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Abstract

This thesis is a study of infinite directed graphs, and how we can use tools from the
theory of group actions to investigate them. For a group G acting on a set €2, we define
a group homomorphism from G to the multiplicative group of positive rational numbers,
using the suborbits of the group action. This homomorphism will be called the suborbit
function and we will see that it is equal to a well known function, defined on locally
compact topological groups, called the modular function. There are a few objectives, and
all main results are proved using the suborbit function. The first objective is to generalize
a result of Cheryl E. Praeger from 1991 about homomorphic images of infinite directed
graphs with certain additional properties. The second objective is to find a condition on
edge transitive digraphs making them highly arc transitive. Next, we define Cayley—Abels
digraphs of groups and use the suborbit function to give a lower bound on their valency.
Then we consider the growth of graphs, showing that all infinite digraphs with the same
additional properties as in Praeger’s result, have exponential growth. Finally, the last
chapter is dedicated to constructing examples using Cartesian products of digraphs.

Utdrattur

Pessi ritgerd fjallar um 6endanleg stefnd net og adferdir til pess ad nota grupuverkanir
til ad rannsaka pau. Latum G vera grupu sem verkar & mengi 2. Vid notum hlutbraut-
ir pessarar verkunar til pess ad skilgreina grapumoétun fra G yfir i margfoldunargrapu
jakveedra reedra talna. Vid kollum pessa moétun hlutbrautafallid, og munum sja ad pad
er jafngilt vel pekktu falli sem kallast matfallio, og er skilgreint & stadpjoppudum grann-
grupum. Markmid ritgerdarinnar eru nokkur, og allar helstu nidurstédur eru sannadar
med hjalp hlutbrautafallsins. Vid utvikkum nidurstéou Cheryl E. Praeger fra 1991 um
moétanamyndir 6endanlegra stefndra neta med akvedna eiginleika. Vid gefum skilyrdi a
leggjagegnvirk, stefnd net sem tryggir ad pau séu haorvavegagegnvirk. Vid skilgreinum
Cayley—Abels-net gripna og notum hlutbrautafallid til pess a0 gefa nedra mark a stig
slikra neta. Ad lokum skodum vid voxt neta og synum ad 6ll 6éendanleg stefnd net, med
somu eiginleika og { nidurstédu Praeger, vaxa med veldisvisishrada. I sidasta kaflanum
notum vid svo kartesk margfeldi til pess ad bia til ymis deemi um stefnd net.
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1 Introduction

Let G be a group and €2 a set. A group action of G on () is a map:
AxG—=Q, (,9)—al

such that (a9)" = a9" and a® = « for all @ € Q and all g,h € G.

We know many natural group actions from algebra. Every group acts on itself with con-
jugation and on the coset space of any subgroup with right multiplication. A permutation
group of a set () acts naturally on {2 with a group action. An automorphism group of a
structure, say a field or a graph, acts on this structure with a group action and so on and
so forth. In this thesis we mostly concentrate on the connections between group actions
and graphs.

Another way to connect these two is to consider a given group action and use it to construct
a graph. By doing this we are building a bridge between different fields of mathematics.
Connections like that can prove very useful, because they allow us to transfer results from
one area of mathematics to another. Indeed we will do this here, applying results from
the theory of group actions to the theory of infinite digraphs and vice versa.

In Chapter 2 we give some preliminaries and notation. In Chapter 3 we define a function
that we will call the suborbit function, using the suborbits of a group action. This function
is in fact a group homomorphism, and it was introduced by Cheryl E. Praeger in 1991
[12]. The suborbit function is essentially our most important tool, as we use it to prove
all our main results.

Chapter 4 focuses on a link to group topology. If a group G acts on a set 2, we can use
this action to define a topology on G called the permutation topology. We will see that
our suborbit function gains a whole new dimension if we do this. The purpose of this
chapter is not to provide new results, but simply to connect what we are working with to
already known results. Most of the conclusions in this chapter can be found in an article
by Régnvaldur G. Moéller from 2010 [11].

Chapters 5 and 6 contain the main results of the thesis. The first section of Chapter 5
starts with a result of Cheryl E Praeger from 1991. Praeger showed that infinite, connected
digraphs that are locally finite, vertex- and edge transitive and have unequal out-valency
and in-valency, can be mapped with a graph homomorphism onto Z := (Z,{(i,i + 1) :
i € Z}) and she constructed this homomorphism using the suborbit function. We then
proceed to generalize this result by omitting the condition of edge transitivity. The first



1 Introduction

instinct was that we would get a similar graph homomorphism onto Z", the naturally
directed graph on Z", if we have n < oo orbits on edges. This is not true in general.
However, if we construct a map in the same way as before, using the suborbit function,
we get a graph homomorphism onto a certain Cayley digraph of the additive group ZF,
for some k < n. Furthermore, adding some conditions on the automorphism group of
the digraph, we can guarantee that this Cayley digraph is in fact Z*. The conditions
however are quite extensive, which raises the question of whether there actually exist
such digraphs. We come back to this question in Chapter 6 where we give examples of
digraphs satisfying these conditions.

Section 5.2 focuses on highly arc transitive graphs, starting with some examples. Our main
result here is that infinite, connected, vertex- and edge transitive digraphs with relatively
prime in-valency and out-valency are highly arc transitive. We prove this in two different
ways, first using basic group theory and then using the suborbit function. In Section 5.3
we define Cayley—Abels digraphs of topological groups and use the image of the suborbit
function to give a lower bound on their valency. This is a partial answer to a question
of George A. Willis from 2014. In Section 5.4 we consider growth of graphs in relation
to the suborbit function. The objective here is to show that every infinite, connected,
vertex- and edge transitive digraph with finite, unequal in-valency and out-valency has
exponential growth.

The principal goal of the last chapter is to construct some more examples. We do this by
using products of graphs, mainly focusing on the Cartesian product. In the first section we
define three different products and give some examples of them. The next three sections
concentrate on Cartesian products, and how we can identify properties of a graph based
on properties of its factors. Most of these results have been proved for finite, undirected
graphs [8, 5], but we verify that they also hold true for infinite digraphs. In 6.4 we have
collected the tools to construct an infinite family of digraphs that satisfy the conditions
of the generalization of Praeger’s result.



2 Preliminaries

2.1 Group actions

Let G be a group acting on a set (2. For g € G and o € () we denote the image of o under
the action of g by af. We say that G acts transitively on €2, or that G is transitive on (2,
if for any two elements, a and 5 in €2, there exists an element g € GG such that a9 = j3.

We can think of each element in G as giving a permutation of the set (2. Therefore we
have a natural map from G to Sym((2), taking g € G to the corresponding permutation.
We say that the action of G on € is faithful if this map is injective. In this case we can
think of GG as a permutation group on (2.

The orbit of an element, o € , is the set a“ = {9 : g € G}. It is clear that G is
transitive if and only if every element of () lies in the same orbit, that is if for any o € Q2
we have a® = . We define a relation on ) with a ~ 3 if 3 € o“. This is an equivalence
relation and its equivalence classes are called the orbits of G.

The point stabilizer or simply the stabilizer of « is denoted by G, and defined as the
subset of G that fixes «, that is G, := {g € G : a9 = a}. For a subset A of {2 we define
the setwise stabilizer of A in G as

Giay ={g€G: A=A}
and the pointwise stabilizer of A in G as
Gy ={9e€G:6 =dforall 6 € A}.

It is left to the reader to verify that G, Gyay and G(a) are subgroups of G. When the
set A is finite and we have A = {ap, a1, ..., a,}, we often denote the pointwise stabilizer
by Gagay-a, instead of Ga).

If G acts transitively on a set €2, it also has a natural action on the coset space, G/G,,
for any o € €2. In fact €2 looks exactly like this coset space in the sense that there exists a
bijective function, 0 : Q@ — G /G, such that 0(w?) = (f(w))? for all w € Q. This is further
explained in |2, p. 22|.

Let G be a group that is transitive on a set €2 and let a € 2. The subgroup G, also
acts on {2 and the orbits of this action are called the suborbits of G on 2. The suborbit
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ab = {a} is called the trivial suborbit. We also have a natural action of G on the set
0? = Q x Q defined by (a, 3)7 := (a9, 39). The orbits of G on Q? are called the orbitals
of G and the orbital {(a, ) : a € Q} is called the diagonal orbital. There is a one-to-one
correspondence between suborbits and orbitals of G, given by % <« (o, 3)¢, with the
trivial suborbit corresponding to the diagonal orbital [2, Theorem 5.2].

2.2 Graphs

A graph T' is an ordered pair of sets, (V(I'), E(I")), where V(I') is called the vertex set
of I'and E(I') C {{z,y} : z,y € V(I'),z # y} is called the edge set of I". The elements
of these sets are called vertices and edges, respectively. The trivial graph is the graph
with one vertex and no edges. Two vertices, @ and [ in I', are adjacent or neighbors if
there is an edge connecting them, that is if {a, 5} € E(T'). The wvalency of a vertex « is
the number of its neighbors, {8 € V(T') : {a, 8} € E(I')}|. If every vertex of I' has finite
valency, we say that I' is locally finite.

A directed graph or digraph, I', is defined similarly, but with the edge set consisting of
ordered pairs of elements in V(T'), that is E(T') C V(I')?. We generally assume that our
digraphs are without loops, that is (a, ) € E(I') for any a € V(I'), except in Definition
5.1.8 of Cayley digraphs. The trivial digraph is defined just like the trivial graph. Two
vertices, o and 3, in a digraph are adjacent or neighbors if either (o, ) or (5, «) is an
edge. The valency of a vertex is again defined as the number of its neighbors. Let
e := (a,8) € E(I'). Then « is called the initial vertex of the edge e, and f its terminal
verter. We define the out-valency of a vertex «, as the number of edges with o as an
initial vertex and the in-valency of a as the number of edges with o as a terminal vertex.
It is clear that the valency of a vertex is the sum of the out-valency and the in-valency.

Let I'; and I's be graphs. A graph homomorphism between I'y and I'y is a map, ¢ :
V(I'y) — V(I'2) such that if {a, 8} € E(I'1) then {¢(a),p(B)} € E(I'2). A graph
homomorphism between digraphs is defined similarly, taking edges to edges. A graph
epimorphism is a surjective graph homomorphism, a graph isomorphism is a bijective
graph homomorphism, and a graph automorphism is a graph isomorphism from a graph
to itself. The set of all graph automorphisms on a graph I" (directed or undirected) forms
a group under composition of maps. This group is called the automorphism group of I’
and is denoted by Aut(I).

Let I' be a graph, directed or undirected, and G := Aut(I'). Then every g € G is a
bijective map on both V(I') and E(I'), so G acts on both sets in a natural way (in fact
these actions are clearly faithful). We say that T is vertez transitive (resp. edge transitive)
if this action is transitive on V(I') (resp. on E(I')). If ' is a vertex transitive digraph,
every vertex must have the same out-valency, u and the same in-valency, v. In this case u
and v are called the out-valency and in-valency of I', respectively. We define the valency
of a vertex transitive graph (directed or undirected) similarly.



2.2 Graphs

Let I' be a vertex transitive digraph with G := Aut(I'). Then E(I') is a union of some
orbitals of the action of G on V(I'). On the other hand, if a group G acts on a set 2 we
can construct a digraph I := (Q,A; U --- U A,,) where the A; are some orbitals of the
action, excluding the diagonal orbital. This digraph is called the orbital digraph of G with
respect to the orbitals Aq,..., A,.






3 The suborbit function

We start by defining a group homomorphism from a group G acting on a set, to the
multiplicative group of the positive rational numbers. We will call this homomorphism
the suborbit function and denote it by ¢. In a paper [12] from 1991, Cheryl E. Praeger
defines the same function in order to show that infinite digraphs with certain properties
can be mapped homomorphically onto the naturally directed graph on Z. We will see this
result later on, as well as many other applications of this function.

3.1 Definition

Let GG be a group acting transitively on a set ) such that all suborbits of G are finite.
Fix a reference point, o € €2, and define the suborbit function as follows:
5%
Vv:G—=>Qy, g— 57, where=a’
||

This function is well defined since the suborbits of G' are finite, but the fact that it is a
group homomorphism is not obvious.

Proposition 3.1.1. The suborbit function is a group homomorphism from G to the group
of positive rational numbers. Moreover, it does not depend on the reference point, «.

Proof. We note first that for every 8,y € 2 we have ‘BGW| = |G, : G,p|, and for every
red
27 Ggr = Gge

and therefore

|6Gﬂm _ ﬁm_ngac _ ’(590_1)06 .
Let g,h € G and set 8 := af and v := o . Then [y%| = |a%"| and similarly
Ja1] = || = [al ] s0
el O Tl _ o] ]3]
Y(h) = PEAYRRNFCA and ¢ (gh) = [aGor| =
Furthermore
1 — |Go 0 Gaps| _ Gt Goy| |Gyt Gagy

B |Gt Gap| B |Go : Gapl |Gap Gaﬂv|'
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Therefore

5% | |at]
a%e]  |yCe]
|Ga : Gagl |Gy 1 Goy| ) |Go 1 Goy| |Gay : Gag|
G Gagl|Ga : Gay|  |Ga : Gapl|Gap : Gagyl
_ |Gyt Gay| |Gary 0 Gagsl _ |G, Gagyl

Gp: Gapl|Gap : Gapyl  |Ga: Gagyl
_ |G Gyl |Gy Gagy|

G5 : Gyl |GB|7 : G‘aﬂﬂ

G, : G| B
CGe Gl %] v(gh)

Y(g)(h) =

so 1 is a homomorphism from G to Q.. We will now show that it is independent of our
reference point, o. Let w be another point in €2 and define a homomorphism

G
Y, G— Qy, gH}f)Gﬁ} where 5 = w’.

Let h € G such that @ = w". Then 8" = o '9" and we get

Bt O T

WG oG o] aCanten |

= p(h~'gh) = (k) "W (g)b(h) = ¥(g).

Yu(9)

]

This last property of 1 allows us to define the function without fixing the point, . The
elements o and ( in the definition are then simply any two elements in €2 such that o = .
This becomes useful in determining some properties of .

3.2 Basic properties

We investigate some properties of the kernel of the suborbit function before introducing
a condition on the action of G making it trivial. It is worth noting that the kernel of v is
often "large" in some sense, as it contains certain subgroups of GG that can not be trivial
if 1 is non-trivial.

Theorem 3.2.1.

(i) Go < kerd for all a € Q.



3.2 Basic properties

(il) G" < kerv, where G' it the commutator subgroup of G.

(iii) If g € G is such that (g) has a finite orbit on Q, then g € ker .

Proof.

(i) We have o9 = « for every g € G, so

I e O e

Y19 = 1G] = o !

(ii) This is obvious since the image of v is an abelian group.

(iii) Let g € G, and suppose H := (g) has a finite orbit, . Then |af| < oo, so there
exists n € N such that o?" = a. Then ¢g" € G, C ker® (by (i)) so we have

U(g") =1=19(9)" € Qy
and therefore 1(g) = 1 and g € ker .

]

Remark 3.2.1.1. If g,h € G and there exists a point a@ € € such that o/ = o’ then
gh™! € G,, so by (i) we have ¥(gh™!) = 1, thus ¥(g) = ¥(h).

Definition 3.2.2. Let G be a group acting faithfully on a set 2. We say that the action
is quasi-primitive if every non-trivial normal subgroup of G acts transitively on €.

As the name implies, quasi-primitivity is a generalization of another property of a group
action called primitivity. To define it we first need to define blocks. A subset, A C € is
a block if for every g € G either A = A% or ANAY = (). A group action is primitive if
every block, A C  is either trivial, that is |[A| = 1, or improper, that is A = Q. We
can see that primitivity implies quasi-primitivity because oV is a block for any normal
subgroup N of G. The following theorem is proved in [11, Corollary 2.6] for primitive
group actions.

Theorem 3.2.3. Let G be a permutation group acting transitively on a set ) and assume
that all suborbits of G are finite. If G is quasi-primitive, then the suborbit function is
trivial.

Proof. Let K :=kerv. Then K is a normal subgroup of G. Since G is quasi-primitive,
we have that K is either trivial or transitive. Suppose K = {e}. Then by (i) in Theorem
3.2.1 we have that G, is trivial for every «a € 2, and therefore

8% _ {8} _

%] Ha}|

1

for all a, 5 € 2. Thus ¥ is trivial.
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Now suppose K is transitive. Let ¢ € G and set «, 5 € () such that § = 9. By the
transitivity of K, there exists k € K such that 3 = o*. But then, by Remark 3.2.1.1,

U(g) = ¥(k) = 1, thus ¢ is trivial. =

10



4 A little topology

Before we go on to the main topic of this thesis, we will introduce a connection to topology.
The links between permutation groups and topological groups are many and diverse,
however we will only touch on a few here.

4.1 Topological groups

We start by defining topological groups and looking at some of their properties. We will
exclude basic definitions from topology, but note that we define neighborhoods to be open.

Definition 4.1.1. A topological group G is a topological Hausdorff space that is also a
group, such that the functions

(g,h) — gh and g~ g !
are continuous.

Remark. In this case, the function g — ¢g~! is a homeomorphism, because it is its own
inverse.

Having a lot of structure, topological groups have many convenient properties.

Proposition 4.1.2. Let x € G. The functions G — G, given by
g gxr, g—xg and ¢+ x g
are homeomorphisms.

Proof. 1t is clear that the functions are all bijective. We will only show that the function
f : g — gz is continuous (the other proofs are similar). Let g € G and let V' C G be
a neighborhood of f(g) = gx. Since the function (g;,92) — ¢192 is continuous, there
exist neighborhoods U; and U, of g and x respectively such that U;Us C V. In particular
f(Uy) = Uz C V so f is continuous. O

An obvious consequence of this proposition is that for every open set U in a topological
group G and every g € G, the sets Ug, gU and g 'Ug are open. In fact, every neighbor-
hood of g € G is of the form Ug with U a neighborhood of the identity because if V' is

11
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a neighborhood of g, then U := Vg~ ! is a neighborhood of the identity and V = Ug. It
follows that every open set in G is of the form Ug with g € G and U a neighborhood of the
identity. To define a topology on a group, it is therefore sufficient to give a neighborhood
basis of the identity.

Proposition 4.1.3. Let G and H be topological groups. A group homomorphism ¢ :
G — H 1is continuous if and only if it is continuous at the identity, eq.

Proof.  Obviously ¢ is continuous at the identity if it is continuous. Suppose it is continu-
ous at eg. Let g € G, and let V = Wp(g) a neighborhood of ¢(g) with W a neighborhood
of ey = ¢(eq). There exists a neighborhood U of eg such that ¢(U) C W. But then
e(Ug) = o(U)p(g) C We(g) =V, so ¢ is continuous at g. O

Definition 4.1.4. Let G be a locally compact group, ¥ the o-algebra generated by the
open sets of G and p a measure on Y. We say that p is reqular if it satisfies the following:

(i) u(K) < oo for all compact sets K C G
(ii) For A € ¥ we have pu(A) = inf{u(U) : A C U,U open}.
(iii) For U an open subset of G we have u(U) = sup{u(K) : K C U, K compact}.

Definition 4.1.5. Let G be a locally compact topological group. A right Haar measure
on G is a nontrivial, regular measure p on G such that p(Ag) = u(A) for all measurable
subsets A of G and all elements g € G.

The following theorem is on the existence and uniqueness of a right Haar measure. For
proof see [4, Section 9.2].

Theorem 4.1.6. Let G be a locally compact group. Then there exists a right Haar mea-
sure on G. Furthermore, if u and p' are two Haar measures on G, then there ezists a
number a € Ry such that i’ = apu.

4.2 The permutation topology

In this section we will show that given a group G acting faithfully on a set, we can define
a topology on G making it a topological group. We will also introduce two functions, the
modular function and the scale function, and discover their connection to the suborbit
function.

Definition 4.2.1. Let G be a group acting on a set 2. We define a topology on G by
taking as a neighborhood basis of the identity element the family of subgroups

{G(a) : A'is a finite subset of Q},

12



4.2 The permutation topology

that is, the pointwise stabilizers of finite sets. This topology is called the permutation
topology.

Proposition 4.2.2. A group G acting faithfully on a set € is a topological group with
respect to the permutation topology.

Proof. We start by showing that G is Hausdorff. Let g, h € G. Since the action is faithful,
there exists a € Q such that a9 # o”*. Then G,g and G,h are disjoint neighborhoods of
g and h respectively, thus G is Hausdorft.

It remains to show that the functions
(g,h) — gh and g~ g !

are continuous. By Proposition 4.1.3 it suffices to show continuity at the identity, eq. Let
V' C G be a neighborhood of eg and let A be a finite subset of 2 such that G(a) C V.
Then Gay x G(a) is a neighborhood of egyxe and gh € V' whenever (g,h) € G(a) X Ga).
Also G(_Al) = G(a) is a neighborhood of e¢, and g=' € V for g € G(a), so both functions
are continuous. OJ

Remark. Note that G is totally disconnected with respect to the permutation topology, if
and only if the action if faithful.

If G is a topological group and U an open subgroup of GG, then G acts transitively on
the coset space G/U. The point stabilizers of the action are conjugates of U, thus open
subgroups of GG. Furthermore, pointwise stabilizers of finite sets are simply finite intersec-
tions of point stabilizers, so they are open as well. Therefore, the permutation topology
on (G, given by this action, is contained in the original topology on G. Furthermore, if U
is also a compact subgroup of G then all pointwise stabilizers of finite sets are compact.

Let GG be a group with the permutation topology, acting on a set 2. We say that G is
closed if its image in Sym(2) is a closed subgroup of Sym(€2). If the action on (2 is faithful,
we can regard GG as a permutation group on ). In this case, GG is closed if and only if it
is a full automorphism group for some first-order structures on 2 (see |3, Section 2.4|).

Let i be a right Haar measure on a locally compact group G and define for all x € G
the measure p, by u,(A) := pu(xA), for any measurable set A C G. Since the map
g +— xg is a homeomorphism, pu, is regular for any x € G. Also, for ¢ € G we have
po(Ag) = p(rAg) = p(rA) = p(A) so p, is a right Haar measure on G. Then, by
Theorem 4.1.6, there exists a number A(z) € R, such that p, = A(z)u. We can therefore
define the following function.

Definition 4.2.3. Suppose G is a locally compact group and let p be a right Haar
measure on G. The modular function is a function A that satisfies u(zA) = A(z)u(A)
for any measurable set A and any x € G.

Remark. Tt is easy to see that A is a group homomorphism from G to R.
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4 A little topology

The following identity was first proved in a paper by Giinter Schlichting in 1979, [13,
Lemma 1]. It also appears independently in a paper by V. I. Trofimov from 1985, in the
proof of Theorem 1 [16].

Theorem 4.2.4. Let G be a group acting transitively on Q) such that G is closed with the

permutation topology. Suppose furthermore that all suborbits of the action are finite and
let 1 be the suborbit function defined by this action. Then A = ).

Proof. Let g € G and «a, 3 € () such that o9 = 3, and let p be a right Haar measure
on G. We note first that G,,Gs and G, are compact sets (see [11, Lemma 2.2|), and
50 w(Ga), (Gp), p(Gap) < 00. Also, G, is a disjoint union of k := |G, : G,p| cosets,
Gap9i, - - -, Gapgr so we have

W(Ga) = <U Gaﬁ9i> = Zu(Gaagi) = |Ga : Gagl 1(Gap) (4.1)

Now we easily get:

¥(g)

T uGy)  ulGs) Gy
]

Remark 4.2.4.1. If G is a totally disconnected, locally compact group, then it contains
a compact open subgroup U, and acts transitively on G/U. The pointwise stabilizers of
this action are compact so all suborbits are finite by Equation (4.1). Furthermore, the
topology on G contains the permutation topology, so the modular function stays the same.
Theorem 4.2.4 therefore still holds, and we see that the suborbit function is independent
of the subgroup U, as long as U is compact and open.

Definition 4.2.5. Let G be a totally disconnected, locally compact group. The scale
function on G is defined as

s(g) :=min{|U : UN g 'Ug| : U a compact open subgroup of G'}.

A compact open subgroup U of G is said to be tidy for g if s(g) = |U : U N g 'Uyg|.

In a paper from 2001, George A. Willis defines tidy subgroups in a fairly untidy way. In
the same paper he shows however, that the definition is equivalent to the one above |18,
Definition 2.1, Theorem 3.1].

Theorem 4.2.6. |17, Corollary 1| Let G be a locally compact, totally disconnected group.
For g € G we have

14



4.2 The permutation topology

Proof. (A similar proof can be found in [10, Theorem 5.2]). Let ¢ € G and choose
compact open subgroups, U; and U, such that

Uy :UiNg 'Ug| =s(g) and |Us:UsNglsg ' =s(gt).
Since s(g) < |Uy : Uy N g 'Usg| and s(g™') < |Uy : Uy N gUg7 Y|, we get:

Uy : Uy Ng U] < s(g) < Uy : Uy N g~ Usg]
Uy : UrNgUig | = s(g™!) = |U2: U2 Nglzg™'|

Let G act on the space 2 := G/U; and let o € €2 such that U; = G,. We use the fact that
compact open subgroups in the permutation topology of this action are compact open
subgroups in the topology on G. Also, because of the identity 1(G,) = |G, : G4s|p(Gas)
for a right Haar measure p, and v,d € €2, we know that all suborbits of the action are
finite. Now we have:

Ui : Ui N g 'Uwg| _ |Ga : Gaas| _ Ga : Gaos| —
|U1 . U1 ﬂgUlgfl‘ ’Ga . Gaozg_l‘ ’Gag . Gaga‘

A(g)

by the proof of Theorem 4.2.4. By defining a similar action of G on G /U, we also get

U Uy Ng ' Usg

Alg) —
(9) Uz : Uy N gUsg™|

and we have shown that s(g)/s(g!) = A(g). O

We note that a closed permutation group G that acts transitively on 2 with all its sub-
orbits finite is always locally compact because stabilizers of points are compact. This is
proved by Woess in [19, Lemma 1].

Corollary 4.2.7. Let G be a group acting transitively on a set . Suppose G is closed
with the permutation topology and that all suborbits of the action are finite. Then

_ s(9)
¢(9) - S(g_l)

forall g € G.

The following two theorems are proved in [10].

Theorem 4.2.8. [10, Theorem 7.7 Let G be a totally disconnected, locally compact group
and let g € G. For any compact, open subgroup V of G,

s(g) = lim [V : V ng Vg™

n—oo

Theorem 4.2.9. [10, Corollary 7.8| Let G be a group acting transitively on a set 2 such
that all suborbits of the action are finite. Let a € Q and g € G and set o, := o9 for
n € N. Then
Ga|1/n‘

s(g) = lim_|a;;
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5 Applications to graphs

In this chapter we consider graphs (mostly directed) and their automorphism groups. If a
digraph is locally finite and vertex transitive, we can define the suborbit function by the
action of its automorphism group on its vertex set. We will see that doing this, we can
use the suborbit function to identify some properties of the digraph. Conversely, given
these properties of the digraph, we can use them to describe the suborbit function.

5.1 Homomorphic images

By mapping a graph with a graph homomorphism onto a simpler graph, we can observe
some of its features while excluding others. This can be convenient if the original graph is
complicated. In this section we will see how we can use the suborbit function to build such
graph homomorphisms for certain types of digraphs, starting with the result of Praeger
that we mentioned in the beginning of Chapter 3, and then generalizing it to digraphs
with less structure.

Definition 5.1.1. A walk in a graph (directed or undirected) from a vertex « to a vertex
B is a sequence of vertices, o = ag, aq,...,qa, = [ such that «;_; and «; are neighbors
for every i = 1,...,n. A path is a walk in which every two vertices are distinct. A graph,
I' is connected if for any two vertices, a and [ there exists a walk from « to .

Definition 5.1.2. A cycle, more specifically an n-cycle, is a path aq,...,«, where a4
and «,, are adjacent. A 3-cycle is called a triangle and a 4-cycle is called a square.

Definition 5.1.3. A treeis a graph (directed or undirected) in which for any two vertices,
a and f there is exactly one path from a to 5.

Remark. A tree is always connected and without cycles.

Definition 5.1.4. A graph (directed or undirected) is said to be bipartite if its vertex set
can be partitioned into two parts, such that every two adjacent vertices lie in different
parts.

Let I' be a connected digraph and G a subgroup of Aut(I") that acts transitively on vertices
of I Assume furthermore that all suborbits of G are finite and let 1 be the suborbit
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5 Applications to graphs

function defined by the action of G on V(I'). We label every directed edge, e = (a, ),
with a number: .
ol

Ggl

¢e =

= 1a
and note that if g,h € G are such that of = 8 and " = « then we have ¢, 5 = ¥(g)

and ¥(h) = (Qﬂ(awg))il. This way of labeling the edges of the digraph can be found in an
article by Hyman Bass and Ravi Kulkarni from 1990 [1, Section 1].

Let ¢ € G and a and (8 be vertices of I' such that o = . Suppose furthermore that
there exists a vertex v € V(I') such that («,~) and (v, 5) are edges. Let g1, g2 € G such
that 9" = v and 492 = 5. Then of = a9'9% so we have

Y(g) = ¥(g192) = ¥(g1)Y(g2) = ¢(a,y)¢(w,ﬁ)-

Since I' is connected, there exists a walk (not necessarily directed) between any two
vertices o and . For such a walk, we enumerate the edges, eq, ..., e,. Then if a9 = 3 we
can extend the above to get:

(g) = (Pe)™ -+ (Pe,)
where ¢; € {£1}. Thus the labeled graph describes the suborbit function completely.

Definition 5.1.5. We define a naturally directed graph on the integers as

Z = (Z,E(Z))

where E(Z) = {(n,n+ 1) : n € Z}. More generally, for any k € N* we define a naturally
directed graph on Z* as _ _

7F = (2", E(Z))
where (n,m) € E(Z*), with n = (ny,...,n;) and m = (my,...,my), if and only if
there exists a unique number, [ € {1,...,k} such that m; = n; + 1 and m; = n; for all

i€ {1, EN{I).

The following theorem was first proved by Cheryl E. Praeger in 1991 [12].

Theorem 5.1.6. Let I' be an infinite, connected, vertex transitive, edge transitive digraph
with finite but unequal out-valency and in-valency. Then there exists a graph epimorphism,
¢ : T — Z, s.t. the inverse image, p~'(n), is infinite for any n € 7Z.

Proof.  Set G := Aut(I'). We denote the out-valency of I" with u and the in-valency with
v. Let o and 3 be vertices of I' such that («, ) is an edge. Since G acts transitively on
the edges of I' we see that 3% = {y € V(') : (a,7) € E(I')} and it is obvious that the
cardinality of this set is u. In the same way we get o = {y € V(I') : (v,8) € E(I')},
and the cardinality of this set is v. Thus for an edge (a, ) we have

u

Vi) = -
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5.1 Homomorphic images

Now, let a and [ be arbitrary vertices of I' and g € G such that o9 = 3. Let
a = ag,aq,. .., = (3 a walk between a and . We find ¢y, ... gy such that o | = «;
and we denote the directed edges of this walk by ey, ..., e, so that we have:

€, = (ai,l,ai) or e; = (Qzﬁ@ifl)-

Then ¥(g) = ¥(¢1) - - - ¥(gr) and by the note above we can write:

e, it e = (i1, )
vig) = {Wei)l if e = (qi,qi-1)

where e; is an edge, so for each i we have ¥(g;) = u/v or ¥(g;) = v/u. It follows that for

any g € GG we can write y

vie) = ()"

for some n € Z. Furthermore, we get that

Im(¢)) = {<E>n:n€Z} ~7

()

because u/v # 1.

We can now define a function

e:V(I')—=Z, pr—n if pf=a and ¢(g):(g>n

v
By Remark 3.2.1.1 this map is well defined. Also, it is easy to see that if (3, ) is an edge,
then p(v) = ¢(5) + 1, thus ¢ is a graph homomorphism from I" to Z, and it is surjective
since the image of ¥ is a subgroup of Q, spanned by u/v.

Suppose that ¢~!(n) is finite for some n € Z. We note that the fibers of ( are simply
the orbits of the kernel of ¢, and thus they all have the same cardinality, say k. Then
the number of edges with initial vertex in ¢~'(n) is u - k and the number of edges with
terminal vertex in ¢~ '(n + 1) is v - k, and these must be equal, so we get uk = vk but
this contradicts the hypothesis u # v. O

We can see that Theorem 5.1.6 fails if we omit the hypothesis of edge transitivity, which
raises the question of whether we can build a similar epimorphism onto Z" if Aut(T")
has n orbits on edges (note that n < oo since the graph is locally finite and vertex
transitive). Generally the answer is no, and we give a counter-example below in Example
5.1.7. However, we can still build a graph epimorphism in the same way onto a digraph
that is similar to Z* for some k& < n. Further conditions on Aut(T") will then guarantee
that this digraph is in fact zn.

Example 5.1.7. Let I'y be the infinite directed tree with in-valency 1 and out-valency
2. Ty is locally finite, connected and both vertex- and edge transitive. We will construct
a new digraph I' by adding edges to I'g. Let A be the subset of V(I') x V(I') such that
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5 Applications to graphs

(o, ) € A if and only if there is a directed path of length two from « to § in I'y. Set
.= (V(I'), E(T")) with

V(D) :=V(Iy) and E(T):= E(Iy) UA.

Figure 1 shows parts of the digraphs I'y and I', all edges are directed downwards. Of

course both digraphs continue infinitely upwards and downwards.
.( TN
(/
\

A

A

Here, T is not edge transitive because an edge from E(I'g) can not be mapped to an edge
from A with a graph automorphism. In fact, Aut(I') has exactly two orbits on edges,
namely E(I'g) and A (shown in blue and red, respectively). This digraph however can

(0 n/‘(»

Figure 1: Vertex transitive graph with two orbits on edges

not be mapped onto Z? with a graph homomorphism because I' contains triangles whereas
Z? does not.

Definition 5.1.8. Let G be a group and S C G. The Cayley digraph of G with respect
to S is defined as the directed graph,

Cay(G,S) := (G,A) where A:={(g,9s):9€ G,se S}

We can identify many properties of the Cayley digraph of a group from the set S. Let
I':= Cay(G, S) for a group G and S C G. Then I' is connected if and only if S generates
G. If S contains the identity of G, then I' has a loop at every vertex, otherwise it has no
loops.

Example 5.1.9. The Cayley digraph of the additive group Z with respect to the set
S = {1} is Z. More generally, the Cayley digraph of the additive group Z* with respect
to the set S = {ey,..., e} is 7k (here e; € Z* is the element with 1 as its i-th coordinate
and 0 elsewhere).

Theorem 5.1.10. Let I' be an infinite, connected, locally finite, vertex transitive, digraph
and let G be a subgroup of Aut(T') that has n orbits on E(T'), denoted by Ay, ... A,.
Fori=1,...,n, let I'; == (V(I'),A;) and u; and v; be the out-valency and in-valency
of I';, respectively. If 1 is the suborbit function defined by the action of G on I', then
Im(v)) ~ Z* for some k < n and there exists a graph epimorphism, ¢ : I' — Cay(Z*,0(S))
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5.1 Homomorphic images

where S = {uy /vy, .., u,/v,} and 0 is an isomorphism from Im(w) to Z*. Furthermore,
every fiber of ¢ is infinite. (Here we suppose Z° is the trivial additive group, {0}.)

Proof. Suppose first that u; = v; for i = 1,...,n. Then Im(¢)) ~ Z° and S = Im(v)) so
Cay(Z°,0(S)) is simply the graph with one vertex and a loop on that vertex. The map
taking every vertex of I' to this one vertex then clearly satisfies all our conditions.

Suppose u; # v; for some i. If (o, §) € A; is an edge and § = af we have
U(g) = Yap =

_ U
v;

Then, by the same argument as in Theorem 5.1.6, we have for arbitrary «, § € V(I") such

that 8 = a9: -
u\ U\ "
v = () (5)

with m; € Z. Thus the group Im(v)) = (uy/vi,...,u,/v,) is spanned by at most n
elements in Q, and so we have Im(v)) =~ Z* for some k € {1,...,n}. We can now construct
a map in a similar way as in Theorem 5.1.6. Let § be an isomorphism from Im(z) to Z*
and S = {uy/v1,...,u,/v,}. We fix a vertex, a € V(I') and define o : V(I') — Z* by

B 0((g)) where [ =af.

It is clear that thls map is surjective since Im(v)) ~ Z*. Let (8,7) € E(T'), and g,h € G
such that 3 = o” and v = 89. Then ¢(8) = 0(¢)(h)) and

p(7) = 0(¢(hg)) = 0((h)) + 0(¢(9)) = @ (B) + O(ui/vi)

for some ¢ = 1...,n. Since 8(u;/v;) € 6(S) we have shown that (p(5),¢(7)) is an edge
in Cay(Z*,0(S)) and so ¢ is an epimorphism.

To show that every fiber of ¢ is infinite, we choose ¢ € {1,...,n} such that u; # v;.
Then, (z,z + 0(u;/v;)) is an edge for any z € Z*. Furthermore, the number of edges in
the orbital A; with initial vertex in ¢=*(z) is u; - |¢~'(z)|, and the number of edges in A;
with terminal vertex in =1 (z + 0(u;/v;)) is v; - |~ (2 + 0(u;/v;))| and these must be the
same, so we have u; - [ (2)| = v; - [~ (2 + 0(u;/v;))], for all z € ZF. Since u; # v; this
implies

o™ ()] < o™z +0(wi/v)] or o7 (2)] > @7 (= + O(us/vi))].

It is now clear that if [p~!(2)| were finite for some z, we could find an element 2’ € Z*
with |¢~1(2’)] = 0 which is impossible since ¢ is surjective. O

Example 5.1.11. Let I" be the graph from Example 5.1.7 and set I'y := (V(I"), E(Ty))
and I'y := (V(I'), A). Then I'y has out-valency u; = 2 and in-valency v; = 1, and I'y has
out-valency uy = 4 and in-valency vy = 1. The image of v is generated by wu;/v; = 2
and ug /vy = 4, so Im(¢)) = (2) ~ Z. Let S = {2,4} and 6 a group isomorphism from
Im(v)) to Z. Then, by the theorem, we have a surjective graph homomorphism from I" to
Cay(Z,0(S)). Note that in this case the Cayley digraph is not the same as Z.
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We now proceed to add conditions to our graph to guarantee that the Cayley digraph we
construct is equal to Z*, starting by proving the following well known fact.

Lemma 5.1.12. Let G be a group acting transitively on a set ) such that all suborbits
are finite. Let o € €0 and assume that there exist elements gi,...,9, € G such that
G = (Go,Gog1, .-, Gagn). Then the digraph defined by T' := (2, A1 U---UA,), where

A; = (o, %)%, is connected and has finite in- and out-valency.

Proof. 'The finiteness of the in- and out valency is clear, since all suborbits are finite and
I' has finitely many orbits on edges.

We will show that there exists a path from any arbitrary vertex to a. Let § € € and
g € G such that § = 9. Since G is generated by the set G, U Gog1 U---UG,g, we can
write

g="mgy  hmg" hinia
where k; € {1,...,n}, ¢ € {£1} and h; € G, for all i € {1,...,m}.

Let z; := higy} ... hingy " hmy1 € G and f; := o for i € {1...m}. Then ; = § and for
every i = 1,...,m — 1 we have one of the following (depending on ¢;):

(i) (Biy1, Bs) = (v, @i )Tin1 = (o, 9% )%+t € B(T)

(ii) (62‘761’-1—1) = (ahig’:il’a)377;+l — (agl;-l’a)xiﬂ c E(F)

In the same way either (a, (3,,) or (B, ) is an edge and so «, By, ..., 0 = (B is a walk
from « to . n

Theorem 5.1.13. If we assume the hypotheses of the lemma and furthermore that

(W(g1), - ¥(gn)) = Im(v) ~ Z",

then there exists a graph epimorphism ¢ : 1" — 7" all of whose fibers are infinite.

Proof. By the lemma and the fact that 1(g1),...,%(g,) generate Im(¢)) we have that I'
is connected, with finite but unequal in-valency and out-valency and has exactly n orbits
on edges, namely Ay, ..., A,. Furthermore, if u; and v; are in out-valency and in-valency
of I'; := (V(I'), A;), respectively, then ¢(g;) = u;/v;. Let S := {ui/vy,...,u,/v,}. Then
by Theorem 5.1.10 there exists a graph epimorphism, ¢ : I' — Cay(Z", 0(S)), where 6§ is
any isomorphism from Im(«)) to Z", with every fiber of ¢ infinite. We know that Zr is
the Cayley digraph of Z" with respect to the set {ei,...,e,}, so it only remains to show
that there is an isomorphism from Im(¢)) to Z" taking u;/v; to e;. But this is clear, since
the sets S and {ey,...,e,} are both bases for these groups as Z-modules. O

Now this generalization of Praeger’s result (Theorem 5.1.6) is easily proved.

Corollary 5.1.14. Let ' be an infinite, connected, locally finite, vertex transitive, digraph
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5.1 Homomorphic images

and let G be a subgroup of Aut(I") that has n orbits on EM). If Im(¢)) ~ Z", then there
exists a graph epimorphism ¢ : I' = Z™ all of whose fibers are infinite.

Proof. Let a € V(I') and Aj,...,A, be the orbits on the edges. Then there exist
g1,---,9n € G such that (a,a%) € A;. Tt is not hard to see that (G, ¢1,...,9,) acts
transitively on V(I'), because o can be mapped to any of its neighbors with g;h or g; 'h
for some h € G, and we generalize this by using the identity Gps = ¢7'Gng. We know
that there is a one-to-one correspondence between V(T') and G/G,, given by o’ ++ G,h,
so we can look at the vertices of I' as right cosets of G, in G. Then, for any h € G there
exists ' € (Ga, 1, .., 9n) such that Goh = Gk, that is h € Goh' C (Gay g1y -+ -5 Gn),
and therefore G = (Gq, g1, .., gn). Now the result follows from Theorem 5.1.13. O

Corollary 5.1.15. Under the assumptions of Corollary 5.1.14, I" is bipartite.

Proof.  Clearly, Z™ contains no cycles of odd lengths and so neither does I'. This is
equivalent to I' being bipartite (see Proposition 1.6.1 in [6]) H

Example 5.1.16. Consider the infinite regular directed tree, I', with out-valency 5 and
in-valency 2. Color its edges in two colors, such that every vertex has three blue edges
going out and two red ones, and one of each color coming in.

< | \'\ia

Lid

i

Ull\.\‘l\.\\\\\\\\\\

Figure 2: Infinite reqular directed tree with two-colored edges

df A

Define Ay and A, as the sets of blue edges and red edges, respectively. Then E(I') =
A; UA,. Let G < Aut(T") be the subgroup that maps only red edges to red edges and
blue edges to blue edges. G is clearly transitive on V (I") since every vertex has both blue
and red edges going in and out, and it has two orbits on E(I'), namely A; and A,. As
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before we define I'; := (V(I'), Ay) and I'y := (V(I'), Ay). Then I'; has out-valency u; = 3
and in-valency v; = 1, and I'y; has out-valency us = 2 and in-valency v, = 1 so the image
of ¢ is the subgroup of Q, generated by 2 and 3, that is Im()) ~ Z?. Thus by Theorem
5.1.13, this digraph can be mapped onto 72 with an epimorphism all of whose fibers are
infinite.

Example 5.1.17. We start with the same digraph as above. Adding edges and colors
we can build similar epimorphisms onto Z" for any n € N*. Suppose now I' has countable
in-valency and out-valency. Let p; denote the i-th prime number and let ¢y, cs, ... denote
different colors. If we color the edges of I' such that every vertex has one edge of each
color coming in, and p; edges of the color ¢; going out, for every ¢ € N*, then the suborbit
function is surjective onto Q.

Of course, had we not colored the edges of the digraph in Example 5.1.16 in two different
colors, we would simply have had a regular directed tree with unequal out-valency and in-
valency, thus yielding a graph epimorphism onto Z. It even seems like a bit of cheat, taking
a nice and edge transitive digraph and making it less nice so that it fits the conditions of
our theorem. The fact of the matter is that it is not trivial to find a digraph such that
taking GG as the full automorphism group, it satisfies these conditions. However it is not
impossible either, and we will see at the end of Chapter 6, when we have the proper tools,
that we can in fact construct such digraphs for any n € N*.

5.2 Highly arc transitive digraphs

Having gone from edge transitivity to finitely many orbits on edges, we now turn around
and go in the other direction to consider a property of infinite digraphs that is even
stronger than edge transitivity.

Definition 5.2.1. Let I be a digraph. An s-arc of T' is a sequence of s + 1 vertices,
ag, aq, . .., a5 such that (a1, ;) € E(T) for every i € {1,...,s}. We say that I" is s-arc
transitive if the automorphism group, Aut(I'), acts transitively on the set of s-arcs. A
graph that is s-arc transitive for every s € N is called highly arc transitive.

Remark. We note that 0-arcs and 1-arcs are simply vertices and edges respectively.

Example 5.2.2. (i) Every infinite, regular directed tree is highly arc transitive.

(ii) Let I'; be the infinite, regular directed tree with in-valency 1 and out-valency 2. We
will construct a new graph, I', by adding vertices and edges as follows: We duplicate
each vertex of I'; such that if o/ and ' are the duplicates of a and (3, respectively,
and (o, 8) € E(I'1), then we add (a, '), (/, ) and (</, 5’) to the edge set of I
This digraph is highly arc transitive and part of it is shown in Figure 3, all edges
directed downwards.
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Figure 8: A highly arc transitive digraph

It is easily proved by induction that in an infinite, connected, vertex transitive digraph,
s-arc transitivity implies (s — 1)-arc transitivity. This naturally raises the question of
whether there exist for any s, digraphs that are s-arc transitive but not (s + 1)-arc
transitive. We will consider two such examples, for s =1 and s = 2.

Example 5.2.3. We construct a digraph I" as follows: Let V(') := Z x {0,1}. Now we
define the sets

A= {((20 —1,7),(2,)), (20 + 1,5), (20,5)) i € Z} for j € {0,1}
AL = {((24,0), (20 — 1,1)), ((24,0), (20 + 1,1)) : i € Z}
A= {((20,1), (20 — 1,0)), ((20,1), (2i + 1,0)) : i € Z}

and set E(I") := AgUA; UA[UA]. We can see part of the digraph I' in figure 4.

Figure 4: Edge transitive, non-2-arc transitive digraph

This digraph is edge transitive, but it is not 2-arc transitive, because the 2-arc (1, 0), (0,0), (1, 1)
can not be mapped to the 2-arc (1,0),(0,0),(—1,1) with a graph homomorphism. We
note that since the in-valency and the out-valency are equal, the suborbit function is
trivial on this digraph.

Example 5.2.4. In 2007, Norbert Seifter conjectured that infinite, connected, locally
finite, 2-arc transitive digraphs were always highly arc transitive [14]. This conjecture
was disproved the same year by Sonia P. Mansilla [9], with an infinite family of 2-arc
transitive digraphs that are not 3-arc transitive, namely digraphs, I',,, defined by:

V(L) =2y X Ly X Z

25



5 Applications to graphs

E(,) = {((,5,k), (G, i,k + 1)), ((5,5,k), (4,i + 1,k + 1)) : (4,5,k) € V(I'n)}
for n > 3.

We now start preparing for the key theorem of this section that gives conditions on a
digraph that guarantee it to be highly arc transitive. We first need the following lemma.

Lemma 5.2.5. If H and K are two subgroups of a group G such that |G : H| and |G : K|
are finite and relatively prime then |G : HN K| = |G : H||G : K|.

Proof. 1f we look at the action of G on the direct product of the coset spaces,
(G/H) x (G/K), the stabilizer of the point (H, K) is H N K. Therefore

|G:HNK|=|(H K <|(G/H)x (G/K)|=|G: H||G: K.
Since HN K < H and HN K < K we have

IG:HNK|=|G:H||H: HNK]|
=|G:K||K: HNK|

so |G : K| divides |H : H N K|, and therefore |G : HN K| = |G : H||G : K|k for
some k € N*. But since |G : HN K| < |G : H||G : K| it is clear that k¥ = 1 and
|G:HNK|=|G: H||G: K|. O

Theorem 5.2.6. Let ' be an infinite, connected, vertex transitive, edge transitive, digraph
with finite out- and in-valency, u and v respectively. If u and v are relatively prime then
I' is highly arc transitive.

Proof. 'We proceed by induction. Since the 1-arcs are simply edges, I' is 1-arc transitive
by the hypothesis.

Suppose I' is s-arc transitive and let ag, aq, ..., as41 be an (s + 1)-arc. Since I' is s-arc
transitive, G, acts transitively on the set of s-arcs having a;, as their terminal vertex.
Then |Ga, @ Gag..a.] is equal to the cardinality of this set, which is obviously v*. In
the same way we get |Go, @ Ga,a,.,| = u, because I' is edge transitive. Since Ggg..q, N
G =G we have by the lemma:

AsOls41 Q- Qs41

|Ga, : Gag...opir] = |Ga, : Gag...a

. _ S
Go, : Gagasr| = V0.

But then G,, acts transitively on the set of (s 4 1)-arcs having ay as its second last
vertex. Since G is transitive on vertices it can take ay to any vertex, so this means that
G is transitive on (s + 1)-arcs. O

We get the following corollary that appeared in a paper by Norbert Seifter in 2008.

Corollary 5.2.7. [14, Proposition 3.2| Let I be an infinite, connected vertex- and edge
transitive digraph with prime out-valency, v and in-valency v < uw. Then I' is highly arc
transitive.

26



5.2 Highly arc transitive digraphs

We can actually prove Theorem 5.2.6 using the suborbit function instead of Lemma 5.2.5.
We will do this shortly, but in order to do that we need the following proposition.

Proposition 5.2.8. Let I' be an infinite, connected, vertex- and edge transitive digraph
with finite out- and in-valencies u and v, respectively, and let p, q € N* be relatively prime
numbers such that p/q = u/v. Then if g € G := Aut(I") is such that (a,a?) € E(T"), we
have for any n > 1

AR I

Proof. We have

[

G

where p"/q" is a reduced fraction. Therefore it is clear that p" < |a9"%|.

%]y 2

We know that the number of n-arcs starting from « is v". It is also clear that every vertex
in a9"% is the last vertex of such an n-arc, and therefore |a9"%| < u™. ]

Second proof of Theorem 5.2.6.  Let p and ¢ be as in the proposition above. Then, since
u and v are relatively prime, p = u, thus if («, @) is an edge we have by the proposition
|a9"Ce| = y™ for all n € N*. But since [a?"%| < |Gay 1 Gagaya,| < u™, we have that
|Gag @ Gagay-an| = u™. Thus G, acts transitively on n-arcs with initial vertex v and since
G acts transitively on vertices this means that G acts transitively on n-arcs. n

For the next two corollaries, recall Definition 4.2.9 of the scale function.

Corollary 5.2.9. Let I" be as in Theorem 5.2.6 and let s be the scale function defined by
the permutation topology on G = Aut(I'). If g € G is such that (a,a9) is an edge for
some « € §2, then

s(g) = lim | G |/n =y,
n—oo

Proof. 'This follows from Theorem 4.2.9 and the proof above. [

Corollary 5.2.10. Let G be a totally disconnected, locally compact group and let g € G. If
there exists a compact open subgroup U of G such that the numbers p := |U : UN (g *Ug)|
and q := |U : UN (gUg™")| are relatively prime, then s(g) = p and s(¢g~') = q. In this
case U s tidy for g.

Proof. We let T be the orbital digraph defined by the action of G' on G/U, with respect
to the orbital A := («,a9)¢, where a € V(') is the vertex that corresponds to U € G/U.
Let B :=af. Then I' is infinite, edge transitive and has out-valency

|5Ga| = |G, : Ga,3| = |U :Un (9_1U9)| =P

and in valency

09| = |Gp: Gapl = U :UN(gUg™")| =¢
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5 Applications to graphs

and these are relatively prime. We note that I' is not necessarily connected, but this is
not a problem because we can simply look at its connected components. Then we have
by Corollary 5.2.9 that s(g) = p, and by Corollary 4.2.7 we also have s(¢g~!) = ¢q. By
definition U is tidy for g. O

Example 5.2.11. In an article from 2001, Reinhard Diestel and Imre Leader constructed
a sequence of digraphs, using line digraphs [7]. We will describe these graphs quickly here.
The line digraph of a digraph T, is the digraph whose vertex set is E(I') and whose edges
are ((a, B),(8,7)) for (a,5),(B,v) € E(I'). We now use this to inductively define a
sequence of highly arc transitive digraphs. Let I'y be the infinite regular directed tree
with in-valency 2 and out-valency 3, and define I',,; as the line digraph of I',, for n € N.
Below we can see 'y, I'; and I'y, with Iy and I's drawn on top of the preceding digraphs
in the sequence. All edges are directed downwards.

Figure 5: Fuirst three digraphs in the line digraph sequence

We know that I'y is highly arc transitive. It can thus be shown by induction on n that
I, is connected, vertex- and edge transitive and has in-valency 2 and out-valency 3, for
all n € N. Therefore, by Theorem 5.2.6, I',, is highly arc transitive for any n € N.
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5.3 Cayley—Abels digraphs

5.3 Cayley—Abels digraphs

We have already described Cayley digraphs of groups in Section 5.1. In this section we
define similar digraphs for compactly generated, totally disconnected, locally compact
groups, called Cayley—Abels digraphs.

Definition 5.3.1. A topological group G is compactly generated if it contains a compact
subset that generates G.

Definition 5.3.2. Let GG be a topological group. A connected digraph, I', is a Cayley—
Abels digraph of G if there is a vertex transitive action of G on I' such that every point
stabilizer is a compact open subgroup of G.

Remark. We can define an undirected Cayley—Abels graph similarly, and in fact the main
results of this section also apply to undirected Cayley—Abels graphs.

Let’s look at how we can construct such a digraph. Let G be a compactly generated,
totally disconnected, locally compact group and let S be a compact generating set of G.
Since G is totally disconnected and locally compact, there exists a compact open subgroup
U in G. The cosets of U are then an open covering of G, in particular an open covering of
S, and since S is compact there exists a finite subcovering. Therefore, we can find finitely
many elements, ¢gi,...,¢9, € G, such that (U, g1,...,9,) = G. Define I' = (V(I'), E(T"))
with
V(I):=G/U and E(T):=(a,a®)“U---U(a,a™)"

where « is the vertex that corresponds to U € G/U. Then G acts transitively on V(I') =
G /U and every point stabilizer is a conjugate of the compact open subgroup G, = U and
is therefore compact and open. Furthermore, I' is connected by Lemma 5.1.12, so it is a

Cayley—Abels digraph of G.

We note that given a compactly generated, totally disconnected, locally compact group,
GG, and an arbitrary locally finite Cayley—Abels digraph, I' of G, we can describe I' in the
same way as above. We simply take a vertex « of I' and define U := G,. Furthermore we
let f1,..., 53, be all the vertices of I such that («, ;) € E(I') and let g; € G such that
a9 = B;. Then G = (U, gy,...,g,) and E(T') = (o, 31)¢ U --- U (a, 8,)€.

We now proceed to partly answer a question asked by George A. Willis on his visit to
Reykjavik in 2014. Willis speculated whether the lowest possible valency of an undirected
Cayley—Abels graph of a given compactly generated, totally disconnected, locally compact
group, could tell us anything about the group. Conversely, whether properties of the group
can tell us anything about a lowest valency of its Cayley—Abels graphs. We will give a
partial answer to the latter question, giving a lower bound on the valency of Cayley—Abels
digraphs.

Recall that for such a group G, the suborbit function defined by the action of G on G/U
where U is a compact open subgroup, is independent of U (Remark 4.2.4.1).
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Theorem 5.3.3. Let G be a compactly generated, totally disconnected, locally compact
group and let ¥ : G — Q4 be the suborbit function defined by the action of G on G/U
for some compact open subgroup U. If Im(1)) is cyclic and generated by the element p/q,
with p,q € N* relatively prime, then every Cayley—Abels digraph of G has valency at least

ptq

Proof. Let I' be a locally finite Cayley—Abels digraph of G. Then G acts transitively on
vertices of I' and has finitely many orbits on its edges, A1, ..., A,. Define the subgraphs
L, = (V(I),A;), fori =1,...,n and let u; and v; be the out-valency and in-valency of I';,
respectively. Note that if d is the total valency of I', then d = uy + - - +u, +v1 +- - -+ v,.
For o € V(I") we know that G,, is a compact open subgroup of GG, and that we can look at
the vertex set of I' as the coset space G/G,. The suborbit function defined by the action
of G on V(I') is therefore equal to ¢ and so, as we have seen before, we have

o= (2= (52)

We can therefore write u;/v; = (p/q)™ with m; € Z for every ¢ € {1,...,n} and at least
one of the m; is not 0, say ¢ = k. Then we have

PSP g™ Sup v <Y (i + o) =d.

=1

O

We can get a similar result when the image of 1 is not cyclic, but our problem here is
finding a set of generators {p1/qi,...,pn/qn}, with the smallest possible sum p; + --- +
Pn+q1+ -+ q,. We can not necessarily find such a set, but we do however know that
it exists.

Theorem 5.3.4. Let G and i be as in Theorem 5.3.3. Define the set of sums:
- P1 Pk
A= {;(pi—l—qi) : <Eq_k> :Im(w)} C N*.
Then every Cayley—Abels digraph of G has valency at least min(A).

Proof. Let I' be a locally finite Cayley—Abels digraph of G and let Ay,..., A, be the
orbits of G on edges of I'. Define the subgraphs I'; = (V(I'), A;), for i = 1,...,n and let
u; and v; be the out-valency and in-valency of I';, respectively. Then d = uy + - - - 4+ u,, +
v1 + -+ + v, is the total valency of I". As before, we know that the suborbit function
defined by the action of G on V(I') is equal to ¢. Therefore

Im(¢)z<Z—i,...,Z—:>

so d € A, that is d > min(A). O
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5.4 Growth of graphs

5.4 Growth of graphs

Definition 5.4.1. We say that an undirected graph T, is I-transitive (sometimes called
arc transitive) if for any two edges, {a1, 51} and {as, 52} of T' there exists an element
g € Aut(T') such that af = as and { = $5. Equivalently, T' is 1-transitive if it is edge
transitive and for every edge {a, f} of I' there exists g € Aut(I') such that o =  and
B9 = a.

Define a metric, d, on a connected graph I' (directed or undirected) in the following way:
for vertices, a and 8 of I' we let d(a, 8) be the number of edges in the shortest path
between o and . Clearly, any automorphism on I' is an isometry with respect to this
metric.

Definition 5.4.2. Let I' be a connected graph (directed or undirected). We define the
number C,,(«) as the number of vertices at distance n from «, that is

Co(a) = {8 € V(D) : d(a,B) =n}|, neN.

Furthermore we define B,,(«) as the number of vertices at distance less than or equal to
n from «, that is

Bu(a) = {8 € V(I) : d(a, B) < n}|, neN.

Definition 5.4.3. We say that an infinite connected graph I' grows exponentially or has
exponential growth if there exists a constant @ > 1 and a number N € N such that
a" < By, (a) for all n > N where « is some vertex of I'. If I does not grow exponentially,
we say that it grows subexponentially.

Lemma 5.4.4. Let T be as in Theorem 5.1.6 and o € V(). Then |a9"%| < C,(a)
where g € G is such that (o, a?) € E(I).

Proof. Since (o, a9) is an edge, then so is (a,a9)9 = (a9, a9 ) for i = 1,...,n — 1.
Then «,af,...,a9" is a directed path of length n, and thus d(a,a¢") < n. But by
Theorem 5.1.6 we have a graph homomorphism from I' onto 7 where there is a unique
path between every two vertices. Therefore every path from o to o must have the same
length, that is d(a,a9") = n.

Now let v € a9"%. Then v = o9"" for some h € G, and since h is a graph automorphism,
and therefore an isometry, we get:

n=d(a,a?)=d", " =d(a,a?" = d(a,).

Thus a9 % c {8 € V() : d(a, 8) < n} and so [a?"%| < C,(a). O

Remark. In a vertex transitive graph, the numbers C,(«) and B, («) do not depend on a.
Since we are mainly concerned with vertex transitive graphs, we will from now on look at
them as a function of n and denote them by C'(n) and B(n).
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We are now ready for the following theorem.

Theorem 5.4.5. An infinite, connected, vertex transitive, edge transitive digraph of fi-
nite, unequal out-valency and in-valency has exponential growth.

Proof. Let T" be such a digraph and let a € V(I'). Since u # v there exists g € G such
that (a,a9) € E(I') and ¢(g) # 1. Then we have for any n € N*:

e

($(9))" = (g") < [as"%| < C(n) < B(n)

o]

So we see that if ¢)(g) > 1 then T" has exponential growth and if ¢)(g) < 1, we can replace
g by g~ to get the same result, because then (a9 ', ) € E(T). O

We can use Theorem 5.4.5 to give another proof of a theorem of Thomassen and Watkins
from 1989 [15].

Corollary 5.4.6. Let I' be an infinite, connected, vertex transitive, edge transitive (undi-
rected) graph of odd valency. If the function C(n) is subexponential, then T is I-transitive.

Proof. Suppose T" is not 1-transitive. We can think of each edge, {«, 8} as a pair of
directed edges, {(a, ), (5, @)}. Then, since T" is edge transitive but not 1-transitive, it
has two orbits on the new directed edges, where two directed edges corresponding to the
same undirected edge are in different orbits. Take one of these orbits, A, and define a
new directed graph, IV := (V(I'), A). It is clear that directing the edges in this way does
not change the metric, d and thus the function C'(n) is still the same. Furthermore the
out-valency, u, and in-valency, v, must differ since the total valency is odd. The result
therefore follows from the theorem above. O
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6 Cartesian products

As with many other mathematical structures, we can define products of two or more
given graphs. Graphs can be factored with respect to these products, and if they can
not be factored non-trivially, they are said to be prime. These notions are all familiar
(for example from number theory), but what do they mean for graphs? In fact there are
many ways to define products of graphs, and in the first section of this chapter we will
define three different graph products and look at some basic examples. However we are
mainly concerned with one of these, called the Cartesian product, because it will prove
useful for finding graphs with certain properties. In particular, we will construct graphs
that satisfy the conditions of Corollary 5.1.14, for any number of orbits.

6.1 Definitions and first examples

We start with some basic definitions.

Definition 6.1.1. Let I'1, 'y be digraphs and Q := V(I';) x V(I'y). Define the sets:

Ar = {((; @2), (1, 2)), ((71:72), (81,72)) = (@2, o) € E(T2), (11,61) € B(T1)}
Ay = {((a17a2)7 (ﬂhBZ)) : (051751) < E(Fl)a (Q2>52) S E<F2)}

We define the Cartesian product of I'y and T'y as I'1OTy := (2, Ay), the direct product of T'y
and 'y as 'y xT'y := (Q, Ay), and the strong product of 'y and T'y as T'1 Xy := (2, AjUA,).
If I' =Ty x ['s, where % is any of the three products defined above, we say that I'y and I’y
are factors of I', with respect to that particular product.

It is more common to define these products for undirected graphs, replacing every edge
(ar, B) in the definition, with an edge {«, 5}. For Cartesian products, this does not
change the product, that is if I'; and I'y are digraphs and I"} and I}, are the corresponding
undirected graphs, (where every edge («, ) is replaced by {a,}) then IO is the
corresponding undirected graph for the digraph I';/[JI's. The same does not hold for
direct and strong products because if {ay, 51} € E(I'1) and {aq, 52} € E(I'y) then we
get two corresponding edges in Ay, namely {(al,ag), (Bl,ﬁg)} and {(al,ﬁg), (Bl,ag)}.
In these cases, the corresponding undirected graph for I'y x 'y (resp. 'y K T'y) is only a
subgraph of I} x I'} (resp. I'} X T%).
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6 Cartesian products

Definition 6.1.2. Let * be any of the three products, [, x or K. A digraph I" is prime
with respect to * if it can not be factored non-trivially with this product. Two digraphs
are said to be relatively prime with respect to a certain product, if they have no common
factor with respect to that product.

Remark. A digraph T' is prime with respect to the Cartesian product (resp. the strong
product) if and only if I' = T';000y (resp. I' = I'; X T'y) implies that either T'; or 'y is
trivial. For the direct product, this holds if we redefine the trivial graph to consist of one
vertex and a loop on that vertex.

It is not hard to see that these three graph products are all associative. Therefore we can
extend the definitions to products of n digraphs, I'y % --- % [',,.

Example 6.1.3. Let I'; be the infinite, regular directed tree with in-valency one and
out-valency two and I'y := Z. Parts of the digraphs I'1[JI'y and I'y KTy are shown below,
all edges directed downwards and from left to right.

Figure 6: T100y to the left and I'y KT’y to the right

We exclude the direct product, because it is not very interesting. It is not connected; it
is isomorphic to a disjoint union of countably many copies of I';.

The digraph I';JI"y has two orbits on edges, namely

A= {((a,i),(B,1)) : (a, 8) € E(T'1),i € Z} shown in blue, and
A= {((,1),(a,i+ 1)) ;@€ V(I'y),i € Z} shown in red.

We note that A U A’ = A; from the definition. Here, the suborbit function gives us a
graph homomorphism onto Cay(Z, (0,1)), the naturally directed graph on Z that also has
a loop on every vertex. However we can easily see that there exists a surjective graph
homomorphism onto Z?, because each subgraph, V(I';) x {i}, maps homomorphically
onto Z. This is shown in Figure 7.

Of course, here (f;,4) maps to (f,4) and (v;,7) maps to (v,4) for i € {0,1}. It is also
clear that every fiber of this homomorphism is infinite.
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(a,0)

(e, 0) (e, 1)

(3,0) (8.1)

(vo,1) (71,1) (2,1 (v3,1)

Figure 7: To the left we have I')(d'y and to the right its homomorphic image, 72.

The digraph I'; X I’y has one more orbit on the edges (three in total), namely A, from
the definition. These edges are shown in black in Figure 6.

6.2 Factors of Cartesian products

The rest of this chapter focuses on Cartesian products only. When we talk about factors,
prime digraphs and relatively prime digraphs, we always mean with respect to Cartesian
products.

We start by observing a few properties that can be passed on from the factors of a digraph
I' to the digraph itself. The following proposition is proved for finite undirected graphs
in [8, Corollary 5.3]

Proposition 6.2.1. A Cartesian product of n digraphs is connected if and only if all of
its factors are.

Proof.  'We prove the proposition for a Cartesian product of two digraphs, the rest is clear
by induction. Let I' = I';[dI'y and suppose I' is connected. Let o, 5 € I'y and o/, 5" € T'y
be arbitrary vertices. Since I' is connected there exists a walk,

(aa O/) = ((1/0, a6)> R (aka O‘%) = (6a 6,)

from (a,a’) to (B,0"). Then for i = 1,... k — 1, either (o, 1) € E(I'1) or oy = cvj1q
so we get an induced walk in I'; from o to §. In the same way we get an induced walk
from o' to ' in I'y, and so both digraphs are connected.

Conversely, suppose I'; and I'y are connected and (o, o) and (3, f) are arbitrary vertices

of I'. Then we have walks, « = ag,a1,...,04, = S and o =, a},...,a, = in 'y and
'y, respectively, and we use them to construct a walk from («, ') to (8, 5’), namely

(Oé[),Oéé)), ((1/1,0(6), I (ak7a6)7 (akaall)’ SR (ak?a;d)’
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6 Cartesian products

so I' is connected. O

Proposition 6.2.2. Let I'y,..., I, be infinite, reqular digraphs with v; and u; the in-
valency and out-valency of I';, respectively. Then the Cartesian product, I''\(1-- -0, has
m-valency vy + - - - + v, and out-valency uy + - -+ + Uy,.

Proof. Let @ = (ov,...,a,) € V(I''O---OI',). The set of edges with o as an initial
vertex 1s

U {(a, (o, 1, B, tig1, .. ,an)) (ay, P) € E(Fi)},

and the cardinality of this set is clearly
S {B (i B) € EM)Y = u.
i=1 i=1

Similarly we get that the total in-valency is vy + - - - + v,,. O]

Definition 6.2.3. Let I' =T';0---OT, and fix a vertex a = (ay, ..., ay,) of I'. We define
the I';-layer trough a as the induced subgraph of I"

F? = {Oél}lj cee D{Oéi_l}DFiD{OéH_l}D te D{O./n}

where {«;} is the trivial graph ({«a;},0).

We note that for any vertex, a € I' we have I'{' >~ I'; because the map
F?%Fzﬁ (a17'"70572—17670573-"-17"'70471)HB

is clearly a graph isomorphism. It is also easy to see that if two digraphs are isomorphic,
their automorphism groups are isomorphic as well. Therefore, for every automorphism of
I'; we have a corresponding automorphism on I'{", that translates to an automorphism on
[ fixing every vertex of every factor except for I';. Now let G; := Aut(I';) fori =1,...,n
and let g = (g1,...,9n) € G1 X -+- X G,,. Then we get a corresponding automorphism on
[, defined by (a1, ...,a,)9 := (af',...,a%), so we have G; X -+ x G,, < Aut(I).

The following proposition is proved for finite undirected graphs in [8, Proposition 6.16]

Proposition 6.2.4. A Cartesian product of connected, vertex transitive digraphs is vertex
transitive.

Proof. This is clear, simply because if I' = I''(J- - - I, then

Aut(T'y) x -+ x Aut(l,) < Aut(D).
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6.2 Factors of Cartesian products

Edge-transitivity, however, can not be passed to a digraph from its factors, except in the
following special case.

We denote the n-th power of a digraph I, with respect to a Cartesian product, by I'™",
for n € N*.

Proposition 6.2.5. Let I' be an infinite, connected, digraph. If " is edge transitive then
'Y is edge transitive for any n € N*.

Proof. Let H := Aut(T') and G := Aut(I'"™"). We have seen that
H'=HxHx---x H<G.

Also, any map that permutes the coordinates of V(I'™") is clearly an automorphism on
ren,

Let a = (a1,...,a0), 8= (B, B0),7v = (V15 -,7), 0 = (61,...,0,) € V(I'®") such
that («, 3) and (7, d) are edges of T2 and let ki, ks € {1,...,n} be such that ay, # B,
and v, # Ok,- Then (ay,,B,) and (7i,,0,) are both edges of I' and since I' is edge
transitive, there exists an element, hy, € H taking (ag,, Bk,) t0 (Vky, Ok,). Let hy, € H
such that aZ;” =y, and for i € {1,...,n}\{k1, ko} let h; € H such that o/ = ~;. Then
we have (a, 3)9" = (v,8) where h = (hy,...,h,) € H" and g is the automorphism that
interchanges the ki-th and the ko-th coordinates. O

Example 6.2.6. Proposition 6.2.5 yields a collection of examples of edge transitive di-
graphs. Let I" be the infinite, regular, directed tree with finite in-valency v and out-valency
w. Then '™ is an infinite, connected, locally finite, vertex- and edge transitive digraph
with in-valency nv and out-valency nu. If v # u, Theorem 5.1.6 gives a surjective graph
homomorphism from I'™" to Z, all of whose fibers are infinite. Figure 8 shows part of
I'ar with v =1 and v = 2, edges directed downwards and from left to right.

Figure 8: Edge transitive non-tree
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6.3 Products of prime digraphs

We consider in particular Cartesian products of prime, pairwise non-isomorphic digraphs.
In this case we can completely determine the automorphism group of the product by the
automorphism groups of the factors, in fact we have

Aut(I,0---0O0,) = Aut(I'y) x -+ x Aut(,).
To prove this though, we first need some more definitions.

Definition 6.3.1. Let I' = I';(J---OI',. A subgraph A of I is called a boz if it is of the
form A = A;0---0OA, where A; is a subgraph of T'; for all i € {1,... ,n}.

Definition 6.3.2. A subgraph A of a digraph T" is conver in T if every shortest (undi-
rected) path in I between two vertices of A lies within A.

Hammack, Imrich and Klavzar proved the next three lemmas for finite, undirected graphs
in [8, Lemmas 6.3, 6.4, 6.5]. The proofs do not depend on the finiteness, thus we can use
them for infinite graphs as well. Also, since our digraphs are without multiple edges, we
can "forget" the direction of the edges to obtain a corresponding undirected graph. For
what comes after, we only need these results for the underlying undirected graphs of our
digraphs. We will therefore omit the proofs here, except for a part of the last one that is
left as an exercise in [8].

Lemma 6.3.3. (Unique Square Lemma) Let e and f be two incident edges of a
Cartesian product I''\UI'y that are in different layers, that is, one in a I'y-layer and the
other one in a I's-layer. Then there exists exactly one square in I'\(II'y containing e and
f. This square has no diagonals.

Remark. Notice that this lemma holds for n factors.

Definition 6.3.4. We say a subgraph A of a Cartesian product I" has the square property
if for any two adjacent edges e and f of A that are in different layers, the unique square
of I" that contains them is also contained in A.

Lemma 6.3.5. A connected subgraph of a Cartesian product is a box if and only if it has
the square property.

Lemma 6.3.6. A subgraph A of a digraph ' = I't/OJ---0O1I,, is conver if and only if
A= A0O---0OA, where A; is a convex subgraph of T'; for all i.

Proof. We will prove that if A = A;0Ay with A; convex in I'; for i = 1,2, then A is
convex in I'1[JI's5. The rest of the implication is then clear by induction and the converse
is proved in [8, Lemma 6.5].

Suppose A = A;0A, where A; is a convex subgraph of I';. Let (a,«’) and (3, /')
be vertices of A and let (a, /) = (ap, ), ..., (an, ) = (B,0') be a shortest path
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6.3 Products of prime digraphs

between them in I';0y. Then for every j € {0,...,n — 1} we have either o; = aj1; or
(aj,041) € E(I'). By deleting repeated vertices we get a path, o = vy, ..., = § from
a to fin I'y. But this has to be the shortest path between o and 3 because a shorter one
would yield a shorter path between (a,a’) and (3, 5’). Since A; is convex, the vertices
{10, -sm} ={ao,...,an} are all contained in A;. Similarly, o; are all contained in A,

so the path (ag, ), . .., (an,al)) is contained in AjCJA, thus it is convex. O

Lemma 6.3.6 implies that every convex subgraph is a box. Also, every I';-layer in a Carte-
sian product I'y[J---I", is convex, because obviously every graph is a convex subgraph
of itself and every trivial graph is convex.

We can now prove the main result of this section. This theorem is proved for finite,
undirected graphs in |8, Theorem 6.13]

Theorem 6.3.7. Let I'y,...,T",, be infinite, connected, locally finite digraphs with auto-
morphism groups Gy, ...,G, respectively and let I' = I'1/J---0OL,,. Suppose furthermore
that the digraphs I'; are all prime and pairwise non-isomorphic. Then

G:=Aut(l') =Gy x -+ x G,

Proof. Let g € G be an automorphism of T, fix a vertex o« = (aq, -+ ,a,) of T and set
B = (B1,...,0n) :=a% For k € {1,...,n} we know that the subgraph I'} is convex, and
it is easy to see that this implies that (I'?)? is also convex (and therefore a box). Let

A= () = A,O---0A,

where A; is an induced subgraph of I';. Since ¢ is an automorphism on I' we have
A ~T¢ ~ T, so Ais prime because I'y is. Then A; is trivial for all but one ¢ € {1,...,n},
in fact, since f € A, we have

A= {40 OB JOA {81110 - - O{ B}

for some j € {1,...,n}. This means that A is a subgraph of F? , but similarly, because
Ff is prime, we get that (Ffi )9"" is a subgraph of I'?. Therefore (I'¢)9 = Ff but the I'; are
pairwise non-isomorphic, so we must have k = j. Now, we know that ['¢ ~ Fg ~ Iy, so

by restricting g to the subgraph I'f we can assign to it an automorphism g, € Gy, of I'.
Then we have for an arbitrary vertex, a in I'}:

a’ = (ala'--aak—17w706k+1,...,Oén)g = (/817-”76k—1;wgk;5k+17---,6n) = p.

We want to show that the assigned automorphism g is independent of the vertex a. Let
v = (7,...,7) be another vertex of I" and consider the I'y-layer, I']. Suppose first that
(a,7) is an edge (that is not contained in I'Y). Then «; = ; for all i € {1,...,n} but one,
say i = j # k, and we have («;,v;) € E(I';). Set § = (01,...,0,) := 77 and let ¢ € I'] be
the vertex that corresponds to a in I'j. Then we have

= (Yoo s Vo1 Wy Vet ds -+ -5 Yn)? = (01, ... ,5k,1,w92,5k+1, cy 0p) =i d.
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6 Cartesian products

Since (o,7) is an edge in a I';-layer, then so are (a,c) and (a,c)? = (b,d), and so we
have w9 = w9%. Because I' is connected, we get the same for arbitrary vertices a and
v and so gp € Gy does not depend on a. Doing this for all £ € {1,...,n} we get
g=1(91,---,9n) € Gy X -+ X G,. O

6.4 Arc-types of graphs

Now that we have identified the automorphism groups of products of prime, non-isomorphic
digraphs, we want to use it to better determine the structure of these products. In order
to do this, we define the arc-type of a digraph. This definition is analogous to a definition
of arc-types for undirected graphs appearing in an article by Marston Conder, Tomaz
Pisanski and Arjana Zitnik from 2015 [5].

Definition 6.4.1. Let I' be an infinite, connected, locally finite, vertex transitive digraph
with n orbits on edges, Aq,...,A,. Let v; and u; be the in-valency and out-valency of
I = (V(I),A;), respectively, for i = 1,...,n. It is clear that v = vy + --- + v, and
u = u; + -+ + u, are the in-valency and out-valency of I', respectively. We define the
arc-type of I" as the partition II of v + v with

= (v1+uy)+ -+ (vp + up).

We note that given the arc-type of a digraph, we can describe the image of the suborbit
function, which then allows us to construct graph homomorphisms onto a Cayley digraph
of Z* for some k < n.

Theorem 6.4.2. Let I'y,...,T',, be prime, infinite, connected, locally finite digraphs that
are pairwise non-isomorphic. For 1 = 1,...,n, let G; be the automorphism group of I';
and 11; its arc-type and let ' =100---U,. Then I' has arc-type Il =11y + - - - 4 I1,,.

Proof. We have already established that the arc-type of any digraph can be described
as a sum of numbers (|a“?| + |3%*|) where (a, 3) are edges from different orbits on edges
and that the number of orbits on edges is the same as the number of different suborbits
of the form |3%| where (a, 3) is an edge.

Since G = G X - -+ X G,, we also have G, = (G1)a; X+ X (Gp)a, for a = (ay,...,a,) €
V(T') where (G;)a, is the stabilizer of «; in G;. Therefore, we have for two vertices,
6 - (ﬁlv"‘vﬁn) and Y= (717"%’771) of I':

v € Y% = ﬂfl)o‘l X oo x flGnan o 4 € ﬁl-(Gi)ai, foralli=1,...,n. (6.1)

So if there are m; orbits on edges in I';, the number of orbits on edges in I' is exactly
my+ -+ my.
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6.4 Arc-types of graphs

Now suppose (a, ) € E(I'). Then «; = p; for all ¢ but one, say i = k and we have
(au, Br) € E(T'y). Suppose the arc-type of I'y, is
Hk=(¢@+u9)+-~+(¢2+u%)

Then we know that ]akcﬁﬂ = UJ(-k) and |ﬁkGa’“] = ug-k) for some j € {1,..., my}. Furthermore,
we have

G)a
9] = B o x B
G1)a
:|/8§ 1) 1|...|B£G7l)an|

= {80+ HBa} -l - [{Bea - 18} =

and in the same way we get |a%s| = v](.k). Now it is clear from Equation (6.1) that

=1 + -+ I,. O

Remark. Let II = (vy + uy) + -+ + (v, + u,). Theorem 6.4.2 implies that if we can
find connected, edge transitive digraphs, I'y,...,I", with in-valencies vy, ..., v, and out-
valencies uq, ..., u,, that are prime and pairwise non-isomorphic, then we can construct
a digraph with arc-type II.

Corollary 6.4.3. Let I'y,..., ', be infinite, connected, locally finite vertex transitive di-
graphs and let I' =1T100---01,,. If ' has k orbits on edges, and I'; has k; orbits on edges
of fori=1,...,nthenk <k +---+k,.

Proof. By the proof of Theorem 6.4.2; the group Aut(I';) x --- x Aut(I',) has exactly
ki + - -+ k, orbits on edges, and we know that it is contained in Aut(I). H

Example 6.4.4. Let I'; be the infinite regular directed tree with in-valency 1 and out-
valency 2, and let I'y be the digraph from Example 5.2.3. The Cartesian product of these
two digraphs is shown in Figure 9. Of course, it continues infinitely to the sides, and each
subtree goes infinitely up and down.

Both I'; and I'y are edge transitive, so Corollary 6.4.3 implies that I'1[JI'y has at most two
orbits on edges. In fact it is easy to see that it can not be edge transitive and therefore
has exactly two orbits (shown in blue and black).

To be able to use Theorem 6.4.2 to construct digraphs with a given arc-type, we have to
start with prime digraphs. But how do we know whether a given digraph is prime, and
are we familiar with any prime digraphs?

Lemma 6.4.5. If ' is a connected digraph that is not prime, then I' contains an undi-
rected 4-cycle.

Proof. Let I' = I'!JI'y and suppose both factors are non-trivial. Since I'; and I'y are
connected and non-trivial they both contain at least one edge. Let (aq, 1) and (aw, 52)
be edges of I'y and Ty, respectively. Then (ay, as), (a1, 52), (B1, 52), (B1, az) is a 4-cycle in
I. O
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Figure 9: Cartesian product with two orbits on edges

Proposition 6.4.6. Every directed tree is prime.
Proof. This follows from Lemma 6.4.5 because directed trees have no cycles. O

Theorem 6.4.7. Let I1 = (vy +uy) + - - + (v, +uy) where fori,j € {1,...,n} such that
i # j we have v; # vj or w; # u;. Then there exists a digraph of arc-type II.

Proof. Fori=1,...,n,let I'; be the infinite, regular directed tree with in-valency v; and
out-valency w;. Then I'y, ..., I', are prime and pairwise non-isomorphic, so by Corollary
6.4.2, the Cartesian product I'1(J--- I, has the given arc-type. O

Corollary 6.4.8. Let n € N*. Then there exists an infinite, connected, locally finite,
vertex transitive digraph I', whose full automorphism group has n orbits on edges, such
that there is an epimorphism from I' to Z™ with all fibers infinite.

Proof. Fori=1,... nletu; be the i-th prime number and let I'; be the infinite, regular,
directed tree with in-valency 1 and out-valency u;. Then the I'; are prime and pairwise
non-isomorphic, so the graph I" := I'y0J---I",, has arc-type

M= 1+w)+-+ (1+u),

that is I" is an infinite, connected, vertex transitive digraph with n orbits on edges. Because
the u; are all prime we also have Im(v)) = (uy,...,u,) ~ Z" so by Corollary 5.1.14 there

exists a graph epimorphism ¢ : I' — Z" all of whose fibers are infinite. n

Example 6.4.9. We construct the digraph from Corollary 6.4.8 with n = 2. Part of this
digraph is shown in Figure 10, the blue edges representing the orbit with out-valency 2
(edges directed from left to right) and the red edges representing the orbit with out-valency
3 (edges directed downwards).
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6.4 Arc-types of graphs

Figure 10: Cartesian product of two directed trees with arc-types (1 +2) and (1 + 3)

As we have shown, there exists a graph epimorphism from this graph onto Zz, all of whose
fibers are infinite.
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