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Abstract

Accretion disks are complex systems which are not yet entirely understood. Here a
short overview is given of accretion disk theory, describing the disks, the thin disk
approximation to simplify calculations and a description of the α-disk model. The
Eddington limit and its role in accretion disks is discussed. Newtonian and Pseudo-
Newtonian gravitational potentials are introduced and analyzed. Modeling black
hole systems is also covered. Finally, observations of four systems possessing black
holes are discussed.
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1 Introduction

Accretion is a process whereby matter accumulates and forms a disk-like structure
due to gravity and sometimes also forms a massive object. It is one of the processes
largely responsible for the appearance of most objects in the universe. Almost all
astronomical objects, from planets and stars to entire galaxies were formed through
this process. It also powers some of the most energetic phenomena observed in the
universe. Generally, accreting matter forms a disk around a central object due to the
conservation of the matter’s angular momentum. We will look at the dynamics of
these disks, both generally and using a thin disk approximation as well as commonly
used gravitational potentials.

We will also discuss several systems that are interpreted as compact objects pos-
sessing an accretion disk: Cygnus X-1, an extensively studied X-ray binary system,
SS 433, another binary known for its disk’s and jets’ precession, Sagittarius A*,
the supermassive black hole at the center of our galaxy, and M104, a spiral galaxy
possessing an unusually large black hole at its center.
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2 Accretion Disks

Particles caught by a massive object’s gravitational pull rarely happens to be trav-
elling directly towards the object. It generally has some angular momentum which
it must lose in order to fall further inwards. Looking at the angular momentum for
a circular orbit, L = mvr, we see that in order for r to decrease, L must decrease,
assuming that the mass is constant. As momentum must be conserved, it can only
be transferred elsewhere. It turns out that the angular momentum in accretion is
transferred via friction and moves outwards as most of the matter making up the disk
moves inwards. Here we will consider basic accretion disk theory. Our discussion is
largely adapted from [16], [5] and [18].

Let’s look at the mechanics of these disks more closely. Due to the shape of the
disk it is best to use cylindrical coordinates, in which z is the vertical distance from
the equatorial plane and r is the radial distance from the z-axis. At the center
of the coordinate system we have a massive object with a spherically symmetric
gravitational field. The gravitational potential Φ is dependent on the distance from
the coordinate system’s center, r =

√
R2 + z2, and obeys the following:

Φ(r) < 0, (2.1)

the potential must be negative everywhere, obviously the gravitational field cannot
repel objects from the center anywhere,

dΦ

dr
> 0, (2.2)

it must be strongest at the center and weakens as r increases. We require that r = 0
must be the only critical point, and the potential must go to 0 as r approaches
infinity,

Φ(r)r−→inf −→ 0. (2.3)
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2 Accretion Disks

Two potentials will be explored in this thesis, the familiar Newtonian potential,

ΦN(r) = −GM
r
, (2.4)

and a pseudo-Newtonian potential,

ΦPN(r) = − GM

r − rg
, (2.5)

where rg = 2GM/c2 is the gravitational radius of the central object and where the
singularity has been shifted out to r = rg [16].

2.1 Disk formation

We should start by answering an important question: why does accreting matter so
commonly form a disk rather than, for instance, staying spherically symmetrical?

It is due to the angular momentum of the matter forming the disk. Each particle
has its own angular momentum, ~L = ~r ×m~v where ~r is the position vector of the
particle relative to the center of the coordinate system and ~v is its velocity vector.
The sum of the angular momentum vectors of all the particles is conserved, even
during collisions or other interactions. It is extremely unlikely that the total angular
momentum will be equal to 0. This means that the angular momentum vector will
point in a specific direction, which is perpendicular to the position and velocity
vectors and the plane in which the disk forms. As collisions occur in the matter, the
angular momenta of individual particles will come closer to the average, bringing
their orbits into the plane perpendicular to the total angular momentum.

2.2 Accretion disks in binary systems

Accretion disks can form in binary systems under certain circumstances. The more
massive body will, during its evolution, expand past its Roche lobe, the region in
a binary system within which matter is gravitationally bound to that object. The
outermost particles will then flow through the L1 Lagrangian point and form a disk
around the other body. The donor body is generally a giant, since it has to have a
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2.3 Adiabatic Accretion

Figure 2.1: Binary system made up of a red giant and white dwarf. The Roche lobes
are shown by the dashed line, the L1 Lagrangian point is the intersection where
the lobes meet [9].

large enough volume to reach the Roche lobe. The other body in this type of system
may be a white dwarf, neutron star or black hole. [9]

2.3 Adiabatic Accretion

If we consider the Newtonian potential ΦN = −GM/r, when gas falls from r0 to
r, gravitational potential energy is converted to kinetic energy. The amount of
energy converted is ∆Φ = −GM(1/r − 1/r0) which, if r0 � r, can be simplified as
∆Φ = −GM/r. If the gas is at rest or in a circular Kepler orbit by the end of infall
then the amount of energy dissipated per unit mass is

e = −GM
r
, (2.6)

at rest or

e = Φ +
v2

2
= −GM

r
+

1

2

GM

r
= −GM

2r
, (2.7)

for the Kepler orbit, using v =
√
rdΦ/dr for the Newtonian potential.
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2 Accretion Disks

The energy dissipated ends up as internal energy of the gas and in radiation. We will
look specifically at adiabatic accretion, in which the loss of energy due to radiation
is neglected.

If the gas being accreted is an ideal gas with a constant ratio of specific heats, γ,
then the internal energy per unit mass is

e = − P

(γ − 1)ρ
. (2.8)

Here P is the gas pressure, given by P = RρT/µ, using the gas constant R and the
mean atomic weight per particle µ. If the gas goes into a circular orbit, we can find
the temperature of the gas after the dissipation has taken place using

T =
1

2
(γ − 1)Tvir, (2.9)

where Tvir is the virial temperature [18],

Tvir =
GMµ

Rr
. (2.10)

2.4 Analysis of accretion disks using Navier-Stokes

The following discussion is adapted from [5]. We use the Navier-Stokes equations to
describe the motion of a viscous compressible fluid with a variable dynamic viscosity
ν and a bulk viscosity coefficient equal to zero. If we have a fixed volume V element
within a surface S and fluid density ρ then the rate of the fluid mass change in the
volume is

∂

∂t

∫
V

ρdV. (2.11)

If there is no source or sink for matter within the volume, this must be equal to the
total mass inflow integrated over the surface of the volume. The mass flow outward
across an element d~S can be expressed as ρ~v · d~S where ~v is the fluid’s velocity
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2.4 Analysis of accretion disks using Navier-Stokes

vector. We can then use

−
∫
S

ρ~v · d~S = −
∫
V

∇ · (ρ~v)dV, (2.12)

which gives the mass gained by volume. We now have the mass flow outward in eq.
(2.12) and the mass gained by volume. Setting these as equal, we obtain,

∂

∂t

∫
V

ρdV = −
∫
V

∇ · (ρ~v)dV, (2.13)

which gives the mass conservation law,

∂

∂t
ρ+∇ · (ρ~v) = 0. (2.14)

We then try to find a similar conservation law for momentum. To do this, we define
forces acting on the fluid element, external volume forces fe, and internal volume
forces fi. In order to accurately describe the internal forces, we must use a viscous
stress tensor,

τij = µσij = µ
(

(∂ivj + ∂jvi)−
2

3
(∇ · v)∂ij

)
. (2.15)

Here, σij is the shear tensor and µ is the fluid’s dynamic viscosity. We then also use
the stress tensor,

Υ = −PI + τ, (2.16)

where P is the pressure, I is the identity matrix and τ is the viscous stress tensor
defined above [5].

From here we can find the internal forces fi = ∇ · Υ = −∇P +∇ · τ . In addition,
we can also find the external forces fe = −∇Φ, assuming those forces come from
the gravitational potential Φ only.

We use all this to get the following equation of momentum conservation,

ρ
( ∂
∂t
~v + (~v · ∇)~v

)
= ∇Υ + ρfe = −∇P +∇ · τ − ρ∆Φ, (2.17)
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2 Accretion Disks

which is the Navier-Stokes equation of motion. When dealing with accretion disks,
it is generally best to use cylindrical coordinates as mentioned above, both due to
the shape of the disk and to simplify integrations. We will assume that the disk’s
properties do not change based on the ϕ coordinate so ∂

∂ϕ
= 0. The z coordinate

can also be ignored by assuming that the disk is symmetric with respect to the
equatorial plane and integrating through the depth of the disk. This simplifies the
problem and we end up with the velocity components,

vr(r, z) ' vr(r), (2.18)

vϕ(r, z) ' vϕ(r), (2.19)

vz ' 0. (2.20)

We now define the surface density by integrating the density over the disk’s vertical
thickness,

Σ =

∫ z0

−z0
ρdz, (2.21)

where z0 equals half the vertical width.

We also integrate the viscous stress tensor τµν over the vertical width of the disk to
get Tµν ,

Tµν =

∫ z0

−z0
τµνdz. (2.22)

The equation describing radial transport is then

∂vr
∂t

+ vr
∂vr
∂r

= − 1

Σ(t, r)

∂P

∂r
+
v2
ϕ

r
− ∂Φ

∂r
+ aviscr , (2.23)

where aviscr is the acceleration due to the viscosity in the radial direction. This equa-
tion can be simplified with two approximations. First, we neglect the gas gradient
pressure in the radial direction. Second, we assume that two of the components
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2.4 Analysis of accretion disks using Navier-Stokes

of the viscous stress tensor Tµν , i.e. Trr and Trϕ are both equal to 0 and therefor
aviscr = 0 as well. This simplifies eq. (2.23) and it now becomes

∂vr
∂t

+ vr
∂vr
∂r

=
v2
ϕ

r
− ∂ΦT

∂r
. (2.24)

Here, ΦT is the gravitational potential of both the central object and the disk itself
and is both a function of radius and time, due to the infall of matter.

Looking at the motion of matter in the ϕ direction, we can get, based on the Navier-
Stokes equation of motion, eq. (2.17),

∂vϕ
∂t

+ vr
∂vϕ
∂r

+
vrvφ
r

= aviscϕ . (2.25)

The acceleration in the radial and azimuthal directions due to viscosity is given by

aviscr =
1

rΣ(t, r)

(∂(rTrr)

∂r
− Tϕϕ

)
, (2.26)

aviscϕ =
1

rΣ(t, r)

(∂(rTrϕ)

∂r

)
, (2.27)

where the T terms are given by,

Trr = 2νΣ(t, r)
[∂vr
∂r
− 1

3
∇ · ~v

]
, (2.28)

Tϕϕ = 2νΣ(t, r)
[vr
r
− 1

3
∇ · ~v

]
, (2.29)

Trϕ = νΣ(t, r)
[
r
∂

∂r

(vϕ
r

)]
, (2.30)

and are the components of the vertically integrated viscous stress tensor for cylin-
drical coordinates. The divergence of the velocity field is given by [5]

∇ · ~v =
1

r

∂

∂r
(rvr). (2.31)
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2 Accretion Disks

If the left side of that equation is equal to zero, then the fluid is incompressible. In
our case however, the fluid is compressible.

10



3 Thin Disk Approximation

This chapter is largely adapted from [16]. The sections on the scale of height and
the α-disk model are adapted from [5].

Let’s assume that z0 � r for an accretion disk. In that case the rotational velocity
of matter within the disk is defined purely by the distance r from the center and we
can look at the disk as a series of concentric cylinders with constant radii [16]. The
surface mass density was defined in eq. (2.21).

If the matter in the disk has some dynamical viscosity, η, and a shear flow dΩ/dr 6= 0,
then there is a torque between adjacent cylinders which can be described with

g = r × 2πr ×
∫ z0

−z0

(
− dΩ

dr
r
)
ηdz = −2πr3dΩ

dr

∫ z0

−z0
ηdz. (3.1)

The viscous interaction between the cylinders also releases thermal energy which
can be described by,

ε =
(
r
dΩ

dr

)2

η. (3.2)

.

Let’s look at the flow of mass, momentum and energy between cylinders located at
r and r+dr. We can express the rate of accretion, the rate of the mass flow between
the cylinders, as

Ṁ = 2πr

∫ z0

−z0
ρvrdz = 2πrvrΣ, (3.3)

where vr is a very small radial velocity. The angular momentum flow J̇ can be
expressed with

J̇ = Ṁj + g. (3.4)

11



3 Thin Disk Approximation

Here, Ṁj gives the angular momentum carried with the mass flow, j is the angular
momentum per unit mass, j = vr =

√
r3dΦ/dr and g gives the angular momentum

transmitted by viscous forces. Finally, the energy flow can be expressed as

Ė = Ṁe+ gΩ. (3.5)

In this equation, Ṁe gives the energy that flows with the matter while, gΩ, gives
the energy transmitted by viscous forces. Some energy is also dissipated as heat due
to the viscosity. Because we assume that the disk is thin, we assume that the energy
radiates locally from the surface of the disk at a flux rate F .

The luminosity between r and r + dr is

dLd
dr

= 2πr × 2F = 4πrF, (3.6)

where F is the flux from unit area and 2F is used here since the disk radiates from
both surfaces.

We can express the mass contained between r and r + dr with 2πrΣdr and can
therefore write the equation of mass balance, eq. (2.14), as

∂

∂t
(2πrΣ) +

∂Ṁ

∂r
= 0. (3.7)

We can then do the same thing with the angular momentum 2πrΣjdr and the energy
2πrΣedr, giving us the corresponding equations of angular momentum and energy
balance

∂

∂t
(2πrΣj) +

∂J̇

∂r
= 0, (3.8)

and

∂

∂t
(2πrΣe) +

∂Ė

∂r
+ 4πrF = 0, (3.9)

respectively. Note the term 4πrF in eq. (3.9). It has no equivalent in the mass and
angular momentum equations since in this approximation radiation, responsible for
this term, has no mass nor momentum. Similar terms appear in all three equations
when using the relativistic form of the equations, but these are generally very small.

12



It is possible to simplify these equations using the fact that in the thin-disk approx-
imation j,Ω, and e are all functions of radius alone, while Σ, Ṁ , J̇ , Ė, F, and g are
functions of both radius and time. This gives

2πr
∂Σ

∂t
+
∂Ṁ

∂r
= 0, (3.10)

Ṁ
dj

dr
+
∂g

∂r
= 0, (3.11)

g
dΩ

dr
+ 4πrF = 0. (3.12)

We can see from the last equation that

F =
g

4πr

(
− dΩ

dr

)
=

1

2

(
− rdΩ

dr

)2
∫ z0

−z0
ηdz, (3.13)

if we use equation (3.1) to replace g. Earlier, ε, the thermal energy, was defined in

equation (3.2) as
(
r dΩ
dr

)2

η. We can then use that and simplify eq. (3.13) to

2F =

∫ z0

−z0
εdz. (3.14)

The surface brightness of the disk cannot, of course, be negative. That, coupled
with the fact that the angular velocity decreases with increased radius, dΩ/dr < 0,
and eq. (3.12) shows that the the torque cannot be negative either. If we assume
that there is vacuum beyond both the outer and inner edges of the disk, the matter
density falls off to 0 at both the inner and outer edges and so the torque must also
be 0 there.

There must therefore be a radius rm between the two edges of the disk, at which
the torque has a maximum and thus ∂g/∂r = 0. Looking at eq. (3.11), we can
see that to fulfill that equation at the aforementioned radius the mass flow Ṁ must
be 0 there as well. The signs on ∂g/∂r at other radii within the disk show that to
fulfill eq. (3.11), Ṁ < 0 for radii smaller than rm and Ṁ > 0 for radii larger than
rm. This shows that in the system described here, the disk will spread out across a
wider range of radii.

13



3 Thin Disk Approximation

Let us look at a special case: that of a steady-state, time independent accretion disk.
Here Ṁ is constant both in time and radius, while other variables are dependent on
radius alone. Here, integrating eq. (3.11) gives

g = g0 + (−Ṁ)(j − j0). (3.15)

Here g0 and j0 are the torque and angular momentum at the inner edge of the disk,
r0. If there is no torque at r0, then we have

g = (−Ṁ0)(j − j0) (3.16)

and, using eq. (3.13),

F = (−Ṁ)
j − j0
4πr

(−dΩ

dr
). (3.17)

This tells us that for steady-state accretion, the surface brightness doesn’t depend
on viscosity, but just the conservation laws. Looking at the equation above, we note
that the surface brightness is proportional to the accretion rate and approaches 0 at
both of the edges, at the inner, j = j0, and of course both 1/r and −dΩ/dr approach
0 as r increases.

We can use eq. (3.17) to calculate the total luminosity of a steady-state accretion
disk extending from r0 to ∞ with g0 = 0. Changing the variable of integration and
then integrating by parts gives

Ld = (−Ṁ)(−e0). (3.18)

So the total luminosity of the disk is equal to the mass accretion rate times the
energy per unit mass at the inner disk radius, r0.

3.1 The Scale of Height

The hydrostatic equilibrium is described by

1

ρ

∂P

∂z
= −∂Φ

∂z
. (3.19)

14



3.1 The Scale of Height

Here, P is the total pressure and is composed of gas pressure Pgas = ρc2
s, turbulent

pressure Ptur = ρ < v2
t > and radiation pressure Prad = aT 4/3, with a being the

radiation constant.

Using these definitions, the total pressure P can be written as

P = ρc2
s(1 + ε2 + γ2H) (3.20)

with ε2 =< v2
t > /c2

s being the ratio between turbulent velocity and the speed of
sound, and γ2 = 2aT 4/3Σcs2. The turbulent velocity is found by assuming that the
turbulence is isotropic and using the turbulent viscosity ν = 1/3 < vt >< lt >.
Here, < lt > corresponds to the characteristic scale of the eddies. We will assume
< vt >'< lt > Ω and then use that to find the turbulent velocity,

ν =
1

3

< vt >
2

Ω
⇒< vt >

2' 3νΩ. (3.21)

Thus, ε2 = 3νΩ/c2
s.

We define the total scale of height as

H =
ρ

|dρ
dz
|
, (3.22)

and use eq. (3.19) to get the scale of height as a function of radius.

H = −dP
dρ

1

gz
. (3.23)

Here, gz = −∂ΦT/∂z = GMbhz/r
3 + 2πGΣz/H is the vertical component of the

gravity acceleration. Using that and eq. (3.20) we get the following,

H =
ρc2

s(1 + ε2 + γ2H)

2πGΣ + Ω2
KH

, (3.24)

which can be resolved for H to get,

H = − cs

QωK

(
(1− β)−

√
(1− β)2 +Q

2
(1 + ε2)

)
. (3.25)

Here, Q = ΩKcs/πGΣ gives the limit between a self-gravitating and keplerian regime
for the scale of height, β = aT 4/3πGΣ2 gives the relative influence of the radiative
pressure with respect to the disk’s self gravity [5].
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3 Thin Disk Approximation

3.2 The α-Disk Model

The α-disk model was first proposed by Shakura and Sunyaev (1973) [17]. It de-
scribes a thin disk (h/r = 2z0/r � 1) with a much lower total mass than the central
object, so that the disk’s mass can be considered negligible.

τrϕ = αρc2
s = −αP. (3.26)

Here, τrϕ is proportional to the pressure P , with α as a dimensionless constant, cs
the speed of sound in the flow. We then have the kinematical viscosity,

< ν >= αcsH, (3.27)

where H is the scale of height, as defined in the previous section. As mentioned
earlier, this model assumes a thin disk, so H/r � 1. This model is useful because
we do not know much about the viscosity of accretion disks, but this replaces that
unknown parameter with a single, simpler one which is 6 1 [5].
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4 The Eddington Limit

The Eddington limit is the maximum limit on the luminosity of a body while it is
in hydrostatic equilibrium. If a body’s luminosity exceeds that limit, the radiation
pressure will be greater than the force of gravity and material from the outer layers
of the body will be pushed away instead of being pulled in. This has important
implications for accretion disks, whose luminosities depend on infalling matter.

Let’s consider a gas element with photons moving towards the element from one
direction. The gas has a scattering surface area of σT cm2. The force from the
radiation on one gram of gas is FσT/c with F of course being the radiative flux, as
in the previous chapter. The force of gravity affecting that same gram is GM/r2 in
the opposite direction. We can see that the flux where these two are equal is

σT
c
FE =

GM

r2
⇒ FE =

c

σT

GM

r2
, (4.1)

which, if the flux is spherically symmetric, gives a critical luminosity called the
Eddington luminosity,

LE =
4πGMc

σT
. (4.2)

This luminosity can then be used to find the corresponding Eddington accretion
rate,

LE =
GM

r
ṀE ⇒ ṀE =

r

GM
LE =

4πrc

κ
. (4.3)

ṀE limits the accretion rate. If that accretion rate is exceeded, accretion stops.

The approximate value of LE should be noted,

LE ≈ 4 · 104 M

M�
L�, (4.4)
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4 The Eddington Limit

for a fully ionized gas with σT on the order of 0.3 cm2/g. [18]
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5 Pseudo-Newtonian Potentials

The Newtonian potential used above is not perfectly accurate. While it is reasonable
enough in many cases, in others, such as cases involving black holes, it is inadequate.
An example of this can be seen when looking at gravitational fields of Newtonian
objects and black holes. In the case of a Newtonian object, the gravitational accel-
eration towards a point mass becomes infinite at r = 0. In the same case for a black
hole, the the gravitational acceleration reaches infinity at r = rg = 2GM/c2, as can
be derived from the Schwarzchild metric in general relativity. A better approxima-
tion in this case could be made using a pseudo-Newtonian potential, in place of the
Newtonian one [16],

ΦPN = − GM

r − rg
, (5.1)

where rg = 2GM/c2 as before. This also gives,

dΦ

dr
=

GM

(r − rg)2
, (5.2)

and we can find expressions for the rotational velocity, angular velocity and its
derivative, specific angular momentum, and specific energy, all of which are shown
below,

v =

√
GM

r

( r

r − rg

)
, (5.3)

Ω =

√
GM

r3

( r

r − rg

)
, (5.4)

dΩ

dr
= −3

2

√
GM

r5

(r − 1
3
rg)r

(r − rg)2
, (5.5)
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5 Pseudo-Newtonian Potentials

j =
√
GMr

( r

r − rg

)
, (5.6)

e =
(
− GM

2r

)(r − 2rg)r

(r − rg)2
. (5.7)

Note that the specific energy e is positive for radii r < 2rg and negative for radii
r > 2rg. This contrasts with the specific energy in a Newtonian potential,

e = ΦN +
v2

2
= −GM

2r
, (5.8)

using ΦN = −GM/r and v =
√
GM/r, where the specific energy is always negative

and increases monotonically with increased radius towards 0.

Another important property can be found if we look at the derivative of the specific
angular momentum j,

dj

dr
=

1

2

√
GM

r

(r − 3rg)r

(r − r2
g)

2
. (5.9)

We see from this that j has a minimum at r = 3rg. Both this and the specific energy
result are the same as the results obtained in general relativity.

The minimum in angular momentum also gives us the inner edge of the accretion
disk. We can see from eq. (5.5) that dΩ/dr < 0 at all r and so the angular
momentum is transported away from the center at all r as well. A particle in the
disk will lose angular momentum and fall inwards, eventually reaching the circular
orbit at r = 3rg. Here it will of course continue to lose angular momentum, but
there is no circular orbit possible and as a result it will fall freely towards the center.

This limit of r = 3rg only applies to a non-rotating black hole. For a rotating
black hole, space around it is dragged along, allowing particles to essentially move
even faster and thus allowing stable orbits closer to the event horizon. This has
been seen, with some X-rays that have been measured originating much closer to
the event horizon of black holes such as GX 339-4 and J1650-500. Fig. 5.1 below
shows this along with graphs showing the X-ray flux, demonstrating that the flux is
lowered due to the gravity of the rotating black hole [1].

An accretion disk surrounding a black hole is capable of radiating an incredible
amount of energy. Going through the same same steps as in eq. (3.18) it is possible
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Figure 5.1: A spinning black hole allows matter to orbit much closer to the event
horizon. The graphs show how X-rays from an accretion disk are shifted if the
central black hole rotates. The flux of high energy X-rays is lower than for a
non-rotating black hole [1].
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5 Pseudo-Newtonian Potentials

to show the following expression for the total luminosity of the disk:

Ld = (−Ṁ)
c2

16
. (5.10)

From this equation we see that matter accreting into a schwarzschild black hole
radiates 1/16 of its rest mass energy [16].
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6 Black Holes and Accretion Disks

In the previous chapter we briefly looked at the case in which an accretion disk
surrounds a black hole, since in those systems the pseudo-Newtonian potential be-
comes necessary to provide an accurate description. Here we will look more closely
at those types of systems, in particular the four specific systems Cygnus X-1, SS
433, Sagittarius A and the Sombrero Galaxy, M104.

6.1 Cygnus X-1

Cygnus X-1 is a high-mass X-ray binary system consisting of a blue supergiant star
and a black hole. These two bodies orbit their common center of mass every 5.6
days. This system is the brightest persistent hard X-ray source in the sky. The
black hole is about 15 times the mass of the sun and spins more than 800 times per
second [4].

Fig. 6.1 shows the location of Cygnus X-1 on the sky and an artist’s impression of
the system while fig. 6.2 shows the observed spectrum of Cygnus X-1, as well as
model spectra based on models of an accretion disk, corona, and coronal reflection.
Obviously, modeling a single part of the system, such as the disk, is not enough to
account for the observed spectrum, but using multiple models together it is possible
to get an accurate interpretation of the result [7].
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6 Black Holes and Accretion Disks

Figure 6.1: On the left, the location of Cygnus X-1 in the sky, on the right, an
artist’s impression of the binary system. [4]

Figure 6.2: The observed flux spectrum of Cygnus X-1 along with several models
demonstrating how they are accurate when combined. Note that the disk is very
prominent in the X-ray region of the spectrum and most of the energy flux comes
from the accretion disk. [10].
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6.2 SS 433

6.2 SS 433

SS 433 is a X-ray binary consisting of a primary which is either a black hole or a
neutron star and an A-type star [8]. Matter is continually pulled away from the
star and into an accretion disk around the compact object. Matter is hurled away
from the system in two jets coming out of the compact object, perpendicular to
the disk. This matter moves at around 26% of the speed of light. This system is
considered one of the most exotic systems discovered due to the fact that the disk
and jets precess around an axis about 20◦ off from the jets [8]. This means that the
spectrum is both blue- and redshifted as the jets point alternately more towards us
and away. Matter released by the jets forms a helix, as seen on fig. 6.3 below.

Fig. 6.5 shows the spectrum of SS 433. The horizontal lines show the rest wavelength
of several lines and the location of the blue- and redshifted lines due to the jets.
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6 Black Holes and Accretion Disks

Figure 6.3: Radio image of SS 433, showing the jets [12].

Figure 6.4: An artist’s impression of SS 433 [15].
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6.2 SS 433

Figure 6.5: The Spectrum of SS433, observed with the Chandra High Energy Trans-
mission Grating Spectrometer. Note the horizontal lines, which show the differ-
ence between the blue- and redshifted lines (diamonds) and the rest wavelengths
(asterisks) [13].
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6 Black Holes and Accretion Disks

6.3 Sagittarius A*

Sagittarius A* is the supermassive black hole at the center of the Milky Way, about
26000 light-years from Earth. Its mass is approximately 4 million solar masses. It
is surprisingly faint with regards to X-rays as research has shown that less than
1% of the matter in its gravitational influence actually passes the event horizon.
Most of the matter is instead ejected. This phenomenon occurs due to the heat of
the accreting matter. It appears that most supermassive black holes at the center
of galaxies behave like this, but Sagittarius A* is the only one where this can be
observed, due to its relative proximity to Earth [3].
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6.3 Sagittarius A*

Figure 6.6: An image showing X-rays observed with Chandra in blue and infrared
observed with the Hubble Space Telescope in red and yellow. The close up shows
shows Sagittarius A* in X-rays only [3].
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6 Black Holes and Accretion Disks

6.4 M104

The Sombrero Galaxy, also known as M104, is an unbarred spiral galaxy approx-
imately 31 million light-years from Earth [14]. It is considerably smaller than the
Milky Way, with a diameter of 50000 light-years. It has an unusually large super-
massive black hole, with a mass of 1 billion solar masses [11].

M104 has a ring of dust and cold atomic hydrogen gas surrounding the galaxy’s
central bulge. Most of M104’s star formation happens in this ring, which is visible
on the figure below.[6]
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6.4 M104

Figure 6.7: Picture of M104, taken with the Hubble Space Telescope [2].
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7 Summary

We have now gone through much of what is required to model an accretion disk.
The process which causes a disk to form has been described, both the Roche lobe
overflow in binary systems as well as the non-zero total angular momentum of the
system and the collision of particles in others.

A short overview of adiabatic accretion has also been given, which neglects the
loss of energy due to radiation. Following that, there was a section that analysed
accretion disks using the Navier-Stokes equation of motion. We looked at the thin
disk approximation and how it simplifies calculations, getting several conclusions
about accretion disks in the process. The α-disk model was also described, and how
it reduces a complex property, the viscosity, down to a single parameter.

The Eddington limit’s implications for accretion disks were mentioned, before de-
scribing the pseudo-Newtonian potential and its uses compared to the simpler New-
tonian potential.

Finally, we looked at four noteworthy systems containing black holes. Cygnus X-1,
having been extensively studied, provides a lot of data on accretion disks, including
giving us an example of how our accretion disk models are limited. SS 433 is an
interesting system due to the disk and jets precessing around the axis of rotation.
Sagittarius A* provides a look at the supermassive black holes at the center of
galaxies. We also looked at M104, with its unusually large central black hole.
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