
T-404-LOKA Lokaverkefni

Marel
Cloud Analytics

Final Report

Students:
Gísli Rafn Guðmundsson
Gunnar Páll Gunnarsson
Jón Reginbald Ívarsson

Teacher:
Hallgrímur Arnalds

Instructor:
Elín Elísabet Torfadóttir

Examiner:
Haukur Kristinsson

May 13, 2016

Contents

1 Preface 4
1.1 About this Document . 4
1.2 Marel and Innova . 4
1.3 Terms and Definitions . 4

2 Cloud Analytics 6
2.1 Introduction . 6
2.2 Motivation . 6

3 System Design Progression 7
3.1 Initial System Design . 7

3.1.1 Reasons for Redesign . 7
3.2 System Design 2 . 7

3.2.1 Reasons for Redesign . 8
3.3 System Design 3 . 8

3.3.1 Reasons for Redesign . 9
3.4 System Design 4 . 9

3.4.1 Reasons for Redesign . 9

4 Final System Design 10
4.1 Microsoft Azure . 10
4.2 IoT Hub . 10
4.3 Stream Analytics . 11
4.4 Azure SQL Database . 11
4.5 Cloud Analytics Website . 11

5 Development 13
5.1 Development Environment . 13
5.2 Centralized Version Control System . 13
5.3 Continuous Integration . 14
5.4 Continuous Deployment . 15
5.5 Automation Scripts . 15
5.6 Innova Azure Communications . 15
5.7 Testing . 16

5.7.1 Front-end Unit Tests . 16
5.7.2 Back-end Unit Tests . 16
5.7.3 End-to-end Tests . 16

6 User Interface 18

7 Work Arrangements 19
7.1 Scrum Methodology . 19
7.2 Roles & Responsibilities . 19

7.2.1 Product Owner . 19
7.2.2 Scrum Master . 19
7.2.3 Development Team . 20

7.3 Facilities . 20

1

8 Risks 21
8.1 Internal Risks . 21
8.2 External Risks . 21

9 Progress 23
9.1 Total Progress Overview . 23
9.2 Time Registration . 23

10 Sprint Overview 25
10.1 Themes For Each Sprint . 25
10.2 Sprint 0 . 25

10.2.1 Sprint Planning Notes . 26
10.2.2 Sprint Retrospective Notes . 26

10.3 Sprint 1 . 26
10.3.1 Sprint Retrospective Notes . 27
10.3.2 What Went Well . 28
10.3.3 What Could Have Gone Better . 28

10.4 Sprint 2 . 28
10.4.1 Sprint Retrospective Notes . 28
10.4.2 What Went Well . 29
10.4.3 What Could Have Gone Better . 30

10.5 Sprint 3 . 30
10.5.1 Sprint Retrospective Notes . 30
10.5.2 What Went Well . 30
10.5.3 What Could Have Gone Better . 31

10.6 Sprint 4 . 32
10.6.1 Sprint Retrospective Notes . 32
10.6.2 What Went Well . 32
10.6.3 What Could Have Gone Better . 32

10.7 Sprint 5 . 33
10.7.1 Sprint Retrospective Notes . 33
10.7.2 What Went Well . 33
10.7.3 What Could Have Gone Better . 33

10.8 Sprint 6 . 34
10.8.1 Sprint Retrospective Notes . 34
10.8.2 What Went Well . 34
10.8.3 What Could Have Gone Better . 35

10.9 Sprint 7 . 35
10.9.1 Sprint Retrospective Notes . 36
10.9.2 What Went Well . 36
10.9.3 What Could Have Gone Better . 36

10.10Final Sprint . 37
10.10.1What Went Well . 37

11 Conclusion 39
11.1 Challenges . 39
11.2 Future . 39
11.3 Review from Product Owner . 40

Appendix A: Automation Scripts 41

2

Appendix B: Code Coverage 45

Appendix C: Wireframes 48

3

1 Preface

This document describes the system design, implementation and development process
of the final project Cloud Analytics, at Reykjavík Univeristy. The project was done in
cooperation with the Innova team at Marel.

1.1 About this Document

The document outlines the process and design of the system, describing each component
used and the reason for it being chosen. It describes the data that is taken into the
system, generated by Innova systems, as well as how that data is further relayed into
other subsystems.

The development environment, version control, continuous integration, continuous
deployment and testing are thoroughly described to give insight into the development
process.

The document provides user interface wireframes as well as other front-end designs
and reports that governs the way the data is effectively represented. Risk analysis, a
progress report and a short description of what work was done during each sprint is also
included. The document is concluded on a post-mortem.

1.2 Marel and Innova

Marel is the leading global provider of advanced processing systems and services to the
Poultry, Meat and Fish industries. It was founded on March 17, 1983 and is head-
quartered in Garðabær, Iceland. Marel is comprised of approximately 4,600 employees
worldwide, offices and subsidiaries in 30 countries across six continents, and a network
of more than 100 agents and distributors.1

Innova is a product development department within Marel that provides software
solutions for Marel’s food processing systems. Innova Food Processing Software range
from simple device control solutions, to total processing solutions adapted to the indi-
vidual needs of food processors. Based on modular designs, the solutions are scalable,
thereby providing maximum flexibility for food processors, ranging from small operations
to large, plant-wide systems.2

1.3 Terms and Definitions

• AngularJS
A JavaScript based MVW (model-view-whatever) framework by Google, great for
creating front-end or full-stack web applications.

• Azure - Microsoft Azure
A cloud platform with relatively easy setup of services.

• Critical Site - Critical Innova Site
A critical site is an Innova system which is sending critical error logs.

• IoT Hub - Microsoft Internet of Things Hub
A Microsoft service for transferring data to and from the cloud.

1http://marel.com/corporate/about-marel/marel-at-a-glance
2http://marel.com/innova

4

http://marel.com/corporate/about-marel/marel-at-a-glance
http://marel.com/innova

• Power BI - Microsoft interactive data visualization BI tools
Microsoft’s tool for representing data interactively through beautiful charts.

• Site - Innova Site
A site is an Innova food processing system of any type.

• Spark - Apache Spark for Azure HDInsight
A processing framework that runs large-scale data analytics applications.

• SQL - Microsoft Azure SQL Database
Data-storage service based on SQL Server database technology.

• Stream Analytics - Azure Stream Analytics
Real-time stream processing in the Azure cloud.

• TFS - Microsoft Team Foundation Server
A service for version control, continuous integration and deployment, project man-
agement tools and more.

5

2 Cloud Analytics

The Cloud Analytics system is comprised of various different services that cooperate
to analyze and visualize logs generated by Innova systems worldwide. These logs are
processed by the system to give a better understanding of how the Innova production
management software is behaving, and how Marel could improve performance and secu-
rity with minimal downtime for its customers.

2.1 Introduction

The scope of the design is to create a system for processing and visualizing logs generated
by Innova systems. Three different kinds of logs are processed; base logs, system program
logs and device logs. These logs contain different sets of information, which is processed
by the system. As a requirement the Cloud Analytics system was to be implemented on
theMicrosoft Azure platform. The system design is based on service-oriented architecture
in which system components provide services to other components, each component of
the system is independent and decoupled from the rest.

A combination of IoT Hub, Stream Analytics, SQL Server and other technologies
were used to build the system as well as good software engineering practices, such as
continuous integration, continuous deployment and extensive testing.

2.2 Motivation

The motivation behind the project is to give Innova Customer Service, a clear picture of
when and where errors appear in Innova systems around the world. This allows them to
respond quickly to errors, but also see if there are patterns emerging. For instance, if all
sites in a specific country start sending errors, while others remain the same, it can be
assumed that the problem is on a larger scale than if a single site is sending errors.

At present, problems with Innova systems require customers to contact and com-
municate over the phone. Customer service employees can then respond accordingly to
the problem whether it is remotely connecting to the troubled system or instructing the
customer on how to fix the problem.

The new system allows customer services to monitor Innova systems, get notified of
emerging problems and possibly fix them before the client has to contact them. This
may allow for many problems to be solved near instantly.

6

3 System Design Progression

This section contains an overview of previous designs for the system and the reasons for
the system being redesigned. The system design changed tremendously since work first
began. Each iteration of the system was thoroughly researched, in order to ensure the
best possible solution for the project.

3.1 Initial System Design

The initial system design relied on the ELK stack, which consists of Elasticsearch,
Logstash and Kibana - all developed and maintained by the Elastic team. A Logstash
shipper was connected to each Innova system and responsible for sending logs to the
cloud. A Logstash indexer received the logs, processed them and sent the results to Elas-
ticsearch. Elasticsearch was then used to store the data in an easily searchable manner
enabling Kibana to visualize the data fast and reliably. An SQL database was connected
to the ELK stack to reliably store the data, and as a backup in case the Elasticsearch
database had to be rebuilt or vice versa.

The ELK stack was originally chosen due to Elasticsearch’s reputation for being both
fast and flexible and because of Kibana’s engaging visual representation of data.

Figure 1: Initial System Diagram

3.1.1 Reasons for Redesign

The main reason for abandoning the ELK stack was lack of support in the Azure envi-
ronment, as well as encouragement from the Innova team to research Microsoft services
available in Azure.

3.2 System Design 2

For the second iteration of the system design, IoT Hub was selected as the best solution for
connecting Innova systems to the cloud. IoT Hub offers secure two-way communications
which, if needed, could be used to send a message back to a troublesome system. For
instance, after a fatal error, a system could be automatically restarted. This functionality
is, however, way beyond the scope of this project, and would require careful planning
and execution.

HDInsight was researched as a possible better solution for processing and storing data,
compared to the previous solution. Azure HDInsight is an Apache Hadoop distribution
powered by the cloud. This means that it handles any amount of data, scaling from
terabytes to petabytes on demand. HDInsight includes services like Spark, R, HBase and
Storm as a full suite of tools.3

3https://azure.microsoft.com/en-us/services/hdinsight/

7

https://azure.microsoft.com/en-us/services/hdinsight/

Microsoft’s Power BI was chosen for the visualization of the data as it is a powerful
feature-rich data manipulation and report authoring tool.

SQL database stayed unchanged from the previous design and would be used for
permanent storage.

Figure 2: 2nd System Diagram

3.2.1 Reasons for Redesign

Through our research we learned that Spark, one of the tools provided by HDInsight
offered faster in-memory data processing, ease of use and has a growing community sup-
port. Additionally, connecting Spark directly to Power BI was made trivial by Microsoft
when they added Spark as a data connection option in Power BI.

3.3 System Design 3

The inclusion of Spark was the only change in the third system design. Spark would keep
most of the data in memory for incredibly fast data processing and retrieval. Power BI
would then be directly connected to Spark for visualization of the processed data.

Figure 3: 3rd System Diagram

8

3.3.1 Reasons for Redesign

Excessive cost of maintaining the system was the main culprit for redesigning the sys-
tem. Both HDInsight and Spark are big data systems, meant to handle processing and
aggregating massive amounts of data (terabytes/petabytes) in a short period of time.
The system required expensive resources to be used and caused us to take down and
provision the system daily.

3.4 System Design 4

The service that set us on the right track, was Stream Analytics. It is lightweight, cost
effective and easier to use service than HDInsight/Spark. Instead of creating complicated
processing jobs to work with the data, Stream Analytics is essentially a pipe that streams
data in real time from IoT Hub into a SQL database. A streaming job is created using
SQL-like language to map the data correctly into the database.

In order to manage registered devices in the system, a web application would be
created (see Innova Registry in Figure 4). It would contain basic forms to register, edit
or delete a site from the system.

Figure 4: 4th System Diagram

3.4.1 Reasons for Redesign

This version of the system is the one most similar to the final version. Difficulties
connecting Power BI to the system in real time and user manipulation of the visualization
UI was deemed unnecessary and hence motivated us to redesign the system.

A decision was made to replace Power BI with a full scale web application, that would
contain the data visualization and site registry. This means that developers would need
to add new visualizations for customer services but more advanced features could also
be added.

9

4 Final System Design

This section contains an overview of the final system design, and describes the platforms
and services used in the system’s implementation.

Figure 5: System Diagram

4.1 Microsoft Azure

Microsoft Azure is a cloud computing platform and infrastructure. It is used for building,
deploying and managing applications and services through Microsoft hosted data centers.
It provides PaaS (Platform as a Service) and IaaS (Infrastructure as a Service) services,
and supports numerous programming languages and tools.4

The Cloud Analytics system runs on Microsoft’s Azure platform and makes use of the
services available on it. This specific platform was set as a requirement by the product
owner when work began on the project.

4.2 IoT Hub

IoT Hub is an event processing service available in the Microsoft Azure cloud. It en-
ables event and telemetry influx to the cloud at immense scale, with high reliability
and low latency. The IoT Hub enables both device-to-cloud and cloud-to-device messag-
ing, and supports device protocols like AMQP (Advanced Message Queuing Protocol),
MQTT (Message Queuing Telemetry Transport) and HTTP/1. It is optimized to support
millions of simultaneously connected devices and offers security features like per-device
identity and revocable access control.5

4https://azure.microsoft.com/en-gb/overview/what-is-azure/
5https://azure.microsoft.com/en-us/services/iot-hub/

10

https://azure.microsoft.com/en-gb/overview/what-is-azure/
https://azure.microsoft.com/en-us/services/iot-hub/

Each individual Innova system is connected directly to the IoT Hub service using a
specially designed communication class. Logs generated by an Innova system is sent to
the cloud where IoT Hub adds them to its queue for other services to request.

4.3 Stream Analytics

Azure Stream Analytics is a real-time event processing engine available in the Microsoft
Azure cloud. It is able to perform real-time analytics for Internet of Things (IoT) so-
lutions and capable of streaming millions of events per second coming from connected
devices or log files, with throughput of up to 1 GB/s. Stream Analytics supports a sim-
ple, declarative, SQL-like query model for describing data transformation and therefore
makes it easy to set up real-time analytic computations on data streaming for various
devices, applications, sensors, and more. Results from the stream can be written to
Azure Storage Blobs or Tables, Azure SQL DB, Power BI, and more. It also provides
the ability to specify and use reference data, and helps prevent data loss with the ability
to maintain state. 6

Azure Stream Analytics service takes care of processing incoming logs from IoT Hub
and storing the processed data in the correct database tables.

4.4 Azure SQL Database

Azure SQL Database is a cloud-based service from Microsoft offering data storage capa-
bilities as a part of the Azure Services Platform. It is based on the market-leading Mi-
crosoft SQL Server engine. Azure SQL Database allows users to make relational queries
against stored data and delivers predictable performance. Additionally, the service offers
scalability with no downtime, business continuity and data protection. 7

Azure SQL Database stores all processed data from the Stream Analytics services as
well as data related to registered Innova sites.

4.5 Cloud Analytics Website

The Cloud Analytics Website is built using the AngularJS framework by Google. The
website uses a restful API server built with ASP.NET Web API libraries. It is comprised
of a Innova site registry, the main analytics screens and finally, a screen containing all
log data for a requested Innova site.

The registry allows users to register new Innova sites, edit existing sites and remove
sites from the system in a secure and reliable manner. When a new Innova site is
registered or an existing one is edited, the user needs to supply basic information about
the system, such as the name of the site and what version of the Innova system is in use.
They can also set the exact location of the site using the provided map or click the Get
Location button if they are located at the site. When registering a site to the system a
connection key is generated which is required to establish communications between the
two. The key for the desired site can be retrieved by clicking the Show Key button.

The analytics screens show where errors are occurring in the world at different zoom
levels. The overview (front) page summarizes critical sites into six main regions of the
world represented with colored circles. A region can be clicked to reach its sub-regions.
A sub-region can then be clicked to see what countries have sites that are producing
errors. Finally, if a country is selected, all critical sites (sites with errors) are displayed

6https://azure.microsoft.com/en-us/services/stream-analytics/
7https://azure.microsoft.com/en-us/services/sql-database/

11

https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/sql-database/

for that country. Each site is displayed on a map as a circle and the size indicates how
many critical errors have occurred in the last 24 hours. Each screen features a timeline
that can be used to filter the data into smaller time segments.

If a site is selected, the user gets a list of all logs for that site - errors or otherwise.
The logs can be filtered and ordered to only see what is relevant for the user. Each log
can be clicked to get further info about that particular log, such as type or what object
caused the error to be logged.

12

5 Development

The following sections describe the project’s development environment, source control,
continuous integration, continuous deployment, automation scripts as well as testing
practices.

5.1 Development Environment

The solution consists of PowerShell scripts, .NET projects and AngularJS projects. Mi-
crosoft Visual Studio is mainly used for developing .NET code and should be exclusively
used for any code organization purposes. All files intended for source control should be
added to the Visual Studio solution.

Other editors can be used for the development of front-end code or PowerShell scripts,
such as Atom or Sublime and PowerShell ISE for PowerShell Scripts. Source Code is kept
in a private repository on Visual Studio Team Services. For more details see the attached
Development Manual.

5.2 Centralized Version Control System

Version control systems help development teams to manage changes that happen within
directories or files over time. Because every modification is tracked automatically by
the system, developers are able to revert to or check out earlier versions to fix mistakes,
minimizing disruption to all team members. Centralized Version Control System (CVCS)
works in a client and server relationship. A single server that contains all the files,
changesets, users, and information, provides access to the latest version. Every code
change must be sent and received from this central server, enabling collaboration between
developers.

For this project CVCS was integrated using the Microsoft’s Visual Studio Team Ser-
vices (VSTS) platform and Team Foundation Version Control (TFVC) software.

Figure 6: Centralized Version Control System8

8http://www.ibm.com/developerworks/library/d-app-centric-ops/

13

http://www.ibm.com/developerworks/library/d-app-centric-ops/

5.3 Continuous Integration

Continuous Integration (CI) is a development practice that requires software developers
to integrate code changes early and often into a shared repository. A build server runs
automated unit tests written through the practice of test-driven development to verify
the changes. It then reports the results back to the team, allowing them to detect and
prevent integration problems. This practice aims to reduce rework and thus reduce cost
and time.

Figure 7: Continuous Integration Cycle9

For this project CI was implemented using Microsoft’s Visual Studio Team Services
platform and an on-premises build server. Code changes are checked into VSTS and the
build server runs all tests, sending reports to the team in case of a build failure.

Figure 8: Build Chart

9https://kaizentesting.wordpress.com/2012/08/19/agile-test-automation-is-incomplete-
without-continuous-integration/

14

https://kaizentesting.wordpress.com/2012/08/19/agile-test-automation-is-incomplete-without-continuous-integration/
https://kaizentesting.wordpress.com/2012/08/19/agile-test-automation-is-incomplete-without-continuous-integration/

5.4 Continuous Deployment

Continuous Delivery is an extension of Continuous Integration. It is a discipline where
every changes to the software can be released to production at any time. It aims at
building, testing, and releasing software faster and more frequently in a repeatable de-
ployment process. Continuous Delivery makes it possible to continuously adapt software
in line with user feedback, shifts in the market and changes to business strategy. Con-
tinuous Deployment is the next step of Continuous Delivery. Every change that passes
the automated tests is deployed to production automatically.

In this project Continuous Deployment is implemented using Microsoft’s Visual Stu-
dio Team Services platform and an on-premises build server. After a successfully testing
and building the software, the on-premises build server packages the software and deploys
it to the Azure cloud.

Figure 9: Continuous Delivery / Deployment10

5.5 Automation Scripts

In order to provision the system as a whole, the team developed a set of automation
scripts. The scripts created are used to provision all services used by the system, deploy
the user software and tear the whole system down. These scripts are explained in detail in
Appendix A. How to use these scripts to assemble an instance of the system is described
in the attached Administration Manual.

5.6 Innova Azure Communications

A simple class, named CloudLogger, was written for the secure and reliable communica-
tions between Innova systems and the Azure Cloud. Its main purpose is to streamline
the integration of this functionality into the existing Innova code base. The CloudLogger
class uses the Microsoft recommended AMQP protocol and Azure SDK libraries for the
communications. The class follows a few steps when sending a log to the cloud. When
a new log is created, it is sent to the class which extracts its content, adds additional
properties and then serializes everything into a JSON object. Once this is completed,
the log is sent asynchronously to the cloud.

10https://notafactoryanymore.com/tag/continuous-deployment/

15

https://notafactoryanymore.com/tag/continuous-deployment/

When an Innova system has been updated with the CloudLogger update, it is im-
portant to configure the system properly to start sending logs to the cloud. The first
step is to add the new system to the Innova registry, which is found in the Cloud An-
alytics website. A primary key will then be generated for the system which is used by
the CloudLogger class to initiate a secure communication line with the IoT Hub. The
primary key is added to the Innova system through the configuration screen.

5.7 Testing

Software testing is an important part of software development. It provides information
to the development team about the quality and risk of failure for the software. Software
testing evaluates whether the software meets the predetermined requirements by execut-
ing software component or system component. Testing is often automated but can also
be done manually.

Unit testing is a software testing method where the smallest individual units of an
application are tested. Units are commonly individual functions or procedures, but can
also be an entire interface such as a class.

End-to-end testing is a software testing method that is meant to test a system, from
its entry point all the way to being displayed on screen (or received by some other end-
point). It tests whether the flow of the system, from start to finish, performs as expected.
The purpose of carrying out end-to-end tests is to identify system dependencies and to
ensure that the right information is passed between various system components.

5.7.1 Front-end Unit Tests

Karma and Jasmine are used in combination to design and run unit tests for the front-
end of the web application.

Karma is a JavaScript test runner that starts a web server to execute source code
against tests for each connected browser. Karma watches for changes in files, and signals
the test server to run when changes have been detected. Karma is highly configurable.
It is able to generate code coverage reports and it is test framework agnostic.

Jasmine is an open source test framework for JavaScript code. It enables developers
to write clean and understandable tests. These tests run automatically on the build
server as well as on developers’ local machine to ensure code quality.

Code coverage for the front-end unit tests can be found in Appendix B.

5.7.2 Back-end Unit Tests

Visual Studio’s test runner is used in combination with Microsoft’s Unit Testing Frame-
work to unit test the back-end code of the web application as well as the CloudLogger
class. These tests run automatically on the build server to ensure code quality and are
manually started by developers.

Code coverage for the back-end unit tests can also be found in Appendix B.

5.7.3 End-to-end Tests

A Node.js console application was created to end-to-end test the system. The application
starts by registering a test site with the system. It then generates a log, sends it to the
system and verifies that the log is able to travel through the entire system. Developers
should run this application after creating a new Cloud Analytics system to ensure that
all services are able to communicate and that they work as intended.

16

Figure 10: End-to-end Test

17

6 User Interface

A number of different user interface experiments were conducted to study the best way of
representing the data in a clear way, while still remaining easy and intuitive to navigate.
The original idea called for a map with a dot or a circle representing every single site in
the system, scaled in relation to the amount of error logs it contained. After a meeting
with the product owner the conclusion was made that such a representation would be
virtually unusable due to clutter. Instead a dot should represent a region, sub-region or
country at different zoom levels respectively. Not until reaching a screen that represents
a country can the user see individual sites.

Due to limitations with the current map component, zooming in by using the scroll
wheel of a mouse was not possible. Other features were also saved for later, such as
writing the amount of sites with errors as a number inside the circles. We will continue
to expand on the design after handing in the project to Reykjavík University.

For more detailed instructions on how the user interface works and how to use it, see
the attached User Manual. Screenshot of the opening page of the web application can
be seen in Figure 11.

Wireframes describing the initial designs for the interface can be found in Appendix C.

Figure 11: Screenshot of the Overview Screen

18

7 Work Arrangements

This section discusses the work arrangements for the project. This includes what sort of
organizational methodologies were adopted, what roles team members and other persons
involved in the project took on, facilities, etc.

7.1 Scrum Methodology

Software development at Marel is focused around Scrum and Kanban methodology. Each
team implements variations of it that suits the current project and the team’s capabilities.
Keeping with Marel’s best practices, on this project, we implemented Scrum software
development mixed with Kanban.

The Scrum methodology is an Agile software development framework for managing
iterative and incremental product development. The product is built in a series of fixed-
length iterations called sprints, typically one week or two weeks long. The state of the
product is kept potentially shippable and test proven at all times.

Kanban emphasizes on just-in-time delivery and visual process-management. All
participants have a full view of the process from task definition to delivery. Visualizing
the work flow of the team leads to increased communication and collaboration. Limiting
unfinished work in progress reduces the time it takes for individual items to travel through
the system. Teams are able to measure their effectiveness by tracking flow, quality,
throughput and lead times.

7.2 Roles & Responsibilities

There are three essential roles in the scrum methodology; Product Owner, Scrum Master
and Team Member. Generally, only one person is a Product Owner and one is a Scrum
Master. A Product Owner and Scrum Master may or may not be in the development
team. These core roles are committed to the project and are responsible for the delivery
of a finished product.

7.2.1 Product Owner

The Product Owner is responsible for communicating the vision to the development
team, understanding the business and market requirements, and prioritizing the work
that needs to be done. The Product Owner represents the customer and guides the team
toward building the desired end product.

Karl Karlsson is a lead software developer in the product development department
at Marel and was the formal representative of the Product Owner during the development
of the product.

7.2.2 Scrum Master

The Scrum Master ensures that team members practice the agreed Scrum processes and
that each team member is able to perform at the highest level. The Scrum Master
acts as a buffer between the team and distracting influences that obstruct the team
from achieving its sprint goals. They facilitate key sessions, sprint planning, and daily
sprint and retrospective meetings. Encouraging the team to improve, remain creative
and productive while making sure the team’s success is visible to the Product Owner.

During the course of this project Jón Reginbald Ívarsson was be the acting Scrum
Master based on his prior knowledge with Scrum methodology.

19

7.2.3 Development Team

The development team is responsible for analyzing, designing, developing and testing.
The team is cross-functional, meaning that all of the necessary skills to create a finished
product is present within the team. The team determines how much work is to be
completed for each sprint using their previous velocity as a guide. The team is responsible
for accomplishing confirmed sprint goals, and at the end of each sprint, the team delivers
a shippable product increment.

The development team consisted of three computer science undergraduate students
from Reykjavík University:

• Gísli Rafn Guðmundsson

• Gunnar Páll Gunnarsson

• Jón Reginbald Ívarsson

7.3 Facilities

Facilities were provided by Marel, and all development work was done at their headquar-
ters. Marel provided the team with three development computers to conduct research
and development. An Azure account with monthly credit was provided.

20

8 Risks

The risk analysis is an integral part of the project’s planning process. Understanding
what risks lie ahead that could delay or hinder progress of the project enables the team
to react beforehand and possibly prevent them from happening. It can also clear respon-
sibility issues, i.e. figure out who is responsible for each risk, as well as realizing what
consequences each risk can have on the project. Analyzing these factors can additionally
help the team’s decision on whether or not to devote the time and resources needed to
react to specific risks - since not all risks are equal. Below are the most pressing risks
and responses for the project as they were defined by the development team.

8.1 Internal Risks

• Project Delay
Description - Project gets delayed, either because the scope was too large, or
because the velocity of the team is too low.
Response - If the project falls far behind schedule, an emergency meeting is held
with the project owner and the project re-planned.

• Technical Issues within Marel
Description - General technical issues that may arise from within Marel, e.g.
network issues.
Response - Move our operations to HR, while Marel IT fixes the issue.

• Scope of the project increases
Description - The project’s scope becomes greater than what was initially ex-
pected.
Response - Decrease the scope by removing functionality that has low priority.

• Technology too complicated
Description - One of the technologies is more complicated, or harder to work
with, than initially expected, resulting in delays.
Response - Reevaluate whether the technology is essential and if there is an im-
mediate alternative. If so, consider substituting it.

8.2 External Risks

• Licensing
Description - Licensing issues preventing project’s deployment.
Response - Find an alternative licensing solution.

• Problem with Azure during development
Description - Microsoft Azure cloud platform or services become inaccessible.
Response - Continue development offline until Azure becomes accessible again.

21

• Sickness
Description - A team member, or other person vital to the project, can not work
due to being sick.
Response - Remaining team members try to work harder for a while. If the
problem persists, consider redefining the scope of the project to be manageable for
a smaller team.

• Busy times at the university
Description - All team members are full-time students at Reykjavík University.
Some parts of the semester are more busy with work unrelated to the project than
others, such as during final exams.
Response - Plan sprints during these times accordingly and reduce the amount of
work expected to be done.

22

9 Progress

9.1 Total Progress Overview

Figure 12: Summary of the total work item count

Figure 13: Project Burndown

9.2 Time Registration

The development team maintains a work journal which keeps track of the teams working
hours. Each team member is responsible for logging their own work hours. The hours are

23

then tallied together to create a time report, showing total hours for each team member,
on each given day and sprint. Additionally, two charts are generated; one for each team
member’s time partitioning and one as a summary of total work hours spent on the
project. For closer inspection and up-to-date journal, please visit:

https://goo.gl/91SKOa

Figure 14: Overall time registration per team member

Figure 15: Summary of the total hours spent on the project

24

https://goo.gl/91SKOa

10 Sprint Overview

The duration of each sprint is two weeks long, except for sprint 0 and the final sprint,
which are one week long each. Every sprint starts on a Monday with sprint planning,
and ends on a Sunday with sprint review and retrospective analysis (usually performed
on the following Monday).

During the planning meeting the team picks the highest priority features and turns
the high-level user stories of the product backlog into detailed tasks. The team commits
to the tasks and sets a sprint goal.

The purpose of a retrospective meeting is to assess how well the sprint went; what
went well during the sprint and what could have gone better. The teams productivity
and level of cooperation is observed, in order to improve for upcoming sprints. Any
problems or weaknesses are also taken into consideration to avoid their reappearance in
the future.

Daily sprint meetings were short stand-up meetings held every weekday where daily
goals, challenges and issues were discussed. Visual Studio Team Services was used as the
project management tool. Product backlogs and burndown charts are accessible through
this link:

https://goo.gl/5cAcRw

Some sprints’ burndown chart may not reach zero. This was usually due to the sprint
ending on a Sunday, making us unable to close the stories when we came to work on
Monday.

10.1 Themes For Each Sprint

Each sprint coheres to a theme which describes what kind of work should have been done
at that time.

• Sprint 0: The Planning Sprint
In this sprint team members mostly worked on planning and logistics.

• Sprint 1 (a.k.a. Sprint 00): The Research Sprint
This sprint was meant for research work, where team members researched the
platform being used and decided what services should be used for the project.

• Sprint 2-4: Design and Setup Sprints
These two sprints were used for designing and setting up the system, and making
sure that all the components worked well together.

• Sprint 5-7: Development Sprints
The bulk of the system development took place during these sprints.

• Sprint 8: Final Sprint
The last sprint was meant for finalizing the project, adding any features that still
needed to be added and tying up loose ends.

10.2 Sprint 0

Sprint 0 was not a full sprint, and the first and only task for the team was to discuss and
negotiate with Marel about the project. The backlog for the sprint and the burndown
chart can be seen below. Because we changed our project management tool from Google
Spreadsheets to Visual Studio Team Services in sprint 1, the burndown chart appears to
be empty.

25

https://goo.gl/5cAcRw

Table 1: Sprint 0 - Backlog

Figure 16: Sprint 0 - Burndown Chart

10.2.1 Sprint Planning Notes

The purpose of the first sprint planning meeting was to define the sprint goal, estimate
the team’s velocity, decide which stories to include in the sprint, create tasks for each
story and assign each task to a team member to indicate who is responsible for the
execution of that task.

10.2.2 Sprint Retrospective Notes

The first sprint went as expected. The team got up to speed on what the project was
and its purpose.

10.3 Sprint 1

The research sprint. Our main goal was to research technologies that would enable us
to reach the desired goal of the project. Finding good project management tools and
learn how to use them. In this sprint we decided to use the project management tool
Visual Studio Team Services. A large amount of time went into implementing Scrum
and learning basic actions within the management tool. In the burndown chart below,
a large spike can be seen which can be explained by the fact that the management tool
was introduced in the later stages of the sprint.

26

Table 2: Sprint 1 - Backlog

10.3.1 Sprint Retrospective Notes

The first official sprint was used for research. Some planning aspects could perhaps have
gone better, such as scheduling work on other projects, in between work on this particular
project. This disruption was, however, to be expected, as all team members are involved
in other projects during this semester at the university.

The team had initially planned to use a different set of services, but those plans were
promptly changed in search of different ones, more fitting to the project. Research on
the biggest new element, HDInsight, was extended into sprint number two.

27

Figure 17: Sprint 1 - Burndown Chart

10.3.2 What Went Well

• Research
Research went very well and equipped the team with the necessary knowledge to
start development, using the chosen services.

• Teamwork
We found that the team worked well together and the team’s dynamic was produc-
tive.

10.3.3 What Could Have Gone Better

• Service change
Changes in the chosen Azure services delayed the work of the team, but adjustments
were made easy by addressing the problem early.

• Scrum
Setting up a product backlog and other Scrum related reports took more time than
initially anticipated.

10.4 Sprint 2

The first design and setup sprint. At the beginning of the sprint the daily operation
was moved from Reykjavík University to Marel’s headquarters, as our facilities became
ready for use. We continued designing the system, but except for trying out some Azure
services, nothing was actually built or coded during the sprint.

10.4.1 Sprint Retrospective Notes

Like Sprint 1, the sprint was a success and everything that the group had set out to do
was completed. Version control was implemented using the same Visual Studio Team
Services platform our project management tool is based on. We settled in comfortably at

28

Table 3: Sprint 2 - Backlog

Figure 18: Sprint 2 - Burndown Chart

Marel and continued research at our own pace. The official research phase of the project
was officially concluded at the end of the sprint.

10.4.2 What Went Well

• Equipment Setup
Setting up development environment on the computers provided by Marel went
well. The computers were properly set up early on in the sprint.

• Version Control
Version control was set up at the beginning of the sprint without issues.

• Research
Research continued to go well.

29

10.4.3 What Could Have Gone Better

• Slow Start
The transition from working at RU and moving to Marel took some time, and
regaining the pace at which we were working was gradual. However, this did not
affect us much as the bulk of the research was still being done away from Marel
and no actual coding was disrupted.

• Getting Full Access to Resources
Some time went into providing us with access to internal and external resources
such as Marel accounts and a Microsoft Azure account. The wait was still quite
short considering the size of Marel as an organization.

10.5 Sprint 3

Sprint 3 was the 2nd setup and design sprint. We had by now gotten access to Azure
and began experimenting with IoT Hub and HDInsight Spark. Most of the work done in
the sprint went into connecting the two together, and to some extent, to connect Power
BI to Spark. Continuous Integration/Delivery was also a big focus during the sprint.
Unanticipated, we decided to rethink our service pipe line in the middle of the sprint, as
reflected upon in the sprint’s retrospective notes.

Table 4: Sprint 3 - Backlog

10.5.1 Sprint Retrospective Notes

The sprint went well enough, but we ran into some problems on the way. Firstly, one
team member was sick for a few days during mid-sprint. Thankfully, we anticipated it in
our risk analysis. We also tried our best to connect IoT Hub and Spark together, which
did not go over as well as we had hoped. At the end of the sprint some frustration set
in, and after discussing the reasons for selecting Spark we decided to call an emergency
meeting. We came to the conclusion that it would be best, at least for the time being,
to put Spark on the sidelines and try out a different method using Stream Analytics in
conjunction with an SQL database. Stream Analytics worked like charm and we got the
data across to the database with out much trouble.

10.5.2 What Went Well

• Stream Analytics Setup
Setting up the new service went well, even with so little time left of the sprint.

30

Figure 19: Sprint 3 - Burndown Chart

• Continuous Integration/Delivery
Setting up of CI and CD went well and all scripts were made ready for real world
provision/deployment.

10.5.3 What Could Have Gone Better

• Spark
Spark was very hard to tame and finally we steered away from it.

• Sick team member
An unavoidable set-back, but properly reacted to by the team.

• Build Resources Depleted
The "build minutes" of our TFS system ran out, making us unable to do continuous
integration for a while. Luckily a member of Marels development department began
deploying a build agent that fixed this particular problem.

31

10.6 Sprint 4

With the 4th official sprint over, we now managed to get data all the way through the
system, starting at one or more simulated devices and to being displayed in Power BI.
Most of the time went into adjusting build scripts and designing the Power BI interface.
The first version of a library to enable real Innova devices to be used in the system was
also made. Finally, preparations were made for the second status meeting.

10.6.1 Sprint Retrospective Notes

The sprint went altogether well, although a lot of the work that went into Power BI was
ultimately scrapped as we moved on to making our own web application.

10.6.2 What Went Well

• Innova Library
Although it is not yet used, a library was written that will make Innova sites able
to send real world data to the system.

10.6.3 What Could Have Gone Better

• Power BI Scrapped
Quite a bit of work went into setting up and configuring Power BI, which will not
be used in the final product.

Figure 20: Sprint 4 - Burndown Chart

32

Table 5: Sprint 4 - Backlog

10.7 Sprint 5

The sprint was used to fine tune some build scripts and to start work on the site registry
part of the web application.

10.7.1 Sprint Retrospective Notes

After several very successful sprints, this sprint had the fewest logged hours of any full-
length sprints. All group members had final projects in other courses to hand in, as
it took place during the last two weeks before the final exams. Much of the time was
therefore spent on work, unrelated to the project.

10.7.2 What Went Well

• Registry Web Application
We finally started work on the web app after deciding to move away from Power
BI.

10.7.3 What Could Have Gone Better

• Few Work Hours
Not many work hours were logged during the sprint. Ideally, they should have been
around 150, but only reached 85. This was, however, to be expected during a busy
time at the university.

33

Figure 21: Sprint 5 - Burndown Chart

Table 6: Sprint 5 - Backlog

10.8 Sprint 6

Further development of the web application was done in sprint 6. The registry screen
was finished, as well as the first version of the opening (overview) screen.

10.8.1 Sprint Retrospective Notes

As in sprint 5, not a great deal of work hours were logged. This sprint took place during
the final exams and all team members had to take some time off to study, to varying
degrees. Not all team members had to take the same number of exams, and one member
had to practically remove himself from the project for the duration of the sprint. The
other two team members were, however, able to do considerable work in between exams
and a surprising amount of work got done.

10.8.2 What Went Well

• Good Amount of Work in Spite of Exams
The remaining team members managed to cover well for the missing one and got

34

a considerable amount of work done, having in mind that the sprint clashed with
final exams.

10.8.3 What Could Have Gone Better

• One Team Member Short
One team member could only work one day during the sprint due to final exams.

Figure 22: Sprint 6 - Burndown Chart

Table 7: Sprint 6 - Backlog

10.9 Sprint 7

A lot of work went into the web app during this sprint. It was essentially finished, with
only minor tweaks to be made. A lot of testing was done, as well as documentation, to
prepare for the final hand in. Feature freeze was set to be on May 8th, the last day of
the sprint. This means that no new features should be added or any major components
changed after this date.

35

10.9.1 Sprint Retrospective Notes

The sprint was, by far, the most successful one from the beginning with over twice the
amount of work done than any other sprint (and four times as many as the least effective
sprint). The web application has seen tremendous progress and has gone from only being
able to register sites to showing all relevant data from these sites.

10.9.2 What Went Well

• Work Hour Record!
By far the most logged hours of any sprint.

• All Planned Work Finished
All work on the web application and other peripherals was concluded as planned.
No further features are to be added before handing in.

10.9.3 What Could Have Gone Better

Nothing, the team was very satisfied with the sprint.

Figure 23: Sprint 7 - Burndown Chart

36

Table 8: Sprint 7 - Backlog

10.10 Final Sprint

The sprint was only used for some final cleaning up, testing and fixing. Some minor
details were changed or added to the documentation in reflection of the final status
meeting. Code freeze was on May 11th, meaning that no code was to be changed after
that date.

10.10.1 What Went Well

• Feature Freeze and Code Freeze
Having a set time for feature freeze and code freeze helped us to put the project in
perspective and define it as a finished product.

Figure 24: Final Sprint - Burndown Chart

37

Table 9: Final Sprint - Backlog

38

11 Conclusion

The project has been a great challenge for all of us. We faced problems we never knew
existed and we learned how to solve and avoid many of these problems. Our project
involved developing a system that consists of components we had no prior knowledge
of. We have broadened our horizon by trying out new solutions and dismissing the ones
that were unsuitable. It has been an intensive and extensive learning process that will
be useful in our future work as computer scientists. At Marel and Innova development
department, we were embraced with a wonderful company spirit that made it easy for us
to settle in. They provided us with an excellent professional and technical support that
was essential for our project.

Our instructor has been a source of inspiration and support. Her assistance was
important when defining the content of the project and confining its boundaries. The
status meetings have been invaluable as the instructor has provided us with an out-
sider’s perspective of the project, and assessment of the extent to which our progress was
satisfactory.

11.1 Challenges

As already mentioned, we have faced great challenges throughout the development pro-
cess of our system. The first and perhaps biggest challenge was to choose which tools
and services to use. This was an on-going consideration as we tried out many different
combinations before making our final choices. We had little or no prior knowledge of
any of the services that we included in the various versions of the system design. When
we finally settled down on a good system design, we still had to learn how to use the
components of the system effectively.

11.2 Future

After handing in the project results as a bachelor degree project to Reykjavík University,
we intend to develop our system further. We will do this as employees at Marel for the
next 4 months. It is our intention to make the system suited for a commercial release.

We are very excited to continue our work on our system, and we have already many
ideas about its future capabilities.

39

11.3 Review from Product Owner

„Á undanförunum mánuðum hafa Jón Reginbald Ívarsson, Gísli Rafn Guðmundsson
og Gunnar Páll Gunnarsson unnið að lokaverkefni hjá Marel. Verkefnið er rannsók-
nar og þróunartengt sem hefur falist í því að rannsaka hvernig hægt sé með öruggum
hætti að flytja ýmsar lykilupplýsingar úr Innova framleiðslustýringarkerfum sem
eru í notkun víðsvegar um heim allan í eitt miðlægt kerfi. Þessar upplýsingar
veita mikilvægar upplýsingar um ástand kerfanna ásamt því að veita innsýn í
hvernig kerfin eru notuð og hvaða hlutar kerfanna eru í raun notaðir. Að lokinni
ýtarlegri rannsókn var kerfið hannað og útfærður hugbúnaður fyrir sendingar úr
Innova kerfum ásamt móttöku á gögnum og frekari úrvinnslu í miðlægu kerfi.
Viðmót var einnig hannað og þróað sem sýnir m.a. á greinagóðan hátt ef alvarlegt
ástand kemur upp í einstaka Innova kerfi hvar sem er í heiminum. Þetta veitir
Marel einstakt samkeppnisforskot í formi aukinnar þjónustu fyrir viðskiptavini Marel.

Verkefninu hefur fylgt ýmsar mjög krefjandi áskoranir og hefur hópurinn leyst þær
með afbrigðum vel. Á öllum stigum verkefnisins hefur hópurinn unnið af mikilli
fagmennsku og stundað öguð vinnubrögð. Áætlanagerð, hönnun, skjölun og útfærsla
verkefnisins hefur öll verið til mikillar fyrirmyndar og hefur verið mjög ánægulegt og
þægilegt að vinna með hópnum.

Verkefnið uppfyllir allar kröfur og væntingar sem Marel gerði til verkefnisins auk
þess að hafa fært sönnur fyrir því að þessi lausn býr yfir ótal fleiri spennandi og
áhugaverðum möguleikum sem verða þróaðir í nánustu framtíð.“

Karl Karlsson
Vöruþróun Innova hugbúnaðarlausna.

40

Appendix A: Automation Scripts

41

Appendix A: Automation Scripts

Script overview

A list of the scripts written to provision the Azure services along with a short description.
The scripts are listed in the order they are executed. File extensions and prepends (the
name of the service in each case) are omitted to save space.

Azure Rm

ServicePrincipal Used to create a service principal, which is essentially a user for
the build script to use when provisioning. Only needs to be run
once and the data from it used in the Login script.

Login Logs into Azure using the information provided by the service
principal script. This is done to avoid log-in window popping up
each time a script is executed.

Provision / Delete All

Provision Simply runs all currently used provisioning scripts. All services
should be correctly named and configured using parameters set at
the top of the script. It correctly connects together services that
need access keys by extracting the key from the output of a script
that provides it.

Delete Tears down all services one by one and deletes the resource group.

Resource Group

Provision Creates a new resource group. Nothing is done if the resource
group already exists

Deletion Deletes the resource group. WARNING: When the resource
group is deleted, every service that belongs to it is also deleted.
This script should therefore be run last, and is not a preferred
method of deprovisioning the system.

IoTHub

Provision Provisions and deploys an IoTHub using Azure’s Resource-
GroupDeployment, which allows us to deploy, using a JSON tem-
plate with custom defined parameters.

Deletion Tears down the IoTHub created by the previous script. At the
time of writing the script is broken and not used in the delete all
script. The IoTHub is now torn down by deleting the resource
group instead.

CraftConnString When the entire system is provisioned connection keys for IoTHub
are extracted. For these keys to be useful this script is run to craft
them into a connection string that is useful for the web app.

Appendix A: Automation Scripts

SQL Database

Provision Provisions and deploys both an SQL server and a database. It
also creates a firewall rule to allow user access.

CreateTable Creates a single table using the schema at the specified path (rel-
ative to the ’SQL Database’ directory in ’Includes’ at the pow-
ershell script root) on the desired SQL database. Can be run
multiple times to generate more tables.

Deletion Tears down the SQL database and server specified.

Stream Analytics

Provision Provisions and deploys a Stream Analytics job onto Azure. The
path to a transformation query (relative to the ’Stream Analytics’
directory at the project root) should also be specified, containing
the query used to link the chosen services.

AddInput Adds a new input to the job. This input should be an IoTHub.
The script then generates a JSON file that is used to create the in-
put request (since these files can not have parameters). A Stream
Analytics job can have multiple inputs.

AddOutput Adds a new output to the job. This output should be an SQL
server. The script then generates a JSON file that is used to create
the output request (since these files can not have parameters). A
stream Analytics job can have multiple outputs.

Start Starts a provided job. Is run in the Provision.All script to avoid
having to manually start the job.

Stop Stops a provided job. Is run in the Delete.All script to minimize
unnecessary errors.

Deletion Tears down a Stream Analytics job.

Web Application

Provision Provisions the web app. The build server then handles deploying
the newest version of the app to the system provided that no tests
fail.

Dependencies Installs all dependencies using Npm and Bower.

Build Builds the front-end of the web app using Gulp.

Test Runs front-end unit tests using Karma.

Deletion Tears down the web app.

Appendix A: Automation Scripts

Miscellaneous and Deployment

AddConnString Adds the IoTHub connection string, created by the Craft-
ConnString script to the Azure web app. This way the app can
access the string directly while deployed to Azure as an environ-
ment variable.

NpmInstallGlob Installs packages that need to be installed with global flag using
Npm.

PublishPackage A workaround script that is needed by the build server to be able
to extract the web server correctly when deploying.

Appendix B: Code Coverage

45

Appendix B: Code Coverage

Introduction

The following sections depict and explain the code coverage reached for front-end unit
tests, firstly, and back-end unit tests secondly.

Code coverage for the front-end unit tests

99.79% Statements 1432/1435 88.81% Branches 119/134 100% Functions 5/5 99.86% Lines 1428/1430

/

File Statements Branches Functions Lines

src/ 100% 8/8 100% 0/0 100% 0/0 100% 8/8

src/components/caBreadCrumbs/ 100% 58/58 100% 2/2 100% 1/1 100% 58/58

src/components/caMap/ 100% 37/37 100% 2/2 100% 0/0 100% 37/37

src/components/caNavBar/ 100% 18/18 100% 0/0 100% 0/0 100% 18/18

src/components/caSideNav/ 100% 17/17 100% 0/0 100% 0/0 100% 17/17

src/components/caTimeline/ 100% 29/29 100% 0/0 100% 0/0 100% 29/29

src/services/apiService/ 100% 3/3 100% 0/0 100% 0/0 100% 3/3

src/services/colors/ 100% 1/1 100% 0/0 100% 0/0 100% 1/1

src/services/countries/ 100% 1/1 100% 0/0 100% 0/0 100% 1/1

src/services/geoService/ 95.74% 45/47 50% 1/2 100% 0/0 97.78% 44/45

src/services/geographyService/ 100% 177/177 100% 42/42 100% 0/0 100% 177/177

src/services/mapService/ 100% 81/81 88.89% 16/18 100% 0/0 100% 81/81

src/services/notifyService/ 100% 71/71 100% 4/4 100% 0/0 100% 71/71

src/services/timelineService/ 100% 10/10 100% 0/0 100% 0/0 100% 10/10

src/services/versions/ 100% 1/1 100% 0/0 100% 0/0 100% 1/1

src/views/registry/controllers/ 100% 131/131 75% 9/12 100% 0/0 100% 128/128

src/views/registry/tests/ 100% 342/342 100% 0/0 100% 0/0 100% 342/342

src/views/site/controllers/ 100% 66/66 92.86% 13/14 100% 0/0 100% 66/66

src/views/site/tests/ 100% 116/116 100% 0/0 100% 0/0 100% 116/116

src/views/visualization/controllers/ 98.88% 88/89 78.95% 30/38 100% 4/4 98.88% 88/89

src/views/visualization/tests/ 100% 132/132 100% 0/0 100% 0/0 100% 132/132

Code coverage generated by at Thu May 12 2016 09:19:03 GMT+0000 (Greenwich Standard Time)

Figure B.1: Front-end Code Coverage

Appendix B: Code Coverage

Code coverage for the back-end unit tests

Figure B.2: Back-end Code Coverage

Appendix C: Wireframes

48

Appendix C: Wireframes

Wireframes

Wireframes are initial user interface designs for the system. They should describe what
the interface of the web application should look like in a clear and concise way, which
can then be used as a blueprint to create the final interface. However, they are not a
final version of the user interface and the final design may differ from the wireframes.

The attached User Manual shows screenshots of the final product.

Figure C.1: Overview Screen

Appendix C: Wireframes

Figure C.2: Region Screen

Figure C.3: Sub Region Screen

Appendix C: Wireframes

Figure C.4: Country Screen

Figure C.5: Site Screen

Appendix C: Wireframes

Figure C.6: Error Details Dialog

Figure C.7: Registry Screen

Appendix C: Wireframes

Figure C.8: Register Site Dialog

Figure C.9: Edit Site Dialog

Appendix C: Wireframes

Figure C.10: Remove Site Dialog

	Preface
	About this Document
	Marel and Innova
	Terms and Definitions

	Cloud Analytics
	Introduction
	Motivation

	System Design Progression
	Initial System Design
	Reasons for Redesign

	System Design 2
	Reasons for Redesign

	System Design 3
	Reasons for Redesign

	System Design 4
	Reasons for Redesign

	Final System Design
	Microsoft Azure
	IoT Hub
	Stream Analytics
	Azure SQL Database
	Cloud Analytics Website

	Development
	Development Environment
	Centralized Version Control System
	Continuous Integration
	Continuous Deployment
	Automation Scripts
	Innova Azure Communications
	Testing
	Front-end Unit Tests
	Back-end Unit Tests
	End-to-end Tests

	User Interface
	Work Arrangements
	Scrum Methodology
	Roles & Responsibilities
	Product Owner
	Scrum Master
	Development Team

	Facilities

	Risks
	Internal Risks
	External Risks

	Progress
	Total Progress Overview
	Time Registration

	Sprint Overview
	Themes For Each Sprint
	Sprint 0
	Sprint Planning Notes
	Sprint Retrospective Notes

	Sprint 1
	Sprint Retrospective Notes
	What Went Well
	What Could Have Gone Better

	Sprint 2
	Sprint Retrospective Notes
	What Went Well
	What Could Have Gone Better

	Sprint 3
	Sprint Retrospective Notes
	What Went Well
	What Could Have Gone Better

	Sprint 4
	Sprint Retrospective Notes
	What Went Well
	What Could Have Gone Better

	Sprint 5
	Sprint Retrospective Notes
	What Went Well
	What Could Have Gone Better

	Sprint 6
	Sprint Retrospective Notes
	What Went Well
	What Could Have Gone Better

	Sprint 7
	Sprint Retrospective Notes
	What Went Well
	What Could Have Gone Better

	Final Sprint
	What Went Well

	Conclusion
	Challenges
	Future
	Review from Product Owner

	Appendix Automation Scripts
	Appendix Code Coverage
	Appendix Wireframes

