T-404-LOKA, Appendix B

Tempo Chrome Extension

Operating Manual

Anton Mariné Stefansson
Hronn Rébertsdottir
Sigrun Porsteinsdottir
Pérdis Jona Jonsdottir

Spring 2016
Instructor: Haukur Kristinsson
Examiner: Elin Elisabet Torfadéttir

1. Introduction

The Tempo Chrome extension is an extension which simplifies the process of tracking and
logging work hours through JIRA. This manual explains the front-end, back-end and testing
dependencies used in the project along with how to set up and build the extension, run tests and
building a .crx package.

2. Dependencies

Front-end dependencies

React

React is a JavaScript library for building user interfaces. It was made for building large
applications with data that changes over time. In React all you do is build encapsulated
components, which makes code reuse, testing and separations of concerns easy. React also only
reloads the part of the DOM that was modified resulting in better performance and it handles
data binding very well.

JSX

JSX is a JavaScript syntax extension that looks similar to XML. It is recommended to use JSX
instead of regular]S with React because it is a concise and familiar syntax for defining tree
structures with attributes. JSX also gives compile-time errors that, f.ex. tell you when code does
not compile due to spelling mistakes.

Redux

Redux uses a unidirectional data flow similar to Flux except it only has a single store. This store is
changed by cloning the original store and applying some functions without side effects. This is
done without a dispatcher. The stores only source of information is Actions, payloads of
information that send data from the application to the store. Actions only describe the fact that
something happened, but they do not specify how the application’s state changes in response.
This is the job of a reducer. The reducer is a pure function that takes the previous state and an
action and returns the next state.

Babel

Babel translates ES6/ES7 to the code that runs in the browser, so you can use all of the functions
offered by ES6/ES7 even though the browser does not support it yet.

Webpack

Webpack is a module bundler which takes modules with dependencies and emits static assets
representing those modules. This is used to reduce the initial loading time of our application.
Webpack splits the codebase into multiple chunks and can be loaded at demand.

Back-end dependencies

Node.js

Node.js is an asynchronous event driven framework that is designed to build scalable network
applications. Used to proxy requests and keep track of authentication data.

SuperAgent
SuperAgent is a lightweight progressive ajax API that gives flexibility and readability.

3. Tests

Dependencies for tests

Mocha

Mocha is a test framework running on node.js. It has asynchronous testing and it is possible to
use any assertion library with it.

4. Development

Setting up the extension

Git clone the project from https://github.com/hronn13/tempoExtension

Navigate to the project folder in your preferred shell and run the command
npm install
next run the command

npm install webpack -g

https://github.com/hronn13/tempoExtension

This will install Webpack globally which is the only dependency in the project which has to be
installed globally. The first command will install all other dependencies, which are specified in
the file package.json, required to continue development of the project.

Building the extension

Run the command in your preferred shell
webpack --watch

hronn@yogi:~/Documents/tempoExtension$S webpack
Hash: 3a%eae317ce43dae8401

Version: webpack 1.12.14

Time: 3534ms

Asset Size Chunks Chunk Names
bundle.js 1.9 MB 0 [emitted] app
+ 469 hidden modules

This will start a server which runs until it is stopped manually. Each time a file in the project is
saved Webpack rebuilds the project.

Go to chrome://extensions

Check the ‘Developer mode’ box.

Click the ‘Load unpacked extension...” button.

Locate the project root folder and click the ‘Ok’ button.
Make sure the Enabled’ box is checked for the extension.

The Tempo logo is now visible near the top of the browser window to the right.

[chrome://extensions il C

Running tests

Run the command
npm test

All dependencies needed for testing have already been installed with running the command npm
install (as shown above).

Building a .crx package

Go to chrome://extensions

Check the ‘Developer mode’ box.
Click the ‘Pack extension...” button.

Browse to the project folder that contains the manifest.json file, enter a private key (optional)
and click the ‘Pack Extension’ button.

The following window will pop up, be patient as this may take a while.

Pack Extension
Created the following files:

Extension: C:\Users\sigrun\Documents\tempoExtension.crx
Key File: C:\Users\sigrun\Documents\tempoExtension.pem

Keep your key file in a safe place. You will need it to create new versions of your
extension.

Click the ‘OK’ button.
Put the .crx file in the same folder as the manifest.json file.

Uninstall the unpacked version of the Chrome extension so it will not conflict with the packed
extension.

Drag and drop the new .crx file into Chrome browser to install the packed app.

