax. Applegate and Cook (1991)
introduced ten problem instances of 10 X 10 JSP where generated such that the machine ordering
was chosen by random users in order to make them ‘difficult’ Moreover, the processing times
were drawn at random, and the distribution that had the greater gap between its optimal value

and standard lower bound was chosen.

Frow-sHor OR-LIBRARY

For the FSP benchmarks, Heller (1960) introduces two deterministic instances based on ‘many-

machine version of book-printing, where processing times for n € {20,100} jobsand m = 10
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Table 3.3: Benchmark problems from OR-Library used in experimental studies.

name nXm Nig note shorthand
'Pﬁ various 3 Fisher and Thompson (1963) £t06,ft10,ft20
P, various 40 Lawrence (1984) la01-1a40

& P,  various s Adamsetal. (1988) abz05-abz09

™ P, 10X10 10 Applegate and Cook (1991)  orb01-orb10
P,.,  various 20 Storeretal. (1992) swv01-swv20
Pyu 20 X 20 4 Yamada and Nakano (1992)  ynO1-ynO4

N P.,,  various 8 Carlier (1978) carl-car8

2 P various 2 Heller (1960) hell,hel2
P.c  various 21 Reeves (1995)* reC01-reC42

*Only odd-numbered instances in recO1-rec42 are given, since the even-numbered instances are obtained from
the previous instance by just reversing the processing order of each job; the optimal value of each odd-numbered
instance and its even-numbered counterpart is the same.

machines are relatively short, i.e,, pj, € {o,..,9}. Carlier (1978) however, comprises of eight
problems (of various dimension) where there is high variance in processing times, presumably
p ~ U(1,1000). Reeves (1995) argues that completely random problem instances are unlikely
to occur in practice. However, only the random instances they used (type C) are reported in
the OR-Library, for a total of 42 problem instances with processing times following a uniform
distribution, p ~ U(1,100), of dimensions varying from 20 X 5to 75 X 20, although Anciu

. X . . . .
(2012) omitted P72 *° instances in their comparison.
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Sentence first — verdict afterwards.

The Queen

Problem difhculty

ROBLEM STRUCTURE AND HEURISTIC EFFECTIVENESS are closely intertwined. When inves-
P tigating the relation between the two, one can research what Corne and Reynolds (2010) call
footprints, which is an indicator how an algorithm generalises over a given instance space. This sort
of investigation has also been conducted by Pfahringer et al. (2000) under the alias landmarking.
From experiments performed by Corne and Reynolds, it is evident that one-algorithm-for-all
problem instances is not ideal, in accordance with no free lunch theorem (Wolpert and Macready,
1997). An algorithm may be favoured for its best overall performance, however, it is rarely the
best algorithm available over various subspaces of the instance space. Therefore, when comparing
different algorithms one needs to explore how they perform w.r.t. the instance space, i.e., their
footprint. That is to say, one can look at it as finding which footprints correspond to a subset of
the instance space that works well for a given algorithm, and similarly finding which footprints

correspond to a subset of the instance space that works poorly for a given algorithm.

In the context of job-shop this corresponds to finding good (makespan close to its optimum)
and bad (makespan far off its optimum) schedules. Note, good and bad schedules are inter-
changeably referred to as easy and hard schedules (pertaining to the manner they are achieved),
respectively.

Smith-Miles and Lopes (2011) also investigate algorithm performance in instance space using
footprints. The main difference between Corne and Reynolds and Smith-Miles and Lopes is how

they discretise the instance space. In the case of Corne and Reynolds they use job-shop and
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CHAPTER 4. PROBLEM DIFFICULTY

discretise manually between different problem instances; on one hand w.r.t. processing times,
e.g, p ~ U(10,20) versus p ~ U(20,30) etc, and on the other hand w.r.t. number of jobs, n.
They warn that footprinting can be uneven, so great care needs to be taken in how to discretise the
instance space into subspaces. This is why we consider the random vs. random-narrow problem
spaces in Sections 3.1 and 3.2.

On the other hand, Smith-Miles and Lopes use a completely automated approach. Using
timetabling instances, they implement a self-organizing map (SOM) on the feature space to group
similar problem instances together, that were both real world instances and synthetic ones using
different problem generators. That way it was possible to plot visually the footprints for several
algorithms.

Going back to the job-shop paradigm, then the interaction between processing time distri-
bution and its permutation is extremely important, because it introduces hidden properties in
the data structure making it easy or hard to schedule for the given algorithm. These underlying
characteristics (i.e. features), define its data structure. A more sophisticated way of discretising
the instance space is grouping together problem instances that show the same kind of feature
behaviour, especially given the fact the learning models in Chapter 8 will be heavily based on
feature pairs. Thereby making it possible to infer what sort of feature behaviour distinguishes
between good and bad schedules.

Instead of searching through a large set of algorithms and determining which algorithm is
the most suitable for a given subset of the instance space, i.e., creating an algorithm portfolio,
as is generally the focus in the current literature (Corne and Reynolds, 2010, Smith-Miles and
Lopes, 2011, Smith-Miles et al., 2009), the experimental study in the subsequent sections focuses
rather on few simple algorithms, namely the SDRs described in Section 2.4, i.e., we will limit the
algorithm space to,

A := {SPT, LPT, LWR, MWR} (4.1)

and try to understand how they work on the instance space, similar to Watson et al. (2002 ), who
analysed the fitness landscape of several problem classes for a fixed algorithm.

Depending on the data distribution, dispatching rules perform differently. A box-plot for
deviation from optimality, p, defined by Eq. (2.17), using all problem spaces from Table 3.2 are
depicted in Fig. 4.1. As one can see, there is a staggering difference between the interaction of
SDRs and their problem space. MWR is by far the best out of the four SDRs inspected for JSP —
not only does it reach the known optimum most often but it also has the lowest worst-case factor
from optimality. Similarly LWR for FSP.
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Although the same processing time distribution is used, there are some inherent structure in
which MWR and LWR can exploit for JSP and FSP, respectively, whereas the other SDRs cannot.
However, all of these dispatching rules are considered good and commonly used in practice and
no one is better than the rest (Haupt, 1989), it simply depends on the data distribution at hand.
This indicates that some distributions are harder than others, and these JSP problem generators

simply favours MWR, whereas the FSP problem generators favours LWR.

4.1 DISTRIBUTION DIFFICULTY

In Paper I1I, a single problem generator was used to create N = 1, 500 synthetic 6 X 6 job-shop
problem instances, where p ~ U/(1,200) and ¢ was a random permutation. The experimental
study showed that MWR works either well or poorly on a subset of the instances, in fact 18% and
16% of the instances were classified as easy and hard for MWR, respectively. Since the problem
instances were naively generated, not to mention given the high variance of the data distribution,
it is intuitive that there are some inherent structural qualities that could explain this difference in
performance. The experimental study investigated the feature behaviours for these two subsets,
namely, the easy and hard problem instances. For some features, the trend was more or less the
same, which are explained by the common denominating factor, that all instances were sampled
from the same problem generator. Whereas, those features that were highly correlated with the
end-result, i.e., the final makespan, which determined if an instance was labelled easy or hard,
then the significant features varied greatly between the two difficulties, which imply the inherent
difference in data structure. Moreover, the study gives support to that random problem instance
generators are foo general and might not suit real-world applications. Watson et al. (2002) argue
that problem instance generator should be more structured, since real-world manufacturing en-
vironment is not completely random, but rather structured, e.g., job’s tasks can be correlated or
machines in the shop. Watson et al. propose a problem instance generator that relates to real-
world flow-shop attributes, albeit not directly modelled after real-world flow-shop due to the fact
that deterministic Fm||Cpax is seldom directly applicable in practice (Dudek et al., 1992). This is

nxXm nxXm nxm . . . . .
why Pf. o 1 Phone and " mxc L€ also taken into consideration in Section 3.2.
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Figure 4.1: Box-plots of deviation from optimality, p, when applying SDRs for all problem

spaces in Chapter 3
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Figure 4.1 (cont.)

4.2 DEFINING EASY VERSUS HARD SCHEDULES

It’s relatively ad hoc how to define what makes a schedule ‘difficult’. For instance, it could be sen-

sible to define it in terms of how many Simplex iterations are needed to find an optimal schedule,

using Branch and Bound.* However, preliminary experiments showed that an increased amount

of Simplex iterations didn’t necessarily transcend to high p. If anything, it means there are many

optimal (or near-optimal) solutions available, which causes the slow process of pruning branches

of the tree, before reaching to a final incumbent solution. If that’s the case, than that’s promising

for our instance, as it’s likelier for an arbitrary algorithm to find a good solution.

*Branch and bound (Land and Doig, 1960) is a methodology in integer linear programming, where the original
problem is branched into smaller sub-problems until it becomes easily solvable. Each sub-problem has a lower bound
on its solution, found with LP-relaxation. Depending on the lower bound, sub-branches are systemically discarded,

since they cannot contain the optimal solution.
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Table 4.1: Threshold for p for easy and hard schedules, i.e., p < p**t Q" and p > p3d Q- are
classified as easy and hard schedules, respectively. Based on Table 3.2 training sets.

(@)6 x5 (b) 10 X 10

Problems Qi Q3 Problems Q1 Q3

jé-rxmsi 19-91 4721 ond 29.27  58.45
in 1663 45.01 Plondn 2674 §7.17
jé.;;fi,]l 11.85  38.53 jl,i;df;l 17.90  50.29
Pjé.::tsd,Ml 16.35  53.19 jl.‘:nxdl,zowl 18.00 65.79
73;:15‘1 18.46 35.52 Pﬁi;dw 26.13  39.27
P6Xs

f rdn 3.39  21.07

Pfjfs 0.64  3.34

Pé:ws 1.04 13.40

Poxs 0.46  3.67

.mxc

Intuitively, it’s logical to use the schedule’s objective to define the difficulty directly, i.e., in-
specting deviation from optimality, p. Moreover, since the SDRs from Eq. (4.1) will be used
throughout as a benchmark for subsequent models, the quartiles for p, using the SDRs on their
training set will be used to differentiate between easy and hard instances. In particular, the clas-

sification is defined as follows,

Easy schedules belong to the first quartile, i.e.,

E(a) =={x: p=T(a,x) < p"* ¥} (4.22)

Hard schedules belong to the third quartile, i.e.,

H(a) == {x : p=TY(a,x) > p>* ¥} (4.2b)

where X € Pin foragivena € A from Eq. (4.1). Table 4.1 reports the first and third quartiles
for each problem space, i.e., the cut-off values that determine the SDRs difficulty, whose division,
defined as percentage of problem instances, i.e.,

[#H(a)l

[£(a)] -100% and

train train

-100% (23)

for each a € A, are given in Tables 4.2 and 4.3, respectively.
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Table 4.2: Percentage (%) of 6 x s training instances classified as easy and hard schedules,
defined by Eq. (4.3). Note, each problem space consists of Ni.in = 500.

@ P (b) P} G (©) P,

.rnd

SDR  Easy Hard SDR  Easy Hard SDR  Easy Hard

SPT 8.90 30.38 SPT 2.88 37.54 SPT 8.22 38.20
LPT 22.06 15.24 LPT 24.42 9.70 LPT 27.92 14.18
LWR 3.64 54.18 LWR 2.10 §2.82 LWR 7.80 46.70
MWR 65.30 0.20 MWR 70.70 0.06 MWR 36.00 0.92

@ P, (©) Pl (6) Pf i

SDR  Easy Hard SDR  Easy Hard SDR  Easy Hard

SPT 2.28 43.08 SPT 23.02 22.90 SPT 0.94 44.38
LPT 31.68 5.72 LPT 8.44 41.82 LPT 13.22 7.28
LWR 1.10 §51.12 LWR 47.60 7.50 LWR 85.18 o
MWR 64.96 o.10 MWR 20.94 27.82 MWR  0.48 48.42

(8) P7y? (b) Pf,u¢ O)crind

f.je .mc
SDR  Easy Hard SDR  Easy Hard SDR  Easy Hard

SPT 22.14 36.44 SPT 10.64 49.20 SPT  12.58 45.16
LPT 21.52 24.08 LPT 18.46 18.98 LPT 26.30 24.78
LWR 35.64 2.80 LWR 49.04 o LWR 31.60 7.68
MWR 21.38 36.70 MWR 21.46 31.76 MWR 29.66 22.48

Table 4.3: Percentage (%) of 10 X 10 training instances classified as easy and hard schedules,
defined by Eq. (4.3). Note, each problem space consists of Ni.in = 300.

(a) 10 X10 (b) 10 X10

j.rnd j.rndn

SDR  Easy Hard SDR  Easy Hard

SPT 2.67 27.00 SPT 1.00 31.67
LPT 10.33 13.67 LPT 6.67 9.33

LWR 0.67 59.33 LWR o 5§9.00
MWR 86.33 o MWR 92.33 o
10X 10 10X10 10X10
(C) jornd,J, (d) j.rnd,M, (e) fornd

SDR  Easy Hard SDR  Easy Hard SDR  Easy Hard

SPT 3.33 40.00 SPT 0 44.33 SPT  20.15 20.90
LPT 21.67 11.33 LPT 25.33 3.33 LPT 4.10 49.25
LWR 3.67 48.67 LWR 0 52.33 LWR 58.58 s5.60
MWR 71.33 o MWR 74.67 o MWR 17.16 24.63
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4.3 CONSISTENCY OF PROBLEM INSTANCES

The intersection of pairwise SDRs being simultaneously easy or hard are given in Tables 4.4 to 4.7,
ie.,

E(a;)) N E(a; H(a;) N H(a;

‘ ( l) ( })| X 100% or ‘ ( l) ( ])’ .100% (4'4)
Ntrain Ntrain

where a;, a; € A. Note, when a; = a; then Eq. (4.4) is equivalent to Eq. (4.3).

Even though this is a naive way to inspect difference between varying SDRs, it’s does give
some initial insight of the potential of improving dispatching rules; a sanity check before going
into extensive experiments, as will be done in Section 7.6.

For the corresponding 10 X 10 training set (cf. Tables 4.6 and 4.7), the intersections between
SDRs from 6 X s (cf. Tables 4.4 and 4.5) seem to hold. However, by going to a higher dimension,
the performance edge between SDRs becomes more apparent, e.g., in JSP when there was a slight
possibility of LWR being simultaneously easy as other SDRs (5% < chance), it becomes almost
impossible for 10 X 10. Making LWR a clear underdog. Despite that, for FSP the tables turn;
now LWR has the performance edge. For instance, for 73; 5, the second best option is to apply
LPT (13.22%), however, there is a quite high overlap with LWR (11.74%), and since LWR is
easier significantly more often (85.18%), the choice of SDR is quite obvious. Although, it goes to
show that there is the possibility of improving LWR by sometimes applying LPT-based insight;
by seeing what sets apart the intersection of their easy training sets.

Similarly for every 10 X 10 JSP (cf. Table 4.6), almost all easy LPT schedules are also easy for
MWR (< 1% difference), as is to be expected as MWR is the more sophisticated counterpart
for LPT (like LWR is for SPT). However, the greedy approach here is not gaining any new in-
formation on how to improve MWR. In fact, MWR is never considered hard for any of the JSP
(cf. Table 4.7), therefore no intersection with any hard schedules. But the LPT counterpart has
a relatively high occurrence rate (3-14%), so due to the similarity of the dispatching rules, the
denominating factor between LPT and MWR can be an indicator for explaining some of MWR’s
pitfalls. That is to say, why aren’t all of the job-shop schedules easy when applying MWR?
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Table 4.4: Percentage (%) of 6 X 5 training instances classified as easy simultaneously, defined
by Eq. (4.4). Note, each problem space consists of Niain = 500.

43

6X5 6X3
(a) 7Dj.rnd (b) Pj.rndn
SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR
SPT 8.90 2.04 1.02 5.44 SPT 2.88 0.82 0.34 2.12
LPT 2.04 22.06 1.14 17.46 LPT 0.82 24.42 0.54 18.96
LWR 1.02 1.14 3.64 2.12 LWR o0.34 0.54 2.10 1.46
MWR 5.44 17.46 2.12 65.30 MWR 2.12 18.96 1.46 70.70
6X5 6X5
(C) 7)j.rnd,]x (d) 7)j.rnd,Ml
SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR
SPT  8.22 3.20 2.46 5.12 SPT 2.28 0.60 0.24 1.20
LPT 3.20 27.92 3.22 22.10 LPT o0.60 31.68 0.36 26.60
LWR 246 3.22 7.80 4.94 LWR o0.24 0.36 1.10 0.64
MWR 5.12 22.10 4.94 56.00 MWR 1.20 26.60 0.64 64.96
6X5 6X5
(e) 7)f.rnd (f) mendn
SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR
SPT  23.02 2.76 15.00 4.90 SPT 0.94 o0.30 0.88 0.06
LPT 2.76 8.44 6.12  4.02 LPT o0.30 13.22 11.74 0.16
LWR 15.00 6.12 47.60 7.46 LWR 0.88 11.74 85.18 0.36
MWR  4.90 4.02 7.46 20.94 MWR o0.06 0.16 0.36 0.48
6X5 6X5
(8) Pric (h) Pf ¢
SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR
SPT  22.14 4.24 21.44 3.88 SPT 10.64 5.28 3.74 7.96
LPT 4.24 21.52 5.78 15.38 LPT 5.28 18.46 8.16 10.08
LWR 21.44 5.78 35.64 4.62 LWR 3.74 8.16 49.04 4.34
MWR 3.88 15.38 4.62 21.38 MWR 7.96 10.08 4.34 21.46
. 6X5§
(I)P.mxc
SDR SPT LPT LWR MWR
SPT 12.58 0.82 12.42 0.76
LPT 0.82 26.30 1.08 25.10
LWR 1242 1.08 31.60 0.98
MWR 0.76 25.10 0.98 29.66



CHAPTER 4. PROBLEM DIFFICULTY

Table 4.5: Percentage (%) of 6 x s training instances classified as hard simultaneously, defined
by Eq. (4.4). Note, each problem space consists of Niain = 500.

6X5 6X5
(a) Pj.md (b) 7Dj.mdn
SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR
SPT 30.38 5.24 21.08 0.04 SPT 37.54 4.46 25.56 0.02
LPT 5.24 15.24 9.78 0.10 LPT 4.46 9.70 6.18 0.04
LWR 21.08 9.78 54.18 0.08 LWR 25.56 6.18 52.82 0.06
MWR o0.04 o0.10 0.08 0.20 MWR o0.02 0.04 0.06 0.06
6X5s 6X5
(C) Pj.rnd,], (d) ,Pj.rnd,M‘
SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR
SPT 38.20 7.34 26.46 0.40 SPT 43.08 3.00 31.42 0.04
LPT 7.34 14.18 9.10 0.46 LPT 3.00 5.72  3.62 o
LWR 26.46 9.10 46.70 0.48 LWR 31.42 3.62 51.12 0.04
MWR 0.40 0.46 0.48 0.92 MWR o.04 o0 0.04 0.10
6X5 6X5
(e) Pf.rnd (f) ,Pf‘rndn
SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR
SPT 22.90 11.70 3.74 6.24 SPT  44.38 3.48 0 22.20
LPT 11.70 41.82 5.64 16.14 LPT 3.48 7.28 o 3.90
LWR 3.74 5.64 7.50 1.16 LWR o o o o
MWR 6.24 16.14 1.16 27.82 MWR 22.20 3.90 0 48.42
6X5 6X5
SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR
SPT  36.44 12.48 2.74 18.22 SPT  49.20 12.94 o 23.16
LPT 12.48 24.08 0.94 14.28 LPT 12.94 18.98 o 9.76
LWR 2.74 0.94 2.80 0.90 LWR [¢) ) o o
MWR 18.22 14.28 0.90 36.70 MWR 23.16 9.76 o 31.76
. 6X5
(I)P.me
SDR SPT LPT LWR MWR
SPT  45.16 12.24 7.48 11.34
LPT 12.24 24.78 0.52 14.10
LWR 7.48 0.52 7.68 0.26
MWR 11.34 14.10 0.26 22.48
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Table 4.6: Percentage (%) of 10 X 10 training instances classified as easy simultaneously,
defined by Eq. (4.4). Note, each problem space consists of Ni.in = 300.

(@) Pia® (6) P i (©) Piad,

SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR

SPT 2.67 0.33 o 2.33 SPT 1.00 0.33 o 1.00 SPT 3.33 1.00 1.33 3.00
LPT 0.33 10.33 o 10.33 LPT o0.33 6.67 o  5.00 LPT 1.00 21.67 1.67 20.33
LWR o o 0.67 0.33 LWR o o o o LWR 1.33 1.67 3.67 3.67
MWR 2.33 10.33 0.33 86.33 MWR 1.00 5.00 0 92.33 MWR 3.00 20.33 3.67 71.33

(d) ;1(;:;(1)\4 () Pﬁfdw

SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR

SPT o o o ) SPT 20.15 1.49 15.30 1.87
LPT o 25.33 o 25.00 LPT 1.49 4.10 2.99 0.7§
LWR o [¢) o o LWR 15.30 2.99 58.58 7.09
MWR 0 25.00 0 74.67 MWR 1.87 o.75 7.09 17.16

Table 4.7: Percentage (%) of 10 X 10 training instances classified as hard simultaneously,
defined by Eq. (4.4). Note, each problem space consists of Niain = 300.

(@) P (6) P i () Pind,

SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR

SPT 27.00 4.67 17.67 ) SPT 31.67 3.00 23.33 o SPT 40.00 7.00 27.00 o
LPT 4.67 13.67 9.00 o LPT 3.00 9.33  5.33 o LPT 7.00 11.33 9.67 o
LWR 17.67 9.00 59.33 ) LWR 23.33 5.33 59.00 o LWR 27.00 9.67 48.67 o
MWR o o o o MWR o o o o MWR o o o o
10 X 10 10 X 10
(d) j.rnd,M, (e) 7Df.md

SDR SPT LPT LWR MWR SDR SPT LPT LWR MWR

SPT  20.90 12.31 2.61 4.85
LPT 12.31 49.25 5.22 14.93
LWR 2.61  5.22  §5.60 1.49
MWR  4.85 14.93 1.49 24.63

SPT  44.33 1.67 28.00
LPT 1.67 3.33 2.00
LWR 28.00 2.00 352.33
MWR o o o

O O O ©o
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4.4 CONCLUSION

These have up until now all been speculations about how SDRs differ. One thing is for certain, the
underlying problem space plays a great role on a SDR’s success. Even slight variations to one job or
machine, i.e., ;‘:ﬂxdl;l and 'P]lcr> > dl,‘;\/fl , shows significant change in performance. Due to the presence
of bottleneck, MWR is able to detect it and thus becomes the clear winner. Even outperforming

10 X10

the original i ornd

which they’re based on, despite having processing times doubled for a single
job or machine, with approximately 10% lower first quartile (cf. Table 4.1b) in both cases.

As the objective of this dissertation is not to choose which DR is best to use for each prob-
lem instance. The focus is set on finding what characterises of job-shop overall, are of value
(i.e. feature selection), and create a new model that works well for the problem space to a great
degree. Namely, by exploiting feature behaviour that is considered more favourable. The hy-
pothesis being that features evolutions of easy schedules greatly differ from features evolutions
corresponding to hard schedules, and Section 7.6 will attempt to explain the evidence show in
Tables 4.2 to 4.7.

Note, this section gave the definition of what constitutes an ‘easy’ and ‘hard’ schedule. Since
these are based on four SDRs (cf. Eq. (4.1)) the training data for the experiments done in this

chapter is based on 4Niy,in problem instances, per problem space, therefore,

Z|g(u)| ~ Ntrain and Z|H(a)| ~ Ntrain (4-5)

acA acA

due to the fact Eq. (4.2) are based on the first and third quartiles of the entire training set. Now,
as the SDRs vary greatly in performance, the contribution of a SDR to Eq. (4.5) varies, resulting
in an unbalanced sample size when restricted to a single SDR, which is done in Section 7.6. It’s
for that reason we adjust A := (SDR) for a single SDR inspection, i.e., then the ‘easy’ and ‘hard’
problems are each approximately iNtrain, and instances don’t necessarily coincide across different
SDRs.

Despite problem instances being created by the same problem generator, they vary among
one another enough. As a result, all instances are not created equal; some are always hard to
solve, others always easy. Since the description of the problem space isn’t enough to predict its
performance, we need a measure to understand what’s going on. Why are some instances easier
to find their optimum (or close enough)? That is to say, what’s their secret? This is where their
feature evolution comes into play. By using schedules obtained by applying SDRs we have the
ability to get some insight into the matter.
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There’s a large mustard-mine near here. And the moral of that is -
The more there is of mine, the less there is of yours.

The Duchess

Evolutionary Search

ENETIC ALGORITHMS (GA) ARE ONE OF THE most widely used approaches in JSP literature
(Pinedo, 2008). GA is search heuristic that is inspired by the process of natural selection,
and is a subclass of evolutionary algorithms (EA), which generate solutions to optimisation prob-
lems using techniques based on natural evolution, such as inheritance, mutation, selection, and

crossover.

When applying GAs to JSP, an extensive number of schedules need to be evaluated, and even
for low dimensional JSP, it can quickly become computationally infeasible. GAs can be used
directly on schedules (Ak and Koc, 2012, Cheng et al., 1996, 1999, Qing-dao-er ji and Wang,
2012, Tsai et al,, 2007). However, then there are many concerns that need to be dealt with. To
begin with there are nine encoding schemes for representing the schedules (Cheng et al., 1996),
in addition, special care must be taken when applying cross-over and mutation operators in order
for the schedules (now in the role of ‘chromosomes’) to still remain feasible. Moreover, in case
of JSP, GAs are not adapt for fine-tuning around the optimum. Luckily a subsequent local search
can mediate the optimisation (Cheng et al., 1999, Meeran and Morshed, 2012).

The most predominant approach in hyper-heuristics, a framework of creating new heuristics
from a set of predefined heuristics, is genetic programming (Burke et al., 2013). Dispatching rules
based genetic algorithms (DRGA) (Dhingra and Chandna, 2010, Nguyen et al., 2013, Vizquez-
Rodriguez and Petrovic, 2009) are a special case of genetic programming (Koza and Poli, 2005),

where GAs are applied indirectly to JSP via dispatching rules, i.e., where a solution is no longer a
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proper schedule but a representation of a schedule via applying certain DRs consecutively.

As previously discussed in Chapter 1, there are two main viewpoints on how to approach
scheduling problems: i) tailored algorithms where schedules are built for one problem instance
at a time, and ii) general algorithms where schedules are built for all problem instances at once.
For tailored algorithms a simple construction heuristic is applied. The schedule’s features are
collected at each dispatch iteration from which a learning model will inspect the feature set to
discriminate which operations are preferred to others via ordinal regression. The focus is essen-
tially on creating a meaningful preference set composed of features and their ranks as the learning
algorithm is only run once to find suitable operators for the value function. This is the approach
taken in Paper I. Expanding on that work, this chapter will explore a general algorithms con-
struction viewpoint where there is no feature set collected beforehand since the learning model
is optimised directly via evolutionary search. The framework was first reported in Paper IV, and
later used to improve the preference models in Paper V.

Evolutionary search requires numerous costly value function evaluations. In fact it involves an
indirect method of evaluation whether one learning model is preferable to another, w.r.t. which
one yields a better expected mean. For that reason, it can be mediated with the use of preference
learning, as discussed in Paper II, albeit for traditional test functions suite (in particular Rosen-
brock’s function and Sphere model).

5.1 EXPERIMENTAL SETTING

A prevalent approach to solving JSP is to combine several relatively simple dispatching rules
such that they may benefit each other for a given problem space. Generally, this is done on an
ad hoc basis, requiring expert knowledge from heuristics designer, or extensive exploration of
suitable combinations of heuristics. The approach in Paper IV, was to automate that selection
similar to DRGA, by translating dispatching rules into measurable features and optimising what
their contribution should be via evolutionary search, i.e., optimise the weights w in Eq. (2.12)
directly using covariance matrix adaptation evolution strategy (CMA-ES) by Hansen and Oster-
meier (2001), which has been proven to be a very efficient numerical optimisation technique.
The framework is straight forward and easy to implement and shows promising results.
Moreover, Section 5.2 shows that the choice of objective function for evolutionary search is
worth investigating. Since the optimisation is based on minimising the expected mean of the
fitness function over a large set of problem instances, which can vary within. Then normalising
the objective function can stabilise the optimisation process away from local minima.
Preliminary experiments were first reported in Papers IV and V using: i) standard set-up of
parameters of the CMA-ES optimisation, and ii) runtime was limited to 288 hours on a cluster
for each PS5 problem set given in Table 3.2, where in every case the optimisation reached its

rain
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maximum walltime. Paper IV had one model forall K time steps, whereas Paper V used a different
stepwise model at each dispatch iteration.
Various data distributions from Chapter 3 are investigated. Due to computational cost, only

6 X s instances were initially considered. However, since then the scheduling subroutines have

10X10

been made more time-efficient, making P, ¢

applicable in a reasonable amount of time. CMA-
ES models will be mostly trained on the lower dimension, 6 X 5, and only the general random
10 X 10 JSP case is explored. Finally, to check robustness, models are validated on benchmark

tests sets from the OR-Library (cf. Section 3.3).

5.2 PERFORMANCE MEASURES

Generally, evolutionary search only needs to minimise the expected fitness value. However, the
approach in Paper I was to use the known optimum to correctly label which operations’ features
were optimal when compared to other possible operations. Therefore, it would be of interest to
inspect if there is any performance edge gained by incorporating optimal labelling in evolutionary

search. Therefore, two objective functions will be considered, namely,

ES.Chax := minE{Cmax} (s.1a)

for optimising w.r.t. Cpax directly, and on the other hand

ES.p:= minE{p} (5.1b)

which optimises w.r.t. the resulting Cpax scaled to its true optimum, i.e., Eq. (2.17).

5.3 EXPERIMENTAL STUDY

Main statistics of the experimental run are given in Table 5.1 and depicted in Fig. 5.1 for both
approaches. In addition, evolving decision variables, here weights w for Eq. (2.12), are depicted
in Fig. 5.2.

The evolution of fitness per generation from the CMA-ES optimisation of Eq. (5.1) is depicted
in Fig. 5.1. Note, most problem spaces reached their allotted maximum function evaluations*
without converging. In fact several problem spaces, e.g., 73; %, needed restarting during the
optimisation process. Notice 73].6.;5‘17 7 especially, then ES. Cy,x needs more than twice the amount
of function evaluations than using ES.p as an objective.

*Computational budget was set to 50,000 function evaluations
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Table 5.1: Final results for CMA-ES optimisation; total number of generations and function
evaluations and its resulting fitness value for both objective functions.

optimise Eq. (s.12)  optimise Eq. (5.1b)
Prain  |Model|* #gen #eval ES.Ciay #gen #eval ES.p

j.rnd 6 X5 1 1713 20544 476.34 4168 50004 6.23
j.rnd 6 X5 K 2274 50006 467.62 2274 50006 4.38
j.rndn 6 X5 1 4168 50004 442.99 4168 50004 8.28
j.rndn 6 X5 K 2274 50006 435.87 2274 50006 6.60
j.rnd,]1 6Xs5§ 1 4168 50004 666.03 1867 22392 3.26
jond,J; 6Xs5 K 2274 50006 658.57 2274 50006 2.13
j.rnd,M1 6 X § 1 2086 25020 603.46 3037 36432 §.60
jond,M; 6 X5 K 2274 50006 592.85 2274 50006 3.66
frnd 6X5 1 3683 44184 §70.15 4168 50004 7.34
fond 6 X5 K 2274 50006 558.37 2274 50006 5.07
frndn 6X5 1 1829 21936 508.63 4168 50004 0.92
f.rndn 6 X5 K 2274 50006 508.72 2274 50006 0.94

f.jc 6 X§ 1 4168 50004 5§567.80 4168 50004 0.34
fijc 6 X5 K 2274 50006 567.74 2274 50006 0.36
f.mc 6 X5 1 1796 21540 5§79.38 1731 20760 0.44
fmc 6 X5 K 2274 50006 578.85 2274 50006 0.34

f.mxc 6 X§ 1 4168 50004 §578.35 4168 50004 1.08
fmxc 6 X5 K 2274 50006 §78.09 2274 50006 0.37

j.rnd 10 X 10 1 966 11592 898.22 2997 35952 10.49

*Models are either stepwise (i.e. total of K models) or fixed throughout the dispatching process.

Furthermore, the evolution of the decision variables w are depicted in Fig. 5.2. As one can
see, the relative contribution for each weight clearly differs between problem spaces. Note, that
in the case of Pié'rxnfi (cf. Figs. 5.1 and 5.2a), CMA-ES restarts around generation 1,600 and
quickly converges back to its previous fitness. However, lateral relation of weights has completely
changed, implying that there are many optimal combinations of weights to be used. This can
be expected due to the fact some features in Table 2.2 are a linear combination of others, e.g.
¢, = @, + ¢,. Moreover, from Fig. 5.2b we see that the evolution of weights w.r.t. each step kis
quite erratic and Eq. (5.1a) is somewhat dissimilar to its Eq. (5.1b) counterpart, yet their resulting
p values are not significantly different. Most likely, this can be explained by feature equivalence.

In order to compare the two objective functions in Eq. (5.1), the best weights reported were
used for Eq. (2.12) on the corresponding training and test set. Its box-plot of deviation from
optimality, p, defined by Eq. (2.17), is depicted in Fig. 5.3a and Table 5.2 presents its main

statistics: mean, median, standard deviation, minimum and maximum values.
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Figure 5.1: Log fitness for optimising w.r.t. Eq. (5.1), per generation of the CMA-ES
optimisation.

In most cases (except for 73; oo 73)? jXS) there was a significant difference w.r.t. lower mean p,
when using a separate model for each time step, as is to be expected as the optimal dispatching
rules used in the beginning of the scheduling process may not necessarily be the same as in the
middle, or end of the schedule. Alas, stepwise models aren’t appropriate when inspecting robust-
ness towards different problem spaces.* Hence, a single model for all iterations is preferred.

Regarding the choice of objective function in Eq. (5.1), then there is no statistical differ-

ence between adopting either objective function with respect to training and test set, save for

6X5s
.mxc®

time independent P Now, when applying the time independent models to the OR-Library
benchmark data sets,** depicted in Fig. 5.3b, then we see a clear performance boost when using
Eq. (5.1b) in: i) 73;;5, PFXS and Pﬁﬁ;c for JSP, and ii) 776.;5 and P¢*5 for FSP. Therefore,
minimisation of expectation of p, is preferred over simply using the unscaled resulting makespan.
Also it’s noted that in Paper IV, then 73; ;5 optimised w.r.t. Eq. (5.1a) gave a considerably worse

results, since the optimisation got trapped in a local minimum.

*Note, time dependant models are inapplicable for OR-Library, since their size n X m does not match many of the
sizes in the benchmark set. However, this is irrelevant for time independent models.
**Best configuration is reported in Table 12.1.
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(a) evolution of weights for 73]":&" time independent models
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(b) stepwise evolultion of final weights for Pfrxnj time dependent models

Figure 5.2: Evolution of weights for features (given in Table 2.2). Note, weights are
normalised such that ||w| = 1.
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6X5

.~ obtains a significantly better mean p (from §2.8% down to

Furthermore, notice how P
24.46%) for the JSP (cf. Fig. 5.3b) then it did for it’s corresponding problem space, which was

the only setting where Eq. (5.1b) was significantly different than Eq. (5.1a) (worsening by Ap ~
+1%).

5.4 CONCLUSIONS

Data distributions considered in this study incorporated more problem spaces than in its initial
reports in Paper IV. Furthermore, both time dependent and independent models were optimised
with CMA-ES. The former generally obtained lower mean p. However, the latter was often equally
good, with the added benefit of being applicable for higher (or lower) dimensionality, which was
then tested using the benchmark set from the OR-Library.

The study showed that the choice of objective function for evolutionary search is worth inves-
tigating. There was no statistical difference from minimising the fitness function directly and its
normalisation w.r.t. true optimum (cf. Eq. (5.1)), save for time independent Pf 5 , when apply-
ing the models to their corresponding training and test set. However, preliminary experiments in
Paper IV and application on unseen data sets from the OR-Library, showed great improvement
when using Eq. (5.1b) over Eq. (5.12). Implying, even though CMA-ES doesn’t rely on optimal
solutions, there are some problem spaces where it can be of great benefit. This is due to the
fact that the problem instances can vary greatly within the same problem space (cf. Chapter 4
and Paper III). Thus normalising the objective function would help the evolutionary search to
deviate from giving too much weight for problematic problem instances.

The main drawback of using evolutionary search for finding optimal weights for Eq. (2.12) is
how computationally expensive it is to evaluate the mean expected fitness. Even for alow problem
dimension such as 6-job s-machine JSP, each optimisation run reached their maximum allotted
function evaluations without converging. Now, 6 X 5 JSP requires 30 sequential operations
where at each time step there are up to 6 jobs to choose from, in fact its complexity is O (n!™)
(Giffler and Thompson, 1960) making it computationally infeasible to apply this framework for
higher dimensions asis. Especially, considering that it’s preferred to run these experiments several
times — e.g. in Paper IV 77; jfs got stuck in local minima for ES.Cp,ax, which could have been
avoided by restarting the optimisation. However, evolutionary search only requires the rank
of the candidates and therefore it is appropriate to retain a sufficiently accurate surrogate for
the value function during evolution in order to reduce the number of costly true value function
evaluations, such as the approach in Paper II. This could reduce the computational cost of the
evolutionary search considerably, making it feasible to conduct the experiments from Section 5.3
for problems of higher dimensions, e.g., with these adjustments it is possible to train on 10 X 10

with greater ease, or even considering even higher dimensions.
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Figure 5.3: Box-plot for deviation from optimality, p, when implementing the final weights

obtained from CMA-ES optimisation, using objective functions from Eq. (5.1).
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Table 5.2: Main statistics for Fig. 5.3a

Puain  |Model| Eq.(s.1) Min. 1st Qu. Median Mean 3rd Qu. Max.
j.rnd 6x5 1 ES.Chyx o0.00 1.96 5.62 6.65 10.38 30.77
j.rnd 6 x5 K ES.Chyx 0.00 1.47 4.71  §5.92 8.48 30.77
j.rnd 6xs 1 ESp 0.00 2.04 5.59 6.55§ 9.97 33.10
j.rnd 6xs5 K ESp 0.00 1.39 4.64 5.74 8.72 34.75
j.rndn 6xX5s5 1 ES.Ch,x o0.00 2.2§ 10.36 8.73 12.08 29.38
j.rndn 6 X5 K ES.Ch,x 0.00 1.93 9.54 7.89 12.02 25.67
j.rndn 6xs5 1 ESp 0.00 2.25 10.37 8.62 12.22 25.00
j.rndn 6xs5 K ESp 0.00 1.95 9.71 7.88 12.04 30.85§
jornd, ], 6xX5s5 1 ES.Ch,x 0.00 0.00 1.03 3.64 6.27 29.74
jornd, ], 6 X5 K ES.Ch.x 0.00 0.00 0.51 2.96 4.74 27.39
jornd, 6xs5 1 ESp 0.00 0.00 0.94 3.56 6.12 30.43
jornd, ], 6xs K ES.p 0.00 0.00 0.57 2.99 4.53 30.86
jond,M, 6x5 1 ES.Cpay 0.00 0.71 4.35 5.78 9.12 26.25§
jond,M, 6x5 K ES.Cpuy 0.00 0.38 3.67 4.84 7.51 29.56
jornd, M, 6xs5 1 ESp 0.00 0.63 4.42  §5.76 9.16 26.25§
jond,M, 6xs5 K ES.p 0.00 0.35 3.77 4.86 7.77 28.87
frnd 6xX5 1 ES.Ch, o0.00 3.24 6.76 774  11.23 34.24
frnd 6 x5 K ES.Cp,x 0.00 2.31 5.13  6.10 8.62 39.95
frnd 6xs 1 ESp 0.00 3.30 6.79 7.90  11.45 32.88
fond 6xs K ES.p 0.00 2.32 5.15  5.97 8.76 27.68
frndn 6%xX5 1 ES.Cpix o0.00 0.39 0.80 1.00 1.41  4.66
frndn 6 X5 K ES.Cp,x o0.00 0.39 0.81 1.00 1.40 4.86
frndn 6xs 1 ESp 0.00 0.39 0.80 1.00 1.41  4.66
forndn 6xs5 K ESp 0.00 0.39 0.80 0.99 1.40 4.86
fjc 6xX5s5 1 ES.Ch.x 0.00 0.00 0.26 0.39 0.55 9.41
fijc 6 X5 K ES.Cp,x o0.00 0.00 0.26 0.37 0.54 4.2§
f.jc 6X5 1 ES.p 0.00 0.00 0.25 0.36 0.53 2.9§
fjc 6xs K ESp 0.00 0.00 0.26 0.38 0.57 4.25§
fomce 6X5 1 ES.Chx 0.00 0.00 0.24 0.46 0.69 4.93
f.mc 6 X5 K ES.Ch,x 0.00 0.00 0.16 0.38 0.57 3.69
f.mc 6xs 1 ESp 0.00 0.00 0.25 0.47 0.69 4.93
f.mc 6xs5 K ES.p 0.00 0.00 0.17 0.38 0.56 6.29
f.maxc 6xX5s5 1 ES.Ch,x o0.00 0.00 0.20 0.47 0.74 5.84
f.maxc 6 X5 K ES.Ch,x 0.00 0.00 0.17 0.43 0.65 5.84
f.maxc 6xs5 1 ESp 0.00 0.19 0.68 1.14 1.68 12.10
fmxc 6 x5 K ESp 0.00 0.00 0.17 0.40 0.63 5.84
j.rnd 10 X10 1 ES.Ch,x 0.13 7.97  10.57 10.86  13.47 25.35
jornd 10x10 1 ES,p 0.88 7.99 10.64 10.87 13.40 27.81

5S



56

CHAPTER s. EVOLUTIONARY SEARCH



Well! I've often seen a cat without a grin; but a grin without a cat!
It’s the most curious thing I ever say in my life!

Alice

Generating Training Data

EN BUILDING A COMPLETE job-shop schedule, K = 7 - m dispatches must be made
W:quuentially. A job is placed at the earliest available time slot for its next machine, whilst
still fulfilling constraints Ineqs. (2.2) and (2.3). Unfinished jobs are dispatched one at a time
according to some heuristic, or policy w. After each dispatch* the schedule’s current features
(cf. Table 2.2) are updated based on the half-finished schedule. Namely, when implementing
Algorithm 1, a training set will consist of all features from Table 2.2 at every post-decision state

visited in line 6. These collected features are denoted @, where,

Nirain K
O = U U U {q)/ D x; € Poirth. (6.1)
i=1 k:ljjeﬁ(k)

6.1 JOB-SHOP TREE REPRESENTATION

Continuing with the example from Section 2.3, Fig. 6.1 shows how the first two dispatches could
be executed for a 4 X §job-shop from Section 2.3. In the top layer one can see an empty schedule.
In the middle layer one of the possible dispatches from the layer above is fixed, and one can see
the resulting schedule, i.e., what are the next possible dispatches given this scenario? Assuming

], would be dispatched first, the bottom layer depicts all the next possible partial schedules.

*The terms dispatch (iteration) and time step are used interchangeably.
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empty schedule

Figure 6.1: Partial Game Tree for job-shop for the first two dispatches. Top layer depicts
all possible dispatches (dashed) for an empty schedule. Middle layer depicts all possible
dispatches given that one of the dispatches from the layer above has been executed (solid).
Bottom layer depicts when job J, on machine M, has been chosen to be dispatched from the
previous layer, moreover it depicts all possible next dispatches from that scenario.
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6.2. LABELLING SCHEDULES W.R.T. OPTIMAL DECISIONS

This sort of tree representation is similar to game trees (cf. Rosen, 2003 ) where the root node
denotes the initial (i.e. empty) schedule and the leaf nodes denote the complete schedule (result-
ing after n - m dispatches, thus height of the tree is K), therefore the distance k from an internal
node to the root yields the number of operations already dispatched. Traversing from root to
leaf node one can obtain a sequence of dispatches that yielded the resulting schedule, i.e., the
sequence indicates in which order the tasks should be dispatched for that particular schedule.

6.2 LABELLING SCHEDULES W.R.T. OPTIMAL DECISIONS

One can easily see that sequence x from Eq. (2.8) for task assignments is by no means unique.
Inspecting a partial schedule further along in the dispatching process such as in Fig. 2.3, then let’s
say ], would be dispatched next, and in the next iteration J,. Now this sequence would yield the
same schedule as if ], would have been dispatched first and then J, in the next iteration. This is
due to the fact they have non-conflicting machines, which indicates that some of the nodes in
game tree can merge. Meanwhile, the states of the schedule are different and thus their features,
although they manage to yield with the same (partial) schedule at a later date. In this particular
instance one can not infer that choosing J, is better and ], is worse (or vice versa) since they can
both yield the same solution.

Furthermore, in some cases there can be multiple optimal solutions to the same problem
instance. Hence not only is the sequence representation ‘flawed’ in the sense that slight permu-
tations on the sequence are in fact equivalent w.r.t. the end-result. In addition, varying permuta-
tions of the dispatching sequence (however given the same partial initial sequence) can result
in very different complete schedules but can still achieve the same makespan, and thus same
deviation from optimality, p, defined by Eq. (2.17) (which is the measure under consideration).
Care must be taken in this case that neither resulting features are labelled* as undesirable. Only

the features from a dispatch yielding a truly suboptimal solution should be labelled undesirable.

6.3 COMPUTATIONAL GROWTH

The creation of the game tree for JSP can be done recursively for all possible permutations of
dispatches, resulting in a full n-ary tree (since |£| < n) of height K. Such an exhaustive search
would yield at the most X leaf nodes. Worst case scenario being no sub-trees merge.

Since the internal vertices (i.e. partial schedules) are only of interest to learn,** the number of
those can be at the most ™ —* /n—1- Even for small dimensions of n and m the number of internal

*Here the tasks labelled ‘optimal’ do not necessarily yield the optimum makespan (except in the case of following
expert policy 7, ), instead these are the optimal dispatches for the given partial schedule.
**The root is the empty initial schedule and for the last dispatch there is only one option left to choose from, so
there is no preferred ‘choice’ to learn.
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vertices are quite substantial and thus too computationally expensive to investigate them all. Not
to mention that this is done iteratively for all Niy,i, problem instances.

Since we know that once a job is processed on all of its machines, then it stops being a con-
tender for future dispatches, therefore the all possible assignments of operations for an n X m JSP
would require an examination of (n!)™ (Giffler and Thompson, 1960), thus a 6 X 5 problem may
have at most 1.93 - 10'* possible solutions, and for 10 X 10 problem then it’s 3.96 - 10% solutions!
Thus the factorial growth makes it infeasible for exploring all nodes to completion. However, our
training data consist of relatively large Nirin, so even though we will only pursue one trajectory

per instance, then the aggregated training data will give it variety.

6.4 TRA]ECTORY SAMPLING STRATEGIES

For each feature in Eq. (6.1) we need to keep track of the resulting makespan for its dispatched

job. As a result, we obtain the meta-data from Fig. 1.1 as follows,

K

{(D:'T’yﬂ} — {{«p",CiL*a,(Z")} . ]j c E(k)}k eFxY (6.2)

=1

for a single problem instance X € Ply,in, and where c&;ﬁ}’) denotes the optimal makespan (i.e.

following the expert policy 7, ) from the resulting post-decision state x/.

Due to superabundant possible solutions for a single problem instance, there needs to be some
logic based on how to sample the state-space for a valuable outcome. Especially considering the
cost of correctly labelling * each dispatch that is encountered.** Obviously we'd like to inspect
optimal solutions as they are what we’d like to mimic. Moreover, since we’d like to infer the foot-
prints in instance space for the SDRs we started doing in Chapter 4, then we will consider them
also. Similarly, the weights for Eq. (2.12) that were optimised directly using from evolutionary

search (cf. Chapter 5) will also be used.

*Optimal solutions can be obtained by using a commercial software package by Gurobi Optimization, Inc. (2014),
which has a free academic licence. However, GLPK by Free Software Foundation, Inc. (2014) has a free licence. Alas,
GLPK has a lacklustre performance w.r.t. speed for solving 10 X 10 JSP.

**Generally it takes only several hours to collect Np S = soo. However, when going to higher dimension, Njo<'° =

. . 10 X 10 10 X 10 10 X 10 . ]
300 really becomes a computational issue, as P; 7, ° needs a few days, and P, 7 ;" or 7/ require several weeks!
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To clarify, the trajectory sampling strategies for collecting a feature set and its corresponding
labelling for Eq. (6.2) are the following:

Optimum trajectory, ®°PT or ®™*, at each dispatch some (random) optimal task is dis-

patched. This is also referred to following the expert policy, 7.

SPT trajectory, ®PT, at each dispatch the task corresponding to shortest processing
time is dispatched, i.e., following single priority dispatching rule SPT.

q)LPT

LPT trajectory, , at each dispatch the task corresponding to longest processing

time is dispatched, i.e., following single priority dispatching rule LPT.

LWR trajectory, ®'WR, at each dispatch the task corresponding to least work remaining
is dispatched, i.e., following single priority dispatching rule LWR.

MWR trajectory, @MWR, at each dispatch the task corresponding to most work remain-
ing is dispatched, i.e., following single priority dispatching rule MWR.

Random trajectory, ®®NP at each dispatch some random task is dispatched.

CMA-ES trajectories, DES? and ®ES-Cmx | at each dispatch the task corresponding to
highest priority, computed with fixed weights w, which were obtained by optimising the
mean for deviation from optimality, p, defined by Eq. (2.17), with CMA-ES optimisation
from Chapter s.

All trajectories, A, denotes all aforementioned trajectories were explored, i.e.,

o= {0* : VA € {x., SPT,LPT,LWR, MWR, RND, ES.p, ES.Cpax } }

When following optimal trajectory, then due to the nature of the sequence representation (i.e.
x), the earlier stages for ij 4 of the dispatching are more or less equivalent and thus irrelevant
(cf. Fig. 7.3). Hence it is appropriate to follow some random optimal path to begin with and then
go after some (if not all possible) optimal paths until completion at step K.

In the case of the ®(SPR) and @ (CMAES) trajectories it is sufficient to explore each trajectory
exactly once for each problem instance. Whereas, for ®°FT and @™ there can be several
trajectories worth exploring, however, only one is chosen (at random). It is noted that since
the number of problem instances, Niy,in, is relatively large, it is deemed sufficient to explore one
trajectory for each instance, in those cases as well.

These trajectory strategies were initially introduced in Paper V. However, more SDR-based
trajectories are now addressed since for example LWR is considered more favourable for flow-

shop rather than MWR (cf. Chapter 4).
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The number of features that were collected on a step-by-step basis for Po.3

in Table 3.2 is
illustrated in Fig. 6.2. There is an apparent stair-like structure for LWR, in accordance with its
motivation (cf. Section 2.4), which is completing jobs advanced in their progress, that is to say
minimising £ and from Eq. (6.1) we have |®(k)| o |£*)|. Whereas MWR tries to keep the
jobs more balanced, hence more steady |£|, until at k > (K — n) then |£| < (K — k), which
explains the sharp decent near the end for MWR. Table 6.1 gives the total size for |®|, indicating

the number of optimisations needed for obtaining ).
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j.rnd

3000 -

2000 -

1000 -

N

2000 -

1000 -

Size of training set, |P|

3000 -

2000 -

1000 -

— SPT — LPT — LWR

Track

== RND

Step

OPT == ES.rho

= MWR

ES.Cmax

Figure 6.2: Size of 6 x 5 feature set, |®|, over different trajectory strategies

Table 6.1: Total number of features in @ for all K steps. Note ‘~' denotes not available.

Track 73;:;: ) Nitrain = 500 P21, Nigain = 300
jornd  jondn jond,], jond, M, fornd forndn @ fjc fme  fmxc jond  jorndn  fornd
SPT 63197 63074 64560 61320 63287 63123 53678 66995 66216 211351 - -
LPT 63516 63374 63595 62864 63535 63320 53746 66356 65662 210490 - -
LWR 52500 §2500 52500 §2500 §2500 52500 §2500 52500 §250 165000 - -
MWR 79230 82500 78327 77934 79288 82500 80546 82498 8245 280739 - -
RND 71390 71608 71445 71463 71427 71945 71558 71456 7149 252515 - -
OPT 76592 78176 74109 74069 70037 69180 69716 71602 7102 272858 277717 211763
ES.p 78443 81248 78673 78866 68986 55943 60755 53707 74997 277851 - -
ES.Cmax 79343 81226 77903 79078 68602 56789 54781 52502 52510 276634 - -
ALL 564211 §73706 561112 558094 537662 515300 497280 517616 537121 1947438 277717 211763
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I don’t believe there's an atom of meaning in it.

Alice

Analysing Solutions

T IS INTERESTING TO KNOW IF THE DIFFERENCE in the structure of the schedule is time de-
Ipendent, e.g., is there a clear time of divergence within the scheduling process? Moreover,
investigation of how sensitive is the difference between two sets of features, e.g., can two sched-
ules with similar feature values yield: i) completely contradictory outcomes (i.e. one poor and
one good schedule)? Or ii) will they more or less follow the their predicted trend? If the latter
is the prevalent case, then instances need to be segregated w.r.t. their difficulty, where each has

their own learning algorithm implemented, for a more meaningful overall outcome.

Essentially this also answers the question of whether it is in fact feasible to discriminate be-
tween good and bad schedules using the currently selected features as a measure for the quality of
a solution. If results are contradictory, then it is an indicator the features selected are not robust
enough to capture the essence of the data structure and some key features are missing from the
feature set that could be able to discriminate between good and bad schedules. Additionally,
there is also the question of how to define ‘similar’ schedules, and what measures should be
used? This chapter describes some preliminary experiments with the aim of investigating the
feasibility of finding distinguishing features corresponding to good and bad schedules in job-shop.
To summarise: i) is there a time of divergence? ii) what are ‘similar’ schedules? iii) do similar
features yield contradictory outcomes? iv) are extra features needed? And v) what can be learned

from feature behaviour?

Remark: Figures 7.1 and 7.2 depict the mean over all the training data, which are quite noisy
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functions. Thus, for clarity purposes, they are fitted with local polynomial regression, making the
boundary points sometimes biased. Paper VI depicts the raw mean as is, albeit only for 10 X 10
problem spaces, which is also done here for Figs. 7.3 to 7.5 and 7.8.

7.1 MAKING OPTIMAL DECISIONS

In order to create successful dispatching rule, a good starting point is to investigate the properties
of optimal solutions and hopefully be able to learn how to mimic such ‘good’ behaviour. For

this, we follow an optimal solution (cf. ®OFT

in Section 6.4), and inspect the evolution of its
features (defined in Table 2.2) throughout the dispatching process, which is detailed in Chapter 6.
Moreover, it is noted, that there are several optimal solutions available for each problem instance.
However, it is deemed sufficient to inspect only one optimal trajectory per problem instance as

there are Ni,in independent instances which gives the training data variety.

Firstly, we can observe that on a step-by-step basis there are several optimal dispatches to
choose from. Figure 7.1 depicts how the number of optimal dispatches evolve at each dispatch
iteration. Note, that only one optimal trajectory is pursued (chosen at random), hence this is only
alower bound of uniqueness of optimal solutions. As the number of possible dispatches decrease

over time, Fig. 7.2 depicts the probability of choosing an optimal dispatch at each iteration.

To generalise, we could consider the probability of optimality as a sort of stepwise ‘training
accuracy. Then for a given policy 7, we'd formalise its optimality (yet still maintaining optimal

trajectory) as,
£ = En*{n’* = 71'} (7.1)

that is to say the mean likelihood of our policy 7 being equivalent to the expert policy 7., i.e.,
Y™ = Y”". Note, for £ we only need {®™*, )™} from Eq. (6.2): i) retrace 7, as done in
Algorithm 1, and ii) inspect if the job J;+ chosen by 7 yields the same c,’;*ai"' ) as the true optimum,

T
crs

7.2 MAKING SUBOPTIMAL DECISIONS

10X 10
j.rnd

optimal job. However, it is imperative to keep making optimal decisions, because once off the

Looking at Fig. 7.2, has a relatively high probability (70% and above) of choosing an

optimal track the consequences can be dire. To demonstrate this interaction, Fig. 7.3 depicts the

best and worst case scenario of deviation from optimality, p, once you’ve fallen off the optimal
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Figure 7.1: Number of unique optimal dispatches (lower bound).
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Figure 7.2: Probability of choosing optimal move (at random)
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track, defined as follows,

Cink) = En*{ min(p) : VCﬁax > Cuc N € ﬁ(k)} (7.2a)
Cra®) 1= Er { max(p) : VCHy 2 ConnJj € £V} (7.2b)

Note, that this is given that you make one wrong turn. Generally, there will be many mistakes
made, and then the compound effects of making suboptimal decisions really start adding up. In
fact, Fig. 7.5 shows the probability of optimality when following a fixed SDR (i.e. if Eq. (7.1) is
conditioned on 7 itself instead of 7, ).

It is interesting that for JSP, then making suboptimal decisions makes more of an impact on
the resulting makespan as the dispatching process progresses. This is most likely due to the fact
that if a suboptimal decision is made in the early stages, then there is space to rectify the situation
with the subsequent dispatches. However, if done at a later point in time, little is to be done as
the damage has already been inflicted upon the schedule. However, for FSP, the case is the exact
opposite. Under those circumstances it’s imperative to make good decisions right from the get-go.
This is due to the major structural differences between job-shop and flow-shop, namely the latter
having a homogeneous machine ordering and therefore constricting the solution immensely.
Luckily, this does have the added benefit of making flow-shop less vulnerable for suboptimal

decisions later in the decision process.

7.3 OPTIMALITY OF EXTREMAL FEATURES

The training accuracy from Eq. (7.1) of the aforementioned features from Table 2.2, or probability
of a job chosen by an extremal value for a feature being able to yield an optimal makespan on a
X 10 X10

step-by-step basis, i.e., E;W is depicted in Fig. 7.4, for both mesd and P70 °.
dashed line represents the benchmark of randomly guessing the optimum, {gyp (cf. Fig. 7.2).

Moreover, the

Furthermore, the figures are annotated with the corresponding mean deviation from optimality,
p, for the training set if it were scheduled solely w.r.t. that extremal feature.

Generally, a high stepwise optimality means a low p, e.g,, {¢;};%,,, save for ¢,,.** Unfortu-
nately, it’s not always so predictable. Take for instance ¢, then the minimum value gives a better

p, even though it’s unlikelier to be optimal than it’s maximum counterpart.

*Additional problem spaces for £% o, can be found in Shiny application: Features > Extremal.
**Note, ¢, is non-informative on its own, as a tight standard deviation implies either consistently high or low Cmax
from the roll-outs.
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FSP

Deviation from optimality, p (%)
Ol/euads ased ]1SIOM pue 1saq ueaw
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Figure 7.3: Mean deviation from optimality, p, for best and worst case scenario of making
one suboptimal dispatch (i.e. {5, and ;.. ), depicted as lower and upper bound, respectively.
Moreover, mean suboptimal move is given as dashed line.
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Before inspecting the local based features further. Notice that the staggering performance edge
for @, is lost when going to a higher dimension (cf. ¢, in Fig. 7.4a has p = 1.3% and increases
to 8.8% in Fig. 7.4b), implying that 100 random roll-outs for are not sufficient for fully exploring
10 X 10 state-space, yet highly competitive for 6 X s.

OrTIMALITY OF SDRS

Let’s limit ourselves to only features that correspond to SDRs from Section 2.4. Namely,
Eq. (2.14) yield: i) ¢, for SPT and LPT, and ii) ¢, for LWR and MWR. By choosing the lowest
value for the first SDR, and highest value for the latter SDR, i.e., the extremal values for those
given features. Figure 7.5 depicts the corresponding probabilities from Fig. 7.4 in one graph, for
all problem spaces in Table 3.2.

Now, let’s bare in mind deviation from optimality, p, of applying SDRs throughout the dis-
patching process (cf. box-plots of which in Fig. 4.1), then there is a some correspondence be-
tween high probability of stepwise optimality and low p. Alas, this isn’t always the case, for

10X 10
j.rnd

schedule. However, this does not transcend to SPT having a lower p value than LPT. Hence,

gspr always outperforms £ pr in choosing a dispatch which may result in an optimal

it’s not enough to just learn optimal behaviour, one needs to investigate what happens once we
encounter suboptimal state spaces.

Since we know that our SDR heuristics aren’t perfect, and they’re bound to make mistakes at
some point. It’s interesting to see how that stepwise optimality evolves for its intended trajectory,

thereby updating Eq. (7.1) to
£ 1= Eﬂ{ﬂ* = ﬂ} (7.3)
Figure 7.5 shows the difference between E?SDR> and {(gppy- Similarly for Eq. (7.2),

Fin(K) 1= Ex{_min (p) : VCERX) # CH) A = argmax{n(@))} ] (7.42)
JieL® Jec®

mK) 1= Ex{ max (p) : VO # Cl¥) A j* = argmax{n(¢))} | (7.4b)
]ie[:(k) JieL®

T(k) = Ea{p : ) A j = argmax{(e/)} } (7.4¢)
JieL®
with the additional metric ZZ, which gives the mean evolution for deviation from optimality, p,

*
min Zmim max

when following a fixed policy 7. Note, {7 max = {maxand G* +— o. Figure 7.6 depicts
Eq. (7.4) for expert policy 7, and SDRs.
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Probability of extremal feature ¢ being optimal

1.00 1) proc 2) startTime 3) endTime 4) arrival
0757 eererneennnd |l ptvenanedZ ||
0.50 - 8252% SPT 822?% P=349% P=229%
0.25 - =44% LPT =51% P=50% P=54%
0.00
1.00 5) wait 6) jobTotProcTime 7) jobWrm 8) jobOps
0.75 “rrrmngmnsaptond? | Lm0 L Ao oo | vt AT
0.50 7 B=58% B 64% gg% LWR P=23%
0.25 - 4% 43% % MWR P=53%
0.00
1.00 9) macFree 10) macTotProcTim 11) macWrm 12) macOps
0759 iiiieniinrd R ol | K6
0.50 — — — — —

=33% 47% P=45% P=44%
B 6= B 4% P=439 P=41%
0.00
1.00 13) reducedSlack 14) macSlack 15) allSlack 16) makespan
0.75 G tigA”’ | koDt | kDY | e
0.507 B=52% R=p4% P=26% P=34%
0.25 - =25% =51% P=51% P=40%
0.00
1.00 17) SPT 18) LPT 19) LWR 20) MWR
0.757 oo v [ Ryt | e a e
0.507 R=30% P=19% P=22%
0.25 - =48% =95% P=73% P=80%
0.00
1.00 21) RNDmean 22) RNDstd 23) RNDmin 24) RNDmax
0.75 et
0.507 . R=33% P=21%
0.25 - =88% =53% P=89%
0.00

L L L L L L
25 50 75 100 25 50 75 100

Step

Extremal -a-

10X 10
jornd

(b)

min —a- max

Figure 7.4 (cont.)

73

L L L
25 50 75 100

L L L
25 50 75 100



CHAPTER 7. ANALYSING SOLUTIONS

1.00 j.rnd j-rndn j.rnd,J1
0.75 Q
n w
w
\}
0.50 - =
()
\ ““\\\\
0.25 v ‘\o:\\: R
N \\: R :\,\:‘: :_:-_____
0.00 > —
© f.rndn
£ 1.00
=%
o
2075+
©
o
@
N 0.50
[9)]
©
£0.25 -
iS) AN
_g N | Q-\ T~
2 0.00 SeSsITToooo oo
a f.mxc
1.00
0.75
0.50 - " ;e
\
B -, ‘\ \\
025 R AN,
’ |\ \—_\ 1)) S \‘~\_~ |_\~_\‘_ _____ R
s Sea_ N Tt S O I
R TR T i g N T -— oo e
0.00 T I I I 1 1
10 20 30 10 20 30 10 20 30
Step

SDR — LPT — LWR — MWR — RND — SPT  Accuracy — & - - &

(@)6 x s
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based (dashed: £spgy) trajectories are inspected.
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7.3. OPTIMALITY OF EXTREMAL FEATURES
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Figure 7.5 (cont.): Note, due to computational complexity, only P;°*/° has SDR-based

trajectories also inspected. Otherwise, only optimal is pursued.

Deviation from optimality, p (%)
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Figure 7.6: Mean deviation from optimality, p, for best and worst case scenario when not

following a fixed policy = (i.e.

T and ), depicted as lower and upper bound, respectively.
Moreover, mean evolution of p for 7 (i.e. {7) is given as a dashed line.
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Figure 7.6 (cont.): Note, {{%, ¢~ } are illustrated jointly for P,,, in Fig. 7.3
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7.4. SIMPLE BLENDED DISPATCHING RULE

71
min

Ameans of interpreting Eq. (7.4), is that given a fixed policy 7, then {7, describes the potential

74

improvement (iff (7, < Zz) for changing the policy. Whereas, {7, . indicates the disadvantages

of changing course. When {7, > ZZ , then clearly 7 is not a good policy for said problem space,
e.g., for the final dispatches of ZﬁPT for frffd j, or jl.‘;;dm.
Remark: Egs. (7.3) and (7.4) are based on corresponding meta-data, {®", )"} , from

Eq. (6.2), whereas Egs. (7.1) and (7.2) reuse the same expert meta-data, {®™*, )™ }.

74 SIMPLE BLENDED DISPATCHING RULE

The goal of this chapter is to utilise feature behaviour to motivate new (and hopefully better)
dispatching rules. A naive approach would be creating a simple blended dispatching rule (BDR)
which would be for instance switching between two SDRs at a predetermined time point.

For instance, MWR and SPT hardly ever coincide for easy or hard schedules (cf. Tables 4.6
and 4.7), so its reasonable to believe they could complement one another. Going back to Fig. 7.s5b

a presumably good BDR for jf‘:;d1° would be starting with £5pr (k) and then switching over to
& rwr (k) at around time step k = 40, where the SDRs change places in outperforming one

another. In addition, we can see that even though £¢pr (k) is generally more likely to find optimal

dispatches in the initial steps, shortly after k = 15 then &g (k) becomes a contender again. A

10 X10

box-plot of deviation from optimality, p, for P,

is depicted in Fig. 7.7 for a switch between
SPT to MWR at time steps k € {10, 15, 20, 30, 40 }. Main statistics are given in Table 7.1.

This little manipulation between SDRs does outperform SPT immensely, yet doesn’t manage
to gain the performance edge of MWR. This gives us insight that for job-shop, the attribute based
on MWR is quite fruitful for good dispatches, whereas the same cannot be said about SPT - a
more sophisticated DR is needed to improve upon MWR.

Areason for thislack of performance of our proposed BDR at k = 40 is perhaps that by starting
out with SPT in the beginning, it sets up the schedules in such a way that it’s quite greedy and
only takes into consideration jobs with shortest immediate processing times. Now, even though
itis possible to find optimal schedules from this scenario, as Fig. 7.5 shows, the inherent structure
is already taking place, and might make it hard to come across optimal moves by simple methods.
Therefore it’s by no means guaranteed that by simply swapping over to MWR will handle the
situation that applying SPT has already created. Figure 7.7 does however show, that by applying
MWR instead of SPT in the latter stages, does help the schedule to be more compact w.r.t. SPT.
However, the fact remains that the schedules have diverged too far from what MWR would have
been able to achieve on its own, i.e., using SPT downgrades the performance of MWR.
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j-rnd, 10x10

Dispatching rule

EI Shortest Processing Time

EI Most Work Remaining

E3 SPT (first 10 %), MWR (last 90 %)
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3
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HE B SPT (first 30 %), MWR (last 70 %)
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Figure 7.7: Box plot of 77].1°X1° deviation from optimality, p, for BDR where SPT is applied for

.rnd

the first 10%, 15%, 20%, 30% or 40% of the dispatches, followed by MWR.

Table 7.1: Main statistics for 73,'1.%110 deviation from optimality, p, using BDR that changes

from SDR at a fixed time step k.

SDR#1 SDR#2 k Set Min. 1stQu. Median Mean 3rd Qu. Max.

SPT - K train 20.38 41.15 50.70 §1.31 59.18  94.20
SPT - K test 22.75 41.39 49.53  §50.52 58.60 93.03
MWR - K train 4.42 17.84 21.74 22.13 26.00 47.78
MWR - K test 3.37 17.07 21.39 21.6§ 25.98 41.80

SPT MWR 10 train 5.54 17.98 21.75 21.99 25§.43 44.02
SPT MWR 10 test 5.87 17.29 20.78 21.28 24.67  44.47
SPT MWR 15 train 4.76 18.24 22.04 22.49 26.65 49.86
SPT MWR 15 test 7.42 17.60 21.38 21.83 25.45  45.98
SPT MWR 20 train 5.76 18.98 22.46  23.01 26.97 41.59
SPT MWR 20 test 8.31 18.64 22.92  23.29 27.10  49.93
SPT MWR 30 train 9.77 20.89 25.60 25.76 30.01  50.94
SPT MWR 30 test 4.39 21.20 26.08 26.25§ 30.58  49.88
SPT MWR 40 train 13.04 23.42 28.12  28.94 33.67  54.98
SPT MWR 40 test 8.55 24.20 28.16 28.98 33.20 §7.21
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7.5. FEATURE EVOLUTION

Changing to MWR at k < 20 is not statically significant from MWR (boost in mean p is at
most 0.5%). However, after k > 20 then the BDR starts diverging from MWR. But as pointed
in Section 7.2, it’s not so fatal to make bad moves in the very first dispatches for ]“;nX 4, hence
little is gained with improved classification accuracy in that region. But this does tell us that £ _ is
amore reliable indicator than £ when it comes to choosing appropriate model parameters. Alas,
£, requires collecting the meta-data {®”, Y"} from Eq. (6.2) for its policy 7, whereas £ reuses
{®™*, Y™} for each new policy 7.

Revisiting Fig. 7.6a, then we see ZiPT (40) has already surpassed Z}YIWR(K) and there are 60
operations left to dispatch. So a switch for BDR at k = 40 never had a chance of improvement.
However, at k < 15 then ZﬁPT(k) < ZI;/[WR(k) , which were appropriate turning points for BDR
(although not statistically significant).

Preferably the blended dispatching rule should use best of both worlds, and outperform all
of its inherited DRs, otherwise it goes without saying, one would simply keep on still using the
original DR that achieved the best results.

7.5 FEATURE EVOLUTION

In order to put the extremal features from Fig. 7.4 into perspective, it’s worth comparing them

fi and

10 X10 x

with how the evolution of the features are over time, depicted in Fig. 7.8 for P’ imd

j-rn
Note that the optimal trajectory describes how ‘good’ features should aspire to be like. We can also
24
i=17

optimality, p (ie. {§(K)). Although (K — k)-step lookahead give consistently the best (single)
indicators for finding good solutions. Sadly, they are not practical features for high dimensional

notice that the relative ranking in {¢,};%, is proportional their expected mean deviation from

data due to computational cost.

7.6 EMERGENCE OF PROBLEM DIFFICULTY

The main focus now is on knowing when during the scheduling process easy and hard problems

diverge, this will be done using ®*M* and @(SPR) (conditioned on the followed trajectory) for
6
o

(DALL

Individual ®{SPR) are segregated w.r.t. its own quartiles defined in Eq. (4.2), whereas
is using the joint quartiles given in Table 4.1a. Note, if a joint quartile is used for Q(SPR)
then the segregation becomes highly unbalanced, e.g., for MWR the bulk of the problem instances
are considered ‘easy’ and there is only a single ‘hard’ problem instance, as a result there can be no

comparison between the two. The number of segregated problem instances for given in Table 7.2.

*Additional problem spaces can be found in Shiny application: Features > Evolution.
**Additional problem spaces can be found in Shiny application: Footprints > Stepwise.
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Table 7.2: Number of problem instances after segregating P}érxnz w.r.t. difficulty and

trajectory.

(a) Used in Fig. 7.9 (b) Used in Fig. 7.10
Track #Easy #Hard #Significant #Significant
LPT 126 125 111 Track Easy Hard
LWR 125 126 73 LPT 81 63
MWR 125 12§ 150 LWR 121 48
SPT 127 126 93 MWR 44 69
b 503 502 427 SPT 79 77

ALL 380 228

z 70§ 485

Rather than visualising high-dimensional data projected onto two dimensional space (as was
the focus in Smith-Miles and Lopes (2011) with SOM), instead appropriate statistical tests with
a significance level @ = o0.05 is applied to determine if there is any difference between different
data distributions. For this the two-sample Kolmogorov—Smirnov test (K-S test) is used to deter-
mine whether two underlying one-dimensional probability distributions differ. Furthermore, in
order to find defining characteristics for easy or hard problems, a (linear) correlation is computed
between features to the resulting deviation from optimality, p and use a t-test for testing the
population correlation coefficient.

When inspecting any statistical difference between data distribution of the features on a step-
by-step basis, the features at step k41 are of course dependant on all previous k steps. This results
inrepetitive statistical testing, therefore a Bonferroni correction is used to counteract the multiple

comparisons, i.e., each stepwise comparison has the significant level

(7.5)

a
ar = —
K
thus maintaining the Zle ar = asignificance level. However, with our limited sample size both

a and a; significance levels are reported, where entries with Bonferroni correction are especially

highlighted.

Figure 7.9 indicates the timesteps when easy and hard feature distributions differ. Number
of problem instances of segregated sets are given in Table 7.2a. In the initial stages, the features
are more or less the same. However, there is a clear time of divergence (many of which rejected
with Bonferroni correction) towards the end of the scheduling process: i) around the half way
mark for MWR; ii) k = 20 for LPT, and iii) around k = 25 for SPT and LWR. Knowing this

time of divergence, we could inspect the features from that time step onwards and check if they
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Figure 7.9: Stepwise K-S test for features ¢ segregated w.r.t. easy and hard problems are
drawn from the same continuous data distribution.

belong to our set of pre-classified ‘easy’ features. If not then it could be appropriate to choose jobs
that do not correspond that particular SDR, that is to say if Fig. 7.6b indicates that on average
{;’gﬁm (k), Z!SPR) (k) } are performing better than if we'd continue with our intended trajectory

(ie. ZﬁSDm (k)). This applies especially for SPT and LPT.

Unfortunately, this information comes a little to late too be of much use for all SDR save for
MWR, as ZﬁSDm (k) is quite high for (SDR) € {SPT, LPT}, and for LWR nothing can be done as
there is no option of dispatching any other job than the single one remaining (cf. e.g. Fig. 7.8a).

Furthermore, Fig. 7.10 shows when easy or hard features are significantly correlated to the
deviation from optimality, p. There we can see an apparent difference in correlation between
individual features with the resulting schedule depending in what stage it is in the scheduling

process, implying that their influence varies over the dispatching sequencing.
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w.r.t. easy and hard problems, with resulting deviation from optimality, p.
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There are some common features for both difficulties considered which define job-shop on a
whole. However, the significant features are quite different across the two difficulties, implying
there is a clear difference in their data structure. The amount of significant features were consider-
ably more for easy problems, indicating their key elements had been found. However, the features
distinguishing hard problems were scarce. Most likely due to their more complex data structure
their key features are of a more composite nature. As a result, new ‘global’ roll-out features were

introduced in Table 2.2.

What is surprising is that when looking at Fig. 7.10 then the active feature for the used SDR
(ie. ¢, for SPT & LPT and ¢ for LWR & MWR) then they are hardly ever significantly corre-
lated to final p. However, their usage effects other features that are a key indicator throughout
the dispatching process. Therefore we would need to take into account the joint interaction of

features, and not look at them on their own as we do now.

Take for instance ¢_, which we know is a good indicator (i.e. MWR) and use ¢, as well, then
it’s possible to obtain a model (cf. Chapter 9) that boosts MWR in performance by Ap ~ —10%.

Note, even though some feature are hardly ever correlated w.r.t. p, then that does not neces-
sarily imply that they’re a bad attribute. Take for instance @4, which is a discrete simplification
of p_, whose purpose was to complete advanced jobs (i.e. LWR) or balance progress for all jobs
(ie. MWR). In the case of P

jorn

> then —@, yields p = 18%, whereas its more sophisticated
counterpart, +¢,_ has a slightly lower p = 16% (cf. Fig. 7.4a).

It is possible for a JSP schedule to have more than one sequential dispatching representation.
It is especially true during the initial dispatches. Revisiting Fig. 2.3, if we were to dispatch J, first
and then J,, then that would be the same equivalent temporal schedule if we did it the other way
around. This is because they don’t create a conflict for one another (as is the case for jobs J, and
J)- This drawback of non-uniqueness of sequential dispatching representation explains why there
is hardly any significant difference between the difficulties for the initial steps of the scheduling
process (cf. Fig. 7.9). As we can see from Table 7.2, the number of problem instances used for
statistical testing is quite limited when restricting to a single algorithm. Using the non-uniqueness
of x to our advantage, where there are many jobs that have non-conflicting machines, thereby

k+1)

making subsequent dispatches equivalent to the previous one, i.e., x(k) ~ x( . Therefore it’s

reasonable, when labelled optimal data is scarce, to inspect the stepwise statistical testing based

on sliding window of the preceding and subsequent step, i.e., test at time k is based on:
/ k+1
9;(k) := {(pi(k) : Vo, € (I)}k,:k_1 (7.6)
for all individual local features ¢, € {1,...,16} from Table 2.2.
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7.7 CONCLUSIONS

The main objective of this chapter was to illustrate the interaction of a specific algorithm on a
given problem structure and its properties. This can be considered as finding the footprint from
single priority dispatching rules introduced in Section 2.4 on those problem spaces. Presum-
ably, we could use that information to infer the complexity of our synthesised problem spaces
summarised in Table 3.2. From Fig. 7.4 we noticed that high stepwise optimality, £, generally
implies low deviation from optimality, p. However, that is by no means a guarantee, as there is
clearly an important factor when suboptimal moves are made, as Fig. 7.3 showed for {{. , 1.
However, that is based on the expert policy 7*, which is quite optimistic. Since our deterministic
policy isn’t perfect, then it’s non-trivial to anticipate that effect on our end-result. As Z’z y is based
on making only one sub-optimal move, and as there will undoubtedly be many more, then the
measures £* and ZZ‘> were adjusted to their intended policy, i.e., Z’{> and Z7<’> The pros being that
it gives a better picture of the policy’s performance evolution. But the con being that this requires
an intensive labelling process for each proposed policy. Whereas, £ and Z’Z ) only were dependent
on meta-data from expert policy which could be used over and over again for measuring any policy
7.

Since feature selection is of paramount importance in order for algorithms to become success-
ful, one needs to give great thought to how features are selected. What kind of features yield
bad schedules? And can they be steered onto the path of more promising feature characteristics?
This sort of investigation can be an indicator how to create meaningful problem generators. On
the account that real-world problem instances are scarce, their hidden properties need be drawn
forth in order to generate artificial problem instances from the same data distribution. Section 7.6
showed that the emergence of a problem instances difficulty w.r.t. its algorithm was not noticeable
until the very end of the dispatching process. Preferably wed like to know this information
soonetr, in order to steer the algorithm towards a more promising state space where the features
are ‘known’ to have better performance.

The feature attributes need to be based on statistical or theoretical grounds. Scrutiny in under-
standing the nature of problem instances therefore becomes of paramount importance in feature
engineering for learning, as it yields feedback into what features are important to devote more
attention to, i.e,, features that result in a failing algorithm. In general, this sort of analysis can
undoubtedly be used in better algorithm design which is more equipped to deal with varying
problem instances and tailor to individual problem instance’s needs, i.e., a footprint-oriented
algorithm.
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Preference Learning

EARNING MODELS CONSIDERED IN THIS dissertation are based on ordinal regression in

which the supervised learning task is formulated as learning preferences. In the case of
scheduling, learning which operations are preferred to others. Ordinal regression has been
previously presented in Runarsson (2006 ), and given in Appendix A for completeness.

8.1 ORDINAL REGRESSION FOR JOB-SHOP

Using the training set {®", )"}, given in Eq. (6.2) by following some policy x, let ° € @7
denote the post-decision state when dispatching job J, corresponds to an optimal schedule being
built. All post-decisions states corresponding to suboptimal dispatches, J;, are denoted by ¢° €
o,

Let’s label feature sets which were considered optimal, z° = ¢° — ¢°, and suboptimal, z° =
¢° — ¢° byy, = +1and y; = —1respectively. The preference learning problem is specified by a
set of preference pairs,

K

vi= U {{zo’+1}’{zsv_1} 2 (o, Js) € OW x S(k)} COXY  (81)

N k=1
{Xi}iztl;am

where: i) ® C F is the training set of d = 16 features (cf. the local features from Table 2.2);
ii)) Y = {—1,+1} is the outcome space; iii) at each dispatch k € {1,...,K}, and iv)
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Jo € O o€ S® are optimal and suboptimal dispatches, respectively.

A negative example is only created as long as J; actually results in a worse makespan, i.e.,
C,’;*ai"s) > c,izi"”, since there can exist situations in which more than one operation can be
considered optimal. Hence, O®) US®) = £*) and O) N S*) = (). If the makespan would be
unaltered, the pair is omitted from V¥, since they give the same optimal makespan. This way, only
features from a dispatch resulting in a suboptimal solution is labelled undesirable. The approach
taken here is to verify analytically, at each time step, by retaining the current temporal schedule
as an initial state, whether it can indeed somehow yield an optimal schedule by manipulating the
remainder of the sequence, i.e., ngﬁ"j) forall J; € L) This also takes care of the scenario that
having dispatched a job resulting in a different temporal makespan would have resulted in the
same final makespan if another optimal dispatching sequence would have been chosen. That is to
say the data generation takes into consideration when there are multiple optimal solutions to the
same problem instance.

Since Y = {+1, —1}, we can use logistic regression, which makes decisions regarding optimal
dispatches and at the same time efficiently estimates a posteriori probabilities. When using linear
classification model (cf. Appendix A.2) for Eq. (2.12),then the optimal w* obtained from the
preference set can be used on any new data point (i.e. partial schedule), x, and their inner product
is proportional to probability estimate Eq. (A.9). Hence, for each job on the job-list, J; € £, let ¢/
denote its corresponding post-decision state. Then the job chosen to be dispatched, J;+, is the one
corresponding to the highest preference estimate from Eq. (2.12) where () is the classification
model obtained by the preference set, ¥, defined by Eq. (8.1).

8.2 SELECTING PREFERENCE PAIRS

Defining the size of the preference set as | = |¥|, then Eq. (8.1) gives the size of the feature
training set as |®| = I, which is given in Fig. 6.2 and Table 6.1. If [ is too large, than sampling
needs to be done in order for the ordinal regression to be computationally feasible.

The strategy approached in Paper I was to follow a single optimal job J; € O® (chosen at
random), thus creating |O®)| - | S| feature pairs at each dispatch k, resulting in a preference set

of size,
N train

1= (0] 1s¥) (8:2)

i=1
For the problem spaces considered in Paper I, that sort of simple sampling of the state space
was sufficient for a favourable outcome. However, for a considerably harder problem spaces (cf.
Chapter 4) and not to mention increased number of jobs and machines, preliminary experiments

were not satisfactory.
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A brute force approach was adopted to investigate the feasibility of finding optimal weights w
for Eq. (2.12). By applying CMA-ES (discussed thoroughly in Chapter 5) to directly minimize
the mean Cyox wirt. the weights w, gave a considerably more favourable result in predicting
optimal versus suboptimal dispatching paths. So the question put forth is, why was the ordinal
regression not able to detect it? The nature of the CMA-ES is to explore suboptimal routes until
it converges to an optimal one. Implying that the previous approach of only looking into one
optimal route is not sufficient information. Suggesting that the preference set should incorpo-
rate a more complete knowledge about all possible preferences, i.e., make also the distinction
between suboptimal and sub-suboptimal features, etc. This would require a Pareto ranking for
the job-list, £, which can be used to make the distinction to which feature sets are equivalent,
better or worse, and to what degree (i.e. giving a weight to the preference)? By doing so, the
preference set becomes much greater, which of course would again need to be sampled in order
to be computationally feasible to learn.

For instance Li and Olafsson (2005) used decision trees to ‘rediscover’ LPT by using the
dispatching rule to create its training data. The limitations of using heuristics to label the training
data is that the learning algorithm will mimic the original heuristic (both when it works poorly
and well on the problem instances) and does not consider the real optimum. In order to learn
new heuristics that can outperform existing heuristics then the training data needs to be correctly
labelled. This drawback is confronted in (Malik et al., 2008, Olafsson and Li, 2010, Russell et al.,
2009) by using an optimal scheduler, computed off-line.

All problem instances are correctly labelled w.r.t. their optimum makespan, found with ana-
lytical means.* The main motivation for the data generation of ¥ that will be used in preference

learning, will now need to consider the following main aspects:

PREF.1 Which path(s) 7 should be investigated to collect training instances, i.e., ®*. Should
they be features gathered resulting in : i) optimal solutions (querying expert policy 7, )?
ii) suboptimal solutions when a DR is implemented (following a fixed policy =), or iii)
combination of both?

PREF.2 What sort of rankings should be compared during each step?

PREF.3 What sort of stepwise sampling strategy is needed for a good single time independent
model?

The collection of the training set ® in PREF.1 (which is described in Chapter 6) is of paramount
of importance, as the subsequent preference pairs in ¥ are highly dependent on the quality of

®. Since the labelling of @ is quite computationally intensive, its collection should be done

*Optimal solution were found using Gurobi Optimization, Inc. (2014), a commercial software package for solving
large-scale linear optimisation and a state-of-the-art solver for mixed integer programming.
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parsimoniously in order to not waste valuable time and resources. On the other hand, PREF.2 and
PREEF.3 are easy to inspect, once ® has been chosen. The following sections will try to address
these research questions.

8.3 SCALABILITY OF DISPATCHING RULES

In Paper I a separate data set was deliberately created for each dispatch iterations, as the initial

feeling is that dispatch rules used in the beginning of the schedule building process may not

necessarily be the same as in the middle or end of the schedule. As a result there are K linear

scheduling rules for solving a n X m job-shop. Now, if we were to create a global rule, then there

would have to be one model for all dispatches iterations. The ap(ll?)roach in Paper I was to take the
L K

mean weight for all stepwise linear models, i.e., w; = ¢ >, w;

resulting from learning preference set ¥ (k) at dispatch k.

where w(*) is the linear weight

A more sophisticated way, would be to create a new linear model, where the preference set,
Y, is the aggregation of all preference pairs across the K dispatches. This would amount to a
substantial training set, and for ¥ to be computationally feasible to learn, ¥ has to be filtered to

size Inax- The default set-up will be,

Imax =

(8.3)

5-10° for 10 x 10 JSP
10° for 6xgs5 JSP

which is roughly 60%-70% amount of preferences encountered from one pass of sampling a
K-stepped trajectory using a fixed policy 7 for the default Ny, (cf. Table 8.1). Sampling is done
randomly, with equal probability.

8.4 RANKING STRATEGIES

First let’s address PREF.2. The various ranking strategies for adding preference pairs to ¥ defined
by Eq. (8.1) were first reported in Paper V, and are the following,

Basic ranking, ¥, i.e, all optimum rankings r, versus all possible suboptimum rankings
rii € {2,...,n'}, preference pairs are added — same basic set-up introduced in Paper I.
Note, | ¥}| is defined in Eq. (8.2).

Full subsequent rankings, ‘I’f, i.e, all possible combinations of r; and 4, for i €

{1,...,n'}, preference pairs are added.

Partial subsequent rankings, ‘I’p, i.e., sufficient set of combinations of r; and r;y, for

i € {1,...,n'}, are added to the training set — e.g. in the cases that there are more than
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one operation with the same ranking, only one of that rank is needed to compared to the
subsequent rank. Note that ¥, C Y.

All rankings, ¥, denotes that all possible rankings were explored, i.e., r; versus r; for

i,j € {1,...,n'} and i # j, preference pairs are added.

where the rankings of the job-list, E(k), at time step k, is as follows,
n>r> .. >y (n <n) (8.4)
By definition the following property holds:
Y, CY¥C¥Y, CY¥, (8.5)

To test the validity of different ranking strategies for PREF.2, a training set of Nirin = 500

6X5s

problem instances of P’ > and 77; 5 is collected for all trajectories described in Section 6.4. The

j.rn
size of the preference set, | Y|, is depicted in Fig. 8.1 for each iteration k. From which, a linear

preference model is created for each preference set, ¥. A box-plot for deviation from optimality,
p, defined by Eq. (2.17), is presented in Fig. 8.2. From the figure it is apparent there can be a
performance edge gained by implementing a particular trajectory strategy, yet ranking scheme

_ N 6x
seems to be irrelevant. Moreover, the behaviour is analogous across all other P>

First let’s restrict the models to P53,

ranking-schemes across all disciplines, which is expected since ¥ is designed to contain the

in Table 3.2.
There is no statistical difference between ‘I’f and ‘I’p

same preference information as ¥ (cf. Eq. (8.5)). However, neither of the Pareto ranking-
schemes outperform the original ¥, set-up from Paper I. The results hold for the test set as well.
Any statistical difference between ranking schemes were for ¥ ,, where it was considered slightly
lacking than some of its counterparts. Since a smaller preference set is preferred, its opted to use
the ¥, ranking scheme henceforth as the default set-up for PREE.2.

: : . : 10X10 P 6X5s
Moving on to higher dimension, results for 77].. ond were similar to P 0.

Only exception begin
that ranking schemes showed difference in performance when using ®°FT, where ‘I’I?PT come on

top. Strengthening our previous choice of ¥, as standard ranking scheme.

8.5 TRAJECTORY STRATEGIES

6X5
j.rnd

are currently available.* Models from Fig. 8.2

We'd like to inspect which trajectory is the best to use for ¥. Paper V only considered

6X5 6Xs 10X10
and P;’ 5, however, results for Py ;0 md

are limited to the ones corresponding to ¥,,. Moreover, main statistics for 77*°**° are given in

and

*Additional problem spaces can be found in Shiny application: Preference Models > Trajectories & ranks.
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Figure 8.1: Size of P_~S preference set, I = |¥|, for different trajectory strategies and ranking
schemes (where Niain = 500)
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Figure 8.2: Box-plot for various ® and ¥ set-up using P 5. The trajectories the models are
based on are depicted in white on the far right.
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Table 8.3. Figure 8.3 jointly illustrates the size of the preference set used, i.e., | ¥, | from Fig. 8.1.
Table 8.1 reports the total amount of preferences for all K dispatches.

Table 8.2 reports the relative ordering of trajectories, ordered w.r.t. their mean deviation from
optimality, p, and their size of preference set, i.e., |¥,|. Models that are statistically better are

denoted by -’ otherwise considered equivalent.

For most problem spaces ‘I’II;PT was the worst trajectory to pursue. Looking back at Fig. 6.2,

(DLPT

then even though was not the trajectory with the least features, the amount of equivalent

features w.r.t. Cpyy are far too many to make a meaningful preference set out of it. It’s only for
6X5s
j.rndn

in that case LWR is the worst model. Model that come on top, are those that have a varied Y.

that there is another trajectory with fewer preferences, namely ‘I’II;WR (cf. Fig. 8.1), and

However, aggregating features from all trajectories is not a good idea, as the preference set then

becomes too varied for a satisfactory result.

Learning preference pairs from a good scheduling policies, such as @ES-Cmax | @ES-P and @MWR,
gave considerably more favourable results than tracking optimal paths, save for 73; jfs where the
ordering is reversed. Generally, suboptimal routes are preferred. However, even though LWR
is a better policy than MWR for FSP, then @R is a worse candidate than e.g. ®MVR but as

discussed before, it’s due to the lack of varied dispatches for the trajectory.

(DOPT (DRND

It is particularly interesting there is statistical difference between and , where the
latter had improved performance for all JSP problem spaces. In those cases, tracking optimal
dispatches gives worse performance as pursuing completely random dispatches. This indicates
that exploring only expert policy can resultin a training set which the learning algorithm is inept to
determine good dispatches in the circumstances when newly encountered features have diverged

from the learned feature set labelled to optimum solutions.

Generally, adding suboptimal trajectories with the expert policy, i.e., D*LL, gives the learning
algorithm a greater variety of preference pairs for getting out of local minima. However, for some
6X5 s

problem spaces, e.g., Pf_ g and Pé; . then additional suboptimal solutions that are too diverse

yield a worse outcome than ®°FT would achieve on its own.
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Table 8.1: Total number of preferences in I = |¥,| for all K steps. Note ‘-’ denotes not
available.
Track Pi;;f 3 Nirain = 500 77:;;(‘10 y Nirain = 300

jornd  jondn jond, ], jond, M, frnd frndn  fjc fmc  fmxc jond  jorndn  fornd

SPT 73926 68410 74416 65150 79388 70808 68956 89788 92036 285912 - -
LPT 43456 58540 28498 34136 36162 54684 11548 23260 17308 151444 - -
LWR 46580 46306 32326 41554 64226 68628 69124 40150 40110 163546 - -
MWR 83756 102002 53246 62056 87376 111708 106226 65882 64692 370104 - -
RND 72824 80358 52210 61670 77148 77080 64550 55288 55398 313346 - -
OPT 100910 111736 79404 90948 95388 93036 81306 79836 78440 453662 470522 299952
ES.p 93006 111068 64050 89504 77142 63120 45404 36608 74556 427032 - -
ES.Cmnax 108390 111346 73168 95920 83058 61992 47412 35484 36052 432650 - -

ALL 622848 689856 457318 540938 599888 601056 494526 426296 458592 2595758 470522 299952

Table 8.2: Relative ordering w.r.t. mean p and size of its preference set, | = \‘I’p|, for
trajectories in Section 6.4

Problem Ordering of trajectories
6xs p  ES.Cpay = ES.p = ALL = SPT = MWR = RND > OPT > LWR >~ LPT
j.rnd I ALL > ES.Cpax > OPT > ES.p > MWR > SPT > RND > LWR > LPT
6xs p  ES.Cpay =ES.p = MWR =RND = ALL = SPT >~ LPT = LWR = OPT
jorndn ] ALL>> OPT > ES.Cpax > ES.p > MWR > RND > SPT > LPT > LWR
6xs p  ES.Cpax = ES.p = SPT = ALL = RND > OPT = LWR = MWR > LPT
jrmdJi 1 ALL>> OPT > SPT > ES.Cpax > ES.p > MWR > RND > LWR > LPT
6xs p  ES.Cpax =ES.p = SPT = ALL =RND > LWR > OPT > MWR > LPT
jrnd M1 ALL 3> ES.Cpay > OPT > ES.p > SPT > MWR > RND > LWR > LPT
exs p  SPT =ES.Cpay = OPT =ES.p = ALL > LWR > MWR = RND = LPT
f.rnd I ALL>> OPT > MWR > ES.Cpay > SPT > RND > ES.p > LWR > LPT
exs p  ES.p=ES.Cpay = RND =LWR = ALL > SPT = LPT = OPT > MWR
f.rndn I ALL>>MWR > OPT > RND > SPT > LWR > ES.p > ES.Cpax > LPT
exs p OPT > SPT =LWR = RND = MWR > LPT = ES.Cp,, = ES.p = ALL
fie I ALL > MWR > OPT > LWR > SPT > RND > ES.Cpy > ES.p > LPT
pexs p  ES.p = LWR > ES.Cpoy = MWR = OPT = LPT = RND = SPT - ALL
me I ALL>>SPT > OPT > MWR > RND > LWR > ES.p > ES.Cpox > LPT
pexs p RND=OPT =ES.p=SPT = ALL = MWR = LWR = ES.Cppy = LPT
mixe I ALL>>SPT > OPT > ES.p > MWR > RND > LWR > ES.Cp > LPT
woxio P ES.Cpa =ES.p = MWR = RND = SPT = OPT = ALL > LPT = LWR
j.rnd I ALL > OPT > ES.Cpay > ES.p > MWR > RND > SPT > LWR > LPT
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Table 8.3: Main statistics for deviation from optimality, p, using P, based on various
trajectories for ¥,

Problem Track Set Min. 1stQu. Median Mean 3rdQu. Max.

SPT train 10.07 23.68 28.76  29.22 34.21 57.58
SPT test 14.59 24.25 29.18  30.06 35.10 64.72
LPT train  14.94 29.14 36.33  37.13 43.42  75.56
LPT test 13.01 29.80 35.72  36.63 43.46  77.17
LWR train  17.0§ 29.33 37.34  37.23 43.18  68.81
LWR test 15.68 31.01 37.06  37.63 42.64  63.69

MWR train 8.32 17.65 21.70 22.80 27.12  45.60
MWR test 2.02 16.83 22.42  22.61 26.77  §4.37

10X 10 RND train  10.14 21.19 26.01  27.22 32.33  §0.69
j.nd RND test 8.60 22.03 26.67  27.70 32.11  §6.56
OPT train 7.87 23.34 29.30  30.73 36.47 61.45
OPT test 8.31 24.05% 31.85  32.31 39.74  66.42
ES.p train 2.22 12.07 15.57 16.43 20.54  42.82
ES.p test 2.72 12.20 15.37 16.80 20.16 39.16

ES.Chax  train 4.20 11.58 15.56 16.07 19.64 38.24
ES.Chax  test 5.58 12.19 15.74  16.90 20.30  47.52

ALL train 8.89 25.67 33.56  34.19 40.67 71.89

ALL test 11.39 26.50 34.52 33.65 40.18  65.10

10X 10 OPT train  18.02 33.89 40.53  41.51 48.15  75.30
jrndn OPT test 15.31 33.38 40.67  40.58 47.46  73.12
pioxio OPT train 3.5§ 17.85 22.36  22.56 27.24  43.60
fornd OPT test 3.33 17.15 21.55  22.34 27.08  43.36

Comparing ¥ to its corresponding policy 7 used to guide its collection, then usually the
preference model outperformed the = it was trying to mimic. The exceptions being: i) MWR for

73]6:;‘51 i and Pém dM, (and 73}“;:1° was statistically insignificant); ii) LWR for 73(SXS and 'Pf6 o

iii) LPT was statlstlcally insignificant for Pjé.rxnfi,er and i) ES.Cpax and ES.p for all problem

spaces, save for P which was statistically insignificant. Revisiting Fig. 7.6, then when ¥7

rndn
succeeds its origmal policy =, it implies the learning model was able to steer the learned policy

or {ax

Therefore, a good preference set based on ®” not only has to have a low ] u to mimic, but also

towards (7. . In fact, its improvement is proportional to its spread* from { to

min* min

the policy 7 needs to be sufficiently different from {7, and {7, .. for adequate learning. That is

min

why @{CMAES) strategies were not good enough for preference learning, as their Z@ spread was

the lowest compared to the other fixed DRs.

o) (CMA-ES)

The rational for using the strategies was mostly due to the fact a linear classifier is

creating the training data (using the weights found via CMA-ES optimisation in Eq. (5.1)), hence

*Consult Shiny application: Optimality > Best and worst case scenario.
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the training data created should be linearly separable, which in turn should boost the training
accuracy for a linear classification learning model. However, these strategies is not outperforming
the original DR used in guiding the training data collection.

8.6 STEPWISE SAMPLING BIAS

Experiments in Section 8.5 clearly showed that following the expert policy is not without its
faults. There are many obstacles to consider to improve the model. For instance, it was chosen to
sample I,y in Eq. (8.3) with equal probability. But inspecting the effects of making suboptimal
choices varies as a function of time (cf. Chapter 7), perhaps its stepwise bias should rather be
done proportional to the mean cumulative loss to a particular time step? Following strategies for

stepwise bias for PREF.3 will now be proportional to:
Bias.1 (equal) equal probability.
Bias.2 (opt) inverse optimality for random dispatches, i.e., 1 — Exnp-

Bias.3 (bcs) best case scenario for mean p, i.e., (..
. . . *
Bias.4 (wcs) worst case scenario for mean p, i.e., {7 ...

Bias.s (featsize) inversely proportional to |@°FT|, defined as

max{|0OPT(K)[} — [ 0O (K)| + min{| 0O (K"}

Bias.6 (prefsize) inversely proportional to |\Y1? PT|, defined as

max{ [, (K)[} = [ Y7 (k)] + min{ [ ¥ (K)[}

Bias.7 (dblist) twice as much weight on the first half of the dispatches.
Bias.8 (dbl2nd) twice as much weight on the second half of the dispatches.

Moreover, all strategies are also adjusted to the preference set size, i.e., 1/|¥9?T|. The sampling
strategy for ¥, in Papers IV and V was Bias.1 and serves as a baseline. Motivation for Bias.2
is that way samples from dispatches that are less likely to be optimal than simply at random (cf.
Fig. 7.2) are emphasised. Whereas, Bias.3 and Bias.4 are more focused on sampling w.r.t. the final
measure, where the mean p is given one suboptimal move, otherwise it’s assumed expert policy is
followed (cf. Fig. 7.3). The adjustment of preference set tries to give equal emphasis on stepwise

features, as they substantially decrease over time (cf. Figs. 6.2 and 8.3), which proved favourable
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in preliminary experiments, then Bias.5 and Bias.6 motivation is to boost that adjustment even

further. Lastly, Bias.7 and Bias.8 are very simplified versions of the aforementioned strategies.

10X10

Figure 8.4 jointly illustrates the stepwise bias strategies for P..; "°.

It’s possible to circumvent the choice of stepwise sampling strategy by creating a preference
model for each time step k, for a grand total of K models. By doing so it’s possible to capture
local changes in the schedule, as we’ve already seen the evolution of features varies. Moreover,
for CMA-ES optimisation then a stepwise new model was generally better than a single global one
(cf. Fig. 5.3). However, in that case it’s not possible to test those models against other dimensions,
e.g., test benchmarks suite from OR-Library (cf. Table 3.3).

Figure 8.5 depicts box-plots for deviation from optimality, p, using the various sampling strate-

10X10

3 10X10 3 Tt
gies for P . Main statistics for Py

are reported in Table 8.4. In addition to the stepwise
bias strategies (both adjusted and not) a stepwise model (one for each step k) is given for refer-
ence.

First off, counter-intuitively the stepwise model is not the best configuration. By applying one

of these aforementioned sampling strategies it’s possible to achieve better results than applying a

10 X10

local model for each time step. In fact, for i rmdn

a stepwise model was the worst approach (with
up to 12% increased error). This could possibly be explained by the fact that there are quite a few
non-conflicting operations. As a result there is this vague change in ‘time’ for consecutive steps.
Therefore, using a complete data set which aggregates all time steps (or arguably over a few steps)
is more beneficial for learning, it is dealt with on a more sustainable grounds.

Adjusting ‘I’I?PT to its stepwise size generally improved the sampling strategy (up to mean

Ap =~ —7%), where Bias.2 and Bias.1 were equivalent for lejnx ;- Whereas, 77}“;; 4, Bias.4 was

10X 10
j.rndn

w.rt. adjustment. Reverting back to Fig. 7.9, then we saw that near the end of the dispatching

significantly worsened by mean Ap ~ +3% if adjusted. Other strategies were equivalent
process then for all SDRs there was a clear segregation of features w.r.t. its difficulty. This implies
great predictability of features in that time region. However, since those data points are scarce
they get overrun by the superabundant preference pairs from the preceding dispatches, unless
they are appropriately superimposed to be relevant for classification.

For all problem spaces, there was no significant difference between stepwise models to either
10X10 d 10X10

i 't rnd when a stepwise model is promising, then

superimposing the adjustment of preference set gives the best overall outcome. Whereas, in the

10X10
j.rndn

emphasising w.r.t. the set works poorly. All other bias strategies for

Bias.s or Bias.6. In the case of

case of then a single stepwise model is not as adequate as its single counterparts, then over

10X10
j-rndn

the exception of Bias.3 being slightly lacking, yet better than Bias.5 and Bias.6.

came out similar, with

. . : : . . . . 10X10 10X10
Furthermore, Bias.2 work just as well as its simplified version Bias.7 in P ;" and 73] ondn s DUE

for Pﬁirfdm the simpler version was slightly better. Similarly, Bias.8 was equivalent to Bias.4. Note

in }c;nx ;° then Bias.8 serves as just as well as its best strategies Bias.6.
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To summarise, adjusting the preference set to give each step equal probability is a good first
step. Moreover, when time dependent model are good then further exaggeration of the adjust-
ment to the preference set (such as Bias.s and Bias.6) is best. However, a severely simplified

version can be just as good. With these configurations it was possible to improve mean deviation

10X10
j.rnd

and iii) 8% using adjusted Bias.6 for Pﬁcr’;dm.
Using the simplified version of the best configuration for ‘I’?PT, i.e,, adjusted Bias.8, for the

from optimality, p, by: i) 14% using adjusted Bias.6 for ; i) 1% using adjusted Bias.7 (not

L . 10X10
significant improvement) for 'Pj'm dn?

best ]“;;f 4 trajectory from Section 8.5, namely ‘I’;‘S'C“‘a", then it’s possible to get a 4.5% mean
boostin performance, i.e., 11.39% and 11.73% for training and test set, respectively. Note, optimi-
sation w.r.t. Eq. (5.1a) achieved 10.57% and 11.33% mean p for training and test set, respectively,

which is statistically insignificant from the adjusted preference model.

8.7 CONCLUSIONS

Since the preference set is ideally aggregated and possibly re-sampled to adjust for lacking | ¥ (k)|
count, then ¥ needs to be sampled to size Ij,ax such that it contains maximum information, yet
with minimal amount of preference pairs. By use of partial subsequent Pareto ranking to address
PREF.2, denoted ¥, it’s possible to reduce |'¥| significantly, without loss in performance.

Experimental results in Section 8.5 for PREF.1 illustrated that unlike Malik et al. (2008),
Olafsson and Li (2010), Russell et al. (2009) learning only on optimal training data was not
fruitful. However, Section 8.6 showed if stepwise sampling for PREF.3 is done appropriately then
it’s possible to boost performance significantly, even outperforming a single model for each time
step. First and foremost the stepwise bias in sampling needs to counter-act the disproportionate
amount of features towards the end. Moreover, additional emphasis to the latter stages of the
dispatches is beneficial as that’s when JSP is more susceptible to failure. Furthermore, since the
problem spaces showed difference boost in performance depending on the various complexities
of its best sampling strategy, its simpler version is recommended, namely configuration Bias.8.

Inspired by the original work by Li and Olafsson (2005 ), having fixed DRs guide the genera-
tion of training data (except correctly labelling with analytic means) gives meaningful preference
pairs which the learning algorithm could learn. The best strategy was by using the weights from
CMA-ES optimisation, obtained by optimising Eq. (5.1) directly. Its preference model was able
to be statistically insignificant to its guiding policy (cf. Section 8.6). However, we have yet been
able to outperform direct optimisation.

Generally aggregating trajectories, from optimal and suboptimal policies, boosts performance.
However, they need to be chosen carefully, since with increased aggregation it can become
counter-productive as the features are too dissimilar. A more sophisticated approach in combing

the two strategies is needed.
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Table 8.4: Main statistics for deviation from optimality, p, using P, based on various

stepwise sampling strategies for ‘I’I?PT. Models are ordered w.r.t. mean p

|[Model|*  Bias Adj. Min. 1stQu. Median Mean 3rdQu. Max.

1 prefsize T 5.12 12.26 15.77 16.48 19.77 39.14

1 prefsize F 5.85 16.82 21.24 21.75§ 25.52 56.08

K  equal F 8.32 17.33 21.42  21.87 25.56  42.93

1 featsize T 5.56 16.84 22.08 22.22 26.89 54.47

1 dbland T 6.95 18.35 23.44  24.26 28.64  55.81

1 bcs T 6.05 18.57 23.85 24.52 29.18 47.83

1 wcs T 8.08 20.66 26.38 27.99 34.64 60.84

1 dbland F 8.58 21.79 27.04  28.91 34.36  68.22

}{i:dlo 1 equal T 9.97 21.76 27.46 29.13 35.17 60.84

1 wcs F 10.99 23.33 28.41 29.73 34.97 60.84

1 featsize F 6.04 22.34 28.97 29.82 35.77 68.22

1 bes F 10.18 22.04 28.24 29.89 35.16 68.22

(default) 1 equal F 7.87 23.34 29.30 30.73 36.47  61.4§

1 opt T 7.87 23.38 30.52 31.55 38.46 63.85

1 dblist T 10.99 24.47 31.07 31.93 38.82  8o.11

1 opt F 10.18 24.57 31.50 32.76 39.42 70.47

1 dblist F 8.89 26.38 33.25 34.26 41.32  69.51

1 dblist T 15.02 33.23 40.31 40.66 46.78 73.57

1 opt T 13.93 33.23 40.26 40.75 48.30 77.34

1 equal T 18.86 34.34 40.79 41.41 48.39 75.35

1 dbland F 14.59 34.25 40.49  41.46 47.06  72.82

1 opt F 16.64 34.14 40.79 41.49 47.38 72.95

(default) 1 equal F 18.02 33.89 40.53  41.51 48.15  75.30

1 wcs F 18.94 33.59 41.47 41.81 48.97 75.35

1 bes F 19.14 34.60 41.62 42.41 48.78 76.30

73'}“;:‘;"0 1 wcs T 19.38 35.36 42.17 42.48 48.90 73.78

1 dblist F 20.46 35.15 41.80  42.73 48.54  74.61

1 dbland T 20.28 35.42 42.02  43.02 49.00 81.62

1 bcs T 19.27 37.70 44.98 45.58 52.05 81.37

1 featsize F 25.72 41.99 48.32 49.22 56.00 79.55

1 prefsize F 24.88 41.60 49.93 49.79 57.79 78.22

1 featsize T 18.70 42.84 49.74 50.56 58.39 79.71

1 prefsize T 18.70 42.99 50.54 50.95 58.85 79.71

K  equal F 25.91 45.09 52.23 52.26 59.52 87.15

1 prefsize T 2.54 11.08 14.56 14.78 18.24 30.25

1 featsize T 3.26 11.38 14.80 15.06 18.32 29.20

1 dbland T 3.35 11.93 15.41 16.12 20.25 34.93

1 bes T 3.35 12.21 16.15 16.38 20.04 34.93

1 equal T 4.66 12.98 16.96 17.21 20.74 43.03

1 prefsize F 3.41 13.17 17.47 17.65 21.86 34.70

1 wcs T 1.04 13.73 17.49 18.07 22.22 43.03

1 featsize F 3.43 14.01 18.09 18.65 22.95 43.03

proxie 1 bes F 3.43 14.24 18.29 18.74 23.02 43.03
fornd

K  equal F 2.68 14.85 18.74 19.45 23.24  38.5%

1 dbland F 3.43 15.41 19.39 19.52 23.94  43.03

1 dblist T 3.14 14.96 18.74 19.67 23.68  48.13

1 wcs F 3.55 17.28 21.19 21.65 25.99 44.98

1 opt T 3.55 16.59 21.11 21.67 26.38 46.22

(default) 1 equal F 3.55 17.85 22.36 22.56 27.24  43.60

1 dblist F 3.55 17.70 22.41 22.58 27.26  44.98

1 opt F 3.45 19.31 23.86 24.16 28.65 47.31

*Models are either stepwise (i.e. total of K models) or fixed throughout the dispatching process.
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It was much pleasanter at home, when one wasn’t always growing
larger and smaller, and being ordered about by mice and rabbits.

Alice

Feature Selection

ROM CHAPTER § THERE EXISTS LINEAR weights w for Eq. (2.12) found with evolutionary
Foptimisation that achieve a lower deviation from optimality, p, than any of the preference
models from Chapter 8 has been able to outperform.* This goes to show that the d = 16 features
are ‘enough’ — meaning there is not a need for defining new ones just yet. However, the optimal

(CMA-ES) o

weights for Eq. (5.1) were quite erratic (cf. Fig. 5.2). Perhaps the features from ®
contradictory, and therefore not suitable for preference learning.

Furthermore, the SDRs we’ve inspected so-far are based on two job-attributes from Table 2.2,
namely: i) ¢ , for SPT and LPT, and ii ) 9, for LWR and MWR, by choosing the lowest value for
SPT and LWR, and highest value for LPT and MWR, i.e., the extremal values for those attributes.
These SDRs achieve a remarkably low p, suggesting maybe not that many additional features are
needed to achieve a competitive result.

For this study we will consider all combinations of feature attributes using either one, two,

three or all d = 16 of them, for a grand total of:

OO0

The reason for such a limiting number of active features, are due to the fact we want to keep the

*Although ‘I’IES'C““" can be statistically insignificant to its original trajectory iff stepwise sampling is adjusted w.r.t.
its preference set (cf. Section 8.6).
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models simple enough for improved model interpretability. Furthermore, we will continue to use
our baseline preference set from Papers I and IV to VI, namely ‘I’I?PT.

For each feature combination, a linear preference model is created, where ¥, is limited to the

10 X10

102 1° in Table 3.2 (save for job and

predetermined feature combination. This was done for all
machine variation), each consisting of Niin = 300 problem instances. Moreover, in order to
report the validation accuracy, 20% (i.e. Nya = 60) of the training set was set aside for reporting

the accuracy.

9.1 VALIDATION ACCURACY

As the preference set ¥, has both preference pairs belonging to optimal ranking, and subsequent
rankings, it is not of primary importance to classify all rankings correctly, just the optimal ones.
Therefore, instead of reporting the validation accuracy based on the classification problem of the
correctly labelling the entire problem set ¥, it’s opted that the validation accuracy is obtained
using Eq. (7.1), namely the probability of choosing an optimal decision given the resulting linear

weights.* However, in this context, the mean throughout the dispatching process is reported, i.e.,

S o€k (9.2)

Figure 9.1 shows the difference between the two measures of reporting validation accuracy.
Validation accuracy based on Eq. (9.2) only takes into consideration the likelihood of choosing

the optimal move at each time step. However, the classification accuracy is also trying to correctly

distinguish all subsequent rankings in addition of choosing the optimal move, as expected that

measure is considerably lower.

9.2 PARETO FRONT

When training the learning model one wants to keep the validation accuracy high, as that would
imply a higher likelihood of making optimal decisions, which would in turn translate into a low
final makespan. To test the validity of this assumptions, each of the 697 models is run on the
preference set, and its mean p is reported against its corresponding validation accuracy Eq. (9.2)
in Fig. 9.2. The models are colour-coded w.r.t. the number of active features, and a line is drawn
through its Pareto front. Those solutions are labelled with their corresponding model ID. More-
over, the Pareto front over all 697 models, irrespective of active feature count, is denoted with

triangles. Their values are reported in Table 9.1, where the best objective is given in boldface.

*Due to superabundant number of models then calculating the preferable §, from Eq. (7.3) is not viable.
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p (%) for all 697 linear models from Eq. (9.1). Pareto fronts are for each active feature count,
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105§



CHAPTER 9. FEATURE SELECTION

Table 9.1: Mean validation accuracy and mean expected deviation from optimality, p, for all
CDR models on the Pareto front from Fig. 9.2.

Problem PREF Accuracy (%) p (%) Pareto
NrFeat.Model  Optimality  Classification
3.524 91.55 62.57 12.67 A
3.358 91.82 62.74 12.90 A
3.355§ 91.90 62.71 12.92 A
2.69 91.02 61.41 12.92
1.11 80.77 55.78 21.63
10 X 10
G.rnd 1.13 85.26 57.17 22.79
16.1 92.24 63.61 30.47 A
2.111 91.52 59.69 32.68
1.6 89.85 58.33 33.08
1.3 89.86 58.34 33.41
3.300 91.91 60.05 51.87
3.281 86.24 60.34 12.89 A
3.231 86.52 58.92 12.98 A
3.222 86.69 58.86 13.23 A
2.68 86.19 59.27 13.34
3.223 86.73 58.80 13.44 A
3.528 86.84 59.49 13.61 A
2.52 86.47 59.16 13.65
2.73 86.55 59.26 13.67
3.159 86.88 58.87 13.91 A
3.263 86.95 59.20 14.06 A
i 3.162 86.92 58.97 14.06 A
2.51 86.65 58.90 14.06
3.147 87.18 58.88 14.29 A
3.148 87.45 59.24 14.79 A
2.75 87.11 60.45 15.30
3.418 87.75 59.57 16.22 A
1.13 86.22 58.04 19.21
2.91 87.12 60.17 19.48
3.139 87.81 59.09 29.00 A
3.237 88.07 59.40 32.69 A
16.1 88.86 60.17 42.88 A
3.539 95.22 64.97 16.40 A
3.151 96.06 64.31 16.75§ A
3.216 96.28 71.12 16.78 A
2.94 92.79 63.12 16.88
10X 10 3.213 96.30 71.0§ 17.22 A
fomd 2.111 94.16 65.07 17.73
2.51 95.83 64.21 17.95
1.7 87.59 61.74 19.05
1.6 92.61 62.91 19.18
16.1 96.67 70.58 22.50 A
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9.3 INSPECTING WEIGHT CONTRIBUTION TO END-RESULT

Figure 9.3 depicts w for all of the learned CDR models reported in Table 9.1. The weights have
been normalised for clarity purposes, such that it is scaled to ||w|| = 1, thereby giving each feature
their proportional contribution to the preference I defined by Eq. (2.11). These weights will now
be explored further, along with testing whether models are statistically significant to one another,
using a Kolmogorov-Smirnov test with a = o.0s.

For ;:;dw there is no statistical difference between models (2.69, 3.355, 3.358, 3.524), W.r.t. p
and the latter three w.r.t. accuracy. These models are therefore equivalently ‘best’ for the problem
space. As Fig. 9.3 shows, Py P, and ¢, are similar in value, and in the case of 3.358, then ?,
has similar contribution as ?, for the other models. Which, as standalone models are 1.6 and
1.3, respectively, and yield equivalent mean p and accuracy. As these features often coincide
in job-shop it is justifiable to use only either one, as they contains the same information as its
counterpart.® Most likely, the equivalence of these features is indicating that the schedules are
rarely able to dispatch in earlier slots, ie, ¢, ~ ¢.

In addition, (2.111, 3.300) and (16.1, 3.355) are statistically insignificant w.rt. validation

10X10
j.rnd

18%). So even looking at mean stepwise optimality from Eq. (9.2) by itself is very fickle, because

accuracy for . However, they have considerable performance difference w.r.t. p (Ap =~

slight variations can be quite dramatic to the end result.

10X10
j.rndn

statistical difference w.r.t. p, and considerably more w.r.t. validation accuracy. Most notably

The solutions on the Pareto front for are quite a few models with no (or minimal)
are (3.281, 2.73, 2.75, 1.13) (note, first one has the lowest mean p), which are all statistically
insignificant w.r.t. validation accuracy yet none w.r.t. p, with difference up to Ap = 6.32%.

For ;ﬁ;dw almost all models are statistically different w.r.t. p, only exception is (1.6, 1.7).
Although, w.r.t. validation accuracy, there are a few equivalent models, namely, (3.151, 2.51),
(2.94,1.6) and (3.216, 3.213, 16.1), with1.2%, 2.3% and 5.75% difference in mean p, respectively.

It’s interesting to inspect the full model for P}inx ;°» 16.1. Despite having similar contributions,
yet statistically significantly different, as all the active features as (3.213, 3.216), then the (slight)
interference from of other features, hinders the full model from achieving a low p. Only consid-
ering ¢, and ¢,, with either ¢, and ¢ , boosts performance by 5.28% and 5.72%, respectively.

Thereby stressing the importance of feature selection, to steer clear of over-fitting. Note, unlike
10X 10
j.rnd

utilised. Moreover, lookingat model 2.111 for }_jnxdm, which has similar contributions as the best

,now ¢_ differs from ¢ , indicating that there are some slots created, which could be better

model, 3.539. Then introducing a third feature, ¢ , is the key to the success of the CDR, with a
boost of p performance by 1.33%.

*Note, p, < ¢, where o, = ¢_when J; is the latest job on M,, otherwise J; is placed in a previously created slot
onM,.
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For both P]fc;nx ;° and ]“:: 1 model 1.13 is on the Pareto front. The model corresponds to
feature ¢, and in both cases has a weight strictly greater than zero (cf. Fig. 9.3). Revisiting
Eq. (2.14), we observe that this implies the learning model was able to discover MWR as one
of the Pareto solutions, and as is expected, there is no statistical difference to between 1.13 and
MWR.

As one can see from Fig. 9.2, adding additional features to express the linear model boosts
performance in both validation accuracy and expected mean for p, i.e., the Pareto fronts are cas-
cading towards more desirable outcome with higher number of active features. However, there
is a cut-off point for such improvement, as using all features is generally considerably worse off

due to overfitting of classifying the preference set.

9.4 EVOLUTION OF VALIDATION ACCURACY

Let’s inspect the models corresponding to the minimum mean p and highest mean validation
accuracy, highlighted in Table 9.1 and inspect the evolution of £ (k) for those models in Fig. 9.4,
again using probability of randomly guessing an optimal move (i.e. {gyp from Fig. 7.2) as a
benchmark. As one can see for both ;‘:;dm and 77;‘;;‘;: , despite having a higher mean valida-
tion accuracy overall, the probabilities vary significantly. A lower mean p is obtained when the
validation accuracy is gradually increasing over time, and especially during the last phase of the
scheduling.* Revisiting Fig. 7.3b, this trend indicates that it’s likelier for the resulting makespan
to be considerably worse off if suboptimal moves are made at later stages, than at earlier stages.
Therefore, it’s imperative to make the ‘best’ decision at the ‘right’ moment, not just look at the
overall mean performance. Hence, the measure of validation accuracy as discussed in Section 9.1
should take into consideration the impact a suboptimal move yields on a step-by-step basis, e.g.,

Eq. (7.1) should be weighted w.r.t. a curve such as Eq. (7.2).

9.5 COMPARISON TO OTHER APPROACHES

Main statistics for the best models from Eq. (9.1) are reported in Table 9.2. Going back to the
original SDRs discussed in Section 2.4 along with the CMA-ES obtained weights for Eq. (5.1a)
and compare then against the best CDR models, a box-plot for p is depicted in Fig. 9.5. Firstly,
there is a statistical difference between all models, and the CDR model corresponding to min-
imum mean p value, is the clear winner for ]“;nX 4 and P}inx ;- On the other hand, for ]“;nX o
it loses by Ap ~ 42.6% to ES.Cpax optimisation. In all cases the there is substantial perfor-

*It’s almost illegible to notice this shift directly from Fig. 9.4, as the difference between the two best models is
oscillating up to only 3% at any given step. In fact 77,."_",; 4n has the most clear difference w.r.t. classification accuracy of

indicating when a minimum p model excels at choosing the preferred move.
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Figure 9.4: Probability of choosing optimal move for models corresponding to highest mean
validation accuracy and lowest mean deviation from optimality, p, compared to the baseline of
probability of choosing an optimal move at random (dashed)

Table 9.2: Main statistics for P}, !° deviation from optimality, p, using models from

Eq. (9.1) corresponding to lowest mean p or highest accuracy in Eq. (9.2)

NrFeat.Model Best Set* Min. 1stQu. Median Mean 3rdQu. Max.

3.524 p train 2.29 9.70 13.20  13.27 15.90 27.70

10X 10 3.524  p test 1.50 10.20 13.47 13.73 17.24 35.33
jornd 16.1 ?* train 7.87 23.34 29.30 30.73 36.47 61.4§
16.1 ET test 8.31 23.88 30.32 31.46 37.70  67.24

3.281 p train 0.56 10.33 12.82  12.96 15.78  25.52

10X 10 3.281 p test 2.87 11.02 13.40 13.68 16.87 26.05
J.rndn 16.1 ?* train 18.02 33.89 40.53  41.51 48.15 75.30
16.1 57 test 14.06 32.85 39.73  40.34 47.46  76.69

3.539 p train 1.53 13.51 16.14 16.70 20.29  35.24

,P;j':fdlo 3.539 P—* tes't 3.92 13.38 16.93 17.42 21.02 32.46
16.1 E train 3.5 17.85§ 22.36  22.56 27.24  43.60

16.1 ?* test 3.33 17.37 21.62  22.46 27.32  43.70

*Here the full training set is used, Niwin = 300, hence the slight change in mean p compared to Table 9.1 which
was only based on the validation set (the latter Nyy = 60)
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9.5. COMPARISON TO OTHER APPROACHES
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Figure 9.5: Box-plot for deviation from optimality, p, for the best CDR preference models (cf.
Table 9.1) and compared against their best reference model.

mance boost w.r.t. SDRs: i) -8.2% from jl.inxdw’s MWR; ii) -5.9% from jl.‘;;df’s MWR, and iii)

-6.5% from 77}‘:; 1”’s LWR). However, the best model w.r.t. maximum validation accuracy, then
the CDR model shows a lacklustre performance. In some cases it’s better off, e.g., compared to
10 X107

md S LWR (Ap = —1%), yet for job-shop it doesn’t surpass the performance of MWR. This
implies, the learning model is over-fitting the training data. Results hold for the test set.
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CHAPTER 9. FEATURE SELECTION

9.6 CONCLUSIONS

When training the learning model, it’s not sufficient to only optimise w.r.t. highest mean valida-
tion accuracy defined in Eq. (9.2). As Section 9.4 showed, there is a trade-off between making the
over-all best decisions versus making the right decision on crucial time points in the scheduling
process, as Fig. 7.3 clearly illustrated. It is for this reason, traditional feature selection such as
add1 and drop1 were unsuccessful in preliminary experiments, and thus resorting to exhaustively
searching all feature combinations. This also opens of the question of how should validation
accuracy be measured? Since the model is based on learning preferences, both based on optimal
versus suboptimal, and then varying degrees of sub-optimality. Aswe are onlylooking at the ranks
in a ‘black and white’ fashion, such that the makespans need to be strictly greater to belong to a
higher rank, then it can be argued that some ranks should be grouped together if their makespans
are sufficiently close. This would simplify the training set, making it (presumably) less of con-
tradictions and more appropriate for preference learning. Or simply the validation accuracy in
Eq. (9.2) could be weighted w.r.t. the difference in makespan. During the dispatching process,
there are some pivotal times which need to be especially taken care off. Figure 7.3 showed how
making suboptimal decisions were more of a factor during the later stages, whereas for flow-shop
the case was exact opposite.

Note, from Section 8.6 it’s possible to sample w.r.t. stepwise bias such that it gives preference
pairs that are more relevant to its end-performance. In other words, weighing the measure from
Eq. (9.2) via the sampling strategy. Presumably, if such adjusted bias were applied to this study,
then greater performance boost could be achieved.
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Imitation Leaming

ESPITE THE ABUNDANCE OF INFORMATION GATHERED by following expert policy, the

knowledge obtained is not enough by itself. Since the learning model is not perfect, it
is bound to make a mistake eventually. When it does, the model is in uncharted territory as
there is no certainty that the samples already collected are able to explain the current situation.
For this we propose investigating features from suboptimal trajectories as well, since the future
observations depend on previous predictions. A straight forward approach would be to inspect
the trajectories of promising SDRs or CDRs, this was done in Section 8.5 with good results. The
reasoning behind it was that they would be beneficial for learning, as they might help the model
to escape from local minima once off the coveted optimal path. By simply adding training data
obtained by following the trajectories of well-known SDRs, their aggregated training set yielded
better models with lower deviation from optimality, p. However, this was done in a fairly ad hoc
manner, which we’d like to automate even further. Therefore, it would be worth while to try out
active imitation learning by Ross and Bagnell (2010), Ross et al. (2011), such that the learned
policy following an optimal trajectory is used to collect training data, and the learned model is
updated. This can be done over several iterations, the benefit being that the states which are
likely to occur in practice are investigated, and as such used to dissuade the model from making
poor choices. Alas, this comes at great computational cost due to the substantial amounts of
states that need to be optimised for their correct labelling. Making it only practical for job-shop

of relatively low dimension, or only a few iterations.
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CHAPTER 10. IMITATION LEARNING

The preference model presented in Chapters 8 and 9 are comprised of collecting snap-shots
of the state space by following a fixed policy, and verifying the resulting optimal makespan from
each possible state. This can be looked at as imitation learning (IL), since we're trying to imitate
the fixed policy via preference learning.

Up until now, the training data from Chapters 8 and ¢ has been created from optimal or subop-
timal solutions of randomly generated problem instances, i.e., traditional passive imitation learn-
ing. AsJSP is a sequential decision making process, errors are bound to emerge. Due to com-
pound effect of making suboptimal dispatches, the model leads the schedule astray from learned
state-spaces, resulting in the new input being foreign to the learned model.

Inspired by the work of Ross and Bagnell (2010), Ross et al. (2011), the methodology of
generating training data will now be such that it will iteratively improve upon the model, such
that the state-spaces learned will be representative of the state-spaces the eventual model would
likely encounter, known as DAgger for imitation learning. Thereby, eliminating the ad hoc nature
of choosing trajectories to learn, by rather letting the model lead its own way in a self-perpetuating

manner until it converges.

PERFORMANCE BOOST

In order to boost training accuracy even further, two strategies will be explored:
Boost.1 increasing number of preferences used in training (i.e. varying Inax < |Y|),
Boost.2 introducing more problem instances (denoted EXT in experimental setting).
Note, Boost.1 will be addressed in Section 10.2. However, Boost.2 strategy will be explored in

Sections 10.1 and 10.2. Summary of Ny, is given in Table 10.1.

10.1 PASSIVE IMITATION LEARNING

Using the terms from game-theory used in Cesa-Bianchi and Lugosi (2006), then our problem
is a basic version of the sequential prediction problem where the predictor (or forecaster), =,
observes each element of a sequence x of jobs, where at each time step k € {1, ..., K}, before the
k-th job of the sequence is revealed, the predictor guesses its value y, on the basis of the previous

k — 1 observations.

10.1.1 PREDICTION WITH EXPERT ADVICE

Before going further, let’s formalise following an expert policy, ®°T, from Section 8.5. Let’s

assume we know the expert policy 7*, which we can query what is the optimal choice of y, = j*
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10.1. PASSIVE IMITATION LEARNING

at any given time step k. Now we can use Eq. (2.13) to back-propagate the relationship between
post-decision states and 7 with preference learning via our collected feature set, denoted ®°FT,
i.e., we collect the features set corresponding following optimal tasks J;+ from 7* in Algorithm 1.
This baseline trajectory sampling for adding features to the feature set is a pure strategy where at
each dispatch, an optimal task was chosen. This was originally introduced in Paper I and explored
further in Paper VI.

By querying the expert policy, 7, the ranking of the job-list, £, is determined by Eq. (8.4)
such that r; is preferable to r;1,. In our study, we know the rank is proportional to its optimum

makespan, hence the optimal job-list is the following,

ok — ), .4 ocjrenﬁir(lk) C;*ag{x") (10.1)
j

found by solving the current partial schedule to optimality. When |O®)| > 1, there can be several
trajectories worth exploring. However, only one is chosen at random. This is deemed sufficient

as the number of problem instances, Nirin, is relatively large.

10.1.2 FOLLOW THE PERTURBED LEADER

By allowing a predictor to randomise it’s possible to achieve improved performance (Cesa-
Bianchi and Lugosi, 2006, Hannan, 1957), which is the inspiration for our new strategy, where
we follow the Perturbed Leader, denoted OPTe. Its pseudo code is given in Algorithm 2 and
describes how the expert policy (i.e. optimal trajectory) from Section 10.1.1 is subtly ‘perturbed’
with ¢ = 10% likelihood, by choosing a job corresponding to the second best Cp,y instead of a

optimal one with some small probability.

10.1.3 EXPERIMENTAL STUDY

To address Boost.2 for the conventional ®OFT trajectory the extended training set was simply
obtained by iterating over more examples, given in Table 10.1.

Figure 10.1 depicts a box-plot for deviation from optimality, p, using P55 and ]lfnx 4 - Main

statistics are reported in Table 10.2. Results show that following the perturbed leader significantly

. . . 6X5 6X5 6X5 6X5 6X5s 6X5
improved following the expert policy for endn? Fjrnd, ], jAmd’Ml,fmedn and P;, >. Other P ;0

19%1° had insignificant performance boost.

j.rnd
Results showed that the expert policy is a promising starting point. However, since job-shop

problem spaces and

is a sequential prediction problem, all future observations are dependent on previous operations.
Therefore, learning sampled states that correspond only to optimal or near-optimal schedules

isn’t of much use when the preference model has diverged too far. This is due to the learner’s
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CHAPTER 10. IMITATION LEARNING

Algorithm 2 Pseudo code for choosing job J;+ following a perturbed leader.

Require: Rankingr, > r, > -+ > ry (n' < n) of the job-list, £ D> query 7,
1: procedure PERTURBEDLEADER(L, )
2: €4 0.1 > likelihood factor
3: p < U(o,1) € [o,1] > uniform probability
4 O« {jeLl :r=r} > optimal job-list
5: S+ {j el > rl} > suboptimal job-list
6: ifp < candn’ > 1then
7 returnj* € €S : rj=r,} > any second best job
8: else
9: returnj* € O > any optimal job
10: end if

11: end procedure

predictions affects future input observations during its execution, which violates the crucial i.i.d.
assumptions of the learning approach, and ignoring this interaction leads to poor performance.
In fact, Ross and Bagnell (2010) proves, that assuming the model has a training error of ¢, then
the total compound error (for all K dispatches) the classifier induces itself grows quadratically,
O (eK?), for the entire schedule, rather than having linear loss, O (¢K), if it were i.i.d.

10.2 ACTIVE IMITATION LEARNING

To amend performance from ®°FT-based models, suboptimal state-spaces were explored in Pa-

per V by inspecting the features from successful SDRs, @(SPR)

, by passively observing a full
execution of following the task chosen by the corresponding SDR. This required some trial-and-
error as the experiments showed that features obtained by SDR trajectories were not equally
useful for learning.

To automate this process, inspiration from active imitation learning presented in Ross et al.
(2011) is sought, called Dataset Aggregation (DAgger) method, which addresses a no-regret algo-
rithm in an on-line learning setting. The novel meta-algorithm for IL learns a deterministic pol-
icy guaranteed to perform well under its induced distribution of states. The method is closely
related to Follow-the-leader (cf. Section 10.1.2), however, with a more sophisticated leverage
to the expert policy. In short, it entails the model x; that queries an expert policy (same as in
Section 10.1.1), ,, its trying to mimic, but also ensuring the learned model updates itself in an
iterative fashion, until it converges. The benefit of this approach is that the states that are likely
to occur in practice are also investigated and as such used to dissuade the model from making
poor choices. In fact, the method queries the expert about the desired action at individual post-

decision states which are both based on past queries, and the learner’s interaction with the current
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10.2. ACTIVE IMITATION LEARNING

N
i=1'

Table 10.1: Number of problem instances, P = {p;,0;}
training set, @, in experimental setting.

explored for the collection of

(default) PT DAi
nXm  Negin train EXT  Nerain, EXT
6 X5 500 sooo  so0o(i+1)
10 X 10 300 1000 300(i +1)

Table 10.2: Main statistics for PSx3 and P!°%/° deviation from optimality, p, following either

rain j.rnd
expert policy or perturbed leader

Set  Track Min. 1stQu. Median Mean 3rd Qu. Max.
train OPT 0.00 8.89 15.38 16.46 22.62  §1.23
frxnii train OPT,EXT o.00 9.57 15.37  16.32 21.95 §7.23
train OPTe 0.00 7.34 12.92  14.12 20.16 55.78
P6Xs train OPT 0.00 12.58 20.80 20.84 27.46 58.61
jrmdn train  OPTe 0.00 3.60 11.34 10.43 13.48 29.01
P6Xs train OPT 0.00 6.38 13.06 14.91 21.74 58.61
jmd]i train  OPTe 0.00 3.89 8.97 11.§1 16.88 62.62
PEXs train OPT 0.00 9.95 17.95 20.09 28.23  79.19
jrmd:Mi train - OPTe 0.00 4.08 11.40 12.8§ 19.09 §0.19
P6xs train OPT 0.00 4.46 8.64 9.68 13.81  38.53
frnd  train OPTe 0.00 4.58 9.07 10.14 14.59 31.94
P6Xs train OPT 0.00 0.78 1.39 1.54 2.13 9.72
frmdn tain - OPTe 0.00 0.59 1.19 1.38 1.81  10.32
P6Xs train OPT 0.00 0.14 0.37 0.53 0.74 4.55
fie train OPTe 0.00 0.14 0.46 0.69 0.94 11.81
PO train OPT 0.00 0.25 1.07 3.24 5.42 27.18
.mc 3
train OPTe 0.00 0.22 0.82 2.12 2.26 27.18
P6xs train OPT 0.00 0.28 0.99 1.43 2.17 7.77
MEC train OPTe 0.00 0.28 0.98 1.43 2.17  7.77
train OPT 7.87 23.34 29.30 30.73 36.47 61.4§
test OPT 8.31 23.88 30.32 31.46 37.70 67.24

ox1wo train  OPT,EXT 6.61 31.82 39.88  40.93 48.69 93.40
jrmd  test  OPT,EXT  9.50 31.94 39.77  40.84 48.79  90.05
train OPTe 9.50 23.01 29.00 29.94 35.92  58.65
test OPT¢ 8.53 24.02 29.52 30.03 34.91 62.29
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Figure 10.1: Box-plots for deviation from optimality, p, following either expert policy or
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perturbed leader for P> and ond
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10.2. ACTIVE IMITATION LEARNING

environment.

DAgger has been proven successful on a variety of benchmarks, such as: the video games
Super Tux Kart and Super Mario Bros. or handwriting recognition — in all cases greatly im-
proving traditional supervised imitation learning approaches (Ross et al., 2011), and real-world
applications, e.g. autonomous navigation for large unmanned aerial vehicles (Ross et al., 2013).
To illustrate the effectiveness of DAgger, the Super Mario Bros. experiment gives a very simple
and informative understanding of the benefits of the algorithm. In short, Super Mario Bros. is
a platform game where the protagonist, Mario, must move across the stage without being hit by
enemies or falling through gaps within a certain time limit. One of the reasons the supervised
approaches failed, were due to Mario getting stuck up against an obstacle, instead of jumping
over it. However, the expert would always jump over them at a greater distance beforehand,
and therefore the learned controller would not know of these scenarios. With iterative methods,
Mario would encounter these problematic situations and eventually learn how to get himself
unstuck.

The policy of imitation learning at iteration i > o is a mixed strategy given as follows,
mi = B + (1 — B,)7iy (10.2)

where 7, is the expert policy and #;_, is the learned model from the previous iteration. Note,
for the initial iteration, i = o, a pure strategy of =, is followed. Hence, 7, corresponds to the
preference model from Section 10.1.1 (i.e. ®IL° = @OPT),

Equation (10.2) shows that  controls the probability distribution of querying the expert pol-
icy 7, instead of the previous imitation model, 7;_,. The only requirement for {g, }{ according
to Ross etal. (2011) is that limr o0 S°L, B, = oto guarantee finding a policy ; that achieves
€ surrogate loss under its own state distribution limit.

Algorithm 3 explains the pseudo code for how to collect partial training set, ' for i-th it-
eration of imitation learning. Subsequently, the resulting preference model, 7;, learns on the
aggregated datasets from all previous iterations, namely,

i
OPA — U oL’ (10.3)

i’=o

and its update procedure is detailed in Algorithm 4.

10.2.1 DAGGER PARAMETERS

Due to time constraints, then maximum number of iterations is T = 7 are inspected for frxnfi
and lejnx ', ° using Bias.1. In addition, there will be three mixed strategies for {8 i}iT:o in Eq. (10.2)

119



CHAPTER 10. IMITATION LEARNING

Algorithm 3 Pseudo code for choosing job J;+ using imitation learning (dependent on iteration
i) to collect training set ®; either by following optimal trajectory, 7, or preference model from
previous iterations, 7;_,.

Require: i > o > imitation learning is passive if i = o and active otherwise
Require: Rankingr, > r, = -+ > ry (n’ < n) of the job-list, £ > query 7,
1: procedure IL(i, 71;_,, 7,)
2 p < U(o,1) € [o,1] > uniform probability
3: if i > o then
4: if unsupervised then
5t B, <o > always apply imitiation
6: else if decreasing supervision then
7: B, < o. I > liklier to choose imitation with each iteration
8: else (fixed supervision)
9: B, <o > equally likely to choose optimal vs. imitation
10: end if
11 else (fixed supervision)
12: B, <1 > always follow expert policy (i.e. optimal)
13: end if
14: ifp > Bi then
15: return j* < argmax;c ﬁ{I;-T"*’} > best job based on 7;_,, cf. Algorithm 1
16: else
17 O+ {j €L = rl} > optimal job-list
18: returnj* € O > any optimal job
19: end if

20: end procedure

Algorithm 4 DAgger: Dataset Aggregation for JSP

Require: T > 1
1: procedure DAGGER(7,, ®L°, T)

2 7o + TrRAIN(O?) > initial model, Section 10.1.1 iff L0 = GOPT
3 fori < 1to T do D> at each imitation learning iteration
4 Letm; = .oy + (1 — B,) @iy > Eq. (10.2)
s Sample a K-solution using 7; > cf. Algorithm 3: IL(i, ;—,, 7 )
6: O = {(s5,m,(s))} > visited states by 7; and actions given by expert
7 QPA — Py @I > aggregate datasets, cf. Eq. (10.3)
8 Tity < TRAIN(QPAY) > preference model from Chapter 8
9 end for

10: return best 7; on validation > best preference model

11: end procedure
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10.2. ACTIVE IMITATION LEARNING

considered:
DAp.1 fixed supervision with §; = o.ssave for f_ =1,
DAp.2 decreasing supervision with , = 0.5/,
DAp.3 unsupervised with ; = I(i = o), where I is the indicator function.*

Note, DA.2 starts as DAf.1 and decays exponentially towards DAS.3. Moreover, DAB.3 is a
simple parameter-free version of the DAgger algorithm and often performs best in practice (Ross

etal, 2011).

10.2.2 EXPERIMENTAL STUDY

To address Boost.1, then ‘I’II?A7 for P]{‘:;dm was trained with varying size I,y from 50,000 to its
full size 3,626,260 with 50,000 interval. The default value for Ly given in Eq. (8.3) is denoted
in boldface. There was no statistical significance in boost of performance, hence I is kept
unchanged.

Regarding Boost.2 for DAgger trajectories the extended set consisted of each iteration encoun-

tering Nirain new problem instances. For a grand total of
DAi .
Niain, xT = Nerain - (i +1) (10.4)

problem instances explored for the aggregated extended training set used for the learning model
at iteration i. This way, we use the extended training data sparingly, as labelling for each problem
instances is computationally intensive. As a result, the computational budget for DAgger is the
same regardless whether there are new problem instances used or not, i.e., |PP4| ~ |OP2L|.

A box-plot of deviation from optimality, p, is given in Fig. 10.3. Notice that if DAgger con-
tinually uses the same problem instances, then not much is gained after the first iteration, as
performance stagnates quickly thereafter. This is due to the fact that there is not enough variance
between O™ hence the aggregated feature set P4 and ®PAG—) js only slightly perturbed with
each iterations. Which from Section 10.1.3 we saw extended aggregation was not a successful
modification for the expert policy. Although, it’s noted that by introducing sub-optimal state
spaces the preference model is not as drastically bad as the extended optimal policy, even though
|OD2L| > |O9ET] for ]";nx ° after i > 2. This goes to show that ‘too much’ data is no longer
a bad influence. But rather, when using new problem instances at each iterations, the feature set
becomes varied enough that situations arise that can be learned to achieve a better represented

classification problem which yields a lower mean deviation from optimality, p.

*B, =1and B, = o,Vi > o.
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Figure 10.2: Box-plot for deviation from optimality, p, where preference set is sampled to
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Regarding different strategies for p; values in Eq. (10.2), then all strategies improved the first
iteration (i.e. DA1 improves OPT). After that then the choice of B, starts to matter. For DAS.1
there was no further improvement over all T = 7 iterations using 73] % (therefore not consid-

ered for Plirfdm) For DAB.2 then significant improvement was achieved at i = § using 776”1 o

However, for ]“:;f 4 then no significant improvement was after i > 1. On the other hand, DAB.3

had some unexpected performance for Pﬁm > as it deteriorated for i € {2,3}, butati = 4 it got
back on track before stagnating. Of all the suggested p; strategies then DAf.3 managed to get the
best overall performance, and therefore Boost.2 was also applied to that approach.

For other P55 problem spaces* then there was not much difference in DAB.2 and DAB.3,
although the latter was slightly better for PJ{ anfi Note, for flow-shop problem spaces then DAgger
was not fruitful, as either the iterations were statistically insignificant from the model obtained
from the expert policy, or performance slightly downgraded with each iteration. Although, it’s
noted that those experiments were done with reusing the same Niy,i, problem spaces over and
over again (i.e. not applying Boost.2).

The best {B,}L., configuration for Pg.3 and P}°*}° was DAB.3 using an extended data set

train j.rnd

*Consult Shiny application: Preference models > Imitation Learning
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Figure 10.3: Box-plots for deviation from optimality, p, using active imitation learning for
P]f:;j and
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using equal re-sampling (i.e. Bias.1)
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Figure 10.4: Box plot for j‘j:d” deviation from optimality, p, using either expert policy,

DAgger or following perturbed leader strategies.
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however, iterations were stopped as soon as performance downgrades. Box-plot for deviation

(i.e. Boost.2). Therefore, for that configuration will also be tried for adjusted Bias.8,
from optimality, p, is depicted in Fig. 10.4, and main statistics are given in Table 10.3. Both
adjusted Bias.8 and the corresponding Bias.1 from Fig. 10.3 are shown together. We notice that
with each iteration DAgger improves: i) for Bias.1 with Boost.2 then i = 1 starts with increasing
Ap ~ +1.39%. However, after that first iteration there is a performance boost of Ap ~ —15.11%
after i = 2 and after that Ap ~ —1.31% until the final iteration T = 7, and on the other handii)
when using adjusted Bias.8, only one iteration is needed, as Ap ~ —11.68 for i = 1, and after that

it stagnates with Ap &~ +0.55% for i = 2 (therefore i = 3 was not run).

10.3 SUMMARY OF IMITATION LEARNING EXPERIMENTAL STUDIES

10 X10

j.rnd
from optimality, p, from Sections 10.1.3 and 10.2.2, respectively, are illustrated in Fig. 10.4,

A summary of best passive and active imitation learning models w.rt. deviation

and main statistics are given in Table 10.3. To summarise, the following trajectories are

used: i) expert policy, trained on ®OFT; ii) perturbed leader, trained on ®°PT¢, and iii)
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Table 10.3: Main statistics for 73j‘_‘;fd‘° deviation from optimality, p, using either expert policy,
imitation learning or following perturbed leader strategies.

a* Bias Set  Niain Min.  1stQu. Median Mean 3rd Qu. Max.
OPT o equal train 300 7.87 23.34 29.30  30.73 36.47 61.45
OPT o equal test 300 8.31 23.88 30.32 31.46 37.70 67.24
DA1 1 equal train 600 9.47 24.92 31.51 32.12 37.96 66.29
DA1 1 equal test 300  4.77 23.77 30.34  31.40 37.81  73.73
DA2 2 equal train 900 2.36 12.82 16.65 17.01 21.06 39.25
DA2 2 equal test 300 1.72 12.57 16.38 16.89 20.66 42.44
DA3 3 equal train 1200 0.98 12.50 16.28 16.82 20.67 37.93
DA3 3 equal test 300 0.26 12.32 16.01 16.52 20.22  41.62
DA4 4 equal train 1500 3.04 11.83 15.29 15.92 19.66 40.70
DA4 4 equal test 300 0.26 11.70 15.20  15.69 19.14  37.99
DAs s equal train 1800 2.18 11.89 15.38 15.90 19.59 40.60
DAs 5 equal test 300  0.26 11.78 15.20  15.7§ 19.24  40.73
DA6 6 equal train 2100 2.28 11.90 15.30 15.89 19.62 40.70
DA6 6 equal test 300 1.53 11.82 15.21 15.72 19.17 38.16
DA7 7 equal train 2400 1.56 11.84 15.34  15.70 19.37  35.4§
DA7 7 equal test 300 1.41 11.72 15.20  15.72 19.11 39.86
OPT o adjdbland train 300  6.0§ 18.60 23.85  24.50 29.04  §5.81
OPT o adjdbland test 300  5.56 19.16 24.24  25.19 30.42  §5.52
DA1 1 adjdbland  train 600  2.08 9.44 12.30 12.82 15.67 29.63
DA:1 1 adjdbland test 300  0.00 9.22 12.39  12.73 15.85  35.17
DA2 2 adjdbland train 900  0.93 10.01 12.91 13.37 16.40 31.19
DA2 2  adjdbland test 300  0.39 9.84 13.13 13.44 16.62  34.§7
OPTe¢ o equal train 300 4.52 21.31 27.63 28.04 33.69 63.74
OPT: o equal test 300 8.54 22.03 27.26  27.94 33.02 60.38
OPTe o adjdbland  train 300  4.64 13.63 17.56  18.07 21.66  36.25
OPTe o  adjdbland test 700 191 13.18 16.48 16.89 20.28  35.60

*For DAgger i = o is the conventional expert policy (i.e. DAo = OPT).
**If i = o then passive imitation learning. Otherwise, fori > o it is considered active imitation learning.

imitation learning, trained on (I)EDQ,} (i < 7 for Bias.1 and i < 2 for adjusted Bias.8).
As a reference, ES.Cpax model from optimising Eq. (s5.1a) and MWR are shown on the far
right of Fig. 10.4.

At first we see that the perturbed leader ever so-slightly improves the mean for p, rather than us-
ing the baseline expert policy. However, active imitation learning is by far the best improvement.

With each iteration of DAgger, the models improve upon the previous one with each iteration.

In both cases, DAgger outperforms MWR: i) after i = 7 iterations by Ap ~ —6.12% for
Bias.1 with Boost.2, and ii) after i = 1 iteration by Ap ~ —9.31% for adjusted Bias.8. Note, for
Bias.1 without Boost.2, then DAgger was unsuccessful, and the aggregated data set downgrades

the performance of the previous iterations, making it best to learn solely on the initial expert
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policy for that model configuration.

When compared to ES.Cpax, then neither extended imitation learning approaches outper-
formed the direct optimisation. After T = 7 iterations for Bias.1 there was still Ap ~ +5.13%
difference, and for i = 2 for adjusted Bias.8 that difference was almost halved, or Ap ~ +2.8%

compared to optimising Eq. (5.1a).

10.4 CONCLUSIONS

This study showed, that when accumulating training data for supervised learning using DAgger,
it’s possible to automate its generation in such a way that the resulting model will be an accurate
representative of the instances it will later come across. Or to phrase it in words of the Nobel-
Prize-winning Irish playwright:

“Imitation is not just the sincerest form of flattery
— it’s the sincerest form of learning.”

George Bernard Shaw

The experimental study in Section 10.2.2 showed that DAgger for job-shop is sensitive to
choice of B, in Eq. (10.2). The best configuration was an unsupervised approach (i.e. DAB.3),
which concurs to the findings of Ross et al. (2011).

Regarding using an extended data set (i.e. Boost.2), then it’s not successful for the expert
policy, as p increased approximately 10%. This could most likely be counter-acted by increasing
Imax to reflect the additional examples. What is interesting though, is that Boost.2 is well suited
for active imitation learning, using the same I,y as before. Note, the amount of problems used for

6X5

PT . . . S 1 . 10X10
Ntorain, pxr is equivalent to i = g ori = 2 iterations of extended DAgger for Py ;1

and jornd ?

respectively. The new varied data gives the aggregated feature set more information of what is
important to learn in subsequent iterations, as those new states are more likely to be encountered
‘in practice’ rather than ‘in theory’ Not only does the active imitation learning converge faster, it
also consistently improves with each iterations if new instances are used.

The number of iterations needed depend on the quality of the model configurations. When
using the baseline Bias.1 the imitation model was iterated for T = 7 iterations. Slowly improving
with each iteration. However, when the preferred adjusted Bias.8 stepwise bias then after only
two iterations a better performance was achieved. Alas, after the third iteration the model had
already stagnated with slightly, yet insignificant, worse mean deviation from optimality, p.

Maximum Mean Discrepancy (MMD) imitation learning by Kim and Pineau (2013) is an it-
erative algorithm similar to DAgger. However, the expert policy is only queried when needed
in order to reduce computational cost. This occurs when a metric of a new state is sufficiently

large enough from a previously queried states (to ensure diversity of learned optimal states).
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Moreover, in DAgger all data samples are equally important, irrespective of its iteration, which
can require great number of iterations to learn how to recover from the mistakes of earlier policies.
To address the naivety of the data aggregation, MMD suggests only aggregating a new data point
if it is sufficiently different to previously gathered states, and if the current policy has made a
mistake. Additionally, there are multiple policies, each specialising in a particular region of the
state space where previous policies made mistakes. Although MMD has better empirical perfor-
mance (based on robot applications), it requires defining metrics, which in the case of job-shop
is non-trivial (cf. Paper III and Chapter 4), and fine-tuning thresholds etc., whereas DAgger can
be straightforwardly implemented, parameter-free and obtains competitive results, although with
some computational overhead due to excess expert queries.

Main drawback of DAgger is that it quite aggressively quires the expert, making it imprac-
tical for some problems, especially if it involves human experts. To confront that, Judah et al.
(2012) introduced Reduction-based Active Imitation Learning (RAIL), which involves a dynamic
approach similar to DAgger, but more emphasis is used to minimise the expert’s labelling effort.
In fact, it’s possible to circumvent querying the expert altogether and still have reasonable perfor-
mance. If Locally Optimal Learning to Search (LOLS) by Chang et al. (2015) is applied, then it
is possible to use imitation learning (similar to DAgger framework) when the reference policy
is poor (i.e. 7, in Eq. (10.2) is suboptimal), although it’s noted that the quality (w.r.t near-

optimality) of reference policy is in accordance to its performance, as is to be expected.
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Now, here, you see, it takes all the running you can do, to keep in
the same place. If you want to get somewhere else, you must run at

least twice as fast as that!

The Queen

11

Pilot Model

OLL-OUT ALGORITHMS, ALSO KNOWN AS PILoT METHOD (Bertsekas et al., 1997, Duin and
Vof}, 1999), for combinatorial optimisation aim to improve performance by sequential ap-
plication of a pilot heuristic which completes the remaining (K — k) steps. Roll-outs for JSP have

been conducted by Runarsson et al. (2012). Continuing with that work, Geirsson (2012) com-

20
i=17

(but here one roll-out per fixed SDR). The motivation being that SDR-based roll-outs are of

higher quality than random ones which require less computational budget. However, Geirsson

pares several pilot heuristics, e.g.,, Randomly Chosen Dispatch Rules which is similar to {¢, }

notes that performance w.r.t. traditional random roll-outs is statistically insignificant and not
worth the overhead of implementing various SDRs beforehand.
Geirsson reworks the roll-out algorithm as an |£|-armed bandit,* i.e., each job of the job-list

are the levers. Since the best job, j*, to dispatch at step k, is not known beforehand, all available

24
i=21)

jobs are evaluated using roll-outs. As a result, using the features {¢, the weights w yield the
deterministic pilot heuristic. Although in Geirsson’s work, other statistics were used for guidance,

e.g., quartile and octile.

*In probability theory, the multi-armed bandit problem (Berry and Fristedt, 1985) describes a gambler at a row
of slot machines who has to decide which machines to play, i.e., pullits lever, in order to maximise his rewards, that are
specific to each machine. The gambler also has to decide how many times to play each machine and in which order to
play them. The gambler’s actions are referred to as pilot-heuristic.
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Remark: the roll-outs considered in Table 2.2, are with a relatively frugal budget, only 100 roll-
outs per lever is considered - all evenly distributed between levers. However, using the multi-
armed bandit paradigm, it’s possible to allocate roll-outs originating from the job-list with bias

towards more promising levers.

Note, in the case of random roll-outs (namely {¢, };*, ) then the final makespan resulting in the

i=21

pursued trajectory might not necessarily be the best final makespan found during the dispatching

process, this is reported as its ‘fortified” result, denoted p_, .

11.1  SINGLE FEATURE ROLL-OUTS

A model based on each of the extremal (i.e. minimum or maximum value) values for {¢,;};*
was created. The three best models for each problem space is reported, namely minimum values
for ¢, ¢,, and ¢,,. Box-plot for deviation from optimality, p, is depicted in Fig. 11.1, and its
main statistics are given in Table 11.1. In all cases, the fortified makespan was significantly better
than the final makespan of the pursued trajectory, save for P¢ > > > using minimum 9,,» which was

statistically insignificant.

Revisiting Fig. 4.1, then SPT is never the best SDR for any of the problem spaces (cf. Fig. 4.1).
However, choosing the minimum SPT from every possible operation onwards gives the best
result of {,}2°, .

]6;;:1’ ii) Ap ~ —26% for ;rxnfi’ and iii) Ap ~ —43% for ;‘i;dw. Bearing Fig. 7.3b in mind,
then notice how 57% differs from fi%. This implies that it’s better to not choose the job SPT

would ‘normally’ pick, in the initial stages. As we saw from Fig. 7.7 then pursuing SPT drastically

This twist in SPT application boosts performance by: i) Ap ~ —39% for

derailed p performance if it ventured off the optimal trajectory. However, SPT £* 0, shows that
on average SPT is a policy that is likely to be optimal. Therefore making SPT roll-outs with ¢,
namely, repeatedly applying a (K — k)-lookahead for —¢,. Then ¢,, manages to overcome the
shortcomings of pursuing —¢, on its own for only a 1-step lookahead.

10 X10

Regarding random roll-outs, the greedy ¢ . came out on top for Poxs i ond

ainy Whereas for

then a better fortified mean result was achieved by following ¢_ .

11.2 MULTI FEATURE ROLL-OUTS

When using random roll-outs there are many strategies to choose which job is the most promising
for future roll-outs. For this reason, let’s consider the preference models from Chapter 8 with ad-

ditional features {¢, };*  as the weights can now be considered as its deterministic pilot heuristic.

i=17
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Deviation from optimality, p (%)
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Figure 11.1: Box-plot for deviation from optimality, p, for top three single extremal values for

{e;

Table 11.1: Main statistics for top three single extremal values for {¢,};*

24

i=17

roll-out using Py, ain-

SPT shown for reference on the far right.

i2,, rollout using P,

¢@.Ext. NrFeat Min. 1stQu. Median Mean 3rd Qu. Max.

<p17.min 1 p 0.00 2.15§ 4.86 5.94 8.98 27.90

(pu.min 1 p 0.00 1.43 4.00 4.83 7.16  23.47

f:;; ¢, -min 1 p. . 0.00 0.00 0.00 0.90 1.28 10.69
¢23.min 1 p 0.00 0.00 0.00 1.14 1.76 10.31

¢23.min 1 Prort. 0.00 0.00 0.00 0.78 0.94 8.46

<pl7.min 1 p 0.00 3.15 7.15§ 7.71 11.19 30.24
(pu.min 1 p 0.00 1.38 3.42 4.06 6.32  15.12

P;,X,,Z ¢, -min 1 p.. 0.00 0.00 0.37 1.02 1.57 7.53
¢, min 1 p 0.00 0.00 0.66 1.51 2.25  11.26

¢23.min 1 peye  ©0.00 0.00 0.39 1.23 1.87 11.26

<p17.min 1 p 1.85 8.99 11.67 11.82 14.12  26.09

e (pu.m%n 1 p 2.13 7.33 9.49 9.73 11.76  19.53
j.rnd @,,-min 1 Prort. 0.00 4.46 6.01 5.97 7.46  13.32
(p23.min 1 p 0.25§ 6.37 8.72 8.90 10.98 20.10

¢23.min 1 Prort. 0.00 5.47 7.33 7.24 9.07 16.38
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If we only use {@,}?°, it requires 4 deterministic (K — k) step roll-outs at each time step.

i=17

Whereas, introducing {,} %, costs an additional 100 random roll-outs for each time step. There-

i=21
fore, we’ll consider both using only the first 20 features due to it’s relatively low computational

budget, and also the computationally intensive full model of 24 features.

The experimental set-up will consider the stepwise sampling biases from Section 8.6: i) Bias.1
(i.e. equal probability), and ii) adjusted Bias.8 (i.e. double emphasis on second half). Further-
more, the training data will be using either the expert policy or following the weights obtained
from minimising w.r.t. ES.Cppay as defined in Eq. (5.12). Both trajectories were detailed in Sec-
tion 8.5. Box-plot for deviation from optimality, p, is depicted in Fig. 11.2, and its main statistics

are given in Table 11.2

First off, there was no statistical difference between stepwise sampling strategy. Exceptions for
P6rnd and ;c;nxdlo being 20.1.0PT and 24.1.0PT, favouring adjusted Bias.8, same as Section 8.6
previously showed for 16.1 models. However, w.r.t. its fortified result there was no significant

difference any more.

Furthermore, the choice of trajectory starts to become irrelevant when using roll-out features.
Most configuration had no significant difference. However, ES.Cp,ax was preferred over expert
policy for: i) 73}6:1 w.rt. Bias.1 using 20 features, and ii) 731°nXl° for all configurations. This
agrees with the results from Chapter 8 for 16.1 models.

As expected, when more computational budget for ¢ is allocated, the quality of the pref-
erence model increases, namely (median based on all configurations): i) for P d improved
Ap ~ —4.3% from 16.1 to 20.1, and Ap ~ —5.9% from 20.1 to 24.1; ii) for 77 i 5 improved
Ap = —3.3%from 16.1to 20.1,and Ap =~ —3.8% from 20.1 to 24.1, and iii) for 77]“;;‘0 improved
Ap = —5.7% from 16.1 to 20.1, and Ap ~ —5.6% from 20.1 t0 24.1.

The best configuration, namely following ES.Cp,x with adjusted stepwise bias Bias.8, is de-
picted with the CMA-ES obtained weights in Fig. 11.3. The local 16.1.ES.Cmax model was sta-
tistically insignificant from the baseline CMA-ES obtained weights. From the figure, we can see

how the models significantly improve with an increased number of roll-outs.

By using preference models to create a deterministic pilot heuristic it’s possible to improve

the mean deviation from optimality, p. Especially if we consider using {¢,};°, compared to the

i=17
best single based roll-out, namely minimum ¢, then the improvement (all were significant) for
adjusted Bias.8 following ES.Cpax was: i) 5.2% compared to 5.9% for Pémd, ii) 6.4% compared
to 7.7% for med, and iii) 10.1% compared to 11.8% for ]{::dlo. When {¢,};*,, were added,

then the results for mean {p, p;_ . } were as follows: i) {1.3%, 0.8%} compared to {1 1% 0.8%}
using ¢, for 73 i i) {1.4%,1.0%} compared to {1.5%,1.2%} using ¢, for Pex e e and i)

{6.4%, 4.7%} compared to {9.7%, 6.0} % using ¢_ for jlj;(dw' Regarding Ptmlfl, there was
no significant difference to minimum ¢, . Whereas, for jl.(:nxdmr the preference model paid off,
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Figure 11.2: Box-plot for deviation from optimality, p, using roll-out features. Corresponding
models only using {g,}}%, features shown for reference on the far left.

with an improvement of Ap ~ —3.3% and Apeore = —1.3%. This is also the case where the
greedy approach of following minimum ¢_, was unsuccessful. Note, both dimensions had the
same computational budget of 100 random roll-outs for each dispatch. In the case for PS.53 the

100 roll-outs is quite enough. Notice in Fig. 11.2 that the minimum is very often found (the 3rd

quartile is often 0) and mean p; , < 1.5%. However, as the possibilities for operations grow

exponentially with increased dimensionality, then for P]fffdw we notice that we need to be more

mindful how we allocate our (K — k) roll-outs to achieve a good performance.
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11.3 CONCLUSIONS

24
i=17

Revisiting Fig. 7.4, then (K — k)-step lookahead (i.e. {¢;}
indicators for finding good solutions. This makes sense, as they’re designed to measure end-

) gave consistently the best (single)

performance, which is something that the initial 1-step attributes (i.e. {g,}}%,) are struggling
to measure.

By incorporating roll-outs then Eq. (2.12) can be considered as a deterministic pilot heuristic,
which we could learn via preference models from Chapter 8. However, currently they’re not
feasible for direct optimisation as was done in Chapter 5 as that would require too many costly
function evaluations.

6X5

Although, for low dimension job-shop (i.e. P,,..>) the learned deterministic policy did not

statistically improve performance, as it was equally adequate to pursue minimum ¢, on its own.
However, going to a higher dimension, as was done for ;‘:;dm, then finally we’re able to reap the

fruit of one’s labour.

Unfortunately, {¢,};%,, are not practical features for high dimensional data due to excessive
computational cost. Nevertheless, bearing Fig. 7.3b in mind, it might be sufficient to lookahead
only a few steps at key times in the dispatching process. Forinstance, let the computational budget
for Pf“;nX 4 roll-outs be full K-solutions in the beginning phases as that’s when the problem space

is most susceptible to bad moves. Then gradually decrease to only a few step lookahead, as flow-

10 X10

iomd o Start with a few step lookahead, and then

shop is then relatively stable. Conversely, for
expand the horizon as time goes by. Alternatively, when there aren’t that many dispatches left,
it might be worth developing a hybrid approach where the remaining dispatches from that point

are optimised with some exact methods.
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Table 11.2: Main statistics for {g,};%, rollout preference models using P, i,

i=17

Bias Track NrFeat Min. 1st Qu. Median Mean 3rd Qu. Max.

equal OPT 20 p 0.00 2.60 5.87  6.53 9.39 21.34

equal OPT 20 pg. 0.00 0.95 3.43  4.08 6.43 16.22

equal OPT 24 p 0.00 0.00 0.64 1.35§ 1.94 10.10

equal OPT 24 pg. 0-00 0.00 0.00 0.76 0.93 8.03
adjdbland OPT 20 p 0.00 1.95 4.62  5.65 8.39 27.22
adjdbland OPT 20 p.. 0.00 0.83 3.64 4.29 6.92 18.50
adjdbland OPT 24 p 0.00 0.00 0.00 1.26 1.64 14.18

6xs adjdbland OPT 24 pg.  0.00 0.00 0.00 0.71 0.88 11.16
jrnd equal  ES.Cuux 20 p 0.00 1.55 4.35  §.07 7.80 27.22
equal ES.Cnax 20 pg,, 0.00 0.46 3.03  3.71 5.81 18.50

equal ES.Chnax 24 p 0.00 0.00 0.55 1.29 1.92 12.42

equal  ES.Chax 24 pg, 0.00 0.00 0.00 0.80 0.98 9.89
adjdbland ES.Cpax 20 p 0.00 1.57 4.50  §.22 7.86 27.22
adjdbland ES.Cmax 20 p, . 0.00 0.82 3.52  4.12 6.39 17.50
adjdbland ES.Cnax 24 p 0.00 0.00 0.25 1.31 2.04 9.11
adjdbland ES.Cmax 24 pg,, ©0.00 0.00 0.00 0.82 1.14 8.03

equal OPT 20 p 0.00 2.21 5.12  5.94 8.71 29.12

equal OPT 20 pg. 0.00 0.85 3.09  3.71 5.83 16.29

equal OPT 24 p 0.00 0.00 0.76  1.39 2.19 9.28

equal OPT 24 Pg  ©.00 0.00 0.00 0.84 1.26 8.06
adjdbland OPT 20 p 0.00 2.55 5.07 5.88 8.42 29.12
adjdbland OPT 20 p.. 0.00 1.19 3.23  3.91 5.94 16.29
adjdbland OPT 24 p 0.00 0.00 0.71  1.39 2.13 10.04

poxs adjdbland OPT 24 pg.  0.00 0.00 0.19 1.04 1.55 8.67
fornd equal  ES.Cuux 20 p 0.00 2.42 5.33  5.97 8.32 28.38
equal ES.Cnax 20 pg,, 0.00 0.82 2.99 3.56 5.63 16.29

equal ES.Chax 24 p 0.00 0.00 0.73 1.46 2.27  9.59

equal  ES.Chax 24 pg, 0.00 0.00 0.00 0.96 1.45 8.46
adjdbland ES.Cnax 20 p 0.00 2.77 5.74 6.44 9.20 29.12
adjdbland ES.Cmax 20 p, ., 0.00 1.17 3.29  3.93 5.93 16.29
adjdbland ES.Cnax 24 p 0.00 0.00 0.63  1.42 2.45 10.52
adjdbland ES.Cmax 24 pg,, ©0.00 0.00 0.17 1.03 1.63  9.75

equal OPT 20 p 1.89  14.99 19.41 20.06 24.64 45.14

equal OPT 20 pg. 1.89 8.92 11.36 11.36 13.94 21.29

equal OPT 24 p 0.87 7.30 9.72 10.1§ 12.92 23.35

equal OPT 24 pg  0.00 4.21 5.66  5.79 7.20 13.49
adjdbland OPT 20 p 573 12.39  15.96 16.23 19.54 37.12
adjdbland OPT 20 po . 3.93 8.96 11.24 11.40  13.57 22.30
adjdbland OPT 24 p 0.34 6.18 8.19 8.59 10.43 22.14

woxwo adjdbland  OPT 24 pg. 0.00 4.08 5.79  5.79 7.15 12.79
jrnd equal  ES.Cuux 20 p 2.76 9.13 12.16 12.26 15.14 34.60
equal  ES.Chax 20 p . 1.89 6.85 9.12  9.28 11.23 20.07

equal ES.Cnax 24 p 0.62 5.24 7.09  7.33 8.90 19.43

equal  ES.Coax 24 pg, 024 3.54 4.91  4.93 6.31 12.38
adjdbland ES.Cnax 24 p 0.63 4.44 6.44 6.58 8.39 21.36
adjdbland ES.Cumax 24 pg, ©0.57 3.31 5.06  4.92 6.35 10.93
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Figure 11.3: Box-plot for deviation from optimality, p, using roll-out features for ES.Cpax
trajectory. Directly optimised CMA-ES model shown for reference on the far right.
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The adventures first... explanations take such a dreadful time.

The Gryphon

12

OR-Library Comparison

NTIL NOW ONLY EVOLUTIONARY SEARCH models from Chapter 5 have been checked for
Urobustness using the OR-Library described in Section 3.3. This was done to show the impact
of choosing objective function defined in Eq. (5.1). However, there was no reference made to
other models, except for demonstrating how far off the result was from the best known solutions
(BKS). Now we will also consider the best configurations for preference models in Chapters 8

to11.

12.1 EXPERIMENTAL STUDY

There were a grand-total thirteen linear composite priority dispatching rules applied to the
OR-Library. Although, all models use the same training data: lejnx ;7. A total of two models
from Chapter 5 (i.e. optimised w.rt. either ES.Cpax or ES.p) and eleven preference models
from Chapters 8 to 11. Their configurations are as follows: i ) 3.524 from Chapter 9 with Bias.1
sampling; ii) 16.1 following expert policy and minimum ES.Cpax weights from Chapter 8,
both using either Bias.1 or adjusted Bias.8; iii) 16.1 following the perturbed leader from
Section 10.1.2 using either Bias.1 or adjusted Bias.8; i) 16.1 following second iteration of
unsupervised DAgger with extended data from Section 10.2 with stepwise adjusted Bias.8; v)
20.1 following expert policy and minimum ES.Cp,ax weights from Section 11.2, both using
adjusted Bias.8, and vi) 24.1 following minimum ES.Cp.x weights from Section 11.2, using

adjusted Bias.8. Note, i) only uses three local features, ii) to iv) use all 16 local features, v)
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j.rnd

use additional {¢,}}°, roll-out features, and finally vi) includes 100 random roll-outs as well.

i=17

Only a single configuration of {¢,};*, model was considered, as it is quite computationally

i=21
expensive for OR-Library as some of the problem dimensions, K, is too great for 100 random
roll-outs for each possible encountered operation. However, using only four fixed roll-outs is
reasonable. Moreover, when applying (K — k)-step lookahead, then it is sensible to keep track
of the best solution found (even though they had not been specifically followed further). This
was referred to as it’s fortified solution, where p; . < p. To keep notation short, only p, . i

reported for models that incorporate any {¢,};%, features. Table 12.1 gives the deviation from

i=1
best known solution. Note, not all problem 1ns7tances from Table 3.3 are reported as not all
best known solutions were found. Instead 71 out of 82 and 18 out of 32 instances are reported
for JSP and FSP, respectively. Note, only best configuration of similar parameter settings was
reported in Table 12.1. However, Table 12.2 gives the frequency (as percentage) of how often
each configuration managed to achieve the best known solution. In the case of FSP’s carl,

only the model using {¢,};*, features found that makespan. However, for JSP’s 1a12 even

i= 21
the local-based feature models found the same makespan as well. Table 12.2 also summarises
the division of model configuration that found the lowest makespan (which for 1a12 and car1
coincides with BKS). In addition, the 1%, 5% and 10% deviation from lowest found p is reported.

This can also be seen in the box-plot given in Fig. 12.1.
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Table 12.1: Comparison results of OR-Library based on j‘_‘;;d“’ training data
CMA-ES Preference models

16.1 16.1 3.524 20.1 24.1
ID nxm BKS|Eq.(5.1) p m Bias p p 4 Prort. | Prort.
P, 5§ 10x10 1234 ES.p 11.91 | ES.Cmax  adjdbland  12.56 | 11.91 | ES.Cax ~ 8.67 | 2.27
6 10xX10 943 |ES.p 12.51 | DA2 adjdbland  17.82 | 13.89 | ES.Cmax  10.82 | 2.44
7 20X1s5 656 | ES.p 11.59 | ES.Cmax  adjdbland  13.26 | 17.53 | ES.Cax  16.46 | 10.52
8 20X15 665 |ES.Cpax 20.30 | DA2 adjdbland  19.55 | 21.50 | ES.Cnax  13.68 | 15.19
9 20X15 678 |ES.p 22.12 | ES.Cnax adjdbland  20.80 | 16.67 | ES.Cax  11.95 | 11.21
Pﬁ 6 6X%X6 ss | ES.p 7.27 | DA2 adjdbland  5.45 [ 12.73 | ES.Cnax ~ 5.45 | 1.82
10 10X10 930 |ES.p 28.92 | OPTe adjdbland 26.02 | 30.00 | OPT 25.27 | 14.73
20 20Xs5 1165 | ES.p 18.37 | ES.Cmax equal 13.91 | 21.29 | ES.Cax  9.10 | §.41
’P,a 1 10X§ 666 | ES.p 2.55 | OPTe adjdbland  3.75 | 10.96 | ES.Cnax  2.25 | 1.0§
3 10X3§ 597 | ES.p 23.95 | OPTe adjdbland  19.43 | 22.78 | ES.Cnax  15.91 | 6.37
4 10X§ 590 | ES.p 3.56 | ES.Cnax adjdbland  3.56 | 3.56 | ES.Cnax  3.56 | 3.56
6 15X5§ 926 | ES.p 10.37 | DA2 adjdbland 10.15 | 14.15 | ES.Cnax  10.15 | 10.1§
7 15X5§ 890 | ES.Cpax 1.57 | ES.Cnax adjdbland  1.57 | 3.15 | ES.Chnax  1.57 | 1.57
8 15X5 863 | ES.p 25.03 | ES.Cmax equal 14.25 | 27.00 | ES.Cpax  9.04 | 10.31
10 15X5§ 958 | ES.p 0.10 | ES.Cnax adjdbland  2.51 | 11.38 | ES.Cpax  ©0.10| 0.52
12 20Xs5 1039 | ES.p o.00 | DA2 adjdbland o0.00| 7.12 | ES.Cpax ©0.00 | 0.00
13 20Xs 1150 | ES.p 7.13 | OPTe adjdbland  7.13 | 8.26 | ES.Cnax  7.57 | 7.13
16 10X10 945 |ES.p 7.09 | OPTe equal 8.68| 5.71 | ES.Cnax 4.76 | 2.12
17 10X10 784 |ES.p 8.80 | DA2 adjdbland  9.06 | 15.31 | ES.Cnax  1.91 | 1.02
18 10X10 848 |ES.p 10.02 | OPTe adjdbland  7.67 | 7.67 | ES.Cmax 14.50 | §.54
19 10X10 842 |ES.p 13.54 | ES.Chax equal 12.59 | 14.85 | ES.Cmax  10.45 | 7.24
21 15X10 1046 |ES.p 28.01 | DA2 adjdbland  29.35 | 33.94 | ES.Cnax  23.52 | 13.96
22 15X10 927 | ES.p 15.97 | ES.Cnax adjdbland  18.12 | 17.15 | ES.Cmax  17.48 | 13.16
23 15X10 1032 | ES.Cpax  10.08 | ES.Crax adjdbland  18.80 | 20.25 | ES.Cax  12.98 | 9.11
24 15%X10 935 |ES.p 14.55 | ES.Cmax adjdbland  16.26 | 24.28 | ES.Cax  16.15 | 10.27
25 15X10 977 | ES.Cnax  15.66 | ES.Crmax adjdbland  19.14 | 19.45 | ES.Cnax  14.94 | 10.95§
26 20X10 1218 |ES.p 16.42 | DA2 adjdbland  17.57 | 16.50 | ES.Cnax  14.86 | 14.86
27 20xX10 1235 |ES.p 22.43 | ES.Cnax adjdbland  21.46 | 27.69 | ES.Cax  19.68 | 15.38
28 20X10 1216 | ES.p 4.28 | ES.Cax adjdbland  7.65 | 7.07 | ES.Cmax  8.72 | 6.17
29 20X10 1152 |ES.p 21.61 | ES.Cnax equal 24.39 | 23.44 | ES.Cax  22.57 | 13.63
30 20X10 1355 | ES.Chpax 2.14 | ES.Cax adjdbland  8.71 | 8.56 | ES.Cax  2.07 | 3.47
32 30X10 1850 | ES.Cpax  18.32 | ES.Crax adjdbland  14.92 | 20.22 | OPT 14.65 | 6.92
33 30X10 1719 | ES.Chax 7.74 | ES.Cmax adjdbland  10.35 | 8.14 | ES.Cmax  7.74 | 8.03
34 30xX10 1721 |ES.p 5.81 | DA2 adjdbland 10.28 | 12.96 | ES.Cnax ~ 7.44 | 4.18
35 30xX10 1888 |ES.p 9.27 | OPTe adjdbland  8.69 | 8.79 | ES.Cmax  4.18 | 2.60
36 15X15 1268 | ES.p 7.89 | DA2 adjdbland  7.33 | 13.01 | ES.Cnax  3.86 | 2.13
37 15X15 1397 | ES.Chax 7.59 | DA2 adjdbland  7.30 | 11.02 | ES.Cnax  9.23 | 0.86
38 15x15 1196 | ES.p 15.72 | DA2 adjdbland  15.89 | 17.14 | ES.Cnax  15.38 | 8.70
39 15X15 1233 | ES.Chpax 8.27 | ES.Cnax adjdbland  8.84 | 14.44 | ES.Cax  9.08 | 6.73
40 15%X15 1222 |ES.p 17.10 | DA2 adjdbland 16.94 | 18.49 | ES.Cnax  10.80 | 9.33
’Pmb 10X10 1059 | ES.p 20.30 | ES.Cmax adjdbland  13.03 | 22.38 | OPT 19.36 | §.29
2 10X10 888 |ES.p 19.03 | OPTe adjdbland  12.73 | 15.20 | ES.Cnax  6.19 | .07
3 10X10 1005 | ES.p 12.24 | ES.Cnax adjdbland 12.24 | 18.01 | OPT 15.32 | 15.52
4 10X10 1005 | ES.p 20.00 | OPTe equal 19.60 | 19.30 | OPT 12.24 | 9.95
s 1oXx1o 887 |ES.p 24.13 | ES.Cnax  equal 18.38 | 28.18 | ES.Ciax  24.13 | 12.06
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Table 12.1 - Continued from previous page

CMA-ES Preference models

16.1 16.1 3.524 20.1 24.1

ID nxm BKS|Eq (5.1) p 7 Bias p p 1 Peort. | Ptort.
6 10xX10 1010 |ES.p 25.15 | DA2 adjdbland  25.84 | 25.15 | OPT 15.45 | 12.77
7 10X10 397 | ES.Cpax  17.13 | ES.Cmax equal 14.86 | 16.62 | ES.Cyax  10.33 | 10.08
8 10X10 899 |ES.p 21.91 | ES.Cnax equal 21.91 | 24.58 | OPT 12.68 | §.78
9 10X10 934 |ES.p 18.84 | DA2 adjdbland  17.88 | 14.03 | ES.Cnax  11.03 | 8.14
10 10X10 944 |ES.p 20.76 | ES.Cmax adjdbland  20.44 | 27.65 | ES.Cnax  19.60 | 8.58

Paww 1 20X10 1407 | ES.Cax  28.29 | ES.Cnax  adjdbland  30.56 | 33.40 | ES.Cax  27.29 | 14.93

2 20X10 1475 | ES.Cmax  27.59 | ES.Cmax adjdbland  24.00 | 33.42 | ES.Cmax  17.42 | 13.63
3 20X10 1398 |ES.p 25.04 | ES.Cnax adjdbland  25.75 | 30.76 | ES.Cnax  18.96 | 15.52
4 20X10 1470 |ES.p 29.52 | ES.Cmax adjdbland  30.41 | 34.56 | ES.Cnax  23.67 | 18.57
5 20X10 1424 | ES.p 23.17 | ES.Cnax adjdbland  29.00 | 24.79 | ES.Cimax  21.70 | 15.31
6 20X15 1675 | ES.Cnax  31.34 | ES.Cax adjdbland  25.31 | 38.39 | ES.Cax  25.97 | 19.28
7 20X15 1594 | ES.Cmax  23.34 | ES.Cmax adjdbland  29.92 | 31.93 | ES.Cax  23.34 | 17.25§
8 20X15 1755 |ES.p 29.63 | ES.Cnax adjdbland 23.82 | 34.47 | ES.Cnax  25.53 | 25.75
9 20X1§ 1656 | ES.Cnax  28.08 | ES.Crax equal 26.75 | 38.41 | ES.Cax 28.02 | 15.94
10 20X15 1743 | ES.p 40.10 | OPTe adjdbland  40.45 | 42.74 | ES.Cnax  31.73 | 21.23
11 sox1io 2983 |ES.p 50.55 | ES.Cmax equal 34.70 | 50.89 | ES.Cnax 32.45| 17.§
12 50X10 2979 | ES.Cmax  39.48 | ES.Cax adjdbland  27.32 | 37.97 | ES.Cnax  28.33 | 18.83
13 50X10 3104 | ES.Cmax  34.41 | ES.Cax equal 30.09 | 38.21 | ES.Cpax 27.29 | 19.23
14 sox1io 2968 | ES.p 32.78 | ES.Cmax adjdbland  22.78 | 39.12 | ES.Cpax  20.75 | 16.24
15 50X10 2886 | ES.Cmax 42.13 | ES.Cax adjdbland  33.75 | 40.89 | OPT 26.09 | 18.99
18 sox1o 2852 |ES.p 3.82 | DA2 adjdbland  3.51| 4.77 | ES.Cnax  3.65 | 3.51
19 sox1o 2843 |ES.p 5.70 | DA2 adjdbland  7.91 | 11.50 | ES.Cnax  5.56 | 5.56
'Pyn 1 20%X20 884 |ES.)p 10.52 | ES.Cax adjdbland  14.82 | 14.59 | ES.Cax  15.84 | 13.01
2 20X20 904 | ES.Cpax  16.26 | ES.Crax adjdbland  12.94 | 17.04 | ES.Cax  18.14 | 11.62
3 20X20 892 |ES.p 18.95 | ES.Cmax equal 20.85 | 20.29 | ES.Cax  22.98 | 16.03
4 20%X20 968 |ES.p 30.17 | ES.Cmax equal 29.34 | 32.64 | ES.Cnax 23.14 | 13.84
Py 1 11X5 7038 | ES.p 11.71 | ES.Cmax equal 10.19 | 17.01 | OPT 7.47 | ©0.00
2 13X4 7166 | ES.p 18.84 | ES.Cax equal 14.16 | 23.22 | ES.Chax  4.10| 3.34
3 12Xs5 7312 |ES,p 15.78 | ES.Cax  equal 9.38 | 6.40 | ES.Cax  7.89 | 7.84
4 14X4 8003 |ES.p 7.67 | ES.Cmax adjdbland  12.61 | 13.83 | ES.Cpax  6.10| 5.57
6 8X9 8s05|ES.p 15.29 | ES.Cax equal 6.65|11.38 | ES.Cnax  6.51 | 1.86
7 7X7 6590 |ES.p 11.79 | ES.Cmax equal 9.77 | 9.77 | ES.Cnax  2.58 | 1.78
8 8x8 8366 |ES.p 8.39 | ES.Cnax adjdbland  11.00 | 11.59 | ES.Cnax ~ 7.42 | 4.21

Phel 2 20X10 136 | ES.Cmax  15.44 | ES.Cnax adjdbland  14.71

12.50 ‘ ES.Chax 6.62 | 7.35

!

c 7 20X10 1566 | ES.p 14.56 | ES.Cmax adjdbland  14.75 | 16.35 | ES.Cmax  12.45 | 6.32
9 20X10 1537 | ES.Cnax 12.88 | DA2 adjdbland  12.88 | 20.17 | ES.Cnax  12.30 | 7.48
11 20X10 1431 | ES.Cax  12.44 | ES.Cpax adjdbland  14.40 | 25.44 | ES.Cnax  12.30 | 13.49

13 20X15 1930 | ES.p 13.52 | ES.Cmax adjdbland  13.32 | 14.09 | ES.Cax  20.26 | 8.29
15 20X15 1950 | ES.p 9.23 | ES.Cax equal 11.49 | 10.15 | ES.Cnax  13.49 | 8.82
17 20X15 1902 | ES.Cnax  19.72 | ES.Cpax adjdbland  20.24 | 26.13 | ES.Cnax  20.98 | 10.73
25 30xX1s 2513 | ES.p 20.45 | ES.Cnax adjdbland  19.78 | 24.39 | ES.Cipax  21.69 | 12.06
29 30xX15 2287 |ES.p 16.92 | ES.Chax  equal 22.43 | 22.56 | ES.Cpax  21.38 | 13.29
31 sox1o 3045 |ES.p 19.77 | DA2 adjdbland 20.76 | 24.11 | ES.Cnax  19.61 | 15.01
33 sox1o 3114 |ES.p 17.66 | ES.Cax  adjdbland  20.94 | 22.00 | ES.Cax  15.48 | 10.24
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12.1. EXPERIMENTAL STUDY

Table 12.2: Frequency (%) a model configuration found the best makespan

w.r.t. lowest found C,.x

Type CDR Configuration N BKS =0 <1 <5 <10
PREF 3.524 OPT.equal 71 0.00 1.41 2.82 18.31 49.30
PREF 16.1 OPT.equal 71 0.00 0.00 0.00 0.00 1.41
PREF 16.1  OPT.adjdbland 71 0.00 0.00 0.00  0.00 1.41
PREF 16.1 OPTe.equal 71 0.00 0.00 0.00 0.00 4.23
PREF 16.1 OPTeadjdbland 71 1.41 7.04 7.04 12.68 32.39
. PREF 16.1  ES.Cpax-equal 71 0.00 0.00 0.00 2.82 21.13
© PREF 16.1  ES.Cpay.adjdbland 71 o0.00 5.63 8.45 23.94 61.97
PREF 16.1  DAz.adjdbland 71 1.41 §5.63 7.04 12.68 42.25
PREF 20.1  OPT.adjdbland 71 0.00 2.82 12.68 30.99 76.06
PREF 20.1  ES.Cpgyadjdbland 71 1.41 15.49 22.54 52.11  84.51
PREF 24.1  ES.Cpayadjdbland 71 1.41 87.32 90.14 100.00 100.00
CMA-ES 16.1  ES.Chax 71 1.41 8.45 15.49 32.39 §9.15§
CMA-ES 16.1 ES.p 71 1.41 9.86 15.49 33.80 5§9.15§
PREF 3.524 OPT.equal 18 0.00 5.56 5.56 11.11 55.56
PREF 16.1 OPT.equal 18 0.00 0.00 0.00 0.00 0.00
PREF 16.1 OPT.adjdbland 18 0.00 0.00 0.00 0.00  0.00
PREF 16.1  ES.Cpaxequal 18 0.00 0.00 0.00 16.67 38.89
PREF 16.1  ES.Cpax.adjdbland 18 0.00 0.00 0.00  5.56 55.56
o PREF 16.1 OPTe.equal 18 0.00 0.00 0.00 0.00 0.00
¥ PREF 16.1 OPTeadjdbland 18 0.00 o0.00 0.00 0.00 11.11
PREF 16.1  DAz.adjdbland 18 0.00 0.00 0.00 0.00 38.89
PREF 20.1 OPT.adjdbl2and 18 0.00 0.00 11.11 16.67 72.22
PREF 20.1  ES.Cpay.adjdbland 18 o0.00 11.11 27.78 61.11  83.33
PREF 24.1  ES.Cpay.adjdbland 18 5.56 83.33 88.89 100.00 100.00
CMA-ES 16.1  ES.Chax 18 0.00 0.00 5.56 22.22 66.67
CMA-ES 161 ES.p 18 0.00 0.00 11.11 33.33 72.22
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12.2 CONCLUSIONS

Of the thirteen linear models considered, the model using random roll-outs (i.e. 24.1) was con-
sistently the best, which was to be expected as it has the most computational effort in inspecting
possible solutions for each problem instance. Although it did not always find the lowest makespan

of the models considered (it did for 86.52% instances), it was at least within 5% error. The second

best configuration was using {@;}7°,, features. This is also to be expected as it uses four fixed
roll-outs. Notice in Table 12.1, when 24.1 is not the best model then the 20.1 model is best
configuration (with very few exceptions). Of its two configurations, the following minimum
ES.Cpax proved better than the configuration based on following expert policy. This concurs
with the findings for the preference models using only local features, {¢,}1S .

Furthermore, the model using only three local features has a remarkably low p compared to

the other more sophisticated {g,}}%, preference models. This is probably due to the fact that

10X10
j-rnd

the trained models on completely different problem spaces then incorporating so many features

during training the model has the problem space specifically in mind. So when we test
may not necessarily be representing for those new instances. However, for a three-feature model,
the robustness of its capabilities are somewhat more in focusing its efforts on representing the
‘essence’ of job-shop instead of paying particular attention to the problem space’s individuality.
From the robustness experiments using the OR-Library benchmark suite, we see that the re-
sults from the training data, to the corresponding test data, hold when tested on completely
different problem spaces. This is both with respect to data distribution and dimensionality.
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Tut, tut, child! Everything’s got a moral, if only you can find it.
The Duchess

Conclusions

CURRENT LITERATURE STILL HOLD single priority dispatching rules in high regard as they are
simple to implement and quite efficient. However, they are generally taken for granted as
there is a clear lack of investigation of how these dispatching rules actually work and what makes

them so successful (or in some cases unsuccessful)?

For instance, of the four SDRs from Section 2.4, this dissertation focused on why does MWR
outperform so significantly for job-shop yet completely fail for flow-shop? MWR seems to be
able to adapt to varying distributions of processing times, yet, manipulating the machine order-
ing causes MWR to break down. By inspecting optimal schedules and meticulously researching
what is going on throughout the dispatching sequence, as was done in Chapter 7, some light
was shed on where these SDRs vary w.r.t. the problem space at hand. Once these simple rules
are understood, then it’s feasible to extrapolate the knowledge gained and create new composite
priority dispatching rules that are likely to be successful. An example of which was a blended
dispatching rule in Section 7.4 where we start with the SPT heuristic and switch over to MWR
at predetermined time points. The pivotal time steps were chosen by inspecting where SPT
succeeds MWR (and vice versa). By achieving a higher classification accuracy using the new BDR
model, it substantially improved its inherited rule SPT. Although, this does not transcend to a
significantly lower deviation from optimality, p, when compared to its other inherited rule MWR.
Special care must be taken not to let SPT downgrade MWR's performance. This can be avoided

by inspecting how p is evolving as a function of time for its intended policy (cf. Fig. 7.6) and only
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Algorithm § Analysis & Learning Iterative Consecutive Executions (ALICE) framework, given
a problem space P, an expert policy 7, and set of benchmark algorithms A.

1: procedure ALICE(P, 74, A)

2 Y™ < {Y(n.,9(x)) : x€ P} > collect optimal solutions
3 o™ + {¢(z*(x)) : x€ P} > collect optimal meta-data
4: forallw € Ado > for each algorithm
5 Y« {Y(n,9(x)) : x€ P} > collect solutions
6: 0" + {¢(n(x)) : x€ P} >> collect meta-data
7 (L ESmo=m: 7, >> optimality of 7 (i.e. when Y™ = Y7)
8: {, < ANALYSE(§, — Y7) > relation between optimality and end-result
9: ®" < SamrLe(D,, () > adjust set w.r.t. analysis
10: end for
11 O« {07 : 7€ {AUm}} > training set
12: 7 < TraIN(D) > apply learning algorithm
13: return 7 > learned policy

14: end procedure

consider swapping trajectories before they intersect and subsequently diverge in performance.
Moreover, the improved classification accuracy is proportional to its difference in performance

spread (i.e. |Z1<VI>WR — Z?I;TD in that region.

13.1 EXECUTIVE SUMMARY

The framework proposed in this dissertation, called Analysis & Learning Iterative Consecutive
Executions, or ALICE, is roughly described in Algorithm 5. The dissertation focused on analysing
single priority dispatching rules, starting with Chapter 4 by defining ‘difficulty’ of problem in-
stances. Then Chapter 7 continued exploring the dispatching rules even further, on step-by-
step basis in order of trying to explain the performance of a dispatching rule by investigating the
strength and weaknesses from empirical evidence.

The learning phase of ALICE is focusing on linear preference based imitation learning mod-
els. The models classify as a tailored algorithm, and they’re compared to a general algorithm
called CMA-ES from Chapter 5. It’s noted that CMA-ES has the ‘unfair’ advantage of optimis-
ing the end-result directly, whereas preference models are more focusing on predictability (via
classification accuracy). Therefore, when training data is contradictory it’s non-trivial to achieve
exceptional performance. To address that drawback, the latter half of this dissertation introduced

various strategies to improve model configuration for improved learning, most notably:

i) stepwise sampling bias for balancing time-dependent data sets (cf. Section 8.6),
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13.1. EXECUTIVE SUMMARY

ii) exhaustive feature selection and bearing in mind the polysemy of reporting training accu-
racy for preference learning, i.e., should it be the traditional classification accuracy (that
deals with classifying all ranks correctly) or just focusing on the stepwise optimality (clas-
sifying the optimal rank). Moreover, by incorporating i) it’s possible to weigh the training

accuracy w.r.t. time-step (cf. Chapter 9),

iii) allowing the predictor to randomise, boosts performance as following the expert policy by
itself is too difficult to learn on its own (cf. Section 10.1.2),

iv) following sub-optimal deterministic policies, yet labelling with an optimal solver, generally

improves the guiding policy (cf. Section 8.5),

v) active update procedure using DAgger ensures sample states the learned model is likely to

encounter is integrated to the preference set (cf. Section 10.2),
vi) keeping track of fortified solutions using roll-out features (cf. Chapter 11) .

Moreover, several problem distributions and dimensionality from Chapter 3 were considered
with sometimes contradictory results. Fortunately, the performance seemed to hold when going
to higher dimension (i.e. from P¢*$ to P*°**°). Thereby, justifying only considering ‘easy’ JSP
in terms of computational effort before investing valuable time for higher dimensional experi-
ments. However, problem distributions is a key component, and the learned model should try
to represent its intended (test) dataset as close as possible. Furthermore, Chapter 12 showed
that results from P,
OR-Library benchmark suite.

Creating new dispatching rules is by no means trivial. For job-shop there is the hidden interac-

to corresponding P, holds for completely different test application, e.g.,

tion between processing times and machine ordering that’s hard to measure. Due to this artefact,
feature selection is of paramount importance, and then it becomes the case of not having too many
features, as they are likely to hinder generalisation due to over-fitting in training the preference
model, as was seen in Section 8.5 for several proposed policies. However, the features need to be
explanatory enough to maintain predictive ability. For this reason Eq. (2.12) was limited to up to
three active features in Chapter 9, as the full feature set was clearly suboptimal w.r.t. its CMA-ES
benchmark from Chapter 5. By using features based on the SDRs, along with some additional
local features describing the current schedule, it was possible to ‘discover’ the SDRs when given
only one active feature. Although there is not much to be gained by these models, they at least
serve as a sanity check for the learning models are on the right track.

Furthermore, by adding additional features, a boost in performance was gained, resulting in
a composite priority dispatching rule that outperformed all of the SDR benchmarks. Although,
the best preference model of 3 active features was still not better than the CMA-ES model for
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10 X10
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(using ‘I’?S‘Cn‘” from Section 8.5) and now Ap &~ —2% (cf. CDR #3.524 in Table 9.2) in favour

using 16 features. However, it’s starting to close in on the gap, as previously Ap ~ —6%

of evolutionary search (cf. Table s.2).

13.2 FUTURE WORK

The DAgger updating framework from Section 10.2 proposed starting with the model based on
the expert policy, Algorithm 4, and only relies on some initial learned model. So in theory, it
should be possible to improve the ‘I’;:S‘C“‘“ set-up even further, by applying DAgger afterwards
to that learned model. Or in general substituting the learned ‘I’I?PT to some other good initial
model. Perhaps even starting with the perturbed leader, which has very similar motivation as
following the expert policy, yet yields substantially better performance straight off the bat.

We saw in Section 8.5 that preference models using training data from following SDR policy
(ie. ®SPR)) are good for improving its original heuristic. However, this did not transcend for
O{CMAES) \hich was statistically insignificant with the right stepwise sampling bias. The nature
of CMA-ES is to explore suboptimal routes until it converges to an optimal route. So perhaps, if
@{CMAES) (a5t based on following the CMA-ES trajectory, but rather using the actual features
encountered during its optimisation would give a more meaningful preference set for learning.
Alas, CMA-ES used a computational budget of 50,000 function evaluations, each consisting of
the expectation of Niy,in problem instances. So even though Fig. 5.1 becomes relatively stable
after a few generations, it would still yield a gigantic feature set that needs to be filtered before
going through the optimisation phase of correctly labelling them.

From Chapters 11 and 12 we saw that pilot models achieved the lowest deviation from opti-
mality, p, of all other proposed models from the dissertation. Generally, the more roll-outs that
are made, the lower fortified makespan is found. However, in some cases using just four fixed
roll-outs were better (cf. Table 12.1). In particular, we saw in Section 11.1 how pursuing -9,
(which is basically repeatedly applying w.r.t. —¢_fora (K—k)-lookahead), significantly increased
performance for p. Now, instead of doing fixed roll-outs based on SDRs, such as {¢,}°,, then
it could be worth investigating a single roll-out of learned policy, 7. Usually, the learned policy
surpasses SPT (i.e. —¢,) w.rt. stepwise optimality, ie., £ > Ei%. So presumably, even bet-
ter performance could be achieved without resorting to an intensive computational budget of a
hundred (or more) random roll-outs.

The analysis-phase of ALICE is heavily dependent on having an expert policy it’s trying to
mimic, i.e., knowing the optimal solutions for the sake of imitation learning. Understandably,
knowing the true optimum is an unreasonable claim in many situations, especially for high dimen-
sional problem instances. Luckily, there seems to be the possibility to circumvent querying the

expert altogether, and still have reasonable performance. By applying Locally Optimal Learning
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to Search by Chang et al. (2015) it is possible to use imitation learning even when the reference

policy is poor. Although it’s noted that the quality (w.r.t. near-optimality) of reference policy is
in accordance to its performance, as is to be expected.

So a prudent man must always follow in the footsteps of great men and imitate those

who have been outstanding. If his own prowess fails to compare with theirs, at least
it has an air of greatness about it.

Niccolod di Bernardo dei Machiavelli (1513)

Just as this quote applied to new principalities acquired with one’s own arms and prowess centuries
ago, it equally applies when setting up novel supervised learning algorithms. Namely, when it

comes to designing algorithms there needs to be emphasis on where to innovate and imitate when
visiting state-spaces.
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A cat may look at a king. I've read that in some book, but I don'’t
remember where.
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What is the use of repeating all that stuff, if you don’t explain it as
you go on? It’s by far the most confusing thing I ever heard!

The Mock Turtle

Ordinal Regression

RDINAL REGRESSION HAS BEEN previously presented in Runarsson (2006), but given here
for completeness. The preference learning task of linear classification presented there is
based on the work proposed in (Fan et al., 2008, Lin et al., 2008). The modification relates to

how the point pairs are selected and the fact that a L2-regularized logistic regression is used.

A.1  PREFERENCE SET
The ranking problem is specified by a preference set,
Y= {(x, )}, CX XY (A.1)

consisting of N (solution, rank)-pairs, where Y = {r,, ..., ry} is the outcome space with ordered
ranksr, > r,, > ... > rn.
Now consider the model space = {h(-) : X — Y} of mappings from solutions to ranks.

Each such function & induces an ordering > on the solutions by the following rule,
X —Xj << h(Xi) > h(X]) (AZ)

where the symbol > denotes ‘is preferred to.

In ordinal regression the task is to obtain function & that can for a given pair (x;, y;) and (x;, ;)
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distinguish between two different outcomes: y; > y;j and y; > y;. The task is, therefore, trans-
formed into the problem of predicting the relative ordering of all possible pairs of examples (Her-
brich et al., 2000, Joachims, 2002). However, it is sufficient to consider only all possible pairs of
adjacent ranks (see also Shawe-Taylor and Cristianini (2004) for yet an alternative formulation).

The preference set, composed of pairs, is then as follows,

N/
CXXY (A.3)
1

¥ = { ) x), 1 = sign() — 37}
where (y,(;) =) A (y,(:) = fi+1), and vice versa (y,(;) = tita) A (y,(:) = r;), resulting in
N’ = 2(N — 1) possible adjacently ranked preference pairs. The rank difference is denoted by
tr € {—1,1}.

In order to generalize the technique to different solution data types and model spaces an im-
plicit kernel-defined feature space ® C R of dimension d, with corresponding feature mapping
@ : X — O is applied, i, the feature vector ¢(x) = [p,(x),...,9,(x)]T € ®©. Thus the
preference set defined by Eq. (A.3) is redefined as follows,

N/
CdxY. (A.q)

¥ = {(o6x)-007)) 1 = signl” — )}

A.2  ORDINAL REGRESSION

The function used to induce the preference is defined by a linear function in the kernel-defined

feature space, ,
) = > ey (x) = (- o(x) (a5)

where w = [w,, ..., w,] € R? has weight w; for feature @,.

The aim now is to find a function h that encounters as few training errors as possible on V.
Applying the method of large margin rank boundaries of ordinal regression described in Herbrich

etal. (2000), the optimal w* is determined by solving the following task,
N/
min i<w . w> + % Z & (A.6)
k=

subject to tk<w-(q>(x(1)) - q>(x,(:))> >1—§and§, > o,k =1,..., N The degree of constraint

violation is given by the margin slack variable §; and when greater than 1 the corresponding pair
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A.3. LOGISTIC REGRESSION

are incorrectly ranked. Note that,

h(x;) — h(x) = (w- ¢(x:) — 9(x))) (A7)

and minimising <w : w> in Eq. (A.6) maximises the margin between rank boundaries, i.e., the

distance between adjacently ranked pair h(x(*)) and h(x(*).

A.3 LoOGISTIC REGRESSION

Let z denote either (p(x,(:)) — ¢ ,(:')) with tp = +10r (p(x,(:)) - (p(x,(cl)) with , = —1, positive
or negative example respectively.

Logistic regression learns the optimal parametersw € R determined by solving the following
task,

w

min  (w-w)+ Cg:log (1 + e‘y"<“"z">> (A.8)

where C > o is a penalty parameter, and the negative log-likelihood is due to the fact the given
data point z; and weights w are assumed to follow the probability model,

1

Py =+tiz,w) = ——.
L4 )

(A.9)

The logistic regression defined in Eq. (A.8) is solved iteratively, in particular using Trust Region
Newton method (cf. Lin et al., 2008), which generates a sequence {w(k) }22 | converging to the

optimal solution w* of Eq. (A.8).

A.4 NON-LINEAR PREFERENCE

In the case that the preference set ¥ defined by Eq. (A.4) is not linearly separable, a common way
of coping with non-linearity is to apply the ‘kernel-trick’ to transform ¥ onto a higher dimension.

In which case, the dot product in Eq. (A.s) is replaced by a kernel function «.

In terms of training data, the optimal w* can be expressed as,

N/
w=>a'te (o(x”) — ox)) (A.10)
k=1
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and the function h(+) from Eq. (A.7) may be reconstructed as follows,

N/

= (w o) = > at (o) o)) — (o) - 0(x))))
k=1
- Za*tk (K(x,(:),x)—;c(x’(:),x)) (A.11)
k=1

where x(x,z) = (@(x) - ¢(z)) is the chosen kernel and aj are the Lagrangian multipliers for the

constraints that can be determined by solving the dual quadratic programming problem,
maxz _722 b, ) MONNONNO, 8 A
ak a;a; XXX )+ =8 (A.12)
i=1 j=1

subject to Zlk\il agty = oand a; > oforallk € {1,...,N'}, and where,

K( 1( ), ,(2), ](1) x]-(z)) = x ( i(l) ]( )) K (xfl),xj(z)) (A.13)

—1<< () ()>—|—1c< (2) ](2)>

and §;; is the Kronecker § defined to be 1 iffi = j and o otherwise.

KERNEL FUNCTIONS

There are several choices for a kernel «, e.g., polynomial kernel,

kpoty(Xi,%) = (14 (xi-x;))" (A.14)

of order p, or the most commonly used kernel in the literature which implements a Gaussian radial
basis function, the rbf kernel,

kwe(xi, ;) = e 7Ixsl (A.1s)

fory > o.

A.5 PARAMETER SETTING AND TUNING

The regulation parameter C in Egs. (A.6), (A.8) and (A.12), controls the balance between model

complexity and training errors, and must be chosen appropriately. A high value for C gives greater
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emphasis on correctly distinguishing between different ranks, whereas a low C value results in

maximising the margin between classes.

A.6 SCALING

It some cases it becomes necessary to scale the features ¢ from Section 2.5 first, especially if
implementing a kernel method in Eq. (A.5). In the case of JSP, scaling makes the features less
sensitive to varying problem instances. Moreover, for surrogate modelling (cf. Paper II), it is
important to scale the features ¢ as the evolutionary search zooms in on a particular region of the
search space.
A standard method of doing so is by scaling the preference set such that all points are in some
range, typically [—1, 1]. That is, scaled ¢ is,
¢, =200, —9)/(p;—9)—1 Vie{y....d} (A.16)

1

where ¢, @, are the maximum and minimum i-th component of all the feature variables in @,
L
namely,

¢, =min{p, | Vo € ®} and §; = max{y, | Vo € O} (A.17)
wherei € {1...d}.

A.7 IMPLEMENTATION

To use linear ordinal regression, then it’s best to use LIBLINEAR: A Library for Large Linear
Classification by Fan et al. (2008), which contains implementations in several programming lan-
guages. The preferred choice of the author was the R-package LiblineaR by Helleputte (2015).
However, if more sophisticated kernel methods are sought after, then LIBSVM: A Library for
Support Vector Machines by Chang and Lin (2011) is an obvious substitute.
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Supervised Learning Linear Priority Dispatch
Rules for Job-Shop Scheduling

Helga Ingimundardottir and Thomas Philip Runarsson

School of Engineering and Natural Sciences, University of Iceland
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Abstract. This paper introduces a framework in which dispatching
rules for job-shop scheduling problems are discovered by analysing the
characteristics of optimal solutions. Training data is created via ran-
domly generated job-shop problem instances and their corresponding
optimal solution. Linear classification is applied in order to identify good
choices from worse ones, at each dispatching time step, in a supervised
learning fashion. The method is purely data-driven, thus less problem
specific insights are needed from the human heuristic algorithm designer.
Experimental studies show that the learned linear priority dispatching
rules outperforms common single priority dispatching rules, with respect
to minimum makespan.

1 Introduction

Hand crafting heuristics for NP-hard problems is a time-consuming trial and
error process, requiring inductive reasoning or problem specific insights from
their human designers. Furthermore, within a problems class, such as job-shop
scheduling, it is possible to construct problem instances where one heuristic
would outperform another. Given the ad-hoc nature of the heuristic design
process there is clearly room for improving the process. Recently a number of
attempt have been made to automate the heuristic design process. Here we
focus on the job-shop problem. Various learning approaches have been applied
to this task such as, reinforcement learning [1], evolutionary learning [2], and
supervised learning [3,4]. The approach taken here is a supervised learning
classifier approach.

In order to find an optimal (or near optimal) solution for job-shop scheduling
problem (JSSP) one could either use exact methods or heuristics methods. Exact
methods guarantee an optimal solution, however, JSSP is NP-hard [5]. Any
exact algorithm generally suffers from the curse of dimensionality, which impedes
the application in finding the global optimum in a reasonable amount of time.
Heuristics are generally more time efficient but do not necessarily attain the
global optimum. A common way of finding a good feasible solution for the JSSP
is by applying heuristic dispatching rules, e.g., choosing a task corresponding
to longest/shortest operation time; most/least successors; or ranked positional
weight, i.e., sum of operation times of its predecessors. Ties are broken in an
arbitrary fashion or by another heuristic rule. Recently it has been shown that

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 263-277, 2011.
© Springer-Verlag Berlin Heidelberg 2011



combining dispatching rules is promising [2], however, there is large number of
rules to choose from and so combinations requires expert knowledge or extensive
trial-and-error. A summary of over 100 classical dispatching rules can be found
in [6].

The alternative to hand-crafting heuristics for the JSSP, is to implement an
automatic way of learning heuristics using a data driven approach. Data can
be generated using a known heuristic, such an approach is taken in [3], where a
LPT-heuristic is applied. Then a decision tree is used to create a dispatching rule
with similar logic. However, this method cannot outperform the original LPT-
heuristic used to guide the search. For instruction scheduling this drawback
is confronted in [4,7] by using an optimal scheduler, computed off-line. The
optimal solutions are used as training data and a decision tree learning algorithm
applied as before. Preferring simple to complex models, the resulting dispatching
rules gave significantly more optimal schedules than using popular heuristics in
that field, and a lower worst-case factor from optimality. A similar approach is
taken for timetable scheduling in [8] using case based reasoning. Training data
is guided by the two best heuristics for timetable scheduling. The authors point
out that in order for their framework to be successful, problem features need
to be sufficiently explanatory and training data need to be selected carefully so
they can suggest the appropriate solution for a specific range of new cases.

In this work we investigate an approach based on supervised learning on opti-
mal schedules and illustrate its effectiveness by improving upon well known dis-
patch rules for job-shop scheduling. The approach differs from previous studies,
as it uses a simple linear combination of features found using a linear classifier.
The method of generating training data is also shown to be critical for the
success of the method. In section 2 priority dispatch rules for the JSSP problem
are discussed, followed by a description of the linear classifier in section 3. An
experimental study is then presented in section 4. The paper concludes with a
summary of main findings.

2 Priority Dispatch Rules for Job-Shop Scheduling

The job-shop scheduling task considered here is where n jobs are scheduled
on a set of m machines, subject to the constraint that each job must follow a
predefined machine order and that a machine can handle at most one job at
a time. The objective is to schedule the jobs so as to minimize the maximum
completion times, also known as the makespan.

Each job j has an indivisible operation time on machine a, p(j,a), which is
assumed to be integral, where j € {1,..,n} and a € {1,..,m}. Starting time of
job j on machine a is denoted x(a, j) and its completion time is denoted x5 and

zy(a,j) = zs(a,j) +p(j,a) (1)

Each job has a specified processing order through the machines, it is a permu-
tation vector, o, of {1,..,m}. Representing a job j can be processed on o(j,a)
only after it has been completely processed on o(j,a — 1), i.e.,
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l‘s(O’(j, a)a.j) > Jif(d(j,a - 1)7j> JE€ {17 "7n}’ a €< {2’ "7m} <2)

The disjunctive condition that each machine can handle at most one job at a
time is the following;:

zs(a,i) > xp(a,j) or ws(a,j) > xf(a,i) (3)

for all 4,5 € {1,..,n} and a € {1,..,m}. The time in which machine a is idle
between jobs j and j — 1 is called slack time,

S(a7j) :ms(a,j)—xf(a,j—l). (4)
The makespan is the maximum completion time

z=max{z¢(j,m)|j=1,..,n} (5)

Dispatching rules are of a construction heuristics, where one starts with an
empty schedule and adds on one job at a time. When a machine is free the
dispatching rule inspects the waiting jobs and selects the job with the highest
priority. The priority may depend on which job has the most work remaining
(MWKR); least work remaining (LWKR); shortest immediate processing time
(SPT); and longest immediate processing time (LPT). These are the most ef-
fective dispatching rules. However there are many more available, e.g. randomly
selecting an operation with equal possibility (RND); minimum slack time (MST);
smallest slack per operation (S/OP); and using the aforementioned dispatching
rules with predetermined weights. A survey of more than 100 of such rules was
given in 1977 by [6]. It has recently been shown that a careful combination of
basic dispatching rules can perform significantly better [9].

In order to apply a dispatching rule a number of features of the schedule
being built must be computed. The features of particular interest were obtained
from inspecting the aforementioned single priority-based dispatching rules. Some
features are directly observed from the partial schedule. The temporal scheduling
features applied in this paper for a job j to be dispatched on machine a are: 1)
processing time for job j on its next machine a; 2) work remaining for job j;
3) start-time of job j; 4) end-time of j; 5) when machine a is next free; 6)
current makespan for all jobs; 7) slack time for machine a; 8) slack time for all
machines; and 9) slack time weighted w.r.t number of number of jobs already
dispatched. Fig. 1 shows an example of a temporal partial schedule for a six
job and six machine job-shop problem. The numbers in the boxes represent the
job identification j. The width of the box illustrates the processing times for a
given job for a particular machine M; (on the vertical axis). The dashed boxes
represent the resulting partial schedule for when a particular job is scheduled
next. As one can see, there are 17 jobs already scheduled, and 6 potential jobs
to be dispatched next. If the job with the shortest processing time were to be
scheduled next then job 4 would be dispatched. A dispatch rule may need to
perform a one-step look-ahead and observes features of the partial schedule to
make a decision, for example by observing the resulting temporal makespan.
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Fig. 1. A schedule being built, the dashed boxes represent six different possible jobs
that could be scheduled next using a dispatch rule

These resulting observed features are sometimes referred to as an after-state
or post-decision state. Other dispatch rules use features not directly observable
from the current partial schedule, for example by assigning jobs with most total
processing time remaining.

Problem instances are generated stochastically by fixing the number of jobs
and machines and sampling a discrete processing time from the uniform distri-
bution U(R,100). The machine order is a random permutation. Two different
processing times were explored, namely U(50,100) and U(1,100) for all ma-
chines. For each processing time distribution 500 instances were generated for
a six job and six machine job-shop problem. Their optimal solution were then
found using the GNU linear programming kit [10]. The optimal solutions are
used to determine which job should be dispatched in order to create an optimal
schedule and which ones are not. When a job is dispatched the features of the
partial schedule change. The aim of the linear learning algorithm, discussed in
the following section, is to determine which features are better than others. That
is, features created when a job is scheduled in order to build the known optimal
solution as opposed to features generated by dispatching jobs that will result in
a sub-optimal schedule.

3 Logistic Regression

The preference learning task of linear classification presented here is based on
the work presented in [11,12]. The modification relates to how the point pairs
are selected and the fact that a L2-regularized logistic regression is used.
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Let ¢(© € R denote the post-decision state when the job dispatched cor-
responds to an optimal schedule being built. All post-decisions states corre-
sponding to suboptimal dispatches are denoted by ¢(®) € R?. One could label
which feature sets were considered optimal, z, = ¢(®) — ¢(*), and suboptimal,
zs = ¢ — ¢ by y, = +1 and y, = —1 respectively. Note, a negative example
is only created as long as the job dispatched actually changed the resulting
makespan, since there can exist situations in which more than one choice can be
considered optimal.

The preference learning problem is specified by a set of preference pairs:

12 £
S = {{¢<°> —o 40 e e 0] v J““)} COxY (6)

where & C RY is the training set of d features, Y = {—1,+1} is the outcome
space, £ = n x m is the total number of dispatches and j € J*) are the possible
suboptimal dispatches at dispatch (k). In this study, there are d = 9 features,
and the training set is created from known optimal sequences of dispatch.

Now consider the model space h € H of mappings from points to preferences.
Each such function A induces an ordering > on the points by the following rule:

¢ = ¢ = h(e) > h(e") (7)

where the symbol > denotes “is preferrred to”. The function used to induce the
preference is defined by a linear function in the feature space:

d
h(¢) = Zwi¢i- (8)

Let z denote either ¢(®) — ¢() with y = +1 or ¢(*) — ¢(®) with y = —1
(positive or negative example respectively). Logistic regression learns the optimal
parameters w € R¢ determined by solving the following task:

l

min  3(w-w)+C) log (1 - e—yi<W'Zi>> (9)

w
=1

where C' > 0 is a penalty parameter, and the negative log-likelihood is due to the
fact the given data points z and weights w are assumed to follow the probability
model:
1

14 ev{we)
The logistic regression defined in (9) is solved iteratively, in particular using Trust
Region Newton method [12], which generates a sequence {w(*)}2° converging
to the optimal solution w* of (9).

The regulation parameter C' in (9), controls the balance between model com-
plexity and training errors, and must be chosen appropriately. It is also important

Py =+l|z,w) = (10)
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to scale the features ¢ first. A standard method of doing so is by scaling the
training set such that all points are in some range, typically [—1,1]. That is,
scaled ¢ is

QEiZQ(Qbi_é-)/(ai_Q-)_l i=1,....d <11>

where qb ¢, are the maximum and minimum i-th component of all the feature
variables in set . Scaling makes the features less sensitive to process times.

Logistic regression makes optimal decisions regarding optimal dispatches and
at the same time efficiently estimates a posteriori probabilities. The optimal
w* obtained from the training set, can be used on any new data point, ¢, and
their inner product is proportional to probability estimate (10). Hence, for each
feasible job j that may be dispatched, ¢; denotes the corresponding post-decision
state. The job chosen to be dispatched, j*, is the one corresponding to the highest
preference estimate, i.e

j* = argmaxh(¢;) (12)
j

where h(-) is the linear classification model (lin) obtained by the training data.

4 Experimental Study

In the experimental study we investigate the performance of the linear dispatch-
ing rules trained on problem instance generated using production times according
to distributions U (1, 100) and U (50, 100). The resulting linear models is referred
to as ling(1,100) and ling(s0,100), respectively. These rules are compared with the
single priority dispatching rules mentioned previously. The goal is to minimize
the makespan, here the optimum makespan is denoted fiopt, and the makespan
obtained from a dispatching rule by pupgr. Since the optimal makespan varies
between problem instances the following performance measure is used:

UDR
p=— (13)

,uopt

which is always greater or equal to 1.

There were 500 problem instances generated using six machines and six jobs,
for both U(1,100) and U(50,100) processing times distributions. Throughout
the experimental study, a Kolmogorov-Smirnov goodness-of-fit hypothesis test
with a significance level 0.05 is used to check if there is a statistical difference
between the models in question.

4.1 Data Generation

An optimal sequence of job dispatches is known for each problem instance.
The sequence indicates in which order the jobs should be dispatched. A job
is placed at the earliest available time slot for its next machine, whilst still
fulfilling constraints (2) and (3). Unfinished jobs are dispatched one at a time
according to the optimal sequence. After each dispatch the schedule’s current
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features are updated based on the half-finished schedule. This sequence of job
assignments is by no means unique. Take for instance Fig. 1, let’s say job #1
would be dispatched next, and in the next iteration job #2. Now this sequence
would yield the same schedule as if job #2 would have been dispatched first
and then job #1 in the next iteration. In this particular instance one could not
infer that choosing job #1 is optimal and #2 is suboptimal (or vice versa) since
they can both yield the same optimal solution, however the state of the schedule
has changed and thus its features. Care must be taken in this case that neither
resulting features are labeled as undesirable. Only the resulting features from a
dispatch resulting in a suboptimal solution should be labeled undesirable. This
is the approach taken here. Nevertheless, there may still be a chance that having
dispatched a job resulting in a different makespan would have resulted in the
same makespan if another optimal scheduling path were to have been chosen.
That is, there are multiple optimal solutions to the same problem instance. We
will ignore this for the current study, but note that our data may be slightly
corrupted for this reason. In conclusion, at each time step a number of feature
pair are created, they consist of the features resulting from optimal dispatch
versus features resulting from suboptimal dispatches.

When building a complete schedule n x m dispatches must be made sequen-
tially. At each dispatch iteration a number of data pairs are created which can
then be multiplied by the number of problem instance created. We deliberately
create a separate data set for each dispatch iterations, as our initial feeling is
that dispatch rules used in the beginning of the schedule building process may
not necessarily be the same as in the middle or end of the schedule. As a result
we will have n x m linear scheduling rules for solving a n x m JSSP.

4.2 Training Size and Accuracy

Of the 500 schedule instances, 20% were devoted solely to validation, in order to
optimize the parameters of the learning algorithm. Fig. 2 shows the ratio from
optimum makespan, p in (13), of the validation set as a function of training size
for both processing time distributions considered. As one might expect, a larger
training set yields a better result. However, a training size of only 200 is deemed
sufficient for both distributions, and will be used here on after, yielding the
remaining unused 200 instances as its test set. The training accuracy reported
by the lin-model during training with respect to choosing the optimal job at each
time step is depicted in Fig. 3 for both data distribution considered. The models
obtained from using the training set corresponding to U(1,100) and U (50, 100)
data distributions are referred to as ling(1,100) and ling (s0,100), respectively. The
training accuracy, that is the ability to dispatch jobs according to an optimal
solution, increases as more jobs are dispatched. This seems reasonable since the
features initially have little meaning and hence are contradictory. It becomes
easier to predict good dispatches towards the end of the schedule. This illustrates
the care needed in selecting training data for learning scheduling rules.
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Table 1. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, p, using the test sets U(1,100) (top) and
U(50,100) (bottom)

U(1,100) |mean std med min max
liny 1,100y |1.0842 0.0536 1.0785 1.0000 1.2722
SPT 1.6707 0.2160 1.6365 1.1654 2.2500
MW RM |1.2595 0.1307 1.2350 1.0000 1.7288
LW RM ]1.8589 0.2292 1.8368 1.2907 2.6906

U(50,100) | mean std med min max
ltny (50,100)|1.0724 0.0446 1.0713 1.0000 1.2159
SPT 1.7689 0.2514 1.7526 1.2047 2.5367
MWRM |1.1835 0.0994 1.1699 1.0217 1.5561
LWRM |1.9422 0.2465 1.9210 1.3916 2.6642

4.3 Comparison with Single Priority Dispatching Rules

The performance of the two learned linear priority dispatch rules, (lmU(l,loo),
ling(50,100)), are now compared with the three most common single priority-
based dispatching rules from the literature, which dispatch according to: opera-
tion with shortest processing time (SPT'), most work remaining (MW RM), and
least work remaining (LW RM ). Their ratio from optimum, (13), is depicted in
Fig. 4, and corresponding statistical findings are presented in Table 1. Clearly
model ling (g, 100y outperforms all conventional single priority-based dispatching
rules, but of them MW RM is the most successful. It is interesting to note
that for both data distributions, the worst-case scenario (right tail of the dis-
tributions) for model liny(gr,100) is noticeably better than the mean obtained
using dispatching rules SPT and LW RM, so the choice of an appropriate single
dispatching rule is of paramount importance.

4.4 Robustness towards Data Distributions

All features are scaled according to (11), which may enable the dispatch rules
to be less sensitive to the different processing time distributions. To examine
this the dispatch rules ling 1,100y and ling 0,100y are tested on both U(1,100)
and U(50,100) test sets. The statistics for p are presented in Table 2. There
is no statistical difference between series #1 and #4, implying that when the
dispatch rules are tested on their corresponding test set, they perform equally
well. It is also noted that there is no statistical difference between series #2 and
#4, implying that rule ling (s0,100) performed equally well on both test sets in
question. However, when observing at the test sets, then in both cases there is
a statistical difference between applying model ling(1,100) or liny (50,100), Where
the latter yielded a better results. This implies that the rules are actually not
robust towards different data distributions in some cases. This is as one may
have expected.
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Table 2. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, p, for the test sets U(1,100) and
U(50,100), on both models liny 1,100y and liny (50,100

model test set mean std med min max
#1|liny 1,100y |U(1,100) [1.0844 0.0535 1.0786 1.0000 1.2722
#2|liny 50,100y |U (1, 100) [1.0709 0.0497 1.0626 1.0000 1.2503
#3|liny 1,100y |U(50,100)(1.1429 0.1115 1.1158 1.0000 1.5963
#4|liny 50,100y |U (50, 100)(1.0724 0.0446 1.0713 1.0000 1.2159

Table 3. Feature description and mean weights for models ling 1,100y and ling(so,100)

Weight|lingy (1,100) [l (50,100) |Feature description

w(1) -0.6712 -0.2220|processing time for job on machine
(2) -0.9785 -0.9195|work remaining
(3) -1.0549 -0.9059|start-time
(4) -0.7128 -0.6274|end-time
(5) -0.3268 0.0103|when machine is next free
(6) 1.8678 1.3710|current makespan
(
(
(

7) -1.5607 -1.6290|slack time for this particular machine
8) -0.7511 -0.7607|slack time for all machines

9) -0.2664 -0.3639|slack time weighted w.r.t. number of
operations already assigned

S8 8 8 g 8 g 8

Table 4. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, p, on models ling 1,100y, linv(50,100),
liny(1,100),fixed w and ling(50,100),fixed w for corresponding test sets

model test set mean std med min max
#1{liny (1,100 U(1,100) |1.0844 0.0535 1.0786 1.0000 1.2722
#2|liny (1,100),fixed w |U(1,100) |{1.0862 0.0580 1.0785 1.0000 1.2722
#3|liny (50,100) U(50,100)[1.0724 0.0446 1.0713 1.0000 1.2159
#4|liny (50,100, fixed w|U(50,100)|1.0695 0.0459 1.0658 1.0000 1.2201

4.5 Fixed Weights

Here we are interested in examining the sensitivity of the weights found for our
linear dispatching rules. The weights found for each feature at each sequential
dispatching step for models ling (i 100) and ling(so,100) are depicted in Fig. 5.
These weights are averaged and listed along side their corresponding features in
Table 3. The sign and size of these weights are similar for both distributions,
but with the exception of features 5 and 1. The average weights are now used
throughout the sequence of dispatches, these models are called lin(1,100),fixed w

or ling(50,100),fixed w> respectively.
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Table 5. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, p, for the test sets U(1,100) and
U(50,100), on both fixed weight models ling (1,100),fixed w a0d ling(50,100),fixed w

model test set mean std med min max
#1|liny (1,100),fixed w |U(1,100) |1.0862 0.0580 1.0785 1.0000 1.2722
#2|liny (50,100),fixed w|U(1,100) {1.0706 0.0493 1.0597 1.0000 1.2204
#3|liny (1,100),fixed w |U(50,100)|1.1356 0.0791 1.1296 1.0000 1.5284

U (50, 100)[1.0695 0.0459 1.0658 1.0000 1.2201

#4|liny (50,100) fixed w

Experimental results in Table 4 indicate that the weights could be held con-
stant since there is no statistical difference between series #1 and #2 and series
#3 and #4, i.e. no statistical difference between using varied or fixed weights for
both data distributions. Hence, a simpler model using fixed weights should be
preferred to the one of varied weights. The experiment described in section 4.4
is also repeated for fixed weights, and its results are listed in Table 5. As for
varied weights (cf., Table 2), there is no statistical difference between models
#2 and #4. However, unlike using varied weights, there exists a statistical
difference between series #1 and #4. Again, looking at the test sets, in both
cases there is statistical difference between applying model ling(1,100),fixed w OF
lingr(50,100),fixed w> Where the latter yielded again the better result.

5 Summary and Conclusion

In this paper, a supervised learning linear priority dispatch rules (lin) is investi-
gated to find optimal schedules for JSSP w.r.t. minimum makespan. The lin-
model uses a heuristic strategy such that jobs are dispatched corresponding to
the feature set that yielded the highest proportional probability output (12). The
linear priority dispatch rules showed clear superiority towards single priority-
based dispatch rules. The method of generating training data is critical for the
framework’s robustness.

The framework is not as robust with respect to different data distribution in
some cases, and thus cannot be used interchangeably for training and testing
and still maintain satisfactory results. Most features were of similar weight
between the two data distributions (cf., Table 3), however, there are some slight
discrepancies between the two distributions, e.g. w(5), which could explain the
difference in performance between ling(1,00) and ling so,100)-

There is no statistical difference between using the linear model with varied or
fixed weights when using a corresponding test set, so it is sufficient to apply only
the mean varied weight, no optimization of the weight parameters is needed. It
is noted that some of the robustness between data distribution is lost by using
fixed weights. Hence, when dealing with a test set of known data distributions,
it is sufficient to use the simpler fixed model liny (g 100),fixed w, NOWever when
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the data distribution is not known beforehand, it is best to use the slightly more
complex varied weights model, and inferring from the experimental data rather
use lZ.TZU(507100) to linU(l,lOO)'

It is possible for a JSSP problem to have more than one optimal solution. How-
ever for the purpose of this study, only one optimal solution used for generating
training data is sufficient. But clearly the training data set is still corrupted
because of multiple ways of representing the same or different (yet equally
optimal w.r.t minimum makespan) optimal schedule. One way of overcoming
this obstacle is applying mixed integer programming for each possible suboptimal
choice, with the current schedule as its initial value to make it absolutely certain
that the choice is indeed suboptimal or not.

The proposed approach of discovering learned linear priority dispatching rules
introduced in this study, are only compared with three common single priority-
based dispatching rules from the literature. Although they provide evidence
of improved accuracy, other comparisons of learning approaches, e.g. genetic
programming, regression trees and reinforcement learning, need to be looked
further into.

Another possible direction of future research is to extend the obtained results
to different types of scheduling problems, along with relevant features. The
efficiency of this problem solver will ultimately depend on the skills of plausible
reasoning and how effectively the features extrapolate patterns yielding rules
concerning optimal solutions, if they exist.

The main drawback of this approach is in order for the framework to be
applicable one needs to know optimal schedules and their corresponding features
in order to learn the preference, which may be difficult if not impossible to
compute beforehand for some instances of JSSP using exact methods.
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Abstract—In evolutionary optimization surrogate models are
commonly used when the evaluation of a fitness function is
computationally expensive. Here the fitness of individuals are
indirectly estimated by modeling their rank with respect to the
current population by use of ordinal regression. This paper
focuses on how to validate the goodness of fit for surrogate
models during search and introduces a novel validation/updating
policy for surrogate models, and is illustrated on classical
numerical optimization functions for evolutionary computation.
The study shows that for validation accuracy it is sufficient for
the approximate ranking and true ranking of the training set
to be sufficiently concordant or that only the potential parent
individuals should be ranked consistently. Moreover, the new
validation approach reduces the number of fitness evaluation
needed, without a loss in performance.

Keywords-surrogate models; ordinal regression; sampling; evo-
lutionary optimization

I. INTRODUCTION

Evolutionary optimization is a stochastic and direct search
method where a population of individuals are searched in
parallel. Typically only the full or partial ordering of these
parallel search individuals is needed. For this reason an ordinal
regression offers sufficiently detailed surrogates for evolution-
ary computation [1]. In this case there is no explicit fitness
function defined, but rather an indirect method of evaluating
whether one individual is preferable to another.

The current approach in fitness approximation for evolu-
tionary computation involves building surrogate fitness models
directly using regression. For a recent review of the state-
of-the-art surrogate models see [2]-[S]. The fitness model is
based on a set of evaluated solutions called the training set.
The surrogate model is used to predict the fitness of candidate
search individuals. Commonly a fraction of individuals are
selected and evaluated within each generation (or over some
number of generations [6]), added to the training set, and
used for updating the surrogate. The goal is to reduce the
number of costly true fitness evaluations while retaining a
sufficiently accurate surrogate during evolution. When using
ordinal regression a candidate search individual x; is said to
be preferred over x; if x; has a higher fitness than x;. The
training set for the surrogate model is therefore composed
of pairs of individuals (x;,X;); and a corresponding label
t € [1, —1], taking the value +1 (or —1) when x; has a higher
fitness than x; (or vice versa). The direct fitness approximation
approach does not make full use of the flexibility inherent

978-1-4577-1676-8/11/$26.00 (©2011 IEEE

in the ordering requirement. The technique used here for
ordinal regression is kernel based and is described in section II
and was first presented in [1]. The use of surrogate models
and approximate ranking has made some headway, e.g. [7],
however still remains relatively unexplored field of study.

The critical issue in generating surrogate models, for evo-
lutionary strategy (ES) search [8], is the manner in which the
training set is constructed. For example, in optimization it is
not critical to model accurately regions of the search space
with low fitness. It is, however, key to model accurately new
search regions deemed potentially lucrative by the evolutionary
search method. Furthermore, since the search itself is stochas-
tic, perhaps the ranking need not to be that accurate. Indeed
the best p candidate individuals are commonly selected and
the rest disregarded irrespective of their exact ranking.

In the literature new individuals are added to the training
set from the new generation of unevaluated search individuals.
This seems sensible since this is the population of individ-
uals which need to be ranked. However, perhaps sampling
a representative individual, for example the mean of the
unevaluated search individuals, may also be useful in surrogate
ranking. Typically, the unevaluated individuals are ranked
using the current surrogate model and then the best of these
are evaluated using the true expensive fitness function and
added to the training set. Again, this seems sensible since we
are not interesting in low fitness regions of the search space.
Nevertheless, it remains unclear whether this is actually the
case. Finally, there is the question of knowing when to stop,
when is our surrogate sufficiently accurate? Is it necessary to
add new search individuals to our training set at every search
generation? What do we mean by sufficiently accurate? This
paper describes some preliminary experiments with the aim of
investigating some of these issues further.

In section III sampling methods, stopping criteria and model
accuracy are discussed. Moreover, a strategy for updating
the surrogate during search is presented and its effectiveness
illustrated using CMA-ES on some numerical optimization
functions in section IV. The paper concludes with discussion
and summary in section V.

II. ORDINAL REGRESSION

Ordinal regression in evolutionary optimization has been
previously presented in [1], but is given here for completeness.
The ranking problem is specified by a set S = {(x;,y:)}{_; C
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X x Y of ¢ (solution, rank)-pairs, where Y = {rq,...,7¢}
is the outcome space with ordered ranks r; > ro,> ... >
r¢. Now consider the model space H = {h(-) : X — Y}
of mappings from solutions to ranks. Each such function A
induces an ordering >~ on the solutions by the following rule:

X = %x; & h(x;) > h(x;) (1)

where the symbol >~ denotes “is preferred to”. In ordinal
regression the task is to obtain function & that can for a given
pair (x;,y;) and (x;,y;) distinguish between two different
outcomes: y; > y; and y; > y;. The task is, therefore, trans-
formed into the problem of predicting the relative ordering
of all possible pairs of examples [9], [10]. However, it is
sufficient to consider only all possible pairs of adjacent ranks,
see also [11] for yet an alternative formulation. The training
set, composed of pairs, is then as follows:

§ = {6 %) te = sien(y” —yM}hl, @
= 7;41) (and vice versa (y,(cl) =
Tig1) A (y,(f) = r;)) resulting in ¢ = 2(¢ — 1) possible
adjacently ranked training pairs. The rank difference is denoted
by ty € [—1,1].

In order to generalize the technique to different solution
data types and model spaces an implicit kernel-defined feature
space with corresponding feature mapping ¢ is applied. Con-
sider the feature vector ¢(x) = [¢1(xX),. .., Pm(x)]T € R™
where m is the number of features. Then the surrogate
considered may be defined by a linear function in the kernel-
defined feature space:

where (y{" = ri) A (4

h(x) = Zuvlq&z(x) = <w . ¢(x)> 3)

where w = [w, ..., w,,] € R™ has weight w; corresponding
to feature ¢;.

The aim now is to find a function A that encounters as few
training errors as possible on S’. Applying the method of large
margin rank boundaries of ordinal regression described in [9],
the optimal w* is determined by solving the following task:

min
w

B
Hw-w)+§> & o
k=1

subject to ¢ (w - (p(x1) — <z‘>(x§€2))> >1—¢, and & >
0, k = 1,...,0'. The degree of constraint violation is given
by the margin slack variable &, and when greater than 1 the

corresponding pair are incorrectly ranked. Note that
h(xi) — h(x;) = (W - (p(x:) — d(x;))) &)

and that minimizing <w . w> maximizes the margin between
rank boundaries, in our case the distance between adjacently
ranked pair 2 (x) and h(x®?)).

Furthermore, it is important to scale the features ¢ first as
the evolutionary search zooms in on a particular region of the
search space. A standard method of doing so is by scaling the
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training set such that all solutions are in some range, typically
[~1,1]. That is, scaled ¢ is

G =200i—98)/(6;—¢) -1 i=1,...

where Qi, El are the minimum and maximum ¢-th component
of all feature vectors in the training set.

,m (6)

III. SAMPLING METHODS AND IMPROVEMENTS

In surrogate modeling, a small sample of training indi-
viduals of known fitness are needed to generate an initial
surrogate. There after sampling is needed to be conducted for
validating and updating the surrogate. Bearing in mind that
there is generally a predefined maximum number of expensive
function evaluations that can be made, the sampling of test
individuals used for validating/updating the surrogate needs to
be fruitful.

During evolution different regions of the space are sampled
and as a consequence the surrogate ranking model may be
insufficiently accurate for new regions of the search space,
hence if the surrogate is not updated to reflect the original
fitness function it is very probable that the ES converges to
a false optimum. It is, therefore, of paramount importance to
validate the surrogate during evolution. In the literature this is
referred to as model management or evolution control [4].

The accuracy can be validated by generating test individuals
in the new region, namely from the new candidate individuals
generated at every generation of the ES by reproduction,
recombination and mutation. The validation control can either
be generation based, i.e. when the surrogate is converging, or
individual-based, where at each generation some of the new
candidate individuals are evaluated with the exact model and
others are evaluated with the surrogate, see [4].

The selection of individuals to be evaluated exactly can be
done randomly, however, in [12] it is reported that validating
the accuracy of the ranking of potential parent individuals
during evolution is most beneficial as they are critical for
success. In particular, Kriging surrogate model has two main
components: a drift function representing its global expected
value of the true fitness function; and a covariance function
representing a local influence for each data point on the model,
see [13]. For Kriging models an “infill sampling criteria” is
implemented by sampling the individuals which the surrogate
believes to be in the vicinity of global optima, however in
some cases individuals in uncertain areas are also explored,
this is referred to as generalized expected improvement [14]. A
performance indicator to which strategy should be focused on,
i.e. following the global optima vs. getting rid of uncertainties,
[15] suggests the distance between approximated optima and
its real fitness value, however no obvious correlation between
the two ranks could be concluded. Moreover, [13] compares
6 various sampling procedures for updating the training set
using the Kriging model. Two main strategies are explored,
mainly evaluating the entire candidate population or only a
subset. Latter yielding a significantly fewer exact function
evaluations and obtain similar goodness of fit. The former
strategy mostly focuses on whether all, partial or none of
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the training set should be replaced, and whether the outgoing
training individuals should be the worst ranking ones (elitist)
or chosen at random (universal), where the elitist perspective
was considered more favorable. However, reevaluating a subset
of the best ranked individuals w.r.t. the surrogate model with
the exact fitness function yielded the greatest performance
edge of the strategies explored.

When the training accuracy is 100% one way of evaluating
the accuracy of the surrogate is through cross validation. The
quality of the surrogate is measured as the rank correlation
between the surrogate ranking and the true ranking on training
data. Here Kendall’s 7 is used for this purpose [16]. Kendall’s
7 is computed using the relative ordering of the ranks of all
£(¢ — 1)/2 possible pairs. A pair is said to be concordant
if the relative ranks of h(x;) and h(x;) are the same for
f(x;) and f(x;), otherwise they are discordant. Kendall’s 7
is the normalized difference in the number of concordant and
discordant pairs, defined as follows,

__ C-D
O+ D+TW/CT+D+T(f)

where C' and D denote the number of concordant and discor-
dant pairs, respectively, and 7" denotes number of ties. Two
rankings are the same when 7 = 1, completely reversed if
7 = —1, and uncorrelated for 7 ~ 0.

The surrogate ranking validation and improvement strategy
using ordinal regression is tested using a covariance matrix
adaptation evolution strategy (CMA-ES) [17]. CMA-ES is
a very efficient numerical optimization technique, however
we still expect to reduce the number of function evalua-
tions needed for search. In [1] the validation policy had to
successfully rank all of the candidate individuals, i.e. until
7 = 1. If there is no limit to training size then updating
the surrogate becomes too computationally expensive, hence
the training size needs to be pruned to size to ¢. In [1]
the set was pruned to a size / = A by omitting the oldest
individuals first. These are quite stringent restrictions which
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Fig. 1. Anova plot for different validation strategies: 1) prune old individuals,
2) prune bad individuals, 3) adding a pseudo mean candidate individual 4)
correctly rank g best ranked candidate individuals 5) update on every other
generation for Rosenbrock’s function for dimension n = 2
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can be improved upon. The pruning only considers the age
of the individuals, however older individuals might still be of
more interest than newer ones if their fitness ranks higher.
Thus a more sophisticated way of pruning would be omitting
the lowest ranking individuals first. Moreover, candidate indi-
viduals are generated randomly using a normal distribution,
thus a pseudo individual representing their mean could be
of interest as an indicator for the entire population, e.g. by
validating this pseudo individual first could give information
if the surrogate is outdated w.r.t. the current search space.
Furthermore, the validation is only done on the candidate
individuals for the current generation in ES where only the
/v best ranked individuals will survive to become parents.
In evolutionary computing one is interested in the accurate
ranking of individuals generated in the neighborhood of parent
individuals, hence for sufficient validation of the surrogate,
only the p best ranked individuals should be considered and
evaluated, since all other individuals of lower rank will be
disregarded in the next iteration of ES. Lastly, one should also
investigate the frequency by which the model is validated, e.g.
at each generation or every K > 1 generations or even have
the need for validating adapt with time.

Preliminary tests were conducted on which validation
method deemed fruitful, by implementing Rosenbrock’s func-
tion of dimension n = 2, for 1) the setup presented in
[1] and comparing it with the aforementioned validation
improvements, which were added one at a time. Namely;
2) omitting the worst individuals during the pruning process,
instead of the oldest ones; 3) initialize the validation process
by using a pseudo individual that represents the mean of the
new candidate individuals; 4) requiring that only the p best
candidate individuals are correctly ranked; and 5) validating
on every other generation. Experimental results focusing on
the number of function evaluations are shown in Fig. 1. There
is no statistical difference between omitting oldest or worst
ranked individuals from the training set, but this was expected,
since both are believed to be representatives of a region
of the search space which is no longer of interest. Adding
the pseudo mean candidate individual didn’t increase the
performance edge. When the surrogate was updated on every
other generation, it quickly became outdated and more than
double function evaluations were needed to achieve the same
rate of convergence. However, requiring the correct ranking
for only the ;o best ranked candidate individuals showed a
significant performance edge.

If the training accuracy is not 100% then clearly 7 < 1.
In this case additional training individuals would be forced
for evaluation. However, enforcing a completely concordant
ranking, i.e. 7 = 1, was deemed to be too strict due to the
fact the search is stochastic. Thus the surrogate is said to be
sufficiently accurate if 7 > 0.999.

Based on these preliminary tests, a pseudo code for the pro-
posed model validation and improvement strategy is described
in Fig. 2 where it is implemented at the end of each generation
of CMA-ES. The algorithm essentially only evaluates the
expensive true fitness function when the surrogate is believed
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0 Initialization: Let ) denote current training set and its
corresponding surrogate by h. Let X' denote population
of X individuals of unknown fitness under inspection.
for ¢ := 1 to A\ do (validate a test individual )
Estimate ranking of X using h; denoted by Ro.
XB ¢ MaXyxex\y {Rn} (test individual).
Rank xp w.rt. individuals in ) using h; denoted by R.
Evaluate xp using true fitness function and evaluate its
true rank among individuals in ); denoted by R.
Y < YU {xp} (add to training set).
Compare the rankings R and R by computing the rank
correlation .
8 if 7 > 0.999 then
9 break (model is sufficiently accurate)
10 fi
11 Update the surrogate h using the new training set ).
12 if ¢ best individuals of Ro have been evaluated then
13 break (model is sufficiently accurate).
14 fi
15 od

DR W -

ESINCN

Fig. 2. Sampling strategy to validate and improve surrogate models.

to have diverged. During each iteration of the validation
process there are two sets of individuals, } and X', which are
the training individuals which have been evaluated with the
expensive model, and the candidate individuals (of unknown
fitness) for the next iteration of CMA-ES, respectively. The test
individuals of interest are those who are believed to become
parent individuals in the next generation of CMA-ES, i.e. the
1o best ranked candidate individuals according to the surrogate
h. The method uses only a simple cross-validation on a single
test individual, the one which the surrogate ranks the highest
and has not yet been added to the training set. Creating more
test individuals would be too costly, but plausible. Once a test
individual has been evaluated it is added to the training set and
the surrogate h is updated w.r.t. ), cf. Fig. 3. This is repeated
until the surrogate is said to be sufficiently accurate, which
occurs if either:

« Kendall’s 7 statistic between the ranking of the training
set using the surrogate, R, and its true ranking, R, is
higher than 0.999, or

e 1 best ranked candidate individuals w.r.t. the current
surrogate have been added to the training set.

Note that during each update of the surrogate of the ranking of
the y best candidate individuals can change. Thus it is possible
to evaluate more then 4 test individuals during each validation.

Once the validation algorithm has completed, the training

set is pruned to a size £ = \ by omitting the lowest ranking
individuals .

IV. EXPERIMENTAL STUDY

In the experimental study CMA-ES is run for several test
functions, namely sphere model and Rosenbrock’s function,
of various dimensions n = 2,5,10 and 20. The average
fitness for 100 independent runs versus the number of function
evaluations is reported using the original validation procedure
presented in [1] and compared with its new and improved
validation procedure presented in Fig. 2, the procedures will
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Fig. 3. Schema for the sampling strategy.

be referred to as using “all” or only the “x best” candidate
individuals during the validation, respectively. The parameter
setting for the (4, \) CMA-ES is as recommended in [17]
with population size A = 4 + [3In(n)] and the number of
parents selected ;1 = A\/4. The stopping criteria used are
1000n function evaluation or a fitness less than 10710, The
initial mean search individual is generated from a uniform
distribution between 0 and 1. It is also noted that the training
set is only pruned to size £ = \ subsequent to the validation
and improvement procedure introduced in Fig. 2.

A. Sphere model

The first experimental results are presented for the unimodal
sphere model of dimension 7,

S0 =3

The average fitness versus the number of function evaluations
is presented in Fig. 4. A performance edge is achieved by
restricting the validation strategy to only having the surrogate
correctly rank the o highest ranking individuals, and thereby
saving the algorithm of evaluating individuals that would have
been disregarded in the next iteration. Fig. 5 shows the mean
intermediate function evaluations that are calculated during the
validation process. As one expects, requiring the method to
evaluate no more than the p best ranked candidate individuals
results in a lower intermediate function evaluations, generally
saving the method one function evaluation per generation, it
also achieves a better mean fitness, as shown in Table 1.

)

B. Rosenbrock’s function

The first experiment is now repeated for Rosenbrock’s
function,

F) = 100(z; — a7 ) + (1 —2i1)®. (9)
i=2
The average fitness versus the number of function evaluations

is presented in Fig. 6 and Fig. 7 shows the mean inter-
mediate function evaluations that are calculated during the
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Function eval. Generations Fitness
n | mean median sd [ mean median sd mean  median sd
all 2| 130.59 132 18.33] 49.02 49 6.51(2.35¢-09 2.82¢-10 1.15¢-08
" 2| 8153 81 9.53| 48.11 48 5.02|7.01e-10 2.26e-10 1.35¢-09
all 51 702.02 702 67.57|145.15 145 14.96(2.77e-10 1.82e-10 3.64e-10
”w 5| 545.25 547 54.27|132.60 132 11.03|1.83e-10 1.46e-10 1.09e-10
all 10{1563.58 1553 117.09(241.83 240 18.47|1.52¢-10 1.37e-10 5.03e-11
" 10{1161.03 1158 79.98]226.60 224 13.86|1.34e-10 1.22¢-10 3.80e-11
all 20|3383.83 3377 135.52|423.14 424 20.42|1.27e-10 1.21e-10 2.51e-11
" 20[2795.28 2804 132.77|372.86 372 16.56|1.17e-10 1.12e-10 1.72e-11
TABLE I
MAIN STATISTICS OF EXPERIMENTAL RESULTS FOR UPDATING
SURROGATE WITH ALL OR g BEST INDIVIDUALS ON SPHERE MODEL.
Function eval. Generations Fitness
n| mean median sd mean median  sd mean median sd
all 2| 389.85 386 63.85 13231 130 31.25|6.24e-103.20e-10 1.05¢-09|
4 2| 34491 336 78.58| 172.16 170 49.95(7.53e-10 1.66e-10 3.64e-09]
all 5] 2464.22 2280 748.55| 514.59  492105.772.75¢-01 1.74e-10 1.01e+00]|
1 5] 1724.89 1729 295.60 520.66 520 82.79|1.83e-101.53e-10 1.05e-10]
all 10| 6800.50 6495 1258.68/1079.82 1052 177.76(2.79¢-01 1.32e-10 1.02e+00)
" 10| 6138.48 6143 1398.15/1177.71  1103310.11{1.99¢-01 1.24¢-10 8.73e-01
all 20(19968.80 20004 234.66|2494.00 2500 49.60/4.54e-012.88e-02 1.08e+00|
1 20(19645.90 20002 1086.37|2687.25 2748 230.50/3.10e-01 3.12e-07 9.97e-01
TABLE II

MAIN STATISTICS OF EXPERIMENTAL RESULTS FOR UPDATING
SURROGATE WITH ALL OR £t BEST INDIVIDUALS ON ROSENBROCK’S
FUNCTION.

validation process. Despite requiring more generations, the
over all function evaluations are significantly lower and yield
a better fitness when updating the surrogate on only the p
best individuals as shown in Table II. If all of the candidate
individuals have to be ranked correctly, the method will get
stuck in local minima for this problem in around 6 out of 100
experiments, however this is not a problem if only the p best
candidate individuals are ranked consistently, except at high
dimensions, and even then the . best individuals policy signif-
icantly outperforms evaluating all of the candidate individuals.
Clearly the choice of validation policy will influence search
performance.
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Fig. 4. Mean fitness values versus number of function evaluation by updating
surrogate using all (dotted) or p best (solid) individuals for sphere model.
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V. DISCUSSION AND CONCLUSION

The technique presented in this paper to control the number
of true fitness evaluations is based on a single test individual
chosen from a set of candidate individuals which the sur-
rogate ranks the highest. The approximate ranking of this
test individual is compared with its true ranking in order to
determine the quality of the surrogate. This is a simple form of
cross-validation. An alternative approach could be to rank all
candidate individuals along with the training individuals using
the surrogate model. This is followed by the re-ranking of
training and candidate individuals using the updated surrogate
and comparing it with the previous estimate by computing
Kendall’s 7. Its aim is to observe a change in ranking between
successive updates of the surrogate. This study has shown that
during the validation process it is sufficient for 7 to be close
to 1 or that only the potential parent individuals should be
ranked consistently. Moreover, the new validation approach
reduces the number of fitness evaluation needed, without a loss
in performance although it might take a few more iterations in
CMA-ES. The studies presented are exploratory in nature and
clearly the approach must be evaluated on a greater range of
test functions. These investigations are currently underway for
combinatorial optimization problem, e.g. job shop scheduling
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Fig. 6. Mean fitness values versus number of function evaluation by updating
surrogate using all (dotted) or p best (solid) individuals for Rosenbrock’s
function.
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problem.

When it comes to modeling surrogates based on training
data, the general rule of thumb is the bigger the training set,
the more accurate a model. However, there are computational
time limits thus pruning of the training set is necessary.
Previous studies [13], [18] have reported that replacing random
training individuals is not optimal. This study has shown that
there is no statistical difference in omitting oldest or lowest-
ranking individuals from the training set. Hence, for future
work, further investigation on the fitness landscape is needed
to determine effectively which search area is no longer of
interest and thus unnecessary for the surrogate to approximate
correctly. For instance it could be of interest to disregard
training individuals with the largest euclidean distance away
from the current candidate individuals rather than simply
omitting the oldest/lowest-ranking training individuals.

When building surrogates in evolutionary computation one
is interested in the quality of ranking of individuals only. For
this reason the training accuracy and cross validation is a more
meaningful measure of quality for the surrogate model. This is
in contrast to regression, where the fitness function is modeled
directly and the quality estimated in terms of measures such a
least square error. This study has shown that the sampling used
for validating the accuracy of the surrogate can stop once the y
best ranked candidate individuals have been evaluated, since
they are the only candidate individuals who will survive to
become parents in the next generation. Although in some cases
the sampling could stop sooner, when the surrogate ranking
and true ranking are sufficiently concordant, i.e. 7 was close
to 1. This slight slack in for 7 is allowed due to the fact the
ES search is stochastic, however the allowable range in slack
for 7 needs to be investigated more fully since allowing only
7 € [0.999, 1] might be too narrow an interval, resulting in an
excess of expensive function evaluations needed.

However, in the context of surrogate-assisted optimization
the discrepancy between the exact model and its surrogate
can be translated as noise, which could be an indicator of the
necessary sampling size for validation/updating the surrogate,

2011 11th International Conference on Intelligent Svstems Design and Applications

instead of only focusing on consistently ranking the s best
candidate individuals. Therefore, one can take inspiration from
a varying random walk population model suggested by [19]
to approximate the population sizing to overcome unnecessary
fitness evaluations.
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I wonder if I've been changed in the night? Let me think. Was I the
same when I got up this morning? I almost think I can remember
feeling a little different. But if I'm not the same, the next question is
‘Who in the world am I?’ Ah, that's the great puzzle!

Alice
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Abstract. Many heuristic methods have been proposed for the job-
shop scheduling problem. Different solution methodologies outperform
other depending on the particular problem instance under consideration.
Therefore, one is interested in knowing how the instances differ in struc-
ture and determine when a particular heuristic solution is likely to fail
and explore in further detail the causes. In order to achieve this, we seek
to characterise features for different difficulties. Preliminary experiments
show there are different significant features that distinguish between easy
and hard JSSP problem, and that they vary throughout the scheduling
process. The insight attained by investigating the relationship between
problem structure and heuristic performance can undoubtedly lead to
better heuristic design that is tailored to the data distribution under
consideration.

1 Introduction

Hand crafting heuristics for NP-hard problems is a time-consuming trial and
error process, requiring inductive reasoning or problem specific insights from
their human designers. Furthermore, within a problems class, such as job-shop
scheduling, it is possible to construct problem instances where one heuristic
would outperform another. Depending on the underlying data distribution, dif-
ferent heuristics perform differently, commonly known as the no free lunch theo-
rem [1]. The success of a heuristic is how it manages to deal with and manipulate
the characteristics of its given problem instance. So in order to understand more
fully how a heuristic will eventually perform, one needs to look into what kind of
problem instances are being introduced to the system. What defines a problem
instance, e.g. what are its key features? And how can they help with designing
better heuristics?

In investigating the relationship between problem structure and heuristic ef-
fectiveness one can research what [2] calls footprints in instance space, which
is an indicator how an algorithm generalises over the instance space. This sort
of investigation has also been referred to as landmarking [3]. It is evident from
experiments performed in [2] that one-algorithm-for-all problem instances is not
ideal. An algorithm may be favoured for its best overall performance, however

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 408-412, 2012.
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it was rarely the best algorithm available over various subspaces of the instance
space. Thus when comparing different algorithms one needs to explore how they
perform w.r.t. the instance space, i.e. their footprint.

In this study, the same problem generator is used to create 1,500 problem
instances, however the experimental study in section 3 shows that MWRM works
well/poorly on a subset of the instances. Since the problem instances are only
defined by processing times and its permutation, the interaction between the
two is important, because it introduces hidden properties in the data structure
making it easy or hard to schedule with for the given algorithm. These underlying
characteristics or features define its data structure. So a sophisticated way of
discretising the instance space is grouping together problem instances that show
the same kind of feature behaviour, in order to infer what is the feature behaviour
between good and bad schedules.

It is interesting to know if the difference in the structure of the schedule is
time dependent, is there a clear time of divergence within the scheduling pro-
cess? Moreover, investigation of how sensitive is the difference between two sets
of features, e.g. can two schedules with similar feature values yield completely
contradictory outcomes, i.e. one poor and one good schedule? Or will they more
or less follow the same path? This essentially answers the question of whether
is is in fact feasible to discriminate between good and bad schedules using the
currently selected features as a measure. If results are contradictory, it is an
indicator the features selected are not robust enough to capture the essence of
the data structure. Additionally, there is also the question of how can one define
‘similar’ schedules, what measures should be used? This paper describes some
preliminary experiments with the aim of investigating the feasibility of finding
distinguishing features corresponding to good and bad schedules in JSSP.

Instead of searching through a large set of algorithms (creating an algorithm
portfolio) and determining which algorithm is the most suitable for a given subset
of the instance space, as is generally the focus in the current literature [4,5,2],
our focus is rather on a single algorithm and understanding how it works on
the instance space — in the hopes of being able to extrapolate where it excels in
order to aid its failing aspects.

The outline of the paper is as follows, in section 2 priority dispatch rules for
the JSSP problem are discussed, what features are of interest and how data is
generated. A preliminary experimental study is presented in section 3. The paper
concludes with a summary of main findings and points to future work.

2 Job-Shop scheduling

The job-shop scheduling task considered here is where n jobs are scheduled
on a set of m machines, subject to the constraint that each job must follow a
predefined machine order and that a machine can handle at most one job at
a time. The objective is to schedule the jobs so as to minimize the maximum
completion times, also known as the makespan. For a mathematical formulation
of JSSP the reader is recommended [6].
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Table 1. Feature space F for JSSP. Features 1-13 can vary throughout the scheduling
process w.r.t. tasks that can be dispatched next, however features 14-16 are static

¢ |Feature description
¢1 |processing time for job on machine
¢o |start-time
¢3 |end-time
¢4 |when machine is next free
¢5 |current makespan
¢g |work remaining
¢7 |most work remaining
¢g |slack time for this particular machine
¢g |slack time for all machines
¢10 |slack time weighted w.r.t. number of operations already assigned
¢11 [time job had to wait
¢12 |size of slot created by assignment
¢13 |total processing time for job
¢14 |total processing time for all jobs
¢15 | mean processing time for all jobs
$16 |range of processing times over all jobs

2.1 Single-Priority Dispatching Heuristic

Dispatching rules are of a construction heuristics, where one starts with an empty
schedule and adds on one job at a time. When a machine is free the dispatching
rule inspects the waiting jobs and selects the job with the highest priority. A
survey of more than 100 of such priority rules was given in 1977 by [7]. In this
paper however, only most work remaining (MWRM) dispatching rule will be
investigated.

In order to apply a dispatching rule a number of features of the schedule
being built must be computed. The features of particular interest were obtained
from inspecting the aforementioned single priority-based dispatching rules. The
temporal scheduling features applied in this paper are given in Table 1. These
are not the only possible set of features, they are however built on the work
published in [6,4] and deemed successful in capturing the essence of a JSSP data
structure.

2.2 Data Generation

Problem instances were generated stochastically by fixing the number of jobs and
machines and sampling a discrete processing time from the uniform distribution
U(1,200). The machine order is a random permutation of {1,...,m}. A total of
1,500 instances were generated for a six job and six machine job-shop problem.

In the experimental study the performance of the MWRM, umwrm, and
compared with its optimal makespan, fiopt. Since the optimal makespan varies
between problem instances the following performance measure is used:

UMWRM
p =N (1)

,uopt
3 Experimental Study

In order to differentiate between problems, a threshold of a p < 1.1 and p > 1.3
was used to classify easy and hard problems. Of the 1500 instances created, 271
and 161 problems were classified easy and hard , respectively.
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Table 2. Features for easy and hard problems are drawn from the same data distri-
bution (denoted by -)

dispatch
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Table 3. Significant correlation (denoted by ) for easy (left) and hard (right) problems
and resulting ratio from optimality, p defined by (1). Commonly significant features
across the tables are denoted by e.
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Table 2 reports where data distributions are the same (denoted by -). From
the table one can see that distribution for ¢i, ¢, ¢12 and ¢16) are (more or
less) the same throughout the scheduling process. However there is a clear time
of divergence for distribution of slacks; step 6 for ¢g and step 12 for ¢g and ¢1¢.

In order to find defining characteristics for easy and hard problems, a (lin-
ear) correlation was computed between features (on a step-by-step basis) to the
resulting ratio from optimality. Significant features are reported in Table 3 for
easy and hard problems, (denoted by -). As one can see from the tables, the
significant features for the different difficulties are varying. Some are commonly
significant features across the tables (denoted by e).

4 Discussion and Conclusion

From the experimental study it is apparent that features have different correla-
tion with the resulting schedule depending in what stage it is in the scheduling
process, implying that their influence varies throughout the scheduling process.
And features constant throughout the scheduling process are not correlated with
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the end-result. There are some common features for both difficulties considered
which define JSSP on a whole. However the significant features are quite differ-
ent across the two difficulties, implying there is a clear difference in their data
structure. The amount of significant features were considerably more for easy
problems, indicating their key elements had been found. However, the features
distinguishing hard problems were scarce. Most likely due to their more complex
data structure their key features are of a more composite nature.

The feature attributes need to be based on statistical or theoretical grounds.
Thus scrutiny in understanding the nature of problem instances is of paramount
importance in feature engineering for learning. Which yields feedback into what
features are important to devout more attention to, i.e. features that result in a
failing algorithm. In general, this sort of investigation can undoubtedly be used in
better algorithm design which is more equipped to deal with varying problem in-
stances and tailor to individual problem instance’s needs, i.e. a footprint-oriented
algorithm.

Although this methodology was only implemented on a simple single-priority
dispatching rule heuristic, the methodology is easily adaptable for more complex
algorithms. The main objective of this work is to illustrate the interaction of a
specific algorithm on a given problem structure and its properties.
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It would be so nice if something made sense for a change.

Alice
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Evolutionary Learning of Linear Composite
Dispatching Rules for Scheduling

Helga Ingimundardottir and Thomas Philip Runarsson

Abstract A prevalent approach to solving job shop scheduling problems is to com-
bine several relatively simple dispatching rules such that they may benefit each other
for a given problem space. Generally, this is done in an ad-hoc fashion, requiring
expert knowledge from heuristics designers, or extensive exploration of suitable
combinations of heuristics. The approach here is to automate that selection by trans-
lating dispatching rules into measurable features and optimising what their contribu-
tion should be via evolutionary search. The framework is straight forward and easy to
implement and shows promising results. Various data distributions are investigated
for both job shop and flow shop problems, as is scalability for higher dimensions.
Moreover, the study shows that the choice of objective function for evolutionary
search is worth investigating. Since the optimisation is based on minimising the
expected mean of the fitness function over a large set of problem instances which
can vary within the set, then normalising the objective function can stabilise the
optimisation process away from local minima.

Keywords Job shop scheduling + Composite dispatching rules * Evolutionary
search

1 Job Shop Scheduling

The job-shop scheduling problem (JSP) deals with the allocation of tasks of compet-
ing resources where the goal is to optimise a single or multiple objectives—in partic-
ular minimising a schedule’s maximum completion time, i.e., the makespan, denoted
Cpax- Due to difficulty in solving this problem, heuristics are generally applied.
Perhaps the simplest approach to generating good feasible solutions for JSP is by
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applying dispatching rules (DR), e.g., choosing a task corresponding to longest or
shortest processing time, most or least successors, or ranked positional weight, i.e.,
sum of processing times of its predecessors. Ties are broken in an arbitrary fashion
or by another heuristic rule. Combining dispatching rules for JSP is promising, how-
ever, there is a large number of rules to choose from, thus its combinations rely on
expert knowledge or extensive trial-and-error process to choose a suitable DR [21].
Hence given the diversity within the JSP paradigm, there is no “one-rule-fits-all” for
all problem instances (or shop constraints), however single priority dispatching rules
(SDR) based on job processing attributes have proven to be effective [8]. The classi-
cal dispatching rules are continually used in research; a summary of over 100 classi-
cal DRs for JSP can be found in [16]. However, careful combinations of such simple
rules, i.e., composite dispatching rules (CDRs) can perform significantly better [12].
As a consequence, a linear composite of dispatching rules for JSP was presented in
[10]. There the goal was to learn a set of weights, w via ordinal regression such that

hx) = (w- $(x)), (1)

yields the preference estimate for dispatching job j that corresponds to post-decision
state x;, where ¢(x;) denotes the feature mapping (cf. Sect.4). In short, Eq. 1 is a
simple linear combination of features found using a classifier which is trained by
giving more weight to instances that are preferred w.r.t. optimality in a supervised
learning fashion. As a result, the job dispatched is the following,

Jjt=arg mjax {h(xj)} . (2)

A more popular approach in recent JSP literature is applying genetic algorithms
(GAs) [17]. However, in that case an extensive number of schedules need to be eval-
uated, and even for low dimensional JSP, it can quickly become computationally
infeasible. GAs can be used directly on schedules [1, 3, 4, 13, 22], however, then
there are many concerns that need to be dealt with. To begin with there are nine
encoding schemes for representing the schedules [3], in addition, special care must
be taken when applying cross-over and mutation operators in order for schedules
to still remain feasible. Moreover, in case of JSP, GAs are not adapt for fine-tuning
around optima. Luckily a subsequent local search can mediate the optimisation [4].

The most predominant approach in hyper-heuristics, a framework of creating new
heuristics from a set of predefined heuristics, is genetic programming [2]. Dispatch-
ing rules based genetic algorithms (DRGA) [5, 15, 23] are a special case of genetic
programming [14], where GAs are applied indirectly to JSP via dispatching rules,
i.e., where a solution is no longer a proper schedule but a representation of a sched-
ule via applying certain DRs consecutively.

There are two main viewpoints on how to approach scheduling problems, (a) local
level by building schedules for one problem instance at a time; and (b) global level
by building schedules for all problem instances at once. For local level construction
a simple construction heuristic is applied. The schedule’s features are collected at
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each dispatch iteration from which a learning model will inspect the feature set to
discriminate which operations are preferred to others via ordinal regression. The
focus is essentially on creating a meaningful preference set composed of features and
their ranks as the learning algorithm is only run once to find suitable operators for
the value function. This is the approach taken in [10]. Expanding on that work, this
study will explore a global level construction viewpoint where there is no feature set
collected beforehand since the learning model is optimised directly via evolutionary
search. This involves numerous costly value function evaluations. In fact it involves
an indirect method of evaluation whether one learning model is preferable to another,
w.r.t. which one yields a better expected mean.

2 Qutline

In order to formulate the relationship between problem structure and heuristic effi-
ciency, one can utilise Rice’s framework for algorithm selection [18]. The framework
consists of four fundamental components, namely,

Problem Space or Instance Space &,

set of problem instances;
Feature Space .7,

measurable properties of the instances in &;
Algorithm Space <7,

set of all algorithms under inspection;
Performance Space %/,

the outcome for &7 using an algorithm from .7

For a given problem instance x € & with k features ¢p(x) = {¢(X), ..., P, (X)} € F
and using algorithm a € 7 the performance is y = Y(a, ¢p(x)) € ¥, where Y :
A X F — % is the mapping for algorithm and feature space onto the performance
space. [11, 19, 20] formulate JSP in the following manner: (a) problem space & is
defined as the union of N problem instances consisting of processing time and order-
ing matrices given in Sect. 3; (b) feature space .#, which is outlined in Sect. 4. Note,
these are not the only possible set of features, however, they are built on the work
by [10, 19] and deemed successful in capturing the essence of a JSP data structure;
(c) algorithm space o7 is simply the scheduling policies under consideration and
discussed in Sect. 5; (d) performance space is based on the resulting C,,, . Different
fitness measures are investigated in Sect. 5.1; and (e) mapping Y is the step-by-step
scheduling process.

In the context of Rice’s framework, and returning to the aforementioned
approaches to scheduling problems, then the objective is to maximise its expected
heuristic performance, i.e.,



(a) Local level
max_ E[Y (a, $(x))] (3)

where x € &' and algorithm a is obtained via ordinal regression based on the
feature space .7, i.e., #| 5 +— 7, such as the approach taken in [10], and will
be used as a benchmark for the following,

(b) Global level

max E [ (a, $(x))] 4)

where training data x € & is guided by its algorithm q, i.e., & — . This will
be the focus of this study.

Note that the mappings ¢ : & — # and Y : &/ — ¥ are the same for both para-
digms.
The paper concludes in Sect. 6 with discussion and conclusions.

3 Problem Space

For this study synthetic JSP and its subclass, permutation flow shop problem (PFSP),
the scheduling task considered here is where n jobs are scheduled on a set of m
machines, i.e., problem size n X m, subject to the constraint that each job must follow
a predefined machine order and that a machine can handle at most one job at a time.
The pair (j, a) refers to the operation of dispatching job j on machine a. As a result,
a total of £ = n - m sequential operations need to be made for a complete schedule.

The objective is to schedule the jobs so as to minimize the maximum completion
times, C,,,. also known as the makespan. For a mathematical formulation of JSP
the reader is recommended [10].

There are two fundamental types of problem classes: non-structured versus struc-
tured. Firstly there are the “conventional” structured problem classes, where problem
instances are generated stochastically by fixing the number of jobs and machines,
as well as processing times are i.i.d. and sampled from a discrete uniform distri-
bution from the interval I = [u, u,], i.e., p ~ % (u,,u,). Two different processing
time distributions are explored, namely &, ,, where I =[1,99] and &, ,,,,, where
I = [45,55], referred to as random and random-narrow, respectively. The machine
order is a random permutation of all of the machines in the job-shop.

Analogous to &, .., and &, ., the problem classes &, and &, ,,, respec-
tively, correspond to the structured PFSP problem classes, however with a homo-
geneous machine order permutation. Secondly, there are structured problem classes
of PFSP which are modelled after real-world flow-shop manufacturing namely job-

correlated ;. where job processing times are dependent on job index and
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Table 1 Problem space distributions used in Sect. 5

Name Size ‘ Niain Niest Note
Permutation flow shop problem (PFSP)

P 65 500 - Random

ﬂfff ' 6x5 500 - Random-narrow
@]?f 6x%x5 500 - Job-correlated
9;.2:;0 10 x 10 - 500 Random
,@;2:;,? 10 x 10 - 500 Random-narrow
9;3510 10 x 10 - 500 Job-correlated
Job shop problem (JSP)

zre 6x5 500 - Random

e?ﬁj;n 6x5 500 - Random-narrow
93;2210 10 x 10 - 500 Random
,@jl.?:dlno 10x 10 - 500 Random-narrow

Note Problem instances are synthetic and each problem space is i.i.d. and ‘-’ denotes not available

independent of machine index. Problem instances for PFSP are generated using [24]
problem generator.'

For each JSP and PFSP class N,,,;, and N, instances were generated for training
and testing, respectively. Values for N are given in Table 1. Note, difficult problem
instances are not filtered out beforehand, such as the approach in [24].

4 Feature Space

When building a complete JSP schedule, a job is placed at the earliest available time
slot for its next machine while still fulfilling constraints that each machine can han-
dle at most one job at a time, and jobs need to have finished their previous machines
according to its machine order. Unfinished jobs are dispatched one at a time accord-
ing to some heuristic. After each dispatch the schedule’s current features are updated.
Features are used to grasp the essence of the current state of the schedule. As seen in
Table 2, temporal scheduling features applied in this study are given for each possi-
ble post-decision state. An example of a schedule being built is given in Fig. 1, where
there are a total of five possible jobs that could be chosen to be dispatched by some
dispatching rule. These features would serve as the input for Eq. 1.

It’s noted that some of the features directly correspond to a SDR commonly used
in practice. For example, if the weights w in Eq. 1 were all zero, save for wg = 1,
then Eq. 2 yields the job with the highest ¢4 value, i.e., equivalent to dispatching
rule most work remaining (MWR).

'Both code, written in C++, and problem instances used in their experiments can be found at: http://
www.cs.colostate.edu/sched/generator/.
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Tabl.e 2 Feature space & for ® Feature description
& given the resulting - —
temporal schedule after & Job j processing time
dispatching an operation (j, a) by Job j start-time
b3 Job j end-time
o When machine a is next free
obs Current makespan
b6 Total work remaining for job j
s Most work remaining for all jobs
g Total idle time for machine a
N Total idle time for all machines
weighted w.r.t. number of assigned tasks
b0 ¢y weighted w.r.t ber of assigned task IV
bu Time job j had to wait
b1n Idle time created
b3 Total processing time for job j
M; | 1 4 5 3
ST ===35--,
y (. b |
M, 1 3 191 o4
CL 1ot
g T R ; :
S Ms|3| 21 4 oot 6 |
3 [ | ! !
= -- — -1 L______ !
My 4 3 5 6
My |2 3 4
| | | | | | |
0 50 100 150 200 250 300 350 400
Time

Fig. 1 Gantt chart of a partial JSP schedule after 15 operations: Solid boxes represent previously
dispatched jobs, and dashed boxes represent the jobs that could be scheduled next. Current C,,,
denoted as dotted line
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S Experimental Study

The optimum makespan® is denoted C°\ | and the makespan obtained from the
heuristic model by CQ;’SG]. Since the optimal makespan varies between problem

instances the performance measure is the following,

model opt
C — “max

ptzmxT-lOO% 5)

max
which indicates the percentage relative deviation from optimality. Throughout a
Kolmogorov-Smirnov test with @ = 0.05 is applied to determine statistical signif-
icance between methodologies.

Inspired by DRGA, the approach taken in this study is to optimise the weights w
in Eq. 1 directly via evolutionary search such as covariance matrix adaptation evo-
lution strategy (CMA-ES) [7]. This has been proven to be a very efficient numerical
optimisation technique.

Using standard set-up of parameters of the CMA-ES optimisation, the runtime
was limited to 288 h on a cluster for each training set given in Sect. 3 and in every
case the optimisation reached its maximum walltime.

5.1 Performance Measures

Generally, evolutionary search only needs to minimise the expected fitness value.
However, the approach in [10] was to use the known optimum to correctly label
which operations’ features were optimal when compared to other possible operations
(Fig. 2). Therefore, it would be of interest to inspect if there is any performance
edge gained by incorporating optimal labelling in evolutionary search. Therefore,
two objective functions will be considered, namely,

ESc  i=minE[Cpy] 6)
ES, := minE[p] (7

Main statistics of the experimental run are given in Table 3 and depicted in Fig. 3 for
both approaches. In addition, evolving decision variables, here weights w for Eq. 1,
are depicted in Fig. 4.

In order to compare the two objective functions, the best weights reported were
used for Eq. 1 on the corresponding training data. Its box-plot of percentage relative
deviation from optimality, defined by Eq. 5, is depicted in Fig. 2 and Table 4 present
its main statistics; mean, median, standard deviation, minimum and maximum val-
ues.

2Optimum values are obtained by using a commercial software package [6].
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Fig.2 Box-plot of training
data for percentage relative
deviation from optimality,
defined by Eq. (5), when
implementing the final
weights obtained from
CMA-ES optimisation, using
both objective functions
from Egs. (6) and (7), left
and right, respectively

30

20

10

) Lo

I I I I I
j.rnd j.rndn f.rnd f.rndn f.jc

Percentage relative deviation from optimality, rho (%)

Objective function [l ES_Cmax EJ ES_rho

Table 3 Final results for CMA-ES optimisation; total number of generations and function evalu-
ations and its resulting fitness value for both performance measures considered

(a) wr.t. Eq. 6

& #gen #eval ES¢
jrnd 4707 51788 448.612
jrndn 4802 52833 449.942
f.rnd 5088 55979 571.394
f.rndn 5557 61138 544.764
fjc 5984 65835 567.688
(b) w.rt. Eq. 7

& #gen f#eval ES,
jrnd 1944 21395 8.258
j-rndn 1974 21725 8.691
f.rnd 4546 50006 7.479
f.rndn 2701 29722 0.938
f.jc 1625 17886 0.361

In the case of & ,,,,, Eq.6 gave a considerably worse results, since the opti-
misation got trapped in a local minima, as the erratic evolution of the weights in
Fig. 4a suggest. For other problem spaces, Eq. 6 gave slightly better results than Eq. 7.
However, there was no statistical difference between adopting either objective func-
tion. Therefore, minimisation of expectation of p, is preferred over simply using the
unscaled resulting makespan.
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Fig. 3 Fitness for optimising (w.r.t. Egs. (6) and (7) above and below, receptively), per generation
of the CMA-ES optimisation

5.2 Problem Difficulty

The evolution of fitness per generation from the CMA-ES optimisation of Eq.7 is
depicted in Fig. 3. Note, all problem spaces reached their allotted computational time
without converging. In fact & ,,, and &, ,, needed restarting during the optimi-
sation process. Furthermore, the evolution of the decision variables w are depicted
in Fig.4. As one can see, the relative contribution for each weight clearly differs
between problem spaces. Note, that in the case of &;,,,, (cf. Fig.4b), CMA-ES
restarts around generation 1,000 and quickly converges back to its previous fitness.
However, lateral relation of weights has completely changed, implying that there are
many optimal combinations of weights to be used. This can be expected due to the
fact some features in Table 2 are a linear combination of others, e.g. ¢; = ¢, + ¢,.

5.3 Scalability

As a benchmark, the linear ordinal regression model (PREF) from [10] was created.
Using the weights obtained from optimising Eq. 7 and applying them on their 6 X 5
training data. Their main statistics of Eq.5 are reported in Table4 for all training
sets described in Table 1. Moreover, the best SDR from which the features in Table 2
were inspired by, are also reported for comparison, i.e., most work remaining (MWR)
for all JSP problem spaces, and least work remaining (LWR) for all PFSP problem
spaces.

To explore the scalability of the learning models, a similar comparison to Sect. 5.2
is made for applying the learning models on their corresponding 10 X 10 testing
data. Results are reported in Table 5. Note, that only resulting C,,, 1s reported as the
optimum makespan is not known and Eq. 5 is not applicable.
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Fig.4 Evolution of weights of features (given in Table 2) at each generation of the CMA-ES opti-
misation. Note, weights are normalised such that ||w|| = 1. a Minimise w.r.t. Eq. 6. b Minimise
w.r.t. Eq. 7
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Table 4 Main statistics of percentage relative deviation from optimality, p, defined by Eq. 5 for
various models, using corresponding 6 X 5 training data

@ 755
Model Mean Med sd Min Max
ESCma 8.54 10 6 0 26
ES p 8.26 10 6 0 26
PREF 10.18 11 7 0 30
MWR 16.48 16 9 0 45
b) 25,
ESCmx 8.68 11 6 0 31
ES p 8.69 11 6 0 31
PREF 10.00 11 6 0 31
MWR 14.02 13 8 0 37
6x5
© 2 f.>r<nd
ESCmax 7.44 7 0 23
ES p 7.48 7 0 34
PREF 9.87 9 0 38
LWR 20.05 19 10 0 71
6X5
(d) ‘@f.fndn
ESCmax 8.09 8 2 0 11
ES p 0.94 1 1 0 4
PREF 2.38 2 1 0
LWR 2.25 2 1 0
6X5
QEsH
ESCmax 0.33 0 0 0 2
ES p 0.36 0 0 0 2
PREF 1.08 1 1 0 5
LWR 1.13 1 1 0 6

6 Discussion and Conclusions

Data distributions considered in this study either varied w.r.t. the processing time
distributions, continuing the preliminary experiments in [10] , or w.r.t. the job order-
ing permutations—i.e., homogeneous machine order for PFSP versus heterogeneous
machine order for JSP. From the results based on 6 X 5 training data given in Table 4,
it’s obvious that CMA-ES optimisation substantially outperforms the previous PREF
methods from [10] for all problem spaces considered. Furthermore, the results hold
when testing on 10 X 10 (cf. Table 5), suggesting the method is indeed scalable to
higher dimensions.

Moreover, the study showed that the choice of objective function for evolutionary
search is worth investigating. There was no statistical difference from minimising the
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Table 5 Main statistics of C,

for various models, using corresponding 10 X 10 test data

0x10
@ 2/
Model Mean Med sd Min Max
ESCma 922.51 914 73 741 1173
ESp 931.37 931 71 735 1167
PREF 1011.38 1004 82 809 1281
MWR 997.01 992 81 800 1273
10x10
(b) ‘@j.rrﬁln
ESCmax 855.85 857 50 719 1010
ESp 855.91 856 51 719 1020
PREF 899.94 898 56 769 1130
MWR 897.39 898 56 765 1088
© 7
ESCmx 1178.73 1176 80 976 1416
ESp 1181.91 1179 80 984 1404
PREF 1215.20 1212 80 1006 1450
LWR 1284.41 1286 85 1042 1495
10x10
(d) ‘@f.r:dn
ESCmax 1065.48 1059 32 992 1222
ESp 980.11 980 8 957 1006
PREF 987.49 988 9 958 1011
LWR 986.94 987 9 959 1010
10x10
© Zyjc
ESCmax 1135.44 1134 286 582 1681
ESp 1135.47 1134 286 582 1681
PREF 1136.02 1135 286 582 1685
LWR 1136.49 1141 287 581 1690

fitness function directly and its normalisation w.r.t. true optimum (cf. Egs. (6) and
(7)), save for &; ,,.4,- Implying, even though ES doesn’t rely on optimal solutions,
there are some problem spaces where it can be of great benefit. This is due to the fact
that the problem instances can vary greatly within the same problem space [11]. Thus
normalising the objective function would help the evolutionary search to deviate
from giving too much weight for problematic problem instances.

The main drawback of using evolutionary search for learning optimal weights
for Eq. 1 is how computationally expensive it is to evaluate the mean expected fit-
ness. Even for a low problem dimension 6-job 5-machine JSP, each optimisation
run reached their walltime of 288 h without converging. Now, 6 X 5 JSP requires 30
sequential operations where at each time step there are up to 6 jobs to choose from—
i.e., its complexity is &(n""™) making it computationally infeasible to apply this
framework for higher dimensions as is. However, evolutionary search only requires

207



the rank of the candidates and therefore it is appropriate to retain a sufficiently accu-
rate surrogate for the value function during evolution in order to reduce the number of
costly true value function evaluations, such as the approach in [9]. This could reduce
the computational cost of the evolutionary search considerably, making it feasible to
conduct the experiments from Sect. 5 for problems of higher dimensions, e.g. with
these adjustments it is possible to train on 10 X 10 and test on for example 14 X 14
to verify whether scalability holds for even higher dimensions.
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Now, I give you fair warning, either you or your head must be off,
and that in about half no time! Take your choice!
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Abstract. A supervised learning approach to generating composite lin-
ear priority dispatching rules for scheduling is studied. In particular we
investigate a number of strategies for how to generate training data
for learning a linear dispatching rule using preference learning. The
results show, that when generating a training data set from only opti-
mal solutions, it is not as effective as when suboptimal solutions are
added to the set. Furthermore, different strategies for creating preference
pairs is investigated as well as suboptimal solution trajectories. The dif-
ferent strategies are investigated on 2000 randomly generated problem
instances using two different problem generator settings.

When applying learning algorithms, the training set is of paramount importance.
A training set should have sufficient knowledge of the problem at hand. This is
done by the use of features which are supposed to capture the essential measures
of a problem’s state. For this purpose, the job-shop scheduling problem (JSP)
is used as a case study to illustrate a methodology for generating meaningful
training data which can be successfully learned.

JSP deals with the allocation of tasks of competing resources where the
goal is to minimise a schedule’s maximum completion time, i.e., the makespan
denoted C\ax. In order to find good solutions, heuristics are commonly applied
in research, such as the simple priority based dispatching rules (SDR) from [11].
Composites of such simple rules can perform significantly better [6]. As a con-
sequence, a linear composite of dispatching rules (LCDR) was presented in [3].
The goal there was to learn a set of weights, w, via logistic regression such that

h(x;) = (w- ¢(x;)), (1)

yields the preference estimate for dispatching job J; that corresponds to post-
decision state x;, where ¢(x;) denotes its feature mapping. The job dispatched
is the following,

j* = argmax {h(x;)} . Q

The approach was to use supervised learning to determine which feature states
are preferable to others. The training data was created from optimal solutions
of randomly generated problem instances.

© Springer International Publishing Switzerland 2015
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An alternative would be minimising the expected Cpax by directly using a
brute force search such as CMA-ES [2]. Preliminary experiments were conducted
in [5], which showed that optimising the weights in Eq. (1) via evolutionary
search actually resulted in a better LCDR than the previous approach. The
nature of the CMA-ES is to explore suboptimal routes until it converges to an
optimal route. This implies that the previous approach, of restricting the training
data only to one optimal route, may not produce a sufficiently rich training set.
That is, the training set should incorporate a more complete knowledge of all
possible preferences, i.e., it should make the distinction between suboptimal and
sub-suboptimal features, etc. This approach would require a Pareto ranking of
preferences which can be used to make the distinction of which feature sets are
equivalent, better or worse — and to what degree, e.g. by giving a weight to the
preference. This would result in a very large training set, which of course could
be re-sampled in order to make it computationally feasible to learn. In this
study we will investigate a number of different ranking strategies for creating
preference pairs.

Alternatively, training data could be generated using suboptimal solution
trajectories. For instance [7] used decision trees to ‘rediscover’ largest processing
time (LPT, a single priority based dispatching rule) by using LPT to create
its training data. The limitations of using heuristics to label the training data
is that the learning algorithm will mimic the original heuristic (both when it
works poorly and well on the problem instances) and does not consider the real
optimum. In order to learn heuristics that can outperform existing heuristics,
then the training data needs to be correctly labelled. This drawback is confronted
in [8,10,15] by using an optimal scheduler, computed off-line. In this study,
we will both follow optimal and suboptimal solution trajectories, but for each
partial solution the preference pair will be labelled correctly by solving the partial
solution to optimality using a commercial software package [1]. For this study
most work remaining (MWR), a promising SDR for the given data distributions
[4], and the CMA-ES optimised LCDRs from [5] will be deemed worthwhile for
generating suboptimal trajectories.

To summarise, the study considers two main aspects of the generation of
training data: (a) how preference pairs are added at each decision stage, and (b)
which solution trajectorie(s) should be sampled. That is, optimal, random, or
suboptimal trajectories, based on a good heuristic, etc.

The outline of the paper is as follows, first we illustrate how JSP can be
seen as a decision tree where the depth of the tree corresponds to the total
number of job-dispatches needed to form a complete schedule. The feature space
is also introduced and how optimal dispatches and suboptimal dispatches are
labelled at each node in the tree. This is followed by detailing the strategies
investigated in this study by selecting preference pairs ranking and sampling
solution trajectories. The authors then perform an extensive study comparing
these strategies. Finally, this paper concludes with discussions and a summary
of main results.
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Table 1. Problem space distributions, P.

Name | Size (n X m) | Nirain | Neest | Note
Pjrna |6X5D 500 500 | Random
Pjrndn |6 X 5 500 500 | Random-narrow

Table 2. Feature space, F.

¢ | Feature description

¢1 | Job processing time
¢2 | Job start-time
¢3 | Job end-time

¢4 | When machine is next free

¢s | Current makespan

¢6 | Total work remaining for job

¢7 | Most work remaining for all jobs

¢s | Total idle time for machine

¢9 | Total idle time for all machines

¢10 | P9 weighted w.r.t. number of assigned tasks
¢11 | Time job had to wait

¢12 | Idle time created

¢13 | Total processing time for job

1 Problem Space

In this study synthetic JSP data instances are considered with the problem
size n X m, where n and m denotes number of jobs and machines, respectively.
Problem instances are generated stochastically. By fixing the number of jobs
and machines while processing time are i.i.d. samples from a discrete uniform
distribution from the interval I = [uq,us], i.e., p ~ U(ui,u2). Two different
processing time distributions are explored, namely P; ,nq where I = [1,99] and
Pj.rnan Where I = [45,55] are referred to as random and random-narrow, respec-
tively. The machine order is a random permutation of all of the machines in the
job-shop.

For each data distribution Nip.in and Niesy problem instances were generated
for training and testing, respectively. Values for N are given in Table 1. Note,
that difficult problem instances are not filtered out beforehand, such as the
approach in [16].

2 JSP Tree Representation

When building a complete JSP schedule ¢ = n - m dispatches must be made
consecutively. A job is placed at the earliest available time slot for its next
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machine, whilst still fulfilling constraints that each machine can handle, which
is at most one job at each time, and jobs need to have finished their previous
machines according to its machine order. Unfinished jobs, referred to as the
job-list denoted L, are dispatched one at a time according to a heuristic. After
each dispatch, the schedule’s current features are updated based on its resulting
partial schedule. For each possible post-decision state the temporal features, F,
applied in this study are given in Table2. These features are based on SDRs
which are widespread in practice. For example if w is zero, save for wg = 1, then
Eq. (1) gives h(x;) > h(x;), Vi which are jobs with less work remaining than
job J;, namely Eq. (2) yields the job with the highest ¢ value, i.e., equivalent
to dispatching rule most work remaining (MWR).

Figure 1 illustrates how the first two dispatches could be executed for a 6 x 5
JSP with the machines a € {Mj, ..., M5} on the vertical axis and the horizontal
axis yields the current makespan, Ci,.x. The next possible dispatches are denoted
as dashed boxes with the job index j within and its length corresponding to
processing time p;,. In the top layer one can see an empty schedule. In the middle
layer one of the possible dispatches from the layer above is fixed (depicted solid)
and one can see the resulting schedule (i.e., what are the next possible dispatches
given this new scenario?). Finally, the bottom layer depicts all outcomes if job J3
on machine M3 would be dispatched. This sort of tree representation is similar
to game trees [9] where the root node denotes the initial (i.e., empty) schedule
and the leaf nodes denote the complete schedule. Therefore, the distance k from
an internal node to the root yields the number of operations already dispatched.
Traversing from root to leaf node, one can obtain a sequence of dispatches that
yielded the resulting schedule, i.e., the sequence indicates in which order the
tasks should be dispatched for that particular schedule.

However, one can easily see that this sequence of task assignments is by no
means unique. Inspecting a partial schedule further along in the dispatching
process such as in Fig. 1 (top layer), then let’s say J; would be dispatched next,
and in the next iteration Jo. This sequence would yield the same schedule as if
J2 would have been dispatched first and then J; in the next iteration (since these
are non-conflicting jobs). This indicates that some of the nodes in the tree can
merge despite states of the partial schedules being different in previous layers.
In this particular instance one can not infer that choosing J; is better and J is
worse (or vice versa) since they can both yield the same solution.

Furthermore, in some cases there can be multiple optimal solutions to the
same problem instance. Hence not only is the sequence representation ‘flawed’ in
the sense that slight permutations on the sequence are in fact equivalent w.r.t.
the end-result, but varying permutations on the dispatching sequence (given the
same partial initial sequence) can result in very different complete schedules
with the same makespan, and thus same deviation from optimality, p defined by
Eq. (4), which is the measure under consideration. Care must be taken in this
case that neither resulting features are labelled as undesirable or suboptimal.
Only the resulting features from a dispatch resulting in a suboptimal solution
should be labelled undesirable.
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Ciax

Fig. 1. Partial Tree for JSP for the first two dispatches. Executed dispatches are
depicted solid, and all possible dispatches are dashed.

The creation of the tree for job-shop scheduling can be done recursively for
all possible permutation of dispatches in the manner described above, resulting
in a full n-ary tree of height £ = n - m. Such an exhaustive search would yield
at the most n’ leaf nodes (worst case scenario being that no sub-trees merge).
Now, since the internal vertices (i.e., partial schedules) are only of interest to
learn,! the number of those can be at the most ”[_1/71_1 [12]. Even for small
dimensions of n and m the number of internal vertices are quite substantial and
thus computationally expensive to investigate them all.

! The root is the empty initial schedule and for the last dispatch there is only one
option left to dispatch, so there is no preferred ‘choice’ to learn.
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The optimum makespan is known for each problem instance. At each time
step (i.e., layer of the tree) a number of feature pairs are created. The feature
pairs consist of the features ¢, resulting from optimal dispatches o € @), versus
features ¢, resulting from suboptimal dispatches s € S*) at time k. Note, O%) U
S*) = £K) and O N S*) = (. In particular, each job is compared against
another job from the job-list, £(%), and if the makespan differs, i.e., C’I(rfgx >
Cr(ﬁgx, an optimal/suboptimal pair is created. However, if the makespan would
be unaltered the pair is omitted since they give the same optimal makespan.
This way, only features from a dispatch resulting in a suboptimal solution is
labelled undesirable.

The approach taken in this study is to verify analytically, at each time step,
whether it can indeed somehow yield an optimal schedule by manipulating the
remainder of the sequence, while maintaining the current temporal schedule fixed
as its initial state. This also takes care of the scenario that having dispatched a
job resulting in a different temporal makespan would have resulted in the same
final makespan even if another optimal dispatching sequence would have been
chosen. That is to say the data generation takes into consideration when there
are multiple optimal solutions to the same problem instance.

3 Selecting Preference Pairs

At each dispatch iteration k, a number of preference pairs are created, which is
then iterated over all Ni..i, instances available. A separate data set is deliber-
ately created for each dispatch iteration, as the initial feeling is that DRs used in
the beginning of the schedule building process may not necessarily be the same
as in the middle or end of the schedule. As a result there are ¢ linear schedul-
ing rules for solving a n x m job-shop specified by a set of preference pairs for
each step,

S:{{¢o_¢57+1}5{¢s_¢07_1}}CQXY (3)

for all o € O®) s € S®) ke {1,...,¢} where Y = {—1,1} denotes, suboptimal
or optimal preferences, respectively, and ¢,,¢s € & C F are features from the
collected training set @. The reader is referred to [3] for a detailed description of
how the linear ordinal regression model is trained on preference set S. Defining
the size of the preference set as [ = |S|, then if [ is too large re-sampling may
be needed to be done in order for the ordinal regression to be computationally
feasible.

3.1 Trajectory Sampling Strategies

The following trajectory sampling strategies were explored for adding features
to the training set @,

@°Pt at, each dispatch some (random) optimal task is dispatched.
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@CTILG,

at each dispatch the task corresponding to highest priority, computed with
fixed weights w, which were obtained by directly optimising the mean of the
performance measure defined in Eq. (4) with CMA-ES.

@™ at each dispatch the task corresponding to most work remaining is dis-
patched, i.e., following the simple dispatching rule MWR.

@4 at each dispatch some random task is dispatched.

@ all aforementioned trajectories are explored, i.e.,

@a” — @0pt U PEma | gmwT gprnd.

In the case of @™*" and @™ it is sufficient to explore each trajectory exactly
once for each problem instance, since they are static DRs. Whereas, for $°P!
and $""? there can be several trajectories worth exploring. However, only one is
chosen at random, this is deemed sufficient as the number of problem instances
Nirain is relatively large.

3.2 Ranking Strategies

The following ranking strategies were implemented for adding preference pairs
to S,

Sp all optimum rankings r; versus all possible suboptimum rankings r;, i €
{2,...,n}, preference pairs are added, i.e., same basic set-up as in [3].

Sy full subsequent rankings, i.e., all possible combinations of r; and ;1 for
i€ {l,...,n'}, preference pairs are added.

S, partial subsequent rankings, i.e., sufficient set of combinations of r; and 7;41
for i € {1,...,n'}, are added to the preference set — e.g. in the cases that
there are more than one operation with the same ranking, only one of that
rank is needed to compared to the subsequent rank. Note that S, C Sy.

S, all rankings, i.e., all possible combinations of r; and r; for i,j € {1,...,n'},
1 # j, preference pairs are added.

where r1 > 19 > ... > 1, (n/ <n) are the rankings of the job-list, LF) | at time
step k.

4 Experimental Study

To test the validity of different rankings and strategies, the problem spaces
outlined in Table1 were used. The optimum makespan is denoted CSRt | and
the makespan obtained from the heuristic model is C™2d¢l. Since the optimal
makespan varies between problem instances the performance measure is the

following,

Cmodel o Copt
p — max max . 100 % (4)

opt
CYmaux

which indicates the percentage relative deviation from optimality.
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The preference set, .S, across varying trajectories and ranking strategies is
depicted in Fig.2, where the figure is divided vertically by problem space and
horizontally by trajectory scheme.

A linear ordinal regression model (PREF) was created for each preference
set, S, for problem spaces Pj.rnq and Pj rnan. A box-plot with the results of per-
centage relative deviation from optimality, p, defined by Eq. (4), is presented in
Fig. 3. The box-plots are grouped w.r.t. trajectory strategies and colour-coded
w.r.t. ranking schemes. Moreover, the simple priority dispatching rule MWR
and the weights obtained by the CMA-ES optimisation used to obtain the train-
ing sets ™" and @°™® respectively are shown in black in the far left of the
group for comparison. From Fig.3 it is apparent there can be a performance
edge gained by implementing a particular ranking or trajectory strategy. More-
over, the behaviour is analogous across different disciplines. Main statistics are
reported in Table 3aand b for P; .4 and P; rnan, respectively. Models are sorted
w.r.t. mean relative error.

purf

upuf

Ranking — base ---- full subsequent --- partial subsequent - - all

Fig. 2. Size of preference set, | = |S|, for different trajectories and ranking strategies
obtained from the training set for problem spaces Pj.rna and Pj.rndn.

4.1 Ranking Strategies

There is no statistical difference between PREF s and PREF, ranking-models
across all trajectory disciplines (cf. Fig. 3), which is expected since S, is designed
to contain the same preference information as Sy. The results hold for both
problem spaces.
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Fig. 3. Box-plot of results for linear ordinal regression model trained on various pref-
erence sets using test sets for problem spaces Pj.rnd and Pj.rndn.-

Combining the ranking schemes, S,, does not improve the individual ranking-
schemes as there is no statistical difference between PREF, and PREF,, PREF,
nor PREFP across all disciplines, save PREF{™® for Pj ,n4, which yielded a
considerably worse mean relative error.

Moreover, there is no statistical difference between either of the subsequent
ranking-schemes outperforming the original S, set-up from [3]. However overall,
the subsequent ranking schemes results in lower mean relative error, and since
a smaller preference set is preferred, it is opted to use the S, ranking scheme.

Furthermore, it is noted that PREF™"" is able to significantly outperform the
original heuristic (MWR) used to create its training data @™"", irrespective of
the ranking schemes. Whereas the fixed weights found via CMA-ES outperform
the PREF“™* models for all ranking schemes. This implies that ranking scheme
is relatively irrelevant. The results hold for both problem spaces.

4.2 Trajectory Sampling Strategies

Learning preference pairs from good scheduling policies, as done in PREF<*
and PREF™"" can give favourable results. However, tracking optimal paths
yield generally a lower mean relative error.
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Table 3. Main statistics of percentage relative deviation from optimality, p, defined
by Eq. (4) for various models.

(a) Pj.rna test set (b) Pj.rnan test set

model track rank mean med sd max model track rank mean med sd max

CMA 8.84 10.59 6.14 28.18 CMA 9.13 10.91 6.16 26.23

PREF all p 9.63 11.16 6.32 35.97 PREF rnd b 9.82 11.36 6.07 33.05
PREF all f 9.68 11.11 6.38 35.97 PREF rnd f 9.87 11.22 6.57 33.92
PREF opt a 9.92 11.22 6.49 27.39 PREF opt b 9.94 11.31 6.52 36.32
PREF all b 9.98 11.27 6.61 37.36 PREF opt f 9.98 11.36 6.58 26.84
PREF opt b 10.05 11.45 6.53 34.23 PREF rnd p 9.99 11.35 6.42 32.33
PREF opt p 10.13 11.33 6.74 27.39 PREF opt a 10.01 11.34 6.31 36.60
PREF all a 10.15 11.38 6.30 27.57 PREF all f 10.05 11.33 6.53 36.60
PREF opt f 10.31 11.54 6.87 27.39 PREF opt p 10.06 11.42 6.52 26.84
PREF rnd b 10.51 11.55 6.86 37.87 PREF all p 10.08 11.39 6.49 34.15
PREF rnd p 10.75 11.49 6.70 35.60 PREF all b 10.12 11.34 6.73 36.60
PREF cma p 10.78 11.52 6.89 36.60 PREF rnd a 10.14 11.49 6.25 33.05
PREF rnd a 10.82 11.59 6.73 28.65 PREF all a 10.39 11.45 6.69 36.60
PREF cma f 10.90 11.55 6.89 36.60 PREF cma f 10.56 11.38 7.28 38.31
PREF cma b 10.90 11.55 7.10 36.91 PREF cma b 10.73 11.47 7.62 36.60
PREF mwr p 10.95 11.46 7.26 37.47 PREF cma p 10.74 11.51 7.43 41.60
PREF mwr f 11.07 11.48 7.35 37.47 PREF mwr b 11.33 11.52 7.72 36.41
PREF rnd f 11.09 11.58 6.92 35.60 PREF mwr a 11.70 11.82 7.88 37.20
PREF mwr a 11.09 11.44 7.21 44.55 PREF mwr f 12.07 11.93 8.07 39.17
PREF mwr b 11.30 11.54 7.63 36.26 PREF mwr p 12.14 11.84 8.32 39.12
PREF cma a 11.39 11.74 7.59 38.38 PREF cma a 12.59 12.02 7.94 38.27
MWR 13.76 12.72 7.41 38.27 MWR 14.16 12.74 7.59 37.25

It is particularly interesting there is no statistical difference between PREF©P¢
and PREF™¢ for both Pj.rnda and Pj rpan ranking-models. That is to say, tracking
optimal dispatches gives the same performance as completely random dispatches.
This indicates that exploring only optimal trajectories can result in a training
set where the learning algorithm is inept to determine good dispatches in the
circumstances when newly encountered features have diverged from the learned
feature set labelled to optimum solutions.

Finally, PREF*! and PREF°! gave the best combination for Pj.rna and
Pj.rndn. However, in the latter case PREF™? had the best mean relative error
although not statistically different from PREF* and PREF°Pt.

For P;..na the best mean relative error was for PREF®. In that case adding
random suboptimal trajectories with the optimal trajectories gave the learning
algorithm a greater variety of preference pairs for getting out of local minima.
Therefore, a general trajectory scheme would explore both optimal with subop-
timal paths.

4.3 Following CMA-ES Guided Trajectory

The rational for using the &% strategy was mostly due to the fact that a
linear classifier created the training data (using the weights found via CMA-
ES optimisation). Hence the training data created should be linearly separable,
which in turn should boost the training accuracy for a linear classification learn-
ing model. However, this is not the case since PREF“"™* does not improve the
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Fig. 4. Linear weights (w1 to wis from left to right, top to bottom) found via CMA-ES
optimisation (dashed), and weights found via learning classification PREF;™* model
(solid).

original CMA-ES heuristic which was used to guide its training set ®“"¢. How-
ever, the PREF“™® approach is preferred to that of PREF™"" so there is some
information gained by following the CMA-ES obtained weights instead of simple
priority dispatching rules, such as MWR. Inspecting the CMA-ES guided train-
ing data more closely, in particular the linear weights for Eq. (1). The weights
are depicted in Fig.4 for problem spaces Pjnq (left) and Pjrnan (right). The
original weights found via CMA-ES optimisation that are used to guide the col-
lection of training data are depicted dashed whereas weights obtained by the
linear classification PREF;™* model are depicted solid.

From the CMA-ES experiments it is clear that a lot of weight is applied to
decision variable wg which corresponds to implementing MWR, yet the existing
weights for other features directs the evolutionary search to a “better” training
data to learn than the PREF models. Arguably, the training data could be even
better, however implementing CMA-ES is rather costly. In [5] the optimisation
had not fully converged given its allocated 288 hrs of computation time.

It might also be an artefact because the sampling of the feature space during
CMA-ES search is completely different to the data generation described in this
study. Hence the different scaling parameters for the features might influence the
results. Moreover, the CMA-ES is minimising the makespan directly, whereas the
PREF models are learning to discriminate optimal versus suboptimal features
sets that are believed to imply a better deviation from optimality later on. How-
ever, in that case, the process is very vulnerable when it comes to any divergence
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from the optimal path. Ideally, it would be best to combine both methodologies:
Collect training data from the CMA-ES optimisation which optimises w.r.t. the
ultimate performance measure used, and in order to improve upon those weights
even further, use a preference based learning approach to deter from any local
minima.

5 Summary and Conclusion

The study presents strategies for how to generate training data to be used in
supervised learning of linear composite dispatching rules for job-shop scheduling.
The experimental results provide evidence of the benefit of adding suboptimal
solutions to the training set apart from optimal ones. The subsequent rankings
are not of much value, since they are disregarded anyway, but the classification
of optimal? and suboptimal features are of paramount importance. However, the
trajectories to create training instances have to be varied to boost performance.
This is due to the fact that sampling only states that correspond to optimal or
close-to optimal schedules isn’t of much use when the model has diverged too
far. Since we are dealing with sequential decision making, all future observations
are dependent on previous operations. Therefore, to account for this drawback,
an imitation learning approach by [13,14] could fruitful. In that case, we could
continue with our PREF°P* model and collect a new training set by following the
learned policy and use that to create a new model similar to the $* scheme. In
short, using the model to update itself. This can be done several times until the
weights converge. The benefit of this approach is that the states that are likely
to occur in practice are investigated and as such used to dissuade the model
from making poor choices. Alas, due to the computational cost® of collecting the
training set @, this sort of methodology isn’t suitable for high dimensionality of
job-shops.

Unlike [8,10,15] learning only optimal training data was not fruitful. How-
ever, inspired by the original work of [7], having heuristics guide the generation
of training data (while using optimal labelling based on a solver) gave mean-
ingful preference pairs which the learning algorithm could learn. In conclusion,
henceforth, the training data will be generated with PREF;” scheme for the
authors’ future work. Based on these preliminary experiments, we continue to
test on a greater variety of problem data distributions for scheduling, namely job-
shop and permutation flow-shop problems. Once training data has been carefully
created, global dispatching rules can finally be learned with the hope of imple-
menting them for a greater number of jobs and machines. This is the focus of
our current work.

2 Here the tasks labelled ‘optimal’ do not necessarily yield the optimum makespan
(except in the case of following optimal trajectories), instead these are the optimal
dispatches for the given partial schedule.

3 Note, each partial schedule corresponding to a feature in @ is optimised to obtain
its correct labelling.
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Abstract Recent efforts to create dispatching rules have fo-
cused on direct search methods and learning from schedul-
ing data. This paper will examine the latter approach and
present a systematic approach for doing so effectively. The
key to learning an effective dispatching rule is through the
careful construction of the training data, {x;(k),y;(k)}X_, €
2, where: i) features of partially constructed schedules x;
should necessarily reflect the induced data distribution &
for when the rule is applied. This is achieved by updating
the learned model in an active imitation learning fashion;
ii) y; is labelled optimally using a MIP solver, and iii) data
needs to be balanced, as the set is unbalanced with respect
to the dispatching step k.

When querying an optimal policy, there is an abun-
dance of valuable information that can be utilised for learn-
ing new dispatching rules. For instance, it’s possible to
seek out when the scheduling process is most susceptible
to failure. Generally stepwise optimality (or training accu-
racy) will imply good end performance, here minimising the
makespan. However, as the impact of suboptimal moves is
not fully understood, the labelling must be adjusted for its
intended trajectory.

Using the guidelines set by the framework, the design
of custom dispatching rules, for the particular scheduling
application, will be more effective. In the study presented
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three different distributions of the job-shop will be consid-
ered. The machine learning approach considered is based on
preference learning, i.e., which post-decision state is prefer-
able to another. However, alternative learning methods may
be applied to the training data generated.

Keywords Scheduling - Composite dispatching rules -
Performance Analysis - Imitation Learning - DAgger -
Preference Learning

1 Introduction

Hand crafting heuristics for scheduling is an ad hoc ap-
proach to finding approximate solutions to problems. The
practice is time-consuming and its performance can even
vary dramatically between different problem instances. The
aim of this work is to increase our understanding of this pro-
cess. In particular, the learning of new problem specific pri-
ority dispatching rules (DR) will be addressed for a subclass
of scheduling problems known as the job-shop scheduling
problem (JSP).

A recent editorial the state-of-the-art approaches [6] in
advanced dispatching rules for large-scale manufacturing
systems reminds us that: “... most traditional dispatching
rules are based on historical data. With the emergence of
data mining and on-line analytic processing, dispatching
rules can now take predictive information into account.” The
importance of automated discovery of dispatching rules was
also emphasised by [24]. Data for learning can also be gen-
erated using a known heuristic on a set of problem instances.
Such an approach is taken in [20] for a single machine
where a decision tree is learned from the data to have similar
logic to the guiding dispatching rule. However, the learned
method cannot outperform the original dispatching rule used
for the data generation. This drawback is confronted in [22,
35,25] by using an optimal scheduler or policy, computed
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off-line. The resulting dispatching rules, as decision trees,
gave significantly better schedules than using popular heur-
istics in that field, and a lower worst-case factor from opti-
mality. Although using optimal policies for creating training
data gives vital information on how to learn good schedul-
ing rules an experimental study will show that this is not
sufficient. Once these rules make a suboptimal dispatch then
they are in uncharted territory and the effects are relatively
unknown. This work will illustrate the sensitivity of learned
dispatching rule’s performance in the way the training data
is sampled. For this purpose, JSP is used as a case study to
illustrate a methodology for generating meaningful training
data, which can be successfully learned using preference-
based imitation learning (IL).

The competing alternative to learning dispatching rules
from data would be to search the dispatching rule space di-
rectly. The prevalent approach in this case would be using an
evolutionary algorithm, such as genetic programming (GP).
The predominant approach in hyper-heuristics is a frame-
work for creating new heuristics from a set of predefined
heuristics via genetic algorithm optimisation [3]. Adopting
a two-stage hyper-heuristic approach to generate a set of
machine-specific DRs for dynamic job-shop, [27] used ge-
netic programming (GP) to evolve CDRs from basic fea-
tures, along with an evolutionary algorithm to assign a CDR
to a specific machine. The problem space consists of job-
shops in semiconductor manufacturing, with additional shop
constraints, as machines are grouped into similar work cen-
tres, which can have different set-up times, workloads, etc.
In fact, the GP emphasised efficient dispatch at the work
centres with set-up requirements and batching capabilities,
which are rules that are non-trivial to determine manually.

With meta-heuristics existing DRs can be used, and for
example portfolio-based algorithm selection [29,9,37], ei-
ther based on a single instance or class of instances, to de-
termine which DR to choose from. Implementing ant colony
optimisation to select the best DR from a selection of nine
DRs for JSP, experiments from [19] showed that the choice
of DR does affect the results and for all performance mea-
sures considered. They showed that it was better to have all
the DRs to choose from rather than just a single DR at a time.
A simpler and more straightforward way to automate se-
lection of composite priority dispatching rules (CDR), [13],
translated dispatching rules into measurable features which
describe the partial schedule and optimise directly what their
contribution should be via evolutionary search.

Using case based reasoning for timetable scheduling,
training data in [2] is guided by the two best heuristics in the
literature. They point out that in order for their framework
to be successful, problem features need to be sufficiently ex-
planatory and training data needs to be selected carefully so
they can suggest the appropriate solution for a specific range
of new cases. When learning new dispatching rules there are

several important factors to consider. First and foremost the
context in which the training data is constructed will influ-
ence the quality of the learned dispatching rule [2]. Since the
training data consists of a collection of features, the qual-
ity of training data is interchangeable with the predictabil-
ity of features. The training data is necessarily also problem
instance specific. In addition to addressing these aspects,
the paper will show that during the scheduling process, the
most critical moment to make the ‘right” dispatch will vary.
Furthermore, depending on the distribution of problem in-
stances, these critical moments can vary greatly. Moreover,
a supervised learning algorithm will optimize classification
accuracy, while it is the actual end-performance of the dis-
patching rule learned that will determine the success of the
learning method.

The outline of the paper is as follows, with Section 2
giving the mathematical formalities of the scheduling prob-
lem and Section 3 describing the main features for job-shop
and illustrating how schedules are created with dispatching
rules. Section 4 sets up the framework for learning from op-
timal schedules, in particular, the probability of choosing
optimal decisions and the effects of making a suboptimal
decision. Furthermore, the optimality of common single pri-
ority dispatching rules is investigated. With these guidelines
presented, Section 5 goes into detail on how to create mean-
ingful composite priority dispatching rules using preference
learning, focusing on how to compare operations and collect
training data with the importance of the sampling strategy
applied. Sections 6 and 7 explain the trajectories for sam-
pling meaningful schedules used in preference learning, ei-
ther using passive or active imitation learning. Experimental
results are jointly presented in Section 8 with comparison
for arandomly generated problem space. Furthermore, some
general adjustments for performance boost are also consid-
ered. The paper finally concludes in Section 9 with discus-
sion and conclusions.

2 Job-shop Scheduling

JSP involves the scheduling of jobs for a set of machines.
Each job consists of a number of operations which are then
processed on the machines in a predetermined order. An op-
timal solution to the problem will depend on the specific
objective.

This study will consider the n x m JSP, where n jobs,
# ={Jj}}_,, are scheduled on a finite set, .# = {M,};_,.
of m machines. The index j refers to ajob J; € _# while the
index a refers to a machine M, € .Z. Each job requires a
number of processing steps or operations, and the pair (j,a)
refers to the operation, i.e., processing the task of job J; on
machine M,.

Each job J; has an indivisible operation time (or cost) on
machine M,, p;,, which is assumed to be integral and finite.
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Starting time of job J; on machine M, is denoted x(j,a) and
its end time is denoted x,(j,a). Each job J; has a specified
processing order through the machines. It is a permutation
vector, 6, of {1,...,m}, representing a job J; which can
be processed on Mg (4 only after it has been completely
processed on Mo.j (a—1)> namely:

x.y(jvcj(a)) zxe(jvo.j(“_])) (D

for all J; € # and a € {2,..,m}. Note, that each job can
have its own distinctive flow pattern through the machines
which is independent of the other jobs. However, in the case
that all jobs share the same fixed permutation route, it is
referred to as flow-shop (FSP).

The objective function is to minimise the schedule’s
maximum completion times for all tasks, commonly re-
ferred to as the makespan, Cp,x. This family of scheduling
problems is denoted by J||Cax [28]. Additional constraints
commonly considered are job release-dates and due-dates or
sequence dependent set-up times; however, these will not be
considered here.

In order to find an optimal (or near optimal) solution
for scheduling problems it is possible to use either exact
methods or heuristics methods. Exact methods guarantee an
optimal solution. However, job-shop scheduling is strongly
NP-hard [8]. Any exact algorithm generally suffers from
the curse of dimensionality, which impedes the application
in finding the global optimum in a reasonable amount of
time. Using state-of-the-art software for solving scheduling
problems, such as LiSA (A Library of Scheduling Algo-
rithms) [1], which includes a specialised version of branch
and bound that manages to find optimums for job-shop prob-
lems of up to 14 x 14 [34]. However, problems that are
of greater size become intractable. Heuristics are generally
more time efficient but do not necessarily attain the global
optimum. Therefore, job-shop has the reputation of being
notoriously difficult to solve. As a result, it’s been widely
studied in deterministic scheduling theory and its class of
problems has been tested on a plethora of different solution
methodologies from various research fields [23], all from
simple and straight forward dispatching rules to highly so-
phisticated frameworks.

3 Priority Dispatching Rules

Priority dispatching rules determine, from a list of incom-
plete jobs, ., which job should be dispatched next. This
process, where an example of a temporal partial schedule of
six jobs scheduled on five machines, is illustrated in Fig. 1.
The numbers in the boxes represent the job identification ;.
The width of the box illustrates the processing times for a
given job for a particular machine M, (on the vertical axis).
The dashed boxes represent the resulting partial schedule for

when a particular job is scheduled next. Moreover, the cur-
rent Cnax is denoted by a dotted vertical line. The object is
to keep this value as small as possible once all operations are
complete. As shown in the example there are 15 operations
already scheduled. The sequence, X, of dispatches used to
create this partial schedule is:

X = (J3,03,03,03,Ja,Ja,J5,J1,J1,J2,Ja, 06, Ja, 05, 13)  (2)

This refers to the sequential ordering of job dispatches to
machines, i.e., (j,a); the collective set of allocated jobs to
machines is interpreted by its sequence, which is referred to
as a schedule. A scheduling policy will pertain to the man-
ner in which the sequence is determined from the available
jobs to be scheduled. In our example, the available jobs are
given by the job-list £*) = {J1,J5,J4,J5,J¢} with the five
potential jobs to be dispatched at step £ = 16 (note that J3 is
completed).

However, deciding which job to dispatch is not suffi-
cient as one must also know where to place it. In order to
build tight schedules, it is sensible to place a job as soon as
it becomes available and such that the machine idle time is
minimal, i.e., schedules are non-delay. There may also be a
number of different options for such a placement. In Fig. 1
one observes that J», to be scheduled on M3, could be placed
immediately in a slot between J3 and Jy, or after J4 on this
machine. If Js had been placed earlier, a slot would have
been created between it and Jy, thus creating a third alterna-
tive, namely scheduling J, after Je. The time in which ma-
chine M, is idle between consecutive jobs J; and J is called
idle time or slack:

s(a, ) == x5(j,a) —x.(j,a) 3

where J; is the immediate successor of J; on M,,.

Construction heuristics are designed in such a way that it
limits the search space in a logical manner while not exclud-
ing the optimum. Here, the construction heuristic, 1, is to
schedule the dispatches as closely together as possible, i.e.,
minimise the schedule’s idle time. More specifically, once
an operation (j,a) has been chosen from the job-list £ by
some dispatching rule, it can then be placed immediately af-
ter (but not prior) to x.(j,6j(a— 1)) on machine M, due
to constraint Eq. (1), this could be considered the release
time for J;. However, to guarantee the disjunctive condition
(i.e. no overlapping of jobs on machines) is not violated,
idle times M, from Eq. (3) are inspected as they create a
slot which J; can occupy, but only considering those that
occur after J; has been released from its previous machine,
namely:

5(”7]./) ::xs(j/laa) —max{xe(j’,a),xp(L O'j(ll— 1))} (4)

for all already dispatched jobs, Jj,J; € 7, where Jjn is
Jj» successor on M,. Moreover, since preemption is not al-
lowed, the only applicable slots for a new dispatch, S;,,
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Fig. 1: Gantt chart of a partial JSP schedule after 15 dis-
patches: Solid and dashed boxes represent ¥ and % (1) re-
spectively. Current Crax denoted as dotted line.

are those idle times that can process the entire operation,
namely:

S'ja = {Jj/ € Fa: §(a,j) ija}. 5)

The placement rule applied to decide which slot from Eq. (5)
is used to place J; is intrinsic to the construction heuristic,
which is chosen independently of the priority dispatching
rule that is applied. Different placement rules could be con-
sidered for selecting a slot, e.g., if the main concern were to
utilise the slot space, then choosing the slot with the small-
est idle time would yield a closer-fitted schedule and leave
greater idle times undiminished for subsequent dispatches
on M,. In our experiments, cases were discovered where
such a placement could rule out the possibility of construct-
ing optimal solutions. However, this problem did not occur
when jobs are simply placed as early as possible, which is
beneficial for subsequent dispatches for J;. For this reason,
it will be the placement rule applied here.

Priority dispatching rules will use features of operations,
such as processing time, in order to determine the job with
the highest priority. Consider again Fig. 1; if the job with the
shortest processing time (SPT) were to be scheduled next,
then J> would be dispatched. Similarly, for the longest pro-
cessing time (LPT) heuristic, Js would have the highest pri-
ority. Dispatching can also be based on features related to
the partial schedule. Examples of these are dispatching the
job with the most work remaining (MWR) or alternatively
the least work remaining (LWR). A survey of more than 100
of such rules are presented in [26]. However, the reader is
referred to an in-depth survey for simple or single priority
dispatching rule (SDR) by [12]. The SDRs assign an index
to each job in the job-list and is generally only based on a
few features and simple mathematical operations.

Designing priority dispatching rules requires recognis-
ing the important features of the partial schedules needed to

Table 1: Feature space % for JSP where job J; on machine
M, given the resulting temporal schedule after operation

(,a).

¢  Feature description Mathematical formulation

job-related
¢ job processing time Dja
¢>  job start time x5(j,a)
¢3  jobend time Xe(j,a)
¢4 job arrival time Xe(j,a—1)
s time job had to wait x5(jsa) = xe(j,a—1)
¢ total processing time for job Yot Pia
¢7  total work remaining for job ):(,/6,,\‘,,] Pid
¢s  number of assigned operations for job ||

machine-related
¢9  when machine is next free
¢10 total processing time for machine Yje s Pja
¢y, total work remaining for machine Yie A\ gaPila
¢1> number of assigned operations for machine | Fa
¢13 change in idle time by assignment As(a, j)
¢14 total idle time for machine Yie ta s(a,j)
¢15  total idle time for all machines ventics, s(d,j')

¢16  current makespan My e .ty {xp(j,d)}

max;re g, {xe(J'a)}

create a reasonable scheduling rule. These features attempt
to grasp key attributes of the schedule being constructed.
Which features are most important will necessarily depend
on the objectives of the scheduling problem. The features
used in this study applied for each possible operation en-
countered are given in Table 1, where the set of machines
already dispatched for J; is .#; C .#, and similarly, M,
has already had the jobs _#, C _# previously dispatched.
The features of particular interest were obtained by inspect-
ing the aforementioned SDRs. Features @1-¢g and @o-¢;6 are
job-related and machine-related, respectively. In fact, [27]
note that in the current literature, there is a lack of global
perspective in the feature space, as omitting them won’t ad-
dress the possible negative impact an operation (j,a) might
have on other machines at a later time. It is for this reason
features such as ¢;3-¢;5 are considered, since they are slack
related and are a means of indicating the current quality of
the schedule.

Priority dispatching rules are attractive since they are
relatively easy to implement, perform fast, and find reason-
able schedules. In addition, they are relatively easy to in-
terpret, which makes them desirable for the end-user. How-
ever, they can also fail unpredictably. A careful combina-
tion of dispatching rules has been shown to perform signif-
icantly better [16]. These are referred to as composite pri-
ority dispatching rules (CDR), where the priority ranking is
an expression of several dispatching rules. CDRs deal with a
greater number of more complicated functions and are con-
structed from the schedule features. In short, a CDR is a
combination of several DRs. For instance, let © be a CDR
comprised of d DRs, then the index [ for J; € £ ® using 7
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is:

d .
If = Z W,'ﬂ'i(xj) 6)
i=1

i=

where w; > 0 and Z?:o w; = 1 with w; giving the weight of
the influence of 7; (which could be an SDR or another CDR)
to 7. Note: each 7; is a function of J;’s features from the
current sequence %, where %/ implies that J; was the latest
dispatch, i.e., the partial schedule given yx; = J;.

At each step k, an operation is dispatched which has the
highest priority. If there is a tie, some other priority measure
is used. Generally the dispatching rules are static during the
entire scheduling process. However, ties could also be bro-
ken randomly (RND).

While investigating 11 SDRs for JSP, [21] a pool of
33 CDRs was created. This pool strongly outperformed the
original CDRs by using multi-contextual functions based
on either job waiting time or machine idle time (similar
to ¢5 and ¢4 in Table 1), i.e., the CDRs are a combina-
tion of either one or both of these key features and then the
SDRs. However, no combinations of the basic SDRs were
explored, only those two features. Similarly, using priority
rules to combine 12 existing DRs from the literature, [38]
had 48 CDR combinations which yielded 48 different mod-
els to implement and test. It is intuitive to get a boost in per-
formance by introducing new CDRs, since where one DR
might be failing, another could be excelling, so combining
them together should yield a better CDR. However, these
approaches introduce fairly ad hoc solutions and there is no
guarantee the optimal combination of dispatching rules have
been found.

The composite priority dispatching rule presented in
Eq. (6) can be considered as a special case of the follow-
ing general linear value function:

d
n(x)) =Y wioi(x/). @)
iz

when 7; = ¢, i.e., a composite function of the features from
Table 1. Finally, the job to be dispatched, J;+, corresponds
to the one with the highest value, namely:

Jj- = argmax m(x) ®8)
JieZ

Similarly, single priority dispatching rules may be described
by this linear model. For instance, let all w; = 0, but with
following exceptions: w; = —1 for SPT, w; = +1 for LPT,
w7 = —1 for LWR and w7 = +1 for MWR. Generally, the
weights w are chosen by the designer or the rule apriori. A
more attractive approach would be to learn these weights
from problem examples directly. The following section will
investigate how this may be accomplished.

4 Performance Analysis of Priority Dispatching Rules

In order to create successful dispatching rules, a good start-
ing point is to investigate the properties of optimal solutions
and hopefully be able to learn how to mimic the construc-
tion of such solutions. For this, optimal solutions (obtained
by using a commercial software package [10]) are followed
and the probability of SDRs being optimal is inspected. This
serves as an indicator of how hard it is to put our objective
up as a machine learning problem. However, the end goal,
which is minimising deviation from optimality, p, must also
be taken into consideration because its relationship to step-
wise optimality is not fully understood.

In this section the concerns of learning new priority dis-
patching rules will be addressed. At the same the time ex-
perimental set-up used in the study is described.

4.1 Problem Instances

The class of problem instances used in our studies was
the job-shop scheduling problem described in Section 2.
Each instance will have different processing times and ma-
chine ordering. Each instance will therefore create differ-
ent challenges for a priority dispatching rule. Dispatching
rules learned will be customised for the problems used for
their training. For real world application using historical
data would be most appropriate. The aim would be to learn a
dispatching rule that works well on average for a given dis-
tribution of problem instances. To illustrate the performance
difference of priority dispatching rules on different prob-
lem distributions within the same class of problems, con-
sider the following three cases. Problem instances for JSP
are generated stochastically by fixing the number of jobs and
machines to ten. A discrete processing time is sampled in-
dependently from a discrete uniform distribution from the
interval I = [uy,uy), i.e., p ~ % (u1,u2). The machine or-
der was a random permutation of all of the machines in
the job-shop. Two different processing times distributions
were explored, namely 2" where I = [1,99] and W}'fé’én
where I = [45,55]. These instances are referred to as ran-
dom and random-narrow, respectively. In addition, the case
where the machine order is fixed and the same for all jobs,
ie. gj(a) =aforall J; € ¢ and where p ~ % (1,99), was
also considered. These jobs are denoted by W}lf,'[b and are
analogous to @;’ »n- The problem spaces are summarised in
Table 2.

The goal is to minimise the makespan, Cpax. The opti-
mum makespan is denoted CT,, (using the expert policy 7.),
and the makespan obtained from the scheduling policy 7 un-
der inspection by CT, . Since the optimal makespan varies
between problem instances the performance measure is the
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Table 2: Problem space distributions used in experimen-
tal studies. Note, problem instances are synthetic and each
problem space is i.i.d.

name size (M Xm)  Ngain  Nest  DOte
P j“ﬂ: 40 10x 10 300 200 random
92}2::11: 10x 10 300 200  random-narrow
37’}%}0 10x 10 300 200 random
j.rnd, 10x10 j-rndn, 10x10
1004 i ) l ' 75 ' i :
: = s0{ =4 . .
54 1 : ' -
. : :
o o H

f.rnd, 10x10

SPT LPT

.o Simple dispatching rule

. E3 Shortest Processing Time
E Longest Processing Time
E Least Work Remaining
‘ Most Work Remaining
‘ Random dispatches

@
3

Data set

E} train

7 test

Deviation from optimality, p (%)
8

N
S

LWR MWR RND

Fig. 2: Box plot for deviation from optimality, p, (%) for
SDRs

following:
Cﬂ _ C”x
p= M - 100% 9)
Crnax

which indicates the percentage relative deviation from opti-
mality. Note: Eq. (9) measures the discrepancy between pre-
dicted value and true outcome, and is commonly referred to
as a loss function, which should be minimised for policy 7.

Figure 2 depicts the box plot for Eq. (9) when using the
SDRs from Section 3 for all of the problem spaces from Ta-
ble 2. These box plots show the difference in performance of
the various SDRs. The rule MWR performs on average the
best on the i@}’ﬁl’:’i and ;’frf{;n problem instances, whereas

for & ;f,’;’i it is LWR that performs best. It is also interest-
ing to observe that all but MWR perform statistically worse
than a random job dispatching on the 2™ and 22"

j.rnd Jj.rndn
problem instances.

4.2 Reconstructing optimal solutions

When building a complete schedule, K = n-m dispatches
must be made sequentially. A job is placed at the earliest
available time slot for its next machine, whilst still respond-
ing to the fact that each machine can handle at most one job
at each time, and jobs need to have been finished by their

Algorithm 1 Pseudo code for constructing a JSP sequence
using a deterministic scheduling policy rule, 7, for a fixed
construction heuristic, 1.

1: procedure SCHEDULEJSP(7,Y)

2 X0 ©> initial current dispatching sequence
3 fork < 1to K=n-mdo > at each dispatch iteration
4: forallJ; € W C 7 do > inspect job-list
5: ¢/ — oY (1/) > temporal features for J;
6 IF<n (¢’) > priority for J;
7 end for

8: J*argmax  ow {17} > choose highest priority
9: X I > dispatch j*
10: end for

11: return CT,, < Y (%)
12: end procedure

> makespan and final schedule

previous machines according to their machine order. Unfin-
ished jobs from the job list .Z are dispatched one at a time
according to a deterministic scheduling policy (or heuristic).
This process is given as a pseudo-code in Algorithm 1. After
each dispatch! the schedule’s current features are updated
based on the half-finished schedule, . For each possible
post-decision state, J; € <z ("), the temporal features, @ j»are
collected (cf. Line 5) forming the feature set, ¢, based on
the union of all Ny,i, problem instances available, namely:
o= U {o: J_fez(”}; ¥ (10)

x }?irl;\in

where the feature space .7 is described in Table 1, and are
based on job and machine features which are widespread in
practice.

It is easy to see that the sequence of task assignments
is by no means unique. Inspecting a partial schedule further
along in the dispatching process such as in Fig. 1, then let’s
say J; would be dispatched next, and in the next iteration
J>. Now this sequence would yield the same schedule as if
J» had been dispatched first and then J; in the next itera-
tion, i.e., these are jobs with non-conflicting machines. In
this particular scenario, one cannot infer that choosing J; is
better and J, is worse (or vice versa) since they can both
yield the same solution. Furthermore, there may be multiple
optimal solutions to the same problem instance. Hence not
only is the sequence representation ‘flawed’ in the sense that
slight permutations on the sequence are in fact equivalent in
terms of the end-result, but very varying permutations on the
dispatching sequence (although given the same partial initial
sequence) can result in very different complete schedules yet
can still achieve the same makespan.

The redundancy in building optimal solutions using dis-
patching rules means that many different dispatches may
yield an optimal solution to the problem instance. Let’s for-
malise the probability of optimality (or stepwise classifica-

! Dispatch and time step are used interchangeably.
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Track — LPT -==- LWR == MWR - = RND -++- SPT

Fig. 3: Probability of SDR being optimal, <§<*SDR>

tion accuracy) for a given policy 7, yet following the expert
policy &, as:

&r =En {m =7} an

that is to say, the mean likelihood of our policy 7 being
equivalent to the expert policy .. The probability that a job
chosen by a SDR yields an optimal makespan on a step-by-
step basis, i.e., <§<*SDR>, is depicted in Fig. 3. These probabil-
ities vary quite a bit between the different problem instance
distributions studied. From Fig. 3 it is observed that &Jjwg
has a higher probability than random guessing, in choosing
a dispatch which may result in an optimal schedule. This
is especially true towards the end of the schedule building
process. Similarly, &y selects dispatches resulting in op-
timal schedules with a higher probability. This would ap-
pear to support the idea that the higher the probability of
dispatching job that may lead to an optimal schedule, the
better the SDRs performance, as illustrated by Fig. 2. How-
ever, there is a counter example; E§pr has a higher probabil-
ity than random dispatching of selecting a jobs that may lead
to an optimal solution. Nevertheless, the random dispatching
performs better than SPT on problem instances @}%}0 and

agp10x10
t]j.rmin'

As shown in Fig. 3, ,@}%{}O has a relatively high prob-
ability (70% and above) of selecting an optimal job at ran-
dom. However, it is imperative to keep making optimal deci-
sions, because the consequences of making suboptimal dis-
patches are unknown. To demonstrate this Fig. 4 depicts
mean worst and best case scenario of the resulting devia-
tion from optimality, p, once off the optimal track, defined
as follows:

. J
Giun(k) = B, {J%m) VKL 2 c,f;ax} (120
€4
G ) 1= B, { max (p) : VKL > c:;;x} (120)
eLx

0L/BURDS 9SED ISIOM PUR 1S9 Ueal

i ' 0
25 50 75 100 25 50 75 100

Step
problem [ jmdl>7; muanmu

Fig. 4: Mean deviation from optimality, p, (%), for best and
worst case scenarios of making one suboptimal dispatch (i.e.

rio and &x. ), depicted as lower and upper bounds, respec-
tively, for 9}%{}0, @J]?:d',? and 9’}%;0 The mean subop-
timal move is given as a dashed line.

Note, that it is a given that there is only one non-optimal dis-
patch. Generally, there will be more, and then the compound
effects of making suboptimal decisions are cumulative.

It is interesting to observe that for @}2;(110 and W}?,fdl,?
making suboptimal decisions later impacts on the resulting
makespan more than making a mistake early. The opposite
seems to be the case for W}%{}O. In this case it is imper-
ative to make good decisions right from the start. This is
due to the major structural differences between JSP and FSP,
namely the latter having a homogeneous machine ordering
and therefore constricting the solution immensely.

4.3 Blended dispatching rules

A naive approach to creating a simple blended dispatching
rule (BDR) would be to switch between SDRs at a prede-
termined time. Observing again Fig. 3, a presumably good
BDR for @J'(:;dl % would be to start with £y and then switch
over to g at around time step k = 40, where the SDRs
change places in outperforming one another. A box plot for
p for the BDR compared with MWR and SPT is depicted
in Fig. 5 and its main statistics are reported in Table 3.
This simple swap between SDRs does outperform the SPT
heuristic, yet doesn’t manage to gain the performance edge
of MWR. Using SPT downgrades the performance of MWR.
A reason for this lack of performance of our proposed BDR
is perhaps that by starting out with SPT in the beginning, it
sets up the schedules in such a way that it’s quite greedy and
only takes into consideration jobs with the shortest immedi-
ate processing times. Now, even though it is possible to find
optimal schedules from this scenario, as Fig. 3 shows, the
inherent structure that’s already taking place might make it

232



Helga Ingimundardottir, Thomas Philip Runarsson

j.rnd, 10x10

Dispatching rule

E Shortest Processing Time

E Most Work Remaining

ES SPT (first 10 %), MWR (last 90 %)
B3 SPT (first 15 %), MWR (last 85 %)
B SPT (first 20 %), MWR (last 80 %)
B SPT (first 30 %), MWR (last 70 %)
I SPT (first 40 %), MWR (last 60 %)

),
)
)
)

257 Data set

train £ test

Deviation from optimality, p (%)

1 ' 1
MWR BDR SPT

Fig. 5: Box plot for deviation from optimality, p, (%) for
BDR where SPT is applied for the first 10%, 15%, 20%,
30% or 40% of the dispatches, followed by MWR

hard to come across by simple methods. Therefore, it is by
no means guaranteed that by simply swapping over to MWR
will handle the situation that applying SPT has already cre-
ated. Figure 5 does show, however, that by applying MWR
instead of SPT in the latter stages does help the schedule
to be more compact in terms of SPT. However, the fact re-
mains that the schedules have diverged too far from what
MWR would have been able to achieve on its own.

In Fig. 3 the stepwise optimality was inspected, given
that all committed dispatches were based on the optimal tra-
jectory. As mistakes are bound to be made at some points, it
is interesting to see how the stepwise optimality evolves for
its intended trajectory, 7, thereby updating Eq. (11) to:

b i =E{m, =n} (13)

Figure 6 shows the log likelihood for &ispgy using @J]?:dm
There one can see that even though Espr is generally more
likely to find optimal dispatches in the initial steps, then
shortly after k = 15, Evwr becomes a contender again. This
could explain why our BDR switch at k = 40 from Fig. 5
was unsuccessful. However, changing to MWR at k <20 is
not statistically significant from MWR (the boost in mean
p is at most -0.5%). But as pointed out for Fig. 4, it’s not
so fatal to make bad moves in the very first dispatches for
9’}‘%{;0, hence there is little gain with improved classifica-
tion accuracy in that region. However, after k£ > 20 then the
BDR performance starts diverging from that of MWR.

5 Preference Learning

Section 4.3 demonstrated there is something to be gained by
trying out different combinations of DRs; however, it is non-
trivial. This section presents one approach to learning how
such combinations can work. Learning models considered in

j.-rnd

10g(Espr)

Track — SPT ---- LPT =-- LWR - = MWR ---- RND

Fig. 6: Log likelihood of SDR being optimal for 2;%" /0
when following its corresponding SDR trajectory, i.e.,
log (&spry)

this study are based on ordinal regression in which the learn-
ing task is formulated as learning preferences, and in the
case of scheduling, learning which operations are preferred
to others. Ordinal regression has been previously presented
in [33] and in [14] for JSP, and given here for completeness.

The optimum makespan is known for each problem in-
stance. At each time step k, a number of feature pairs are
created. Let ¢° € .# denote the post-decision state when
dispatching J, € ¢ corresponds to an optimal schedule
being built. All post-decision states corresponding to subop-
timal dispatches, J; € .#®), are denoted by ¢* € .7.

The approach taken here is to verify analytically, at each
time step, by fixing the current temporal schedule as an ini-
tial state, whether it is possible to somehow yield an optimal
schedule by manipulating the remainder of the sequence.
This also takes care of the scenario that having dispatched
a job resulting in a different temporal makespan would have
resulted in the same final makespan if another optimal dis-
patching sequence had been chosen. That is to say, the train-
ing data generation takes into consideration when there are
multiple optimal solutions? to the same problem instance.

Let’s compare features from Eq. (10), and define the dif-
ference of optimal from suboptimal ones as, y° = ¢’ — ¢°,
and vice versa, Y* = @° — ¢°, and label the differences by
Yo = +1 and y; = —1 respectively. Then, the preference
learning problem is specified by a set of preference pairs:

=W))< YUody) € 0 x0T
CPxY
14

2 There can be several optimal solutions available for each problem
instance. However, it is deemed sufficient to inspect only one optimal
trajectory per problem instance as there are Ni,in = 300 independent
instances, which gives the training data variety.
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Table 3: Main statistics for & }2:(110 deviation from optimality, p, using BDR that changes from SDR at a fixed time step k.

SDR#1 SDR#2 k  Set Min. 1stQu. Median Mean 3rd Qu. Max
SPT - K train 2038 41.15 50.70  51.31 59.18  94.20
SPT - K test 22.75 41.39 49.53  50.52 58.60 93.03

MWR - K train 4.42 17.84 21.74 22.13 26.00 47.78
MWR - K test 337 17.07 21.39  21.65 2598 41.80
SPT MWR 10 train 5.54 17.98 21.75  21.99 2543  44.02
SPT MWR 10 test 5.87 17.29 20.78 21.28 24.67 4447
SPT MWR 15 train 4.76 18.24 22.04 2249 26.65 49.86
SPT MWR 15 test 7.42 17.60 21.38  21.83 2545 4598
SPT MWR 20 train 5.76 18.98 22.46 23.01 2697 4159
SPT MWR 20 test 8.31 18.64 2292  23.29 27.10  49.93
SPT MWR 30 train 9.77 20.89 25.60 25.76 30.01 50.94
SPT MWR 30 test 4.39 21.20 26.08 26.25 30.58 49.88
SPT MWR 40 train 13.04 23.42 28.12 28.94 33.67 5498
SPT MWR 40 test 8.55 24.20 28.16  28.98 3320 57.21

where @ C R is the training set of d = 16 features (cf. Ta-
ble 1), Y = {+1,—1} is the outcome space from job pairs
Jo € 0® and J; € W), for all dispatch steps k.

To summarise, each job is compared against another
job of the job list, .i”(k), and if the makespan differs, i.e.,
C,,”,;(xxl) > ,',r,;(xlu) an optimal/suboptimal pair is created.
However, if the makespans are identical the pair is omitted
since they give the same optimal makespan. In this way, only
features from a dispatch resulting in a suboptimal solution is
labelled undesirable.

Now let’s consider mappings from solutions to ranks,
such function 7 induces an ordering on the solutions by the
following rule:

-2 = =x)>=x) (15)
where the symbol > denotes is preferred to with respect to
the solutions’ ranks. Referring to the ranks in a discrete man-
ner as follows:

(n' <n)

Pl =TIy Ty (16)

implies ry is preferable to r, and r, is preferable to r3, etc.

The function used to bring about preference is a linear
function in the feature space, previously defined in Eq. (7).
Logistic regression learns the optimal parameters w* € R9.
For this study, L2-regularised logistic regression from the
LIBLINEAR package [7] without bias is used to learn the
preference set ¥, defined by Eq. (14). Hence the job chosen
to be dispatched, Jj, is the one corresponding to the highest
preference estimate, i.e., Eq. (8) where 7 is the classification
model obtained by the preference set.

Preliminary experiments for creating step-by-step model
was done in [14] resulting in a local linear model for each
dispatch for a total of K linear models for solving n x m JSP.
However, the experiments showed that by fixing the weights
to each mean value throughout the dispatching sequence
the results remained satisfactory. A more sophisticated way

would be to create a new linear model, where the preference
set, ¥, is the union of the preference pairs across the K dis-
patches, as described in Eq. (14). This would amount to a
substantial preference set, and for ¥ to be computationally
feasible to learn, ¥ has to be reduced. For this several rank-
ing strategies were explored in [15], and the results showed
that it is sufficient to use partial subsequent rankings with
combinations of r; and riy1 fori € {1,...,n'}, added to the
preference set in such a manner that there is more than one
operation with the same ranking and only one from that rank
is needed to be compared to the subsequent rank. Moreover,
for this study, which dealt with 10 x 10 problem instances
instead of 6 x 5, the partial subsequent ranking became nec-
essary, as full ranking was computationally infeasible due to
its size. Defining the size of the preference set as [ = |¥|,
then if / is too large, re-sampling to size /m,x may be needed
in order for the ordinal regression to be computationally fea-
sible.

The training data from [14] was created from optimal so-
lutions of randomly generated problem instances, i.e., tradi-
tional passive imitation learning (PIL). As JSP is a sequen-
tial decision making process, errors are bound to emerge.
Due to the compound effect of making suboptimal dis-
patches, the model leads the schedule astray from learned
feature-space, resulting in the new input being foreign to the
learned model. Alternatively, training data could be gener-
ated using suboptimal solution trajectories as well, as was
done in [15], where the training data was also incorporated
following the trajectories obtained by applying successful
SDRs from the literature. The reasoning behind it was that
they would be beneficial for learning, as they might help
the model to escape from local minima once off the coveted
optimal path. Simply aggregating training data obtained by
following the trajectories of well-known SDRs yielded bet-
ter models with lower deviation from optimality, p.

Inspired by the work of [30,31], the methodology of
generating training data will now be such that it will iter-
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atively improve upon the model, such that the feature-space
learned will be representative of the feature-space the even-
tual model would likely encounter, known as DAgger for
active imitation learning (AIL) and thereby, eliminating the
ad hoc nature of choosing trajectories to learn, by instead
letting the model lead its own way in a self-perpetuating
manner until it converges.

Furthermore, in order to boost training accuracy, two
strategies were explored:

Boost.1 increasing number of preferences used in training
(i.e. varying Imax < |¥]),

Boost.2 introducing more problem instances (denoted EXT
in experimental setting).

Note, the following experimental studies will address
Boost.2, whereas preliminary experiments for Boost.1
showed no statistical significance in boost of performance.
Hence, the default set-up will be /pax = 5 - 105 which is
roughly the amount of features encountered from one pass
of sampling a K-stepped trajectory using a fixed policy 7 for
the default Nipin = 300.

Another way to adjust training accuracy is to give differ-
ent weights to various time steps. To address this problem,
two different stepwise sampling biases (or data balancing
techniques) are here considered:

Bias.1 (equal) where each time step has equal probability.
This was used in [13,15] and serves as a baseline.

Bias.2 (adjdbl2nd) where each time step is adjusted to the
number of preference pairs for that particular step
(i.e. each step now has equal probability irrespective
of quantity of encountered features). This is done
with re-sampling. In addition, there is superimposed
twice as much likelihood of choosing pairs from the
latter half of the dispatching process.

Remark: as the following sections require repeated collec-
tion of training data and since labelling is a very time in-
tensive task, the remainder of the paper will solely focus

on fﬂ;(ﬂ:‘}o The experiments in [15] generally took several

hours to collect for Nfr:is = 500. Going to higher dimension
and using Nllroif] 10 — 300 computational intensity becomes an
: ap10x10 10x10 10x10
1ssue', as ,}’j.md needs g few days and P/_’j_mdn or P/_’f.md
require several weeks using a personal computer.

6 Passive Imitation Learning

Using the terms from game theory used in [4], then our
problem is a basic version of the sequential prediction prob-
lem where the predictor (or forecaster), 7, observes each
element of a sequence ) of jobs, where at each time step
ke{l,...,K}, before the k-th job of the sequence is revealed,
the predictor guesses its value x; on the basis of the previous
k — 1 observations.

Algorithm 2 Pseudo code for choosing job J;« following a
perturbed leader.

Require: Ranking rj =1y - >ry (' <n)of &
1: procedure PERTURBEDLEADER(.Z, Tr,)
2: £+0.1

> query T,

> likelihood factor

3 p<+%(0,1)€0,1] > uniform probability
4 O {j eZ rj= rl} > optimal job-list
5 S {j €L irj> rl} > sub-optimal job-list
6: if p<eandn' > 1 then

7: return j* € {j €S irj= rg} > any second best job
8: else

9: return j* € 0 > any optimal job
10 end if

11:

end procedure

6.1 Prediction with Expert Advice

Let us assume the expert policy ©* is known, which can
query what is the optimal choice of y; = j* at any given
time step k. Now let’s use Eq. (8) to back-propagate the re-
lationship between post-decision states and # with prefer-
ence learning via our collected feature set, denoted @OPT,
i.e., collecting the feature set corresponding to the follow-
ing optimal tasks J;« from 7* in Algorithm 1. This baseline
sampling trajectory originally introduced in [14] for adding
features to the feature set is a pure strategy where at each
dispatch an optimal task is dispatched.

By querying the expert policy, 7,, the ranking of the job-
list, .Z, satisfies Eq. (16). In this study, then it’s known that
the best rank rj o< CX , hence the optimal job-list is the fol-
lowing:

0= {Jj Dy Jrj%i;cﬁ,;?’)} an
found by solving the current partial schedule to optimality
using a MIP solver.

When |6®)| > 1, there can be several trajectories worth
exploring. However, only one is chosen at random. This is
deemed sufficient as the number of problem instances, Nyain,
is relatively large.

6.2 Follow the Perturbed Leader

By allowing a predictor to randomise it’s possible to achieve
improved performance [4,11]. This is the inspiration for our
next strategy called Follow the Perturbed Leader, denoted
OPTe. Its pseudo code is given in Algorithm 2 and de-
scribes how the expert policy (i.e. optimal trajectory) from
Section 6.1 is subtly “perturbed” with € = 10% likelihood,
by choosing a job corresponding to the second best Cryax in-
stead of an optimal one with some small probability.
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Fig. 7: Box plot for @Jl?:dm deviation from optimality, p,
using either expert policy and following perturbed leader.

6.3 Experimental study

Results for Sections 6.1 and 6.2 using the (@J'._(:;(}“ box plot
of deviation from optimality, p, is given in Fig. 7 and the
main statistics are reported in Table 4. To address Boost.2,
the extended training set was simply obtained by iterating
over more examples, namely Ng;l ext = 1000. However,
one can see that the increased number of varied features dis-
suades the preference models from achieving a good per-
formance in terms of p. It’s preferable to use the default
NS;;I =300 allowing slight perturbations of the optimal tra-
jectory, as was done for ®OFT¢, Unfortunately, all this over-
head has not managed to surpass MWR in performance, ex-
cept for ®OFTE using Bias.2 with a Ap =~ —4.24% boost in
mean performance. Otherwise, for Bias.1, there is a loss of
Ap = +6.23% in mean performance. This is likely due to
the fact that if equal probability is used for stepwise sam-
pling, then there is hardly any emphasis given to the final
dispatches as there are relatively few (compared to previous
steps) preference pairs belonging to those final stages. Re-
visiting Fig. 4, then the band for {{¥; , &x..} is quite tight
as the problem is immensely constricted and few operations
to choose from. However, the empirical evidence from using
Bias.2 shows that it is imperative to make the right decisions
at the very end.

Based on the results from [14] the expert policy is a
promising starting point. However, that was for 6 x 5 dimen-
sionality (i.e. K = 30), which is a much simpler problem
space. Notice that in Fig. 6 there was virtually no chance
for &z (k) of choosing a job resulting in optimal makespan
after step k = 28. Since job-shop is a sequential prediction
problem, all future observations are dependent on previous
operations. Therefore, learning sampled features that cor-
respond only to optimal or near-optimal schedules isn’t of
much use when the preference model has diverged too far.
Section 4.3 showed that good classification accuracy based

on &7 does not necessarily mean a low mean deviation from
optimality, p. This is due to the learner’s predictions affects
future input observations during its execution, which vio-
lates the crucial i.i.d. assumptions of the learning approach,
and ignoring this interaction leads to poor performance. In
fact, [30] proves that assuming the preference model has a
training error of &, then the total compound error (for all K
dispatches), the classifier induces itself and grows quadrat-
ically, O (SKQ), for the entire schedule, rather than having
linear loss, O (€K), as if it were i.i.d.

7 Active Imitation Learning

To amend performance from ®°FT-based models, subopti-
mal partial schedules were explored in [15] by inspecting
the features from successful SDRs, @(SPR)| by passively ob-
serving a full execution of following the task chosen by the
corresponding SDR. This required some trial-and-error as
the experiments showed that features obtained by SDR tra-
jectories were not equally useful for learning.

To automate this process, inspiration from AIL pre-
sented in [31] was sought, called Dataset Aggregation
(DAgger) method, which addresses a no-regret algorithm in
an on-line learning setting. The novel meta-algorithm for IL
learns a deterministic policy guaranteed to perform well un-
der its induced distribution of states. The method is closely
related to Follow-the-leader (cf. Section 6), only with a more
sophisticated leverage to the expert policy. In short, it en-
tails the model m; that queries an expert policy as in Sec-
tion 6.1, m,, that it’s trying to mimic, but also ensuring the
learned model updates itself in an iterative fashion, until it
converges. The benefit of this approach is that the feature-
states that are likely to occur in practice are also investigated
and as such used to dissuade the model from making poor
choices. In fact, the method queries the expert about the de-
sired action at individual post-decision states which are both
based on past queries, and the learner’s interaction with the
current environment.

DAgger has been proven successful in a variety of
benchmarks [31,32], such as the video games Super Tux
Kart and Super Mario Bros., handwriting recognition and
autonomous navigation for large unmanned aerial vehicles.
In all cases it greatly improved on traditional supervised IL
approaches.

7.1 DAgger

The policy of AIL at iteration i > 0 is a mixed strategy given
as follows:

7 = Bime + (1= Bi) Ay (18)
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Algorithm 3 Pseudo code for choosing job J;+ using imi-
tation learning (dependent on iteration ) to collect training
set P!L; either by following optimal trajectory, 7, or pref-
erence model from previous iterations, ;.

Require: i >0

Require: Ranking rj = ry =+ >ry (W' <n)of & > query T,

1: procedure ACTIVEIL(i, #;_;, 7))

2: p«%(0,1)€[0,1] > uniform probability
3: if i > 0 then (unsupervised)

4: Bi+0 > always apply imitation
5: else (fixed supervision)

6: Bi+1 > always follow expert policy (i.e. optimal)
7 end if

8 if p > B; then

9: return j* < argmaxjef{l;r’" } > best job based on ;|
10: else
11: O« {jel  ri= rl} > optimal job-list
12: return j* € 0 > any optimal job
13: end if

14: end procedure

Algorithm 4 DAgger: Dataset Aggregation for JSP

Require: 7 > 1

1: procedure DAGGER(r,, T, T)

2: @0 . @OPT > initialize dataset
3 7ty <= TRAIN(®™) 1> initial model, equivalent to Section 6.1
4 fori< 1to T do > at each imitation learning iteration
5: Let m; = Bim, + (1 — Bi) Aty > Eq. (18)
6: Sample K-step tracks using ; > cf. ACTIVEIL(, #;—y, 7,)
7 @' = {(s5,m,(s))} > visited states for 7; and actions by 7,
8 PPA - PAI-T Y @Il > aggregate datasets from Eq. (10)

9: Rip1 TRAIN(®PA) preference model from Eq. (7)
10: end for
11: return best 7; on validation > best preference model

12: end procedure

where 7, is the expert policy and #;_ is the learned model
from the previous iteration. Note, for the initial iteration, i =
0, a pure strategy of 7, is followed. Hence, 7 corresponds to
the preference model from Section 6.1 (i.e. @0 = @OPT),

Equation (18) shows that f; controls the probability dis-
tribution of querying the expert policy 7, instead of the pre-
vious imitation model, #;_;. The only requirement for {3;}°
according to [31] is that lim7_,e % Z,-T:O Bi = 0 to guarantee
finding a policy 7; that achieves € surrogate loss under its
own state distribution limit.

Algorithm 3 explains the pseudo code for how to col-
lect partial training set, @' for i-th iteration of AIL. Sub-
sequently, the resulting preference model, 7;, learns on the
aggregated datasets from all previous iterations, its update
procedure is detailed in Algorithm 4.

7.2 Results

Due to time constraints, only 7 = 3 iterations will be in-
spected here. In addition, preliminary experiments using
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Fig. 8: Box plot for 9’;%}0 deviation from optimality, p,

using DAgger for JSP

DAgger for JSP favoured a simple parameter-free version
of f; in Eq. (18). Namely, the mixed strategy for {f;}7
was unsupervised with §; = I(i = 0), where [ is the indica-
tor function.?

Regarding Boost.2 strategy, Section 6 showed that
adding new problem instances did not boost performance
for the expert policy (which is equivalent for the initial it-
eration of DAgger). Hence, for active IL, the extended set
now consists of each iteration encountering Nyyin new prob-
lem instances. This way, the extended training data is used
sparingly, as labelling for each problem instance is compu-
tationally intensive. As a result, the computational budget
for DAgger is the same regardless of whether or not new

: : DA , | pDAI
problem instances are used, i.e., |@ Y| ~ | PR

The results for @Jl(z:dm box plot of deviation from op-
timality, p, are given in Fig. 8 and the main statistics are
reported in Table 4. As can be seen, DAgger is not fruit-
ful when the same problem instances are continually used.
This is due to the fact that there is not enough variance be-
tween @™ and @-(—1) hence the aggregated feature set
®PA! is only slightly perturbed with each iteration. Sec-
tion 6.3 has showed this was not a very successful modi-
fication for the expert policy; even though it’s noted that by
introducing suboptimal feature-space the preference model
is not as drastically bad as the extended optimal policy, even
though |@PA| ~ |GFT|. However, when using new prob-
lem instances at each iteration, the feature set becomes var-
ied enough that situations arise that can be learned to achieve
a better represented classification problem which yields a
lower mean deviation from optimality, p.

3 By=1and B;=0,Vi>0.
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8 Summary of Imitation Learning

A summary of W;(::dm best PIL and AIL models in terms of
deviation from optimality, p, from Sections 6.3 and 7.2, re-
spectively, are illustrated in Fig. 9, and the main statistics are
given in Table 4. To summarise, the following trajectories
were used: i) expert policy, trained on ®°FT; ii) perturbed
leader, trained on ®°FT¢ and iii ) imitation learning, trained
on @P21 for iterations i = {1,...,3} using an extended train-
ing set. As a reference, the single priority dispatching rule
MWR is shown at the edges of Fig. 9.

At first one can see that the perturbed leader ever-so-
slightly improves the mean for p, rather than using the
baseline expert policy. However, AIL is by far the best im-
provement. With each iteration of DAgger, the models im-
prove upon the previous iteration: i) for Bias.1 with Boost.2
then i = 1 starts with increasing Ap ~ +1.39%. However,
after that first iteration there is a performance boost of
Ap =~ —15.11% after i =2 and Ap ~ —0.19% for the final
iteration i = 3, and ii) on the other hand when using Bias.2
with Boost.2, only one iteration is needed, as Ap ~ —11.68
for i = 1, and after that it stagnates with Ap ~ +0.55% for
i =2 and for i = 3 it is significantly worse than the previ-
ous iteration by Ap ~ +0.75%. In both cases, DAgger out-
performs MWR: i) after i = 3 iterations by Ap ~ —5.31%
for Bias.l with Boost.2, and ii) after i = 1 iteration by
Ap ~ —9.31% for Bias.2 with Boost.2. Note, for Bias.1
without Boost.2, DAgger is unsuccessful, and the aggre-
gated data set downgrades the performance of the previous
iterations, making it best to learn solely on the initial expert
policy for that model configuration.

Regarding Boost.2, it is not then successful for the ex-
pert policy as p increased approximately 10%. This could
most likely be counteracted by increasing /max to reflect the
700 additional examples. What is interesting, though, is that
Boost.2 is well suited for AIL, using the same /.« as before.
Note, the number of problems used for M?SIEXT is equiva-
lentto T = 2% iterations of extended DAgger. The new var-
ied data give the aggregated feature set more information
on what is important to learn in subsequent iterations, as
those new feature-states are more likely to be encountered
‘in practice.” Not only does the AIL converge faster, it also
consistently improves with each iteration.

9 Discussion and conclusions

The single priority dispatching rules remain a popular ap-
proach to scheduling, as they are simple to implement and
quite efficient. Nevertheless, when they are successful and
when they fail remains elusive. By inspecting optimal sched-
ules, and investigating the probability that an optimal dis-
patch could be chosen by chance, and by looking at the im-
pact of choosing sub-optimal dispatches, some light is shed

Passive IL

Active IL
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Fig. 9: Box plot for @;%}0 deviation from optimality, p,
using either expert policy, DAgger or following perturbed
leader strategies. MWR shown for reference.

on how SDRs vary in performance. Furthermore, the prob-
lem instance space was varied, giving an even better under-
standing of the behaviour of the SDRs. This analysis, how-
ever, also revealed that creating new dispatching rules from
data is by no means trivial.

Experiments in Section 6.3 show that following the op-
timal policy is not without its faults. There are many obsta-
cles to consider in order to improve model configurations.
When training the learning model, there is a trade-off be-
tween making the over-all best decisions (in terms of high-
est mean validation accuracy) versus making the right de-
cision on crucial time points in the scheduling process, as
Fig. 4 clearly illustrates. Moreover, before training the learn-
ing model, the preference set ¥ needs to be re-sampled to
size Imax. As the effects of making suboptimal choices varies
as a function of time, the stepwise bias should rather take
into account the disproportional amount of features during
the dispatching process. As the experimental studies in Sec-
tions 6.3, 7.2 and 8 showed, instead of equal probability (i.e.
Bias.1) it was much more fruitful to adjust the set to its num-
ber of preference and doubling the emphasis on the second
half (i.e. Bias.2). However, there are many other stepwise
sampling strategies based on our analysis that could have
been chosen instead, as here only a simplification of the
trend from Fig. 4 was chosen. This also opens up the ques-
tion of how validation accuracy should be measured, taking
into account that the model is based on learning preferences,
both based on optimal versus suboptimal, and then varying
degrees of sub-optimality. Since ranks are only looked at in
a black and white fashion, such that the makespans need to
be strictly greater to belong to a higher rank, then it can be
argued that some ranks should be grouped together if their
makespans are sufficiently close. This would simplify the
training set, making it (presumably) have fewer contradic-
tions and be more appropriate for linear learning. Or sim-
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Table 4: Main statistics for &2 }snxdlo deviation from optimality, p, using either expert policy, imitation learning or following

perturbed leader strategies.

¢ TP Bias Set  Ngain  Min.  1stQu. Median Mean 3rd Qu. Max
OPT 0 adjdbl2nd train 300 6.05 18.60 23.85 24.50 29.04 55.81
OPT 0 adjdbl2nd test 300 5.56 19.16 2424  25.19 3042 5552
OPT 0 equal train 300 7.87 23.34 29.30  30.73 36.47 6145
OPT 0 equal test 300 8.31 23.88 3032 3146 3770 67.24
DAl 1 adjdbl2nd  train 600  2.08 9.44 1230  12.82 15.67 29.63
DAl 1 adjdbl2nd test 300  0.00 9.22 1239 1273 1585 3517
DAI 1 equal  train 600  9.47 24.92 31.51 3212 37.96  66.29
DAL 1 equal test 300 4.77 23.77 30.34 3140 37.81 7373
DA2 2 adjdbl2nd  train 900  0.93 10.01 1291  13.37 16.40 31.19
DA2 2  adjdbl2nd test 300 0.39 9.84 13.13  13.44 16.62  34.57
DA2 2 equal train 900  2.36 12.82 16.65 17.01 21.06  39.25
DA2 2 equal test 300 1.72 12.57 1638 16.89 20.66 42.44
DA3 3 adjdbl2nd train 1200  0.93 10.45 1371  14.12 17.15 3291
DA3 3  adjdbl2nd test 300 0.87 10.44 13.64 14.08 1723 3441
DA3 3 equal train 1200  0.98 12.50 16.28  16.82 20.67 37.93
DA3 3 equal test 300 0.26 12.32 16.01  16.52 20.22  41.62
OPTe 0 adjdbl2nd train 300 4.64 13.63 17.56  18.07 21.66  36.25
OPTe 0  adjdbl2nd test 300 191 13.18 16.48  16.89 20.28  35.60
OPTe 0 equal  train 300 4.52 21.31 27.63  28.04 33.69 63.74
OPTe 0 equal test 300 8.54 22.03 2726 2794 33.02  60.38

¢ For DAgger, then T = 0 is conventional expert policy (i.e. DAO = OPT).
b If T = 0 then passive imitation learning. Otherwise, for T > 0 it is considered active imitation learning.

ply the validation accuracy could be weighted in terms of
the difference in makespan. During the dispatching process,
there are some significant time points which need to be espe-
cially taken care of. Figure 4 shows how making suboptimal
decisions is especially critical during the later stages for job-
shop, whereas for flow-shop the earlier stages of dispatches
are more critical.

Despite the information gathered by following an opti-
mal trajectory, the knowledge obtained is not enough by it-
self. Since the learning model isn’t perfect, it is bound to
make a suboptimal dispatch eventually. When it does, the
model is in uncharted territory as there is no certainty the
samples already collected are able to explain the current sit-
uation. For this we propose investigating partial schedules
from suboptimal trajectories as well, since future observa-
tions depend on previous predictions. A straight forward
approach would be to inspect the trajectories of promising
SDRs or CDRs. However, more information is gained when
applying AIL inspired by the work of [30,31], such that
the learned policy following an optimal trajectory is used
to collect training data, and the learned model is iteratively
updated. This can be done over several iterations, with the
benefit being that the scheduling features that are likely to
occur in practice are investigated and as such used to dis-
suade the model from making poor choices in the future.

The main drawback of DAgger is that it quite aggres-
sively queries the expert, making it impractical for some
problems, especially if it involves human experts. A way to

confront that, [18,17] propose frameworks to minimise the
expert’s labelling effort. Or even circumvent the expert pol-
icy altogether by using a ‘poorer’ reference policy instead
(i.e. m, in Eq. (18) is suboptimal) [5].

This study has been structured around the job-shop
scheduling problem. However, it can be easily extended to
other types of deterministic optimisation problems that in-
volve sequential decision making. The framework presented
here collects snapshots of the partial schedules by following
an optimal trajectory, and verifying the resulting optimal so-
lution from each possible state. From which the stepwise op-
timality of individual features can be inspected and its infer-
ence could for instance justify omission in feature selection.
Moreover, by looking at the best and worst case scenarios of
suboptimal dispatches, it is possible to pinpoint vulnerable
times in the scheduling process.

References

1. Andresen, M., Engelhardt, F., Werner, F.: LiSA - A Library of
Scheduling Algorithms (version 3.0) [software] (2010). URL
http://www.math.ovgu.de/Lisa.html

2. Burke, E., Petrovic, S., Qu, R.: Case-based heuristic selection for
timetabling problems. Journal of Scheduling 9, 115-132 (2006)

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G.,
Ozcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the
art. Journal of the Operational Research Society 64(12), 1695—
1724 (2013)

4. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games,
chap. 4. Cambridge University Press (2006)

239




Discovering dispatching rules from data using imitation learning

15

5.

20.

21.

22.

23.

24.

25.

26.

27.

Chang, K., Krishnamurthy, A., Agarwal, A., III, H.D., Langford,
J.: Learning to search better than your teacher. In: Proceedings
of The 32nd International Conference on Machine Learning, pp.
2058-2066 (2015)

. Chen, T., Rajendran, C., Wu, C.W.: Advanced dispatching rules

for large-scale manufacturing systems. The International Journal
of Advanced Manufacturing Technology (2013)

. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, CJ.: LI-

BLINEAR: A library for large linear classification. Journal of

Machine Learning Research 9, 1871-1874 (2008)

. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop

and jobshop scheduling. Mathematics of Operations Research
1(2), 117-129 (1976)

. Gomes, C.P.,, Selman, B.: Algorithm portfolios. Artificial Intelli-

gence 126(1-2), 43-62 (2001)

. Gurobi Optimization, Inc.: Gurobi optimization (version 6.0.0)

[software] (2014). URL http://www.gurobi.com/

. Hannan, J.: Approximation to bayes risk in repeated play. Contri-

butions to the Theory of Games 3, 97-139 (1957)

. Haupt, R.: A survey of priority rule-based scheduling. OR Spec-

trum 11, 3-16 (1989)

. Ingimundardottir, H., Runarsson, T.: Evolutionary learning of

weighted linear composite dispatching rules for scheduling. In: In-
ternational Conference on Evolutionary Computation Theory and
Applications. SCITEPRESS (2014)

. Ingimundardottir, H., Runarsson, T.P.: Supervised learning linear

priority dispatch rules for job-shop scheduling. In: Learning and
Intelligent Optimization, Lecture Notes in Computer Science, vol.
6683, pp. 263-277. Springer (2011)

. Ingimundardottir, H., Runarsson, T.P.: Generating training data for

learning linear composite dispatching rules for scheduling. In:
Learning and Intelligent Optimization, Lecture Notes in Computer
Science, vol. 8994, pp. 236-248. Springer (2015)

. Jayamohan, M., Rajendran, C.: Development and analysis of cost-

based dispatching rules for job shop scheduling. European Journal
of Operational Research 157(2), 307-321 (2004)

. Judah, K., Fern, A., Dietterich, T.G.: Active imitation learning via

reduction to L.LD. active learning. CoRR abs/1210.4876 (2012)

. Kim, B., Pineau, J.: Maximum mean discrepancy imitation learn-

ing. In: Robotics: Science and Systems (2013)

. Korytkowski, P., Rymaszewski, S., Wisniewski, T.: Ant colony op-

timization for job shop scheduling using multi-attribute dispatch-
ing rules. The International Journal of Advanced Manufacturing
Technology (2013)

Li, X., Olafsson, S.: Discovering dispatching rules using data min-
ing. Journal of Scheduling 8, 515-527 (2005)

Lu, M.S., Romanowski, R.: Multicontextual dispatching rules for
job shops with dynamic job arrival. The International Journal of
Advanced Manufacturing Technology (2013)

Malik, A.M., Russell, T., Chase, M., Beek, P.: Learning heuristics
for basic block instruction scheduling. Journal of Heuristics 14(6),
549-569 (2008)

Meeran, S., Morshed, M.: A hybrid genetic tabu search algorithm
for solving job shop scheduling problems: a case study. Journal of
intelligent manufacturing 23(4), 1063-1078 (2012)

Monch, L., Fowler, J.W., Mason, S.J.: Production Planning and
Control for Semiconductor Wafer Fabrication Facilities, Oper-
ations Research/Computer Science Interfaces Series, vol. 52,
chap. 4. Springer (2013)

Olafsson, S., Li, X.: Learning effective new single machine dis-
patching rules from optimal scheduling data. International Journal
of Production Economics 128(1), 118-126 (2010)

Panwalkar, S.S., Iskander, W.: A survey of scheduling rules. Op-
erations Research 25(1), 45-61 (1977)

Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-
Reiter, B.: Evolutionary generation of dispatching rule sets for
complex dynamic scheduling problems. International Journal of
Production Economics 145(1), 67-77 (2013)

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

240

Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3
edn. Springer (2008)

Rice, J.R.: The algorithm selection problem. Advances in Com-
puters 15, 65-118 (1976)

Ross, S., Bagnell, D.: Efficient reductions for imitation learning.
In: Proceedings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, vol. 9, pp. 661-668 (2010)
Ross, S., Gordon, G.J., Bagnell, D.: A reduction of imitation learn-
ing and structured prediction to no-regret online learning. In: Pro-
ceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, vol. 15, pp. 627-635. Journal of Ma-
chine Learning Research - Workshop and Conference Proceedings
(2011)

Ross, S., Melik-Barkhudarov, N., Shankar, K., Wendel, A., Dey,
D., Bagnell, J., Hebert, M.: Learning monocular reactive uav con-
trol in cluttered natural environments. In: Robotics and Automa-
tion, 2013 IEEE Intl. Conference on, pp. 1765-1772 (2013)
Runarsson, T.: Ordinal regression in evolutionary computation. In:
Parallel Problem Solving from Nature - PPSN IX, Lecture Notes
in Computer Science, vol. 4193, pp. 1048-1057. Springer (2006)
Runarsson, T.P., Schoenauer, M., Sebag, M.: Pilot, rollout and
monte carlo tree search methods for job shop scheduling. In:
Learning and Intelligent Optimization, Lecture Notes in Computer
Science, pp. 160-174. Springer (2012)

Russell, T., Malik, A.M., Chase, M., van Beek, P.: Learning heur-
istics for the superblock instruction scheduling problem. IEEE
Trans. on Knowl. and Data Eng. 21(10), 1489-1502 (2009)
Stafford, E.F.: On the Development of a Mixed-Integer Linear Pro-
gramming Model for the Flowshop Sequencing Problem. Journal
of the Operational Research Society 39(12), 11631174 (1988)
Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla-07: The
design and analysis of an algorithm portfolio for SAT. Principles
and Practice of Constraint Programming (2007)

Yu, .M., Doh, H.H., Kim, J.S., Kwon, Y.J., Lee, D.H., Nam, S.H.:
Input sequencing and scheduling for a reconfigurable manufactur-
ing system with a limited number of fixtures. The International
Journal of Advanced Manufacturing Technology (2013)



HIS THESIS WAS TYPESET using BIEX,
Toriginally developed by Leslie Lamport
and based on Donald Knuth’s TEX. The body
text is set in 11 point Arno Pro, designed by
Robert Slimbach in the style of book types
from the Aldine Press in Venice, and issued by
Adobe in 2007. A template, which can be used
to format a Ph.D. thesis with this look and feel,
has been released under the permissive creative
commons share-alike license, and can be found
on-line at github.com/tungufoss/hi-thesis.cls
or from the author at hei2 @hi.is.

Moreover, the epigraphs are from Alice’s
Adventures in Wonderland (1865) and Through
the Looking-Glass, and What Alice Found There
(1871) by Lewis Carroll.


https://github.com/tungufoss/hi-thesis.cls
mailto:hei2@hi.is

	Listing of figures
	Listing of tables
	Listing of algorithms
	Listing of publications
	Nomenclature
	I Prologue
	Introduction
	Rice's framework for algorithm selection
	Previous work
	Contributions
	Supplementary material
	Outline

	Job-shop Scheduling Problem
	Mathematical formulation
	Construction heuristics
	Example
	Single priority based dispatching rules
	Features for job-shop
	Composite dispatching rules
	Rice's framework for job-shop

	Problem generators
	Job-shop
	Flow-shop
	Benchmark problem suite

	Problem difficulty
	Distribution difficulty
	Defining easy versus hard schedules
	Consistency of problem instances
	Conclusion

	Evolutionary Search
	Experimental setting
	Performance measures
	Experimental study
	Conclusions

	Generating Training Data
	Job-shop tree representation
	Labelling schedules w.r.t. optimal decisions
	Computational growth
	Trajectory sampling strategies

	Analysing Solutions
	Making optimal decisions
	Making suboptimal decisions
	Optimality of extremal features
	Simple blended dispatching rule
	Feature evolution
	Emergence of problem difficulty
	Conclusions

	Preference Learning
	Ordinal regression for job-shop
	Selecting preference pairs
	Scalability of dispatching rules
	Ranking strategies
	Trajectory strategies
	Stepwise sampling bias
	Conclusions

	Feature Selection
	Validation accuracy
	Pareto front
	Inspecting weight contribution to end-result
	Evolution of validation accuracy
	Comparison to other approaches
	Conclusions

	Imitation Learning
	Passive imitation learning
	Prediction with expert advice
	Follow the perturbed leader
	Experimental study

	Active imitation learning
	DAgger parameters
	Experimental study

	Summary of imitation learning experimental studies
	Conclusions

	Pilot Model
	Single feature roll-outs
	Multi feature roll-outs
	Conclusions

	OR-Library Comparison
	Experimental study
	Conclusions

	Conclusions
	Executive summary
	Future work

	References
	Ordinal Regression
	Preference set
	Ordinal Regression
	Logistic Regression
	Non-Linear Preference
	Parameter setting and tuning
	Scaling
	Implementation


	II Papers
	Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling
	Sampling Strategies in Ordinal Regression for Surrogate Assisted Evolutionary Optimization
	Determining the Characteristic of Difficult Job Shop Scheduling Instances for a Heuristic Solution Method
	Evolutionary Learning of Linear Composite Dispatching Rules for Scheduling
	Generating Training Data for Learning Linear Composite Dispatching Rules for Scheduling
	Discovering Dispatching Rules From Data Using Imitation Learning


