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Abstract

The objective of this study is to investigate the possibility of controlling a prosthetic
knee by using a Xsens sensor module that consist of 3D acceleration, gyro and mag-
netic sensors. The prosthetic knee used for this study is the Rheo knee manufactured
by Ossur Inc. Pattern recognition methods are used to classify terrain at each step,
i.e. level ground, slope or stairs. A state machine is used to model gait cycle, where
phases are represented as states. Events of the gait cycle are found by sensor signals,
the events cause transitions between states. Features of sensor signals are used to
classify terrain. Gait phases are detected using two acceleration and one gyro sensor.
Neural networks calculate an output current based on the Xsens sensor module to
match the Rheo output current. The results are that acceleration and gyro sensors
can be used for controlling prosthetic knees and the state machine can be used as a
part of a control system for lower limb computer controlled prosthetics and orthotics.
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Utdrattur

Markmid pessarar rannsoknar er ad kanna moguleikann & bvi ad stjorna gervihnjalio
med pvi a0 nota Xsens nemasett sem samanstendur af prividar hrédunar-, hornhrada-
og segulnemum. Hnéd sem notad er vid pessa rannsékn er Rheo hné sem framleitt
er af Ossuri hf. Mynsturgreiningartél eru notud til ad flokka undirlag hvers skrefs
og undirlégin eru jafnslétta, halli og stigi. Stoouvél er notud til ad utbua likan
af gonguferli par sem fasar gonguferlisins eru tédknadir med astondum. Atburdir
gonguferilsins eru fundnir at fra merkjum fra nemunum sem notadir eru vid verkefnio
og orsaka beir feerslu milli astanda. Eiginleikar merkjanna eru notadir til ad flokka
undirlagid. Tveir hréounarnemar og einn hornhradanemi eru notadir til ad dkvarda
atburdi. Med bvi ad nota merki fra Xsens nemasettinu reiknar tauganet straum sem
hnéod sendir fra sér til a0 stjérna bremsu, netio er pjalfad med pvi ad nota straum
fenginn dr Rheo hnénu sem viomid. Hrédunar- og hornhradanemar henta vel til ad
stjorna gervihnjalid. Stoduvélina veeri haegt ad nota sem hluta af staerra stjérnkerfi
fyrir tolvustyrda gervilimi og spelkur.
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1 Introduction

Recent developments in prosthetics have given amputees the ability to live normal
life despite serious traumas and loss of limbs. Recently microprocessor controlled
prosthetic knee’s have become publicly available. A microprocessor controlled pros-
thetic knee provides an opportunity to control the amputee’s gait cycle with more
precision and make the gait cycle more natural. This study’s goal is to use acceler-
ation, gyro and magnetic sensors for gait recognition and knee controlling instead of
current sensors that require a mechanical connection to the knee itself of the knee
structure. There are two types of microprocessor controlled knee currently available,
there are passive knees i.e. the knee is only capable of exerting power through a
brake. Another type is active knees i.e. the knee itself can create power through
motors and therefore give a great advantage to the users gait. The Rheo knee is an
example of a passive knee.

This study aims to explore sensor combinations capable of controlling a prosthetic
knee. Two main factors determine if a sensor combination is suitable for knee con-
trolling, one is terrain classification and the other is output current control. It must
be possible to distinguish between terrain based on sensor signals. Output current
must be controlled according to the required knee function at any time point, the
required knee function is determined by actual gait phase at every time point.

Gait analysis has been researched for a long time, few different applications and
methods are used. Application of gait analysis is e.g. to estimate and improve gait
deviation for people suffering from Parkinson disease M] and Cerebral Palsy E] It
is also widely used to estimate ability of the elderly to walk on their own without
risking falls and injuries m . As well as for performance analysis and performance
improvement for athletes [16]. A widely used analysis method is video and pressure
mats ] for ground reaction force(GRF) and video for visual detection of gait phases.
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Since video gait analysis systems are expensive and require a lot of equipment they
are usually performed at gait labs, recently a mobile gait analysis system has been
developed. A recent mobile gait analysis system "GaitShoe" can be worn with any
shoe and includes three orthogonal accelerometers, three orthogonal gyroscopes, four
force sensors, two bidirectional bend sensors, two dynamic pressure sensors, as well
as electric field height sensors [3|. Gait analysis is also done via acceleration @] or
gYTO Sensors @] only or both [19]. Pattern recognition of human gait has been used
for person identification and gender classification where features are extracted from
videos m] Terrain classification has been done for bionic leg based on GRF and
processed by neural networks(NN) [3(].

Muscles and joints have completely different functions during different phases of the
gait cycle. For control software to be able to control a prosthetic knee with stability
and reliability the gait phase must be known at all time points and the knee needs
to be able to sense and recognize the external environment. For this to be possible
pattern recognition is used to classify different terrains, methods used are K-nearest
neighbors(KNN) and decision trees. Those two methods are selected because of non
parametric functions, adaptation and training is also quick and simple. KNN is more
versatile than decision tree but decision tree is computationally more effective and
is easily programmed with simple [F-ELSE sentences. State machine is a way to
model systems that require different functionality for different periods of runtime.
Gait phases are represented by states and the state machine monitor sensor signals
to determine when state changes should occur and therefore change the systems
function. Finally if terrain and gait phase are known, the appropriate current supplied
to the knee brake is decided based on sensor signals. The current is calculated by a
neural network, the neural network can use multiple inputs and be trained based on
known data, if favor of NN is that the inputs relation to the output is not required
to be known, so complex system can be used for controlling without the knowing
exact function of every part of the system. When the NN is used the calculation can
not be visualized easily therefore a more simple way using a knee angle sensor is also
used for current calculations, the knee angle sensor can be easily visualized but this
method only relies on the angle sensor and does not use other sensor signals.

Short description of following chapters:

Chapter 2 presents short history of prosthetics, introduction to gait analysis difference
between healthy and amputee gait and finally short description of the Rheo knee.

In Chapter 3 theories of pattern recognition, the state machine and neural networks
are presented. Simple examples are shown for better description of concepts and
applications.

Chapter 4 introduce sensors used for this project, and shows graphs of sensor signals
during gait both for the Xsens sensor module and the Rheo knee.



Chapter 5 presents results of terrain classification, the state machine and control
signal.

Chapter 6 contains discussions about conclusions and future work suggestions.






2 Background

2.1 Prosthetics

Short summary of history of prosthetics from M] Evidence of amputations from
43.000BC has been found, amputations were done with primitive tools such as knives,
saws and axis. At that time amputations were probably done because of infections
resulting from animal attacks or other kinds of wounds.

When the gunpowder was discovered the need for amputation drastically increased
because of bullet wounds and injuries resulting from cannon balls. In the early 1800s,
Baron Larrey, surgeon to Napoleon Bonaparte, performed 200 amputations on the
battlefield in 1 day.

The First description of artificial legs can be found as early as 1500BC in Indian
literature.

A prosthesis unearthed in the ruins of Pompeii that dated to 300BC is thought to
be the first prosthetic. This prosthesis was made of thin pieces of bronze fixed to a
central wooden core and secured to the residual limb with a leather skirt. During this
time, prosthesis were made of fiber, wood, bone and metals and were often lined with
rags. Designs for prosthesis were made by a number of influential figures including
Ambroise Paré, a military surgeon in the 16th century, and Leonardo da Vinci. Early
prosthetics were blacksmiths, armor makers and often the patients themselves.

In the early 19th century, with the advance of general anesthesia and the increasing
number of industrial accidents, the limbmakers were no longer skilled blacksmith but
trained prosthetists.

War continued to provide the impetus for research and development in prosthetics.
Following World War I, United Kingdom and United States were the main develop-
ment, and supply centers for military veterans, the Limb Fitting Center at Queens
Mary’s Hospital and the Armed Forces in UK , the Veterans Administration in US.
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(a) Rheo knee (b) Proprio (c) Power knee

Figure 1: Ossur’s Bionic technology IE]

Following World War II Canada began developing a prosthetic research program at
Sunnybrook Hospital in Toronto. Big improvements of prosthetics were made during
these war times because of large funds that attracted universities and private research
companies to this field of research.

Additional refinements are continually being made as evidenced by recently developed
microprocessor-controlled knees. Icelandic company Ossur has two microprocessor-
controlled knees, Rheo Knee Figure [[al which uses a microprocessor to control brake
for swing and stance control the other one is the Power Knee Figure [Id which also
uses a microprocessor for swing and stance control and a motor for assisting the user
with e.g. stair walking and standing from seated positions as well helping user with
swing and stance control.

2.2 Gait analysis

Gait analysis is study of human locomotion. Gait analysis is used to identify loco-
motion related problems, e.g. back, knee and hip problems. Gait analysis can also
be used to suggest changes for more efficient locomotion for athletes.

Gait analysis is usually done via markers and video systems for limb tracking and
pressure mats for ground reaction force(GRF) measurements, where the forces acts
on the bottom of the feet m] Video system are expensive and needs specific setup
for accurate measurements, for that reason its hard to move video systems out of gait
labs. Recently more mobile gait analysis systems have been developed, these systems
mostly consist of acceleration and gyro sensors E]



2.2 Gait analysis

Table 1: Historical timeline of amputations, prosthetics and orthotics. M]

43.000 BC Evidence found that amputation was done with primitive tools.

2730-2625 BC A device to stabilize the knee joint was found.

1500 BC Indian literature describes artificial legs.

370 BC Hippocrates used splints on the legs.

485-425 BC Herodotus described an individual imprisoned by Sparta who
supplied himself with a wooden foot.

300 BC A prosthesis unearthed in the ruins of Pompeii is thought to
be the first prosthesis.

131-201 Galen used dynamic orthoses for scoliosis and kyphosis.

476-1453 During the Middle ages, knights wore elaborate armor to con-
ceal prostheses.

1200 Medical school at Bologna considers orthotics as an important
part of medical knowledge.

1509-1590 Ambroise Pare’ established technical standards for surgical am-
putations and described spinal corsets and shoe modifications.

1690 Verduin constructed a transtibial prosthesis with copper
socket, leather thigh corset, and a wooden foot.

1790-1847 Lisfranc, a famous surgeon, amputates a foot in less than 1
minute.

1800 Baron Larrey, surgeon to Napoleon Bonaparte performs 200
amputations on the battlefield in 1 day. He advocates wounds
being operated on within the first 24 hours.

1860 Mortality rate due to sepsis in London for transtibial and trans-
femoral amputations were 50 and 80% respectively.

1865 Lord Lister starts surgical antisepsis to decrease high mortality
rates.

1865 J.E. Hangar, sustains an amputation while serving in the Con-
federate Army, places rubber bumpers in solid feet, and pro-
duces the first articulated prosthetic foot.

1918 After World War I, The Limb Fitting Centre at Queen Mary’s
Hospital, Roehampton becomes a primary development and
supply center to military veterans.

1945 The U.S. Veterans Administration supports the development
of the patellar tendon bearing and the quadrilateral sockets.
Canada develops a prosthetics research program at Sunny-
brook Hospital in Toronto.

1970 The U.S. Veterans Administration develops the endoskeletal
prosthesis.

2000 A microprocessor controlled knee with hydraulic swing and

stance phase control is developed.
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Joint movements during gait are an important part of gait analysis, for better un-
derstanding of most simple joint movements of the knee and ankle Figure [ can be
referred to. Part of gait analysis is also hip and back movements but they are not
discussed in this thesis. Gait can be separated to many branches, Figure 2 each of
those branches can be looked at a different speed or different terrain so the complexity
of gait analysis is almost endless. Grey boxes represent branches used in this thesis.

Speed | Speed ‘ Speed ‘ Speed | Speed | Speed ‘ | Up ‘ Down
. _|”| A |ﬁ — |*| . Pﬁ'_
[ Stair ‘ Slope i L Stair i { Slope ] [ ‘Soft terrain ] ‘ Hard terrain J Standing still | . Sitting |
| Up ‘ Down | [ Level |
—
| Healthy |

i
= =
% N

(.’ Gaitcycle |
\‘“‘“—T//
[ ampuee |
—
[ | [ oown | [Lovet |
4 ) L i A 4
| | 1 ] | ]
| staic | | Siope | { Stair | { Slope: J [ Softterrain || Hard terrain J Standing still | Sifting |
Speed | Speed Speed ‘ Speed Speed lspﬂéd | Up ] ‘ Down ]

Figure 2: Complexity of human gait

2.2.1 Gait cycle

The gait cycle is a highly periodic pattern that is divided into two periods, stance
and swing. The periods are then divided further into phases seen in Table Bl Gait
events occur during the gait cycle, the two most familiar events are toe off(TO) and
heel strike(HS), called initial contact in Figure [ and Table 2l HS is the beginning
of a step, when a person hits the ground after a swing period while the TO event is
the start of a swing period, see Figure [ for visual description of the gait cycle.
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(a) Knee extension (b) Knee flexion (c) Ankle dorsiflex- (d) Ankle plan-
ion tarflexion

Figure 3: Knee and ankle joint movements

Variables of gait cycle are e.g.

e Distance
— Stride: Linear distance between HS of one foot until next HS of the same
foot
— Step: Linear distance between HS of one foot until next HS of the other
foot

e Time

— Stride duration: The time it takes to complete a stride
— Step duration: The time it takes to complete a step

— Cadence: Number of steps per minute

Periods

The stance period is the part of the gait cycle when some part of the foot is in contact
with the ground. The swing period is when no part of the foot is in contact with the
ground, i.e. the foot is in the air, reference Figure @ For a regular walk the stance
period makes up 60% of the gait cycle and the swing makes up the remaining 40%. In
this section the gait cycle is described with the main focus on the functions of the knee.

Phases

Each period is divided into several phases, were each phase represent different function
of joints and muscles.
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Initial
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Loading Terminal Pra Imitial Mid Tarminal
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Figure 4: Normal gait cycle (Universitat Wien, 2009)

Table 2: Sequence of Event in Gait Cycle Iﬁ]

Stance Period

Phase

Description

Percentage of Gait Cycle

Initial contact When the foot hits the ground 0-2

Loading response  Until the opposite foot leaves the 0-10
ground

Midstance Until the body is over and just 10-30
ahead of the support

Terminal stance To toe-off 30-50

Preswing Just after heel-off to toe-off 50-60

Swing Period

Phase Description Percentage of Gait Cycle

Initial swing Until maximum knee flexion oc- 60-73
curs

Midswing Until the tibia is vertical 73-87

Terminal swing Until initial contact 87-100

Stance period The heel strike or initial contact is the event when the foot hits
the ground after the swing period. Some people do not make initial contact to the
ground with the heel but rather the toes and hence this event is often called initial
contact instead of heel strike, throughout this study heel strike naming will be used.
The first phase is the loading response, that is when the foot hits the ground and
muscles must be ready to respond to the sudden impact of initial contact, until the
opposite foot leaves the ground and the foot is taking over the entire load of the body
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Femur

Tibia

Figure 5: Human leg, the bones in this segments are called femur and tibia, sensor module
location and X-, Y- and Z-axis

weight. At the loading response phase the knee is almost fully extended, but will flex
slightly to lower the body center of gravity to minimize the power used for vertical
movements of the body.

The second phase is midstance, midstance’s critical event is to maintain knee exten-
sion by restricting the tibia from going forward.

The third phase is terminal stance, this phase also maintains knee extension but the
critical event is to raise the heel until the body begins to fall toward the opposite
foot.

The fourth and last phase of stance is preswing, at this phase the critical event is the
knee flexion, the knee flexes and the body continue to fall toward the other limb.

Swing period The first phase of swing is initial swing, it begins when the foot is off
the ground and ends when the knee has reached maximum knee flexion. This phase
uses the momentum gained from preswing to create enough momentum to swing the



12 Chapter 2. Background

foot forward.

The second phase is midswing, the midswing begins at maximum knee flexion and ends
when the tibia is vertical, during this phase the knee swings freely from maximum
flexion to approximately 30°. During this phase the ankle dorsiflexes to make toe
clearance, to avoid stumbling because of the hitting the ground with the toes when
the foot is swung close to the ground.

The third and last phase of the swing is terminal swing, in this phase the critical event
is that the knee has extended enough to prepare for stable landing. This phase also
decrease the acceleration of the foot to prepare for accepting the body weight again,
this is the last phase before the HS and start of the gait cycle.

Events Events are used to decide on transition from one phase to another, in nor-
mal gait these transition should happen in the sequence shown in Table

In human gait two main events occur every cycle, i.e. HS and TO which are the start
of the stance period and swing period respectively. HS is when the foot lands on the
ground after the swing period. TO is when the foot leaves the ground for a swing
period. Other events are harder to detect and not as obvious, they are e.g. heel off,
maximum knee flexion and vertical tibia in the swing phase. Healthy people don’t
think about these events when walking but for people with injuries or amputees those
event can help AI prosthetics and orthotics to decide on phases and periods to be
able to help the user accordingly based on position in the gait cycle.

2.2.2 Gait deviations

Even though the gait cycle is similar between any two people, there is always some
difference between people, e.g. walking speed, maximum knee flexion, GRF, moments
created and ratio between stance and swing. A persons gait can change based on load,
walking speed, injury or even shoes to name few. A different load will result in an
altered gait cycle, if the person is holding a book in one hand the load the person will
lean to one side and therefore alter the gait cycle observed on both legs. In the case
of foot injury, a person will try to minimize the time spent on the injured leg and
therefore alter the gait cycle. All these variations to the gait cycle make it difficult
to have an absolute gait measuring technique.

In order to increase walking speed, the stance period time is decreased and the swing
period doesn’t change and therefore the stride time decreases when walking speed is
increased [10].
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2.2.3 Amputee gait

Leg amputees are divided into two groups

e Transfemoral(TF) or above knee amputee

e Transtibial(TT) or below knee amputee

The gait cycle of amputees is quite different from a healthy persons gait cycle. For
TF amputees conventional mechanical prosthetic knee’s will stay locked in extended
position throughout the stance phase, then unlock in the preswing phase to gain
momentum to reach maximum knee flexion. Therefore amputees need more energy
during stance period because their body center of gravity has more vertical movement
compared to healthy person. During the swing phase the amputee must rely more
on the momentum generated during preswing because of no muscle connection to the
knee joint it self. During the swing the biggest disadvantage is that when wearing
conventual knee prosthetic it is fixed and does therefore not give enough toe clearance
to prevent stumbling, and therefore amputees both TF and TT need to move the
foot up by other parts of the body usually the hip and therefore the gait cycle is
unsymmetrical, it results in a more difficult gait and it looks different from a regular
gait.

2.3 Rheo knee

The RHEO KNEE®) is the world’s first microprocessor swing and stance knee system
to utilize the power of artificial intelligence. Capable of independent thought, it learns
how the user walks, recognizing and responding immediately to changes in speed, load
and terrain.

The knee adapts to any situation, and not just within pre-set and limited parameters,
enabling the individual to quickly regain confidence in his or her ability to walk where
and how they choose [20].

2.3.1 Manufacturer

Ossur Inc (hereafter Ossur) is an Icelandic company founded in 1971 by Ossur
Kristinsson. Ossur is a worldwide leading company in non-invasive orthopaedics.
The Rheo knee and the Power knee are a part of a three products bionic technol-
ogy line Figure [I, the third product is a microprocessor controlled ankle, Proprio.
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Table 3: Relation between the Rheo knee state machine and gait periods and phases

State Phase Period
Stance flexion Loading response and partly midstance | Stance
Stance extension partly midstance Stance
Preswing Preswing Stance
Swing flexion Initial swing Swing
Swing extension Midswing and Terminal swing Swing

Ossur are a leading company within the fields of prosthetics, braces, supports and
compression therapy. The company’s phrase is "life without limitations" @]

2.3.2 Sensors

The Rheo knee senses the environment by two load cells and an angle sensor, the
sensor output is shown in Section [£2.Il The load cells are built into the structure of
the knee which makes the manufacturing of the structure complicated and expensive.
Current sensors do not give enough information to estimate some gait events required
for more detailed knee controlling or product combinations, e.g. the Rheo knee and
the Proprio ankle. The structure is rated for specific load, currently for 100 kg users
m], if the load cell would not be required the structure could be made smaller and
the whole knee unit more compact.

2.3.3 Rheo knee state machine

The Rheo knee is controlled via state machine (see Section B3], the Rheo knee state
machine has five different states shown in Figure [6] along with available state transi-
tions. It’s possible to move to stance flexion state from all other states, this is a safety
state and all transition except from the swing extension to stance flezion are safety
transitions. Safety transitions occur if the knee control module senses an unusual sen-
sor reading, e.g. a force during the swing period or the knee extending rather than
flexing during the preswing state. Safety transition is triggered if the load cells sense
load during states were no load should occur or unusual load reading during preswing.

By referring to Tables[d and 2 and Figure [6]the most frequent paths through the state
machine are described here. The regular path through the Rheo knee state machine is
Stance flexion — Stance Ezxtension — Preswing — Swing flexion — Swing extension.
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Swing extension

Swing flexion

Preswing

Stance flexion Stance Extension

Figure 6: The Rheo knee state machine

Since few amputees are capable of performing controlled stance extension during gait
the path through the state machine is usually Stance flezion — Preswing — Swing
flexion — Swing extension, this is a legal path since the state machine allows other
transition than just what the optimal path would suggest. In case of stair walking
the path is Stance flexion — Swing flexion — Swing extension, the reason for this
is that the amputee has all his weight on the knee when he lowering himself to the
next step, so the force will remain larger during the whole stance period rather than
decreasing during the end of stance period. One of the boundaries for entering the
preswing phase is that the load is less than some specific number, if the state machine
would enter the preswing during stair walking the control software would turn off the
braking torque with potentially bad consequences.
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Table 4: Description of the Rheo knee state machine and actions

State

Description

Stance flexion

Begins at HS, possible transitions are stance extension,
preswing and swing flexion. During this phase the con-
trol software is responsive to angular velocity, i.e. if the
knee starts to flex the knee output current proportional to
the angular velocity of the knee joint.

Stance extension

This state is reached if the amputee is able to extent
the knee during stance period, possible transitions are
preswing, swing flexion and stance flexion. The control soft-
ware is less responsive to angular velocity, i.e. the braking
is not as harsh as in stance flexion phase.

Preswing

This state is reached if the knee senses increasing moment
(see Figure 23]l and Table 2]) and decreasing force, possible
transitions are swing flexion and stance flexion. During this
state the knee’s braking torque is set to zero so the knee is
able to gain momentum for the swing period, since the knee
does not have any motor it has to rely on power generated
by the amputee during stance period.

Swing flexion

This state begins by TO, i.e. when there is no load act-
ing on the knee, possible transitions are swing extension
and stance flexion. During this state the control software
damp the knee movement to achieve maximum knee angle
of (usually) 60 degrees smoothly.

Swing extension

This state is reached after maximum knee angle, possible
transition is stance flexion. During this state the control
software damp the knee movement to end the swing as close
to zero degrees without actually reaching zero degrees.




3 Theory

3.1 Pattern recognition

Humans can easily recognize faces, letters, voices, damaged food or forms by vision,
hearing, smell and touch. To be able to recognize a face the brain uses parameters
of the face, e.g. width, height, length between eyes, and matches them to an already
familiar face. "Pattern recognition the act of taking in raw data and making an action
based on the "category” of the pattern has been crucial for our survival, and over the
past tens of millions of years we have evolved highly sophisticated neural and cognitive
systems for such tasks" ﬂ]

Computers have been designed and built to automatically recognize words, finger-
prints, faces, DNA and many more applications ﬂ] Automatic pattern recognition
systems are challenging problems because of many parameters involved in the natu-
ral world, the brain can extract various, and as many as needed, parameters of the
face while the computer only has predefined number of parameters. Limited numbers
of parameters can cause an overlap in the recognition system because of insufficient
information and therefore cause classification errors.

3.1.1 Dimensions

Dimensions of the input data can be critical, Figure [1 shows two categories that
are easily separated, but the same data in one dimension, Figure ® is impossible to
separate with decent accuracy. Too many dimensions can also cause problems, there

17
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is known a saying "curse of dimensionality" @] which says that too many dimension
will result in classification error because if data is non relevant it will act as noise
and decrease accuracy of classification.

25

151

-5 L L L I I

Figure 7: Two dimensional data set

3.1.2 Pattern recognition system

Pattern recognition systems can be partitioned into components, the components are
shown in Figure [0 and each component’s function is described in following sections.

Sensing

The inputs to a pattern recognition system are arrays of data, e.g. camera photo,
microphone or sensors data. This part includes pre processing of the data, e.g.
filtering, transformation and noise reduction.
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Figure 8: One dimensional data set

Segmentation

Segmentation is one of the biggest problem of pattern recognition, it decides when
one sample begins and ends. In gait analysis segmentation is vital to know when
step begins and when it ends for keeping track of features during each step without
the data overlapping between steps. For speech recognition the problem is to detect
when a word begins and ends, e.g. the word BEAT'S could be recognized as BE or
EATS if the segmentation would fail to separate the speech to words correctly.

Feature extraction

Feature extraction is key to pattern recognition, it connects the input data to the
classifier. The feature extractor characterizes the data in real values that can be
compared by computer algorithms. Features of face detection can be width, length,
face part sizes and ratio between face parts that can be measured in actual units that
can be compared to a known samples.
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Figure 9: Pattern recognition system ﬂ]

Classification

The task of classification is to use prior knowledge to assign a category of unknown
data by using the features provided by the feature extractor, in the case of no prior
knowledge similar data is classified to clusters which then require post processing for
final classification. The difficulty of classification depends on the variability of the
feature values. There are many variations of classifiers, e.g. decision trees, maximum
likelihood estimation, regression, clustering and k-nearest neighbors(KNN) to name
few.

Small two dimension example for visual explanation of decision trees and KNN can
be seen in Figures [Tl I3 and T4

Univariate tree Univariate trees only check one feature at a time i.e. the split is
axis-aligned. Figure[I0land Figure [Tl for this example first the = feature is checked,
if « is smaller than 0.5 then the sample is categorized as —1 otherwise the y feature
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is checked, if y is smaller than 0.5 then the sample is categorized as —1 if both node
is fulfilled the sample is categorized as 1.

Figure 10: Univariate tree decision nodes
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Figure 11: Univariate tree
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Multivariate tree Multivariate trees use a combination of features to create hy-
perplane boundary instead of axis-aligned boundary and is therefore more general,
multivariate trees can be used for an unlimited number of dimensions. Figure [[2]and
Figure shows how this split works for a simple example. If wkx + wg > 0 then
the sample is categorized as 1 otherwise it is categorized as —1.

Figure 12: Multivariate tree decision nodes

0.8r A
0.7r ~

0.6 ~ X

0.4r >

031 ~

010

Figure 13: Multivariate tree
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K-nearest neighbors K-nearest neighbors(KNN) is a nonparametric technique,
i.e. it doesn’t estimate probability just decides categories directly. KNN needs a
database of known samples, it can be used by two methods. In the first method
KNN can use a window, i.e. when a new data point is supposed to be categorized
there is a predetermined window where KNN labels the new data point as the label
of majority of data points from database that are within the window. The second
method is to compare the new data point to the database and search for KNN, then
the new data point is labeled as the label of majority of data points from the KNN,
distance between samples is calculated by the euclidian distance equation ﬂ]

By the second method the windows grow to the necessary size to include K neighbors.
If the probability of terrain would be used for the KNN instead of final decision the
post processing step would decide if the probability is enough to change or maintain
terrain. Figure [[4 shows the decision boundary for the small example used earlier.
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Figure 14: KNN decision boundary with K =3

Higher dimensional KNN classification is also available, the way of measuring the
distance must be decided since parameters don’t necessary have the same signifi-
cance. The parameters can be altered for various significance by multiplying them
by constant.
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Post processing

Classifier is rarely 100% accurate, the decision made by the classifier is more of
a suggestion of category. Post processor uses the output from the classifier and
other information, e.g. prior knowledge or risk of certain action, to determine the
appropriate action.

3.2 Neural networks

The idea of neural networks is inspired by the brain, the brain can process great
amount of data in a very short time e.g. vision, speech, recognition and learning.
The neural networks are a simplified model of the brain. The human brain is quite
different from a computer. Whereas a computer generally has one processor, the
brain is composed of a very large (10'!) number of processing units, namely, neurons,
operating in parallel. Though the details are not known, the processing units are
believed to be much simpler and slower than a processor in a computer. What also
makes the brain different, and is believed to provide its computational power, is the
large connectivity: Neurons in the brain have connections called synapses, to around
10* other neurons, all operating in parallel. In a computer, the processor is active
and the memory is separate and passive, but it is believed that in the brain, both
the processing and memory are distributed together over the network, processing is
done by the neurons, and the memory is in the synapses between the neuronsﬂ].

3.2.1 Neural network

In this project 3 layer network was used, Figure [[5] with activation function tanh(zx)
E] First layer x; is the input layer where x is taken into the network and distributed
through to the next layer. Second layer of the neural network y; is the hidden layer,
there can be more than one layer but in this project only one was used because
network with two layers worked as well as the one used here. The third and the last
layer zj is the output layer of the network where the estimated output of the network
can be seen. Links from each neuron to all neurons in next layer are called weights
wj;, i.e weight from x; to y;, sometimes called synapses as the connections in brains.
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Zq

Figure 15: Three layer neural network, figure from ﬂ]

3.2.2 Feedforward operation

From now on only three layer network will be used for demonstration. The feedfor-
ward operation is algorithm to calculate the network output for given input x ]
Each hidden neuron computes the weighted sum of its inputs to form its scalar net
activation which is denoted by net;

nl nl
netj = E LWy + wio = E TiWyji
i=1 i=0

Then each neuron emits an output that is a nonlinear function of its activation,

f(net), i.e.
y; = f(net;)
Now each output neuron similarly computes its net activation based on the hidden

neuron signals as
nH nH

nety = Zijkj + wko = Zijkj
J=1 J=0



26 Chapter 3. Theory

at last the output neuron computes the nonlinear function of its net, emitting

2z = f(nety)

General form of the feedforward operation is

nH nl
gk(x) =z =f <Z wkjf <Z Wy T; + ’LUjo) + ’LUk())

3.2.3 Backpropagation algorithm

Backpropagation is used for training the network, it will take one example x from
the dataset and feed it through the network via feedforward, then calculate the er-
ror between the desired output and the actual output and update the weights de-
pended on the error. Stochastic backpropagation was implemented for this project.
Ehe basic stochastic protocols of backpropagation is shown in the procedures below

I

1: begin initialize nH,w,0,n,m «— 0

2 dom—m+1

3 x™ « randomly chosen pattern

4: Wi < Wi + néjxi

5: Wi < Wgj + nékyj

6 until [|VJ(w)|| <6

7 return w

8: end

where 7 is the learning rate, J(w) is the training error, nK is number of outputs and
ti is desired output

(tk — 21)°

0 is called the sensitivity of neuron zj
O = (tk — zk)f'(netk)

0; is called the sensitivity of neuron y;

nk
8; = f'(net;) Zwkjék
k=1
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3.3 State machine

State machine, also called automata, is a software engineering tool M] The state
machine is a tool to model a real time system that consists of a finite number of
states where each state requires different actions based on various external or internal
environments. The state machine does not usually have an endpoint, i.e. it is an
endless loop. The system travels between states by predetermined transitions that
are guarded by boundaries or flags. The whole system can change behavior based on
states by different actions defined by the states.

A simple example for description of states, transitions and actions, Figure This
is a simple model of automatic door with motion sensors for detecting movement at
the door. There are two systems, one for the door and one for the motion sensor.

States The states are Close, Open and M otionsensor, the states represent closed
door, open door and sensor active respectively. For each state there are at least one
incoming and one outgoing transitions. Each state can have specific actions that are
executed at current state.

Transitions Transitions are represented by arrows, they are triggered by events.
There are two types of events in this example, timed event i.e. when time has exceeded
some limit and a trigger event. There are two types of triggers, call triggers shown
as trigger! and respond triggers shown as trigger?. When a motion sensor senses
movement it will transit through the loop transition, this transition set time t to
zero, i.e. reset timer, and calls trigger that creates transition in door system. When
trigger! is called it depends on what state the door system is at currently, if the Close
state is active the state machine will transit to Open state, if the Open state is active
it will loop and the timer will be reset. If the active state does not have transition
called by called trigger there will be no transition. A timed event only occurs if the
timer has exceeded a specific limit, in this example when the timer has exceeded 10
time units the door system will transit to Close state.

Actions Actions are a set of commands executed when the state is active or when
the state is entered. In the Close state the action is to close the door when the
state is entered, in the Open state the action is to open the door when the state is
entered, it will remain open if the door is already open when state is entered. The
Motionsensor state action is to listen and react to the motion sensor.
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Figure 16: Simple state machine example

State machine validation Since a state machine can consist of a large number of
states and transitions, the possible paths through the state machine could be more
than is possible to test. For state machine validation some tools and methods have
been created, one tool is Uppaal developed jointly by Aalborg University in Denmark
and Uppsala University in Sweden (http://www.uppaal.com/), another interesting
tool is called Rebeca (http://khorshid.ece.ut.ac.ir/~rebeca/). Validation tools are
programmed to search for illegal transitions, out of bounds states or any possible
way to create an unstable state machine, by checking all possible paths through the
state machine and searching for specific events or transitions that could lead to a
failure of the state machine [32], [26].



4 Sensors and measurement setup

4.1 Measurements

Measurements were obtained by the Xsens sensor module and data logged by Rheo
knee software. Xsens sensor module was fixed at approximately ankle height Figure
Bl on an amputee walking on Rheo knee and a healthy subject. Isolated tests were
performed for three terrains, level ground, stairs and slope. The amputee was asked
to walk at three different walking speeds, slow, medium and fast where the amputee
decided himself the appropriate speed for each of them. All data for the state machine
design was obtained by a single amputee, validation performed by another amputee.
Test setups were

Level ground: Indoor, hardwood floor, 2 sets at slow speed, 8 at medium speed
and 1 set at fast speed

Stairs: Indoor, 18cm high steps, linoleum floor, 4 sets

Slope: Outdoor, approx 10°, asphalt, 3 sets

Soft underlay: Outdoor, level ground, wet grass, 1 set

Axis of the sensor module are shown in Figure Bl axis with reference to the tibia are

e X is perpendicular to the tibia, forward/backward

e Y is parallel to the tibia, up/down

29
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e 7 is perpendicular to the tibia and foot, sideways

Whole data series, 18 steps from stationary to stationary position, obtained at level
ground and medium speed via Rheo knee software for force Figure[I7, moment Figure
[[Bland knee angle Figure 19 only most relevant variables shown. It can be seen from
the data obtain by the Rheo knee that sensor values obtained during gait are highly
periodic.
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Figure 17: Rheo knee data, GRF

The whole data series, obtained at the same walk as for the Rheo knee, via Xsens
sensor module for X-acceleration Figure 20, Y-acceleration Figure 2I] and tibia an-
gular rate Figure 22] only most relevant sensors shown. It can be seen from the data
obtained by the Xsens sensor module that the sensor values obtained during gait are
highly periodic, especially angular rate.

4.2 Sensor module

The sensor module used for data gathering during this thesis is Xsens MTi from
Xsens Motion Technologies. The sensor signal processor provides calibrated signals
for 3D acceleration, 3D rate of turn and 3D earth-magnetic field data. A bluetooth
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Figure 18: Rheo knee data, moment
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Figure 22: Xsens data, angular rate

sender was integrated to the sensor for wireless data gathering. Next section describes
current sensors the Rheo knee uses for gait phase detection, then a short description
of sensors used during this study.

4.2.1 Rheo knee’s current sensors

The Rheo knee is equipped with three sensors, a pot sensor which measures the
absolute knee angle, Figure 23] and two strain gauges also called load cells, one at
the front and one at the back, which measure the load through the knee’s structure.
By addition and subtraction GRF and moment is calculated, Figures and
respectively, limit for stance period is 8 bits set by the Rheo software. The Rheo knee
has built in hardware differentiation for the angle sensors and in that way angular
velocity of the knee joint is obtained. The GRF and moment are similar to result
from a recently published article about force and moment in healthy subject’s tibia
M] The knee angle of a healthy subject will have increased to 10-15 degrees during
the stance phase while amputees do not flex the knee during stance phase @], but
with the Rheo knee stance flexion is made possible with computer controlled stance
control.
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Figure 23: Rheo knee angle
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Figure 25: Rheo knee moment

4.2.2 Acceleration sensors

Acceleration sensors are used to detect motion, impacts or vibrations. A single axis
acceleration sensor consists of a mass and a spring, the mass is suspended by the
spring and the mass is allowed to move in one direction, which is the measured
direction, the displacement of the mass is a measure of the acceleration it undergoes
m] Acceleration sensors have fast response, are highly sensitive, require low voltage
and has low current consumption. Because of low power demand they are ideal for
small real time applications like prosthetic knees.

Applications where acceleration sensors are used are e.g. gait analysis @ , earthquake
detection systems M], car impact detection systems [3], gps systems [23] and game
consols [24].

Figure 26 shows sensor signals for an amputee walking on level ground.

4.2.3 Gyroscope

There are few designs of an angular rate sensor (gyroscopes) e.g. spinning rotor
gyroscopes, laser gyroscopes and vibrating mass gyroscopes. Spinning rotor- and
laser gyroscopes are bulky and expensive. A vibrating mass gyroscope is small,
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Figure 26: Xsens acceleration sensors [m/s?]

inexpensive and has low power requirements. A vibrating mass gyroscope consists of
a small mass and a distance measurement that measures displacement of the mass
when the mass experience coriolis force because of angular velocity @] Gyro sensors
are mainly used for navigational applications @], others are e.g. gait analysis @]
and stabilization systems [12].

Figure 27] shows gyro sensor signals for an amputee walking on level ground.

4.2.4 Magnetic sensors

Magnetic sensors sense a magnetic field of the environment. A magnetic sensor is
sensitive to the earth’s magnetic field and can therefore estimate horizontal direction
of the sensor. Magnetic materials can have an affect on the sensor, ferromagnetic
materials like iron will disturb the magnetic field and the sensor won’t be able to give
an accurate direction @] Sailing maps have special magnetic symbols where the
magnetic field is disturbed by a large amount of iron or other magnetic materials,
which results in inaccurate heading of the ship’s compass. Applications of the mag-
netic sensor is mainly compass related, they can be used to detect magnetic objects
in e.g. sand, heading and orientation correction for gyroscopes via sensor fusion by
e.g. Kalman filter [22].



4.2 Sensor module

37

X angular velocity

Y angular velocity

Z angular velocity

Y magnetic reading X magnetic reading

Z magnetic reading

[N

o

|
iN

0
N
o

10 20 30 40 50 60 70 80
% of gait cycle

90 100

I

N

o

!
N

=
o

5

o

|
a

|
N
o

% of gait cycle

Figure 27: Xsens gyro sensors [rad/s]
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5 Results

5.1 Preprocessing

5.1.1 Principal component analysis(PCA)

Preprocessing was minimal since the sensor module has built in filters and outputs
stable and usable signals. To determine which sensor should be used for this thesis the
most obvious choice would be X-acceleration, Y-acceleration and angular rate since
the most relevant linear movement of the foot is in X- and Y-direction and angular
movement around the knee(Z-axis), refer to Figure Bl Principal component analysis
was used to determine which signals represent the most variance of the signals. Table
shows how much variance each PCA represent, first three components explain more
than 95% of the variance and therefore only first three component are looked at more
thoroughly. Table [6] shows what sensors are most relevant for each component, the
first component’s most relevant sensor is X-acceleration, the second component’s most
relevant sensor is Y-acceleration and the third component’s most relevant sensor is
the angular rate around the knee axis. Angular rate is also the second most relevant
sensor in components one and two. Based on those results the three sensors used
during gait analysis are selected as X- and Y-acceleration along with the angular
rate. Figures 29 and B0 are graphical representation of Table

39
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Table 5: PCA results

PCA | Percent explained | Each PCA
1 54.82 54.82
2 85.29 30.47
3 95.15 9.86
4 98.61 3.45
5 99.24 0.63
6 99.58 0.34
7 99.87 0.29
8 99.96 0.08
9 100.00 0.04

Table 6: PCA results - First three components

Sensor | Comp. 1 | Comp. 2 | Comp. 3
Y-acc. -0.0670 0.9618 0.2178
X-acc. 0.9577 0.1270 -0.1683
Z-acc. -0.1215 0.0385 0.3536
Y-gyro 0.0204 -0.1243 0.1966
X-gyro -0.0306 -0.0209 0.0130
Z-gyro -0.2482 0.2034 -0.8711
Y-mag. -0.0109 0.0074 0.0263
X-mag. 0.0239 -0.0005 -0.0298
Z-mag. -0.0009 -0.0004 0.0029

5.2 Pattern recognition

5.2.1 Terrain

The knee needs to be able to distinguish between different terrains, e.g. level ground
Figure[3T] stairs Figure[32land slope Figure33l The gait cycle varies between terrains
and the knee has to be able to respond quickly and efficiently to new terrain.

Based on trials with the Rheo knee, it doesn’t need to brake much during mid- and
terminal stance in normal level ground walking since the knee is usually fully ex-
tended and does not flex or extend. When an amputee is walking down stairs or on
declining slope all the body weight is on the knee while the user is moving from higher
position to a lower by flexing the knee, therefore the knee needs more resistance to
flexion than when in normal level ground walking.
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Figure 31: Mean sensor signals, level ground, medium walking speed

For comparison to sensor signals for a healthy subject, figures for level ground, stair
and slope can be seen in Appendix [Bl

5.2.2 Features

By comparing data for the three different terrains, level ground Figure Bl stairs
Figure B2] and slope Figure B3] the following features were selected for more detailed
analysis.

Peak to peak of the Z gyro signal

Peak to peak of the X acceleration

e Maximum amplitude of the X acceleration

Peak to peak(PtP) at toe off for X acceleration

e Maximum amplitude at toe off for Y acceleration
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Figure 32: Mean sensor signals, stairs

e Stride duration

The Y-acceleration and X-acceleration signals at TO are prime candidates to distin-
guish between level ground and stairs or slope, since the peaks are reversed around
the toe off. Ideally these signals could trigger different terrain settings in the control
software of the knee early enough to be able to control the swing phase according
to current terrain without having problem during first step because of wrong terrain
estimation. The pattern recognition software could recognize the terrain in current
step instead of making a decision based on data obtained during the last step.

5.2.3 Test data

Test data was obtained by isolated tests for all three terrains. All tests were per-
formed at a self selected speed by the amputee. Level ground walking was performed
at slow, medium and fast pace, Figures[34] B1l B3l respectively, those figures show that
increased walking speed results in increased peaks value and decreased stance/swing
ratio (refer to minimum value of angular rate signal at approximately 55-60% of
gait cycle). Slope walking was performed at approximately 10° slope and performed
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Figure 33: Mean sensor signals, slope

at slow and medium pace. Stair walking was performed at stairs with 8cm high steps.

Test data includes following number of samples, each step is regarded as one data
point

e 133 data points for level ground
e 50 data points for slope

e 20 data points for stair

If Figures [31] B2 and B3 are compared, the most likely features to distinguish between
the terrains would be PtP X-acceleration at toe off Figure [B6land max Y-acceleration
at toe off Figure B1]

These two features on their own are not able to distinguish between level ground and
stairs because of complete overlap between the two terrains at PtP X-acceleration
at toe off. Max Y-acceleration at toe off is able to separate slope from level ground
and stairs decently, with a small overlap at —5 to —3 (this is not a problem during
higher dimension classification), two or three data points of 50 data points for slope.
PtP X-acceleration at toe off has some overlap between level ground and slope, and
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Figure 34: Level ground, slow walking speed

could not be used on its own to distinguish between any of the terrains with enough
accuracy.

Features can be plotted in as many dimensions as the features are, but for graph-
ical representation two dimensions are easiest to describe and visualize. When all
features are plotted against each other two instances are the best candidates for suc-
cessful classification results. All other 2D feature versus feature plots can be seen in
Appendix [A]

e Angular rate versus PtP X-acceleration at toe off, Figure BS]

e Angular rate versus max Y-acceleration at toe off, Figure

Figures B8 and B9 angular rate versus PtP X-acceleration at toe off and angular rate
versus max Y-acceleration at toe off respectively show that in simple manner each of
the three terrains can be separated from other terrains.

Angular rate versus PtP X-acceleration at toe off data point form three well separated
clusters. Angular rate versus max Y-acceleration at toe off does also form three well
separated clusters but one data point from slope is at the stairs cluster and one point
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Figure 35: Level ground, fast walking speed

is between level ground and stairs, those two point could cause problems during
classification if two dimensional classification would be used.

By comparing Figures 1] 2] and 3] and noticing the difference between the decision
boundaries. The boundaries show that when K is lower KNN is more sensitive to
noise, but as K increases the decision boundaries become more smooth and reliable.
From these two dimensional data plots it can be seen that distinguishing between
terrains can be done with simple classification methods.

5.2.4 Decision tree

Decision tree is efficient nonparametric method, which can be converted to a set of
simple IF rules that are easily programmed in a conventional way.
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Figure 37: Scatter plot, max Y-acceleration at toe off
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Figure 38: Scatter plot, angular rate versus PtP X-acceleration at toe off
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Univariate Trees

In univariate trees the rules use only one of the input variables for split which results
in unsmooth decision boundary when the number of splits are kept at minimum see
Figure @4 [1]. The benefit to this method is that it can be programmed by simple IF
sentences that are easy to understand and implement. The disadvantage is that it can
be really sensitive to noise and if it’s to simple it can cause a problem distinguishing
between groups that are close together and are not scattered perfectly for this method.
Boundary shown in Figure 4] has four IF sentences, after training of the classifier
the computational requirements are low.
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Figure 44: Univariate decision tree, boundary

Multivariate Trees

Multivariate decision tree is similar to the univariate except that the splits can be
defined by more than one variable at each split, see Figure These splits are
achieved by three IF sentences, which shows that the multivariate decision tree has
also low computational requirements but is more versatile than univariate decision
tree.
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Figure 45: Multivariate decision tree, boundary

Multi dimensional classification

For three dimensional classification there is no overlap in data samples and test data
shows 100% accuracy when PtP X-acceleration at toe off, angular rate and stride
duration is used as parameters for the classification, Figure @6l KNN and multivari-
ate decision tree form hyperplane that distinguish the three different terrains. Two
dimensional examples were used for easier visualization of the pattern recognition
methods used for this study.

5.2.5 Classification validation

Classification methods were trained by data obtained by a single amputee, validation
was done by obtaining data from another amputee and letting the classifier work on
that data. Two methods are shown here, the multivariate tree and KNN with K =5
Figure [@7 and @8 respectively, both classifiers have 100% accuracy for those few steps
obtained for simple validation.
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Figure 48: Classification validation, KNN K =5

5.3 State machine

For the Rheo knee to function correctly the state machine must obtain correct and ac-
curate readings from the sensors. Current sensors are sensitive to calibration, wrongly
calibrated sensors can result in incorrect sensor readings and therefore incorrect state
machine transitions which leads to a dysfunctional knee. Some state transitions are
guarded by limits for the sensor values, those limits can be exceeded because of noise
or unusual knee usage, those situations can also lead to a dysfunctional knee. Noise
can lead to rapid state transitions, when signals are close to limits, which can cause
the knee to function strangely for a short period of time and cause the amputee to
feel insecure about using the knee.

5.3.1 Sensor module state machine

The Sensor module state machine (hereafter SM state machine) consists of sensors
selected in Section 51l The SM state machine is used in the same manner as the
Rheo knee uses a state machine see Section 3.3] but states found by sensor module
represent the gait phases more closely than the Rheo knee does, relations between
states and phases for SM state machine are shown in Table [[l State transitions
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Table 7: SM State machine

State Phase Period
Loading response | Loading response Stance
Midstance Midstance & terminal stance | Stance
Preswing Preswing Stance
Initial swing Initial swing Swing
Terminal swing Midswing & terminal swing | Swing

were designed to be as robust as possible by looking for peaks instead of checking
limits, since no two people are the same but the state machine must work for various
amputees.

Transition description in Table [0 assumes optimal level ground walking, i.e. Loading
response — Midstance — Preswing — Initial swing — Terminal swing.

The SM state machine is closely related to the Rheo knee state machine described in
Table @ description for the SM state machine is at Table [8l

For this study a state machine was only formulated for level ground walking, data
used for visualization was obtained at medium speed level ground walking. The state
machine was tested on database consisting of 11 level ground walking trials at various
walking speed.

For visual understanding of data, states and transitions only two steps are shown in
Figures [49] to
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Table 8: Description of the SM state machine

State

Description

Loading response

Figure @9 the foot is unstable due to HS and foot not completely
on ground, during this phase the control software should be re-
sponsive to sudden changes in knee angle.

Midstance

Figure B0l during this phase the foot is stable and is allowed to
flex to some level to help the amputee to do stance flexion and
therefore have more natural gait. There should not be any fast
changes of the knee angle during this phase, only relatively slow
movements.

Preswing

Figure 511 this phase is identical to the Rheo knee’s preswing,
this phase is used to gain momentum for the swing phase. The
exact moment to move from midstance to preswing could make the
difference between an easy swinging knee and uncomfortable knee
where the user needs to swing the hip to generate extra energy
for the swing period.

Initial swing

Figure[52] initial swing begins as TO. This phase uses momentum
gained in the previous phase to swing the tibia until the knee
reaches 60 degrees flexion(regular maximum knee angle for normal
walking [10]).

Terminal swing

Figure B3] during this phase the knee goes from maximum angle
to zero degrees. When knee is almost fully extended it’s ready for
next HS.
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Table 9: Description of state transitions

Transition

Description

Loading response
— Midstance

This is right after HS, the Y-acceleration is fluctuating because of
impact caused by HS. When the acceleration has settled the foot
is stable and the foot has responded successfully to the weight of
users body.

Midstance —
Preswing

During midstance all sensor are quite stable since the foot is in
contact with the ground and therefore completely still. When
both angular rate and Y-acceleration start to decrease then the
user is lifting the heel off the ground and moment is created in
the knee structure which creates good kick start for momentum
required for swing phase.

Preswing — Ini-

Angular rate is increasing and Y-acceleration is at local maximum.

tial swing The Y-acceleration peaks when the foot leaves the ground for
swing period.
Initial swing — | Since maximum knee angle is reached during initial swing, the

Terminal swing

knee is still at that moment before it starts extending. When the
vector sum of both acceleration sensors is close to earth gravity
this transition is triggered.

Terminal swing —
Loading response

Due to impact the acceleration sensors spike at HS, so the transi-
tion is triggered by a spike in X-acceleration, but guarded by a flag
that is set when the X-acceleration crosses zero since acceleration
sensors are not very stable.

Figure b4l shows angular rate measurements for level ground walking along with state
values. This figure shows that the state machine is consistent through the whole data
series. Data is processed like in a real time application the state machine can not
see future values only current and older. Green lines represent states, were value 1 is
Loading response, value 2 is Midstance and so on. Table [I0l shows the percentage of
each state during gait, when this is compared to regular walk, Table[2 it can be seen
that those numbers are similar. The main difference is the Midstance is 30% but the
phases that this state represents is expected to be around 40%, the reason for this is
that the preswing state is entered slightly to early to generate more momentum for the
swing period. The stance period is less 60% which can be explained by the fact that
the amputee who performed those tests walks faster than most people and amputee’s
have a slightly shorter stance period than a healthy person for same walking speed

2.
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Figure 54: SM state machine and angular rate, level ground

Table 10: Phase intervals

Phase Percentage of Gait Cycle Total
Loading response 14.07 14.07
Midstance 28.19 42.27
Preswing 11.29 53.56
Initial swing 18.90 72.45
Terminal swing 27.55 100

5.3.2 Comparison between the Rheo knee and the SM state
machine

The Rheo knee and the SM state machines use different sensors for transition and
controlling the state machine.

The Rheo knee uses load cells and knee angle sensor, the difference between the
stance and swing period is based on readings from the load cells, this difference is
clear and reliable, but is based on limits and therefore badly calibrated load cells
can result in stance and swing recognition errors. Preswing phase is estimated based
on the load cells also, here the moment is used and when the moment is above a
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specific limit the knee transits from stance flexion or stance extension to preswing,
this limit can be exceeded because of sensor noise, this transition can require some
fine tuning. During the swing period the knee only senses the knee angle, for that
reason terrain estimation of current step during swing period is not ideal because of
insufficient information about the movement of the foot.

SM state machine uses acceleration and gyro sensors, heel strike is easily detected by
rapid changes in acceleration (calibration does not have affect since only increase in
the signal value trigger the state transition), therefore the difference between stance-
and swing period is reliable for all tests performed during the course of this study
(additional tests are required for validation of non regular movements, e.g. side
stepping). Preswing is estimated based on Y-acceleration and angular rate and may
require some adjustments, the beginning of preswing is similar to situations when the
user is falling down. Both state machines require some fine tuning to detect preswing.
Acceleration sensors can detect motion during swing period and therefore have more
accurate knowledge of foot positions, e.g. if the foot is moving downwards for stair
and slope and adjusts swing period to changed terrain estimation.

For comparison of the Rheo knee and the SM state machines only two steps are
used (same steps as before). Figure B3] shows the difference between those two state
machines. Figure [35] shows that the Rheo knee state machine is using the preswing
state for more than 50% of the stance period, this may increase the risk of user
stumbling because the knee’s brake is set to zero during the preswing state and
the knee has to make a state transition to respond to unexpected situations. The
transition from stance to swing happens later for the SM state machine, there are
studies that agree to the timing of SM state machine, which is based on local minimum
of the angular rate measurements [2§] see Figures 51 and

5.3.3 Midswing event

If the knee would be used along with an controlled ankle, capable of plantar- and
dorsiflexion an midswing event is required to estimate when to plantarflex to be
ready for initial contact. Instead of having the midswing phase as a separate state it
is recognized as an event, i.e. just a time point in the swing period. Figure (3]shows
that Y-acceleration has a local minimum at the mid time of terminal swing, also the
angular rate has an global maximum at a similar time point, those signal can be used
to estimate the midswing event.
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Figure 55: Comparison between the Rheo knee and the SM state machine

5.3.4 Sensor position

All test were performed with the sensor module fixed to the ankle see Figure[l This
may not be the optimal position if the knee is not used with a specific ankle that
has the sensor module built in. Therefore one test was performed by the sensor fixed
approximately 10cm below the knee joint. Figures (6] and [31] show that there are
some differences in the signal based on the sensor position. The angular rate signal is
identical as expected. X-acceleration has quite a difference but still has good spikes
that could be used for gait recognition but would not work with the state machine
that was built around a sensor located at the ankle since the peak at toe off seams to
have shifted to before the actual TO. Y-acceleration is also quite different depending
on the sensor position, but has important spikes at the same time points and could
therefore be used with current state machine without any big changes. More variance
for these signals is most likely caused by sensor movement during gait, it was not as
easy to fix the sensor to the prosthetic knee structure as it was at the ankle position.
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Figure 56: Sensor located approx. 10cm below knee

5.3.5 Soft underlay

A test was performed to determine the effect of soft underlay, the test was performed
on level ground, at medium speed and on soaking wet grass. As before all peaks
are available for gait recognition and the state machine works as well as for hard
underlay. Figures 7 and B8 show mean sensor values for this test and state machine
functions during the test respectively.

5.3.6 State machine validation

State machine validation was done by having an amputee who had not performed
any tests that were used to formulate the state machine. The sensor was fixed to
amputee’s ankle and a test performed as before. Mean sensor values are shown in
Figure by comparing them to Figure B1] the signals are obviously different but
all important peaks and sensor signals forms are present. Since all state transitions
except for midstance — preswing are decided by peaks, all those transitions work as
expected, the midstance — preswing transition also worked and happened at TO.
State machine results are shown in Figure [60] and Table [[T] shows the percentage of
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Figure 57: Mean sensor signals. Soft underlay
Table 11: Phase intervals. SM state machine validation
Phase Percentage of Gait Cycle Total
Loading response 12.36 12.36
Midstance 31.16 43.51
Preswing 12.97 56.49
Initial swing 17.80 74.29
Terminal swing 25.71 100

each state during gait.

5.4 Control signal

The control signal that the Rheo knee uses currently is the only reference for a control
signal. Figure [61] shows the output current and the SM states along with the knee
angle. The current is mainly used to make smooth knee stops, both at the end of the
initial swing and the end of the terminal swing. The current increases right after HS
when the foot is gaining stability for the stance period.
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Figure 58: State machine and angular rate. State machine validation for soft underlay

5.4.1 Neural network

Neural networks were used to estimate the output current of the knee, settings used
were one hidden layer and 15 hidden neurons. All possible variations the nine sensors
of the Xsens sensor module and the knee ankle obtained from the Rheo knee. Training
of the network used the sensors as input and output current obtained from the Rheo
knee as output. Table [[2] shows the top five sensor combinations when measured by
correlation between untested test data output and actual output. It can also be seen
that the knee angle and X-acceleration is the most vital in output calculations If the
knee angle is not a part of the sensor combinations X-acceleration and X-angular rate
has the most correlation the correlation is 0.75.

5.4.2 Knee angle sensor

Without a knee angle sensor the absolute knee angle is not known, that makes control
signal generation hard, no simple stable and reliable control signal were found during
the course of this project using only acceleration, angular rate and magnetic sensors.
By combining the state machine and the knee angle a control signal can be generated
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Table 12: Neural networks results, a-Acceleration, g-Angular rate, m-Magnetic, KA-Knee
angle

Y-a | Xa|Za|Yg|Xg|Zg|Ym|Xm]|Zm| KA | Corr
0 1 0 0 1 0 0 0 0 1 0.85
1 1 0 0 0 0 0 0 0 1 0.83
0 1 0 0 0 0 0 0 0 1 0.83
0 1 0 0 1 1 0 0 0 1 0.83
0 1 1 0 1 0 0 0 0 1 0.83
by using the following equation for initial swing
tAngle — Start Angl
Current — CurrentAngle — StartAngle Const,

EndAngle
this equation gives linear gain until EndAngle is reached. For making smooth ter-
minal swing the following equation is used

Current = (StartAngle — CurrentAngle) - Const,

this equation gives linear gain until the CurrentAngle reaches zero degrees. The
constants must be tweaked so the CurrentAngle will come as close to zero without
getting there.
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6 Conclusions and future work

Combination of two acceleration sensors, angular rate and knee angle sensor is able to
achieve the three main goals that the control system requires to control a prosthetic
knee. The acceleration and angular rate sensor can estimate the terrain and gait
phases while the knee angle sensor gives exact knee angle position and controls the
control signal.

Even though this study only involved basic controlling of a prosthetic knee, it shows
that it is possible to control the Rheo knee with acceleration and gyro sensors during
level ground walking. Since the load cells are built into the knee’s structure it is
complex and expensive to manufacture them, if the load cells could be removed
the structure could be made smaller with same weight rating and at lower cost.
Classification of terrains is simple and effective using multivariate tree and KNN, the
multivariate tree is a better choice because of low computational demand and simple
implementation. Acceleration sensors detect motion during swing period and can
estimate terrain changes at first step on changed terrain instead of relaying on data
gathered during the last step. Knee control is achieved by two different methods

e Neural network

e Combination of state machine and knee angle sensor

When the NN is trained it requires similar inputs as the training data inputs otherwise
unforeseen problems can occur, for the NN to be able to cope with user falling or
unexpected situations it also requires training data for those situations. Obtaining
data for unexpected situations is not possible unless the amputee is willing to simulate
falls to prevent later falls. Also the NN would require constant re-training in case of
user changing shoes, injuries, extra load (e.g. backpack or books) or gaining weight,
training a NN is computationally expensive and time consuming and therefore not

69
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practical in a microprocessor applications that require fast response times. There
could be a separate training processor that would feed new parameters to the control
processor, but still there are problems deciding on "good" steps for training the NN,
i.e. what is a good step, how can the knee distinguish between "good" and "bad" step.
If a knee is not behaving as expected the only possible solution is to train the NN
again, it is not feasible to trace sensor values backwards, because of the complexity
of the connections between inputs and outputs, to locate the cause of the problem.
A prosthetic knee requires good reliability and anything that creates difficulties to
find a cause of a problem is probably not the right path to go with prosthetics.

The state machine is stable and reliable and similar states between the SM state
machine and the Rheo knee state machine do have state transitions at a similar
time point during gait. Having stable and reliable state estimate is vital for knee
controlling since all the phases require different functionality of the knee. A stable
and reliable state machine opens the opportunity to use the state machine as part
of controlling software for other products, e.g. computer controlled ankles, knee and
ankle combination and computer controlled lower limb braces. When reliability of
the state machine and simplicity of the knee angle current calculations a good control
signal is created for the Rheo knee. Other possibilities are to use those sensors for gait
analysis for healthy people, mobile gait analysis system, Appendix [B] shows sensors
signals for one healthy subject.

The aim of this project has been achieved, but this project only included the most
basic parts of human motions. There are many obstacles to overcome before those
sensors can replace the load cell. During the course of this project, it became clear how
complex a microprocessor controlled prosthetic knee is, it needs to work flawlessly for
various types of people, e.g. strong users were the knee needs to damp all movements
and weak users were the knee needs to swing freely throughout the swing period
without any damping.

Suggestions for future work are following

e Obtain data from a larger variety of amputee for validation and estimation of
events that control the state machine

e Create a prototype to run state machine and classification in real time.
e Fine tune the state machine, in particular the preswing state.

e Adaptation, adaptation is one of the advancements of the Rheo knee over other
prosthetic knees, which parameters require adaptation.

e Adapt the state machine to other terrains, which parameters needs to be
changed for different terrain.

e Research the sensor signals during common movements, e.g. sitting up/down,
side stepping and other movements that are not as periodic as the regular gait
cycle.
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e Combine state machine and current calculations, this would most likely be a
highly iterative process since changed current calculations would affect the state
machine and vice versa.
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A Features

This appendix shows scatter plots of features discussed in Section but were not
processed any further.
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Figure A.1: Scatter plots of all features
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Figure A.3: Scatter plots of all features
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B Terrains - Healthy subject

This appendix shows sensor signals obtained from a healthy subject on level ground
at medium speed. To begin with the methods were developed by using data gathered
by healthy subject and further work could involve gait analysis for healthy people.

30 T T T
— X-acceleration [m/szl

— Y-acceleration [m/szl [
Angular rate [rad/s]

20

-40 1 1 1 1 1 1 ! ! !
0 10 20 30 40 50 60 70 80 90 100

% of gait cycle

Figure A.5: Mean sensor signals, level ground
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Chapter B. Terrains - Healthy subject
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Figure A.6: Mean sensor signals, stairs
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Figure A.7: Mean sensor signals, slope
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