T-404-LOKA, Final Project

Tempo Chrome Extension

Final Report

Anton Mariné Stefansson
Hronn Rébertsdottir
Sigran borsteinsdottir
Pordis Jona Jénsdottir

Spring 2016
Instructor: Haukur Kristinsson
Examiner: Elin Elisabet Torfadottir

Abstract

The aim of this project is to create an extension for the popular browser Chrome, that allows
its users to easily track time and log their work. The extension will integrate seamlessly with
Tempo Timesheets for JIRA and it will also allow users an overview of their Google Calendar
events. The hope is that Tempo will be able to present the extension to their clients as an
addition to the JIRA solutions they already offer - that help teams collaborate, plan, track, and
achieve their goals.

The aforementioned project constitutes as a partial fulfillment of the requirements for the

degree of Bachelor of Science in Computer Science.

Review

It has been a pleasure working on the Tempo for Chrome project with Anton Stefadnsson,
Hrénn Rébertsdottir, Sigrin Porsteinsdottir and Pérdis Jonsdéttir. The team has shown that
they can work on a new project and solve problems that arise during development quickly
and efficiently as well as keeping an eye on the user experience needed throughout the

product development process.

Their work ethic has been excellent where they have delegated tasks between team members.
Each member has shown responsibility with their tasks and communicating with the team on

their progress.

Elias R. Ragnarsson
Product Owner

Tempo

Table of contents

Introduction

1. Methodologies and tools
1.1 Scrum

Roles

1.2 Work Conditions
1.3 Team Productivity

2. Design and development
2.1 Programming Rules
2.2 Test design
2.3 Software architecture

System design
React
JSX
Redux
ES6
Node.js
APIs
SuperAgent
Bundling tools
Webpack
SCSS

2.4 Functionality
3. Project progress
3.1 Sprints
3.2 Progress Overview
Overview of total work hours
Sprint 1 (24.jan - 13.feb)
Sprint 2 (14.feb - 5.mar)
Sprint 3 (6.mar - 26.mar)
Sprint 4 (27.mar - 16.apr)
Sprint 5 (17.apr - 23.apr)
Sprint 6 (24.apr - 30.apr)
Sprint 7 (1.maf - 7.mai)
Sprint 8 (8.mai - 13.mai)
3.3 Project Burndown Chart
4. Risks
4.1 Risk analysis table
5. Future work
6. Conclusion
Bibliography

2-4
2-3
2-3

3-4
5-12

No o g
O O

[e¢]

O\D\OO@GJOOI\]\I

10-12
13-21
13
14-20
14-15
15
16
17
17-18
18
19
19
20
21
22-23
22
23
24
25

Introduction

The team had the privilege of doing a project for Tempo, a company that specializes in mission
critical solutions designed to enhance the efficiency of JIRA and help software, professional, and

small business teams collaborate, plan, track and achieve their goals. [1]

Tempo is a subsidiary of Nyherji that was founded within a different subsidiary of Nyherji, TM
Software. The initial idea of Tempo emerged at a hackathon within TM Software, which then lead
to a startup company. Today, this once small startup employs more than 70 people who are
working on developing four different products for multiple companies. Tempo is working on

developing their own take on JIRA’s time management solutions.

The main focus of Tempo’s products is to make it easier for people to manage their work hours
and plan their workdays. This is precisely what one of their products, Tempo Timesheets, is all

about - tracking work hours and overseeing one’s daily work agenda.

The idea for this project came from multiple user requests that Tempo received asking them to
build a Chrome extension for their Tempo Timesheets product. They wanted Tempo to ease the
process of tracking time and viewing one's work schedule. The extension will enable users easy
access to their JIRA and Google Calendar accounts inside the Google Chrome browser when

opening the extension which is always accessible in the browser’s tool bar.

The main focus of the extension was to make it easy to use so that users could manage their work

hours and log time in as few steps as possible.

This report contains the process of implementing the extension. In chapter one the Scrum
methodology will be explained amongst other tools used to manage the project. In chapter two
the whole technology stack will be explained along with the functionality that the extension
provides. In chapter three an overview of the project’s progress will be given along with graphs
and descriptions for each sprint. In chapter four the project’s risk factors will be reviewed. In
chapter five a short overview will be given of possible future work concerning the extension. In

chapter six the report will be concluded with thoughts and the final outcome of the project.

1. Methodologies and tools

This chapter contains information on the team’s use of the Scrum methodology, work conditions

and productivity.

1.1 Scrum

The team decided to make use of Scrum - an agile software development methodology. This
included iterative sprints and daily meetings at 10 am to keep track of everyone's work and make
sure that everything stayed on schedule. Since one team member was working from home the
daily meetings were held online with the help of Trello [2], a web-based project management

application.

The team also made use of a few other components of Scrum such as user stories, a product

backlog, sprint goals, sprint backlogs, burndown charts and retrospective meetings.

The product backlog is made up of user stories that are broken up into subtasks and the amount
of work for each task is then estimated. Each sprint starts off with a team meeting where the
sprint goal is decided. A sprint goal shows what stories to focus on during the sprint. During the
course of each sprint the scrum backlog and burndown chart give a good overview of what tasks
are due and whether or not the sprint goals will be met. Finally, at the end of each sprint there is
a retrospective meeting with the Product owner, so that he can keep track of the project’s

progress.

Roles

Scrum Master - Sigran Porsteinsdoéttir

The scrum master’s role is to remove all internal and external impediments that can get in the
way of the team’s productivity to help them reach their goal for each sprint. Other responsibilities
include planning team meetings, promoting that the team maintain the scrum principles, and

keeping track of work hours.

Product Owner - Elias R. Ragnarsson (Tempo)
The product owner, or PO, is a contact between the team and the stakeholder. He should have a
vision of how he wants the final product to look and he needs to be able to convey that vision to

the team. He is responsible for there being a product backlog and making sure it is prioritized.

The Team - Anton Marin6 Stefansson, Hronn Rébertsdéttir and Pérdis Jona Jonsdottir

The scrum team is at the heart of each project. The team is a collection of individuals that work
closely together to deliver what is requested by the stakeholder. If a team is to be effective it is
important that they share a common goal and everyone agrees to adhere to a certain set of rules

and norms.

1.2 Work Conditions

Tempo provided the team with a good working facility equipped with a desk, chairs, computer
screens, keyboards and mice. This facility was located at the offices of Tempo amongst their other
employees so asking for guidance or assistance did not prove difficult. The Product owner and
main contact within Tempo was Elias R. Ragnarsson who works as a designer for Tempo. Elias
had a clear vision of what the stakeholder was expecting from the completion of the project and

he was of great assistance when it came to Ul design, scrum planning and review.

1.3 Team Productivity

The team decided to start off strong and try to keep a steady pace of work hours during the
course of the project. Each team member was to work 22 hours per week. With a team of four
that equaled a total of 88 work hours per week. This was the case for most of the sprints except
for the occasional weeks where team members had other big projects due. The sprints that
included those weeks had a reduced estimate of total work hours. This was compensated for by

adding an additional 3 work hours per week during the last four weeks of the project.

Table 1.3.1 - Total Work Hours

Project total
Name Estimated hours worked | Actual hours worked | Total
Anton 320 397 124%
Hrénn 320 363 113%
Sigrin 320 359 112%
Poérdis 320 378 118%
Total 1280 1497 117%

An overview of total time spent on the project.

In order to keep detailed track of hours worked the team made use of Toggl [3], an online time
tracking tool. Each team member logged time for each day worked along with a short description
on what issue was worked on that day. Toggl would then collect information for each member

into a pie chart showing how many hours each member worked for any given time period.

The project backlog was stored on a board on Trello and the team would then pick stories from
that backlog and move them to the sprint backlog during sprint planning meetings. That way, the
team had a clear vision of what stories should be covered each sprint as each team member was

assigned to a story they were in charge of.

When a story was being worked on, it was moved from the sprint backlog to the “Doing” column
and it would stay there until it was ready to be reviewed. The team reviewed the stories together
and if all members agreed that the functionalities were sufficiently implemented, the story was

then moved to the “Done” column.

The combination of Trello and Toggl made it easy for everyone to keep track of hours worked and

what tasks they were conducting each day.

2. Design and development

This chapter contains information on the technology stack that was used to build the product

along with a short manual on the Chrome extension’s main functionalities.

2.1 Programming Rules

In order to keep the code to a certain standard, everyone agreed to abide by a set of

programming rules that were decided by all team members.

The decision was mutual to follow the Airbnb style guides [4] for JavaScript and JSX. The team
used the code editor Atom and installed the Airbnb ESLint package which made sure that all

group members followed the aforementioned rules.

2.2 Test design

Karma was picked to run the unit tests and to manage the code coverage along with Jasmine for
the tests syntax. Phantom]S was then used to simulate a browser and its functionalities. Every

reducer and action in the project were then tested.

The tests were designed to be straightforward, only testing one function at a time. The actions
were tested by creating mock actions and mock data, passing the mock data into the actual action
and then comparing the mock action to the actual action. The reducers were tested by creating
mock actions, mock data and a mock state. The mock state and mock actions were then passed on
to the actual reducer and finally the mock data was compared to the data that the reducer

returned.

Below are two different examples of action tests. The first one is updating a value and the second
one is calling the API and then updating values. The mock data was not included in the image

because the team deemed it irrelevant.

-

import moment from ‘moment';

import + as actions from '../../app/actions/googleEvents.js’;
import = as googleAPI from '../../app/API/googleCalendarAPI.js';
describe('actions - googleEvents - ', () == {
it{'should update Google ewvents', () => {
const events = mockGoogleEvent;
const expectedAction = {
type: 'UPDATE_GOOGLE_EVENTS',

events
i.H
expect{actions.updateEvents(events)).toEqual{expectedAction);
1 H
igH
describe('actions - googleEvents - async functiens -', ()} == {

beforeEach{() == {
spyOn{googleAPI, 'getGoogleEvents');

actions.getEvents(mockGoogleGetData. token, mockGoogleGetData.calendarID, mockGoogleGetData.dates);
Ha

it({'should call getGoogleEvents', () =» {
expect{googleAPI.getGoogleEvents). toHaveBeenCalled();
i
it({'should call getGoogleEvents with right parameters', {) == {
const token = mockGoogleGetData.token;
const calendarID = mockGoogleGetData.calendarlID;
const dates = mockGoogleGetData.dates;
expect{googleAPI.getGoogleEvents).toHaveBeenCalledwWith(token, calendarID, dates);

HaH
s

Image 2.2.1 - Example tests for actions
2.3 Software architecture

This section describes the architectural decisions, and will be divided into two categories; system

design and tools that help with building and bundling the solution.

System design

Below is a list of tools that were used to implement the functionality and architecture of the
extension. The extension is written in Javascript, using a library called React. Redux was picked to
send data between components and make sure that the state of the action changes. Using JSX
made it possible to use XML syntax in Javascript code and Babel enabled the use of the newest
type of ECMAScript, without having to worry about browser support. For the backend, API calls

were used to fetch all data displayed in the extension

React

React is a popular JavaScript library for building user interfaces. It was made for building large
applications with data that changes over time. React builds encapsulated components, which
makes code reuse, testing and separations of concerns easy. React also only reloads the part of

the DOM that was modified resulting in better performance, so it handles data binding very well.

[5]

JSX

JSX is a JavaScript syntax extension that allows the user to add XML syntax to JavaScript. It is
recommended to use |SX instead of regular]S with React because it is a concise and familiar
syntax for defining tree structures with attributes. JSX also shows compile-time errors that, for

example, notify the user when the code does not compile because of spelling mistakes. [6]

Redux

For the projects architecture the team used Redux. Redux uses unidirectional data flow that uses
a single store to hold data. This store is changed by cloning the original store and applying
functions without side effects. Redux was picked to simplify the applications architecture. The
store contains the state for the entire application and is organized in a tree of objects. So when a
state has to be changed, a copy is made of the previous tree and a new tree is added with the
changed state. The store has only one source of information which is called an action. Actions are
payloads of information that send data from the application to the store. Actions only describe
the fact that something happened, but they do not specify how the application’s state changes in
response. That is the job of a reducer. The reducer is a pure function that takes the previous state

and an action and returns the next state. [7]

Get a copy of Action

the current Actions Creators
state
—
State Reducer S
~——

Set the new
state

Modified
State

Subscribers

Call action creators

(Usually, React Components)

Image 2.3.1 - Overview of the flow of the Redux process. [8]

ES6

The team used Babel to translate the newest type of ECMAScript to a code that the browser can
understand. The programmer can thus write code using the newest ECMAScript syntax and let
Babel take care of compiling the code to the ECMAScript version that the user’s browser

understands. [9]

Node.js

The team decided to use Node.js for the npm package manager. Npm made the process to install

dependencies for the project easy and manageable.

APIs

The project included four different APIs to gather data; Tempo Timesheets REST API, Google
Calendar API, JIRA API and Superagent API.

SuperAgent

SuperAgent is a lightweight progressive AJAX API and was picked because of its flexibility,
readability and low learning curve. For this project, Superagent was used to send requests to

APIs. [10]
Bundling tools

Webpack

Webpack is a module bundler which takes modules with dependencies and emits static assets
representing those modules. This is used to reduce the initial loading time of the extension.
Webpack splits the codebase into multiple chunks and can be loaded on demand. Webpack was
chosen over tools like Browserify and Gulp. The main reason for that was because of it’s

capability to work well with the aforementioned tools that had already been chosen. [11]

Webpack

Babel
—js}l
- ESB/EST

Scss

Karma APP

react hot loader

bundle.js

Image 2.3.2 - Overview of the tools that Webpack uses to bundle dependencies together.

SCSS

SCSS is an extension to the old CSS styling language. SCSS is a superset of the CSS3 syntax but
allows more advanced usage such as variables and extending already defined code. Using

Webpack, the SCSS code will then be translated to regular CSS code on runtime.

2.4 Functionality

This section describes what functionalities the Chrome extension offers. Below are six different

views that show the main features of the extension. For detailed usage, please refer to the user

manual (Appendix A).

- +

< WED > < WED >
MON TUE E THU FRI SAT SUN MON TUE THU FRI SAT SUN

9 10 12 13 14 15 g 10] 12 13 14 15

@ Create new tracker l

o3 TEMPO o |y TEMPO o

Image 2.4.1 - Initial view for unidentified users (left) and tracker created by unidentified user (right)

This is the initial view for a user that is not signed in to a JIRA account nor a Google account. The

user is still able to create a new tracker by pressing the “Create new tracker” button. The user can

also navigate through the calendar.

10

< Settings i Megan Paladino

TEMPO TIMESHEETS < SUN

http:// a MON TUE WED THU FRI SAT
2 3 4 5 6 7

Worked Oh of Oh N

® Create new tracker

i= Create New Worklog

CALENDARS

D Show Google Calendar Events

Q

Fo TEMPO o || 2 TEMPO

Image 2.4.2 - Settings view (left) and main view for identified user (right)

The user can press the cogwheel on the bottom left corner that will lead him to the view which
the left part of Image 2.4.2 shows. The user can then log into his JIRA or Google account. The right
part of Image 2.4.2 shows the main view of an identified user that can now additionally view
worklogs and Google events on his calendar. He can also choose to create, edit or delete a
worklog and convert a Google event to a worklog. The gray dots beneath each day on the calendar

indicate that there is a Google event, a worklog or a tracker assigned to the user that day.

11

< New Worklog []

i Megan Paladino

< WED
MON TUE

2 3

Week

Month

Worked 1h of 8h "
Today
Search Jira Issue v
Develop Salesforce configuration options in
Wikkkieea admin settings
‘Worklog
Date & Time
O WIKK-20 1H
&
o
Work Logged & Remaining Estimate
I mir
0 0
~
Fo TEMPO = ol TEMPO o

Image 2.4.3 - Initial view for identified user with a worklog showing (left)

and “Create new worklog” view (right)

The left part of Image 2.4.3 shows the user’s worklog for the day, and the user has clicked the
dropdown arrow on the calendar and can now change between week- and month-view or
navigate back to today. The right part of Image 2.4.3 shows the “Create new worklog” view where
the user can write a description, select an issue to assign to the worklog, pick a desired time for

the worklog and finally create it.

12

3. Project progress

This chapter will cover the project progress where each sprint is reviewed and a sprint

burndown chart is shown for each sprint along with a burndown chart for the whole project.

3.1 Sprints

There were a total of eight sprints, not including sprint zero which was a week long preparation

sprint. The first four sprints were three weeks each followed by four sprints that were one week

each as can be seen in Table 3.1.1.

Table 3.1.1 - Sprint Retrospective Table

Sprint nr. Date Retrospective
Sprint 1 24.jan - 13.feb Start working on developer stories from product backlog - doing research
and building boilerplate.
Continue working on the product backlog.
Sprint 2 14.feb - 5.mar Start working on user stories from product backlog - connecting the Chrome
extension to JIRA API and setting up the calendar.
Continue working on finishing up the boilerplate.
Sprint 3 6.mar - 26.mar Start working on connecting the Chrome extension to Google AP], searching
JIRA issues, unit testing the calendar and the overall Ul
Continue working on the calendar.
Sprint 4 27.mar - 16.apr | Start working on creating worklogs and the card component.
Stop unit testing.
Continue working on the calendar and UL
Sprint 5 17.apr - 23.apr | Start establishing a connection to the Google API (again).
Continue working on the card component and the UI.
Sprint 6 24.apr - 30.apr Start working on the tracker component.
Continue working on the overall look.
Sprint 7 1.may - 7.may Start getting everything ready for code freeze.
Continue doing unit tests, and working on the Ul and the final report.
Sprint 8 8.may - 13.may* | Stop adding new functions (code freeze).

Continue doing unit tests and working on the final report.

Final product

13.may

*The eighth sprint is a day short of a week due to the hand-in date of the final product

13

3.2 Progress Overview

Below is a table and a chart showing how many hours were spent on each sprint along with

burndown charts and descriptions for each sprint.

Overview of total work hours

Table 3.2.1 - Sprint Work Hours

Sprint nr. | Estimated hours worked | Actual hours worked | %
0 88 75 85
1 264 215 81
2 176 172 98
3 176 209 119
4 176 163 93
5 100 123 123
6 100 186 186
7 100 247 247
8 100 107 107
Total 1280 1497 117

An overview of hours worked per sprint.

14

Hours worked

"

Hours worked 2

1 2 3 4 5 & 7 8

1=}

Sprintnr.

= ATl % e—Fctimated %

Image 3.2.1 - Shows the percentage of hours worked for each sprint compared to 100%.
Sprint 1 (24.jan - 13.feb)

Sprint 1 burndown

Stary points

1 2 3 4 5 6 7 & 9% 10 11 12 13 14 15 16 17 18 19 20 21 22

Days

=REMAININE m—Estimated

Image 3.2.2 - Burndown chart for first sprint.

After the preparation sprint the goal was to take on the developer user stories from the product

backlog. This meant a lot of time spent researching and studying up on React, Redux, and every

other tool concerning the project.

It was Tempo that suggested using React and the team was excited to take on the challenge.

However, no team member had worked with React before so it took a while to get familiar with it.

In the first sprint a boilerplate for the project was set up where all the tools were connected

together before the coding could begin.

15

Sprint 2 (14.feb - 5.mar)

Sprint 2 burndown

Story points

[)
= T -]

1 2 3 45 6 7 8B 9 1011 12 15 14 15 16 17 1B 19 2

=]
(=]
=
]
r3

Days

 REMEINING e— ACTUS

Image 3.2.3 - Burndown chart for second sprint.

After finishing the developer stories, the next step was a jump into the deep end with setting up a
connection with the JIRA API This took quite a while but after a pair programming session, a

connection to JIRA API was finally established.

It was then that the team realized that the time needed to complete said tasks had been wildly
underestimated so it was decided to review the product backlog and re-evaluate the amount of

story points set for each story.

During this sprint, work on the Calendar component also began and it got off to a flying start.

16

Sprint 3 (6.mar - 26.mar)

Sprint 3 burndown

W
& &

Story points

[T
= & & E =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Days

s [N 3INING s Fstimated

Image 3.2.4 - Burndown chart for third sprint.

Once the connection to the JIRA API had been established, all data needed for the worklogs could

now be fetched.

Thus, the third sprint focused on making it possible to search JIRA issues and create new

worklogs and finishing up the Calendar component.

A connection to the Google Calendar API was needed so that process was also started.

Sprint 4 (27.mar - 16.apr)

Sprint 4 burndown

n 30

o

Story point:
w
=]

1 2 3 4 5 & 7 B 9 10 11 17 13 14 15 16 17 18 19 20 21 22
Days

—— D IES] — s

Image 3.2.5 - Burndown chart for fourth sprint.

17

When the fourth sprint came around the team had found it’s footing, and everyone was feeling a
lot more confident in their abilities. Everything had started to click and the ball finally started

rolling.

Most of the functionality was either ready or in progress so it was decided to start diverting more

manpower into working on the Ul alongside the functions.

Once the Ul had been added the extension finally started to look like a complete product.

Sprint 5 (17.apr - 23.apr)

Sprint 5 burndown

35

25

Story points

[]
(ST =1

Nave
Days

Remaining ssFstimated

Image 3.2.6 - Burndown chart for fifth sprint.

The fifth sprint marked a change in pace as it was the first week long sprint but the team
managed to stay on schedule. Everyone had their tasks laid out so the main focus could be on

releasing a working product.

After taking a closer look at the Google API it became clear that Extensions for Chrome doesn't
support the Google API that the team had picked out. After coming to a mutual decision with

Tempo, the Google login was adjusted to the extension.

18

Sprint 6 (24.apr - 30.apr)

Sprint 6 burndown

Story paoints

Image 3.2.7 - Burndown chart for sixth sprint.

With everything else well under way the only thing missing was the Tracker component so

getting that ready was at the top of the list.

Sprint 7 (1.mai - 7.mai)

Sprint 7 burndown

w

(=]

i
S W o N

=
in

Story points

=]

0]

(]

Days

m—RENEININg ———Estimated

Image 3.2.8 - Burndown chart for seventh sprint.

The seventh sprint focused on unit testing, writing the final report, and polishing everything up

and getting it ready for the final status meeting.

19

Sprint 8 (8.mai - 13.mai)

Sprint 8 burndown

Story points

Days

=Famaining =Estimated

Image 3.2.9 - Burndown chart for eight sprint.
There was only a handful of story points left when it came to the final sprint of the project, and

they were quickly completed so that the team could focus on continuing with the unit testing and

finishing up the final report.

20

3.3 Project Burndown Chart

Story points

Project burndown

2
i)

YTt

150
100

ciy

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17

Sprintnr.

= [Remaining =Estimated

Image 3.3.1 - Burndown chart for entire project.

The team managed to complete all of the A requirements from the projects product backlog.

However, there were a few B requirements left unfinished that would make a nice addition to the

final product.

21

4. Risks

This chapter covers any risks that may have been encountered during the development of the

extension.

4.1 Risk analysis table

The risk analysis table lists the risks concerning the development process. The likeliness of a risk

was based on a scale from one to five, five being the most likely. An identical scale was used for

the impact of a risk, with risks with a five having the biggest impact. These two numbers were

then multiplied to calculate the risk as a whole.

Table 4.1.1 - Risk Analysis Table

Risk . Likeli .
Risk . . Risk management | Resolved
factor -hood | Impact | Risk | Guarantor Reduce risk
factor approach date
nr.
Working Risearch Redu}): and Team members will
with Redux earr.l as muc e.15 help each other, if that
1) 3 5 15 Everyone possible about it. \) . 28.feb
for the first) doesn't suffice we will
. Follow documentation .
time) look for outside help.
as much as possible.
Creating a .
Ch Take a look at other Team members will
rorr.1e Chrome extensions to | help each other, if that
2 extension 2 4 8 Everyone , . . 16.feb
for the first get a better feel for doesn't suffice we will
. how it’s done. look for outside help.
time
Research JSX and learn .
Writing i h ibl Team members will
riting in asmuc .as bossible help each other, if that
3 JSX for the 2 3 6 Everyone about it. Follow \) . 16.feb
. . . doesn't suffice we will
first time documentation as best .
look for outside help.
as we can.
Testing
before Make sure everyone Team members will
4 coding, 2 2 4 Everyone writes tests a.nd t.hen help each ot.her, if th%lt Unresolved
nobody has make sure it fails doesn't suffice we will
experience before writing code. look for outside help.
doing this

Risk analysis table including resolve dates.

22

Unfortunately the team was unable to set a resolve date for the last risk, seeing as the plan to put testing
before coding failed. There were a few things that prevented this from happening, one of which was the
decision of a CSS syntax that worked well with Mocha, our original testing framework. However, after
setting up a Karma config to keep track of code coverage, it was decided it would be best to switch from

Mocha to Jasmine.

5. Future work

The future of the solution is unclear as of now, although it bears mentioning that the Product
owner has expressed interest in expanding the solution for other browsers and as an Apple
widget. However, there is a short list of requirements that the team would have liked to have
implemented, at the top of which is keyboard shortcuts and advanced style features.

Unfortunately time ran out so those features will have to wait for a later date.

23

6. Conclusion

At the beginning of the project, Tempo indicated an interest in developing the extension in React
which was new territory for the team. Nevertheless it was a unanimous decision to take on the
challenge and welcome the experience. It got off to a slow start with everyone spending most of
their time researching and reading up on all the tools needed to manage the application.

Around the middle of the semester things were in full swing and most of the functions were
either complete or already underway, so it was decided to start divvying up the Ul workload and
start unit testing. While the Ul work got off to a great start, the same couldn’t be said about the
testing. The initial idea was to use PostCSS for the Ul and Mocha for testing, but soon problems
started popping up. It seemed PostCSS and Mocha didn’t really work well together so the decision
was made to switch over to SCSS. Later on the Mocha test framework was also switched out for

Jasmine which works well with the test runner Karma, which included code coverage.

This project was a big challenge for the whole team, but even though there were a few problems
along the way, for instance, regarding the Google Calendar API and login, the project was a
smashing success.

Of course there are things that could have been done better, like including the testing and reports
in the product backlog, but this was a great learning experience and everyone feels better

prepared for what the future as a computer scientist holds.

24

Bibliography

1. Tempo. (2016). Tempo. Retrieved 2 May, 2016, from http://tempo.io/

2. Trello. (2016). Trello. Retrieved 12 May, 2016, from https://trello.com/
3. Toggl. (2016). Toggl. Retrieved 12 May, 2016, from https://toggl.com/

4. Airbnb. (2016). Airbnb. Retrieved 12 May, 2016, from
https://github.com/airbnb/javascript

5. Github. (2016). React. Retrieved 4 May, 2016, from https://facebook.github.io/react/

6. Github. (2016). JSX. Retrieved 4 May, 2016, from
https://facebook.github.io/react/docs/jsx-in-depth.html

7. Redux. (2016). Redux. Retrieved 5 May, 2016, from http://redux.js.org

8. Kadira. (2015). Rethinking Redux. Retrieved 12 May, 2016 from
https://voice.kadira.io/rethinking-redux-f1e96daba60c#.ienl45q1f

9. Babel]S. (2016). Babeljs. Retrieved 5 May, 2016, from https://babeljs.io/

10. Github. (2016). Github. Retrieved 9 May, 2016, from
https://visionmedia.github.io/superagent/

11. Github. (2016). Webpack. Retrieved 9 May, 2016, from http://webpack.github.io/

25

http://tempo.io/
https://trello.com/
https://toggl.com/
https://github.com/airbnb/javascript
https://facebook.github.io/react/
https://facebook.github.io/react/docs/jsx-in-depth.html
http://redux.js.org/
https://voice.kadira.io/rethinking-redux-f1e96daba60c#.ienl45q1f
https://babeljs.io/
https://visionmedia.github.io/superagent/
http://webpack.github.io/

13 May, 2016

Anton Marin6 Stefansson
200492-3239

Hronn Robertsdottir
211192-2409

Sigrin Porsteinsdéttir
221187-2619

Po6rdis Jona Jonsdottir
280292-2309

School of Computer Science
Reykjavik University
Menntavegi 1

101 Reykjavik, Iceland

Tel. +354 599 6200

Fax +354 599 6201
www.reykjavikuniversity.is

