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Abstract

This thesis is a study of infinite directed graphs, and how we can use tools from the
theory of group actions to investigate them. For a group G acting on a set Ω, we define
a group homomorphism from G to the multiplicative group of positive rational numbers,
using the suborbits of the group action. This homomorphism will be called the suborbit
function and we will see that it is equal to a well known function, defined on locally
compact topological groups, called the modular function. There are a few objectives, and
all main results are proved using the suborbit function. The first objective is to generalize
a result of Cheryl E. Praeger from 1991 about homomorphic images of infinite directed
graphs with certain additional properties. The second objective is to find a condition on
edge transitive digraphs making them highly arc transitive. Next, we define Cayley–Abels
digraphs of groups and use the suborbit function to give a lower bound on their valency.
Then we consider the growth of graphs, showing that all infinite digraphs with the same
additional properties as in Praeger’s result, have exponential growth. Finally, the last
chapter is dedicated to constructing examples using Cartesian products of digraphs.

Útdráttur

Þessi ritgerð fjallar um óendanleg stefnd net og aðferðir til þess að nota grúpuverkanir
til að rannsaka þau. Látum G vera grúpu sem verkar á mengi Ω. Við notum hlutbraut-
ir þessarar verkunar til þess að skilgreina grúpumótun frá G yfir í margföldunargrúpu
jákvæðra ræðra talna. Við köllum þessa mótun hlutbrautafallið, og munum sjá að það
er jafngilt vel þekktu falli sem kallast mátfallið, og er skilgreint á staðþjöppuðum grann-
grúpum. Markmið ritgerðarinnar eru nokkur, og allar helstu niðurstöður eru sannaðar
með hjálp hlutbrautafallsins. Við útvíkkum niðurstöðu Cheryl E. Praeger frá 1991 um
mótanamyndir óendanlegra stefndra neta með ákveðna eiginleika. Við gefum skilyrði á
leggjagegnvirk, stefnd net sem tryggir að þau séu háörvavegagegnvirk. Við skilgreinum
Cayley–Abels-net grúpna og notum hlutbrautafallið til þess að gefa neðra mark á stig
slíkra neta. Að lokum skoðum við vöxt neta og sýnum að öll óendanleg stefnd net, með
sömu eiginleika og í niðurstöðu Praeger, vaxa með veldisvísishraða. Í síðasta kaflanum
notum við svo kartesk margfeldi til þess að búa til ýmis dæmi um stefnd net.
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1 Introduction

Let G be a group and Ω a set. A group action of G on Ω is a map:

Ω×G→ Ω, (α, g) 7→ αg

such that (αg)h = αgh and αe = α for all α ∈ Ω and all g, h ∈ G.

We know many natural group actions from algebra. Every group acts on itself with con-
jugation and on the coset space of any subgroup with right multiplication. A permutation
group of a set Ω acts naturally on Ω with a group action. An automorphism group of a
structure, say a field or a graph, acts on this structure with a group action and so on and
so forth. In this thesis we mostly concentrate on the connections between group actions
and graphs.

Another way to connect these two is to consider a given group action and use it to construct
a graph. By doing this we are building a bridge between different fields of mathematics.
Connections like that can prove very useful, because they allow us to transfer results from
one area of mathematics to another. Indeed we will do this here, applying results from
the theory of group actions to the theory of infinite digraphs and vice versa.

In Chapter 2 we give some preliminaries and notation. In Chapter 3 we define a function
that we will call the suborbit function, using the suborbits of a group action. This function
is in fact a group homomorphism, and it was introduced by Cheryl E. Praeger in 1991
[12]. The suborbit function is essentially our most important tool, as we use it to prove
all our main results.

Chapter 4 focuses on a link to group topology. If a group G acts on a set Ω, we can use
this action to define a topology on G called the permutation topology. We will see that
our suborbit function gains a whole new dimension if we do this. The purpose of this
chapter is not to provide new results, but simply to connect what we are working with to
already known results. Most of the conclusions in this chapter can be found in an article
by Rögnvaldur G. Möller from 2010 [11].

Chapters 5 and 6 contain the main results of the thesis. The first section of Chapter 5
starts with a result of Cheryl E Praeger from 1991. Praeger showed that infinite, connected
digraphs that are locally finite, vertex- and edge transitive and have unequal out-valency
and in-valency, can be mapped with a graph homomorphism onto Z̃ := (Z, {(i, i + 1) :
i ∈ Z}) and she constructed this homomorphism using the suborbit function. We then
proceed to generalize this result by omitting the condition of edge transitivity. The first
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1 Introduction

instinct was that we would get a similar graph homomorphism onto Z̃n, the naturally
directed graph on Zn, if we have n < ∞ orbits on edges. This is not true in general.
However, if we construct a map in the same way as before, using the suborbit function,
we get a graph homomorphism onto a certain Cayley digraph of the additive group Zk,
for some k ≤ n. Furthermore, adding some conditions on the automorphism group of
the digraph, we can guarantee that this Cayley digraph is in fact Z̃k. The conditions
however are quite extensive, which raises the question of whether there actually exist
such digraphs. We come back to this question in Chapter 6 where we give examples of
digraphs satisfying these conditions.

Section 5.2 focuses on highly arc transitive graphs, starting with some examples. Our main
result here is that infinite, connected, vertex- and edge transitive digraphs with relatively
prime in-valency and out-valency are highly arc transitive. We prove this in two different
ways, first using basic group theory and then using the suborbit function. In Section 5.3
we define Cayley–Abels digraphs of topological groups and use the image of the suborbit
function to give a lower bound on their valency. This is a partial answer to a question
of George A. Willis from 2014. In Section 5.4 we consider growth of graphs in relation
to the suborbit function. The objective here is to show that every infinite, connected,
vertex- and edge transitive digraph with finite, unequal in-valency and out-valency has
exponential growth.

The principal goal of the last chapter is to construct some more examples. We do this by
using products of graphs, mainly focusing on the Cartesian product. In the first section we
define three different products and give some examples of them. The next three sections
concentrate on Cartesian products, and how we can identify properties of a graph based
on properties of its factors. Most of these results have been proved for finite, undirected
graphs [8, 5], but we verify that they also hold true for infinite digraphs. In 6.4 we have
collected the tools to construct an infinite family of digraphs that satisfy the conditions
of the generalization of Praeger’s result.
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2 Preliminaries

2.1 Group actions

Let G be a group acting on a set Ω. For g ∈ G and α ∈ Ω we denote the image of α under
the action of g by αg. We say that G acts transitively on Ω, or that G is transitive on Ω,
if for any two elements, α and β in Ω, there exists an element g ∈ G such that αg = β.

We can think of each element in G as giving a permutation of the set Ω. Therefore we
have a natural map from G to Sym(Ω), taking g ∈ G to the corresponding permutation.
We say that the action of G on Ω is faithful if this map is injective. In this case we can
think of G as a permutation group on Ω.

The orbit of an element, α ∈ Ω, is the set αG := {αg : g ∈ G}. It is clear that G is
transitive if and only if every element of Ω lies in the same orbit, that is if for any α ∈ Ω
we have αG = Ω. We define a relation on Ω with α ∼ β if β ∈ αG. This is an equivalence
relation and its equivalence classes are called the orbits of G.

The point stabilizer or simply the stabilizer of α is denoted by Gα and defined as the
subset of G that fixes α, that is Gα := {g ∈ G : αg = α}. For a subset ∆ of Ω we define
the setwise stabilizer of ∆ in G as

G{∆} := {g ∈ G : ∆g = ∆}

and the pointwise stabilizer of ∆ in G as

G(∆) := {g ∈ G : δg = δ for all δ ∈ ∆}.

It is left to the reader to verify that Gα, G{∆} and G(∆) are subgroups of G. When the
set ∆ is finite and we have ∆ = {α0, α1, . . . , αn}, we often denote the pointwise stabilizer
by Gα0α1···αn instead of G(∆).

If G acts transitively on a set Ω, it also has a natural action on the coset space, G/Gα,
for any α ∈ Ω. In fact Ω looks exactly like this coset space in the sense that there exists a
bijective function, θ : Ω→ G/Gα such that θ(ωg) = (θ(ω))g for all ω ∈ Ω. This is further
explained in [2, p. 22].

Let G be a group that is transitive on a set Ω and let α ∈ Ω. The subgroup Gα also
acts on Ω and the orbits of this action are called the suborbits of G on Ω. The suborbit
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2 Preliminaries

αGα = {α} is called the trivial suborbit. We also have a natural action of G on the set
Ω2 = Ω × Ω defined by (α, β)g := (αg, βg). The orbits of G on Ω2 are called the orbitals
of G and the orbital {(α, α) : α ∈ Ω} is called the diagonal orbital. There is a one-to-one
correspondence between suborbits and orbitals of G, given by βGα ↔ (α, β)G, with the
trivial suborbit corresponding to the diagonal orbital [2, Theorem 5.2].

2.2 Graphs

A graph Γ is an ordered pair of sets, (V (Γ), E(Γ)), where V (Γ) is called the vertex set
of Γ and E(Γ) ⊆ {{x, y} : x, y ∈ V (Γ), x 6= y} is called the edge set of Γ. The elements
of these sets are called vertices and edges, respectively. The trivial graph is the graph
with one vertex and no edges. Two vertices, α and β in Γ, are adjacent or neighbors if
there is an edge connecting them, that is if {α, β} ∈ E(Γ). The valency of a vertex α is
the number of its neighbors, |{β ∈ V (Γ) : {α, β} ∈ E(Γ)}|. If every vertex of Γ has finite
valency, we say that Γ is locally finite.

A directed graph or digraph, Γ, is defined similarly, but with the edge set consisting of
ordered pairs of elements in V (Γ), that is E(Γ) ⊆ V (Γ)2. We generally assume that our
digraphs are without loops, that is (α, α) 6∈ E(Γ) for any α ∈ V (Γ), except in Definition
5.1.8 of Cayley digraphs. The trivial digraph is defined just like the trivial graph. Two
vertices, α and β, in a digraph are adjacent or neighbors if either (α, β) or (β, α) is an
edge. The valency of a vertex is again defined as the number of its neighbors. Let
e := (α, β) ∈ E(Γ). Then α is called the initial vertex of the edge e, and β its terminal
vertex. We define the out-valency of a vertex α, as the number of edges with α as an
initial vertex and the in-valency of α as the number of edges with α as a terminal vertex.
It is clear that the valency of a vertex is the sum of the out-valency and the in-valency.

Let Γ1 and Γ2 be graphs. A graph homomorphism between Γ1 and Γ2 is a map, ϕ :
V (Γ1) → V (Γ2) such that if {α, β} ∈ E(Γ1) then {ϕ(α), ϕ(β)} ∈ E(Γ2). A graph
homomorphism between digraphs is defined similarly, taking edges to edges. A graph
epimorphism is a surjective graph homomorphism, a graph isomorphism is a bijective
graph homomorphism, and a graph automorphism is a graph isomorphism from a graph
to itself. The set of all graph automorphisms on a graph Γ (directed or undirected) forms
a group under composition of maps. This group is called the automorphism group of Γ
and is denoted by Aut(Γ).

Let Γ be a graph, directed or undirected, and G := Aut(Γ). Then every g ∈ G is a
bijective map on both V (Γ) and E(Γ), so G acts on both sets in a natural way (in fact
these actions are clearly faithful). We say that Γ is vertex transitive (resp. edge transitive)
if this action is transitive on V (Γ) (resp. on E(Γ)). If Γ is a vertex transitive digraph,
every vertex must have the same out-valency, u and the same in-valency, v. In this case u
and v are called the out-valency and in-valency of Γ, respectively. We define the valency
of a vertex transitive graph (directed or undirected) similarly.

4



2.2 Graphs

Let Γ be a vertex transitive digraph with G := Aut(Γ). Then E(Γ) is a union of some
orbitals of the action of G on V (Γ). On the other hand, if a group G acts on a set Ω we
can construct a digraph Γ := (Ω,∆1 ∪ · · · ∪ ∆n) where the ∆i are some orbitals of the
action, excluding the diagonal orbital. This digraph is called the orbital digraph of G with
respect to the orbitals ∆1, . . . ,∆n.
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3 The suborbit function

We start by defining a group homomorphism from a group G acting on a set, to the
multiplicative group of the positive rational numbers. We will call this homomorphism
the suborbit function and denote it by ψ. In a paper [12] from 1991, Cheryl E. Praeger
defines the same function in order to show that infinite digraphs with certain properties
can be mapped homomorphically onto the naturally directed graph on Z. We will see this
result later on, as well as many other applications of this function.

3.1 Definition

Let G be a group acting transitively on a set Ω such that all suborbits of G are finite.
Fix a reference point, α ∈ Ω, and define the suborbit function as follows:

ψ : G→ Q+, g 7→
∣∣βGα∣∣
|αGβ |

, where β = αg.

This function is well defined since the suborbits of G are finite, but the fact that it is a
group homomorphism is not obvious.

Proposition 3.1.1. The suborbit function is a group homomorphism from G to the group
of positive rational numbers. Moreover, it does not depend on the reference point, α.

Proof. We note first that for every β, γ ∈ Ω we have
∣∣βGγ ∣∣ = |Gγ : Gγβ|, and for every

x ∈ G
x−1Gβx = Gβx

and therefore ∣∣βGβx ∣∣ =
∣∣∣βx−1Gβx

∣∣∣ =
∣∣∣(βx−1

)Gβ
∣∣∣ .

Let g, h ∈ G and set β := αg and γ := αh
−1 . Then

∣∣γGα∣∣ =
∣∣αGαh ∣∣ and similarly∣∣αGγ ∣∣ =

∣∣∣αGαh−1

∣∣∣ =
∣∣αhGα∣∣, so

ψ(h) =

∣∣αhGα∣∣∣∣αGαh ∣∣ =

∣∣αGγ ∣∣
|γGα|

and ψ(gh) =

∣∣αghGα∣∣∣∣αGαgh ∣∣ =

∣∣βGγ ∣∣
|γGβ |

.

Furthermore
1 =
|Gα : Gαβγ|
|Gα : Gαβγ|

=
|Gα : Gαγ| |Gαγ : Gαβγ|
|Gα : Gαβ| |Gαβ : Gαβγ|

.

7



3 The suborbit function

Therefore

ψ(g)ψ(h) =

∣∣βGα∣∣
|αGβ |

·
∣∣αGγ ∣∣
|γGα |

=
|Gα : Gαβ| |Gγ : Gαγ|
|Gβ : Gαβ| |Gα : Gαγ|

· |Gα : Gαγ| |Gαγ : Gαβγ|
|Gα : Gαβ| |Gαβ : Gαβγ|

=
|Gγ : Gαγ| |Gαγ : Gαβγ|
|Gβ : Gαβ| |Gαβ : Gαβγ|

=
|Gγ : Gαβγ|
|Gβ : Gαβγ|

=
|Gγ : Gβγ| |Gβγ : Gαβγ|
|Gβ : Gβγ| |Gβγ : Gαβγ|

=
|Gγ : Gβγ|
|Gβ : Gβγ|

=

∣∣βGγ ∣∣
|γGβ |

= ψ(gh)

so ψ is a homomorphism from G to Q+. We will now show that it is independent of our
reference point, α. Let ω be another point in Ω and define a homomorphism

ψω : G→ Q+, g 7→ |β
Gω |
|ωGβ |

where β = ωg.

Let h ∈ G such that α = ωh. Then βh = αh
−1gh and we get

ψω(g) =
|βGω |
|ωGβ |

=
|βGαh−1 |
|αh−1Gβ |

=
|βhGα |
|αGβh |

=
|αh−1ghGα|
|αGαh−1gh |

= ψ(h−1gh) = ψ(h)−1ψ(g)ψ(h) = ψ(g).

This last property of ψ allows us to define the function without fixing the point, α. The
elements α and β in the definition are then simply any two elements in Ω such that αg = β.
This becomes useful in determining some properties of ψ.

3.2 Basic properties

We investigate some properties of the kernel of the suborbit function before introducing
a condition on the action of G making it trivial. It is worth noting that the kernel of ψ is
often "large" in some sense, as it contains certain subgroups of G that can not be trivial
if ψ is non-trivial.

Theorem 3.2.1.

(i) Gα ≤ kerψ for all α ∈ Ω.

8



3.2 Basic properties

(ii) G′ ≤ kerψ, where G′ it the commutator subgroup of G.

(iii) If g ∈ G is such that 〈g〉 has a finite orbit on Ω, then g ∈ kerψ.

Proof.

(i) We have αg = α for every g ∈ Gα so

ψ(g) =
|αgGα|
|αGαg |

=
|αGα |
|αGα |

= 1

(ii) This is obvious since the image of ψ is an abelian group.

(iii) Let g ∈ G, and suppose H := 〈g〉 has a finite orbit, αH . Then |αH | < ∞, so there
exists n ∈ N such that αgn = α. Then gn ∈ Gα ⊂ kerψ (by (i)) so we have

ψ(gn) = 1 = ψ(g)n ∈ Q+

and therefore ψ(g) = 1 and g ∈ kerψ.

Remark 3.2.1.1. If g, h ∈ G and there exists a point α ∈ Ω such that αg = αh then
gh−1 ∈ Gα, so by (i) we have ψ(gh−1) = 1, thus ψ(g) = ψ(h).

Definition 3.2.2. Let G be a group acting faithfully on a set Ω. We say that the action
is quasi-primitive if every non-trivial normal subgroup of G acts transitively on Ω.

As the name implies, quasi-primitivity is a generalization of another property of a group
action called primitivity. To define it we first need to define blocks. A subset, ∆ ⊆ Ω is
a block if for every g ∈ G either ∆ = ∆g or ∆ ∩ ∆g = ∅. A group action is primitive if
every block, ∆ ⊆ Ω is either trivial, that is |∆| = 1, or improper, that is ∆ = Ω. We
can see that primitivity implies quasi-primitivity because αN is a block for any normal
subgroup N of G. The following theorem is proved in [11, Corollary 2.6] for primitive
group actions.

Theorem 3.2.3. Let G be a permutation group acting transitively on a set Ω and assume
that all suborbits of G are finite. If G is quasi-primitive, then the suborbit function is
trivial.

Proof. Let K := kerψ. Then K is a normal subgroup of G. Since G is quasi-primitive,
we have that K is either trivial or transitive. Suppose K = {e}. Then by (i) in Theorem
3.2.1 we have that Gα is trivial for every α ∈ Ω, and therefore∣∣βGα∣∣

|αGβ |
=
|{β}|
|{α}|

= 1

for all α, β ∈ Ω. Thus ψ is trivial.

9



3 The suborbit function

Now suppose K is transitive. Let g ∈ G and set α, β ∈ Ω such that β = αg. By the
transitivity of K, there exists k ∈ K such that β = αk. But then, by Remark 3.2.1.1,
ψ(g) = ψ(k) = 1, thus ψ is trivial.

10



4 A little topology

Before we go on to the main topic of this thesis, we will introduce a connection to topology.
The links between permutation groups and topological groups are many and diverse,
however we will only touch on a few here.

4.1 Topological groups

We start by defining topological groups and looking at some of their properties. We will
exclude basic definitions from topology, but note that we define neighborhoods to be open.

Definition 4.1.1. A topological group G is a topological Hausdorff space that is also a
group, such that the functions

(g, h) 7→ gh and g 7→ g−1

are continuous.

Remark. In this case, the function g 7→ g−1 is a homeomorphism, because it is its own
inverse.

Having a lot of structure, topological groups have many convenient properties.

Proposition 4.1.2. Let x ∈ G. The functions G→ G, given by

g 7→ gx, g 7→ xg and g 7→ x−1gx

are homeomorphisms.

Proof. It is clear that the functions are all bijective. We will only show that the function
f : g 7→ gx is continuous (the other proofs are similar). Let g ∈ G and let V ⊂ G be
a neighborhood of f(g) = gx. Since the function (g1, g2) 7→ g1g2 is continuous, there
exist neighborhoods U1 and U2 of g and x respectively such that U1U2 ⊂ V . In particular
f(U1) = U1x ⊂ V so f is continuous.

An obvious consequence of this proposition is that for every open set U in a topological
group G and every g ∈ G, the sets Ug, gU and g−1Ug are open. In fact, every neighbor-
hood of g ∈ G is of the form Ug with U a neighborhood of the identity because if V is
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4 A little topology

a neighborhood of g, then U := V g−1 is a neighborhood of the identity and V = Ug. It
follows that every open set in G is of the form Ug with g ∈ G and U a neighborhood of the
identity. To define a topology on a group, it is therefore sufficient to give a neighborhood
basis of the identity.

Proposition 4.1.3. Let G and H be topological groups. A group homomorphism ϕ :
G→ H is continuous if and only if it is continuous at the identity, eG.

Proof. Obviously ϕ is continuous at the identity if it is continuous. Suppose it is continu-
ous at eG. Let g ∈ G, and let V = Wϕ(g) a neighborhood of ϕ(g) withW a neighborhood
of eH = ϕ(eG). There exists a neighborhood U of eG such that ϕ(U) ⊂ W . But then
ϕ(Ug) = ϕ(U)ϕ(g) ⊂ Wϕ(g) = V , so ϕ is continuous at g.

Definition 4.1.4. Let G be a locally compact group, Σ the σ-algebra generated by the
open sets of G and µ a measure on Σ. We say that µ is regular if it satisfies the following:

(i) µ(K) <∞ for all compact sets K ⊂ G

(ii) For A ∈ Σ we have µ(A) = inf{µ(U) : A ⊂ U,U open}.

(iii) For U an open subset of G we have µ(U) = sup{µ(K) : K ⊂ U,K compact}.

Definition 4.1.5. Let G be a locally compact topological group. A right Haar measure
on G is a nontrivial, regular measure µ on G such that µ(Ag) = µ(A) for all measurable
subsets A of G and all elements g ∈ G.

The following theorem is on the existence and uniqueness of a right Haar measure. For
proof see [4, Section 9.2].

Theorem 4.1.6. Let G be a locally compact group. Then there exists a right Haar mea-
sure on G. Furthermore, if µ and µ′ are two Haar measures on G, then there exists a
number a ∈ R+ such that µ′ = aµ.

4.2 The permutation topology

In this section we will show that given a group G acting faithfully on a set, we can define
a topology on G making it a topological group. We will also introduce two functions, the
modular function and the scale function, and discover their connection to the suborbit
function.

Definition 4.2.1. Let G be a group acting on a set Ω. We define a topology on G by
taking as a neighborhood basis of the identity element the family of subgroups

{G(∆) : ∆ is a finite subset of Ω},

12



4.2 The permutation topology

that is, the pointwise stabilizers of finite sets. This topology is called the permutation
topology.

Proposition 4.2.2. A group G acting faithfully on a set Ω is a topological group with
respect to the permutation topology.

Proof. We start by showing thatG is Hausdorff. Let g, h ∈ G. Since the action is faithful,
there exists α ∈ Ω such that αg 6= αh. Then Gαg and Gαh are disjoint neighborhoods of
g and h respectively, thus G is Hausdorff.

It remains to show that the functions

(g, h) 7→ gh and g 7→ g−1

are continuous. By Proposition 4.1.3 it suffices to show continuity at the identity, eG. Let
V ⊂ G be a neighborhood of eG and let ∆ be a finite subset of Ω such that G(∆) ⊂ V .
Then G(∆) ×G(∆) is a neighborhood of eG×G and gh ∈ V whenever (g, h) ∈ G(∆) ×G(∆).
Also G−1

(∆) = G(∆) is a neighborhood of eG, and g−1 ∈ V for g ∈ G(∆), so both functions
are continuous.

Remark. Note that G is totally disconnected with respect to the permutation topology, if
and only if the action if faithful.

If G is a topological group and U an open subgroup of G, then G acts transitively on
the coset space G/U . The point stabilizers of the action are conjugates of U , thus open
subgroups of G. Furthermore, pointwise stabilizers of finite sets are simply finite intersec-
tions of point stabilizers, so they are open as well. Therefore, the permutation topology
on G, given by this action, is contained in the original topology on G. Furthermore, if U
is also a compact subgroup of G then all pointwise stabilizers of finite sets are compact.

Let G be a group with the permutation topology, acting on a set Ω. We say that G is
closed if its image in Sym(Ω) is a closed subgroup of Sym(Ω). If the action on Ω is faithful,
we can regard G as a permutation group on Ω. In this case, G is closed if and only if it
is a full automorphism group for some first-order structures on Ω (see [3, Section 2.4]).

Let µ be a right Haar measure on a locally compact group G and define for all x ∈ G
the measure µx by µx(A) := µ(xA), for any measurable set A ⊆ G. Since the map
g 7→ xg is a homeomorphism, µx is regular for any x ∈ G. Also, for g ∈ G we have
µx(Ag) = µ(xAg) = µ(xA) = µx(A) so µx is a right Haar measure on G. Then, by
Theorem 4.1.6, there exists a number ∆(x) ∈ R+ such that µx = ∆(x)µ. We can therefore
define the following function.

Definition 4.2.3. Suppose G is a locally compact group and let µ be a right Haar
measure on G. The modular function is a function ∆ that satisfies µ(xA) = ∆(x)µ(A)
for any measurable set A and any x ∈ G.

Remark. It is easy to see that ∆ is a group homomorphism from G to R.

13
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The following identity was first proved in a paper by Günter Schlichting in 1979, [13,
Lemma 1]. It also appears independently in a paper by V. I. Trofimov from 1985, in the
proof of Theorem 1 [16].

Theorem 4.2.4. Let G be a group acting transitively on Ω such that G is closed with the
permutation topology. Suppose furthermore that all suborbits of the action are finite and
let ψ be the suborbit function defined by this action. Then ∆ = ψ.

Proof. Let g ∈ G and α, β ∈ Ω such that αg = β, and let µ be a right Haar measure
on G. We note first that Gα, Gβ and Gαβ are compact sets (see [11, Lemma 2.2]), and
so µ(Gα), µ(Gβ), µ(Gαβ) < ∞. Also, Gα is a disjoint union of k := |Gα : Gαβ| cosets,
Gαβg1, . . . , Gαβgk so we have

µ(Gα) = µ

(
k⋃
i=1

Gαβgi

)
=

k∑
i=1

µ(Gαβgi) = |Gα : Gαβ|µ(Gαβ) (4.1)

Now we easily get:

ψ(g) =

∣∣βGα∣∣
|αGβ |

=
|Gα : Gαβ|
|Gβ : Gαβ|

=
µ(Gα)/µ(Gαβ)

µ(Gβ)/µ(Gαβ)

=
µ(Gα)

µ(Gβ)
=
µ(gGβg

−1)

µ(Gβ)
=

∆(g)µ(Gβ)

µ(Gβ)
= ∆(g)

Remark 4.2.4.1. If G is a totally disconnected, locally compact group, then it contains
a compact open subgroup U , and acts transitively on G/U . The pointwise stabilizers of
this action are compact so all suborbits are finite by Equation (4.1). Furthermore, the
topology on G contains the permutation topology, so the modular function stays the same.
Theorem 4.2.4 therefore still holds, and we see that the suborbit function is independent
of the subgroup U , as long as U is compact and open.

Definition 4.2.5. Let G be a totally disconnected, locally compact group. The scale
function on G is defined as

s(g) := min{|U : U ∩ g−1Ug| : U a compact open subgroup of G}.

A compact open subgroup U of G is said to be tidy for g if s(g) = |U : U ∩ g−1Ug|.

In a paper from 2001, George A. Willis defines tidy subgroups in a fairly untidy way. In
the same paper he shows however, that the definition is equivalent to the one above [18,
Definition 2.1, Theorem 3.1].

Theorem 4.2.6. [17, Corollary 1] Let G be a locally compact, totally disconnected group.
For g ∈ G we have

∆(g) =
s(g)

s(g−1)
.
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Proof. (A similar proof can be found in [10, Theorem 5.2]). Let g ∈ G and choose
compact open subgroups, U1 and U2 such that

|U1 : U1 ∩ g−1U1g| = s(g) and |U2 : U2 ∩ gU2g
−1| = s(g−1).

Since s(g) ≤ |U2 : U2 ∩ g−1U2g| and s(g−1) ≤ |U1 : U1 ∩ gU1g
−1|, we get:

|U1 : U1 ∩ g−1U1g|
|U1 : U1 ∩ gU1g−1|

≤ s(g)

s(g−1)
≤ |U2 : U2 ∩ g−1U2g|
|U2 : U2 ∩ gU2g−1|

.

Let G act on the space Ω := G/U1 and let α ∈ Ω such that U1 = Gα. We use the fact that
compact open subgroups in the permutation topology of this action are compact open
subgroups in the topology on G. Also, because of the identity µ(Gγ) = |Gγ : Gγδ|µ(Gγδ)
for a right Haar measure µ, and γ, δ ∈ Ω, we know that all suborbits of the action are
finite. Now we have:

|U1 : U1 ∩ g−1U1g|
|U1 : U1 ∩ gU1g−1|

=
|Gα : Gααg |
|Gα : Gααg−1 |

=
|Gα : Gααg |
|Gαg : Gαgα|

= ∆(g)

by the proof of Theorem 4.2.4. By defining a similar action of G on G/U2 we also get

∆(g) =
|U2 : U2 ∩ g−1U2g|
|U2 : U2 ∩ gU2g−1|

and we have shown that s(g)/s(g−1) = ∆(g).

We note that a closed permutation group G that acts transitively on Ω with all its sub-
orbits finite is always locally compact because stabilizers of points are compact. This is
proved by Woess in [19, Lemma 1].

Corollary 4.2.7. Let G be a group acting transitively on a set Ω. Suppose G is closed
with the permutation topology and that all suborbits of the action are finite. Then

ψ(g) =
s(g)

s(g−1)

for all g ∈ G.

The following two theorems are proved in [10].

Theorem 4.2.8. [10, Theorem 7.7] Let G be a totally disconnected, locally compact group
and let g ∈ G. For any compact, open subgroup V of G,

s(g) = lim
n→∞

|V : V ∩ g−nV gn|1/n.

Theorem 4.2.9. [10, Corollary 7.8] Let G be a group acting transitively on a set Ω such
that all suborbits of the action are finite. Let α ∈ Ω and g ∈ G and set αn := αg

n for
n ∈ N. Then

s(g) = lim
n→∞

|αGαn |1/n.
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5 Applications to graphs

In this chapter we consider graphs (mostly directed) and their automorphism groups. If a
digraph is locally finite and vertex transitive, we can define the suborbit function by the
action of its automorphism group on its vertex set. We will see that doing this, we can
use the suborbit function to identify some properties of the digraph. Conversely, given
these properties of the digraph, we can use them to describe the suborbit function.

5.1 Homomorphic images

By mapping a graph with a graph homomorphism onto a simpler graph, we can observe
some of its features while excluding others. This can be convenient if the original graph is
complicated. In this section we will see how we can use the suborbit function to build such
graph homomorphisms for certain types of digraphs, starting with the result of Praeger
that we mentioned in the beginning of Chapter 3, and then generalizing it to digraphs
with less structure.

Definition 5.1.1. A walk in a graph (directed or undirected) from a vertex α to a vertex
β is a sequence of vertices, α = α0, α1, . . . , αn = β such that αi−1 and αi are neighbors
for every i = 1, . . . , n. A path is a walk in which every two vertices are distinct. A graph,
Γ is connected if for any two vertices, α and β there exists a walk from α to β.

Definition 5.1.2. A cycle, more specifically an n-cycle, is a path α1, . . . , αn where α1

and αn are adjacent. A 3-cycle is called a triangle and a 4-cycle is called a square.

Definition 5.1.3. A tree is a graph (directed or undirected) in which for any two vertices,
α and β there is exactly one path from α to β.

Remark. A tree is always connected and without cycles.

Definition 5.1.4. A graph (directed or undirected) is said to be bipartite if its vertex set
can be partitioned into two parts, such that every two adjacent vertices lie in different
parts.

Let Γ be a connected digraph and G a subgroup of Aut(Γ) that acts transitively on vertices
of Γ. Assume furthermore that all suborbits of G are finite and let ψ be the suborbit
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function defined by the action of G on V (Γ). We label every directed edge, e = (α, β),
with a number:

ψe :=
|βGα |
|αGβ |

and note that if g, h ∈ G are such that αg = β and βh = α then we have ψ(α,β) = ψ(g)

and ψ(h) =
(
ψ(α,β)

)−1. This way of labeling the edges of the digraph can be found in an
article by Hyman Bass and Ravi Kulkarni from 1990 [1, Section 1].

Let g ∈ G and α and β be vertices of Γ such that αg = β. Suppose furthermore that
there exists a vertex γ ∈ V (Γ) such that (α, γ) and (γ, β) are edges. Let g1, g2 ∈ G such
that αg1 = γ and γg2 = β. Then αg = αg1g2 so we have

ψ(g) = ψ(g1g2) = ψ(g1)ψ(g2) = ψ(α,γ)ψ(γ,β).

Since Γ is connected, there exists a walk (not necessarily directed) between any two
vertices α and β. For such a walk, we enumerate the edges, e1, . . . , ek. Then if αg = β we
can extend the above to get:

ψ(g) = (ψe1)
ε1 · · · (ψek)εk

where εi ∈ {±1}. Thus the labeled graph describes the suborbit function completely.

Definition 5.1.5. We define a naturally directed graph on the integers as

Z̃ := (Z, E(Z̃))

where E(Z̃) = {(n, n+ 1) : n ∈ Z}. More generally, for any k ∈ N∗ we define a naturally
directed graph on Zk as

Z̃k := (Zk, E(Z̃k))

where (n,m) ∈ E(Z̃k), with n = (n1, . . . , nk) and m = (m1, . . . ,mk), if and only if
there exists a unique number, l ∈ {1, . . . , k} such that ml = nl + 1 and mi = ni for all
i ∈ {1, . . . , k}\{l}.

The following theorem was first proved by Cheryl E. Praeger in 1991 [12].

Theorem 5.1.6. Let Γ be an infinite, connected, vertex transitive, edge transitive digraph
with finite but unequal out-valency and in-valency. Then there exists a graph epimorphism,
ϕ : Γ→ Z̃, s.t. the inverse image, ϕ−1(n), is infinite for any n ∈ Z.

Proof. Set G := Aut(Γ). We denote the out-valency of Γ with u and the in-valency with
v. Let α and β be vertices of Γ such that (α, β) is an edge. Since G acts transitively on
the edges of Γ we see that βGα = {γ ∈ V (Γ) : (α, γ) ∈ E(Γ)} and it is obvious that the
cardinality of this set is u. In the same way we get αGβ = {γ ∈ V (Γ) : (γ, β) ∈ E(Γ)},
and the cardinality of this set is v. Thus for an edge (α, β) we have

ψ(α,β) =
u

v
.
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Now, let α and β be arbitrary vertices of Γ and g ∈ G such that αg = β. Let
α = α0, α1, . . . , αk = β a walk between α and β. We find g1, . . . gk such that αgii−1 = αi
and we denote the directed edges of this walk by e1, . . . , ek, so that we have:

ei = (αi−1, αi) or ei = (αi, αi−1).

Then ψ(g) = ψ(g1) · · ·ψ(gk) and by the note above we can write:

ψ(gi) =

{
ψei if ei = (αi−1, αi)

(ψei)
−1 if ei = (αi, αi−1)

where ei is an edge, so for each i we have ψ(gi) = u/v or ψ(gi) = v/u. It follows that for
any g ∈ G we can write

ψ(g) =
(u
v

)n
,

for some n ∈ Z. Furthermore, we get that

Im(ψ) =
{(u

v

)n
: n ∈ Z

}
' Z

because u/v 6= 1.

We can now define a function

ϕ : V (Γ)→ Z, β 7→ n if β = αg and ψ(g) =
(u
v

)n
.

By Remark 3.2.1.1 this map is well defined. Also, it is easy to see that if (β, γ) is an edge,
then ϕ(γ) = ϕ(β) + 1, thus ϕ is a graph homomorphism from Γ to Z̃, and it is surjective
since the image of ψ is a subgroup of Q+ spanned by u/v.

Suppose that ϕ−1(n) is finite for some n ∈ Z. We note that the fibers of ϕ are simply
the orbits of the kernel of ψ, and thus they all have the same cardinality, say k. Then
the number of edges with initial vertex in ϕ−1(n) is u · k and the number of edges with
terminal vertex in ϕ−1(n + 1) is v · k, and these must be equal, so we get uk = vk but
this contradicts the hypothesis u 6= v.

We can see that Theorem 5.1.6 fails if we omit the hypothesis of edge transitivity, which
raises the question of whether we can build a similar epimorphism onto Z̃n if Aut(Γ)
has n orbits on edges (note that n < ∞ since the graph is locally finite and vertex
transitive). Generally the answer is no, and we give a counter-example below in Example
5.1.7. However, we can still build a graph epimorphism in the same way onto a digraph
that is similar to Z̃k for some k ≤ n. Further conditions on Aut(Γ) will then guarantee
that this digraph is in fact Z̃n.

Example 5.1.7. Let Γ0 be the infinite directed tree with in-valency 1 and out-valency
2. Γ0 is locally finite, connected and both vertex- and edge transitive. We will construct
a new digraph Γ by adding edges to Γ0. Let ∆ be the subset of V (Γ) × V (Γ) such that
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(α, β) ∈ ∆ if and only if there is a directed path of length two from α to β in Γ0. Set
Γ := (V (Γ), E(Γ)) with

V (Γ) := V (Γ0) and E(Γ) := E(Γ0) ∪∆.

Figure 1 shows parts of the digraphs Γ0 and Γ, all edges are directed downwards. Of
course both digraphs continue infinitely upwards and downwards.

Figure 1: Vertex transitive graph with two orbits on edges

Here, Γ is not edge transitive because an edge from E(Γ0) can not be mapped to an edge
from ∆ with a graph automorphism. In fact, Aut(Γ) has exactly two orbits on edges,
namely E(Γ0) and ∆ (shown in blue and red, respectively). This digraph however can
not be mapped onto Z̃2 with a graph homomorphism because Γ contains triangles whereas
Z̃2 does not.

Definition 5.1.8. Let G be a group and S ⊆ G. The Cayley digraph of G with respect
to S is defined as the directed graph,

Cay(G,S) := (G,∆) where ∆ := {(g, gs) : g ∈ G, s ∈ S}.

We can identify many properties of the Cayley digraph of a group from the set S. Let
Γ := Cay(G,S) for a group G and S ⊆ G. Then Γ is connected if and only if S generates
G. If S contains the identity of G, then Γ has a loop at every vertex, otherwise it has no
loops.

Example 5.1.9. The Cayley digraph of the additive group Z with respect to the set
S = {1} is Z̃. More generally, the Cayley digraph of the additive group Zk with respect
to the set S = {e1, . . . , ek} is Z̃k (here ei ∈ Zk is the element with 1 as its i-th coordinate
and 0 elsewhere).

Theorem 5.1.10. Let Γ be an infinite, connected, locally finite, vertex transitive, digraph
and let G be a subgroup of Aut(Γ) that has n orbits on E(Γ), denoted by ∆1, . . . ,∆n.
For i = 1, . . . , n, let Γi := (V (Γ),∆i) and ui and vi be the out-valency and in-valency
of Γi, respectively. If ψ is the suborbit function defined by the action of G on Γ, then
Im(ψ) ' Zk for some k ≤ n and there exists a graph epimorphism, ϕ : Γ→ Cay(Zk, θ(S))
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where S = {u1/v1, . . . , un/vn} and θ is an isomorphism from Im(ψ) to Zk. Furthermore,
every fiber of ϕ is infinite. (Here we suppose Z0 is the trivial additive group, {0}.)

Proof. Suppose first that ui = vi for i = 1, . . . , n. Then Im(ψ) ' Z0 and S = Im(ψ) so
Cay(Z0, θ(S)) is simply the graph with one vertex and a loop on that vertex. The map
taking every vertex of Γ to this one vertex then clearly satisfies all our conditions.

Suppose ui 6= vi for some i. If (α, β) ∈ ∆i is an edge and β = αg we have

ψ(g) = ψ(α,β) =
ui
vi
.

Then, by the same argument as in Theorem 5.1.6, we have for arbitrary α, β ∈ V (Γ) such
that β = αg:

ψ(g) =

(
u1

v1

)m1

· · ·
(
un
vn

)mn
with mi ∈ Z. Thus the group Im(ψ) = 〈u1/v1, . . . , un/vn〉 is spanned by at most n
elements inQ+ and so we have Im(ψ) ' Zk for some k ∈ {1, . . . , n}. We can now construct
a map in a similar way as in Theorem 5.1.6. Let θ be an isomorphism from Im(ψ) to Zk
and S = {u1/v1, . . . , un/vn}. We fix a vertex, α ∈ V (Γ) and define ϕ : V (Γ)→ Zk by

β 7→ θ(ψ(g)) where β = αg.

It is clear that this map is surjective since Im(ψ) ' Zk. Let (β, γ) ∈ E(Γ), and g, h ∈ G
such that β = αh and γ = βg. Then ϕ(β) = θ(ψ(h)) and

ϕ(γ) = θ(ψ(hg)) = θ(ψ(h)) + θ(ψ(g)) = ϕ(β) + θ(ui/vi)

for some i = 1 . . . , n. Since θ(ui/vi) ∈ θ(S) we have shown that (ϕ(β), ϕ(γ)) is an edge
in Cay(Zk, θ(S)) and so ϕ is an epimorphism.

To show that every fiber of ϕ is infinite, we choose i ∈ {1, . . . , n} such that ui 6= vi.
Then, (z, z + θ(ui/vi)) is an edge for any z ∈ Zk. Furthermore, the number of edges in
the orbital ∆i with initial vertex in ϕ−1(z) is ui · |ϕ−1(z)|, and the number of edges in ∆i

with terminal vertex in ϕ−1(z + θ(ui/vi)) is vi · |ϕ−1(z + θ(ui/vi))| and these must be the
same, so we have ui · |ϕ−1(z)| = vi · |ϕ−1(z + θ(ui/vi))|, for all z ∈ Zk. Since ui 6= vi this
implies

|ϕ−1(z)| < |ϕ−1(z + θ(ui/vi))| or |ϕ−1(z)| > |ϕ−1(z + θ(ui/vi))|.

It is now clear that if |ϕ−1(z)| were finite for some z, we could find an element z′ ∈ Zk
with |ϕ−1(z′)| = 0 which is impossible since ϕ is surjective.

Example 5.1.11. Let Γ be the graph from Example 5.1.7 and set Γ1 := (V (Γ), E(Γ0))
and Γ2 := (V (Γ),∆). Then Γ1 has out-valency u1 = 2 and in-valency v1 = 1, and Γ2 has
out-valency u2 = 4 and in-valency v2 = 1. The image of ψ is generated by u1/v1 = 2
and u2/v2 = 4, so Im(ψ) = 〈2〉 ' Z. Let S = {2, 4} and θ a group isomorphism from
Im(ψ) to Z. Then, by the theorem, we have a surjective graph homomorphism from Γ to
Cay(Z, θ(S)). Note that in this case the Cayley digraph is not the same as Z̃.
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We now proceed to add conditions to our graph to guarantee that the Cayley digraph we
construct is equal to Z̃k, starting by proving the following well known fact.

Lemma 5.1.12. Let G be a group acting transitively on a set Ω such that all suborbits
are finite. Let α ∈ Ω and assume that there exist elements g1, . . . , gn ∈ G such that
G = 〈Gα, Gαg1, . . . , Gαgn〉. Then the digraph defined by Γ := (Ω,∆1 ∪ · · · ∪ ∆n), where
∆i = (α, αgi)G, is connected and has finite in- and out-valency.

Proof. The finiteness of the in- and out valency is clear, since all suborbits are finite and
Γ has finitely many orbits on edges.

We will show that there exists a path from any arbitrary vertex to α. Let β ∈ Ω and
g ∈ G such that β = αg. Since G is generated by the set Gα ∪Gαg1 ∪ · · · ∪Gαgn we can
write

g = h1g
ε1
k1
· · ·hmgεmkmhm+1

where ki ∈ {1, . . . , n}, εi ∈ {±1} and hi ∈ Gα for all i ∈ {1, . . . ,m}.

Let xi := hig
εi
ki
. . . hmg

εm
km
hm+1 ∈ G and βi := αxi for i ∈ {1 . . .m}. Then β1 = β and for

every i = 1, . . . ,m− 1 we have one of the following (depending on εi):

(i) (βi+1, βi) = (α, αhigki )xi+1 = (α, αgki )xi+1 ∈ E(Γ)

(ii) (βi, βi+1) = (α
hig
−1
ki , α)xi+1 = (α

g−1
ki , α)xi+1 ∈ E(Γ)

In the same way either (α, βm) or (βm, α) is an edge and so α, βm, . . . , β1 = β is a walk
from α to β.

Theorem 5.1.13. If we assume the hypotheses of the lemma and furthermore that

〈ψ(g1), . . . , ψ(gn)〉 = Im(ψ) ' Zn,

then there exists a graph epimorphism ϕ : Γ→ Z̃n all of whose fibers are infinite.

Proof. By the lemma and the fact that ψ(g1), . . . , ψ(gn) generate Im(ψ) we have that Γ
is connected, with finite but unequal in-valency and out-valency and has exactly n orbits
on edges, namely ∆1, . . . ,∆n. Furthermore, if ui and vi are in out-valency and in-valency
of Γi := (V (Γ),∆i), respectively, then ψ(gi) = ui/vi. Let S := {u1/v1, . . . , un/vn}. Then
by Theorem 5.1.10 there exists a graph epimorphism, ϕ : Γ → Cay(Zn, θ(S)), where θ is
any isomorphism from Im(ψ) to Zn, with every fiber of ϕ infinite. We know that Z̃n is
the Cayley digraph of Zn with respect to the set {e1, . . . , en}, so it only remains to show
that there is an isomorphism from Im(ψ) to Zn taking ui/vi to ei. But this is clear, since
the sets S and {e1, . . . , en} are both bases for these groups as Z-modules.

Now this generalization of Praeger’s result (Theorem 5.1.6) is easily proved.

Corollary 5.1.14. Let Γ be an infinite, connected, locally finite, vertex transitive, digraph
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and let G be a subgroup of Aut(Γ) that has n orbits on E(Γ). If Im(ψ) ' Zn, then there
exists a graph epimorphism ϕ : Γ→ Z̃n all of whose fibers are infinite.

Proof. Let α ∈ V (Γ) and ∆1, . . . ,∆n be the orbits on the edges. Then there exist
g1, . . . , gn ∈ G such that (α, αgi) ∈ ∆i. It is not hard to see that 〈Gα, g1, . . . , gn〉 acts
transitively on V (Γ), because α can be mapped to any of its neighbors with gih or g−1

i h
for some h ∈ Gα and we generalize this by using the identity Gαg = g−1Gαg. We know
that there is a one-to-one correspondence between V (Γ) and G/Gα given by αh ↔ Gαh,
so we can look at the vertices of Γ as right cosets of Gα in G. Then, for any h ∈ G there
exists h′ ∈ 〈Gα, g1, . . . , gn〉 such that Gαh = Gαh

′, that is h ∈ Gαh
′ ⊂ 〈Gα, g1, . . . , gn〉,

and therefore G = 〈Gα, g1, . . . , gn〉. Now the result follows from Theorem 5.1.13.

Corollary 5.1.15. Under the assumptions of Corollary 5.1.14, Γ is bipartite.

Proof. Clearly, Z̃n contains no cycles of odd lengths and so neither does Γ. This is
equivalent to Γ being bipartite (see Proposition 1.6.1 in [6])

Example 5.1.16. Consider the infinite regular directed tree, Γ, with out-valency 5 and
in-valency 2. Color its edges in two colors, such that every vertex has three blue edges
going out and two red ones, and one of each color coming in.

Figure 2: Infinite regular directed tree with two-colored edges

Define ∆1 and ∆2 as the sets of blue edges and red edges, respectively. Then E(Γ) =
∆1 ∪ ∆2. Let G ≤ Aut(Γ) be the subgroup that maps only red edges to red edges and
blue edges to blue edges. G is clearly transitive on V (Γ) since every vertex has both blue
and red edges going in and out, and it has two orbits on E(Γ), namely ∆1 and ∆2. As
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before we define Γ1 := (V (Γ),∆1) and Γ2 := (V (Γ),∆2). Then Γ1 has out-valency u1 = 3
and in-valency v1 = 1, and Γ2 has out-valency u2 = 2 and in-valency v2 = 1 so the image
of ψ is the subgroup of Q+ generated by 2 and 3, that is Im(ψ) ' Z2. Thus by Theorem
5.1.13, this digraph can be mapped onto Z̃2 with an epimorphism all of whose fibers are
infinite.

Example 5.1.17. We start with the same digraph as above. Adding edges and colors
we can build similar epimorphisms onto Z̃n for any n ∈ N∗. Suppose now Γ has countable
in-valency and out-valency. Let pi denote the i-th prime number and let c1, c2, . . . denote
different colors. If we color the edges of Γ such that every vertex has one edge of each
color coming in, and pi edges of the color ci going out, for every i ∈ N∗, then the suborbit
function is surjective onto Q+.

Of course, had we not colored the edges of the digraph in Example 5.1.16 in two different
colors, we would simply have had a regular directed tree with unequal out-valency and in-
valency, thus yielding a graph epimorphism onto Z̃. It even seems like a bit of cheat, taking
a nice and edge transitive digraph and making it less nice so that it fits the conditions of
our theorem. The fact of the matter is that it is not trivial to find a digraph such that
taking G as the full automorphism group, it satisfies these conditions. However it is not
impossible either, and we will see at the end of Chapter 6, when we have the proper tools,
that we can in fact construct such digraphs for any n ∈ N∗.

5.2 Highly arc transitive digraphs

Having gone from edge transitivity to finitely many orbits on edges, we now turn around
and go in the other direction to consider a property of infinite digraphs that is even
stronger than edge transitivity.

Definition 5.2.1. Let Γ be a digraph. An s-arc of Γ is a sequence of s + 1 vertices,
α0, α1, . . . , αs such that (αi−1, αi) ∈ E(Γ) for every i ∈ {1, . . . , s}. We say that Γ is s-arc
transitive if the automorphism group, Aut(Γ), acts transitively on the set of s-arcs. A
graph that is s-arc transitive for every s ∈ N is called highly arc transitive.

Remark. We note that 0-arcs and 1-arcs are simply vertices and edges respectively.

Example 5.2.2. (i) Every infinite, regular directed tree is highly arc transitive.

(ii) Let Γ1 be the infinite, regular directed tree with in-valency 1 and out-valency 2. We
will construct a new graph, Γ, by adding vertices and edges as follows: We duplicate
each vertex of Γ1 such that if α′ and β′ are the duplicates of α and β, respectively,
and (α, β) ∈ E(Γ1), then we add (α, β′), (α′, β) and (α′, β′) to the edge set of Γ.
This digraph is highly arc transitive and part of it is shown in Figure 3, all edges
directed downwards.

24



5.2 Highly arc transitive digraphs

Figure 3: A highly arc transitive digraph

It is easily proved by induction that in an infinite, connected, vertex transitive digraph,
s-arc transitivity implies (s − 1)-arc transitivity. This naturally raises the question of
whether there exist for any s, digraphs that are s-arc transitive but not (s + 1)-arc
transitive. We will consider two such examples, for s = 1 and s = 2.

Example 5.2.3. We construct a digraph Γ as follows: Let V (Γ) := Z× {0, 1}. Now we
define the sets

∆j := {((2i− 1, j), (2i, j)), ((2i+ 1, j), (2i, j)) : i ∈ Z} for j ∈ {0, 1}
∆′0 := {((2i, 0), (2i− 1, 1)), ((2i, 0), (2i+ 1, 1)) : i ∈ Z}
∆′1 := {((2i, 1), (2i− 1, 0)), ((2i, 1), (2i+ 1, 0)) : i ∈ Z}

and set E(Γ) := ∆0 ∪∆1 ∪∆′0 ∪∆′1. We can see part of the digraph Γ in figure 4.

Figure 4: Edge transitive, non-2-arc transitive digraph

This digraph is edge transitive, but it is not 2-arc transitive, because the 2-arc (1, 0), (0, 0), (1, 1)
can not be mapped to the 2-arc (1, 0), (0, 0), (−1, 1) with a graph homomorphism. We
note that since the in-valency and the out-valency are equal, the suborbit function is
trivial on this digraph.

Example 5.2.4. In 2007, Norbert Seifter conjectured that infinite, connected, locally
finite, 2-arc transitive digraphs were always highly arc transitive [14]. This conjecture
was disproved the same year by Sonia P. Mansilla [9], with an infinite family of 2-arc
transitive digraphs that are not 3-arc transitive, namely digraphs, Γn, defined by:

V (Γn) := Zn × Zn × Z
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E(Γn) := {((i, j, k), (j, i, k + 1)), ((i, j, k), (j, i+ 1, k + 1)) : (i, j, k) ∈ V (Γn)}
for n ≥ 3.

We now start preparing for the key theorem of this section that gives conditions on a
digraph that guarantee it to be highly arc transitive. We first need the following lemma.

Lemma 5.2.5. If H and K are two subgroups of a group G such that |G : H| and |G : K|
are finite and relatively prime then |G : H ∩K| = |G : H||G : K|.

Proof. If we look at the action of G on the direct product of the coset spaces,
(G/H)× (G/K), the stabilizer of the point (H,K) is H ∩K. Therefore

|G : H ∩K| = |(H,K)G| ≤ |(G/H)× (G/K)| = |G : H||G : K|.

Since H ∩K ≤ H and H ∩K ≤ K we have

|G : H ∩K| = |G : H||H : H ∩K|
= |G : K||K : H ∩K|

so |G : K| divides |H : H ∩ K|, and therefore |G : H ∩ K| = |G : H||G : K|k for
some k ∈ N∗. But since |G : H ∩ K| ≤ |G : H||G : K| it is clear that k = 1 and
|G : H ∩K| = |G : H||G : K|.

Theorem 5.2.6. Let Γ be an infinite, connected, vertex transitive, edge transitive, digraph
with finite out- and in-valency, u and v respectively. If u and v are relatively prime then
Γ is highly arc transitive.

Proof. We proceed by induction. Since the 1-arcs are simply edges, Γ is 1-arc transitive
by the hypothesis.

Suppose Γ is s-arc transitive and let α0, α1, . . . , αs+1 be an (s + 1)-arc. Since Γ is s-arc
transitive, Gαs acts transitively on the set of s-arcs having αs as their terminal vertex.
Then |Gαs : Gα0...αs| is equal to the cardinality of this set, which is obviously vs. In
the same way we get |Gαs : Gαsαs+1| = u, because Γ is edge transitive. Since Gα0···αs ∩
Gαsαs+1 = Gα0···αs+1 we have by the lemma:

|Gαs : Gα0...αs+1| = |Gαs : Gα0...αs||Gαs : Gαsαs+1| = vsu.

But then Gαs acts transitively on the set of (s + 1)-arcs having αs as its second last
vertex. Since G is transitive on vertices it can take αs to any vertex, so this means that
G is transitive on (s+ 1)-arcs.

We get the following corollary that appeared in a paper by Norbert Seifter in 2008.

Corollary 5.2.7. [14, Proposition 3.2] Let Γ be an infinite, connected vertex- and edge
transitive digraph with prime out-valency, u and in-valency v < u. Then Γ is highly arc
transitive.
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We can actually prove Theorem 5.2.6 using the suborbit function instead of Lemma 5.2.5.
We will do this shortly, but in order to do that we need the following proposition.

Proposition 5.2.8. Let Γ be an infinite, connected, vertex- and edge transitive digraph
with finite out- and in-valencies u and v, respectively, and let p, q ∈ N∗ be relatively prime
numbers such that p/q = u/v. Then if g ∈ G := Aut(Γ) is such that (α, αg) ∈ E(Γ), we
have for any n ≥ 1

pn ≤ |αgnGα | ≤ un

Proof. We have
|αgnGα|
|αGαgn |

=
(u
v

)n
=
pn

qn

where pn/qn is a reduced fraction. Therefore it is clear that pn ≤ |αgnGα|.

We know that the number of n-arcs starting from α is un. It is also clear that every vertex
in αgnGα is the last vertex of such an n-arc, and therefore |αgnGα| ≤ un.

Second proof of Theorem 5.2.6. Let p and q be as in the proposition above. Then, since
u and v are relatively prime, p = u, thus if (α, αg) is an edge we have by the proposition
|αgnGα | = un for all n ∈ N∗. But since |αgnGα | ≤ |Gα0 : Gα0α1···αn| ≤ un, we have that
|Gα0 : Gα0α1···αn| = un. Thus Gα acts transitively on n-arcs with initial vertex α and since
G acts transitively on vertices this means that G acts transitively on n-arcs.

For the next two corollaries, recall Definition 4.2.9 of the scale function.

Corollary 5.2.9. Let Γ be as in Theorem 5.2.6 and let s be the scale function defined by
the permutation topology on G := Aut(Γ). If g ∈ G is such that (α, αg) is an edge for
some α ∈ Ω, then

s(g) = lim
n→∞

|αgnGα |1/n = u.

Proof. This follows from Theorem 4.2.9 and the proof above.

Corollary 5.2.10. Let G be a totally disconnected, locally compact group and let g ∈ G. If
there exists a compact open subgroup U of G such that the numbers p := |U : U ∩ (g−1Ug)|
and q := |U : U ∩ (gUg−1)| are relatively prime, then s(g) = p and s(g−1) = q. In this
case U is tidy for g.

Proof. We let Γ be the orbital digraph defined by the action of G on G/U , with respect
to the orbital ∆ := (α, αg)G, where α ∈ V (Γ) is the vertex that corresponds to U ∈ G/U .
Let β := αg. Then Γ is infinite, edge transitive and has out-valency

|βGα | = |Gα : Gαβ| = |U : U ∩ (g−1Ug)| = p

and in valency
|αGβ | = |Gβ : Gαβ| = |U : U ∩ (gUg−1)| = q
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and these are relatively prime. We note that Γ is not necessarily connected, but this is
not a problem because we can simply look at its connected components. Then we have
by Corollary 5.2.9 that s(g) = p, and by Corollary 4.2.7 we also have s(g−1) = q. By
definition U is tidy for g.

Example 5.2.11. In an article from 2001, Reinhard Diestel and Imre Leader constructed
a sequence of digraphs, using line digraphs [7]. We will describe these graphs quickly here.
The line digraph of a digraph Γ, is the digraph whose vertex set is E(Γ) and whose edges
are ((α, β), (β, γ)) for (α, β), (β, γ) ∈ E(Γ). We now use this to inductively define a
sequence of highly arc transitive digraphs. Let Γ0 be the infinite regular directed tree
with in-valency 2 and out-valency 3, and define Γn+1 as the line digraph of Γn for n ∈ N.
Below we can see Γ0,Γ1 and Γ2, with Γ1 and Γ2 drawn on top of the preceding digraphs
in the sequence. All edges are directed downwards.

Figure 5: First three digraphs in the line digraph sequence

We know that Γ0 is highly arc transitive. It can thus be shown by induction on n that
Γn is connected, vertex- and edge transitive and has in-valency 2 and out-valency 3, for
all n ∈ N. Therefore, by Theorem 5.2.6, Γn is highly arc transitive for any n ∈ N.
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5.3 Cayley–Abels digraphs

We have already described Cayley digraphs of groups in Section 5.1. In this section we
define similar digraphs for compactly generated, totally disconnected, locally compact
groups, called Cayley–Abels digraphs.

Definition 5.3.1. A topological group G is compactly generated if it contains a compact
subset that generates G.

Definition 5.3.2. Let G be a topological group. A connected digraph, Γ, is a Cayley–
Abels digraph of G if there is a vertex transitive action of G on Γ such that every point
stabilizer is a compact open subgroup of G.

Remark. We can define an undirected Cayley–Abels graph similarly, and in fact the main
results of this section also apply to undirected Cayley–Abels graphs.

Let’s look at how we can construct such a digraph. Let G be a compactly generated,
totally disconnected, locally compact group and let S be a compact generating set of G.
Since G is totally disconnected and locally compact, there exists a compact open subgroup
U in G. The cosets of U are then an open covering of G, in particular an open covering of
S, and since S is compact there exists a finite subcovering. Therefore, we can find finitely
many elements, g1, . . . , gn ∈ G, such that 〈U, g1, . . . , gn〉 = G. Define Γ = (V (Γ), E(Γ))
with

V (Γ) := G/U and E(Γ) := (α, αg1)G ∪ · · · ∪ (α, αgn)G

where α is the vertex that corresponds to U ∈ G/U . Then G acts transitively on V (Γ) =
G/U and every point stabilizer is a conjugate of the compact open subgroup Gα = U and
is therefore compact and open. Furthermore, Γ is connected by Lemma 5.1.12, so it is a
Cayley–Abels digraph of G.

We note that given a compactly generated, totally disconnected, locally compact group,
G, and an arbitrary locally finite Cayley–Abels digraph, Γ of G, we can describe Γ in the
same way as above. We simply take a vertex α of Γ and define U := Gα. Furthermore we
let β1, . . . , βn be all the vertices of Γ such that (α, βi) ∈ E(Γ) and let gi ∈ G such that
αgi = βi. Then G = 〈U, g1, . . . , gn〉 and E(Γ) = (α, β1)G ∪ · · · ∪ (α, βn)G.

We now proceed to partly answer a question asked by George A. Willis on his visit to
Reykjavík in 2014. Willis speculated whether the lowest possible valency of an undirected
Cayley–Abels graph of a given compactly generated, totally disconnected, locally compact
group, could tell us anything about the group. Conversely, whether properties of the group
can tell us anything about a lowest valency of its Cayley–Abels graphs. We will give a
partial answer to the latter question, giving a lower bound on the valency of Cayley–Abels
digraphs.

Recall that for such a group G, the suborbit function defined by the action of G on G/U
where U is a compact open subgroup, is independent of U (Remark 4.2.4.1).
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Theorem 5.3.3. Let G be a compactly generated, totally disconnected, locally compact
group and let ψ : G → Q+ be the suborbit function defined by the action of G on G/U
for some compact open subgroup U . If Im(ψ) is cyclic and generated by the element p/q,
with p, q ∈ N∗ relatively prime, then every Cayley–Abels digraph of G has valency at least
p+ q.

Proof. Let Γ be a locally finite Cayley–Abels digraph of G. Then G acts transitively on
vertices of Γ and has finitely many orbits on its edges, ∆1, . . . ,∆n. Define the subgraphs
Γi = (V (Γ),∆i), for i = 1, . . . , n and let ui and vi be the out-valency and in-valency of Γi,
respectively. Note that if d is the total valency of Γ, then d = u1 + · · ·+un + v1 + · · ·+ vn.
For α ∈ V (Γ) we know that Gα is a compact open subgroup of G, and that we can look at
the vertex set of Γ as the coset space G/Gα. The suborbit function defined by the action
of G on V (Γ) is therefore equal to ψ and so, as we have seen before, we have

Im(ψ) =

〈
p

q

〉
=

〈
u1

v1

, . . . ,
un
vn

〉
.

We can therefore write ui/vi = (p/q)mi with mi ∈ Z for every i ∈ {1, . . . , n} and at least
one of the mi is not 0, say i = k. Then we have

p+ q ≤ pmk + qmk ≤ uk + vk ≤
n∑
i=1

(ui + vi) = d.

We can get a similar result when the image of ψ is not cyclic, but our problem here is
finding a set of generators {p1/q1, . . . , pn/qn}, with the smallest possible sum p1 + · · · +
pn + q1 + · · ·+ qn. We can not necessarily find such a set, but we do however know that
it exists.

Theorem 5.3.4. Let G and ψ be as in Theorem 5.3.3. Define the set of sums:

A :=

{
k∑
i=1

(pi + qi) :

〈
p1

q1

, . . . ,
pk
qk

〉
= Im(ψ)

}
⊆ N∗.

Then every Cayley–Abels digraph of G has valency at least min(A).

Proof. Let Γ be a locally finite Cayley–Abels digraph of G and let ∆1, . . . ,∆n be the
orbits of G on edges of Γ. Define the subgraphs Γi = (V (Γ),∆i), for i = 1, . . . , n and let
ui and vi be the out-valency and in-valency of Γi, respectively. Then d = u1 + · · ·+ un +
v1 + · · · + vn is the total valency of Γ. As before, we know that the suborbit function
defined by the action of G on V (Γ) is equal to ψ. Therefore

Im(ψ) =

〈
u1

v1

, . . . ,
un
vn

〉
so d ∈ A, that is d ≥ min(A).
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5.4 Growth of graphs

Definition 5.4.1. We say that an undirected graph Γ, is 1-transitive (sometimes called
arc transitive) if for any two edges, {α1, β1} and {α2, β2} of Γ there exists an element
g ∈ Aut(Γ) such that αg1 = α2 and βg1 = β2. Equivalently, Γ is 1-transitive if it is edge
transitive and for every edge {α, β} of Γ there exists g ∈ Aut(Γ) such that αg = β and
βg = α.

Define a metric, d, on a connected graph Γ (directed or undirected) in the following way:
for vertices, α and β of Γ we let d(α, β) be the number of edges in the shortest path
between α and β. Clearly, any automorphism on Γ is an isometry with respect to this
metric.

Definition 5.4.2. Let Γ be a connected graph (directed or undirected). We define the
number Cn(α) as the number of vertices at distance n from α, that is

Cn(α) := |{β ∈ V (Γ) : d(α, β) = n}|, n ∈ N.

Furthermore we define Bn(α) as the number of vertices at distance less than or equal to
n from α, that is

Bn(α) := |{β ∈ V (Γ) : d(α, β) ≤ n}|, n ∈ N.

Definition 5.4.3. We say that an infinite connected graph Γ grows exponentially or has
exponential growth if there exists a constant a > 1 and a number N ∈ N such that
an ≤ Bn(α) for all n ≥ N where α is some vertex of Γ. If Γ does not grow exponentially,
we say that it grows subexponentially.

Lemma 5.4.4. Let Γ be as in Theorem 5.1.6 and α ∈ V (Γ). Then |αgnGα| ≤ Cn(α)
where g ∈ G is such that (α, αg) ∈ E(Γ).

Proof. Since (α, αg) is an edge, then so is (α, αg)g
i

= (αg
i
, αg

i+1
) for i = 1, . . . , n − 1.

Then α, αg, . . . , αg
n is a directed path of length n, and thus d(α, αg

n
) ≤ n. But by

Theorem 5.1.6 we have a graph homomorphism from Γ onto Z̃ where there is a unique
path between every two vertices. Therefore every path from α to αgn must have the same
length, that is d(α, αg

n
) = n.

Now let γ ∈ αgnGα . Then γ = αg
nh for some h ∈ Gα and since h is a graph automorphism,

and therefore an isometry, we get:

n = d(α, αg
n

) = d(αh, αg
nh) = d(α, αg

nh) = d(α, γ).

Thus αgnGα ⊂ {β ∈ V (Γ) : d(α, β) ≤ n} and so |αgnGα| ≤ Cn(α).

Remark. In a vertex transitive graph, the numbers Cn(α) and Bn(α) do not depend on α.
Since we are mainly concerned with vertex transitive graphs, we will from now on look at
them as a function of n and denote them by C(n) and B(n).
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We are now ready for the following theorem.

Theorem 5.4.5. An infinite, connected, vertex transitive, edge transitive digraph of fi-
nite, unequal out-valency and in-valency has exponential growth.

Proof. Let Γ be such a digraph and let α ∈ V (Γ). Since u 6= v there exists g ∈ G such
that (α, αg) ∈ E(Γ) and ψ(g) 6= 1. Then we have for any n ∈ N∗:

(ψ(g))n = ψ(gn) =

∣∣αgnGα∣∣∣∣αGαgn ∣∣ ≤ ∣∣αgnGα∣∣ ≤ C(n) ≤ B(n).

So we see that if ψ(g) > 1 then Γ has exponential growth and if ψ(g) < 1, we can replace
g by g−1 to get the same result, because then (αg

−1
, α) ∈ E(Γ).

We can use Theorem 5.4.5 to give another proof of a theorem of Thomassen and Watkins
from 1989 [15].

Corollary 5.4.6. Let Γ be an infinite, connected, vertex transitive, edge transitive (undi-
rected) graph of odd valency. If the function C(n) is subexponential, then Γ is 1-transitive.

Proof. Suppose Γ is not 1-transitive. We can think of each edge, {α, β} as a pair of
directed edges, {(α, β), (β, α)}. Then, since Γ is edge transitive but not 1-transitive, it
has two orbits on the new directed edges, where two directed edges corresponding to the
same undirected edge are in different orbits. Take one of these orbits, ∆, and define a
new directed graph, Γ′ := (V (Γ),∆). It is clear that directing the edges in this way does
not change the metric, d and thus the function C(n) is still the same. Furthermore the
out-valency, u, and in-valency, v, must differ since the total valency is odd. The result
therefore follows from the theorem above.
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As with many other mathematical structures, we can define products of two or more
given graphs. Graphs can be factored with respect to these products, and if they can
not be factored non-trivially, they are said to be prime. These notions are all familiar
(for example from number theory), but what do they mean for graphs? In fact there are
many ways to define products of graphs, and in the first section of this chapter we will
define three different graph products and look at some basic examples. However we are
mainly concerned with one of these, called the Cartesian product, because it will prove
useful for finding graphs with certain properties. In particular, we will construct graphs
that satisfy the conditions of Corollary 5.1.14, for any number of orbits.

6.1 Definitions and first examples

We start with some basic definitions.

Definition 6.1.1. Let Γ1,Γ2 be digraphs and Ω := V (Γ1)× V (Γ2). Define the sets:

∆1 :=
{(

(α1, α2), (α1, β2)
)
,
(
(γ1, γ2), (δ1, γ2)

)
: (α2, β2) ∈ E(Γ2), (γ1, δ1) ∈ E(Γ1)

}
∆2 :=

{(
(α1, α2), (β1, β2)

)
: (α1, β1) ∈ E(Γ1), (α2, β2) ∈ E(Γ2)

}
.

We define the Cartesian product of Γ1 and Γ2 as Γ1�Γ2 := (Ω,∆1), the direct product of Γ1

and Γ2 as Γ1×Γ2 := (Ω,∆2), and the strong product of Γ1 and Γ2 as Γ1�Γ2 := (Ω,∆1∪∆2).
If Γ = Γ1 ∗ Γ2, where ∗ is any of the three products defined above, we say that Γ1 and Γ2

are factors of Γ, with respect to that particular product.

It is more common to define these products for undirected graphs, replacing every edge
(α, β) in the definition, with an edge {α, β}. For Cartesian products, this does not
change the product, that is if Γ1 and Γ2 are digraphs and Γ′1 and Γ′2 are the corresponding
undirected graphs, (where every edge (α, β) is replaced by {α, β}) then Γ′1�Γ′2 is the
corresponding undirected graph for the digraph Γ1�Γ2. The same does not hold for
direct and strong products because if {α1, β1} ∈ E(Γ1) and {α2, β2} ∈ E(Γ2) then we
get two corresponding edges in ∆2, namely

{
(α1, α2), (β1, β2)

}
and

{
(α1, β2), (β1, α2)

}
.

In these cases, the corresponding undirected graph for Γ1 × Γ2 (resp. Γ1 � Γ2) is only a
subgraph of Γ′1 × Γ′2 (resp. Γ′1 � Γ′2).
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6 Cartesian products

Definition 6.1.2. Let ∗ be any of the three products, �,× or �. A digraph Γ is prime
with respect to ∗ if it can not be factored non-trivially with this product. Two digraphs
are said to be relatively prime with respect to a certain product, if they have no common
factor with respect to that product.

Remark. A digraph Γ is prime with respect to the Cartesian product (resp. the strong
product) if and only if Γ = Γ1�Γ2 (resp. Γ = Γ1 � Γ2) implies that either Γ1 or Γ2 is
trivial. For the direct product, this holds if we redefine the trivial graph to consist of one
vertex and a loop on that vertex.

It is not hard to see that these three graph products are all associative. Therefore we can
extend the definitions to products of n digraphs, Γ1 ∗ · · · ∗ Γn.

Example 6.1.3. Let Γ1 be the infinite, regular directed tree with in-valency one and
out-valency two and Γ2 := Z̃. Parts of the digraphs Γ1�Γ2 and Γ1 � Γ2 are shown below,
all edges directed downwards and from left to right.

Figure 6: Γ1�Γ2 to the left and Γ1 � Γ2 to the right

We exclude the direct product, because it is not very interesting. It is not connected; it
is isomorphic to a disjoint union of countably many copies of Γ1.

The digraph Γ1�Γ2 has two orbits on edges, namely

∆ :=
{(

(α, i), (β, i)
)

: (α, β) ∈ E(Γ1), i ∈ Z
}

shown in blue, and
∆′ :=

{(
(α, i), (α, i+ 1)

)
: α ∈ V (Γ1), i ∈ Z

}
shown in red.

We note that ∆ ∪ ∆′ = ∆1 from the definition. Here, the suborbit function gives us a
graph homomorphism onto Cay(Z, (0, 1)), the naturally directed graph on Z that also has
a loop on every vertex. However we can easily see that there exists a surjective graph
homomorphism onto Z̃2, because each subgraph, V (Γ1) × {i}, maps homomorphically
onto Z̃. This is shown in Figure 7.

Of course, here (βj, i) maps to (β, i) and (γj, i) maps to (γ, i) for i ∈ {0, 1}. It is also
clear that every fiber of this homomorphism is infinite.

34



6.2 Factors of Cartesian products

Figure 7: To the left we have Γ1�Γ2 and to the right its homomorphic image, Z̃2.

The digraph Γ1 � Γ2 has one more orbit on the edges (three in total), namely ∆2 from
the definition. These edges are shown in black in Figure 6.

6.2 Factors of Cartesian products

The rest of this chapter focuses on Cartesian products only. When we talk about factors,
prime digraphs and relatively prime digraphs, we always mean with respect to Cartesian
products.

We start by observing a few properties that can be passed on from the factors of a digraph
Γ to the digraph itself. The following proposition is proved for finite undirected graphs
in [8, Corollary 5.3]

Proposition 6.2.1. A Cartesian product of n digraphs is connected if and only if all of
its factors are.

Proof. We prove the proposition for a Cartesian product of two digraphs, the rest is clear
by induction. Let Γ = Γ1�Γ2 and suppose Γ is connected. Let α, β ∈ Γ1 and α′, β′ ∈ Γ2

be arbitrary vertices. Since Γ is connected there exists a walk,

(α, α′) = (α0, α
′
0), . . . , (αk, α

′
k) = (β, β′)

from (α, α′) to (β, β′). Then for i = 1, . . . , k − 1, either (αi, αi+1) ∈ E(Γ1) or αi = αi+1

so we get an induced walk in Γ1 from α to β. In the same way we get an induced walk
from α′ to β′ in Γ2, and so both digraphs are connected.

Conversely, suppose Γ1 and Γ2 are connected and (α, α′) and (β, β′) are arbitrary vertices
of Γ. Then we have walks, α = α0, α1, . . . , αk = β and α′ = α′0, α

′
1, . . . , α

′
k′ = β′ in Γ1 and

Γ2, respectively, and we use them to construct a walk from (α, α′) to (β, β′), namely

(α0, α
′
0), (α1, α

′
0), . . . , (αk, α

′
0), (αk, α

′
1), . . . , (αk, α

′
k′),

35



6 Cartesian products

so Γ is connected.

Proposition 6.2.2. Let Γ1, . . . ,Γn be infinite, regular digraphs with vi and ui the in-
valency and out-valency of Γi, respectively. Then the Cartesian product, Γ1� · · ·�Γn has
in-valency v1 + · · ·+ vn and out-valency u1 + · · ·+ un.

Proof. Let α = (α1, . . . , αn) ∈ V (Γ1� · · ·�Γn). The set of edges with α as an initial
vertex is

n⋃
i=1

{(
α, (α1, . . . , αi−1, β, αi+1, . . . , αn)

)
: (αi, β) ∈ E(Γi)

}
,

and the cardinality of this set is clearly

n∑
i=1

|{β : (αi, β) ∈ E(Γi)}| =
n∑
i=1

ui.

Similarly we get that the total in-valency is v1 + · · ·+ vn.

Definition 6.2.3. Let Γ = Γ1� · · ·�Γn and fix a vertex α = (α1, . . . , αn) of Γ. We define
the Γi-layer trough α as the induced subgraph of Γ

Γαi = {α1}� · · ·�{αi−1}�Γi�{αi+1}� · · ·�{αn}

where {αj} is the trivial graph ({αj}, ∅).

We note that for any vertex, α ∈ Γ we have Γαi ' Γi because the map

Γαi → Γi, (α1, . . . , αi−1, β, αi+1, . . . , αn) 7→ β

is clearly a graph isomorphism. It is also easy to see that if two digraphs are isomorphic,
their automorphism groups are isomorphic as well. Therefore, for every automorphism of
Γi we have a corresponding automorphism on Γαi , that translates to an automorphism on
Γ fixing every vertex of every factor except for Γi. Now let Gi := Aut(Γi) for i = 1, . . . , n
and let g = (g1, . . . , gn) ∈ G1 × · · · ×Gn. Then we get a corresponding automorphism on
Γ, defined by (α1, . . . , αn)g := (αg11 , . . . , α

gn
n ), so we have G1 × · · · ×Gn ≤ Aut(Γ).

The following proposition is proved for finite undirected graphs in [8, Proposition 6.16]

Proposition 6.2.4. A Cartesian product of connected, vertex transitive digraphs is vertex
transitive.

Proof. This is clear, simply because if Γ = Γ1� · · ·�Γn, then

Aut(Γ1)× · · · × Aut(Γn) ≤ Aut(Γ).
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6.2 Factors of Cartesian products

Edge-transitivity, however, can not be passed to a digraph from its factors, except in the
following special case.

We denote the n-th power of a digraph Γ, with respect to a Cartesian product, by Γ�,n,
for n ∈ N∗.

Proposition 6.2.5. Let Γ be an infinite, connected, digraph. If Γ is edge transitive then
Γ�,n is edge transitive for any n ∈ N∗.

Proof. Let H := Aut(Γ) and G := Aut(Γ�,n). We have seen that

Hn = H ×H × · · · ×H ≤ G.

Also, any map that permutes the coordinates of V (Γ�,n) is clearly an automorphism on
Γ�,n.

Let α = (α1, . . . , αn), β = (β1, . . . , βn), γ = (γ1, . . . , γn), δ = (δ1, . . . , δn) ∈ V (Γ�,n) such
that (α, β) and (γ, δ) are edges of Γ�,n, and let k1, k2 ∈ {1, . . . , n} be such that αk1 6= βk1
and γk2 6= δk2 . Then (αk1 , βk1) and (γk2 , δk2) are both edges of Γ and since Γ is edge
transitive, there exists an element, hk2 ∈ H taking (αk1 , βk1) to (γk2 , δk2). Let hk1 ∈ H
such that αhk1k2

= γk1 and for i ∈ {1, . . . , n}\{k1, k2} let hi ∈ H such that αhii = γi. Then
we have (α, β)gh = (γ, δ) where h = (h1, . . . , hn) ∈ Hn and g is the automorphism that
interchanges the k1-th and the k2-th coordinates.

Example 6.2.6. Proposition 6.2.5 yields a collection of examples of edge transitive di-
graphs. Let Γ be the infinite, regular, directed tree with finite in-valency v and out-valency
u. Then Γ�,n is an infinite, connected, locally finite, vertex- and edge transitive digraph
with in-valency nv and out-valency nu. If v 6= u, Theorem 5.1.6 gives a surjective graph
homomorphism from Γ�,n to Z̃, all of whose fibers are infinite. Figure 8 shows part of
Γ�Γ with v = 1 and u = 2, edges directed downwards and from left to right.

Figure 8: Edge transitive non-tree
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6 Cartesian products

6.3 Products of prime digraphs

We consider in particular Cartesian products of prime, pairwise non-isomorphic digraphs.
In this case we can completely determine the automorphism group of the product by the
automorphism groups of the factors, in fact we have

Aut(Γ1� · · ·�Γn) = Aut(Γ1)× · · · × Aut(Γn).

To prove this though, we first need some more definitions.

Definition 6.3.1. Let Γ = Γ1� · · ·�Γn. A subgraph ∆ of Γ is called a box if it is of the
form ∆ = ∆1� · · ·�∆n where ∆i is a subgraph of Γi for all i ∈ {1, . . . , n}.

Definition 6.3.2. A subgraph ∆ of a digraph Γ is convex in Γ if every shortest (undi-
rected) path in Γ between two vertices of ∆ lies within ∆.

Hammack, Imrich and Klavzar proved the next three lemmas for finite, undirected graphs
in [8, Lemmas 6.3, 6.4, 6.5]. The proofs do not depend on the finiteness, thus we can use
them for infinite graphs as well. Also, since our digraphs are without multiple edges, we
can "forget" the direction of the edges to obtain a corresponding undirected graph. For
what comes after, we only need these results for the underlying undirected graphs of our
digraphs. We will therefore omit the proofs here, except for a part of the last one that is
left as an exercise in [8].

Lemma 6.3.3. (Unique Square Lemma) Let e and f be two incident edges of a
Cartesian product Γ1�Γ2 that are in different layers, that is, one in a Γ1-layer and the
other one in a Γ2-layer. Then there exists exactly one square in Γ1�Γ2 containing e and
f . This square has no diagonals.

Remark. Notice that this lemma holds for n factors.

Definition 6.3.4. We say a subgraph ∆ of a Cartesian product Γ has the square property
if for any two adjacent edges e and f of ∆ that are in different layers, the unique square
of Γ that contains them is also contained in ∆.

Lemma 6.3.5. A connected subgraph of a Cartesian product is a box if and only if it has
the square property.

Lemma 6.3.6. A subgraph ∆ of a digraph Γ = Γ1� · · ·�Γn is convex if and only if
∆ = ∆1� · · ·�∆n where ∆i is a convex subgraph of Γi for all i.

Proof. We will prove that if ∆ = ∆1�∆2 with ∆i convex in Γi for i = 1, 2, then ∆ is
convex in Γ1�Γ2. The rest of the implication is then clear by induction and the converse
is proved in [8, Lemma 6.5].

Suppose ∆ = ∆1�∆2 where ∆i is a convex subgraph of Γi. Let (α, α′) and (β, β′)
be vertices of ∆ and let (α, α′) = (α0, α

′
0), . . . , (αn, α

′
n) = (β, β′) be a shortest path
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between them in Γ1�Γ2. Then for every j ∈ {0, . . . , n − 1} we have either αj = αj+1 or
(αj, αj+1) ∈ E(Γ1). By deleting repeated vertices we get a path, α = γ0, . . . γk = β from
α to β in Γ1. But this has to be the shortest path between α and β because a shorter one
would yield a shorter path between (α, α′) and (β, β′). Since ∆1 is convex, the vertices
{γ0, . . . , γk} = {α0, . . . , αn} are all contained in ∆1. Similarly, α′j are all contained in ∆2,
so the path (α0, α

′
0), . . . , (αn, α

′
n) is contained in ∆1�∆2 thus it is convex.

Lemma 6.3.6 implies that every convex subgraph is a box. Also, every Γi-layer in a Carte-
sian product Γ1� · · ·�Γn is convex, because obviously every graph is a convex subgraph
of itself and every trivial graph is convex.

We can now prove the main result of this section. This theorem is proved for finite,
undirected graphs in [8, Theorem 6.13]

Theorem 6.3.7. Let Γ1, . . . ,Γn be infinite, connected, locally finite digraphs with auto-
morphism groups G1, . . . , Gn respectively and let Γ = Γ1� · · ·�Γn. Suppose furthermore
that the digraphs Γi are all prime and pairwise non-isomorphic. Then

G := Aut(Γ) = G1 × · · · ×Gn.

Proof. Let g ∈ G be an automorphism of Γ, fix a vertex α = (α1, · · · , αn) of Γ and set
β = (β1, . . . , βn) := αg. For k ∈ {1, . . . , n} we know that the subgraph Γαk is convex, and
it is easy to see that this implies that (Γαk )g is also convex (and therefore a box). Let

∆ := (Γαk )g = ∆1� · · ·�∆n

where ∆i is an induced subgraph of Γi. Since g is an automorphism on Γ we have
∆ ' Γαk ' Γk, so ∆ is prime because Γk is. Then ∆i is trivial for all but one i ∈ {1, . . . , n},
in fact, since β ∈ ∆, we have

∆ = {β1}� · · ·�{βj−1}�∆j�{βj+1}� · · ·�{βn}

for some j ∈ {1, . . . , n}. This means that ∆ is a subgraph of Γβj , but similarly, because
Γβj is prime, we get that (Γβj )g

−1 is a subgraph of Γαk . Therefore (Γαk )g = Γβj but the Γi are
pairwise non-isomorphic, so we must have k = j. Now, we know that Γαk ' Γβk ' Γk, so
by restricting g to the subgraph Γαk we can assign to it an automorphism gk ∈ Gk of Γk.
Then we have for an arbitrary vertex, a in Γαk :

ag = (α1, . . . , αk−1, ω, αk+1, . . . , αn)g = (β1, . . . , βk−1, ω
gk , βk+1, . . . , βn) =: b.

We want to show that the assigned automorphism gk is independent of the vertex α. Let
γ = (γ1, . . . , γn) be another vertex of Γ and consider the Γk-layer, Γγk. Suppose first that
(α, γ) is an edge (that is not contained in Γαk ). Then αi = γi for all i ∈ {1, . . . , n} but one,
say i = j 6= k, and we have (αj, γj) ∈ E(Γj). Set δ = (δ1, . . . , δn) := γg and let c ∈ Γγk be
the vertex that corresponds to a in Γαk . Then we have

cg = (γ1, . . . , γk−1, ω, γk+1, . . . , γn)g = (δ1, . . . , δk−1, ω
g′k , δk+1, . . . , δn) =: d.
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6 Cartesian products

Since (α, γ) is an edge in a Γj-layer, then so are (a, c) and (a, c)g = (b, d), and so we
have ωgk = ωg

′
k . Because Γ is connected, we get the same for arbitrary vertices α and

γ and so gk ∈ Gk does not depend on α. Doing this for all k ∈ {1, . . . , n} we get
g = (g1, . . . , gn) ∈ G1 × · · · ×Gn.

6.4 Arc-types of graphs

Now that we have identified the automorphism groups of products of prime, non-isomorphic
digraphs, we want to use it to better determine the structure of these products. In order
to do this, we define the arc-type of a digraph. This definition is analogous to a definition
of arc-types for undirected graphs appearing in an article by Marston Conder, Tomaz
Pisanski and Arjana Zitnik from 2015 [5].

Definition 6.4.1. Let Γ be an infinite, connected, locally finite, vertex transitive digraph
with n orbits on edges, ∆1, . . . ,∆n. Let vi and ui be the in-valency and out-valency of
Γi := (V (Γ),∆i), respectively, for i = 1, . . . , n. It is clear that v = v1 + · · · + vn and
u = u1 + · · · + un are the in-valency and out-valency of Γ, respectively. We define the
arc-type of Γ as the partition Π of u+ v with

Π = (v1 + u1) + · · ·+ (vn + un).

We note that given the arc-type of a digraph, we can describe the image of the suborbit
function, which then allows us to construct graph homomorphisms onto a Cayley digraph
of Zk for some k ≤ n.

Theorem 6.4.2. Let Γ1, . . . ,Γn be prime, infinite, connected, locally finite digraphs that
are pairwise non-isomorphic. For i = 1, . . . , n, let Gi be the automorphism group of Γi
and Πi its arc-type and let Γ = Γ1� · · ·�Γn. Then Γ has arc-type Π = Π1 + · · ·+ Πn.

Proof. We have already established that the arc-type of any digraph can be described
as a sum of numbers

(
|αGβ |+ |βGα |

)
where (α, β) are edges from different orbits on edges

and that the number of orbits on edges is the same as the number of different suborbits
of the form |βGα| where (α, β) is an edge.

Since G = G1× · · · ×Gn we also have Gα = (G1)α1 × · · · × (Gn)αn for α = (α1, . . . , αn) ∈
V (Γ) where (Gi)αi is the stabilizer of αi in Gi. Therefore, we have for two vertices,
β = (β1, . . . , βn) and γ = (γ1, . . . , γn) of Γ:

γ ∈ βGα = β
(G1)α1
1 × · · · × β(Gn)αn

n ⇔ γi ∈ β
(Gi)αi
i , for all i = 1, . . . , n. (6.1)

So if there are mi orbits on edges in Γi, the number of orbits on edges in Γ is exactly
m1 + · · ·+mn.
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Now suppose (α, β) ∈ E(Γ). Then αi = βi for all i but one, say i = k and we have
(αk, βk) ∈ E(Γk). Suppose the arc-type of Γk is

Πk =
(
v

(k)
1 + u

(k)
1

)
+ · · ·+

(
v(k)
mk

+ u(k)
mk

)
.

Then we know that |αGβkk | = v
(k)
j and |βGαkk | = u

(k)
j for some j ∈ {1, . . . ,mk}. Furthermore,

we have

|βGα| = |β(G1)α1
1 × · · · × β(Gn)αn

n |

= |β(G1)α1
1 | · · · |β(Gn)αn

n |
= |{β1}| · · · |{βk−1}| · u(k)

j · |{βk+1}| · · · |{βn}| = u
(k)
j

and in the same way we get |αGβ | = v
(k)
j . Now it is clear from Equation (6.1) that

Π = Π1 + · · ·+ Πn.

Remark. Let Π = (v1 + u1) + · · · + (vn + un). Theorem 6.4.2 implies that if we can
find connected, edge transitive digraphs, Γ1, . . . ,Γn with in-valencies v1, . . . , vn and out-
valencies u1, . . . , un, that are prime and pairwise non-isomorphic, then we can construct
a digraph with arc-type Π.

Corollary 6.4.3. Let Γ1, . . . ,Γn be infinite, connected, locally finite vertex transitive di-
graphs and let Γ = Γ1� · · ·�Γn. If Γ has k orbits on edges, and Γi has ki orbits on edges
of for i = 1, . . . , n then k ≤ k1 + · · ·+ kn.

Proof. By the proof of Theorem 6.4.2, the group Aut(Γ1) × · · · × Aut(Γn) has exactly
k1 + · · ·+ kn orbits on edges, and we know that it is contained in Aut(Γ).

Example 6.4.4. Let Γ1 be the infinite regular directed tree with in-valency 1 and out-
valency 2, and let Γ2 be the digraph from Example 5.2.3. The Cartesian product of these
two digraphs is shown in Figure 9. Of course, it continues infinitely to the sides, and each
subtree goes infinitely up and down.

Both Γ1 and Γ2 are edge transitive, so Corollary 6.4.3 implies that Γ1�Γ2 has at most two
orbits on edges. In fact it is easy to see that it can not be edge transitive and therefore
has exactly two orbits (shown in blue and black).

To be able to use Theorem 6.4.2 to construct digraphs with a given arc-type, we have to
start with prime digraphs. But how do we know whether a given digraph is prime, and
are we familiar with any prime digraphs?

Lemma 6.4.5. If Γ is a connected digraph that is not prime, then Γ contains an undi-
rected 4-cycle.

Proof. Let Γ = Γ1�Γ2 and suppose both factors are non-trivial. Since Γ1 and Γ2 are
connected and non-trivial they both contain at least one edge. Let (α1, β1) and (α2, β2)
be edges of Γ1 and Γ2, respectively. Then (α1, α2), (α1, β2), (β1, β2), (β1, α2) is a 4-cycle in
Γ.
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Figure 9: Cartesian product with two orbits on edges

Proposition 6.4.6. Every directed tree is prime.

Proof. This follows from Lemma 6.4.5 because directed trees have no cycles.

Theorem 6.4.7. Let Π = (v1 +u1) + · · ·+ (vn +un) where for i, j ∈ {1, . . . , n} such that
i 6= j we have vi 6= vj or ui 6= uj. Then there exists a digraph of arc-type Π.

Proof. For i = 1, . . . , n, let Γi be the infinite, regular directed tree with in-valency vi and
out-valency ui. Then Γ1, . . . ,Γn are prime and pairwise non-isomorphic, so by Corollary
6.4.2, the Cartesian product Γ1� · · ·�Γn has the given arc-type.

Corollary 6.4.8. Let n ∈ N∗. Then there exists an infinite, connected, locally finite,
vertex transitive digraph Γ, whose full automorphism group has n orbits on edges, such
that there is an epimorphism from Γ to Z̃n with all fibers infinite.

Proof. For i = 1, . . . , n let ui be the i-th prime number and let Γi be the infinite, regular,
directed tree with in-valency 1 and out-valency ui. Then the Γi are prime and pairwise
non-isomorphic, so the graph Γ := Γ1� · · ·�Γn has arc-type

Π := (1 + u1) + · · ·+ (1 + un),

that is Γ is an infinite, connected, vertex transitive digraph with n orbits on edges. Because
the ui are all prime we also have Im(ψ) = 〈u1, . . . , un〉 ' Zn so by Corollary 5.1.14 there
exists a graph epimorphism ϕ : Γ→ Z̃n all of whose fibers are infinite.

Example 6.4.9. We construct the digraph from Corollary 6.4.8 with n = 2. Part of this
digraph is shown in Figure 10, the blue edges representing the orbit with out-valency 2
(edges directed from left to right) and the red edges representing the orbit with out-valency
3 (edges directed downwards).
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6.4 Arc-types of graphs

Figure 10: Cartesian product of two directed trees with arc-types (1 + 2) and (1 + 3)

As we have shown, there exists a graph epimorphism from this graph onto Z̃2, all of whose
fibers are infinite.
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