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Abstrat
The objetive of this study is to investigate the possibility of ontrolling a prosthetiknee by using a Xsens sensor module that onsist of 3D aeleration, gyro and mag-neti sensors. The prostheti knee used for this study is the Rheo knee manufaturedby Ossur In. Pattern reognition methods are used to lassify terrain at eah step,i.e. level ground, slope or stairs. A state mahine is used to model gait yle, wherephases are represented as states. Events of the gait yle are found by sensor signals,the events ause transitions between states. Features of sensor signals are used tolassify terrain. Gait phases are deteted using two aeleration and one gyro sensor.Neural networks alulate an output urrent based on the Xsens sensor module tomath the Rheo output urrent. The results are that aeleration and gyro sensorsan be used for ontrolling prostheti knees and the state mahine an be used as apart of a ontrol system for lower limb omputer ontrolled prosthetis and orthotis.
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Útdráttur
Markmið þessarar rannsóknar er að kanna möguleikann á því að stjórna gervihnjáliðmeð því að nota Xsens nemasett sem samanstendur af þrívíðar hröðunar-, hornhraða-og segulnemum. Hnéð sem notað er við þessa rannsókn er Rheo hné sem framleitter af Össuri hf. Mynsturgreiningartól eru notuð til að �okka undirlag hvers skrefsog undirlögin eru jafnslétta, halli og stigi. Stöðuvél er notuð til að útbúa líkanaf gönguferli þar sem fasar gönguferlisins eru táknaðir með ástöndum. Atburðirgönguferilsins eru fundnir út frá merkjum frá nemunum sem notaðir eru við verkefniðog orsaka þeir færslu milli ástanda. Eiginleikar merkjanna eru notaðir til að �okkaundirlagið. Tveir hröðunarnemar og einn hornhraðanemi eru notaðir til að ákvarðaatburði. Með því að nota merki frá Xsens nemasettinu reiknar tauganet straum semhnéð sendir frá sér til að stjórna bremsu, netið er þjálfað með því að nota straumfenginn úr Rheo hnénu sem viðmið. Hröðunar- og hornhraðanemar henta vel til aðstjórna gervihnjálið. Stöðuvélina væri hægt að nota sem hluta af stærra stjórnker�fyrir tölvustýrða gervilimi og spelkur.
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1 Introdution
Reent developments in prosthetis have given amputees the ability to live normallife despite serious traumas and loss of limbs. Reently miroproessor ontrolledprostheti knee's have beome publily available. A miroproessor ontrolled pros-theti knee provides an opportunity to ontrol the amputee's gait yle with morepreision and make the gait yle more natural. This study's goal is to use aeler-ation, gyro and magneti sensors for gait reognition and knee ontrolling instead ofurrent sensors that require a mehanial onnetion to the knee itself of the kneestruture. There are two types of miroproessor ontrolled knee urrently available,there are passive knees i.e. the knee is only apable of exerting power through abrake. Another type is ative knees i.e. the knee itself an reate power throughmotors and therefore give a great advantage to the users gait. The Rheo knee is anexample of a passive knee.This study aims to explore sensor ombinations apable of ontrolling a prosthetiknee. Two main fators determine if a sensor ombination is suitable for knee on-trolling, one is terrain lassi�ation and the other is output urrent ontrol. It mustbe possible to distinguish between terrain based on sensor signals. Output urrentmust be ontrolled aording to the required knee funtion at any time point, therequired knee funtion is determined by atual gait phase at every time point.Gait analysis has been researhed for a long time, few di�erent appliations andmethods are used. Appliation of gait analysis is e.g. to estimate and improve gaitdeviation for people su�ering from Parkinson disease [21℄ and Cerebral Palsy [9℄. Itis also widely used to estimate ability of the elderly to walk on their own withoutrisking falls and injuries [18℄. As well as for performane analysis and performaneimprovement for athletes [16℄. A widely used analysis method is video and pressuremats [13℄ for ground reation fore(GRF) and video for visual detetion of gait phases.1



2 Chapter 1. IntrodutionSine video gait analysis systems are expensive and require a lot of equipment theyare usually performed at gait labs, reently a mobile gait analysis system has beendeveloped. A reent mobile gait analysis system "GaitShoe" an be worn with anyshoe and inludes three orthogonal aelerometers, three orthogonal gyrosopes, fourfore sensors, two bidiretional bend sensors, two dynami pressure sensors, as wellas eletri �eld height sensors [3℄. Gait analysis is also done via aeleration [29℄ orgyro sensors [28℄ only or both [19℄. Pattern reognition of human gait has been usedfor person identi�ation and gender lassi�ation where features are extrated fromvideos [15℄. Terrain lassi�ation has been done for bioni leg based on GRF andproessed by neural networks(NN) [30℄.Musles and joints have ompletely di�erent funtions during di�erent phases of thegait yle. For ontrol software to be able to ontrol a prostheti knee with stabilityand reliability the gait phase must be known at all time points and the knee needsto be able to sense and reognize the external environment. For this to be possiblepattern reognition is used to lassify di�erent terrains, methods used are K-nearestneighbors(KNN) and deision trees. Those two methods are seleted beause of nonparametri funtions, adaptation and training is also quik and simple. KNN is moreversatile than deision tree but deision tree is omputationally more e�etive andis easily programmed with simple IF-ELSE sentenes. State mahine is a way tomodel systems that require di�erent funtionality for di�erent periods of runtime.Gait phases are represented by states and the state mahine monitor sensor signalsto determine when state hanges should our and therefore hange the systemsfuntion. Finally if terrain and gait phase are known, the appropriate urrent suppliedto the knee brake is deided based on sensor signals. The urrent is alulated by aneural network, the neural network an use multiple inputs and be trained based onknown data, if favor of NN is that the inputs relation to the output is not requiredto be known, so omplex system an be used for ontrolling without the knowingexat funtion of every part of the system. When the NN is used the alulation annot be visualized easily therefore a more simple way using a knee angle sensor is alsoused for urrent alulations, the knee angle sensor an be easily visualized but thismethod only relies on the angle sensor and does not use other sensor signals.Short desription of following hapters:Chapter 2 presents short history of prosthetis, introdution to gait analysis di�erenebetween healthy and amputee gait and �nally short desription of the Rheo knee.In Chapter 3 theories of pattern reognition, the state mahine and neural networksare presented. Simple examples are shown for better desription of onepts andappliations.Chapter 4 introdue sensors used for this projet, and shows graphs of sensor signalsduring gait both for the Xsens sensor module and the Rheo knee.



3Chapter 5 presents results of terrain lassi�ation, the state mahine and ontrolsignal.Chapter 6 ontains disussions about onlusions and future work suggestions.





2 Bakground
2.1 ProsthetisShort summary of history of prosthetis from [25℄. Evidene of amputations from43.000BC has been found, amputations were done with primitive tools suh as knives,saws and axis. At that time amputations were probably done beause of infetionsresulting from animal attaks or other kinds of wounds.When the gunpowder was disovered the need for amputation drastially inreasedbeause of bullet wounds and injuries resulting from annon balls. In the early 1800s,Baron Larrey, surgeon to Napoleon Bonaparte, performed 200 amputations on thebattle�eld in 1 day.The First desription of arti�ial legs an be found as early as 1500BC in Indianliterature.A prosthesis unearthed in the ruins of Pompeii that dated to 300BC is thought tobe the �rst prostheti. This prosthesis was made of thin piees of bronze �xed to aentral wooden ore and seured to the residual limb with a leather skirt. During thistime, prosthesis were made of �ber, wood, bone and metals and were often lined withrags. Designs for prosthesis were made by a number of in�uential �gures inludingAmbroise Paré, a military surgeon in the 16th entury, and Leonardo da Vini. Earlyprosthetis were blaksmiths, armor makers and often the patients themselves.In the early 19th entury, with the advane of general anesthesia and the inreasingnumber of industrial aidents, the limbmakers were no longer skilled blaksmith buttrained prosthetists.War ontinued to provide the impetus for researh and development in prosthetis.Following World War I, United Kingdom and United States were the main develop-ment and supply enters for military veterans, the Limb Fitting Center at QueensMary's Hospital and the Armed Fores in UK , the Veterans Administration in US.5



6 Chapter 2. Bakground

(a) Rheo knee (b) Proprio () Power kneeFigure 1: Ossur's Bioni tehnology [20℄Following World War II Canada began developing a prostheti researh program atSunnybrook Hospital in Toronto. Big improvements of prosthetis were made duringthese war times beause of large funds that attrated universities and private researhompanies to this �eld of researh.Additional re�nements are ontinually being made as evidened by reently developedmiroproessor-ontrolled knees. Ielandi ompany Ossur has two miroproessor-ontrolled knees, Rheo Knee Figure 1a whih uses a miroproessor to ontrol brakefor swing and stane ontrol the other one is the Power Knee Figure 1 whih alsouses a miroproessor for swing and stane ontrol and a motor for assisting the userwith e.g. stair walking and standing from seated positions as well helping user withswing and stane ontrol.2.2 Gait analysisGait analysis is study of human loomotion. Gait analysis is used to identify loo-motion related problems, e.g. bak, knee and hip problems. Gait analysis an alsobe used to suggest hanges for more e�ient loomotion for athletes.Gait analysis is usually done via markers and video systems for limb traking andpressure mats for ground reation fore(GRF) measurements, where the fores atson the bottom of the feet [10℄. Video system are expensive and needs spei� setupfor aurate measurements, for that reason its hard to move video systems out of gaitlabs. Reently more mobile gait analysis systems have been developed, these systemsmostly onsist of aeleration and gyro sensors [8℄.



2.2 Gait analysis 7Table 1: Historial timeline of amputations, prosthetis and orthotis. [25℄43.000 BC Evidene found that amputation was done with primitive tools.2730-2625 BC A devie to stabilize the knee joint was found.1500 BC Indian literature desribes arti�ial legs.370 BC Hipporates used splints on the legs.485-425 BC Herodotus desribed an individual imprisoned by Sparta whosupplied himself with a wooden foot.300 BC A prosthesis unearthed in the ruins of Pompeii is thought tobe the �rst prosthesis.131-201 Galen used dynami orthoses for soliosis and kyphosis.476-1453 During the Middle ages, knights wore elaborate armor to on-eal prostheses.1200 Medial shool at Bologna onsiders orthotis as an importantpart of medial knowledge.1509-1590 Ambroise Pare' established tehnial standards for surgial am-putations and desribed spinal orsets and shoe modi�ations.1690 Verduin onstruted a transtibial prosthesis with oppersoket, leather thigh orset, and a wooden foot.1790-1847 Lisfran, a famous surgeon, amputates a foot in less than 1minute.1800 Baron Larrey, surgeon to Napoleon Bonaparte performs 200amputations on the battle�eld in 1 day. He advoates woundsbeing operated on within the �rst 24 hours.1860 Mortality rate due to sepsis in London for transtibial and trans-femoral amputations were 50 and 80% respetively.1865 Lord Lister starts surgial antisepsis to derease high mortalityrates.1865 J.E. Hangar, sustains an amputation while serving in the Con-federate Army, plaes rubber bumpers in solid feet, and pro-dues the �rst artiulated prostheti foot.1918 After World War I, The Limb Fitting Centre at Queen Mary'sHospital, Roehampton beomes a primary development andsupply enter to military veterans.1945 The U.S. Veterans Administration supports the developmentof the patellar tendon bearing and the quadrilateral sokets.Canada develops a prosthetis researh program at Sunny-brook Hospital in Toronto.1970 The U.S. Veterans Administration develops the endoskeletalprosthesis.2000 A miroproessor ontrolled knee with hydrauli swing andstane phase ontrol is developed.



8 Chapter 2. BakgroundJoint movements during gait are an important part of gait analysis, for better un-derstanding of most simple joint movements of the knee and ankle Figure 3 an bereferred to. Part of gait analysis is also hip and bak movements but they are notdisussed in this thesis. Gait an be separated to many branhes, Figure 2, eah ofthose branhes an be looked at a di�erent speed or di�erent terrain so the omplexityof gait analysis is almost endless. Grey boxes represent branhes used in this thesis.

Figure 2: Complexity of human gait2.2.1 Gait yleThe gait yle is a highly periodi pattern that is divided into two periods, staneand swing. The periods are then divided further into phases seen in Table 2. Gaitevents our during the gait yle, the two most familiar events are toe o�(TO) andheel strike(HS), alled initial ontat in Figure 4 and Table 2. HS is the beginningof a step, when a person hits the ground after a swing period while the TO event isthe start of a swing period, see Figure 4 for visual desription of the gait yle.



2.2 Gait analysis 9
(a) Knee extension (b) Knee �exion () Ankle dorsi�ex-ion (d) Ankle plan-tar�exionFigure 3: Knee and ankle joint movementsVariables of gait yle are e.g.
• Distane� Stride: Linear distane between HS of one foot until next HS of the samefoot� Step: Linear distane between HS of one foot until next HS of the otherfoot
• Time� Stride duration: The time it takes to omplete a stride� Step duration: The time it takes to omplete a step� Cadene: Number of steps per minutePeriodsThe stane period is the part of the gait yle when some part of the foot is in ontatwith the ground. The swing period is when no part of the foot is in ontat with theground, i.e. the foot is in the air, referene Figure 4. For a regular walk the staneperiod makes up 60% of the gait yle and the swing makes up the remaining 40%. Inthis setion the gait yle is desribed with the main fous on the funtions of the knee.PhasesEah period is divided into several phases, were eah phase represent di�erent funtionof joints and musles.



10 Chapter 2. Bakground

Figure 4: Normal gait yle (Universität Wien, 2009)Table 2: Sequene of Event in Gait Cyle [25℄Stane PeriodPhase Desription Perentage of Gait CyleInitial ontat When the foot hits the ground 0-2Loading response Until the opposite foot leaves theground 0-10Midstane Until the body is over and justahead of the support 10-30Terminal stane To toe-o� 30-50Preswing Just after heel-o� to toe-o� 50-60Swing PeriodPhase Desription Perentage of Gait CyleInitial swing Until maximum knee �exion o-urs 60-73Midswing Until the tibia is vertial 73-87Terminal swing Until initial ontat 87-100Stane period The heel strike or initial ontat is the event when the foot hitsthe ground after the swing period. Some people do not make initial ontat to theground with the heel but rather the toes and hene this event is often alled initialontat instead of heel strike, throughout this study heel strike naming will be used.The �rst phase is the loading response, that is when the foot hits the ground andmusles must be ready to respond to the sudden impat of initial ontat, until theopposite foot leaves the ground and the foot is taking over the entire load of the body



2.2 Gait analysis 11

Figure 5: Human leg, the bones in this segments are alled femur and tibia, sensor moduleloation and X-, Y- and Z-axisweight. At the loading response phase the knee is almost fully extended, but will �exslightly to lower the body enter of gravity to minimize the power used for vertialmovements of the body.The seond phase is midstane, midstane's ritial event is to maintain knee exten-sion by restriting the tibia from going forward.The third phase is terminal stane, this phase also maintains knee extension but theritial event is to raise the heel until the body begins to fall toward the oppositefoot.The fourth and last phase of stane is preswing, at this phase the ritial event is theknee �exion, the knee �exes and the body ontinue to fall toward the other limb.Swing period The �rst phase of swing is initial swing, it begins when the foot is o�the ground and ends when the knee has reahed maximum knee �exion. This phaseuses the momentum gained from preswing to reate enough momentum to swing the



12 Chapter 2. Bakgroundfoot forward.The seond phase is midswing, the midswing begins at maximum knee �exion and endswhen the tibia is vertial, during this phase the knee swings freely from maximum�exion to approximately 30◦. During this phase the ankle dorsi�exes to make toelearane, to avoid stumbling beause of the hitting the ground with the toes whenthe foot is swung lose to the ground.The third and last phase of the swing is terminal swing, in this phase the ritial eventis that the knee has extended enough to prepare for stable landing. This phase alsoderease the aeleration of the foot to prepare for aepting the body weight again,this is the last phase before the HS and start of the gait yle.
Events Events are used to deide on transition from one phase to another, in nor-mal gait these transition should happen in the sequene shown in Table 2.In human gait two main events our every yle, i.e. HS and TO whih are the startof the stane period and swing period respetively. HS is when the foot lands on theground after the swing period. TO is when the foot leaves the ground for a swingperiod. Other events are harder to detet and not as obvious, they are e.g. heel o�,maximum knee �exion and vertial tibia in the swing phase. Healthy people don'tthink about these events when walking but for people with injuries or amputees thoseevent an help AI prosthetis and orthotis to deide on phases and periods to beable to help the user aordingly based on position in the gait yle.
2.2.2 Gait deviationsEven though the gait yle is similar between any two people, there is always somedi�erene between people, e.g. walking speed, maximum knee �exion, GRF, momentsreated and ratio between stane and swing. A persons gait an hange based on load,walking speed, injury or even shoes to name few. A di�erent load will result in analtered gait yle, if the person is holding a book in one hand the load the person willlean to one side and therefore alter the gait yle observed on both legs. In the aseof foot injury, a person will try to minimize the time spent on the injured leg andtherefore alter the gait yle. All these variations to the gait yle make it di�ultto have an absolute gait measuring tehnique.In order to inrease walking speed, the stane period time is dereased and the swingperiod doesn't hange and therefore the stride time dereases when walking speed isinreased [10℄.



2.3 Rheo knee 132.2.3 Amputee gaitLeg amputees are divided into two groups
• Transfemoral(TF) or above knee amputee
• Transtibial(TT) or below knee amputeeThe gait yle of amputees is quite di�erent from a healthy persons gait yle. ForTF amputees onventional mehanial prostheti knee's will stay loked in extendedposition throughout the stane phase, then unlok in the preswing phase to gainmomentum to reah maximum knee �exion. Therefore amputees need more energyduring stane period beause their body enter of gravity has more vertial movementompared to healthy person. During the swing phase the amputee must rely moreon the momentum generated during preswing beause of no musle onnetion to theknee joint it self. During the swing the biggest disadvantage is that when wearingonventual knee prostheti it is �xed and does therefore not give enough toe learaneto prevent stumbling, and therefore amputees both TF and TT need to move thefoot up by other parts of the body usually the hip and therefore the gait yle isunsymmetrial, it results in a more di�ult gait and it looks di�erent from a regulargait.2.3 Rheo kneeThe RHEO KNEE R© is the world's �rst miroproessor swing and stane knee systemto utilize the power of arti�ial intelligene. Capable of independent thought, it learnshow the user walks, reognizing and responding immediately to hanges in speed, loadand terrain.The knee adapts to any situation, and not just within pre-set and limited parameters,enabling the individual to quikly regain on�dene in his or her ability to walk whereand how they hoose [20℄.2.3.1 ManufaturerOssur In (hereafter Ossur) is an Ielandi ompany founded in 1971 by ÖssurKristinsson. Ossur is a worldwide leading ompany in non-invasive orthopaedis.The Rheo knee and the Power knee are a part of a three produts bioni tehnol-ogy line Figure 1, the third produt is a miroproessor ontrolled ankle, Proprio.



14 Chapter 2. BakgroundTable 3: Relation between the Rheo knee state mahine and gait periods and phasesState Phase PeriodStane �exion Loading response and partly midstane StaneStane extension partly midstane StanePreswing Preswing StaneSwing �exion Initial swing SwingSwing extension Midswing and Terminal swing SwingOssur are a leading ompany within the �elds of prosthetis, braes, supports andompression therapy. The ompany's phrase is "life without limitations" [20℄.2.3.2 SensorsThe Rheo knee senses the environment by two load ells and an angle sensor, thesensor output is shown in Setion 4.2.1. The load ells are built into the struture ofthe knee whih makes the manufaturing of the struture ompliated and expensive.Current sensors do not give enough information to estimate some gait events requiredfor more detailed knee ontrolling or produt ombinations, e.g. the Rheo knee andthe Proprio ankle. The struture is rated for spei� load, urrently for 100 kg users[20℄, if the load ell would not be required the struture ould be made smaller andthe whole knee unit more ompat.2.3.3 Rheo knee state mahineThe Rheo knee is ontrolled via state mahine (see Setion 3.3), the Rheo knee statemahine has �ve di�erent states shown in Figure 6 along with available state transi-tions. It's possible to move to stane �exion state from all other states, this is a safetystate and all transition exept from the swing extension to stane �exion are safetytransitions. Safety transitions our if the knee ontrol module senses an unusual sen-sor reading, e.g. a fore during the swing period or the knee extending rather than�exing during the preswing state. Safety transition is triggered if the load ells senseload during states were no load should our or unusual load reading during preswing.By referring to Tables 4 and 2 and Figure 6 the most frequent paths through the statemahine are desribed here. The regular path through the Rheo knee state mahine isStane �exion → Stane Extension → Preswing → Swing �exion → Swing extension.
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Stance flexion Stance Extension

Preswing

Swing flexionSwing extension

Figure 6: The Rheo knee state mahineSine few amputees are apable of performing ontrolled stane extension during gaitthe path through the state mahine is usually Stane �exion → Preswing → Swing�exion → Swing extension, this is a legal path sine the state mahine allows othertransition than just what the optimal path would suggest. In ase of stair walkingthe path is Stane �exion → Swing �exion → Swing extension, the reason for thisis that the amputee has all his weight on the knee when he lowering himself to thenext step, so the fore will remain larger during the whole stane period rather thandereasing during the end of stane period. One of the boundaries for entering thepreswing phase is that the load is less than some spei� number, if the state mahinewould enter the preswing during stair walking the ontrol software would turn o� thebraking torque with potentially bad onsequenes.
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Table 4: Desription of the Rheo knee state mahine and ationsState DesriptionStane �exion Begins at HS, possible transitions are stane extension,preswing and swing �exion. During this phase the on-trol software is responsive to angular veloity, i.e. if theknee starts to �ex the knee output urrent proportional tothe angular veloity of the knee joint.Stane extension This state is reahed if the amputee is able to extentthe knee during stane period, possible transitions arepreswing, swing �exion and stane �exion. The ontrol soft-ware is less responsive to angular veloity, i.e. the brakingis not as harsh as in stane �exion phase.Preswing This state is reahed if the knee senses inreasing moment(see Figure 25 and Table 2) and dereasing fore, possibletransitions are swing �exion and stane �exion. During thisstate the knee's braking torque is set to zero so the knee isable to gain momentum for the swing period, sine the kneedoes not have any motor it has to rely on power generatedby the amputee during stane period.Swing �exion This state begins by TO, i.e. when there is no load at-ing on the knee, possible transitions are swing extensionand stane �exion. During this state the ontrol softwaredamp the knee movement to ahieve maximum knee angleof (usually) 60 degrees smoothly.Swing extension This state is reahed after maximum knee angle, possibletransition is stane �exion. During this state the ontrolsoftware damp the knee movement to end the swing as loseto zero degrees without atually reahing zero degrees.



3 Theory
3.1 Pattern reognitionHumans an easily reognize faes, letters, voies, damaged food or forms by vision,hearing, smell and touh. To be able to reognize a fae the brain uses parametersof the fae, e.g. width, height, length between eyes, and mathes them to an alreadyfamiliar fae. "Pattern reognition the at of taking in raw data and making an ationbased on the "ategory" of the pattern has been ruial for our survival, and over thepast tens of millions of years we have evolved highly sophistiated neural and ognitivesystems for suh tasks" [7℄.Computers have been designed and built to automatially reognize words, �nger-prints, faes, DNA and many more appliations [7℄. Automati pattern reognitionsystems are hallenging problems beause of many parameters involved in the natu-ral world, the brain an extrat various, and as many as needed, parameters of thefae while the omputer only has prede�ned number of parameters. Limited numbersof parameters an ause an overlap in the reognition system beause of insu�ientinformation and therefore ause lassi�ation errors.3.1.1 DimensionsDimensions of the input data an be ritial, Figure 7 shows two ategories thatare easily separated, but the same data in one dimension, Figure 8, is impossible toseparate with deent auray. Too many dimensions an also ause problems, there17



18 Chapter 3. Theoryis known a saying "urse of dimensionality" [1℄ whih says that too many dimensionwill result in lassi�ation error beause if data is non relevant it will at as noiseand derease auray of lassi�ation.
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Figure 7: Two dimensional data set
3.1.2 Pattern reognition systemPattern reognition systems an be partitioned into omponents, the omponents areshown in Figure 9 and eah omponent's funtion is desribed in following setions.
SensingThe inputs to a pattern reognition system are arrays of data, e.g. amera photo,mirophone or sensors data. This part inludes pre proessing of the data, e.g.�ltering, transformation and noise redution.
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Figure 8: One dimensional data setSegmentationSegmentation is one of the biggest problem of pattern reognition, it deides whenone sample begins and ends. In gait analysis segmentation is vital to know whenstep begins and when it ends for keeping trak of features during eah step withoutthe data overlapping between steps. For speeh reognition the problem is to detetwhen a word begins and ends, e.g. the word BEATS ould be reognized as BE or
EATS if the segmentation would fail to separate the speeh to words orretly.
Feature extrationFeature extration is key to pattern reognition, it onnets the input data to thelassi�er. The feature extrator haraterizes the data in real values that an beompared by omputer algorithms. Features of fae detetion an be width, length,fae part sizes and ratio between fae parts that an be measured in atual units thatan be ompared to a known samples.
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sensing

segmentation

feature extraction

classification

post processing

decisionFigure 9: Pattern reognition system [7℄Classi�ationThe task of lassi�ation is to use prior knowledge to assign a ategory of unknowndata by using the features provided by the feature extrator, in the ase of no priorknowledge similar data is lassi�ed to lusters whih then require post proessing for�nal lassi�ation. The di�ulty of lassi�ation depends on the variability of thefeature values. There are many variations of lassi�ers, e.g. deision trees, maximumlikelihood estimation, regression, lustering and k-nearest neighbors(KNN) to namefew.Small two dimension example for visual explanation of deision trees and KNN anbe seen in Figures 11, 13 and 14.Univariate tree Univariate trees only hek one feature at a time i.e. the split isaxis-aligned. Figure 10 and Figure 11, for this example �rst the x feature is heked,if x is smaller than 0.5 then the sample is ategorized as −1 otherwise the y feature



3.1 Pattern reognition 21is heked, if y is smaller than 0.5 then the sample is ategorized as −1 if both nodeis ful�lled the sample is ategorized as 1.

Figure 10: Univariate tree deision nodes
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Figure 11: Univariate tree



22 Chapter 3. TheoryMultivariate tree Multivariate trees use a ombination of features to reate hy-perplane boundary instead of axis-aligned boundary and is therefore more general,multivariate trees an be used for an unlimited number of dimensions. Figure 12 andFigure 13 shows how this split works for a simple example. If wT
mx + w0 > 0 thenthe sample is ategorized as 1 otherwise it is ategorized as −1.

Figure 12: Multivariate tree deision nodes
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Figure 13: Multivariate tree



3.1 Pattern reognition 23K-nearest neighbors K-nearest neighbors(KNN) is a nonparametri tehnique,i.e. it doesn't estimate probability just deides ategories diretly. KNN needs adatabase of known samples, it an be used by two methods. In the �rst methodKNN an use a window, i.e. when a new data point is supposed to be ategorizedthere is a predetermined window where KNN labels the new data point as the labelof majority of data points from database that are within the window. The seondmethod is to ompare the new data point to the database and searh for KNN, thenthe new data point is labeled as the label of majority of data points from the KNN,distane between samples is alulated by the eulidian distane equation [7℄.
Dist =

√

√

√

√

n
∑

i=1

(xi − yi)
2By the seond method the windows grow to the neessary size to inlude K neighbors.If the probability of terrain would be used for the KNN instead of �nal deision thepost proessing step would deide if the probability is enough to hange or maintainterrain. Figure 14 shows the deision boundary for the small example used earlier.
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Figure 14: KNN deision boundary with K = 3Higher dimensional KNN lassi�ation is also available, the way of measuring thedistane must be deided sine parameters don't neessary have the same signi�-ane. The parameters an be altered for various signi�ane by multiplying themby onstant.



24 Chapter 3. TheoryPost proessingClassi�er is rarely 100% aurate, the deision made by the lassi�er is more ofa suggestion of ategory. Post proessor uses the output from the lassi�er andother information, e.g. prior knowledge or risk of ertain ation, to determine theappropriate ation.
3.2 Neural networksThe idea of neural networks is inspired by the brain, the brain an proess greatamount of data in a very short time e.g. vision, speeh, reognition and learning.The neural networks are a simpli�ed model of the brain. The human brain is quitedi�erent from a omputer. Whereas a omputer generally has one proessor, thebrain is omposed of a very large (1011) number of proessing units, namely, neurons,operating in parallel. Though the details are not known, the proessing units arebelieved to be muh simpler and slower than a proessor in a omputer. What alsomakes the brain di�erent, and is believed to provide its omputational power, is thelarge onnetivity: Neurons in the brain have onnetions alled synapses, to around
104 other neurons, all operating in parallel. In a omputer, the proessor is ativeand the memory is separate and passive, but it is believed that in the brain, boththe proessing and memory are distributed together over the network, proessing isdone by the neurons, and the memory is in the synapses between the neurons[1℄.
3.2.1 Neural networkIn this projet 3 layer network was used, Figure 15 with ativation funtion tanh(x)[6℄. First layer xi is the input layer where x is taken into the network and distributedthrough to the next layer. Seond layer of the neural network yj is the hidden layer,there an be more than one layer but in this projet only one was used beausenetwork with two layers worked as well as the one used here. The third and the lastlayer zk is the output layer of the network where the estimated output of the networkan be seen. Links from eah neuron to all neurons in next layer are alled weights
wji, i.e weight from xi to yj , sometimes alled synapses as the onnetions in brains.



3.2 Neural networks 25

Figure 15: Three layer neural network, �gure from [7℄3.2.2 Feedforward operationFrom now on only three layer network will be used for demonstration. The feedfor-ward operation is algorithm to alulate the network output for given input x [11℄.Eah hidden neuron omputes the weighted sum of its inputs to form its salar net

activation whih is denoted by netj

netj =

nI
∑

i=1

xiwji + wj0 =

nI
∑

i=0

xiwjiThen eah neuron emits an output that is a nonlinear funtion of its ativation,
f(net), i.e.

yj = f(netj)Now eah output neuron similarly omputes its net ativation based on the hiddenneuron signals as
netk =

nH
∑

j=1

yjwkj + wk0 =

nH
∑

j=0

yjwkj



26 Chapter 3. Theoryat last the output neuron omputes the nonlinear funtion of its net, emitting
zk = f(netk)General form of the feedforward operation is

gk(x) ≡ zk = f

(

nH
∑

wkjf

(

nI
∑

wjixi + wj0

)

+ wk0

)

3.2.3 Bakpropagation algorithmBakpropagation is used for training the network, it will take one example x fromthe dataset and feed it through the network via feedforward, then alulate the er-ror between the desired output and the atual output and update the weights de-pended on the error. Stohasti bakpropagation was implemented for this projet.The basi stohasti protools of bakpropagation is shown in the proedures below[7℄1: begin initialize nH,w, θ, η, m← 02: do m← m + 13: xm ← randomly hosen pattern4: wji ← wji + ηδjxi5: wkj ← wkj + ηδkyj6: until ‖∇J(w)‖ < θ7: return w8: endwhere η is the learning rate, J(w) is the training error, nK is number of outputs and
tk is desired output

J(w) ≡
1

2

nK
∑

k=1

(tk − zk)2

δk is alled the sensitivity of neuron zk

δk = (tk − zk)f ′(netk)

δj is alled the sensitivity of neuron yk

δj ≡ f ′(netj)

nK
∑

k=1

wkjδk



3.3 State mahine 273.3 State mahineState mahine, also alled automata, is a software engineering tool [4℄. The statemahine is a tool to model a real time system that onsists of a �nite number ofstates where eah state requires di�erent ations based on various external or internalenvironments. The state mahine does not usually have an endpoint, i.e. it is anendless loop. The system travels between states by predetermined transitions thatare guarded by boundaries or �ags. The whole system an hange behavior based onstates by di�erent ations de�ned by the states.A simple example for desription of states, transitions and ations, Figure 16. Thisis a simple model of automati door with motion sensors for deteting movement atthe door. There are two systems, one for the door and one for the motion sensor.States The states are Close, Open and Motionsensor, the states represent loseddoor, open door and sensor ative respetively. For eah state there are at least oneinoming and one outgoing transitions. Eah state an have spei� ations that areexeuted at urrent state.Transitions Transitions are represented by arrows, they are triggered by events.There are two types of events in this example, timed event i.e. when time has exeededsome limit and a trigger event. There are two types of triggers, all triggers shownas trigger! and respond triggers shown as trigger?. When a motion sensor sensesmovement it will transit through the loop transition, this transition set time t tozero, i.e. reset timer, and alls trigger that reates transition in door system. When
trigger! is alled it depends on what state the door system is at urrently, if the Closestate is ative the state mahine will transit to Open state, if the Open state is ativeit will loop and the timer will be reset. If the ative state does not have transitionalled by alled trigger there will be no transition. A timed event only ours if thetimer has exeeded a spei� limit, in this example when the timer has exeeded 10time units the door system will transit to Close state.Ations Ations are a set of ommands exeuted when the state is ative or whenthe state is entered. In the Close state the ation is to lose the door when thestate is entered, in the Open state the ation is to open the door when the state isentered, it will remain open if the door is already open when state is entered. The
Motionsensor state ation is to listen and reat to the motion sensor.
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Figure 16: Simple state mahine exampleState mahine validation Sine a state mahine an onsist of a large number ofstates and transitions, the possible paths through the state mahine ould be morethan is possible to test. For state mahine validation some tools and methods havebeen reated, one tool is Uppaal developed jointly by Aalborg University in Denmarkand Uppsala University in Sweden (http://www.uppaal.om/), another interestingtool is alled Rebea (http://khorshid.ee.ut.a.ir/∼rebea/). Validation tools areprogrammed to searh for illegal transitions, out of bounds states or any possibleway to reate an unstable state mahine, by heking all possible paths through thestate mahine and searhing for spei� events or transitions that ould lead to afailure of the state mahine [32℄, [26℄.



4 Sensors and measurement setup
4.1 MeasurementsMeasurements were obtained by the Xsens sensor module and data logged by Rheoknee software. Xsens sensor module was �xed at approximately ankle height Figure5, on an amputee walking on Rheo knee and a healthy subjet. Isolated tests wereperformed for three terrains, level ground, stairs and slope. The amputee was askedto walk at three di�erent walking speeds, slow, medium and fast where the amputeedeided himself the appropriate speed for eah of them. All data for the state mahinedesign was obtained by a single amputee, validation performed by another amputee.Test setups were
• Level ground: Indoor, hardwood �oor, 2 sets at slow speed, 8 at medium speedand 1 set at fast speed
• Stairs: Indoor, 18m high steps, linoleum �oor, 4 sets
• Slope: Outdoor, approx 10◦, asphalt, 3 sets
• Soft underlay: Outdoor, level ground, wet grass, 1 setAxis of the sensor module are shown in Figure 5, axis with referene to the tibia are
• X is perpendiular to the tibia, forward/bakward
• Y is parallel to the tibia, up/down 29



30 Chapter 4. Sensors and measurement setup
• Z is perpendiular to the tibia and foot, sidewaysWhole data series, 18 steps from stationary to stationary position, obtained at levelground and medium speed via Rheo knee software for fore Figure 17, moment Figure18 and knee angle Figure 19, only most relevant variables shown. It an be seen fromthe data obtain by the Rheo knee that sensor values obtained during gait are highlyperiodi.
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Figure 17: Rheo knee data, GRFThe whole data series, obtained at the same walk as for the Rheo knee, via Xsenssensor module for X-aeleration Figure 20, Y-aeleration Figure 21 and tibia an-gular rate Figure 22, only most relevant sensors shown. It an be seen from the dataobtained by the Xsens sensor module that the sensor values obtained during gait arehighly periodi, espeially angular rate.4.2 Sensor moduleThe sensor module used for data gathering during this thesis is Xsens MTi fromXsens Motion Tehnologies. The sensor signal proessor provides alibrated signalsfor 3D aeleration, 3D rate of turn and 3D earth-magneti �eld data. A bluetooth
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Figure 18: Rheo knee data, moment
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Figure 19: Rheo knee data, knee angle
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Figure 20: Xsens data, X-aeleration
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Figure 21: Xsens data, Y-aeleration
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Figure 22: Xsens data, angular ratesender was integrated to the sensor for wireless data gathering. Next setion desribesurrent sensors the Rheo knee uses for gait phase detetion, then a short desriptionof sensors used during this study.4.2.1 Rheo knee's urrent sensorsThe Rheo knee is equipped with three sensors, a pot sensor whih measures theabsolute knee angle, Figure 23, and two strain gauges also alled load ells, one atthe front and one at the bak, whih measure the load through the knee's struture.By addition and subtration GRF and moment is alulated, Figures 24 and 25respetively, limit for stane period is 8 bits set by the Rheo software. The Rheo kneehas built in hardware di�erentiation for the angle sensors and in that way angularveloity of the knee joint is obtained. The GRF and moment are similar to resultfrom a reently published artile about fore and moment in healthy subjet's tibia[31℄. The knee angle of a healthy subjet will have inreased to 10-15 degrees duringthe stane phase while amputees do not �ex the knee during stane phase [10℄, butwith the Rheo knee stane �exion is made possible with omputer ontrolled staneontrol.
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% of gait cycleFigure 25: Rheo knee moment4.2.2 Aeleration sensorsAeleration sensors are used to detet motion, impats or vibrations. A single axisaeleration sensor onsists of a mass and a spring, the mass is suspended by thespring and the mass is allowed to move in one diretion, whih is the measureddiretion, the displaement of the mass is a measure of the aeleration it undergoes[17℄. Aeleration sensors have fast response, are highly sensitive, require low voltageand has low urrent onsumption. Beause of low power demand they are ideal forsmall real time appliations like prostheti knees.Appliations where aeleration sensors are used are e.g. gait analysis [19℄, earthquakedetetion systems [27℄, ar impat detetion systems [5℄, gps systems [23℄ and gameonsols [24℄.Figure 26 shows sensor signals for an amputee walking on level ground.4.2.3 GyrosopeThere are few designs of an angular rate sensor (gyrosopes) e.g. spinning rotorgyrosopes, laser gyrosopes and vibrating mass gyrosopes. Spinning rotor- andlaser gyrosopes are bulky and expensive. A vibrating mass gyrosope is small,
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% of gait cycleFigure 26: Xsens aeleration sensors [m/s2℄inexpensive and has low power requirements. A vibrating mass gyrosope onsists ofa small mass and a distane measurement that measures displaement of the masswhen the mass experiene oriolis fore beause of angular veloity [17℄. Gyro sensorsare mainly used for navigational appliations [14℄, others are e.g. gait analysis [19℄and stabilization systems [12℄.Figure 27 shows gyro sensor signals for an amputee walking on level ground.4.2.4 Magneti sensorsMagneti sensors sense a magneti �eld of the environment. A magneti sensor issensitive to the earth's magneti �eld and an therefore estimate horizontal diretionof the sensor. Magneti materials an have an a�et on the sensor, ferromagnetimaterials like iron will disturb the magneti �eld and the sensor won't be able to givean aurate diretion [22℄. Sailing maps have speial magneti symbols where themagneti �eld is disturbed by a large amount of iron or other magneti materials,whih results in inaurate heading of the ship's ompass. Appliations of the mag-neti sensor is mainly ompass related, they an be used to detet magneti objetsin e.g. sand, heading and orientation orretion for gyrosopes via sensor fusion bye.g. Kalman �lter [22℄.
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5 Results
5.1 Preproessing
5.1.1 Prinipal omponent analysis(PCA)
Preproessing was minimal sine the sensor module has built in �lters and outputsstable and usable signals. To determine whih sensor should be used for this thesis themost obvious hoie would be X-aeleration, Y-aeleration and angular rate sinethe most relevant linear movement of the foot is in X- and Y-diretion and angularmovement around the knee(Z-axis), refer to Figure 5. Prinipal omponent analysiswas used to determine whih signals represent the most variane of the signals. Table5 shows how muh variane eah PCA represent, �rst three omponents explain morethan 95% of the variane and therefore only �rst three omponent are looked at morethoroughly. Table 6 shows what sensors are most relevant for eah omponent, the�rst omponent's most relevant sensor is X-aeleration, the seond omponent's mostrelevant sensor is Y-aeleration and the third omponent's most relevant sensor isthe angular rate around the knee axis. Angular rate is also the seond most relevantsensor in omponents one and two. Based on those results the three sensors usedduring gait analysis are seleted as X- and Y-aeleration along with the angularrate. Figures 29 and 30 are graphial representation of Table 5.39



40 Chapter 5. ResultsTable 5: PCA resultsPCA Perent explained Eah PCA1 54.82 54.822 85.29 30.473 95.15 9.864 98.61 3.455 99.24 0.636 99.58 0.347 99.87 0.298 99.96 0.089 100.00 0.04Table 6: PCA results - First three omponentsSensor Comp. 1 Comp. 2 Comp. 3Y-a. -0.0670 0.9618 0.2178X-a. 0.9577 0.1270 -0.1683Z-a. -0.1215 0.0385 0.3536Y-gyro 0.0204 -0.1243 0.1966X-gyro -0.0306 -0.0209 0.0130Z-gyro -0.2482 0.2034 -0.8711Y-mag. -0.0109 0.0074 0.0263X-mag. 0.0239 -0.0005 -0.0298Z-mag. -0.0009 -0.0004 0.00295.2 Pattern reognition5.2.1 TerrainThe knee needs to be able to distinguish between di�erent terrains, e.g. level groundFigure 31, stairs Figure 32 and slope Figure 33. The gait yle varies between terrainsand the knee has to be able to respond quikly and e�iently to new terrain.Based on trials with the Rheo knee, it doesn't need to brake muh during mid- andterminal stane in normal level ground walking sine the knee is usually fully ex-tended and does not �ex or extend. When an amputee is walking down stairs or ondelining slope all the body weight is on the knee while the user is moving from higherposition to a lower by �exing the knee, therefore the knee needs more resistane to�exion than when in normal level ground walking.
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Figure 29: PCA - sree graph
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Figure 31: Mean sensor signals, level ground, medium walking speedFor omparison to sensor signals for a healthy subjet, �gures for level ground, stairand slope an be seen in Appendix B.5.2.2 FeaturesBy omparing data for the three di�erent terrains, level ground Figure 31, stairsFigure 32 and slope Figure 33 the following features were seleted for more detailedanalysis.
• Peak to peak of the Z gyro signal
• Peak to peak of the X aeleration
• Maximum amplitude of the X aeleration
• Peak to peak(PtP) at toe o� for X aeleration
• Maximum amplitude at toe o� for Y aeleration
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Figure 32: Mean sensor signals, stairs
• Stride durationThe Y-aeleration and X-aeleration signals at TO are prime andidates to distin-guish between level ground and stairs or slope, sine the peaks are reversed aroundthe toe o�. Ideally these signals ould trigger di�erent terrain settings in the ontrolsoftware of the knee early enough to be able to ontrol the swing phase aordingto urrent terrain without having problem during �rst step beause of wrong terrainestimation. The pattern reognition software ould reognize the terrain in urrentstep instead of making a deision based on data obtained during the last step.5.2.3 Test dataTest data was obtained by isolated tests for all three terrains. All tests were per-formed at a self seleted speed by the amputee. Level ground walking was performedat slow, medium and fast pae, Figures 34, 31, 35 respetively, those �gures show thatinreased walking speed results in inreased peaks value and dereased stane/swingratio (refer to minimum value of angular rate signal at approximately 55-60% ofgait yle). Slope walking was performed at approximately 10◦ slope and performed
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Figure 33: Mean sensor signals, slopeat slow and medium pae. Stair walking was performed at stairs with 8m high steps.Test data inludes following number of samples, eah step is regarded as one datapoint
• 133 data points for level ground
• 50 data points for slope
• 20 data points for stairIf Figures 31, 32 and 33 are ompared, the most likely features to distinguish betweenthe terrains would be PtP X-aeleration at toe o� Figure 36 and max Y-aelerationat toe o� Figure 37.These two features on their own are not able to distinguish between level ground andstairs beause of omplete overlap between the two terrains at PtP X-aelerationat toe o�. Max Y-aeleration at toe o� is able to separate slope from level groundand stairs deently, with a small overlap at −5 to −3 (this is not a problem duringhigher dimension lassi�ation), two or three data points of 50 data points for slope.PtP X-aeleration at toe o� has some overlap between level ground and slope, and
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Figure 34: Level ground, slow walking speedould not be used on its own to distinguish between any of the terrains with enoughauray.Features an be plotted in as many dimensions as the features are, but for graph-ial representation two dimensions are easiest to desribe and visualize. When allfeatures are plotted against eah other two instanes are the best andidates for su-essful lassi�ation results. All other 2D feature versus feature plots an be seen inAppendix A.
• Angular rate versus PtP X-aeleration at toe o�, Figure 38
• Angular rate versus max Y-aeleration at toe o�, Figure 39Figures 38 and 39, angular rate versus PtP X-aeleration at toe o� and angular rateversus max Y-aeleration at toe o� respetively show that in simple manner eah ofthe three terrains an be separated from other terrains.Angular rate versus PtP X-aeleration at toe o� data point form three well separatedlusters. Angular rate versus max Y-aeleration at toe o� does also form three wellseparated lusters but one data point from slope is at the stairs luster and one point
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Figure 35: Level ground, fast walking speedis between level ground and stairs, those two point ould ause problems duringlassi�ation if two dimensional lassi�ation would be used.By omparing Figures 41, 42 and 43 and notiing the di�erene between the deisionboundaries. The boundaries show that when K is lower KNN is more sensitive tonoise, but as K inreases the deision boundaries beome more smooth and reliable.From these two dimensional data plots it an be seen that distinguishing betweenterrains an be done with simple lassi�ation methods.
5.2.4 Deision treeDeision tree is e�ient nonparametri method, whih an be onverted to a set ofsimple IF rules that are easily programmed in a onventional way.
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Figure 36: Satter plot, PtP X-aeleration at toe o�
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Figure 37: Satter plot, max Y-aeleration at toe o�
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Figure 38: Satter plot, angular rate versus PtP X-aeleration at toe o�
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Figure 39: Satter plot, angular rate versus max Y-aeleration at toe o�
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Figure 40: Satter plot, stride duration versus PtP X-aeleration at toe o�
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Figure 41: KNN deision boundary, K = 1
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Figure 42: KNN deision boundary, K = 5
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Figure 43: KNN deision boundary, K = 7



5.2 Pattern reognition 51Univariate TreesIn univariate trees the rules use only one of the input variables for split whih resultsin unsmooth deision boundary when the number of splits are kept at minimum seeFigure 44 [1℄. The bene�t to this method is that it an be programmed by simple IFsentenes that are easy to understand and implement. The disadvantage is that it anbe really sensitive to noise and if it's to simple it an ause a problem distinguishingbetween groups that are lose together and are not sattered perfetly for this method.Boundary shown in Figure 44 has four IF sentenes, after training of the lassi�erthe omputational requirements are low.
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Figure 44: Univariate deision tree, boundaryMultivariate TreesMultivariate deision tree is similar to the univariate exept that the splits an bede�ned by more than one variable at eah split, see Figure 45. These splits areahieved by three IF sentenes, whih shows that the multivariate deision tree hasalso low omputational requirements but is more versatile than univariate deisiontree.
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Figure 45: Multivariate deision tree, boundaryMulti dimensional lassi�ationFor three dimensional lassi�ation there is no overlap in data samples and test datashows 100% auray when PtP X-aeleration at toe o�, angular rate and strideduration is used as parameters for the lassi�ation, Figure 46. KNN and multivari-ate deision tree form hyperplane that distinguish the three di�erent terrains. Twodimensional examples were used for easier visualization of the pattern reognitionmethods used for this study.
5.2.5 Classi�ation validationClassi�ation methods were trained by data obtained by a single amputee, validationwas done by obtaining data from another amputee and letting the lassi�er work onthat data. Two methods are shown here, the multivariate tree and KNN with K = 5Figure 47 and 48 respetively, both lassi�ers have 100% auray for those few stepsobtained for simple validation.
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Figure 46: Three dimensional features

Peak to Peak Gyro Z

M
ax

 Y
−

ac
ce

le
ra

tio
n 

at
 to

e 
of

f

5 6 7 8 9 10 11 12 13 14 15
−10

−5

0

5

10

15

Figure 47: Classi�ation validation, multivariate tree



54 Chapter 5. Results

5 6 7 8 9 10 11 12 13 14 15
−10

−5

0

5

10

15

PtP Angular rate

M
ax

 Y
−

ac
ce

le
ra

tio
n 

at
 to

e 
of

f

Figure 48: Classi�ation validation, KNN K = 55.3 State mahineFor the Rheo knee to funtion orretly the state mahine must obtain orret and a-urate readings from the sensors. Current sensors are sensitive to alibration, wronglyalibrated sensors an result in inorret sensor readings and therefore inorret statemahine transitions whih leads to a dysfuntional knee. Some state transitions areguarded by limits for the sensor values, those limits an be exeeded beause of noiseor unusual knee usage, those situations an also lead to a dysfuntional knee. Noisean lead to rapid state transitions, when signals are lose to limits, whih an ausethe knee to funtion strangely for a short period of time and ause the amputee tofeel inseure about using the knee.5.3.1 Sensor module state mahineThe Sensor module state mahine (hereafter SM state mahine) onsists of sensorsseleted in Setion 5.1. The SM state mahine is used in the same manner as theRheo knee uses a state mahine see Setion 3.3, but states found by sensor modulerepresent the gait phases more losely than the Rheo knee does, relations betweenstates and phases for SM state mahine are shown in Table 7. State transitions



5.3 State mahine 55Table 7: SM State mahineState Phase PeriodLoading response Loading response StaneMidstane Midstane & terminal stane StanePreswing Preswing StaneInitial swing Initial swing SwingTerminal swing Midswing & terminal swing Swingwere designed to be as robust as possible by looking for peaks instead of hekinglimits, sine no two people are the same but the state mahine must work for variousamputees.Transition desription in Table 9 assumes optimal level ground walking, i.e. Loadingresponse → Midstane → Preswing → Initial swing → Terminal swing.The SM state mahine is losely related to the Rheo knee state mahine desribed inTable 4, desription for the SM state mahine is at Table 8.For this study a state mahine was only formulated for level ground walking, dataused for visualization was obtained at medium speed level ground walking. The statemahine was tested on database onsisting of 11 level ground walking trials at variouswalking speed.For visual understanding of data, states and transitions only two steps are shown inFigures 49 to 53.
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Table 8: Desription of the SM state mahineState DesriptionLoading response Figure 49, the foot is unstable due to HS and foot not ompletelyon ground, during this phase the ontrol software should be re-sponsive to sudden hanges in knee angle.Midstane Figure 50, during this phase the foot is stable and is allowed to�ex to some level to help the amputee to do stane �exion andtherefore have more natural gait. There should not be any fasthanges of the knee angle during this phase, only relatively slowmovements.Preswing Figure 51, this phase is idential to the Rheo knee's preswing,this phase is used to gain momentum for the swing phase. Theexat moment to move from midstane to preswing ould make thedi�erene between an easy swinging knee and unomfortable kneewhere the user needs to swing the hip to generate extra energyfor the swing period.Initial swing Figure 52, initial swing begins as TO. This phase uses momentumgained in the previous phase to swing the tibia until the kneereahes 60 degrees �exion(regular maximum knee angle for normalwalking [10℄).Terminal swing Figure 53, during this phase the knee goes from maximum angleto zero degrees. When knee is almost fully extended it's ready fornext HS.



5.3 State mahine 57

18 18.5 19 19.5 20

−5

0

5

Angular rate

Time [s]

[r
ad

/s
]

18 18.5 19 19.5 20

−20

−10

0

10

X−acceleration

[m
/s

2 ]

18 18.5 19 19.5 20
−30

−20

−10

0
Y−acceleration

[m
/s

2 ]

Figure 49: SM state mahine, loading response
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Figure 50: SM state mahine, midstane
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Figure 51: SM state mahine, preswing
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Figure 52: SM state mahine, initial swing
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Figure 53: SM state mahine, terminal swing



60 Chapter 5. ResultsTable 9: Desription of state transitionsTransition DesriptionLoading response
→ Midstane This is right after HS, the Y-aeleration is �utuating beause ofimpat aused by HS. When the aeleration has settled the footis stable and the foot has responded suessfully to the weight ofusers body.Midstane →Preswing During midstane all sensor are quite stable sine the foot is inontat with the ground and therefore ompletely still. Whenboth angular rate and Y-aeleration start to derease then theuser is lifting the heel o� the ground and moment is reated inthe knee struture whih reates good kik start for momentumrequired for swing phase.Preswing → Ini-tial swing Angular rate is inreasing and Y-aeleration is at loal maximum.The Y-aeleration peaks when the foot leaves the ground forswing period.Initial swing →Terminal swing Sine maximum knee angle is reahed during initial swing, theknee is still at that moment before it starts extending. When thevetor sum of both aeleration sensors is lose to earth gravitythis transition is triggered.Terminal swing →Loading response Due to impat the aeleration sensors spike at HS, so the transi-tion is triggered by a spike in X-aeleration, but guarded by a �agthat is set when the X-aeleration rosses zero sine aelerationsensors are not very stable.

Figure 54 shows angular rate measurements for level ground walking along with statevalues. This �gure shows that the state mahine is onsistent through the whole dataseries. Data is proessed like in a real time appliation the state mahine an notsee future values only urrent and older. Green lines represent states, were value 1 isLoading response, value 2 is Midstane and so on. Table 10 shows the perentage ofeah state during gait, when this is ompared to regular walk, Table 2, it an be seenthat those numbers are similar. The main di�erene is the Midstane is 30% but thephases that this state represents is expeted to be around 40%, the reason for this isthat the preswing state is entered slightly to early to generate more momentum for theswing period. The stane period is less 60% whih an be explained by the fat thatthe amputee who performed those tests walks faster than most people and amputee'shave a slightly shorter stane period than a healthy person for same walking speed[2℄.
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Figure 54: SM state mahine and angular rate, level groundTable 10: Phase intervalsPhase Perentage of Gait Cyle TotalLoading response 14.07 14.07Midstane 28.19 42.27Preswing 11.29 53.56Initial swing 18.90 72.45Terminal swing 27.55 1005.3.2 Comparison between the Rheo knee and the SM statemahineThe Rheo knee and the SM state mahines use di�erent sensors for transition andontrolling the state mahine.The Rheo knee uses load ells and knee angle sensor, the di�erene between thestane and swing period is based on readings from the load ells, this di�erene islear and reliable, but is based on limits and therefore badly alibrated load ellsan result in stane and swing reognition errors. Preswing phase is estimated basedon the load ells also, here the moment is used and when the moment is above a



62 Chapter 5. Resultsspei� limit the knee transits from stane �exion or stane extension to preswing,this limit an be exeeded beause of sensor noise, this transition an require some�ne tuning. During the swing period the knee only senses the knee angle, for thatreason terrain estimation of urrent step during swing period is not ideal beause ofinsu�ient information about the movement of the foot.SM state mahine uses aeleration and gyro sensors, heel strike is easily deteted byrapid hanges in aeleration (alibration does not have a�et sine only inrease inthe signal value trigger the state transition), therefore the di�erene between stane-and swing period is reliable for all tests performed during the ourse of this study(additional tests are required for validation of non regular movements, e.g. sidestepping). Preswing is estimated based on Y-aeleration and angular rate and mayrequire some adjustments, the beginning of preswing is similar to situations when theuser is falling down. Both state mahines require some �ne tuning to detet preswing.Aeleration sensors an detet motion during swing period and therefore have moreaurate knowledge of foot positions, e.g. if the foot is moving downwards for stairand slope and adjusts swing period to hanged terrain estimation.For omparison of the Rheo knee and the SM state mahines only two steps areused (same steps as before). Figure 55 shows the di�erene between those two statemahines. Figure 55 shows that the Rheo knee state mahine is using the preswingstate for more than 50% of the stane period, this may inrease the risk of userstumbling beause the knee's brake is set to zero during the preswing state andthe knee has to make a state transition to respond to unexpeted situations. Thetransition from stane to swing happens later for the SM state mahine, there arestudies that agree to the timing of SM state mahine, whih is based on loal minimumof the angular rate measurements [28℄ see Figures 51 and 52.
5.3.3 Midswing eventIf the knee would be used along with an ontrolled ankle, apable of plantar- anddorsi�exion an midswing event is required to estimate when to plantar�ex to beready for initial ontat. Instead of having the midswing phase as a separate state itis reognized as an event, i.e. just a time point in the swing period. Figure 53 showsthat Y-aeleration has a loal minimum at the mid time of terminal swing, also theangular rate has an global maximum at a similar time point, those signal an be usedto estimate the midswing event.
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Figure 55: Comparison between the Rheo knee and the SM state mahine
5.3.4 Sensor positionAll test were performed with the sensor module �xed to the ankle see Figure 5. Thismay not be the optimal position if the knee is not used with a spei� ankle thathas the sensor module built in. Therefore one test was performed by the sensor �xedapproximately 10m below the knee joint. Figures 56 and 31 show that there aresome di�erenes in the signal based on the sensor position. The angular rate signal isidential as expeted. X-aeleration has quite a di�erene but still has good spikesthat ould be used for gait reognition but would not work with the state mahinethat was built around a sensor loated at the ankle sine the peak at toe o� seams tohave shifted to before the atual TO. Y-aeleration is also quite di�erent dependingon the sensor position, but has important spikes at the same time points and ouldtherefore be used with urrent state mahine without any big hanges. More varianefor these signals is most likely aused by sensor movement during gait, it was not aseasy to �x the sensor to the prostheti knee struture as it was at the ankle position.
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Figure 56: Sensor loated approx. 10m below knee5.3.5 Soft underlayA test was performed to determine the e�et of soft underlay, the test was performedon level ground, at medium speed and on soaking wet grass. As before all peaksare available for gait reognition and the state mahine works as well as for hardunderlay. Figures 57 and 58 show mean sensor values for this test and state mahinefuntions during the test respetively.5.3.6 State mahine validationState mahine validation was done by having an amputee who had not performedany tests that were used to formulate the state mahine. The sensor was �xed toamputee's ankle and a test performed as before. Mean sensor values are shown inFigure 59 by omparing them to Figure 31 the signals are obviously di�erent butall important peaks and sensor signals forms are present. Sine all state transitionsexept for midstane → preswing are deided by peaks, all those transitions work asexpeted, the midstane → preswing transition also worked and happened at TO.State mahine results are shown in Figure 60 and Table 11 shows the perentage of
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Figure 57: Mean sensor signals. Soft underlayTable 11: Phase intervals. SM state mahine validationPhase Perentage of Gait Cyle TotalLoading response 12.36 12.36Midstane 31.16 43.51Preswing 12.97 56.49Initial swing 17.80 74.29Terminal swing 25.71 100eah state during gait.5.4 Control signalThe ontrol signal that the Rheo knee uses urrently is the only referene for a ontrolsignal. Figure 61 shows the output urrent and the SM states along with the kneeangle. The urrent is mainly used to make smooth knee stops, both at the end of theinitial swing and the end of the terminal swing. The urrent inreases right after HSwhen the foot is gaining stability for the stane period.
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Figure 58: State mahine and angular rate. State mahine validation for soft underlay5.4.1 Neural networkNeural networks were used to estimate the output urrent of the knee, settings usedwere one hidden layer and 15 hidden neurons. All possible variations the nine sensorsof the Xsens sensor module and the knee ankle obtained from the Rheo knee. Trainingof the network used the sensors as input and output urrent obtained from the Rheoknee as output. Table 12 shows the top �ve sensor ombinations when measured byorrelation between untested test data output and atual output. It an also be seenthat the knee angle and X-aeleration is the most vital in output alulations If theknee angle is not a part of the sensor ombinations X-aeleration and X-angular ratehas the most orrelation the orrelation is 0.75.5.4.2 Knee angle sensorWithout a knee angle sensor the absolute knee angle is not known, that makes ontrolsignal generation hard, no simple stable and reliable ontrol signal were found duringthe ourse of this projet using only aeleration, angular rate and magneti sensors.By ombining the state mahine and the knee angle a ontrol signal an be generated



5.4 Control signal 67

0 10 20 30 40 50 60 70 80 90 100
−30

−25

−20

−15

−10

−5

0

5

10

15

% of gait cycle

 

 

X−acceleration [m/s2]

Y−acceleration [m/s2]
Angular rate [rad/s]

Figure 59: Mean sensor signals. State mahine validationTable 12: Neural networks results, a-Aeleration, g-Angular rate, m-Magneti, KA-Kneeangle Y-a X-a Z-a Y-g X-g Z-g Y-m X-m Z-m KA Corr0 1 0 0 1 0 0 0 0 1 0.851 1 0 0 0 0 0 0 0 1 0.830 1 0 0 0 0 0 0 0 1 0.830 1 0 0 1 1 0 0 0 1 0.830 1 1 0 1 0 0 0 0 1 0.83by using the following equation for initial swing
Current =

CurrentAngle− StartAngle

EndAngle
· Constithis equation gives linear gain until EndAngle is reahed. For making smooth ter-minal swing the following equation is used

Current = (StartAngle− CurrentAngle) · Consttthis equation gives linear gain until the CurrentAngle reahes zero degrees. Theonstants must be tweaked so the CurrentAngle will ome as lose to zero withoutgetting there.
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6 Conlusions and future work
Combination of two aeleration sensors, angular rate and knee angle sensor is able toahieve the three main goals that the ontrol system requires to ontrol a prosthetiknee. The aeleration and angular rate sensor an estimate the terrain and gaitphases while the knee angle sensor gives exat knee angle position and ontrols theontrol signal.Even though this study only involved basi ontrolling of a prostheti knee, it showsthat it is possible to ontrol the Rheo knee with aeleration and gyro sensors duringlevel ground walking. Sine the load ells are built into the knee's struture it isomplex and expensive to manufature them, if the load ells ould be removedthe struture ould be made smaller with same weight rating and at lower ost.Classi�ation of terrains is simple and e�etive using multivariate tree and KNN, themultivariate tree is a better hoie beause of low omputational demand and simpleimplementation. Aeleration sensors detet motion during swing period and anestimate terrain hanges at �rst step on hanged terrain instead of relaying on datagathered during the last step. Knee ontrol is ahieved by two di�erent methods
• Neural network
• Combination of state mahine and knee angle sensorWhen the NN is trained it requires similar inputs as the training data inputs otherwiseunforeseen problems an our, for the NN to be able to ope with user falling orunexpeted situations it also requires training data for those situations. Obtainingdata for unexpeted situations is not possible unless the amputee is willing to simulatefalls to prevent later falls. Also the NN would require onstant re-training in ase ofuser hanging shoes, injuries, extra load (e.g. bakpak or books) or gaining weight,training a NN is omputationally expensive and time onsuming and therefore not69



70 Chapter 6. Conlusions and future workpratial in a miroproessor appliations that require fast response times. Thereould be a separate training proessor that would feed new parameters to the ontrolproessor, but still there are problems deiding on "good" steps for training the NN,i.e. what is a good step, how an the knee distinguish between "good" and "bad" step.If a knee is not behaving as expeted the only possible solution is to train the NNagain, it is not feasible to trae sensor values bakwards, beause of the omplexityof the onnetions between inputs and outputs, to loate the ause of the problem.A prostheti knee requires good reliability and anything that reates di�ulties to�nd a ause of a problem is probably not the right path to go with prosthetis.The state mahine is stable and reliable and similar states between the SM statemahine and the Rheo knee state mahine do have state transitions at a similartime point during gait. Having stable and reliable state estimate is vital for kneeontrolling sine all the phases require di�erent funtionality of the knee. A stableand reliable state mahine opens the opportunity to use the state mahine as partof ontrolling software for other produts, e.g. omputer ontrolled ankles, knee andankle ombination and omputer ontrolled lower limb braes. When reliability ofthe state mahine and simpliity of the knee angle urrent alulations a good ontrolsignal is reated for the Rheo knee. Other possibilities are to use those sensors for gaitanalysis for healthy people, mobile gait analysis system, Appendix B shows sensorssignals for one healthy subjet.The aim of this projet has been ahieved, but this projet only inluded the mostbasi parts of human motions. There are many obstales to overome before thosesensors an replae the load ell. During the ourse of this projet, it beame lear howomplex a miroproessor ontrolled prostheti knee is, it needs to work �awlessly forvarious types of people, e.g. strong users were the knee needs to damp all movementsand weak users were the knee needs to swing freely throughout the swing periodwithout any damping.Suggestions for future work are following
• Obtain data from a larger variety of amputee for validation and estimation ofevents that ontrol the state mahine
• Create a prototype to run state mahine and lassi�ation in real time.
• Fine tune the state mahine, in partiular the preswing state.
• Adaptation, adaptation is one of the advanements of the Rheo knee over otherprostheti knees, whih parameters require adaptation.
• Adapt the state mahine to other terrains, whih parameters needs to behanged for di�erent terrain.
• Researh the sensor signals during ommon movements, e.g. sitting up/down,side stepping and other movements that are not as periodi as the regular gaityle.
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• Combine state mahine and urrent alulations, this would most likely be ahighly iterative proess sine hanged urrent alulations would a�et the statemahine and vie versa.
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A Features
This appendix shows satter plots of features disussed in Setion 5.2 but were notproessed any further.
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Figure A.1: Satter plots of all features
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Figure A.2: Satter plots of all features
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Figure A.3: Satter plots of all features
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Figure A.4: Satter plots of all features





B Terrains - Healthy subjet
This appendix shows sensor signals obtained from a healthy subjet on level groundat medium speed. To begin with the methods were developed by using data gatheredby healthy subjet and further work ould involve gait analysis for healthy people.

0 10 20 30 40 50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

30

% of gait cycle

 

 

X−acceleration [m/s2]

Y−acceleration [m/s2]
Angular rate [rad/s]

Figure A.5: Mean sensor signals, level ground
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Figure A.6: Mean sensor signals, stairs
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Figure A.7: Mean sensor signals, slope
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