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Abstra
t
The obje
tive of this study is to investigate the possibility of 
ontrolling a prostheti
knee by using a Xsens sensor module that 
onsist of 3D a

eleration, gyro and mag-neti
 sensors. The prostheti
 knee used for this study is the Rheo knee manufa
turedby Ossur In
. Pattern re
ognition methods are used to 
lassify terrain at ea
h step,i.e. level ground, slope or stairs. A state ma
hine is used to model gait 
y
le, wherephases are represented as states. Events of the gait 
y
le are found by sensor signals,the events 
ause transitions between states. Features of sensor signals are used to
lassify terrain. Gait phases are dete
ted using two a

eleration and one gyro sensor.Neural networks 
al
ulate an output 
urrent based on the Xsens sensor module tomat
h the Rheo output 
urrent. The results are that a

eleration and gyro sensors
an be used for 
ontrolling prostheti
 knees and the state ma
hine 
an be used as apart of a 
ontrol system for lower limb 
omputer 
ontrolled prostheti
s and orthoti
s.

iii





Útdráttur
Markmið þessarar rannsóknar er að kanna möguleikann á því að stjórna gervihnjáliðmeð því að nota Xsens nemasett sem samanstendur af þrívíðar hröðunar-, hornhraða-og segulnemum. Hnéð sem notað er við þessa rannsókn er Rheo hné sem framleitter af Össuri hf. Mynsturgreiningartól eru notuð til að �okka undirlag hvers skrefsog undirlögin eru jafnslétta, halli og stigi. Stöðuvél er notuð til að útbúa líkanaf gönguferli þar sem fasar gönguferlisins eru táknaðir með ástöndum. Atburðirgönguferilsins eru fundnir út frá merkjum frá nemunum sem notaðir eru við verkefniðog orsaka þeir færslu milli ástanda. Eiginleikar merkjanna eru notaðir til að �okkaundirlagið. Tveir hröðunarnemar og einn hornhraðanemi eru notaðir til að ákvarðaatburði. Með því að nota merki frá Xsens nemasettinu reiknar tauganet straum semhnéð sendir frá sér til að stjórna bremsu, netið er þjálfað með því að nota straumfenginn úr Rheo hnénu sem viðmið. Hröðunar- og hornhraðanemar henta vel til aðstjórna gervihnjálið. Stöðuvélina væri hægt að nota sem hluta af stærra stjórnker�fyrir tölvustýrða gervilimi og spelkur.
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1 Introdu
tion
Re
ent developments in prostheti
s have given amputees the ability to live normallife despite serious traumas and loss of limbs. Re
ently mi
ropro
essor 
ontrolledprostheti
 knee's have be
ome publi
ly available. A mi
ropro
essor 
ontrolled pros-theti
 knee provides an opportunity to 
ontrol the amputee's gait 
y
le with morepre
ision and make the gait 
y
le more natural. This study's goal is to use a

eler-ation, gyro and magneti
 sensors for gait re
ognition and knee 
ontrolling instead of
urrent sensors that require a me
hani
al 
onne
tion to the knee itself of the kneestru
ture. There are two types of mi
ropro
essor 
ontrolled knee 
urrently available,there are passive knees i.e. the knee is only 
apable of exerting power through abrake. Another type is a
tive knees i.e. the knee itself 
an 
reate power throughmotors and therefore give a great advantage to the users gait. The Rheo knee is anexample of a passive knee.This study aims to explore sensor 
ombinations 
apable of 
ontrolling a prostheti
knee. Two main fa
tors determine if a sensor 
ombination is suitable for knee 
on-trolling, one is terrain 
lassi�
ation and the other is output 
urrent 
ontrol. It mustbe possible to distinguish between terrain based on sensor signals. Output 
urrentmust be 
ontrolled a

ording to the required knee fun
tion at any time point, therequired knee fun
tion is determined by a
tual gait phase at every time point.Gait analysis has been resear
hed for a long time, few di�erent appli
ations andmethods are used. Appli
ation of gait analysis is e.g. to estimate and improve gaitdeviation for people su�ering from Parkinson disease [21℄ and Cerebral Palsy [9℄. Itis also widely used to estimate ability of the elderly to walk on their own withoutrisking falls and injuries [18℄. As well as for performan
e analysis and performan
eimprovement for athletes [16℄. A widely used analysis method is video and pressuremats [13℄ for ground rea
tion for
e(GRF) and video for visual dete
tion of gait phases.1



2 Chapter 1. Introdu
tionSin
e video gait analysis systems are expensive and require a lot of equipment theyare usually performed at gait labs, re
ently a mobile gait analysis system has beendeveloped. A re
ent mobile gait analysis system "GaitShoe" 
an be worn with anyshoe and in
ludes three orthogonal a

elerometers, three orthogonal gyros
opes, fourfor
e sensors, two bidire
tional bend sensors, two dynami
 pressure sensors, as wellas ele
tri
 �eld height sensors [3℄. Gait analysis is also done via a

eleration [29℄ orgyro sensors [28℄ only or both [19℄. Pattern re
ognition of human gait has been usedfor person identi�
ation and gender 
lassi�
ation where features are extra
ted fromvideos [15℄. Terrain 
lassi�
ation has been done for bioni
 leg based on GRF andpro
essed by neural networks(NN) [30℄.Mus
les and joints have 
ompletely di�erent fun
tions during di�erent phases of thegait 
y
le. For 
ontrol software to be able to 
ontrol a prostheti
 knee with stabilityand reliability the gait phase must be known at all time points and the knee needsto be able to sense and re
ognize the external environment. For this to be possiblepattern re
ognition is used to 
lassify di�erent terrains, methods used are K-nearestneighbors(KNN) and de
ision trees. Those two methods are sele
ted be
ause of nonparametri
 fun
tions, adaptation and training is also qui
k and simple. KNN is moreversatile than de
ision tree but de
ision tree is 
omputationally more e�e
tive andis easily programmed with simple IF-ELSE senten
es. State ma
hine is a way tomodel systems that require di�erent fun
tionality for di�erent periods of runtime.Gait phases are represented by states and the state ma
hine monitor sensor signalsto determine when state 
hanges should o

ur and therefore 
hange the systemsfun
tion. Finally if terrain and gait phase are known, the appropriate 
urrent suppliedto the knee brake is de
ided based on sensor signals. The 
urrent is 
al
ulated by aneural network, the neural network 
an use multiple inputs and be trained based onknown data, if favor of NN is that the inputs relation to the output is not requiredto be known, so 
omplex system 
an be used for 
ontrolling without the knowingexa
t fun
tion of every part of the system. When the NN is used the 
al
ulation 
annot be visualized easily therefore a more simple way using a knee angle sensor is alsoused for 
urrent 
al
ulations, the knee angle sensor 
an be easily visualized but thismethod only relies on the angle sensor and does not use other sensor signals.Short des
ription of following 
hapters:Chapter 2 presents short history of prostheti
s, introdu
tion to gait analysis di�eren
ebetween healthy and amputee gait and �nally short des
ription of the Rheo knee.In Chapter 3 theories of pattern re
ognition, the state ma
hine and neural networksare presented. Simple examples are shown for better des
ription of 
on
epts andappli
ations.Chapter 4 introdu
e sensors used for this proje
t, and shows graphs of sensor signalsduring gait both for the Xsens sensor module and the Rheo knee.



3Chapter 5 presents results of terrain 
lassi�
ation, the state ma
hine and 
ontrolsignal.Chapter 6 
ontains dis
ussions about 
on
lusions and future work suggestions.





2 Ba
kground
2.1 Prostheti
sShort summary of history of prostheti
s from [25℄. Eviden
e of amputations from43.000BC has been found, amputations were done with primitive tools su
h as knives,saws and axis. At that time amputations were probably done be
ause of infe
tionsresulting from animal atta
ks or other kinds of wounds.When the gunpowder was dis
overed the need for amputation drasti
ally in
reasedbe
ause of bullet wounds and injuries resulting from 
annon balls. In the early 1800s,Baron Larrey, surgeon to Napoleon Bonaparte, performed 200 amputations on thebattle�eld in 1 day.The First des
ription of arti�
ial legs 
an be found as early as 1500BC in Indianliterature.A prosthesis unearthed in the ruins of Pompeii that dated to 300BC is thought tobe the �rst prostheti
. This prosthesis was made of thin pie
es of bronze �xed to a
entral wooden 
ore and se
ured to the residual limb with a leather skirt. During thistime, prosthesis were made of �ber, wood, bone and metals and were often lined withrags. Designs for prosthesis were made by a number of in�uential �gures in
ludingAmbroise Paré, a military surgeon in the 16th 
entury, and Leonardo da Vin
i. Earlyprostheti
s were bla
ksmiths, armor makers and often the patients themselves.In the early 19th 
entury, with the advan
e of general anesthesia and the in
reasingnumber of industrial a

idents, the limbmakers were no longer skilled bla
ksmith buttrained prosthetists.War 
ontinued to provide the impetus for resear
h and development in prostheti
s.Following World War I, United Kingdom and United States were the main develop-ment and supply 
enters for military veterans, the Limb Fitting Center at QueensMary's Hospital and the Armed For
es in UK , the Veterans Administration in US.5



6 Chapter 2. Ba
kground

(a) Rheo knee (b) Proprio (
) Power kneeFigure 1: Ossur's Bioni
 te
hnology [20℄Following World War II Canada began developing a prostheti
 resear
h program atSunnybrook Hospital in Toronto. Big improvements of prostheti
s were made duringthese war times be
ause of large funds that attra
ted universities and private resear
h
ompanies to this �eld of resear
h.Additional re�nements are 
ontinually being made as eviden
ed by re
ently developedmi
ropro
essor-
ontrolled knees. I
elandi
 
ompany Ossur has two mi
ropro
essor-
ontrolled knees, Rheo Knee Figure 1a whi
h uses a mi
ropro
essor to 
ontrol brakefor swing and stan
e 
ontrol the other one is the Power Knee Figure 1
 whi
h alsouses a mi
ropro
essor for swing and stan
e 
ontrol and a motor for assisting the userwith e.g. stair walking and standing from seated positions as well helping user withswing and stan
e 
ontrol.2.2 Gait analysisGait analysis is study of human lo
omotion. Gait analysis is used to identify lo
o-motion related problems, e.g. ba
k, knee and hip problems. Gait analysis 
an alsobe used to suggest 
hanges for more e�
ient lo
omotion for athletes.Gait analysis is usually done via markers and video systems for limb tra
king andpressure mats for ground rea
tion for
e(GRF) measurements, where the for
es a
tson the bottom of the feet [10℄. Video system are expensive and needs spe
i�
 setupfor a

urate measurements, for that reason its hard to move video systems out of gaitlabs. Re
ently more mobile gait analysis systems have been developed, these systemsmostly 
onsist of a

eleration and gyro sensors [8℄.



2.2 Gait analysis 7Table 1: Histori
al timeline of amputations, prostheti
s and orthoti
s. [25℄43.000 BC Eviden
e found that amputation was done with primitive tools.2730-2625 BC A devi
e to stabilize the knee joint was found.1500 BC Indian literature des
ribes arti�
ial legs.370 BC Hippo
rates used splints on the legs.485-425 BC Herodotus des
ribed an individual imprisoned by Sparta whosupplied himself with a wooden foot.300 BC A prosthesis unearthed in the ruins of Pompeii is thought tobe the �rst prosthesis.131-201 Galen used dynami
 orthoses for s
oliosis and kyphosis.476-1453 During the Middle ages, knights wore elaborate armor to 
on-
eal prostheses.1200 Medi
al s
hool at Bologna 
onsiders orthoti
s as an importantpart of medi
al knowledge.1509-1590 Ambroise Pare' established te
hni
al standards for surgi
al am-putations and des
ribed spinal 
orsets and shoe modi�
ations.1690 Verduin 
onstru
ted a transtibial prosthesis with 
opperso
ket, leather thigh 
orset, and a wooden foot.1790-1847 Lisfran
, a famous surgeon, amputates a foot in less than 1minute.1800 Baron Larrey, surgeon to Napoleon Bonaparte performs 200amputations on the battle�eld in 1 day. He advo
ates woundsbeing operated on within the �rst 24 hours.1860 Mortality rate due to sepsis in London for transtibial and trans-femoral amputations were 50 and 80% respe
tively.1865 Lord Lister starts surgi
al antisepsis to de
rease high mortalityrates.1865 J.E. Hangar, sustains an amputation while serving in the Con-federate Army, pla
es rubber bumpers in solid feet, and pro-du
es the �rst arti
ulated prostheti
 foot.1918 After World War I, The Limb Fitting Centre at Queen Mary'sHospital, Roehampton be
omes a primary development andsupply 
enter to military veterans.1945 The U.S. Veterans Administration supports the developmentof the patellar tendon bearing and the quadrilateral so
kets.Canada develops a prostheti
s resear
h program at Sunny-brook Hospital in Toronto.1970 The U.S. Veterans Administration develops the endoskeletalprosthesis.2000 A mi
ropro
essor 
ontrolled knee with hydrauli
 swing andstan
e phase 
ontrol is developed.



8 Chapter 2. Ba
kgroundJoint movements during gait are an important part of gait analysis, for better un-derstanding of most simple joint movements of the knee and ankle Figure 3 
an bereferred to. Part of gait analysis is also hip and ba
k movements but they are notdis
ussed in this thesis. Gait 
an be separated to many bran
hes, Figure 2, ea
h ofthose bran
hes 
an be looked at a di�erent speed or di�erent terrain so the 
omplexityof gait analysis is almost endless. Grey boxes represent bran
hes used in this thesis.

Figure 2: Complexity of human gait2.2.1 Gait 
y
leThe gait 
y
le is a highly periodi
 pattern that is divided into two periods, stan
eand swing. The periods are then divided further into phases seen in Table 2. Gaitevents o

ur during the gait 
y
le, the two most familiar events are toe o�(TO) andheel strike(HS), 
alled initial 
onta
t in Figure 4 and Table 2. HS is the beginningof a step, when a person hits the ground after a swing period while the TO event isthe start of a swing period, see Figure 4 for visual des
ription of the gait 
y
le.



2.2 Gait analysis 9
(a) Knee extension (b) Knee �exion (
) Ankle dorsi�ex-ion (d) Ankle plan-tar�exionFigure 3: Knee and ankle joint movementsVariables of gait 
y
le are e.g.
• Distan
e� Stride: Linear distan
e between HS of one foot until next HS of the samefoot� Step: Linear distan
e between HS of one foot until next HS of the otherfoot
• Time� Stride duration: The time it takes to 
omplete a stride� Step duration: The time it takes to 
omplete a step� Caden
e: Number of steps per minutePeriodsThe stan
e period is the part of the gait 
y
le when some part of the foot is in 
onta
twith the ground. The swing period is when no part of the foot is in 
onta
t with theground, i.e. the foot is in the air, referen
e Figure 4. For a regular walk the stan
eperiod makes up 60% of the gait 
y
le and the swing makes up the remaining 40%. Inthis se
tion the gait 
y
le is des
ribed with the main fo
us on the fun
tions of the knee.PhasesEa
h period is divided into several phases, were ea
h phase represent di�erent fun
tionof joints and mus
les.



10 Chapter 2. Ba
kground

Figure 4: Normal gait 
y
le (Universität Wien, 2009)Table 2: Sequen
e of Event in Gait Cy
le [25℄Stan
e PeriodPhase Des
ription Per
entage of Gait Cy
leInitial 
onta
t When the foot hits the ground 0-2Loading response Until the opposite foot leaves theground 0-10Midstan
e Until the body is over and justahead of the support 10-30Terminal stan
e To toe-o� 30-50Preswing Just after heel-o� to toe-o� 50-60Swing PeriodPhase Des
ription Per
entage of Gait Cy
leInitial swing Until maximum knee �exion o
-
urs 60-73Midswing Until the tibia is verti
al 73-87Terminal swing Until initial 
onta
t 87-100Stan
e period The heel strike or initial 
onta
t is the event when the foot hitsthe ground after the swing period. Some people do not make initial 
onta
t to theground with the heel but rather the toes and hen
e this event is often 
alled initial
onta
t instead of heel strike, throughout this study heel strike naming will be used.The �rst phase is the loading response, that is when the foot hits the ground andmus
les must be ready to respond to the sudden impa
t of initial 
onta
t, until theopposite foot leaves the ground and the foot is taking over the entire load of the body



2.2 Gait analysis 11

Figure 5: Human leg, the bones in this segments are 
alled femur and tibia, sensor modulelo
ation and X-, Y- and Z-axisweight. At the loading response phase the knee is almost fully extended, but will �exslightly to lower the body 
enter of gravity to minimize the power used for verti
almovements of the body.The se
ond phase is midstan
e, midstan
e's 
riti
al event is to maintain knee exten-sion by restri
ting the tibia from going forward.The third phase is terminal stan
e, this phase also maintains knee extension but the
riti
al event is to raise the heel until the body begins to fall toward the oppositefoot.The fourth and last phase of stan
e is preswing, at this phase the 
riti
al event is theknee �exion, the knee �exes and the body 
ontinue to fall toward the other limb.Swing period The �rst phase of swing is initial swing, it begins when the foot is o�the ground and ends when the knee has rea
hed maximum knee �exion. This phaseuses the momentum gained from preswing to 
reate enough momentum to swing the



12 Chapter 2. Ba
kgroundfoot forward.The se
ond phase is midswing, the midswing begins at maximum knee �exion and endswhen the tibia is verti
al, during this phase the knee swings freely from maximum�exion to approximately 30◦. During this phase the ankle dorsi�exes to make toe
learan
e, to avoid stumbling be
ause of the hitting the ground with the toes whenthe foot is swung 
lose to the ground.The third and last phase of the swing is terminal swing, in this phase the 
riti
al eventis that the knee has extended enough to prepare for stable landing. This phase alsode
rease the a

eleration of the foot to prepare for a

epting the body weight again,this is the last phase before the HS and start of the gait 
y
le.
Events Events are used to de
ide on transition from one phase to another, in nor-mal gait these transition should happen in the sequen
e shown in Table 2.In human gait two main events o

ur every 
y
le, i.e. HS and TO whi
h are the startof the stan
e period and swing period respe
tively. HS is when the foot lands on theground after the swing period. TO is when the foot leaves the ground for a swingperiod. Other events are harder to dete
t and not as obvious, they are e.g. heel o�,maximum knee �exion and verti
al tibia in the swing phase. Healthy people don'tthink about these events when walking but for people with injuries or amputees thoseevent 
an help AI prostheti
s and orthoti
s to de
ide on phases and periods to beable to help the user a

ordingly based on position in the gait 
y
le.
2.2.2 Gait deviationsEven though the gait 
y
le is similar between any two people, there is always somedi�eren
e between people, e.g. walking speed, maximum knee �exion, GRF, moments
reated and ratio between stan
e and swing. A persons gait 
an 
hange based on load,walking speed, injury or even shoes to name few. A di�erent load will result in analtered gait 
y
le, if the person is holding a book in one hand the load the person willlean to one side and therefore alter the gait 
y
le observed on both legs. In the 
aseof foot injury, a person will try to minimize the time spent on the injured leg andtherefore alter the gait 
y
le. All these variations to the gait 
y
le make it di�
ultto have an absolute gait measuring te
hnique.In order to in
rease walking speed, the stan
e period time is de
reased and the swingperiod doesn't 
hange and therefore the stride time de
reases when walking speed isin
reased [10℄.



2.3 Rheo knee 132.2.3 Amputee gaitLeg amputees are divided into two groups
• Transfemoral(TF) or above knee amputee
• Transtibial(TT) or below knee amputeeThe gait 
y
le of amputees is quite di�erent from a healthy persons gait 
y
le. ForTF amputees 
onventional me
hani
al prostheti
 knee's will stay lo
ked in extendedposition throughout the stan
e phase, then unlo
k in the preswing phase to gainmomentum to rea
h maximum knee �exion. Therefore amputees need more energyduring stan
e period be
ause their body 
enter of gravity has more verti
al movement
ompared to healthy person. During the swing phase the amputee must rely moreon the momentum generated during preswing be
ause of no mus
le 
onne
tion to theknee joint it self. During the swing the biggest disadvantage is that when wearing
onventual knee prostheti
 it is �xed and does therefore not give enough toe 
learan
eto prevent stumbling, and therefore amputees both TF and TT need to move thefoot up by other parts of the body usually the hip and therefore the gait 
y
le isunsymmetri
al, it results in a more di�
ult gait and it looks di�erent from a regulargait.2.3 Rheo kneeThe RHEO KNEE R© is the world's �rst mi
ropro
essor swing and stan
e knee systemto utilize the power of arti�
ial intelligen
e. Capable of independent thought, it learnshow the user walks, re
ognizing and responding immediately to 
hanges in speed, loadand terrain.The knee adapts to any situation, and not just within pre-set and limited parameters,enabling the individual to qui
kly regain 
on�den
e in his or her ability to walk whereand how they 
hoose [20℄.2.3.1 Manufa
turerOssur In
 (hereafter Ossur) is an I
elandi
 
ompany founded in 1971 by ÖssurKristinsson. Ossur is a worldwide leading 
ompany in non-invasive orthopaedi
s.The Rheo knee and the Power knee are a part of a three produ
ts bioni
 te
hnol-ogy line Figure 1, the third produ
t is a mi
ropro
essor 
ontrolled ankle, Proprio.
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kgroundTable 3: Relation between the Rheo knee state ma
hine and gait periods and phasesState Phase PeriodStan
e �exion Loading response and partly midstan
e Stan
eStan
e extension partly midstan
e Stan
ePreswing Preswing Stan
eSwing �exion Initial swing SwingSwing extension Midswing and Terminal swing SwingOssur are a leading 
ompany within the �elds of prostheti
s, bra
es, supports and
ompression therapy. The 
ompany's phrase is "life without limitations" [20℄.2.3.2 SensorsThe Rheo knee senses the environment by two load 
ells and an angle sensor, thesensor output is shown in Se
tion 4.2.1. The load 
ells are built into the stru
ture ofthe knee whi
h makes the manufa
turing of the stru
ture 
ompli
ated and expensive.Current sensors do not give enough information to estimate some gait events requiredfor more detailed knee 
ontrolling or produ
t 
ombinations, e.g. the Rheo knee andthe Proprio ankle. The stru
ture is rated for spe
i�
 load, 
urrently for 100 kg users[20℄, if the load 
ell would not be required the stru
ture 
ould be made smaller andthe whole knee unit more 
ompa
t.2.3.3 Rheo knee state ma
hineThe Rheo knee is 
ontrolled via state ma
hine (see Se
tion 3.3), the Rheo knee statema
hine has �ve di�erent states shown in Figure 6 along with available state transi-tions. It's possible to move to stan
e �exion state from all other states, this is a safetystate and all transition ex
ept from the swing extension to stan
e �exion are safetytransitions. Safety transitions o

ur if the knee 
ontrol module senses an unusual sen-sor reading, e.g. a for
e during the swing period or the knee extending rather than�exing during the preswing state. Safety transition is triggered if the load 
ells senseload during states were no load should o

ur or unusual load reading during preswing.By referring to Tables 4 and 2 and Figure 6 the most frequent paths through the statema
hine are des
ribed here. The regular path through the Rheo knee state ma
hine isStan
e �exion → Stan
e Extension → Preswing → Swing �exion → Swing extension.
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Stance flexion
 Stance Extension


Preswing


Swing flexion
Swing extension


Figure 6: The Rheo knee state ma
hineSin
e few amputees are 
apable of performing 
ontrolled stan
e extension during gaitthe path through the state ma
hine is usually Stan
e �exion → Preswing → Swing�exion → Swing extension, this is a legal path sin
e the state ma
hine allows othertransition than just what the optimal path would suggest. In 
ase of stair walkingthe path is Stan
e �exion → Swing �exion → Swing extension, the reason for thisis that the amputee has all his weight on the knee when he lowering himself to thenext step, so the for
e will remain larger during the whole stan
e period rather thande
reasing during the end of stan
e period. One of the boundaries for entering thepreswing phase is that the load is less than some spe
i�
 number, if the state ma
hinewould enter the preswing during stair walking the 
ontrol software would turn o� thebraking torque with potentially bad 
onsequen
es.
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kground
Table 4: Des
ription of the Rheo knee state ma
hine and a
tionsState Des
riptionStan
e �exion Begins at HS, possible transitions are stan
e extension,preswing and swing �exion. During this phase the 
on-trol software is responsive to angular velo
ity, i.e. if theknee starts to �ex the knee output 
urrent proportional tothe angular velo
ity of the knee joint.Stan
e extension This state is rea
hed if the amputee is able to extentthe knee during stan
e period, possible transitions arepreswing, swing �exion and stan
e �exion. The 
ontrol soft-ware is less responsive to angular velo
ity, i.e. the brakingis not as harsh as in stan
e �exion phase.Preswing This state is rea
hed if the knee senses in
reasing moment(see Figure 25 and Table 2) and de
reasing for
e, possibletransitions are swing �exion and stan
e �exion. During thisstate the knee's braking torque is set to zero so the knee isable to gain momentum for the swing period, sin
e the kneedoes not have any motor it has to rely on power generatedby the amputee during stan
e period.Swing �exion This state begins by TO, i.e. when there is no load a
t-ing on the knee, possible transitions are swing extensionand stan
e �exion. During this state the 
ontrol softwaredamp the knee movement to a
hieve maximum knee angleof (usually) 60 degrees smoothly.Swing extension This state is rea
hed after maximum knee angle, possibletransition is stan
e �exion. During this state the 
ontrolsoftware damp the knee movement to end the swing as 
loseto zero degrees without a
tually rea
hing zero degrees.



3 Theory
3.1 Pattern re
ognitionHumans 
an easily re
ognize fa
es, letters, voi
es, damaged food or forms by vision,hearing, smell and tou
h. To be able to re
ognize a fa
e the brain uses parametersof the fa
e, e.g. width, height, length between eyes, and mat
hes them to an alreadyfamiliar fa
e. "Pattern re
ognition the a
t of taking in raw data and making an a
tionbased on the "
ategory" of the pattern has been 
ru
ial for our survival, and over thepast tens of millions of years we have evolved highly sophisti
ated neural and 
ognitivesystems for su
h tasks" [7℄.Computers have been designed and built to automati
ally re
ognize words, �nger-prints, fa
es, DNA and many more appli
ations [7℄. Automati
 pattern re
ognitionsystems are 
hallenging problems be
ause of many parameters involved in the natu-ral world, the brain 
an extra
t various, and as many as needed, parameters of thefa
e while the 
omputer only has prede�ned number of parameters. Limited numbersof parameters 
an 
ause an overlap in the re
ognition system be
ause of insu�
ientinformation and therefore 
ause 
lassi�
ation errors.3.1.1 DimensionsDimensions of the input data 
an be 
riti
al, Figure 7 shows two 
ategories thatare easily separated, but the same data in one dimension, Figure 8, is impossible toseparate with de
ent a

ura
y. Too many dimensions 
an also 
ause problems, there17



18 Chapter 3. Theoryis known a saying "
urse of dimensionality" [1℄ whi
h says that too many dimensionwill result in 
lassi�
ation error be
ause if data is non relevant it will a
t as noiseand de
rease a

ura
y of 
lassi�
ation.
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Figure 7: Two dimensional data set
3.1.2 Pattern re
ognition systemPattern re
ognition systems 
an be partitioned into 
omponents, the 
omponents areshown in Figure 9 and ea
h 
omponent's fun
tion is des
ribed in following se
tions.
SensingThe inputs to a pattern re
ognition system are arrays of data, e.g. 
amera photo,mi
rophone or sensors data. This part in
ludes pre pro
essing of the data, e.g.�ltering, transformation and noise redu
tion.
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Figure 8: One dimensional data setSegmentationSegmentation is one of the biggest problem of pattern re
ognition, it de
ides whenone sample begins and ends. In gait analysis segmentation is vital to know whenstep begins and when it ends for keeping tra
k of features during ea
h step withoutthe data overlapping between steps. For spee
h re
ognition the problem is to dete
twhen a word begins and ends, e.g. the word BEATS 
ould be re
ognized as BE or
EATS if the segmentation would fail to separate the spee
h to words 
orre
tly.
Feature extra
tionFeature extra
tion is key to pattern re
ognition, it 
onne
ts the input data to the
lassi�er. The feature extra
tor 
hara
terizes the data in real values that 
an be
ompared by 
omputer algorithms. Features of fa
e dete
tion 
an be width, length,fa
e part sizes and ratio between fa
e parts that 
an be measured in a
tual units that
an be 
ompared to a known samples.
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sensing
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feature extraction


classification


post processing


decision
Figure 9: Pattern re
ognition system [7℄Classi�
ationThe task of 
lassi�
ation is to use prior knowledge to assign a 
ategory of unknowndata by using the features provided by the feature extra
tor, in the 
ase of no priorknowledge similar data is 
lassi�ed to 
lusters whi
h then require post pro
essing for�nal 
lassi�
ation. The di�
ulty of 
lassi�
ation depends on the variability of thefeature values. There are many variations of 
lassi�ers, e.g. de
ision trees, maximumlikelihood estimation, regression, 
lustering and k-nearest neighbors(KNN) to namefew.Small two dimension example for visual explanation of de
ision trees and KNN 
anbe seen in Figures 11, 13 and 14.Univariate tree Univariate trees only 
he
k one feature at a time i.e. the split isaxis-aligned. Figure 10 and Figure 11, for this example �rst the x feature is 
he
ked,if x is smaller than 0.5 then the sample is 
ategorized as −1 otherwise the y feature
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ognition 21is 
he
ked, if y is smaller than 0.5 then the sample is 
ategorized as −1 if both nodeis ful�lled the sample is 
ategorized as 1.

Figure 10: Univariate tree de
ision nodes
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Figure 11: Univariate tree



22 Chapter 3. TheoryMultivariate tree Multivariate trees use a 
ombination of features to 
reate hy-perplane boundary instead of axis-aligned boundary and is therefore more general,multivariate trees 
an be used for an unlimited number of dimensions. Figure 12 andFigure 13 shows how this split works for a simple example. If wT
mx + w0 > 0 thenthe sample is 
ategorized as 1 otherwise it is 
ategorized as −1.

Figure 12: Multivariate tree de
ision nodes
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Figure 13: Multivariate tree
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ognition 23K-nearest neighbors K-nearest neighbors(KNN) is a nonparametri
 te
hnique,i.e. it doesn't estimate probability just de
ides 
ategories dire
tly. KNN needs adatabase of known samples, it 
an be used by two methods. In the �rst methodKNN 
an use a window, i.e. when a new data point is supposed to be 
ategorizedthere is a predetermined window where KNN labels the new data point as the labelof majority of data points from database that are within the window. The se
ondmethod is to 
ompare the new data point to the database and sear
h for KNN, thenthe new data point is labeled as the label of majority of data points from the KNN,distan
e between samples is 
al
ulated by the eu
lidian distan
e equation [7℄.
Dist =

√

√

√

√

n
∑

i=1

(xi − yi)
2By the se
ond method the windows grow to the ne
essary size to in
lude K neighbors.If the probability of terrain would be used for the KNN instead of �nal de
ision thepost pro
essing step would de
ide if the probability is enough to 
hange or maintainterrain. Figure 14 shows the de
ision boundary for the small example used earlier.
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Figure 14: KNN de
ision boundary with K = 3Higher dimensional KNN 
lassi�
ation is also available, the way of measuring thedistan
e must be de
ided sin
e parameters don't ne
essary have the same signi�-
an
e. The parameters 
an be altered for various signi�
an
e by multiplying themby 
onstant.



24 Chapter 3. TheoryPost pro
essingClassi�er is rarely 100% a

urate, the de
ision made by the 
lassi�er is more ofa suggestion of 
ategory. Post pro
essor uses the output from the 
lassi�er andother information, e.g. prior knowledge or risk of 
ertain a
tion, to determine theappropriate a
tion.
3.2 Neural networksThe idea of neural networks is inspired by the brain, the brain 
an pro
ess greatamount of data in a very short time e.g. vision, spee
h, re
ognition and learning.The neural networks are a simpli�ed model of the brain. The human brain is quitedi�erent from a 
omputer. Whereas a 
omputer generally has one pro
essor, thebrain is 
omposed of a very large (1011) number of pro
essing units, namely, neurons,operating in parallel. Though the details are not known, the pro
essing units arebelieved to be mu
h simpler and slower than a pro
essor in a 
omputer. What alsomakes the brain di�erent, and is believed to provide its 
omputational power, is thelarge 
onne
tivity: Neurons in the brain have 
onne
tions 
alled synapses, to around
104 other neurons, all operating in parallel. In a 
omputer, the pro
essor is a
tiveand the memory is separate and passive, but it is believed that in the brain, boththe pro
essing and memory are distributed together over the network, pro
essing isdone by the neurons, and the memory is in the synapses between the neurons[1℄.
3.2.1 Neural networkIn this proje
t 3 layer network was used, Figure 15 with a
tivation fun
tion tanh(x)[6℄. First layer xi is the input layer where x is taken into the network and distributedthrough to the next layer. Se
ond layer of the neural network yj is the hidden layer,there 
an be more than one layer but in this proje
t only one was used be
ausenetwork with two layers worked as well as the one used here. The third and the lastlayer zk is the output layer of the network where the estimated output of the network
an be seen. Links from ea
h neuron to all neurons in next layer are 
alled weights
wji, i.e weight from xi to yj , sometimes 
alled synapses as the 
onne
tions in brains.
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Figure 15: Three layer neural network, �gure from [7℄3.2.2 Feedforward operationFrom now on only three layer network will be used for demonstration. The feedfor-ward operation is algorithm to 
al
ulate the network output for given input x [11℄.Ea
h hidden neuron 
omputes the weighted sum of its inputs to form its s
alar net

activation whi
h is denoted by netj

netj =

nI
∑

i=1

xiwji + wj0 =

nI
∑

i=0

xiwjiThen ea
h neuron emits an output that is a nonlinear fun
tion of its a
tivation,
f(net), i.e.

yj = f(netj)Now ea
h output neuron similarly 
omputes its net a
tivation based on the hiddenneuron signals as
netk =

nH
∑

j=1

yjwkj + wk0 =

nH
∑

j=0

yjwkj



26 Chapter 3. Theoryat last the output neuron 
omputes the nonlinear fun
tion of its net, emitting
zk = f(netk)General form of the feedforward operation is

gk(x) ≡ zk = f

(

nH
∑

wkjf

(

nI
∑

wjixi + wj0

)

+ wk0

)

3.2.3 Ba
kpropagation algorithmBa
kpropagation is used for training the network, it will take one example x fromthe dataset and feed it through the network via feedforward, then 
al
ulate the er-ror between the desired output and the a
tual output and update the weights de-pended on the error. Sto
hasti
 ba
kpropagation was implemented for this proje
t.The basi
 sto
hasti
 proto
ols of ba
kpropagation is shown in the pro
edures below[7℄1: begin initialize nH,w, θ, η, m← 02: do m← m + 13: xm ← randomly 
hosen pattern4: wji ← wji + ηδjxi5: wkj ← wkj + ηδkyj6: until ‖∇J(w)‖ < θ7: return w8: endwhere η is the learning rate, J(w) is the training error, nK is number of outputs and
tk is desired output

J(w) ≡
1

2

nK
∑

k=1

(tk − zk)2

δk is 
alled the sensitivity of neuron zk

δk = (tk − zk)f ′(netk)

δj is 
alled the sensitivity of neuron yk

δj ≡ f ′(netj)

nK
∑

k=1

wkjδk



3.3 State ma
hine 273.3 State ma
hineState ma
hine, also 
alled automata, is a software engineering tool [4℄. The statema
hine is a tool to model a real time system that 
onsists of a �nite number ofstates where ea
h state requires di�erent a
tions based on various external or internalenvironments. The state ma
hine does not usually have an endpoint, i.e. it is anendless loop. The system travels between states by predetermined transitions thatare guarded by boundaries or �ags. The whole system 
an 
hange behavior based onstates by di�erent a
tions de�ned by the states.A simple example for des
ription of states, transitions and a
tions, Figure 16. Thisis a simple model of automati
 door with motion sensors for dete
ting movement atthe door. There are two systems, one for the door and one for the motion sensor.States The states are Close, Open and Motionsensor, the states represent 
loseddoor, open door and sensor a
tive respe
tively. For ea
h state there are at least onein
oming and one outgoing transitions. Ea
h state 
an have spe
i�
 a
tions that areexe
uted at 
urrent state.Transitions Transitions are represented by arrows, they are triggered by events.There are two types of events in this example, timed event i.e. when time has ex
eededsome limit and a trigger event. There are two types of triggers, 
all triggers shownas trigger! and respond triggers shown as trigger?. When a motion sensor sensesmovement it will transit through the loop transition, this transition set time t tozero, i.e. reset timer, and 
alls trigger that 
reates transition in door system. When
trigger! is 
alled it depends on what state the door system is at 
urrently, if the Closestate is a
tive the state ma
hine will transit to Open state, if the Open state is a
tiveit will loop and the timer will be reset. If the a
tive state does not have transition
alled by 
alled trigger there will be no transition. A timed event only o

urs if thetimer has ex
eeded a spe
i�
 limit, in this example when the timer has ex
eeded 10time units the door system will transit to Close state.A
tions A
tions are a set of 
ommands exe
uted when the state is a
tive or whenthe state is entered. In the Close state the a
tion is to 
lose the door when thestate is entered, in the Open state the a
tion is to open the door when the state isentered, it will remain open if the door is already open when state is entered. The
Motionsensor state a
tion is to listen and rea
t to the motion sensor.
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Figure 16: Simple state ma
hine exampleState ma
hine validation Sin
e a state ma
hine 
an 
onsist of a large number ofstates and transitions, the possible paths through the state ma
hine 
ould be morethan is possible to test. For state ma
hine validation some tools and methods havebeen 
reated, one tool is Uppaal developed jointly by Aalborg University in Denmarkand Uppsala University in Sweden (http://www.uppaal.
om/), another interestingtool is 
alled Rebe
a (http://khorshid.e
e.ut.a
.ir/∼rebe
a/). Validation tools areprogrammed to sear
h for illegal transitions, out of bounds states or any possibleway to 
reate an unstable state ma
hine, by 
he
king all possible paths through thestate ma
hine and sear
hing for spe
i�
 events or transitions that 
ould lead to afailure of the state ma
hine [32℄, [26℄.



4 Sensors and measurement setup
4.1 MeasurementsMeasurements were obtained by the Xsens sensor module and data logged by Rheoknee software. Xsens sensor module was �xed at approximately ankle height Figure5, on an amputee walking on Rheo knee and a healthy subje
t. Isolated tests wereperformed for three terrains, level ground, stairs and slope. The amputee was askedto walk at three di�erent walking speeds, slow, medium and fast where the amputeede
ided himself the appropriate speed for ea
h of them. All data for the state ma
hinedesign was obtained by a single amputee, validation performed by another amputee.Test setups were
• Level ground: Indoor, hardwood �oor, 2 sets at slow speed, 8 at medium speedand 1 set at fast speed
• Stairs: Indoor, 18
m high steps, linoleum �oor, 4 sets
• Slope: Outdoor, approx 10◦, asphalt, 3 sets
• Soft underlay: Outdoor, level ground, wet grass, 1 setAxis of the sensor module are shown in Figure 5, axis with referen
e to the tibia are
• X is perpendi
ular to the tibia, forward/ba
kward
• Y is parallel to the tibia, up/down 29
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• Z is perpendi
ular to the tibia and foot, sidewaysWhole data series, 18 steps from stationary to stationary position, obtained at levelground and medium speed via Rheo knee software for for
e Figure 17, moment Figure18 and knee angle Figure 19, only most relevant variables shown. It 
an be seen fromthe data obtain by the Rheo knee that sensor values obtained during gait are highlyperiodi
.
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Figure 17: Rheo knee data, GRFThe whole data series, obtained at the same walk as for the Rheo knee, via Xsenssensor module for X-a

eleration Figure 20, Y-a

eleration Figure 21 and tibia an-gular rate Figure 22, only most relevant sensors shown. It 
an be seen from the dataobtained by the Xsens sensor module that the sensor values obtained during gait arehighly periodi
, espe
ially angular rate.4.2 Sensor moduleThe sensor module used for data gathering during this thesis is Xsens MTi fromXsens Motion Te
hnologies. The sensor signal pro
essor provides 
alibrated signalsfor 3D a

eleration, 3D rate of turn and 3D earth-magneti
 �eld data. A bluetooth
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Figure 18: Rheo knee data, moment
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Figure 19: Rheo knee data, knee angle
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Figure 20: Xsens data, X-a

eleration
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Figure 21: Xsens data, Y-a

eleration
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Figure 22: Xsens data, angular ratesender was integrated to the sensor for wireless data gathering. Next se
tion des
ribes
urrent sensors the Rheo knee uses for gait phase dete
tion, then a short des
riptionof sensors used during this study.4.2.1 Rheo knee's 
urrent sensorsThe Rheo knee is equipped with three sensors, a pot sensor whi
h measures theabsolute knee angle, Figure 23, and two strain gauges also 
alled load 
ells, one atthe front and one at the ba
k, whi
h measure the load through the knee's stru
ture.By addition and subtra
tion GRF and moment is 
al
ulated, Figures 24 and 25respe
tively, limit for stan
e period is 8 bits set by the Rheo software. The Rheo kneehas built in hardware di�erentiation for the angle sensors and in that way angularvelo
ity of the knee joint is obtained. The GRF and moment are similar to resultfrom a re
ently published arti
le about for
e and moment in healthy subje
t's tibia[31℄. The knee angle of a healthy subje
t will have in
reased to 10-15 degrees duringthe stan
e phase while amputees do not �ex the knee during stan
e phase [10℄, butwith the Rheo knee stan
e �exion is made possible with 
omputer 
ontrolled stan
e
ontrol.
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% of gait cycleFigure 25: Rheo knee moment4.2.2 A

eleration sensorsA

eleration sensors are used to dete
t motion, impa
ts or vibrations. A single axisa

eleration sensor 
onsists of a mass and a spring, the mass is suspended by thespring and the mass is allowed to move in one dire
tion, whi
h is the measureddire
tion, the displa
ement of the mass is a measure of the a

eleration it undergoes[17℄. A

eleration sensors have fast response, are highly sensitive, require low voltageand has low 
urrent 
onsumption. Be
ause of low power demand they are ideal forsmall real time appli
ations like prostheti
 knees.Appli
ations where a

eleration sensors are used are e.g. gait analysis [19℄, earthquakedete
tion systems [27℄, 
ar impa
t dete
tion systems [5℄, gps systems [23℄ and game
onsols [24℄.Figure 26 shows sensor signals for an amputee walking on level ground.4.2.3 Gyros
opeThere are few designs of an angular rate sensor (gyros
opes) e.g. spinning rotorgyros
opes, laser gyros
opes and vibrating mass gyros
opes. Spinning rotor- andlaser gyros
opes are bulky and expensive. A vibrating mass gyros
ope is small,
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eleration sensors [m/s2℄inexpensive and has low power requirements. A vibrating mass gyros
ope 
onsists ofa small mass and a distan
e measurement that measures displa
ement of the masswhen the mass experien
e 
oriolis for
e be
ause of angular velo
ity [17℄. Gyro sensorsare mainly used for navigational appli
ations [14℄, others are e.g. gait analysis [19℄and stabilization systems [12℄.Figure 27 shows gyro sensor signals for an amputee walking on level ground.4.2.4 Magneti
 sensorsMagneti
 sensors sense a magneti
 �eld of the environment. A magneti
 sensor issensitive to the earth's magneti
 �eld and 
an therefore estimate horizontal dire
tionof the sensor. Magneti
 materials 
an have an a�e
t on the sensor, ferromagneti
materials like iron will disturb the magneti
 �eld and the sensor won't be able to givean a

urate dire
tion [22℄. Sailing maps have spe
ial magneti
 symbols where themagneti
 �eld is disturbed by a large amount of iron or other magneti
 materials,whi
h results in ina

urate heading of the ship's 
ompass. Appli
ations of the mag-neti
 sensor is mainly 
ompass related, they 
an be used to dete
t magneti
 obje
tsin e.g. sand, heading and orientation 
orre
tion for gyros
opes via sensor fusion bye.g. Kalman �lter [22℄.
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5 Results
5.1 Prepro
essing
5.1.1 Prin
ipal 
omponent analysis(PCA)
Prepro
essing was minimal sin
e the sensor module has built in �lters and outputsstable and usable signals. To determine whi
h sensor should be used for this thesis themost obvious 
hoi
e would be X-a

eleration, Y-a

eleration and angular rate sin
ethe most relevant linear movement of the foot is in X- and Y-dire
tion and angularmovement around the knee(Z-axis), refer to Figure 5. Prin
ipal 
omponent analysiswas used to determine whi
h signals represent the most varian
e of the signals. Table5 shows how mu
h varian
e ea
h PCA represent, �rst three 
omponents explain morethan 95% of the varian
e and therefore only �rst three 
omponent are looked at morethoroughly. Table 6 shows what sensors are most relevant for ea
h 
omponent, the�rst 
omponent's most relevant sensor is X-a

eleration, the se
ond 
omponent's mostrelevant sensor is Y-a

eleration and the third 
omponent's most relevant sensor isthe angular rate around the knee axis. Angular rate is also the se
ond most relevantsensor in 
omponents one and two. Based on those results the three sensors usedduring gait analysis are sele
ted as X- and Y-a

eleration along with the angularrate. Figures 29 and 30 are graphi
al representation of Table 5.39



40 Chapter 5. ResultsTable 5: PCA resultsPCA Per
ent explained Ea
h PCA1 54.82 54.822 85.29 30.473 95.15 9.864 98.61 3.455 99.24 0.636 99.58 0.347 99.87 0.298 99.96 0.089 100.00 0.04Table 6: PCA results - First three 
omponentsSensor Comp. 1 Comp. 2 Comp. 3Y-a

. -0.0670 0.9618 0.2178X-a

. 0.9577 0.1270 -0.1683Z-a

. -0.1215 0.0385 0.3536Y-gyro 0.0204 -0.1243 0.1966X-gyro -0.0306 -0.0209 0.0130Z-gyro -0.2482 0.2034 -0.8711Y-mag. -0.0109 0.0074 0.0263X-mag. 0.0239 -0.0005 -0.0298Z-mag. -0.0009 -0.0004 0.00295.2 Pattern re
ognition5.2.1 TerrainThe knee needs to be able to distinguish between di�erent terrains, e.g. level groundFigure 31, stairs Figure 32 and slope Figure 33. The gait 
y
le varies between terrainsand the knee has to be able to respond qui
kly and e�
iently to new terrain.Based on trials with the Rheo knee, it doesn't need to brake mu
h during mid- andterminal stan
e in normal level ground walking sin
e the knee is usually fully ex-tended and does not �ex or extend. When an amputee is walking down stairs or onde
lining slope all the body weight is on the knee while the user is moving from higherposition to a lower by �exing the knee, therefore the knee needs more resistan
e to�exion than when in normal level ground walking.
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Figure 31: Mean sensor signals, level ground, medium walking speedFor 
omparison to sensor signals for a healthy subje
t, �gures for level ground, stairand slope 
an be seen in Appendix B.5.2.2 FeaturesBy 
omparing data for the three di�erent terrains, level ground Figure 31, stairsFigure 32 and slope Figure 33 the following features were sele
ted for more detailedanalysis.
• Peak to peak of the Z gyro signal
• Peak to peak of the X a

eleration
• Maximum amplitude of the X a

eleration
• Peak to peak(PtP) at toe o� for X a

eleration
• Maximum amplitude at toe o� for Y a

eleration
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Figure 32: Mean sensor signals, stairs
• Stride durationThe Y-a

eleration and X-a

eleration signals at TO are prime 
andidates to distin-guish between level ground and stairs or slope, sin
e the peaks are reversed aroundthe toe o�. Ideally these signals 
ould trigger di�erent terrain settings in the 
ontrolsoftware of the knee early enough to be able to 
ontrol the swing phase a

ordingto 
urrent terrain without having problem during �rst step be
ause of wrong terrainestimation. The pattern re
ognition software 
ould re
ognize the terrain in 
urrentstep instead of making a de
ision based on data obtained during the last step.5.2.3 Test dataTest data was obtained by isolated tests for all three terrains. All tests were per-formed at a self sele
ted speed by the amputee. Level ground walking was performedat slow, medium and fast pa
e, Figures 34, 31, 35 respe
tively, those �gures show thatin
reased walking speed results in in
reased peaks value and de
reased stan
e/swingratio (refer to minimum value of angular rate signal at approximately 55-60% ofgait 
y
le). Slope walking was performed at approximately 10◦ slope and performed
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Figure 33: Mean sensor signals, slopeat slow and medium pa
e. Stair walking was performed at stairs with 8
m high steps.Test data in
ludes following number of samples, ea
h step is regarded as one datapoint
• 133 data points for level ground
• 50 data points for slope
• 20 data points for stairIf Figures 31, 32 and 33 are 
ompared, the most likely features to distinguish betweenthe terrains would be PtP X-a

eleration at toe o� Figure 36 and max Y-a

elerationat toe o� Figure 37.These two features on their own are not able to distinguish between level ground andstairs be
ause of 
omplete overlap between the two terrains at PtP X-a

elerationat toe o�. Max Y-a

eleration at toe o� is able to separate slope from level groundand stairs de
ently, with a small overlap at −5 to −3 (this is not a problem duringhigher dimension 
lassi�
ation), two or three data points of 50 data points for slope.PtP X-a

eleration at toe o� has some overlap between level ground and slope, and
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Figure 34: Level ground, slow walking speed
ould not be used on its own to distinguish between any of the terrains with enougha

ura
y.Features 
an be plotted in as many dimensions as the features are, but for graph-i
al representation two dimensions are easiest to des
ribe and visualize. When allfeatures are plotted against ea
h other two instan
es are the best 
andidates for su
-
essful 
lassi�
ation results. All other 2D feature versus feature plots 
an be seen inAppendix A.
• Angular rate versus PtP X-a

eleration at toe o�, Figure 38
• Angular rate versus max Y-a

eleration at toe o�, Figure 39Figures 38 and 39, angular rate versus PtP X-a

eleration at toe o� and angular rateversus max Y-a

eleration at toe o� respe
tively show that in simple manner ea
h ofthe three terrains 
an be separated from other terrains.Angular rate versus PtP X-a

eleration at toe o� data point form three well separated
lusters. Angular rate versus max Y-a

eleration at toe o� does also form three wellseparated 
lusters but one data point from slope is at the stairs 
luster and one point
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Figure 35: Level ground, fast walking speedis between level ground and stairs, those two point 
ould 
ause problems during
lassi�
ation if two dimensional 
lassi�
ation would be used.By 
omparing Figures 41, 42 and 43 and noti
ing the di�eren
e between the de
isionboundaries. The boundaries show that when K is lower KNN is more sensitive tonoise, but as K in
reases the de
ision boundaries be
ome more smooth and reliable.From these two dimensional data plots it 
an be seen that distinguishing betweenterrains 
an be done with simple 
lassi�
ation methods.
5.2.4 De
ision treeDe
ision tree is e�
ient nonparametri
 method, whi
h 
an be 
onverted to a set ofsimple IF rules that are easily programmed in a 
onventional way.
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atter plot, PtP X-a
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Figure 38: S
atter plot, angular rate versus PtP X-a

eleration at toe o�
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Figure 39: S
atter plot, angular rate versus max Y-a

eleration at toe o�
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Figure 40: S
atter plot, stride duration versus PtP X-a

eleration at toe o�
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Figure 41: KNN de
ision boundary, K = 1
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Figure 42: KNN de
ision boundary, K = 5
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Figure 43: KNN de
ision boundary, K = 7



5.2 Pattern re
ognition 51Univariate TreesIn univariate trees the rules use only one of the input variables for split whi
h resultsin unsmooth de
ision boundary when the number of splits are kept at minimum seeFigure 44 [1℄. The bene�t to this method is that it 
an be programmed by simple IFsenten
es that are easy to understand and implement. The disadvantage is that it 
anbe really sensitive to noise and if it's to simple it 
an 
ause a problem distinguishingbetween groups that are 
lose together and are not s
attered perfe
tly for this method.Boundary shown in Figure 44 has four IF senten
es, after training of the 
lassi�erthe 
omputational requirements are low.
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Figure 44: Univariate de
ision tree, boundaryMultivariate TreesMultivariate de
ision tree is similar to the univariate ex
ept that the splits 
an bede�ned by more than one variable at ea
h split, see Figure 45. These splits area
hieved by three IF senten
es, whi
h shows that the multivariate de
ision tree hasalso low 
omputational requirements but is more versatile than univariate de
isiontree.
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Figure 45: Multivariate de
ision tree, boundaryMulti dimensional 
lassi�
ationFor three dimensional 
lassi�
ation there is no overlap in data samples and test datashows 100% a

ura
y when PtP X-a

eleration at toe o�, angular rate and strideduration is used as parameters for the 
lassi�
ation, Figure 46. KNN and multivari-ate de
ision tree form hyperplane that distinguish the three di�erent terrains. Twodimensional examples were used for easier visualization of the pattern re
ognitionmethods used for this study.
5.2.5 Classi�
ation validationClassi�
ation methods were trained by data obtained by a single amputee, validationwas done by obtaining data from another amputee and letting the 
lassi�er work onthat data. Two methods are shown here, the multivariate tree and KNN with K = 5Figure 47 and 48 respe
tively, both 
lassi�ers have 100% a

ura
y for those few stepsobtained for simple validation.



5.2 Pattern re
ognition 53

5

10

15

0

10

20

30

40

50

0.8

1

1.2

1.4

1.6

1.8

 

Angular velocity
PtP X−acce at toe off

 

S
tr

id
e 

du
ra

tio
n

Level ground
Slope
Stairs

Figure 46: Three dimensional features
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Figure 48: Classi�
ation validation, KNN K = 55.3 State ma
hineFor the Rheo knee to fun
tion 
orre
tly the state ma
hine must obtain 
orre
t and a
-
urate readings from the sensors. Current sensors are sensitive to 
alibration, wrongly
alibrated sensors 
an result in in
orre
t sensor readings and therefore in
orre
t statema
hine transitions whi
h leads to a dysfun
tional knee. Some state transitions areguarded by limits for the sensor values, those limits 
an be ex
eeded be
ause of noiseor unusual knee usage, those situations 
an also lead to a dysfun
tional knee. Noise
an lead to rapid state transitions, when signals are 
lose to limits, whi
h 
an 
ausethe knee to fun
tion strangely for a short period of time and 
ause the amputee tofeel inse
ure about using the knee.5.3.1 Sensor module state ma
hineThe Sensor module state ma
hine (hereafter SM state ma
hine) 
onsists of sensorssele
ted in Se
tion 5.1. The SM state ma
hine is used in the same manner as theRheo knee uses a state ma
hine see Se
tion 3.3, but states found by sensor modulerepresent the gait phases more 
losely than the Rheo knee does, relations betweenstates and phases for SM state ma
hine are shown in Table 7. State transitions



5.3 State ma
hine 55Table 7: SM State ma
hineState Phase PeriodLoading response Loading response Stan
eMidstan
e Midstan
e & terminal stan
e Stan
ePreswing Preswing Stan
eInitial swing Initial swing SwingTerminal swing Midswing & terminal swing Swingwere designed to be as robust as possible by looking for peaks instead of 
he
kinglimits, sin
e no two people are the same but the state ma
hine must work for variousamputees.Transition des
ription in Table 9 assumes optimal level ground walking, i.e. Loadingresponse → Midstan
e → Preswing → Initial swing → Terminal swing.The SM state ma
hine is 
losely related to the Rheo knee state ma
hine des
ribed inTable 4, des
ription for the SM state ma
hine is at Table 8.For this study a state ma
hine was only formulated for level ground walking, dataused for visualization was obtained at medium speed level ground walking. The statema
hine was tested on database 
onsisting of 11 level ground walking trials at variouswalking speed.For visual understanding of data, states and transitions only two steps are shown inFigures 49 to 53.
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Table 8: Des
ription of the SM state ma
hineState Des
riptionLoading response Figure 49, the foot is unstable due to HS and foot not 
ompletelyon ground, during this phase the 
ontrol software should be re-sponsive to sudden 
hanges in knee angle.Midstan
e Figure 50, during this phase the foot is stable and is allowed to�ex to some level to help the amputee to do stan
e �exion andtherefore have more natural gait. There should not be any fast
hanges of the knee angle during this phase, only relatively slowmovements.Preswing Figure 51, this phase is identi
al to the Rheo knee's preswing,this phase is used to gain momentum for the swing phase. Theexa
t moment to move from midstan
e to preswing 
ould make thedi�eren
e between an easy swinging knee and un
omfortable kneewhere the user needs to swing the hip to generate extra energyfor the swing period.Initial swing Figure 52, initial swing begins as TO. This phase uses momentumgained in the previous phase to swing the tibia until the kneerea
hes 60 degrees �exion(regular maximum knee angle for normalwalking [10℄).Terminal swing Figure 53, during this phase the knee goes from maximum angleto zero degrees. When knee is almost fully extended it's ready fornext HS.
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Figure 49: SM state ma
hine, loading response
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Figure 50: SM state ma
hine, midstan
e
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Figure 51: SM state ma
hine, preswing
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Figure 52: SM state ma
hine, initial swing
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Figure 53: SM state ma
hine, terminal swing
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ription of state transitionsTransition Des
riptionLoading response
→ Midstan
e This is right after HS, the Y-a

eleration is �u
tuating be
ause ofimpa
t 
aused by HS. When the a

eleration has settled the footis stable and the foot has responded su

essfully to the weight ofusers body.Midstan
e →Preswing During midstan
e all sensor are quite stable sin
e the foot is in
onta
t with the ground and therefore 
ompletely still. Whenboth angular rate and Y-a

eleration start to de
rease then theuser is lifting the heel o� the ground and moment is 
reated inthe knee stru
ture whi
h 
reates good ki
k start for momentumrequired for swing phase.Preswing → Ini-tial swing Angular rate is in
reasing and Y-a

eleration is at lo
al maximum.The Y-a

eleration peaks when the foot leaves the ground forswing period.Initial swing →Terminal swing Sin
e maximum knee angle is rea
hed during initial swing, theknee is still at that moment before it starts extending. When theve
tor sum of both a

eleration sensors is 
lose to earth gravitythis transition is triggered.Terminal swing →Loading response Due to impa
t the a

eleration sensors spike at HS, so the transi-tion is triggered by a spike in X-a

eleration, but guarded by a �agthat is set when the X-a

eleration 
rosses zero sin
e a

elerationsensors are not very stable.

Figure 54 shows angular rate measurements for level ground walking along with statevalues. This �gure shows that the state ma
hine is 
onsistent through the whole dataseries. Data is pro
essed like in a real time appli
ation the state ma
hine 
an notsee future values only 
urrent and older. Green lines represent states, were value 1 isLoading response, value 2 is Midstan
e and so on. Table 10 shows the per
entage ofea
h state during gait, when this is 
ompared to regular walk, Table 2, it 
an be seenthat those numbers are similar. The main di�eren
e is the Midstan
e is 30% but thephases that this state represents is expe
ted to be around 40%, the reason for this isthat the preswing state is entered slightly to early to generate more momentum for theswing period. The stan
e period is less 60% whi
h 
an be explained by the fa
t thatthe amputee who performed those tests walks faster than most people and amputee'shave a slightly shorter stan
e period than a healthy person for same walking speed[2℄.
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Figure 54: SM state ma
hine and angular rate, level groundTable 10: Phase intervalsPhase Per
entage of Gait Cy
le TotalLoading response 14.07 14.07Midstan
e 28.19 42.27Preswing 11.29 53.56Initial swing 18.90 72.45Terminal swing 27.55 1005.3.2 Comparison between the Rheo knee and the SM statema
hineThe Rheo knee and the SM state ma
hines use di�erent sensors for transition and
ontrolling the state ma
hine.The Rheo knee uses load 
ells and knee angle sensor, the di�eren
e between thestan
e and swing period is based on readings from the load 
ells, this di�eren
e is
lear and reliable, but is based on limits and therefore badly 
alibrated load 
ells
an result in stan
e and swing re
ognition errors. Preswing phase is estimated basedon the load 
ells also, here the moment is used and when the moment is above a
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i�
 limit the knee transits from stan
e �exion or stan
e extension to preswing,this limit 
an be ex
eeded be
ause of sensor noise, this transition 
an require some�ne tuning. During the swing period the knee only senses the knee angle, for thatreason terrain estimation of 
urrent step during swing period is not ideal be
ause ofinsu�
ient information about the movement of the foot.SM state ma
hine uses a

eleration and gyro sensors, heel strike is easily dete
ted byrapid 
hanges in a

eleration (
alibration does not have a�e
t sin
e only in
rease inthe signal value trigger the state transition), therefore the di�eren
e between stan
e-and swing period is reliable for all tests performed during the 
ourse of this study(additional tests are required for validation of non regular movements, e.g. sidestepping). Preswing is estimated based on Y-a

eleration and angular rate and mayrequire some adjustments, the beginning of preswing is similar to situations when theuser is falling down. Both state ma
hines require some �ne tuning to dete
t preswing.A

eleration sensors 
an dete
t motion during swing period and therefore have morea

urate knowledge of foot positions, e.g. if the foot is moving downwards for stairand slope and adjusts swing period to 
hanged terrain estimation.For 
omparison of the Rheo knee and the SM state ma
hines only two steps areused (same steps as before). Figure 55 shows the di�eren
e between those two statema
hines. Figure 55 shows that the Rheo knee state ma
hine is using the preswingstate for more than 50% of the stan
e period, this may in
rease the risk of userstumbling be
ause the knee's brake is set to zero during the preswing state andthe knee has to make a state transition to respond to unexpe
ted situations. Thetransition from stan
e to swing happens later for the SM state ma
hine, there arestudies that agree to the timing of SM state ma
hine, whi
h is based on lo
al minimumof the angular rate measurements [28℄ see Figures 51 and 52.
5.3.3 Midswing eventIf the knee would be used along with an 
ontrolled ankle, 
apable of plantar- anddorsi�exion an midswing event is required to estimate when to plantar�ex to beready for initial 
onta
t. Instead of having the midswing phase as a separate state itis re
ognized as an event, i.e. just a time point in the swing period. Figure 53 showsthat Y-a

eleration has a lo
al minimum at the mid time of terminal swing, also theangular rate has an global maximum at a similar time point, those signal 
an be usedto estimate the midswing event.
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Figure 55: Comparison between the Rheo knee and the SM state ma
hine
5.3.4 Sensor positionAll test were performed with the sensor module �xed to the ankle see Figure 5. Thismay not be the optimal position if the knee is not used with a spe
i�
 ankle thathas the sensor module built in. Therefore one test was performed by the sensor �xedapproximately 10
m below the knee joint. Figures 56 and 31 show that there aresome di�eren
es in the signal based on the sensor position. The angular rate signal isidenti
al as expe
ted. X-a

eleration has quite a di�eren
e but still has good spikesthat 
ould be used for gait re
ognition but would not work with the state ma
hinethat was built around a sensor lo
ated at the ankle sin
e the peak at toe o� seams tohave shifted to before the a
tual TO. Y-a

eleration is also quite di�erent dependingon the sensor position, but has important spikes at the same time points and 
ouldtherefore be used with 
urrent state ma
hine without any big 
hanges. More varian
efor these signals is most likely 
aused by sensor movement during gait, it was not aseasy to �x the sensor to the prostheti
 knee stru
ture as it was at the ankle position.
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Figure 56: Sensor lo
ated approx. 10
m below knee5.3.5 Soft underlayA test was performed to determine the e�e
t of soft underlay, the test was performedon level ground, at medium speed and on soaking wet grass. As before all peaksare available for gait re
ognition and the state ma
hine works as well as for hardunderlay. Figures 57 and 58 show mean sensor values for this test and state ma
hinefun
tions during the test respe
tively.5.3.6 State ma
hine validationState ma
hine validation was done by having an amputee who had not performedany tests that were used to formulate the state ma
hine. The sensor was �xed toamputee's ankle and a test performed as before. Mean sensor values are shown inFigure 59 by 
omparing them to Figure 31 the signals are obviously di�erent butall important peaks and sensor signals forms are present. Sin
e all state transitionsex
ept for midstan
e → preswing are de
ided by peaks, all those transitions work asexpe
ted, the midstan
e → preswing transition also worked and happened at TO.State ma
hine results are shown in Figure 60 and Table 11 shows the per
entage of
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Figure 57: Mean sensor signals. Soft underlayTable 11: Phase intervals. SM state ma
hine validationPhase Per
entage of Gait Cy
le TotalLoading response 12.36 12.36Midstan
e 31.16 43.51Preswing 12.97 56.49Initial swing 17.80 74.29Terminal swing 25.71 100ea
h state during gait.5.4 Control signalThe 
ontrol signal that the Rheo knee uses 
urrently is the only referen
e for a 
ontrolsignal. Figure 61 shows the output 
urrent and the SM states along with the kneeangle. The 
urrent is mainly used to make smooth knee stops, both at the end of theinitial swing and the end of the terminal swing. The 
urrent in
reases right after HSwhen the foot is gaining stability for the stan
e period.
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Figure 58: State ma
hine and angular rate. State ma
hine validation for soft underlay5.4.1 Neural networkNeural networks were used to estimate the output 
urrent of the knee, settings usedwere one hidden layer and 15 hidden neurons. All possible variations the nine sensorsof the Xsens sensor module and the knee ankle obtained from the Rheo knee. Trainingof the network used the sensors as input and output 
urrent obtained from the Rheoknee as output. Table 12 shows the top �ve sensor 
ombinations when measured by
orrelation between untested test data output and a
tual output. It 
an also be seenthat the knee angle and X-a

eleration is the most vital in output 
al
ulations If theknee angle is not a part of the sensor 
ombinations X-a

eleration and X-angular ratehas the most 
orrelation the 
orrelation is 0.75.5.4.2 Knee angle sensorWithout a knee angle sensor the absolute knee angle is not known, that makes 
ontrolsignal generation hard, no simple stable and reliable 
ontrol signal were found duringthe 
ourse of this proje
t using only a

eleration, angular rate and magneti
 sensors.By 
ombining the state ma
hine and the knee angle a 
ontrol signal 
an be generated
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Figure 59: Mean sensor signals. State ma
hine validationTable 12: Neural networks results, a-A

eleration, g-Angular rate, m-Magneti
, KA-Kneeangle Y-a X-a Z-a Y-g X-g Z-g Y-m X-m Z-m KA Corr0 1 0 0 1 0 0 0 0 1 0.851 1 0 0 0 0 0 0 0 1 0.830 1 0 0 0 0 0 0 0 1 0.830 1 0 0 1 1 0 0 0 1 0.830 1 1 0 1 0 0 0 0 1 0.83by using the following equation for initial swing
Current =

CurrentAngle− StartAngle

EndAngle
· Constithis equation gives linear gain until EndAngle is rea
hed. For making smooth ter-minal swing the following equation is used

Current = (StartAngle− CurrentAngle) · Consttthis equation gives linear gain until the CurrentAngle rea
hes zero degrees. The
onstants must be tweaked so the CurrentAngle will 
ome as 
lose to zero withoutgetting there.



68 Chapter 5. Results

0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

Time [s]

 

 
Angular rate [rad/s]
States

Figure 60: SM state ma
hine and angular rate. State ma
hine validation
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hine and Rheo knee output 
urrent



6 Con
lusions and future work
Combination of two a

eleration sensors, angular rate and knee angle sensor is able toa
hieve the three main goals that the 
ontrol system requires to 
ontrol a prostheti
knee. The a

eleration and angular rate sensor 
an estimate the terrain and gaitphases while the knee angle sensor gives exa
t knee angle position and 
ontrols the
ontrol signal.Even though this study only involved basi
 
ontrolling of a prostheti
 knee, it showsthat it is possible to 
ontrol the Rheo knee with a

eleration and gyro sensors duringlevel ground walking. Sin
e the load 
ells are built into the knee's stru
ture it is
omplex and expensive to manufa
ture them, if the load 
ells 
ould be removedthe stru
ture 
ould be made smaller with same weight rating and at lower 
ost.Classi�
ation of terrains is simple and e�e
tive using multivariate tree and KNN, themultivariate tree is a better 
hoi
e be
ause of low 
omputational demand and simpleimplementation. A

eleration sensors dete
t motion during swing period and 
anestimate terrain 
hanges at �rst step on 
hanged terrain instead of relaying on datagathered during the last step. Knee 
ontrol is a
hieved by two di�erent methods
• Neural network
• Combination of state ma
hine and knee angle sensorWhen the NN is trained it requires similar inputs as the training data inputs otherwiseunforeseen problems 
an o

ur, for the NN to be able to 
ope with user falling orunexpe
ted situations it also requires training data for those situations. Obtainingdata for unexpe
ted situations is not possible unless the amputee is willing to simulatefalls to prevent later falls. Also the NN would require 
onstant re-training in 
ase ofuser 
hanging shoes, injuries, extra load (e.g. ba
kpa
k or books) or gaining weight,training a NN is 
omputationally expensive and time 
onsuming and therefore not69
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lusions and future workpra
ti
al in a mi
ropro
essor appli
ations that require fast response times. There
ould be a separate training pro
essor that would feed new parameters to the 
ontrolpro
essor, but still there are problems de
iding on "good" steps for training the NN,i.e. what is a good step, how 
an the knee distinguish between "good" and "bad" step.If a knee is not behaving as expe
ted the only possible solution is to train the NNagain, it is not feasible to tra
e sensor values ba
kwards, be
ause of the 
omplexityof the 
onne
tions between inputs and outputs, to lo
ate the 
ause of the problem.A prostheti
 knee requires good reliability and anything that 
reates di�
ulties to�nd a 
ause of a problem is probably not the right path to go with prostheti
s.The state ma
hine is stable and reliable and similar states between the SM statema
hine and the Rheo knee state ma
hine do have state transitions at a similartime point during gait. Having stable and reliable state estimate is vital for knee
ontrolling sin
e all the phases require di�erent fun
tionality of the knee. A stableand reliable state ma
hine opens the opportunity to use the state ma
hine as partof 
ontrolling software for other produ
ts, e.g. 
omputer 
ontrolled ankles, knee andankle 
ombination and 
omputer 
ontrolled lower limb bra
es. When reliability ofthe state ma
hine and simpli
ity of the knee angle 
urrent 
al
ulations a good 
ontrolsignal is 
reated for the Rheo knee. Other possibilities are to use those sensors for gaitanalysis for healthy people, mobile gait analysis system, Appendix B shows sensorssignals for one healthy subje
t.The aim of this proje
t has been a
hieved, but this proje
t only in
luded the mostbasi
 parts of human motions. There are many obsta
les to over
ome before thosesensors 
an repla
e the load 
ell. During the 
ourse of this proje
t, it be
ame 
lear how
omplex a mi
ropro
essor 
ontrolled prostheti
 knee is, it needs to work �awlessly forvarious types of people, e.g. strong users were the knee needs to damp all movementsand weak users were the knee needs to swing freely throughout the swing periodwithout any damping.Suggestions for future work are following
• Obtain data from a larger variety of amputee for validation and estimation ofevents that 
ontrol the state ma
hine
• Create a prototype to run state ma
hine and 
lassi�
ation in real time.
• Fine tune the state ma
hine, in parti
ular the preswing state.
• Adaptation, adaptation is one of the advan
ements of the Rheo knee over otherprostheti
 knees, whi
h parameters require adaptation.
• Adapt the state ma
hine to other terrains, whi
h parameters needs to be
hanged for di�erent terrain.
• Resear
h the sensor signals during 
ommon movements, e.g. sitting up/down,side stepping and other movements that are not as periodi
 as the regular gait
y
le.
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• Combine state ma
hine and 
urrent 
al
ulations, this would most likely be ahighly iterative pro
ess sin
e 
hanged 
urrent 
al
ulations would a�e
t the statema
hine and vi
e versa.
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A Features
This appendix shows s
atter plots of features dis
ussed in Se
tion 5.2 but were notpro
essed any further.
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Figure A.1: S
atter plots of all features
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Figure A.2: S
atter plots of all features
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Figure A.3: S
atter plots of all features
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Figure A.4: S
atter plots of all features





B Terrains - Healthy subje
t
This appendix shows sensor signals obtained from a healthy subje
t on level groundat medium speed. To begin with the methods were developed by using data gatheredby healthy subje
t and further work 
ould involve gait analysis for healthy people.
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Figure A.5: Mean sensor signals, level ground
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Figure A.6: Mean sensor signals, stairs
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Figure A.7: Mean sensor signals, slope
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