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Abstract

In a world of ever increasing use of renewables geothermal has lagged behind and has seen
little growth compared to other renewables due in part to its high capital cost. Geothermal
wells account for about a third of the capital cost and it is therefore important to ensure the
highest possible success rate and value creation from these wells. In order to address this,
an algorithm has been developed that utilizes a numerical TOUGH2 model of a geothermal
system to evaluate the optimal well placement based on a net present value estimation. The
algorithm was tested using a hypothetical model and found the optimal wells to be in the
hottest parts of the model at depth and in the upper heat zone, directly above the heat source
in both cases. The algorithm was also subjected to a sensitivity and processing time analysis
with the hypothetical model as an input model. The sensitivity analysis showed that the
models results were most sensitive to changes in reinjection enthalpy, discount rate and the
power plants thermal efficiency. The processing time analysis showed that the algorithm can
potentially be run in a reasonable enough time to serve as a tool for decision making.

Keywords: Geothermal, TOUGH2, optimization algorithm, well placement, reservoir en-
gineering



Algoriþmi til Bestunar Borholustaðsetningar í
Jarðhitakerfum Byggt á TOUGH2 Líkönum

Dagur Helgason

janúar 2017

Útdráttur

Í heimi þar sem notkun endurnýjanlegra orkugjafa er sífellt að aukast hefur jarðvarmi dregist
aftur úr og ekki náð jafn örum vexti og margir aðrir endurnýjanlegir orkugjafar að hluta til
vegna mikils stofnkostnaðar. Borholur í jarðhitakerfum eru um þriðjungur þessa kostnaðar,
það er því mikilvægt að tryggja hæstu mögulega árangurstíðni af borun þessara hola. Til þess
að takast á við þetta var þróaður algoriþmi sem notfærir sér töluleg líkön af jarðhitakerfum
fyrir TOUGH2 til að finna bestu borholu staðsetningu innan kerfisins útfrá mati á núvirði
hverrar borholu. Algoriþminn var prófaður á fræðilegu líkani af jarðhitakerfi, þar sem hann
staðsetti bestu holurnar í því kerfi í heitustu pörtum líkansins beint yfir varmauppsprettunni,
annarsvegar á miklu dýpi við varma uppsprettuna og hinsvegar í efra varmasvæði kerfisins.
Næmnigreining og mælingar á keyrslutíma voru einnig framkvæmdar á algoriþmanum með
þessu líkani. Næmnigreiningin leiddi í ljós að niðurstöður líkansins væru næmastar fyrir
framleiðslu stuðli/massaflæði fyrir borholurnar og vermi niðurdælingarvökva. Mælingar á
keyrslutíma leiddu í ljós að algoriþminn getur keyrt innan raunhæfra tímamarka og gæti orð-
ið gagnlegt verkfæri fyrir ákvörðunartöku.

Lykilorð: Jarðhiti, TOUGH2, bestunar algoriþmi, borholustaðsetning, forðafræði
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Chapter 1

Introduction

Renewable energy in the world is growing at a faster pace than before and average growth
rate of renewable power production (includes Geothermal power, hydro-power, Solar PV,
CSP and Wind) in 2015 was around 12%. Even with this increased focus on renewables
geothermal power is growing slowly and had a growth rate of only 2.4% in 2015[2]. A va-
riety of factors contribute to this low growth rate one of them being the high capital cost of
geothermal plants. While the Levelized Cost of Electricity(LCOE) for geothermal power is
the lowest out of all technologies according to the EIA[3] ,for plants coming online in 2022,
the capital cost is relatively high at a $6,230/kW for a dual flash geothermal power plant in
2012 compared to for example onshore wind at $2,213/kW and large scale photovoltaic at
$3,873/kW [4]. The majority of this capital cost comes from the construction of the power
plant itself and the drilling, in Iceland the construction of the power plant accounts for ap-
proximately 35% of the investment cost and the drilling for approximately 34%[5].
With this high cost of drilling wells, it is important that as many wells as possible are
successful and that they be as profitable as possible. The IFC defines a successful well,
in short, as a well that produces more than 3MWe, in the case of production wells, or have
been active for a long time, in the case of injection wells [6]. According to the IFC the
success rate of the first well in a field is approximately 50% and the cumulative success rate
at the end of the development phase (when 30 wells have been drilled) is approximately
70%. The same report showed the drilling success rate over time, by project phase for the
past five decades, which showed that a steady increase in success rate has taken place in the
exploration phase (defined as the first 6 wells drilled) while the success rate in the develop-
ment phase (defined as wells 7 to 30) and the operation phase (defined as all wells after the
30th well) did not change significantly, see Figure 1.1. The figure shows that in the 2000s
the success rate of exploration wells surpassed the success rate of wells in the development
phase which would indicate that success rate decreased as more knowledge about the geot-
hermal systems in question was acquired.
If success rate can be increased in geothermal drilling the results would be decreased capital
cost as fewer wells would need to be drilled for a given power output. On top of that if the
wells that are drilled are more profitable investors are more easily attracted.

1.1 How are wells placed?
Many companies have guidelines and requirements that have to be met before a well can be
placed. At the time of writing, late 2016, Landsvirkjun (the National Power Company of
Iceland) was working on these guidelines, for their operations, and access to a draft of those
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Figure 1.1: Drilling success rate by project phase and decade. The exploration phase in-
cludes the first 6 wells drilled, the development phase includes well 7 through 30 and the
operation phase includes all wells after the 30th.[6]

guidelines was granted for the writing of this thesis[7]. The information in this section is
drawn from that document as well as a meeting at Landsvirkjun, that the author of this thesis
attended, where the placement of a new well ÞG-15 at Þeistareykir was discussed.
Before a well can be placed a significant amount of information gathering has to take place
and this data has to be organized and represented in a comprehensive way. The checklist,
that Landsvirkjun is working on, requires the following data be available before a well can
be placed

• A geographical map of the area including elevation mapping and satellite images.

• A geological map of the area including surface manifestations, visible faults and ot-
her surface expressions, temperature measurements of soil and a mapping of up flow
zones.

• Geophysical measurements including magnetotelluric (MT) and transient electromag-
netic (TEM) measurements, a gravity map of the area and a size estimation of the
geothermal area.

• Geochemical analysis of fluid from up flow zones, estimate of the temperature of the
system using geothermometers and the location of the main up-flow zones estimated
based on this data.

• A geothermal potential estimate using Monte Carlo simulations or other similar met-
hods.

• Data from wells that already have been drilled including core samples, down hole
condition measurements, well imaging, temperature gradient and more.

• A conceptual model of the area including locations of major faults and location of
permeable areas, temperature and pressure conditions as well as expected rock types
and their location.
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• Logistics including access to water for drilling, road access, well pad placements and
more

• All necessary legal documents and permits including a land-use plan that specifies
where Landsvirkjun is allowed to drill.

• Environmental assessment of drilling in the area.

Once all of these data have been gathered and the most important aspects of the data, for
example the location of major faults and well paths, have been visualized a meeting is held
to discuss the placement of the well. This meeting is attended by experts in their field that are
familiar with the geothermal system in question. Their main focus will be to find a suitable
well path for the well in order to allow for the most economical extraction of geothermal
heat. A secondary objective is for the well to provide more information about the properties
of the geothermal system and its extent. The experts will generally have an idea of where the
up-flow zones, major faults and the main heat source are and will try to design a well path
that intersects faults at a location where the geofluid will be suitable for extraction. Some
well paths may be chosen that do not intersect these faults, or even be located at the edges of
the geothermal system (wildcat wells), in order to gather further information although this is
generally not done for the first few wells as the risk of failure is higher for this type of well.

1.2 Background and scope
This project was done as part of the research conducted by the Operations Research and
Subsurface Modeling(ORSM) group which is a collaboration of Reykjavík University, the
University of Iceland and Landsvirkjun. The inspiration for the project was the work of
a former student Basil Jefferies[8]. Jefferies used the TOUGH2[9] reservoir simulator to
simulate all possible wells in the Þeistareykir Geothermal field in the North of Iceland to
determine the optimal well location. Jefferies’ research was however specific to that one
geothermal field and the aim of this project is to broaden the scope of that by seeing if
it is possible to write an algorithm that simulates all possible wells in a geothermal field
automatically to determine the optimal well location. This algorithm (hereby referred to as
the Algorithm) would then be tested on reservoir models to determine the viability of using
the Algorithm as a tool for decision makers when choosing well locations.

1.3 Literature review
Little effort has gone into developing tools that systematically find the optimal well place-
ment in geothermal fields utilizing numerical forward modeling of production. Some of the
research that has gone into related fields were reviewed and are briefly described here. Chen
et al. (2014)[10] used a multivariate adaptive regression spline (MARS) technique to find
the optimal design and placement for a well in Southern California, USA. Akin (2012)[11]
used an inference method, artificial neural networks and a search algorithm to find the opti-
mal placement of an injection well and tested it on the Kizildere Geothermal field in Turkey.
The approach had some limitations as the results from the neural network did not corrolate
well enough with the reference simulation used for validation. Jefferies (2016)[8] wrote an
MSc thesis where the optimal well was chosen based on the evaluated net present values
(NPV) for all possible well placements in a geothermal field.
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The well placement problem is quite similar in the oil and gas industry as the results depend
on a combination of geological, physical and economical parameters that have a complex
relationship and are hard to grasp intuitively. The oil and gas industry has utilized algorithms
quite extensively for well placement and a few of these will be briefly described here. Pan
and Horne (1998)[12] investigated two multivariate interpolation algorithms, Least Squares
and Kriging, to generate new realizations from a limited number of simulations in order to
predict the optimal strategies in field development. Tupac et al. (2007)[13] presented a hy-
brid intelligent system to optimize oil field development. The system utilized evolutionary
algorithms to optimize the positioning and characteristics of wells in a reservoir; distributed
processing to perform simultaneous reservoir simulations; function approximation models
as simulator proxies; and quality maps to use some reservoir information to improve the
optimization process. Ding (2008)[14] presented a covariance matrix adaptation-evolution
strategy(CMAES) method applied to the problem of well placement optimization. Onwu-
nalu and Durlofsky (2009)[15] applied a particle swarm optimization (PSO) algorithm to
determine the optimal well type and location. Minton (2012)[16] compares these methods
and other common methods more extensively.

1.4 How can reservoir simulators be used to assist with
well placement?

Forward modeling of production is currently not used widely for the decision making pro-
cess of placing wells. Their primary role is to simulate the response the geothermal system
has to utilization and how best to use the wells that are already in place or whose location
has already been decided. Through the utilization of reservoir simulators and the Algorithm,
decision makers are given quantitative data to rely on and consider on top of the qualitative
data they will already have. This data can be used to suggest overlooked possibilities and
give an estimate of the viability of a well being considered.
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Chapter 2

Methods

The Algorithm uses the TOUGH2[9] numerical reservoir simulator along with Python[17]
and PyTOUGH[18] to simulate possible well locations and evaluate their NPV in order to
determine what the most optimal wells are. Once constructed the Algorithm was tested on a
hypothetical model in order to determine the reliability of its output. A sensitivity analysis
was performed using the hypothetical model, the processing time of the algorithm was also
measured and compared using versions of the hypothetical model with a varying number
of cells. This chapter goes through the methodology of constructing the Algorithm, what
tools were used, what the structure of the Algorithm is, what assumptions are made and how
testing was conducted.

2.1 Tools used

The first step in writing the Algorithm was to determine what tools were available and which
ones to use. For this project TOUGH2 was chosen as a reservoir simulator, Python as a
programing language and PyTOUGH utilized as an interface between the two. PetraSim
was used for model construction and visualization.

2.1.1 TOUGH2

TOUGH2 is a numerical reservoir simulator designed primarily for geothermal systems but
is also used for nuclear waste disposal as well as other applications. “[TOUGH2 simu-
lates] nonisothermal flows of multicomponent, multiphase fluids in one, two and three-
dimensional porous and fractured media” [9]. It does this by solving mass and energy
balance equations for the mass and heat flows in the model. The thermophysical proper-
ties used in these equations are supplied by the appropriate equation of state (EOS) module
during the simulation. For the purposes of this project EOS1 (water, water with tracer) was
used as the majority of the fluid in hydrothermal systems will be water. By choosing EOS1
the model assumes that there are no dissolved solids in the system. TOUGH2 was originally
developed in 1991 by the Earth Science Division of the University of California at Lawrence
Berkley National Laboratory and is widely used in both industry and academia most often
using a third party interface like PetraSim, TOUGH2Matlab or PyTOUGH due to the lack
of an intuitive interface in the simulator itself.
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2.1.2 Python 2.7

Python is a general purpose programing language developed by Guido van Rossum in the
early 1990s. This language was chosen because it is a well-established programing language
that is widely used, free of charge and has a wide variety of useful resources that can be
added to it, including the PyTOUGH extension. Version 2.7 is chosen as it is the newest
version that can utilize PyTOUGH.[18]

2.1.3 PyTOUGH

PyTOUGH is a Python extension designed as an interface for TOUGH2, it introduces routi-
nes that allow the user to create and manipulate TOUGH2 input files, process output files and
call on TOUGH2 executables to run simulations. The extension was written by Dr. Adrian
Croucher at the Department of Engineering Science at the University of Auckland, New
Zealand. PyTOUGH can also be used to handle data from AUTOUGH2 which is the Uni-
versity of Auckland version of TOUGH2 [18]. This extension was chosen as it has functions
and routines that add and extract data from TOUGH2 files that would otherwise have to be
written into the Algorithm. The extension requires any 2.x version of Python that is newer
than Python 2.4.

2.1.4 PetraSim

“PetraSim is an interactive pre-processor and post-processor for the TOUGH family of co-
des” [19]. This program is widely used in industry and has an interface that visualizes
numerical models as they are changed making the program more intuitive than many other
interfaces. This program was primarily used as a means to visualize models as well as create
TOUGH2 input files for the models to input into the Algorithm. Additionally, the models
used for testing, supplied by members of the ORSM group, were constructed using PetraSim
and supplied as PetraSim files.

2.2 Algorithm structure
The Algorithm reads a numerical reservoir model, that the user supplies, and then proceeds
to generate all the needed input files to simulate the possible wells. A possible well in this
case is a cell in the model, the Algorithm generates one input file for every cell in the model
each one with a single well added to a single cell. Once these files have been created the
Algorithm proceeds to simulate all of them creating the output files that are then used to
evaluate the net present value (NPV) of each possible well and arrange them into a list in
order of NPV with the optimal well, defined as the well with the highest estimated NPV, at
the top.
The Algorithm is split up into three main parts (PreProcessor, Processor and PostProcessor)
as well as an algorithm (Generator) that generates scripts with the appropriate values for
each run as well as making sure that the algorithms run in the correct order. The Algorithm
uses base algorithms for the PreProcessor, Processor and PostProcessor the Generator opens
these scripts, creates copies of them and adds the relevant variables to each one. A flow
diagram that shows the order of operations can be seen on Figure 2.1. Generator is run first
(and should in most cases be the only file that needs to be run)
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Figure 2.1: Flowchart describing how the Algorithm runs. The further to the right an opera-
tion is the later it is run. The Inputs are supplied by the user and each is described in Table 1.
The user should run Generator.py which generates a PreProcessor.py script, a user defined
number (N) of ProcessorXX.py scripts, a PostProcessor.py script and a batch file. The batch
file makes sure the scripts are run in the correct order, first the PreProcessor.py, followed by
all the ProcessorXX.py scripts and the PostProcessor.py script. PreProcessor.py creates the
Input files needed for the simulations, these are sorted into N Input batches that are used as
inputs for each of the ProcessorXX.py scripts. The Processor.py scripts each go into a simu-
lation batch and run every Input file there creating N Output batches that contain the well
data needed for the final step. The PostProcessor.py goes through the output files, evaluating
the NPV of each well locations, and returns a file that lists all the simulated wells in order
of their NPV, displaying their NPV, name and location coordinates within the model.

2.2.1 Inputs
Table 2.1 explains each of the inputs and their format.

Input Name Format
[units]

Format
Example

Description

Model “name of mo-
del”.dat

Model.dat A TOUGH2 model file for the geot-
hermal system that is being simula-
ted. This file needs to fulfill all the
requirements of any other TOUGH2
model file and have geometric data
for each element within the model.
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Number of
simulation
batches

A positive in-
teger (N)

4 This variable tells the algorithm how
many simulations it should run si-
multaneously. This number should
generally be equal to the number
of processor cores that the compu-
ter running the Algorithm has. If the
computer will be used for other acti-
vities while simulating this number
should be 1 or 2 lower than the num-
ber of processor cores.

TOUGH2
exe file name

“name of
executa-
ble”.exe

t2s_1.exe This tells the Algorithm what the
name of the TOUGH2 executable
file that you want to use is. This will
determine the EOS that the user wis-
hes to use.

Discount rate A number be-
tween 0 and 1

0.07 The assumed annual discount rate of
the revenue stream from this single
well. This needs to be a number bet-
ween 0 and 1, not a percentage num-
ber.

Price of po-
wer

A number
[$/MWh]

30 The assumed price the operator gets
for their end product in $/MWh.
This number can be in any currency
but needs to be in the same currency
as the number for “Cost of well per
meter” and has to be the price the
operator gets in that currency for
every MWh.

Cost of well
per meter

A number
[$/m]

2000 The assumed cost of the well con-
struction per meter of depth in $/m.
This number can be in any currency
but needs to be in the same currency
as the “Price of power” and has to be
the cost of the well in that currency
for every meter of depth.

Reinjection
enthalpy

A number
[kJ/kg]

1000 The assumed enthalpy of the rejected
geofluid. This would be the enthalpy
of the fluid that is then reinjected or
discarded in kJ/kg.

Power plant
thermal
efficiency

A number be-
tween 0 and 1

0.1 The assumed thermal efficiency of
the power plant that receives the ge-
ofluid from the well. This needs to
be a number between 0 and 1, not
a percentage number. If the plant is
using the fluid directly and not pro-
ducing electricity, then this number
can be set to 1.
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Surface depth
coordinates

A number
[m]

2500 This number should represent the
height or depth coordinates of the
surface of the TOUGH2 model.
Some models for example have the
surface set at depth/height 0m while
others may have the bottom depth set
as 0m and therefore the surface at
higher coordinates.

Productivity
index

A positive
number,
usually of the
format xEy
for x ∗ 10y

[m3]

2e-12 The assumed productivity index for
the wells.

Number of
wellbore files

A positive in-
teger or 0

2 The number of wellbore files used
for the simulations if any are availa-
ble. If this is set to 0 the Algorithm
will use the “well on deliverability”
feature in TOUGH2.

Name of wel-
lbore files

4 letter/num-
ber filename
starting with
f

F12b TOUGH2 requires all wellbore file
names to start with an f and Py-
TOUGH require these file names to
four letters and/or numbers. These
files are generated with wellbore si-
mulators such as WellSim.

Coordinates
where wel-
lbore file
applies

Array of
6 values
defining the
width, length
and depth
where the file
applies [x1,
x2, y1, y2,
z1, z2]

100, 2500,
50, 700, 500,
1500

X, y and depth coordinates that each
wellbore file applies to. The di-
rection of these coordinates is deter-
mined by the setup of the model.

Table 2.1: Description of the Algorithms inputs.

2.2.2 Well types
The Algorithm uses two different types of production wells for its simulations, these are
wells on deliverability and wells using wellbore files. The conditions where each type is
used is discussed in section 2.2.6.
A well on deliverability uses an assigned bottom hole pressure in combination with the pro-
ductivity index to calculate the flow in a well. A limitation of this is that the assigned bottom
hole pressure will always be the same through the entire simulation. A second limitation is
that PyTOUGH does not properly support this type of well and the bottom hole pressure
cannot be assigned using the package, as a result the bottom hole pressure is set to 0 if a
deliverability well is used. This low pressure will result in excessive flow rates in the wells
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and will skew the results in favor of higher pressure cells as the pressure difference between
the bottom hole pressure and the cell pressure will be greatest there. It was decided to keep
this functionality in the algorithm as it will still give a relatively good idea of where the best
wells would be located even if the NPVs will be unreasonably high.
A well on wellbore file uses an external file that defines the bottom hole pressure based on
enthalpy and flow rate. These files are used to solve for flow rate and bottom hole pressure,
based on the wells enthalpy, by iteration. This allows the bottom hole pressure to change
with time resulting in a more realistic simulation. These files however have to be generated
by a separate program, these programs are called well simulators. A well simulator simula-
tes the flow of a well for a variety of enthalpies and flow rates thereby calculating the bottom
hole pressure. A limitation of this is that these files only have a limited range and if the well
achieves conditions outside this range the simulation will simply stop. The wellbore file
used in testing the Algorithm is discussed in section 2.3.2.

2.2.3 Assumptions
In order to enable the Algorithm to run and estimate the NPV of the simulated wells certain
assumptions had to be made concerning some of the parameters used. Many of the assump-
tions are made in order to simplify the subsequent calculations.
It is assumed that the TOUGH2 model is an accurate representation of the geothermal sy-
stem as the models themselves do not show any uncertainty that can be used to show the
confidence of the model or the variability from measured data. The price of power the ope-
rator gets is assumed to be known and that it is unchanged during the operation time. The
cost of well construction is assumed to be known and that it is only dependent on the depth
of the well, not being subject to the hardness of the rock, possible drilling and well con-
struction complications. It is assumed that there are no operation and maintenance (O&M)
costs associated with the well. Reinjection enthalpy is assumed to be the same for all pos-
sible well locations, this assumption is likely to skew the results as lower enthalpy wells
would generally be able to reject a lower enthalpy than the higher enthalpy wells would.

2.2.4 Generator
This algorithm is used in order to generate the other parts of the Algorithm that then each
run a specific part of the whole process. It takes the following inputs: model, number of
simulation batches, TOUGH2 exe file name, discount rate, price of power, cost of well per
meter, reinjection enthalpy, power plant thermal efficiency and the height/depth of surface,
the remaining inputs are input into the PreProcessor.
Once the Generator has all the required inputs it creates a batch file called batch.bat and wri-
tes commands that run the PreProcessor, Processors and PostProcessor into it. The batch file
is there only to run the algorithms in the correct order automatically, it will include one line
for the PreProcessor, one line for each of the Processors and one line for the PostProcessor.
The Generator then proceeds to open the base PreProcessor and make a copy of it called
PreProcessor01.py, the base file has a placeholder that the Generator replaces with the follo-
wing inputs in the copy: model and number of simulation batches. Similarly, the Generator
will make a number of copies, equal to the number of simulation batches, of the base Pro-
cessor, these files will be called Processor01py, Processor02.py and so on. These files will
also have a placeholder that is replaced with the relevant inputs, in this case the following:
model, number of simulation batches and TOUGH2 exe file name, the processor number (1
for Processor01.py, 2 for Processor02.py and so on) will also be added as an input here alt-
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hough it is not user defined. The Generator will then create a copy of the base PostProcessor
and create a copy of it called PostProcessor01.py, this file will include a placeholder that is
replaced by the following inputs: model, number of simulation batches, discount rate, price
of power, cost of well per meter, reinjection enthalpy and power plant thermal efficiency.
Finally, the Generator runs the batch.bat file thereby starting the generation and processing
of data.

2.2.5 Batch file

The batch file was written in order to allow for parallel processing of multiple TOUGH2
simulations, it makes sure that the scripts in the Algorithm run in the correct order and that
the scripts that can be run in parallel run simultaneously. It starts by running the PreProcessor
and waits until it has finished before proceeding to run all the Processors at the same time as
well as the PostProcessor. While the PostProcessor requires output files from the Processors
it is run at the same time as it includes a delay function that is discussed in Section 2.2.8.

2.2.6 PreProcessor

The PreProcessor generates the TOUGH2 input files that will be simulated. It opens the
model that is input into the Algorithm, adds a generator to the first cell in the model and
saves that configuration as Input000001, it then removes the well and adds a generator to the
second cell and saves that configuration as Input000002, it goes through all the cells in the
model like this creating a file for each configuration.
Before the PreProcessor starts generating input files it asks the user to define the simulation
length in years, the assumed productivity index, in m3, as well as a user specified number
of wellbore files. If the number of wellbore files is set to 0 all wells will be set up as wells
on deliverability. If the number of wellbore files is larger than 0 the script will go through
a short loop where the user specifies the name of the wellbore files and where in the model
each applies. The PreProcessor uses this information to setup a series of lists that it can call
on later to determine what type of well should be used in any given area.
Next the PreProcessor defines the starting time as 0 and the end time is set to the user speci-
fied number of years that are to be simulated. some of the parameters the model that is to be
simulated will have.
In order to keep the folder the Algorithm is running in (from here on referred to as the root
folder) as tidy as possible the PreProcessor will create a folder called "temp" within the root
folder. The PreProcessor will also create subfolders within the "temp" folder called "simu-
lator1", "simulator2",. . . that will contain each of the simulation batches. The PreProcessor
will move all the wellbore files that have been specified to each of the "simulator" folders.
The PreProcessor will now proceed to generate the input files. It does this, like mentioned
above, by opening the model that will be simulated, adding a well to the first cell, saving the
configuration as a copy, removing the well and moving on to the next cell. Each time the Pre-
Processor places a well it starts by finding the center of the cell it is adding the well to, if this
cell is within an area defined as an area where a wellbore file applies the PreProcessor will
name the well type in the appropriate way so that TOUGH2 will call on the correct wellbore
file during simulation. All the generated input files are added into the "temp" folder.
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2.2.7 Processor
Once the PreProcessor has generated all the input files the Processors start running. They
will each begin with moving the input files assigned to them into the appropriate "simulator"
folder, Processor01 will move the files assigned to it (deleting the original copy to avoid du-
plicates and save hard drive space) into the "simulator1" folder, Processor02 will move the
files assigned to it into the "simulator2" folder and so on. The Processors will also copy the
TOUGH2 executable file from the root folder to each of the "simulator" folders, this is done
to allow for parallel processing as trying to run the same executable file for multiple simu-
lations simultaneously will result in an error. Before starting its simulations, the Processors
will also copy all wellbore files into each of the "simulator" folders.
Once all the relevant files have been copied to the correct folders the Processors will start
simulating the input files assigned to them. This will then generate output files called In-
put000001.listing for the first simulation, Input000002.listing for the second simulation and
so on.

2.2.8 PostProcessor
The PostProcessor will start running at the same time as the Processors will in order to save
some time. It will start by going through each of the "simulator" folders and move all output
files into the "temp" folder. If the PostProcessor attempts to move an output file that is still
being generated it will run into an error and stop, to prevent this the PostProcessor starts by
checking if the next file in sequence exists. By doing this it is ensured that the files being
copied are not being used by the Processors and that a ready output file is what is copied.
Once all the output files have been copied into the "temp" folder the PostProcessor will start
reading them and evaluate the NPV of each well location. It starts with Input000001.listing
then goes to Input000002.listing and so on.
The NPV of each well location is calculated using Equation 2.1 where n is the number of
output times, ti is the simulation time at which output i is printed in years, Revenuesi are the
revenues from time ti−1 to time ti, Costsi are the costs from time ti−1 to time ti and r is the
discount rate.

NPV =
n∑

i=0

Revenuesi − Costsi
(1 + r)ti

(2.1)

For the sake of simplicity, the costs are assumed to be 0 for all years except the first one
where the only costs are assumed to be the cost of constructing the well. The cost of the well
is assumed, as mentioned above, to only be dependent on the depth of the well. To determine
the depth of the well the Algorithm finds the coordinates of the center of the cell that has the
well, that is being simulated in each case, and subtracts that from the user defined surface
depth coordinates. This depth is then simply multiplied by the cost of well per meter to give
the cost of the well which will be input as Costs0 in Equation 2.1.
In order to make a conservative estimate of the NPV the revenues are always calculated
using the well conditions at the end of time period. The revenues are calculated from the
well flow and enthalpy using Equation 2.2 where ṁi is the mass flow of geofluid in at time
ti, hi is the enthalpy of the geofluid at time ti, hr is the enthalpy of rejected geofluid (or
reinjected), η is the thermal efficiency of the power plant and Price is the price of power to
the operator.

Revenuesi = (hi − hr) ∗ ṁ ∗ η ∗ (ti − ti−1) ∗ Price (2.2)
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As mentioned in 2.2.3 the assumption that the rejected enthalpy is the same for all wells
will result in skewed results for some wells as lower enthalpy wells would be able to reject
lower enthalpy fluids thereby extraction proportionally more energy than the Algorithm cal-
culates. Further the revenues can result in a negative number if the well enthalpy is lower
than the rejected enthalpy.
Once the NPV has been calculated for an individual well the PostProcessor will save the
NPV as well as the name of the well, its location, the number of the simulation file and the
last simulated output time to a list, the NPV for all wells are stored in the same list. When the
NPV for all wells has been calculated the list is arranged in order of NPV with the highest
NPV well at the top, this list is then output into a text file called "NPVs of wells".

2.3 Testing
In order to test the Algorithm a hypothetical model was used, this model was run through
the Algorithm as well as being used in sensitivity analysis to determine what numerical
parameters influenced the results the most. The following sections briefly describe the model
that was used, the sensitivity analysis and the testing done to evaluate the effect cell number
has on the processing time, the results of these analysis is shown in Chapter 3 Results. All
testing of the Algorithm was done on the authors personal computer parallel processing four
simulations at a time, the technical specifications of the computer are specified in Appendix
B.

2.3.1 Hypothetical model
The hypothetical model (hereby referred to as the Hypothetical model) was originally made
by Egill Júlíusson and then modified by the author. All work on this model was done in
PetraSim.
This is a fairly simple model that includes three rock types, a base rock, a cap rock and a
reservoir rock. The model geometry is cubical with a width of 10,000m in both x and y
directions and a depth of 2,500m with 3050 cells. The thermal and physical properties of
each rock type can be seen in Table 2.2, only the permeability of the rock types varies in this
model. A picture of the model showing the various rock types as well as the location of two
corner points and their coordinates can be seen on Figure 2.2

Rock type Density
[kg/m3]

Porosity
[−]

XY-
Permeability
[m2]

Z-
Permeability
[m2]

Wet heat
con-
ductivity
[W/m ∗
K]

Specific
heat
[J/kg ∗
K]

Cap rock 2600.0 0.1 1.0*10-15 1.0*10-15 2.0 1000.0
Reservoir
rock

2600.0 0.1 1.0*10-14 1.0*10-14 2.0 1000.0

Base rock 2600.0 0.1 1.0*10-17 1.0*10-17 2.0 1000.0

Table 2.2: Properties of the three rock types in the Hypothetical reservoir model used for
testing the Algorithm.

Both the side and bottom boundaries are given fixed conditions. The side boundaries of
the model are set to fixed conditions of pressure and temperature which are described by a
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Figure 2.2: Visual representation of the Hypothetical model, used for testing the Algorithms,
showing the three different rock types and their locations within the model. The top layers
are the cap rock represented with a brown color, the reservoir rock is represented with a blue
color and finally the bottom layers consist of the base rock represented with a red color. Two
corner points are shown on the figure as well as their coordinates, these are at the bottom the
point (0.0; 0.0; 0.0) and at the top the point (10,000.0; 10,000.0; 10,000.0)

temperature gradient and a pressure gradient (linear equations that are only dependent on
depth). As origin of the model is at its bottom the depth is defined as a height from bottom
as opposed to the more standard way of defining it as a depth from surface. The temperature
gradient for the boundary can be seen on Equation 2.3, it sets the temperature at the surface
to 10°C, the temperature at the bottom to 100°C with a first degree linear relation between
the two where z is the height from the bottom in meters. This is the equivalent of having
10°C temperature on the surface and a temperature gradient of 36°C/km.

T (z) = 100◦C − 0.036z◦C/m (2.3)

The pressure gradient is set so that the pressure at the surface is equal to 100kPa, which
is close to the average atmospheric pressure, and increases by 7.4kPa per meter, which is
about 25% below the hydrostatic pressure gradient. The equation that describes the pressure
can be seen in Equation 2.4

P (z) = 1.86 ∗ 107Pa− 7400zPa/m (2.4)

The center cells in the bottom layer also had fixed boundary conditions. These cells
were all cells with a center between x=3333m and x=6666m and between y=3333m and
y=6666m. These cells had the same pressure as the ones at the outer boundary, as defined
above, but had a fixed temperature of 450°C. These cells then act as a heat source for the
system.
Once all of these conditions have been set the model can be run through PetraSim in order
to achieve steady state conditions. Figure 2.3 shows plane slices of the temperature in the
model at steady state.
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Figure 2.3: Plane slices showing the temperature of the Hypothetical model at steady state.

2.3.2 Running the Algorithm
The Hypothetical model was run through the Algorithm with all wells set to well on deli-
verability on the one hand and with a wellbore file on the other. The wellbore file that was
used is from well BJ-14 at Bjarnarflag in northern Iceland. This file was lent to the author
by ISOR (Iceland GeoSurvey) for research purposes along with several other files including
the wellbore files for BJ-11 and BJ-13. The file for BJ-14 was chosen for use on the basis
that it had the largest enthalpy range of the available files. This file was made by Sigríður
Sif Gylfadóttir in 2013 using wellbore simulation to mimic the output from the well, Figure
2.4 shows the simulated well bottom pressure of the well as a function of enthalpy and mass
flow.

The Algorithm was run using the same values for numerical inputs in both the well on
deliverability and the wellbore file case. The values used were the following

• The productivity index of 2.5*10-12 m3 was chosen as it is in within the simulated
and calculated ranges at Bjarnarflag.[20]

• Discount rate is set to 0.07 (7%) as this is a discount rate that Landsvirkjun would
most probably use.[21].

• The price of power to the operator is set to $30/MWh, this value is based on the
average LCOE of new geothermal plants as estimated by the EIA[3]. The value esti-
mated by the EIA is $45.0/MWh as that accounts for all parts of the power plant this
number needs to be lowered as the algorithm only accounts for the well itself. To do
this the cost as estimated by the EIA was halved and rounded to the nearest whole $5
as this is a very rough estimate.

• The cost of the well is set to $2,000/m and is based on estimates from Kipsang
(2013)[22]. Kipsang used a 3,000m sample well and estimated the cost of that well to
be $6,045,000 or roughly $2,000/m.
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Figure 2.4: Well bottom pressure as a function of mass flow and enthalpy for well BJ14 in
the Bjarnarflag geothermal field[20].

• The rejected enthalpy is set to 1000kJ/kg. This value is chosen as a compromise
between getting unreasonably high NPVs by setting the value too low and getting
unreasonably few or no positive NPVs by setting it too high.

• The thermal efficiency is set to 0.1 (10%) and is chosen as a lower end efficiency based
on results from Moon & Zarrouk (2012)[23].

2.3.3 Sensetivity analysis

In order to evaluate the effect each of the Algorithms numerical inputs has on the end results
a sensitivity analysis was run. Each of the Algorithms numerical inputs were increased
individually by 10% and run through the Algorithm, these values are productivity index,
discount rate, price of power, cost of well, rejected enthalpy and thermal efficiency of power
plant. The outputs were evaluated with two parameters, the highest NPV out of all simulated
wells and the number of positive NPVs out of all simulated wells. The analysis was on one
hand done with all wells set to well on deliverability and with a wellbore file on the other.
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2.3.4 Processing time
In order to give an idea of the processing time required for the algorithm several runs using
the Hypothetical model with varying number of cells were done. Each version of the model
was run two times, once for the well on deliverability setup and once for the wellbore file
setup. The number of cells used for this analysis was 1350, 1550, 2200, 3050, 5050 and
6700.
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Chapter 3

Results

This chapter presents the results from running the Hypothetical model with the Algorithm
as well as the sensitivity analysis and processing time analysis.

3.1 Optimal well placement
The optimal well placement as discussed in Chapter 2 is the well with the highest NPV out
of all simulated wells. This chapter will discuss the top wells and their locations in the well
on deliverability case and the wellbore file case.

3.1.1 Well on deliverability
For this case the Algorithm estimated 255 potential wells with a positive NPV, the associated
cell name, NPV and coordinates of the top five is shown in Table 3.1, part of the output from
the Algorithm can be seen on Figure 3.1

Cell name NPV X-coordinates Y-coordinates Depth from sur-
face

249 $20,832,695.63 5000m 5000m 2250m
371 $20,135,228.68 5000m 5000m 2150m
292 $19,651,690.83 5040.56297m 4577.50709m 2250m
289 $18,899,671.65 5352.76593m 5242.94212 2250m
414 $17,211,470.8 5040.56297m 4577.50709m 2150m

Table 3.1: Cell name, NPV, XY-coordinates and the depth from surface for the top five best
wells in the Hypothetical model using the well on deliverability setup.

As can be seen from the X- and Y-coordinates all of these cells line up in the center of
the model with varying depth. The well in cell 249 had the highest NPV of $20,832,695.63,
it is at a significant depth within the system and is in the lowest reservoir rock layer, just
above the base rock layer. As the base rock layers have a defined fixed state the NPV of
this well may be somewhat misleading due to the proximity to an endless source of high
temperature and pressure, this also applies to 292 and 289 as they are in the same layer and
above the fixed state heat source.
The top five best wells are all located in the bottom two layers of the reservoir, right above
the base rock, and around the center of the system, right above the heat source. As was
mentioned in Chapter 2 these wells will have an unreasonably high NPV as their bottom
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Figure 3.1: First 12 lines of the output file from the Algorithm in the well on deliverability
case.

hole pressure is set to 0, they do, however, give a good idea of the location of the optimal
wells. These locations (at depth above the heat source) are not surprising and would most
probably be some of the first well locations considered as targets for drilling in a geothermal
system like this.

3.1.2 Well on wellbore file
For this case the Algorithm estimated 24 potential wells with a positive NPV, the associated
cell name, NPV and coordinates of the top five is shown in Table 3.2, part of the output from
the Algorithm can be seen on Figure 3.2

Cell name NPV X-coordinates Y-coordinates Depth from sur-
face

981 $2,213,888.311 5000m 5000m 1650m
859 $2,135,810.874 5000m 5000m 1750m
1225 $1,983,307.805 5000m 5000m 1450m
1103 $1,940,392.115 5000m 5000m 1550m
1469 $1,747,259.522 5000m 5000m 1250m

Table 3.2: Cell name, NPV, XY-coordinates and the depth from surface for the top five best
wells in the Hypothetical model using the well on wellbore file setup.

Figure 3.2: First 12 lines of the output file from the Algorithm in the well on wellbore file
case.

As can be seen from the X- and Y-coordinates all of these cells line up in the center of
the model however in this case they are not at the same depth as in the deliverability case.
The well in cell 981 had the highest NPV of $2,213,888.311 and is located in the center of
the model, above the heat source, at a depth of 1650m. This location, as well as the other
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locations in the top five, is within the lower part of the upper heat zone seen on Figure 2.2
as the yellow area in the middle of the figure. These locations are to be expected as some
of the best locations as they are within a high temperature zone in the middle of the system
and would most likely be some of the first locations considered for drilling. Unlike the top
five wells in the deliverability case these wells form a line along the middle of the system
as opposed to a plane around a certain depth. This is at least in part due to the fact that the
bottom hole pressure in the wellbore case will be different for each well thereby not skewing
the results in favor of higher pressure/deeper wells.
None of the top wells are located in the bottom layers closest to the heat source in this case.
This is because of the conditions in those cells exceeding the wellbore file data set resulting
in the simulation being terminated prematurely. Only 243 simulation simulated more than a
year in this case and 1237 simulated more than 0 years. The 994 simulations that simulated
more than 0 years but less than 1 year all reached equilibrium within the first ten time steps
and therefore terminated the simulation printing out the results at time step ten. These cells
are all cells with fixed conditions and it is therefore normal that no change takes place there.

3.2 Sensetivity analysis
For the sensitivity analysis each of the numerical inputs were increased by 10% and the
change in NPVs was measured. The values that were used to represent the change in NPVs
were the value of the highest NPV and the number of positive NPVs for each case.

3.2.1 Well on deliverability
The results from the sensitivity analysis of the well on deliverability case can be seen on
Figure 3.3.

Figure 3.3: Results of sensitivity analysis of the well on deliverability case. Each input was
increased by 10% and the change in the highest NPV as well as the number of positive NPVs
was measured.

As Figure 3.3 shows the results are more sensitive to some inputs than others. The
reinjection enthalpy is by far the most sensitive parameter with a 31.84% reduction in the
highest NPV and a 50.98% reduction in the number of positive NPVs. The impact of this
parameter is very dependent on the enthalpy of the fluid coming out of the well, if the
difference between the reinjection enthalpy and well enthalpy is small then the impact will
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be larger while a larger difference will lessen the impact. In this case the enthalpy of the well
with the highest NPV, in cell 249, has an enthalpy of 1,661 kJ/kg at time step 1. This means
that the reinjection enthalpy of 1,000 kJ/kg is fairly close to the well enthalpy resulting in
the large impact of this parameter.
The second and third most sensitive parameters are the price of power and thermal efficiency
of the power plant, both increasing the max NPV by 12.16% and the number of positives by
4.31%. This is to be expected as both values will affect the revenue streams in the same way,
that is the price of power will increase the revenue by increasing the base price of power per
MWh while the thermal efficiency will increase the amount of power that can be sold. As
these values are multiplied at the same stage in the calculations they will always have the
same proportional impact on the final NPVs.
The discount rate is the fourth most sensitive parameter reducing the max NPV by 8.41% and
the number of positives by 4.31%. Following that are the productivity index, with a 4.97%
increase in max NPV and a 3.14% increase in the number of positives, and cost of well,
a 2.16% decrease in max NPV and a 4.71% reduction in the number of positives. This is
somewhat unexpected as the productivity index controls the flow from the wells and would
be expected to have a more significant impact, this may however be lessened somewhat
because of discounted value of the revenue streams over the long period. It is also probable
that the unreasonably high flow in the wells, caused by the low bottom hole pressure, causes
the productivity index to have less of an impact on the results. The cost of well was also
expected to be a more sensitive parameter as it plays a major role in the NPV calculations
and is the only source of costs used in the simulation. This seems to be outweighed by the
other parameters that affect the positive revenue streams resulting in the lower impact of the
cost of well.

3.2.2 Well on wellbore file

The results from the sensitivity analysis of the well on wellbore file case can be seen on
Figure 3.4.

Figure 3.4: Results of sensitivity analysis of the well on deliverability case. Each input was
increased by 10% and the change in the highest NPV as well as the number of positive NPVs
was measured.
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As Figure 3.4 shows the results are more sensitive to some inputs than others. The
reinjection enthalpy is by far the most sensitive parameter with an 81.54% reduction in the
highest NPV and a 70.83% reduction in the number of positive NPVs. Similar to what was
discussed in Section 3.2.1 this is due to the small difference between the wells enthalpy and
the reinjection enthalpy, it is however exaggerated here as the highest NPV well, in cell 981,
only had an enthalpy of 1,371 kJ/kg.
The second and third sensitive parameters are the price of power and thermal efficiency in
this case as in the well on deliverability case, this was already discussed in Section 3.2.1.
The fourth most sensitive parameter in this case is the productivity index, with a 23.69%
increase in max NPV and an 8.33% increase in the number of positives, this is more in line
with what one would expect than what was seen in the well on deliverability case. The fifth
most sensitive parameter is the discount rate, with a 20.30% reduction in max NPV and a
4.17% reduction in the number of positives, the reduction in the number of positive NPVs
is very similar to that in the well on deliverability case but the reduction in the highest NPV
is significantly more. This is due to the smaller revenue streams being more affected by the
discount rate than the larger ones in the well on deliverability case.
The least sensitive parameter is again the cost of well, with a 14.91% reduction in max NPV
and a 4.17% reduction in the number of positives, this is significantly more than was seen in
the well on deliverability case and can again be attributed to the smaller revenue streams, in
the wellbore file case, resulting in the initial cost having a proportionally higher impact on
the NPVs.

3.3 Processing time
As mentioned in Chapter 2 a processing time analysis was done on the Algorithm for models
of different sizes. If the Algorithm can be run on a large detailed numerical model in a
reasonable time frame it may become a valuable tool for decision makers in the future. By
looking at the processing time for different model sizes a relationship between the number
of cells in the model and the processing time can be found, this relationship however is
only valid for this specific model and the specific computer it was run on, it will however
give some indications as to how long the processing time might be. The results from the
measurements were plotted on a log-log scale and fitted to a linear equation as that seemed
to give the best fit, the plot along with the measured data as well as the fitted data and the
equation for the fit are shown on Figure 3.5. The equations for the fitted functions are shown
below, Equation 3.1 for the well on deliverability case and Equations 3.2 for the well on
wellbore file case, where t represents the processing time in seconds and n represents the
number of cells in model.

t = 10−5.6419 ∗ n2.2622 (3.1)

t = 10−5.6638 ∗ n2.174 (3.2)

As can be seen on Figure 3.5 are a close fit to the data with a calculated RMS error of
21.21 for the well on deliverability and 10.60 for the well on wellbore case. It should howe-
ver be noted that in the case of the wellbore file most simulations were terminated before the
end time due to the limited range of the wellbore file used, this results in somewhat lower
processing times.
Using the equation for the well on deliverability (as that gave the higher time estimates) a
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Figure 3.5: Results of the processing time analysis done using the Hypothetical model with
the Algorithm. Results are shown for both the well on deliverability and well on wellbore
file cases along with a fitted trendline and its equation. Note that the trendlines are fitted to
the logarithmic data and not the original data and the x value has to be the logarithm of the
number of cells and will give the logarithm of the processing time as a result.

similar model with 13,500 cells, which is close to the size of the Hágöngur model made by
Ximena Guardia Muguruze (Muguruze, 2015), would take approximately 84 hours. Howe-
ver, it is also important to keep in mind that the Hypothetical model is a simple model and
is therefore likely to be more stable and solve faster than most models of real geothermal
systems. The Hágöngur model on the other hand has a more complicated geological struc-
ture and it is therefore likely that the processing time would be longer. Processing of data in
geothermal fields sometimes take weeks or even months to do and if a numerical model of
the system exists then even a few days of processing to get the additional data from the Al-
gorithm may be feasible. The Algorithm is well suited for parallel computing and utilizing
this technology, that is now readily available, the processing time could be shortened.
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Chapter 4

Discussion

The Algorithm has been tested on a model and shown some reasonable results although some
of the limitations are also apparent. These are discussed briefly in the following chapter
along with a conclusion and suggestions for future work on the Algorithm.

4.1 Most important parameters
In the Hypothetical model that was used to test the Algorithm the results were most sensitive
to the reinjection enthalpy. This parameter is hard to control and will largely be restricted by
the geochemistry of the fluid. The second and third most sensitive parameters are the price
of power and thermal efficiency of the power plant. These are somewhat easier to manage
as they can be estimated with relative ease. The thermal efficiency can be influenced by
the equipment that is used in the power plant, however, more efficient plants tend to have
a higher capital cost and the cost and technical capabilities will be the largest restrictions
on this parameter. The price of power is in many cases changing in time but this can be
mitigated by having a pre-established power purchase agreement with a buyer.

4.2 Dependency on data reliability
Many assumptions have to be made in order to run the Algorithm and the results from it
are only as good as the assumptions that are made. A limited knowledge of the geothermal
system in question may result in a variety of unreliable estimations along the way. As
the Algorithm utilizes a numerical model of the geothermal system the model needs to be
reasonable in order for the Algorithm to give valuable results. One way to mitigate the
error associated with the model itself would be to integrate this error into the Algorithm and
calculate the risk associated with each well, this would then give investors and operators
some idea of where the safest valuable wells are located. Similarly, if wellbore files are used
they have to fit the system in question as results of the simulation can give results outside
the wellbore files range and thereby not run to the end as was seen in the case of the well on
wellbore file discussed in Section 3.1.2.

4.3 Summary
The Algorithm utilizes the Python programing language in combination with the PyTOUGH
package in order to create and simulate a large ensemble of possible wells in a numerical
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TOUGH2 model of a geothermal system. It uses these data to evaluate the NPV of all pos-
sibilities and return a list arranged in order of NPV. The algorithm was tested on a simple
hypothetical model using the well on deliverability feature as well as a wellbore file from
well BJ-14 in the Bjarnarflag geothermal system Iceland. The well on deliverability case
successfully ran all simulations and gave the highest NPVs at depth in the center of the re-
servoir over the heat source. The well on wellbore file case successfully ran 243 simulations
and gave the highest NPVs along the center or the model at a depth of 1250-1750m from
surface, in the upper heat zone shown on Figure 2.2. The processing time of the simulations
as a function of the number of cells in the model was also measured and found to fit to a
second degree polynomial very closely. From the fitted data an estimated processing time
of 84 hours for a similar model with 13,500 cells is found. This processing time may not
be representative of a realistic model however due to the simplicity of the Hypothetical mo-
del. However, in comparison to the weeks or months that data processing in the geothermal
industry can take this time frame of days seems a feasible option.

4.4 Conclusion
The Algorithm is functional despite several limitations and can create a list of optimal wells
based on the supplied model. This process is (as are all geothermal reservoir models) sub-
ject to many assumptions and is highly sensitive to data reliability and availability, this is
especially true for the reliability of the model itself. Further the Algorithm runs within a
reasonable time frame and could therefore be a viable tool for decision makers during the
well placement process.

4.5 Future work
While the Algorithm works it is far from perfect and a lot of work could go into improving
it. An optimization of the Algorithm itself may be useful as well as further utilizing parallel
processing for the pre- and post-processing steps. Restrictions on possible well locations
to reduce the amount of simulations run would help with cutting down the processing time
of the Algorithm, this could include things like a minimum and maximum depth of wells,
disallowing wells in cells at fixed conditions or too close to boundaries. Implementing the
error associated with each well to give an idea of the risk involved with each location would
give valuable data to the decision makers both on what the safest well choices are and indi-
cations as to areas that may benefit from further exploration. Adding in more options for the
user, for example by having the productivity index be defined for any given area separately
similar to how the area a wellbore file applies to is defined. This should allow for more
realistic estimation of the optimal wells and their NPV.
Running the Algorithm with a version of TOUGH2 that is coupled with a wellbore simu-
lator would also be a big step forward. That way much of the problems with providing an
appropriate wellbore file for the given depth and design of each well could be eliminated.
It is important to test the Algorithm with an accepted model of an actual geothermal system
in order to further identify potential problems and evaluate feasibility. If the simulation time
can be brought down significantly enough, or access to sufficient processing power is availa-
ble, the Algorithm could potentially be modified to find the optimal combination of multiple
wells. This could for example be done by picking the top few wells and running simulations
with each of them along with all other possibilities in order to find the best combination.
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This work could also benefit from adding criteria that identifies wells as close to identical so
that simulations that would have two or more wells in close proximity to each other would
be deemed unfit for simulation.



28



29

Bibliography

[1] T. Pratchett, The wee free men. 2003.

[2] REN21, “Renewables 2016 global status report”, Renewable Energy Policy Network
for the 21st Century, Tech. Rep., 2016.

[3] U. E. I. Administration, “Levelized cost and levelized avoided cost of new generation
resources in the annual energy outlook 2016”, U.S. Department of Energy, research
rep., 2016.

[4] ——, “Updated capital cost estimates for utility scale electricity generation plants”,
U.S. Department of Energy, research rep., 2013.

[5] M. Gehringer and V. Loksha, “Geothermal handbook: Planning and financing power
generation”, Energy Sector Management Assistance Program, 2012.

[6] IFC, “Success of geothermal wells: A global study”, International Finanace Corpora-
tion, research rep., 2013.

[7] Landsvirkjun, “Placement and drilling of a well in a geothermal system”, 2016.

[8] B. A. I. Jefferies, “Optimal well placement in the theistareykir geothermal field for
the next well in succession”, Master’s thesis, Reykjavik University, 2016.

[9] K. Pruess, C. Oldenburg, and G. Moridis, Tough2 user’s guide, version 2.0, 1999.

[10] M. Chen, A. F. Tompson, R. J. Mellors, and O. Abdalla, “An efficient optimization of
well placement and control for a geothermal prospect under geological uncertainty”,
Applied Energy, Oct. 29, 2014.

[11] S. Akin, M. V. Kok, and I. Uraz, “Optimization of well placement geothermal reser-
voirs using artificial intelligence”, Computers & Geosciences, 2012.

[12] Y. Pan and R. Horne, “Improved methods for multivariate optimization of field de-
velopment scheduling and well placement design”, Society of Petroleum Engineers,
1998.

[13] Y. T. et al., “Evolutionary optimization of oil field development”, Digital Energy Con-
ference and Exhibition, 2007.

[14] Y. Ding, “Optimization of well placement using evolutionary methods”, Europec/EAGE
Conference and Exhibition, 2008.

[15] J. Onwunalu and L. Durlofsky, “Application of a particle swarm optimization algo-
rithm for determining optimum well location and type”, Springer Science, 2009.

[16] J. J. Minton, “A comparison of common methods for optimal well placement”, Uni-
versity of Auckland, research rep., 2012.

[17] M. Lutz, Learning python. 2013.

[18] A. Croucher, Pytough user’s guide, 2015.



30 BIBLIOGRAPHY

[19] T. Engineering, Petrasim 2016 user manual, 2016.

[20] S. S. Gylfadóttir, “Modeling of the námafjall geothermal system: Numerical simu-
lation of response to production and reinjection”, Iceland Geo Survey, Tech. Rep.,
2013.

[21] E. Júlíusson, Personal communication, Dec. 15, 2016.

[22] C. Kipsang, “Cost model for geothermal wells”, United Nations University: Geother-
mal Training Program, Tech. Rep., 2013.

[23] H. Moon and S. J. Zarrouk, “Efficiency of geothermal power plants: A worldwide
review”, in New Zealand Geothermal Workshop 2012 Proceedings, 2012.



31

Appendix A

Code

The following sections include the scripts of the Algorithm, they are Generator.py, PrePro-
cessor.py, Processor.py, PostProcessor.py

Listing A.1: Generator.py
1 import os

3 mname=raw_input(’Enter model file name: ’)
n=int(raw_input(’Number of seperate simulators to generate: ’))

5 sim_name = raw_input(’Input name of TOUGH2 exectuion file. Example: t2s_1.←↩
↪→exe: ’)

7 r = raw_input(’Enter assumed discount rate on an anual basis(number between ←↩
↪→0 and 1, not %): ’) # discount rate. ex:0.1

price = raw_input(’Enter assumed price the operator gets for their power ($/←↩
↪→MWh): ’) # price of power per MWh in dollars. ex:25

9 cost_drilling = raw_input(’Enter assumed cost of well per meter of depth ($/m)←↩
↪→: ’) # cost of well construction in $/m. ex:2000

h0 = 1000*int(raw_input(’Enter assumed enthalpy of geofluid the is reinjected ←↩
↪→or dumped (kJ/kg): ’)) # enthalpy of rejected fluid kJ/kg. ex:1000

11 eta = raw_input(’Enter assumed thermal efficiency of power plant(number ←↩
↪→between 0 and 1, not %): ’)

depth0 = raw_input(’Enter the depth coordinates of the surface of the model (←↩
↪→m): ’)

13

fh=open(’batch.bat’,’w’) # creates and opens batch file
15 fh.write(’python PreProcessor01.py\n’) # writes a run command into the batch file for←↩

↪→the preprocessor
for i in range(1,n+1):

17 fh.write(’start python −i Processor’+str(i)+’.py\n’)
fh.write(’python −i PostProcessor01.py\n’)

19 fh.close()

21 fin=open(’PreProcessor−base.py’) # opens the base file for the preprocessor
fout=open(’PreProcessor01.py’,’wt’) # creates a preprocessor file for the case that will←↩

↪→be simulated
23 for line in fin:
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fout.write(line.replace(’placeholdr’,(’mname=\’’+mname+’\’\n’+’numberof_sims ←↩
↪→= ’+str(n)+’.’))) # relevant variables added into the file

25 fin.close()

27 for i in range(1,n+1): #loop that opens the base processor file and creates modified←↩
↪→copies for the case that will be simulated
fname=(’Processor’+str(i)+’.py’)

29 fin=open(’Processor−base.py’)
fout=open(fname,’wt’)

31 for line in fin:
fout.write(line.replace(’placeholdr’,(’mname=\’’+mname+’\’\n’+’sim_num=’+←↩

↪→str(i)+’\n’+’numberof_sims = ’+str(n)+’. \n’+’sim_name=\’’+←↩
↪→sim_name+’\’’))) # relevant variables added into the file

33 fout.close()
fin.close()

35

fin=open(’PostProcessor−base.py’) # opens the base file for the postprocessor
37 fout= open(’PostProcessor01.py’,’wt’) # creates a postprocessor file for the case that←↩

↪→will be simulated
for line in fin:

39 fout.write(line.replace(’placeholdr’,(’mname=\’’+mname+’\’ \n’+’numberof_sims←↩
↪→ = float(’+str(n)+’) \n’+’r = float(’+str(r)+’) \n’+’price = float(’+str(←↩
↪→price)+’) \n’+’cost_drilling = float(’+str(cost_drilling)+’) \n’+’h0 = ←↩
↪→float(’+str(h0)+’) \n’+’eta = float(’+str(eta)+’) \n’+’depth0 = float(’+←↩
↪→str(depth0)+’) \n’))) # relevant variables added into the file

fout.close()
41 fin.close()

43 os.system(’batch.bat’) # runs the batch file

Listing A.2: PreProcessor.py
1 from mulgrids import *

from t2grids import *
3 from t2data import *

from t2incons import *
5 from t2listing import *

from t2thermo import *
7 from time import *

import os
9 import shutil

11 n_years=float(raw_input(’Simulation length (years): ’))
prod_ind = float(raw_input(’Enter asumed productivity index(m^3): ’)) #ex: 1e−12

13

fpath = os.getcwd()+’\\temp\\’ #current directory + temp
15 if not os.path.exists(fpath): # create a temp folder to start moving files into

os.makedirs(fpath)
17
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i = int(raw_input(’Number wellbore files: ’))
19 wellbores = []

corner_points = []
21

if i==0:
23 corner_points.append([−1e999,−1e999,−1e999,−1e999])

wellbores.append(’DELV’)
25

for n in range(1,i+1):
27 while True:

temp_well = raw_input(’Name of wellbore simulator file nr ’+str(n)+’(←↩
↪→has to be 4 letters or numbers starting with f): ’)

29 if temp_well[0]==’f’ and len(temp_well)==4:
shutil.copy(temp_well,fpath)

31 break
else:

33 print(’Not a valid input. The input file name must be 4 letters or←↩
↪→ numbers and start with f. Example: f123’)

continue
35 wellbores.append(temp_well)

while True:
37 temp_corners = (raw_input(’Define corner points on the surface where ←↩

↪→this file applies (in meters. format should be x1,x2,y1,y2,depth1,←↩
↪→depth2): ’))

temp_corners = temp_corners.split(’,’)
39 x1=float(temp_corners[0])

x2=float(temp_corners[1])
41 y1=float(temp_corners[2])

y2=float(temp_corners[3])
43 z1=float(temp_corners[4])

z2=float(temp_corners[5])
45 if x1==x2:

print(’Not a valid input as x1=x2. Please enter a valid input.’)
47 continue

elif y1==y2:
49 print(’Not a valid input as y1=y2. Please enter a valid input.’)

continue
51 elif z1==z2:

print(’Not a valid input as z1=z2. Please enter a valid input.’)
53 continue

else:
55 break

if x1>=x2:
57 temp_x1 = x2

x2 = x1
59 x1 = temp_x1

else:
61 continue

if y1>=y2:
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63 temp_y1 = y2
y2 = y1

65 y1 = temp_y1
else:

67 continue
if z1>=z2:

69 temp_z1 = z2
z2 = z1

71 z1 = temp_z1
else:

73 continue
corner_points.append([x1,x2,y1,y2,z1,z2])

75 start_time = clock()

77 placeholdr # Placeholder for input of model name and number of simulators
#mname=’model.dat’

79 #numberof_sims =

81 dat = t2data(mname)

83

dat.parameter[’tstop’]=n_years*365*24*3600
85 dat.parameter[’tstart’]=0*365*24*3600

87

os.chdir(fpath) #change directory to /temp
89

dat.write(’pytest.txt’)
91 dat = t2data(’pytest.txt’)

t = 0
93

blocks = dat.grid.blocklist
95 num_sims = len(blocks)

97 for sim_num in range(1,int(numberof_sims)+1): # run copy loop through each of the←↩
↪→simulation folders
folder_name = (’simulator’+str(sim_num))

99 i=0
j=0

101 if not os.path.exists(folder_name):
os.makedirs(folder_name)

103 while j<len(wellbores): # run a copy loop through each of the wellbore files
try:

105 shutil.copy(wellbores[j],folder_name)
print i

107 print wellbores[j]
j=j+1

109 except:
j=j+1
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111 continue
i = i+1

113 print(’starting loops ’+str((clock() − start_time)))

115 start_time = clock()

117 for blockn in blocks:
#if t==0: #loop that excludes the first cell in case that cell is the atmosphere

119 # print(’starting write ’+str((clock() − start_time)))
# fnum = str(’%06.0f’ %(t+1))

121 # dat.write(’Input’+fnum)
# print(’write done ’+str((clock() − start_time)))

123 # t=t+1
# print(’cycle ’+str(t)+’ done ’+str((clock() − start_time)))

125 # continue
print(’_________________________________________________________’)

127 print(’cycle ’+str(t+1)+’ of ’+str(num_sims))
temp_name = str(blockn)

129 x = blockn.centre[0]
y = blockn.centre[1]

131 z = blockn.centre[2]
gen_type=’DELV’

133 j=0
while j<len(wellbores):

135 if corner_points[j][0] <= x <= corner_points[j][1] and corner_points[j][2] <= y←↩
↪→ <= corner_points[j][3] and corner_points[j][4] <= z <= corner_points[j←↩
↪→][5]:
gen_type = wellbores[j]

137 break
else:

139 j=j+1
continue

141 gen_name = ’gen 0’
gen = t2generator(name = gen_name, block = temp_name, type = gen_type, gx =←↩

↪→prod_ind) #Generating cell defined as a deliverability generator
143 dat.add_generator(gen)

print(’starting write ’+str((clock() − start_time)))
145 fnum = str(’%06.0f’ %(t+1))

dat.write(’Input’+fnum)
147 print(’write done ’+str((clock() − start_time)))

dat.delete_generator((temp_name,gen_name))
149 t = t+1

print(’cycle ’+str(t)+’ done ’+str((clock() − start_time)))
151 #if t==10: break

153 end_time = clock()
print(’loop done ’+str((end_time − start_time)))

155

time_est = len(blocks)*end_time/t
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157 time_est_hrs = int(time_est/(60*60))
time_est_min = int((time_est−time_est_hrs*60*60)/60)

159 time_est_sec = time_est−time_est_min*60−time_est_hrs*60*60

161 print(’estimated time for all ’+str(len(blocks))+’ blocks is ’+str(time_est_hrs)+’←↩
↪→ hours ’+str(time_est_min)+’ minutes ’+str(time_est_sec)+’ seconds.’)

Listing A.3: Processor.py
1 from mulgrids import *

from t2grids import *
3 from t2data import *

from t2incons import *
5 from t2listing import *

from t2thermo import *
7 from time import *

import os
9 import shutil

11 placeholdr # placeholder to replace mname, numberof_sims, sim_num ect.
dat = t2data(mname)

13 #numberof_sims = # number of simulation parts
#sim_num= # simulation part number

15 #sim_name= # name of tough2 executable file

17 blocks=dat.grid.blocklist

19 print(’Simulation batch number ’+str(sim_num))

21 fpath=os.getcwd()+’\\temp\\’ #current directory + temp
if not os.path.exists(fpath):

23 os.makedirs(fpath)
shutil.copy(sim_name,fpath) # copy tough2 to temp folder may require a raw input.

25 os.chdir(fpath) #change directory
folder_name = (’simulator’+str(sim_num))

27 if not os.path.exists(folder_name):
os.makedirs(folder_name)

29

shutil.copy(sim_name,folder_name) # copy tough2 to temp folder may require a raw←↩
↪→input.

31

n = len(blocks)/(numberof_sims)
33 #if sim_num==1: n_start=1

#else: n_start = int((sim_num−1)*n)
35 n_start = int((sim_num−1)*n+1)

n_end = int((sim_num)*n+1)
37

t=0
39 for i in range(n_start,n_end):
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fnum=str(’%06.0f’ %(i))
41 shutil.copy((’Input’+fnum),folder_name)

os.remove(’Input’+fnum)
43 t=t+1

#if t==5: break
45

os.chdir(folder_name)
47

print(str(n_end−n_start+1) + ’ Simulations to run’)
49

start_time=clock()
51

t=0
53 for i in range(n_start,n_end):

print(’_________________________________________________________’)
55 print (’Starting cycle ’ + str(t+1) + ’ of ’ + str(n_end−n_start+1) + ’ at time ←↩

↪→’ + str(clock()−start_time))
fnum=str(’%06.0f’ %(i))

57 fname=(’Input’+fnum)
print (’Reading datafile ’ + str(fname) + ’ at time ’ + str(clock()−start_time))

59 dat=t2data(fname)
print(’Datafile read’ + ’ at time ’ + str(clock()−start_time))

61 dat.run(simulator=’t2s_1.exe’) #dat.run(output_filename=fname+’_out’, simulator←↩
↪→=’t2s_1.exe’)

print(’Simulation ’ + fnum + ’ done’ + ’ at time ’ + str(clock()−start_time))
63 t=t+1

#if t==5: break
65

print(’_________________________________________________________’)
67 print(str(i) + ’ simulations successfully run’ + ’ at time ’ + str(clock()−start_time←↩

↪→))

69 end_time=clock()
time_elaps=end_time−start_time

71 print(’Loop done at time ’+str(time_elaps))

73 time_est=time_elaps#*len(blocks)
time_est_hrs=int(time_est/(60*60))

75 time_est_min=int((time_est−time_est_hrs*60*60)/60)
time_est_sec=time_est−time_est_min*60−time_est_hrs*60*60

77

print(’estimated time for all ’+str(len(blocks))+’ blocks is ’+str(time_est_hrs)+’←↩
↪→ hours ’+str(time_est_min)+’ minutes ’+str(time_est_sec)+’ seconds.’)

79

#os.remove(tough_name)

Listing A.4: PostProcessor.py
1 from mulgrids import *
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2 from t2grids import *
from t2data import *

4 from t2incons import *
from t2listing import *

6 from t2thermo import *
from time import *

8 import os
import shutil

10 import time
from operator import itemgetter

12

placeholdr # place holder to replace mname, numberof_sims, sim_num ect.
14 #numberof_sims = # number of simulation parts

#mname = #model name
16 #r = # discount rate

#price = # price of power per MWh in dollars
18 #cost_drilling = # cost of well construction in $/m

#h0 = # Rejected enthalpy
20 #eta = # Thermal efficiency of plant

#depth0 = # Depth coordinates of surface
22

dat = t2data(mname)
24 blocks=dat.grid.blocklist

26 rootpath = os.getcwd()
temp_path = os.getcwd()+’\\temp’

28

start_time = clock()
30

# copy loop starts
32 for i in range(1,int(numberof_sims+1)):

fpath=temp_path+’\\simulator’+str(i) #current directory + temp
34 n = len(blocks)/(numberof_sims)

print(n)
36 n_start = int((i−1)*n+1)

print(n_start)
38 n_end = int((i)*n+1)

print(n_end)
40 t=0

42 for j in range(n_start,n_end):
os.chdir(fpath)

44 t=t+1
fnum = str(’%06.0f’ %(j))

46 fnum_next = str(’%06.0f’ %(j+1))
fname = ’Input’+fnum+’.listing’

48 fname_next = ’Input’+fnum_next+’.listing’
wait_time = 0
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50 print(’_________________________________________________________’←↩
↪→)

switch = 0
52 if j==n_end−1 and i==int(numberof_sims):

while switch==0:
54 try:

shutil.copy(fname,temp_path)
56 switch=1

print(’File ’+fname+’ copied at time ’+str((clock()−←↩
↪→start_time)))

58 #os.remove(fname)
#print(’Duplicate deleted’)

60 break
except:

62 print(’Waiting for file ’+fname+’ to be generated. Total ←↩
↪→waiting time is ’+str(wait_time)+’seconds’)

time.sleep(10)
64 wat_time = wait_time+10

elif j==n_end−1:
66 print(’At end of batch. File number ’+str(j))

path_next = temp_path+’\\simulator’+str(i+1)
68 f_next_fold = path_next+’\\’+fname_next # file location in next simulation←↩

↪→ folder
while not os.path.exists(f_next_fold) and wait_time<10*60: #wait for file←↩

↪→to exist in next folder
70 print(’Waiting for file ’+fname+’ to be generated. Total ←↩

↪→waiting time is ’+str(wait_time)+’seconds’)
time.sleep(10)

72 wait_time = wait_time+10
if os.path.exists(fname):

74 shutil.copy(fname,temp_path)
print(’File ’+fname+’ copied at time ’+str((clock()−start_time)))

76 #os.remove(fname)
#print(’Duplicate deleted’)

78 else:
print("Error: %s does not exist, skipping file!" % fname)

80 else:
while not os.path.exists(fname_next) and wait_time<10*60: #wait for file←↩

↪→to exist
82 print(’Waiting for file ’+fname+’ to be generated. Total ←↩

↪→waiting time is ’+str(wait_time)+’seconds’)
time.sleep(10)

84 wait_time = wait_time+10
if os.path.exists(fname_next):

86 shutil.copy(fname,temp_path)
print(’File ’+fname+’ copied at time ’+str((clock()−start_time)))

88 #os.remove(fname)
#print(’Duplicate deleted’)

90 else:
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print("Error: %s does not exist, skipping file!" % fname)
92 #if t==5: break

# copy loop ends
94

# NPV evaluation loop starts
96 j=0

os.chdir(temp_path)
98 NPVs = []

for block in blocks:
100 fnum = str(’%06.0f’ %(j+1))

listing_name = ’Input’+fnum+’.listing’
102 try:

lst=t2listing(listing_name)
104 print(’Output file ’+listing_name+’ read at time ’+str((clock()−←↩

↪→start_time)))
except:

106 j=j+1
print(’Could not read ’+listing_name+’ at time ’+str((clock()−start_time←↩

↪→)))
108 continue

110 try :
depth = depth0−dat.grid.blocklist[j].centre[2] # depth to center of block in m

112 ht,h=lst.history((’g’,(str(block),’gen 0’),’ENTHALPY’))
except:

114 j = j+1
continue

116 ht,h=lst.history((’g’,(str(block),’gen 0’),’ENTHALPY’))
gt,g=lst.history((’g’,(str(block),’gen 0’),’GENERATION RATE’))

118 well_cost = depth * cost_drilling # cost of the specific well in $
NPV = −well_cost

120 #NPV = NPV − (h[0]−h0)*g[0]*(365*24/1e6)*price # revenue of year 0 taken out←↩
↪→ to make a conservative NPV estimate

for i in range(0,len(gt)):
122 t = ht[i]/(365*24*3600) # timestep time in years

if i==0:
124 t_last = 0

else:
126 try:

t_last = ht[i−1]
128 except:

continue
130 P = (−(h[i]−h0)*g[i]*eta)/1e6 # Power output in MW

try:
132 E = P*(ht[i]−t_last)/3600 # Energy output over 1 timestep in MWh

PV = E*price/((1+r)**(t)) # Present value of revenue in timestep
134 NPV = NPV + PV

except:
136 continue
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NPVs.append((str(block),NPV,block.centre,fnum,t))
138 j = j+1

lst.close()
140 # NPV evaluation loop starts

142 Sorted_NPVs = sorted(NPVs, key=itemgetter(1), reverse=True)

144 os.chdir(rootpath)
fhandle = open(’NPVs of wells’, ’w’)

146 fhandle.write(’Model name: ’+str(mname)+’\n’)
fhandle.write(’Discount rate: ’+str(r)+’\n’)

148 fhandle.write(’Price of power: ’+str(price)+’\n’)
fhandle.write(’Cost of drilling: ’+str(cost_drilling)+’\n’)

150 fhandle.write(’Rejected enthalpy: ’+str(h0)+’\n’)
fhandle.write(’Power plant thermal efficiency: ’+str(eta)+’\n’)

152 fhandle.write(’(\’Well \’, NPV, array([x coordinates, y coordinates, depth co−←↩
↪→ordinates]),file number,simulated time)\n’)

for item in Sorted_NPVs:
154 fhandle.write(str(item)+’\n’)

fhandle.close()
156

end_time = clock()
158 time_elaps=end_time−start_time

time_elaps_hrs=int(time_elaps/(60*60))
160 time_elaps_min=int((time_elaps−time_elaps_hrs*60*60)/60)

time_elaps_sec=time_elaps−time_elaps_min*60−time_elaps_hrs*60*60
162

print(’Time elapsed for all ’+str(len(blocks))+’ simulations is ’+str(←↩
↪→time_elaps_hrs)+’ hours ’+str(time_elaps_min)+’ minutes ’+str(←↩
↪→time_elaps_sec)+’ seconds.’)
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Appendix B

Computer Specifications

All specifications are acquired through the use of Piriform Speccy version 1.30.730. Infor-
mation about Speccy can be found on http://www.piriform.com/speccy

Figure B.1: Hardware specifications of the computer used to test the Algorithm.

http://www.piriform.com/speccy
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