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Abstract

High fuel prices and environmental concerns are compelling shipping compa-
nies to consider how the fuel efficiency of vessels can be improved in order to
reduce cost. Since the fuel cost is by far the largest portion of the operating
cost of a vessel, a fractional savings in fuel usage can result in considerable
savings in operational costs. Furthermore, fuel savings have environmental
benefits in the reduction of greenhouse gas emissions.

Many operational optimizations for marine vessels concentrate on mini-
mizing the fuel consumption by optimizing the vessel speed. However, dur-
ing a typical cruise, the captain of the ship must meet a predefined schedule
which limits the scope for speed optimizations.

Trim and displacement i.e. the difference between the draft at the bow
and the stern and, the volume of sea displaced by the ship are, alternatively,
controlled parameters worthy of attention with respect to fuel usage while
the ship is cruising. Both can be controlled by arrangement of ballast. It has
been shown that the power performance of vessels vary with different trim
configurations. Often, the trim configuration is such that it is not operated
at the optimal efficiency level. A substantial amount of money could be
saved by trimming the vessel correctly.

In this thesis, black box models are used to predict how the power con-
sumption depends on the trim given various input parameters. The goal is
to find the lowest power consumption with respect to the trim.

The investigation is based on empirical data sampled at a passenger and
freight vessel with a cruising schedule based in the North-Atlantic Ocean.
The difficulty with such data, sampled under normal operation, is that the
range of the numerous parameter values can be quite narrow, which may in
turn limit the predictive accuracy of a regression model. Careful attention
must also be given to the preprocessing of said data. It is shown how to deal
with these aspects resulting in prediction models of trim configuration with
potential fuel usage savings.

The method presented here can likewise be applied to other types of
vessels such as; cruise liners, cargo ships and tank ships. The aim is to make
such models part of an overall energy management system on board marine
vessels.
Keywords: Black-Box Modelling, Energy Management, Functional Learning
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Ágrip á íslensku

Skipafyrirtæki eru í síauknum mæli að leitast við að lækka rekstrarkostnað
skipa með því að ná sem hagstæðustu nýtingu á olíu við keyrslu þeirra. Þar
sem olían er langstærsti kostnaðarliðurinn mundi umtalsverður sparnaður
fást með betri nýtingu á henni. Aukinheldur, hefur hagstæðari olíunýting í
för með sér minni áhrif á umhverfið með minnkandi útblæstri.

Oft er einblínt á hraðann eða siglingarleiðir þegar hagræðing á rekstri
skipa ber á góma. En þær hagræðingar eru þeim takmörkunum háðar að
skipstjórinn þarf að fylgja áætlun sem gefur þröngar tímaskorður. Stafnhalli
og særými, þ.e. munurinn á djúpristu stefnis og skuts og rúmmál vatns sem
skipið ryður frá sér, eru á hinn bóginn, breytilegar stærðir sem vert er að
gefa gaum á meðan siglingu stendur. En þeim má stjórna með því að stilla
kjölfestuvatn á skipum. Þar sem sýnt hefur verið fram á að olíunýting skipa
er mismunandi með mismunandi stillingum á stafnhalla mætti spara veru-
legar fjárhæðir með því að stilla stafnhallann á þeim þannig að hagstæðasta
olíunýting náist.

Svartkassalíkön eru notuð í þessari ritgerð til að spá fyrir um hvernig ásafl
á framdrift skips er háð stafnhallanum við gefnar aðstæður. Markmiðið er
að finna lægsta aflið miðað við stafnhallann. Rannsóknin byggir á gögnum
sem hafa verið söfnuð á farþegaskipi sem siglir samkvæmt áætlun í Norður-
Atlantshafi. Huga þarf sérstaklega að forvinnslu gagna og einnig þeim tak-
mörkunum sem svið sumra breytistærða hafa á spáhæfni aðhvarfslíkana. En
þau geta verið þröng þegar gögnum er safnað við eðlilegar aðstæður. Sýnt
verður hvernig unnið er á þessum atriðum þannig að hægt verði að búa til
spálíkön fyrir stafnhalla sem geta mögulega leitt til sparnaðar á olíu.

Aðferðirnar geta einnig verið notaðar á aðrar gerðir skipa svo sem skemmti-
ferðaskip, flutningaskip og tankskip. Markmiðið er að nota þær í alhliða
orkustjórnun skipa.

Efnisorð: Svartkassalíkön, Orkustjórnun, Lærdómsvélar
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Chapter 1

Introduction

High fuel prices and environmental concerns are compelling shipping compa-
nies to consider how the fuel efficiency of vessels can be improved in order to
reduce cost. Since the fuel cost is by far the largest portion of the operating
cost of a vessel[1], a fractional savings in fuel usage can result in consid-
erable savings in overall operational costs. Furthermore, fuel savings have
environmental benefits in the reduction of greenhouse gas emissions. Like-
wise, globally, nations and corporations alike are under pressure to reduce
CO2 emissions due to its proposed greenhouse effect.

In this thesis, black-box models are utilized to describe the relationship
between a vessels’ fuel consumption and its trim, in order to find the trim
configuration that generates peak fuel efficiency. This chapter commences
with some background information and the motivation behind performing
this investigation. The objective is then presented, followed by the outline
of this thesis.

1.1 Background and Motivation

Designers and manufacturers aim to produces vessels and propulsion systems
which operate as efficiently as possible. Yet, when deployed for commercial
usage, the systems will often not run at their optimal efficiency level. Thus,
the possibility of fuel efficiency enhancements is a viable option for ship
owners while operating vessels.

However, many operational optimizations for marine vessels concentrate
on minimizing the fuel consumption by optimizing the vessel speed[2] or,
by finding the optimal route[3]. Nevertheless, during a typical cruise, the
captain of the ship must meet predefined schedules which limit the scope
for speed optimizations. Yet, it has been shown that the power performance
of vessels vary significantly with different trim configurations [4, 5, 6, 7].
Configuring the trim of ships in harbor does not suffice due to the known
squat effect [8]; the phenomenon of a vessel’s increased immersion and trim

1
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2 Introduction

when underway in water, as compared to calm water floating conditions.
Often, the ships’ trim configuration is such that it is not operated at the
optimal efficiency level while the vessel is cruising. Figure 1.1 illustrates how
the total fuel consumption for a vessel is divided. Three quarters of the fuel
consumption is spent on the propulsion system, while the remaining quarter
is spent on other operational machinery. Since such a significant portion
is spent on the propulsion system, trimming the vessel correctly during a
voyage could potentially save considerable amounts of money.

Figure 1.1: This figure illustrates how the total fuel consumption is divided. Three
quarters of the fuel is spent on the propulsion system while the remaining quarter
is spent on other operational machines.[9].

Many methods have been devised to enhance the fuel efficiency of vessels.
Some of which are applied during the design phase when the hull of vessels
and the propulsion systems are improved[10]. Others focus on energy effi-
ciency by simulating the energy system for potential improvements[11], while
some concentrate on the operational optimization of vessels[2]. A thorough
research has been conducted on a semi-submersible heavy lift vessel with
the object of assessing the feasibility of using models created with regression
analysis in conjunction with physical laws, to optimize fuel consumption[5].

An Energy-System Design Toolbox (EDT)[12, 11], has been developed
at Marorka1 for simulating the energy systems of vessels for overall energy
system optimization. It is utilized by means of Maren, which is a comprehen-
sive energy management system developed at Marorka for real-time decision

1See http://www.marorka.com
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1.2 Objective and Contribution 3

support during vessel operation.
These type of models, i.e. those that are based on physical laws and prior

knowledge, are often called white-box models. They describe how the fuel
is transformed into thrust through the propellers, in order to overcome the
resistance to the motion with the result of maintaining constant speed[13, 14].
They are quite effective but they lack the capacity to accurately include many
aspects of the resistance such as the effects of wave [15], wind [16] and trim.
Even though there are not many models that can accurately take the trim
and displacement into account[1], thorough research projects exist that have
allowed for them with positive results[5].

Alternatively, learning machines, also known as black-box models such
as support vector regression and k nearest neighbor are quite capable of
including input parameters that are difficult or even impossible to include in
a physical model, such as ocean wave and wind. Artificial neural networks,
for example, have proven to be feasible in predicting the power usage of
vessels[17].

The main differences between these types of models are:

White box models are created from physical laws and prior knowl-
edge. They tend to be good at extrapolating beyond operational data
range but can be very poor at including all aspects of the physical
reality.

Black-box models are created empirically from data points. They
form a function by describing a relationship between input and output
data. They are suitable when the system is not entirely understood
but they have limited extrapolation capabilities.

A hybrid of those two models, often referred to as a grey box modelling,
has been studied with promising results[18].

Black-box models will be utilized in this thesis, since they can often describe
the relationship between input parameters and output data which can be
difficult to do with a physical model.

1.2 Objective and Contribution

The objective of this thesis is to use a data set, sampled on a passenger ship,
to generate black-box models that will be used to predict power requirements
for various configurations of trim, given diverse external and operational
conditions. While the main objective is to find the trim configuration that
yields the least fuel consumption, the aim is to create a simulation model
functional in a decision support system for potential fuel usage savings.
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4 Introduction

The contribution of this thesis is the methodology and evaluation con-
cerning the viability of utilizing black-box models to predict the power con-
sumption for various trim values, in an attempt to optimize the trim config-
uration in regards to fuel usage.

A typical result is depicted in figure 1.2; the ship is trimmed at 1 meter
but the optimal fuel usage, with respect to the trim configuration, is con-
sidered to be when the ship is trimmed at -0.5 meters, given that the other
input parameters are not altered.

-4 -2 0 2 4
1

1.2

1.4

1.6
x 10

4

Trim [m]

S
h

a
ft

 P
o

w
e

r 
[k

W
]

Figure 1.2: An ideal result where the point marked with 0 is where the vessel is
currently trimmed at (1.0m) and the optimal trim suggestion is at the point marked
with X (-0.5m).

1.3 Outline

Chapter 2 introduces the propulsion system and the resistance of the vessel
which must be overcome in order to move it at a constant speed. This chapter
serves as an introduction to some of the input and output parameters that
will be used in the models.
The data set and its characteristics are described in Chapter 3 followed by
how it is preprocessed, in Chapter 4.
Chapter 5 includes a short introduction to the black-box models considered
in this thesis.
Chapter 6 coalesce the previous chapters where black-box models are applied
to the data. Results from an experimental study on a passenger and freight
vessel Norröna, are presented and, the chapter concludes with some remarks
on the feasibility of this approach.
Finally, conclusions and further work are presented in chapter 7.
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Chapter 2

Resistance of Vessels

In this thesis, the focus is on the relationship between the fuel consumption
and trim of a vessel. The fuel consumption relates to the shaft power of
the vessel that, by means of the propellers, provides the thrust needed to
move the vessel at a given speed by overcoming any resistance to movement.
Changes in the trim of the vessel affect this resistance but since one cannot
readily isolate this effect, all the factors affecting the resistance have to be
considered in a model that adjoin the fuel consumption to the trim. In this
chapter, the relationship between fuel consumption and shaft power will be
briefly described, which will be followed by a review of the main factors
affecting the resistance. The chapter will be concluded by showing which
factors are taken into account when constructing a black-box model allowing
for the relationship between fuel consumption and trim.

2.1 Propulsion System

The thrust delivered by the propeller must be in equilibrium with the total
resistance of the ship. The fuel is transformed into thrust through the pro-
pellers, overcoming the resistance to the motion, with the result of moving
the vessel at a designated speed.

Figure 2.1 illustrates how the power is propagated through the propulsion
system. The primary source of the propeller power is the diesel engine where
the fuel is transformed into brake power, PB. The relationship between the
fuel consumption, the specific fuel consumption (SFC), and the brake power
is

Fuel consumption =
∫
PB · SFC(PB)dt (2.1)

Figure 2.2 illustrates the relationship between the specific fuel consumption
and the engine load which is defined as PB/PBmax where PBmax is the maxi-
mum power delivered by the engine. It is obtained by simulating Norröna’s
engine in Marorka’s Energy Design Toolbox (EDT).

5
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6 Resistance of Vessels

Main
Engine

Gear Propeller

Electrical 
Generator

Brake
Power

Shaft
Power

Electrical
Power

Effective
Power Water

Figure 2.1: The propulsion system. The fuel is converted into break power which
is transmitted to the propulsion shaft and the electrical generator. The shaft power
is subsequently transformed, through the propellers, into thrust delivered to the
water, otherwise known as effective power
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Figure 2.2: The relationship between Norröna’s specific fuel consumption as a
function of engine load, which is defined as PB/PBmax where PBmax is the maximum
power delivered by the engine, at a fixed rotational velocity.
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2.2 Vessel’s Resistance 7

The brake power, PB, is transmitted to the propulsion shaft on the one hand
and to the electrical generator on the other, through the gear:

PB = ηB(PS + Pel) (2.2)

where PS is the shaft power, Pel is the power transmitted to the electrical
generator and ηB is the efficiency factor of the gear which is considered to
be constant.
Subsequently, the shaft power is transmitted to the propellers

PS = ηSPD (2.3)

where PD is the power delivered to the propellers and ηS is the efficiency
factor of the shaft which is considered to be constant.
The propeller power is transformed into thrust delivered to the water

PE = ηP (pp, V, n)PD(V ) (2.4)

where ηP is the efficiency factor of the propeller which is dependent on the
propeller pitch, pp, the speed, V , and the rotational velocity of the shaft,n.
The effective power of the vessel is PE , i.e. the power necessary to move the
ship through the water at speed V .

Often, the shaft has a constant rotational speed. The speed of the vessel
is then controlled by changing the pitch of the propeller. Consequently, the
propeller pitch is part of an operational condition that can be controlled. The
relationship between the effective power, PE , the various resistance forces,
Ri, the propeller pitch, pp, and the speed of the vessel, V , is governed by
the following equation[19, 7]

PE(pp, V ) = V
∑
i

Ri(V ) (2.5)

indicating that many of the resistance forces also depend on the speed.
By combining equations 2.3 and 2.4, equation 2.5 can be restated as follows

PS =
V
∑

iRi(V )
ηSηP (pp, V )

(2.6)

Thus, the shaft power can be considered to be the power that overcomes the
total resistance.

2.2 Vessel’s Resistance

The total resistance to the movement of the vessel can be partitioned into
resistance components as follows:

Rtotal = Rfrictional +Rwave +Rwind (2.7)
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8 Resistance of Vessels

Frictional resistance is the resistance of the vessel’s hull under the water line,
wave resistance is the combined resistance from waves generated from exter-
nal conditions and the waves produced from the vessel, and wind resistance
is the resistance made by the wind on the hull above the water line. Figure
2.3 illustrates the three main components affecting the total resistance.

V
Wind

Wave

Friction

Figure 2.3: The three main resistance factors contributing to the total resistance.
Frictional resistance is the hull’s resistance below the water line, wind resistance is
the hull’s resistance above the water line and wave resistance is the resistance from
the ocean surface and the waves produced by the vessel.

Each of these component resistances will be discussed in more detail in the
following subsections.

2.2.1 Frictional Resistance

The frictional resistance is the most significant contributor (45-90%[19]) to
total resistance and it increases at a rate that is close to the square of the
vessel’s speed. It is likewise subjected to how much of the hull is below the
water line as well as the shape of the hull. With this in mind, and the fact
that the shape of the hull is not symmetrical, the trim and displacement of
the vessel also have influence on the frictional resistance since the area of
the wetted surface changes with different configurations of trim and displace-
ment. Furthermore, the surface of the hull below water line will be subjected
to the growth of algae and weed which amplifies the resistance considerably
with time.

Thus, the frictional resistance can be split further into the hull resistance,
the fouling resistance and the trim and displacement resistance, each of
which will be discussed in the following paragraphs.
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2.2 Vessel’s Resistance 9

Hull Resistance

The dynamic pressure of water with density, ρ, induces a resistance on the
hull based on Bernoulli’s law

Rhull = 1
2CρV

2Ahull

where V is the speed, Ahull is the area of the hull below the water line and C
is a dimensionless resistance coefficient. The frictional resistance is, for that
reason, highly dependent on the speed of the vessel.

Fouling Resistance

Fouling of a ship’s hull is a biological process induced by the growth of
algae, weed and other marine life forms. Sailing routes have a great impact
on fouling since some areas have higher fouling effects than others, both
seasonally and in regards to localizability. Figure 2.4 depicts how required
propulsion power increases over 30% in order to maintain the same speed
2 years from last docking[1]. The resistance caused by fouling may become

Figure 2.4: The relationship between propulsion power and speed for a 200000
tdw tanker with a fixed propeller, for a clean hull and 1 and 2 years after cleaning.
Over 30% increase of propulsion power is required to maintain the same speed 2
years from last docking[1].

25-50% of the total resistance throughout the lifetime of a ship[19]. Fouling
induces a condition that is difficult to control. It can be temporarily avoided
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10 Resistance of Vessels

with the use of anti-fouling hull paints but the vessel must still be cleaned on
a regular basis in a designated dock yard, as fouling increases considerably
with time. Figure 2.5 illustrates how the fouling affects the resistance as a
function of time.

Figure 2.5: The figure shows how the percentage relative fouling of a vessel changes
with time from docking, yd, dependent on the age of the ship, ya[5].

Trim and Displacement

The displacement of a vessel is equal to the mass of water displaced by the
ship and, trim is defined as the difference between the draught of the hull
at the bow and at the stern as seen in figure 2.6. They are, in particular,
part of an operational condition that can be controlled by relocation of the
vessel’s ballast water.

Researches have shown significant variability of the delivered power per-
formance with different displacement and trim conditions[4, 5, 6, 19]. Like-
wise, there is as relationship between hull form, due to trim and displace-
ment, and power consumption. With different trim configurations the shape
of the hull below the water line changes, affecting the frictional resistance.

Figure 2.7 illustrates how different displacement configurations affect the
fuel consumption while the trim is held constant at zero. The fuel consump-
tion increases significantly in concurrence with increases with the draught of
the ship.

Figure 2.8 depicts how the trim adjustments affect the fuel consumption
while the displacement is held constant by relocating the ballast water. There
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2.2 Vessel’s Resistance 11

Draught FwdDraught Aft

Trim by bow

Draught FwdDraught Aft

Trim by stern

Figure 2.6: Different trim configurations. Above: trim by bow. Below: trim by
stern.

Figure 2.7: The relationship between speed, V , and specific fuel consumption, F ,
for different draught, with zero trim. The fuel consumption increases as the draught
increases[5].
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12 Resistance of Vessels

Figure 2.8: The relationship between speed, V , and specific fuel consumption,
F , for different configurations of trim, with draught at 8m. The fuel consumption
varies slightly with different trim configuration[5].

is a slight increase of fuel consumption per mile with an increasing trim.

Other Resistance

There are other conditions that affect the frictional resistance that will not
be discussed in detail in this thesis. Deterioration of the paint and ero-
sion of the hull both affect the frictional resistance directly. Rough weather
and inappropriate distribution of the cargo are also examples of operational
conditions that have effect. Likewise, shallow waters have influence on the
resistance as the displaced water under the ship will have greater difficulty
in moving aft-wards[19].

2.2.2 Wind Resistance

The wind affects the hull above the water line and forms a resistance factor
that represents up to 2-10% of the total resistance[19]. Wind is part of an
external condition that cannot be controlled since wind resistance depends on
the direction and the speed of the wind. Resistance is essentially proportional
to the square of the ship’s speed and proportional to the cross-sectional area
of the ship above the water line. Finding a suitable model for predicting
wind resistance can be a difficult task[1, 16, 7] as vessels come in all sizes
and shapes e.g. cargo ships, tankers, cruise liners.
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2.2 Vessel’s Resistance 13

Steering Resistance

In order to maintain the heading at a beam wind, rudder angle is necessary
to counteract the wind moment at any given time[1]. This will cause added
resistance to the vessel. The correcting autopilot will cause the vessel to sail
with yaw motions when cruising in waves. They will cause centrifugal forces
of which the component, RST, in the longitudinal direction results in added
resistance[1] (see figure 2.9).

Figure 2.9: The steering resistance, RST, is caused by the centrifugal force when
the vessel sails with yaw motions due to waves and correcting autopilot.[1].

2.2.3 Wave Resistance

The sea surface is assumed to be the result of the superposition of many
simple harmonic waves, each with its own amplitude, frequency and direction
of wave travel[1]. Ocean waves, in particular, can be split into two main wave
types:

Sea Sea waves are driven by the local wind field. They are short-crested
with lengths of the crests only a few times the apparent wave length.

Swell Swell waves are generated out of the local area, often created by
storms many kilometers away. They are more regular and the crests
are more rounded than those of a sea. Likewise, the frequency of the
waves is much lower but the wave height is significantly higher.

Thus, waves are part of an external condition that cannot be controlled.
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14 Resistance of Vessels

The wave resistance is comprised of waves created by the ship’s propul-
sion through the water and breaking waves from the sea surface[13, 14].
Figure 2.10 illustrates how the mean wave resistance is added to the still
water resistance in regular waves[20].

Figure 2.10: Figure showing the increase in actual and mean water resistance
caused by regular waves[20].

In both situations the ship is transporting energy to the surrounding
water and an added resistance has to be overcome to maintain the ship’s
speed[1]. Vertical ship motions have, in particular, the largest effect on the
added wave resistance[1, 15, 20] where it can represent up to 5-45% of the
total resistance[19].

The wave resistance is essentially proportional to the square of the speed.
A speed barrier may be imposed since further increase of the ship’s propulsion
power will not result in a higher speed as most of the power will be converted
into wave energy. Figure 2.11 depicts how the speed of the vessel drops
considerably in head waves. It is complicated and difficult to predict the
wave resistance of the vessel. Many models include some kind of a wave
resistance prediction[15, 6, 1, 20], but their estimation is often inaccurate[1].
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2.3 Model Parameters 15

Figure 2.11: The relationship between speed and time for a 200000 tdw tanker
when sailing in head waves. The lines show a speed reduction when sailing through
a wave of height 2m, 4m, 6m, 8m and 10m[1].

2.2.4 Total Resistance

To sum up the previous sections, table 2.1 illustrates the proportion of each
resistance factor to the total resistance

Resistance % of Total Resistance
Friction 45-90
Wave 5-45
Wind 2-10

Table 2.1: The proportion of each resistance factor to the total resistance.

The total resistance is affected by operational and external conditions.
The speed, trim and displacement are, for example, considered to be opera-
tional factors affecting the total resistance that can be controlled. Alterna-
tively, external conditions such as wave and wind are resistance components
that are not controllable.

2.3 Model Parameters

Most of the resistance factors presented in the previous section will be used
in the construction of black-box models. The input parameters will be
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16 Resistance of Vessels

Trim This is the main input parameter in the black-box models since the re-
lationship between fuel consumption and different trim configurations
is to be investigated.

Displacement The mean draught will be considered since it reflects the
displacement to a certain degree.

Speed The speed of the vessel with respect to the water surface.

Wind The wind speed will be considered as well as the wind direction.

Wave The only wave resistance factor that will be considered is the vertical
motion of the vessel as the data for other wave resistance factors are
unavailable.

Propeller Pitch The propeller pitch will be applied since it is used to pro-
duce the thrust to move the vessel at a designated speed.

The fouling resistance will not be utilized since there are no measure-
ments available and the data used for the black-box models cover a relatively
short time interval. Likewise, the steering resistance will not be utilized ei-
ther, since there is no data available measuring the yaw motion of the vessel.

The output parameter for the black-box models will be

Shaft Power The shaft power relates to the thrust needed to overcome
the total resistance as indicated in equation 2.6 and can, unlike the
effective power, be measured directly. The fuel consumption itself is
not suitable as an output parameter since the main engine is also used
to run the electrical shaft generator.

2.4 Summary

This chapter presents the general relationship between fuel consumption and
shaft power on one hand and the various resistance factors on the other,
which control the speed of the vessel. It provides a guide as to what factors
should be taken into account when constructing a black model showing the
dependence of fuel consumption on trim configuration.
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Chapter 3

Data Set

The data obtained for this study was sampled on a passenger ship that has
a cruising schedule in the North-Atlantic Ocean. This chapter starts by de-
scribing the operational and external data measurements that are considered
to be related to the fuel consumption. They will be used as input and out-
put parameters for black-box models. Subsequently, the characteristics of
the data series are considered. They must be modified, in order to generate
adequate black-box models.

3.1 The Vessel

Norröna1 is a ferry/cruiser which has a sailing schedule between Iceland, The
Faroe Islands and Denmark. Its length is approximately 160 m, the breadth
is around 30 m and the mean draught is close to 6.5 m. Figure 3.1 is a
picture of Norröna cruising in a calm water as well as a cross-section of the
ferry.

Figure 3.1: Norröna, a passenger and ferry ship, cruising in a calm water and a
cross-section of the vessel[21].

Norröna has 4 main engines that have constant rotational velocity and
two propellers to move the ship, as can be seen in figure 3.2. Since the
engines’ revolutions are constant the speed of the vessel is controlled by

1See http://www.smyril-line.com

17
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18 Data Set

changing the pitch of the propellers. Two electricity shaft generators are
connected to each of the shafts to produce electricity whenever possible.
Additionally, the vessel is installed with three auxiliary electricity generators
to produce electricity if the electricity shaft generators are not in use.

Figure 3.2: Norröna’s machine layout taken from the Maren system on-board. The
vessel has 4 main engines, two propellers, two electricity shaft generators and three
auxiliary electricity generators.

An SMC2 gyro scope sensor was installed specifically for this study, in
order to measure the movement of the ship, as described in more detail below.
Other measurements of the operational and environmental conditions of the
vessel are sampled from previously installed meters.

3.2 Data Series

The output parameter of the models is the shaft power (kW ) that the pro-
pellers deliver to the water through the propulsion shafts. The shaft power
can be measured directly (figure 3.3) and is readily related to the fuel con-
sumption via the specific fuel consumption of the engines and the power
delivered to the electrical generators as shown in equations 2.1 and 2.2. The
fuel consumption itself is not suitable as an output parameter since the main
engine is also used to run the electrical shaft generator.

The main input parameter, the trim (m), is defined as the difference
between the draught of the hull at the bow and at the stern. It can be
calculated directly from the pitch of the hull shown in figure 3.6 (not to be
confused with the propeller pitch) and since it is, in fact, the pitch that is
measured (see figure 3.3), reference will be made to the pitch rather than
the trim in the remainder of this thesis.

Apart from the shaft power and the pitch, numerous data series are
sampled by the Maren3 energy management system into a database at ap-
proximately 15 seconds intervals. Only a handful of them are considered

2See http://www.shipmotion.se
3See http://www.marorka.com
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Figure 3.3: The shaft power consumption and pitch for two trips. These measure-
ments are unfiltered.

to be connected to the modelling of the relation between shaft power and
resistance to the movement of the vessel and, are thus used in this investiga-
tion. These parameters are comprised of operational measurements as well
as external measurements.

The acquired data are measurements from various meters on-board the
vessel; programmable logic controllers (PLC), systems using the NMEA4

and OPC5 protocols and, a SMC gyro motion sensor. It is assumed that
all meters, excluding the gyroscope, are correctly set up and calibrated and
their accuracy will not be specifically questioned apart from noise. The data
domain consists of 26 trips, each lasting approximately 20-22 hours, which
were made in the fall of 2007, a total of approximately 90000 data points.

3.2.1 Input Parameters

Input parameters to be used in the models are now described briefly:

Log Speed The log speed, measured in knots ([kn]), is the speed of the
vessel in the water. The speed can be seen in figure 3.4 for two trips.

Wind Speed and Direction The wind speed, measured in knots ([kn]),
is the speed of the wind relative to the ship. The wind direction is the
direction, in degrees, of the wind relative to the head of the ship.

4National Marine Electronics Association
5OLE for Process Control
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Figure 3.4: The log speed data series along with the shaft power series for two
trips. These measurements are unfiltered.
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Figure 3.5: The shaft power consumption, wind speed and wind direction for two
trips. These measurements are unfiltered.
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3.2 Data Series 21

Roll, Pitch and Wave The roll, pitch and heave of the ship are measured
with the SMC gyro motion sensor which has the ability to measure the axial
components along with the accelerometer component. The SMC device is
installed in a location near the vessel’s centre of gravity to ensure that the
measurements will become as accurate as possible. In addition, it must be
aligned so that the head of the gyroscope coincides with the head of the ship,
for otherwise the roll and the pitch measurements will correlate.

As can be seen in figure 3.6 the roll is the measurement, in degrees, of the
pitch along the Y -axis. The pitch refers to the pitch, in degrees, of theX-axis
and the heave measures the acceleration of the ship up and down. From the
heave measurements the estimate of the wave (figure 3.6) height is derived
by calculating the highest absolute heave value between two consecutive zero
crossings of the signal.
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Figure 3.6: In the figure on the left, the wave is displayed for two trips. The
illustration on the right shows how the roll, pitch and heave are measured by the
gyroscope.

As previously mentioned, pitch is the main input parameter in this thesis
as the focus of this thesis is on how shaft power varies with trim.

Mean Draught The forward and aft (m) measurements are the depth of
the ship from the keel to the ocean surface - forward and aft respectively.
Those measurements are not reliable under dynamic conditions since they
are taken from sensors stationed forward and aft, which measure the pressure
on the hull. However, they are quite steady when the ship is in harbour and
are thus utilized to correct the roll and the pitch. They are also used to
estimate the draught of the ship, which gives some information on the ship’s
displacement. Fuel consumption is affected by the vessel’s displacement since
the area of the hull below the surface directly affects the frictional surface.

Figure 3.7 illustrates the mean draught of the vessel. There seems to be
correlation between the mean draught and the shaft power. This is due to
the squat effect: the increased immersion of the vessel into the water with
increased speed.
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Figure 3.7: The mean draught of the vessel for two trips. There is a slight corre-
lation between the shaft power and the mean draft due to the squat effect.

Propeller Pitch The pitch of the two propeller blades relative to the
shaft are used to control the vessel’s speed, and change during voyage. The
propeller pitch is measured in whole numbers rendering a sawtooth time
series, as can be seen in figure 3.8.

14:40:00 14:50:00 15:00:00
79

79.5

80

80.5

81

81.5

82

Time

P
ro

p
e

lle
r 

P
it
c
h

 [
%

]

Propeller Pitch

Figure 3.8: The measurements for the propeller pitch are a natural number ren-
dering a sawtooth time series.

Thus the total of input parameters is 9.
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3.3 Characteristics of the Data Set

In order to effectively apply a learning machine to the data it must be well
formed and must therefore include synchronized measurements that corre-
spond to reality as much as possible, while being devoid of corruption and
outliers. In this study, this is not the case with the data series taken straight
from the database. This section reviews those difficulties.

3.3.1 Data Sampling

The data series are usually sampled at 15 seconds intervals into a database
but they are neither necessarily logged at a uniform time interval nor simul-
taneously. To save space, the database system writes one value for a sequence
of data points if their measurements remain the same. Slowly changing mea-
surements are specifically susceptible to this. Moreover, other data series
can be corrupt in the sense that they are either frozen, characterized by
measurement values remaining the same although conditions alter, or the
measurements are simply not arriving to the database system. Such defec-
tive data, as well as slowly changing data, has to be detected and handled
in a sensible way.

3.3.2 Weather Data

Figure 3.9 illustrates histograms for wind speed, wave height and pitch.
Norröna’s sailing schedule provides routes where there are occasional rough
weather conditions, where wind speed can reach over 30 knots and wave
height can reach over 10 meters. Rough weather conditions affect the mea-
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Figure 3.9: Histograms for wind speed, wave height and pitch. Norröna can
occasionally hit rough weather conditions where the wind speed reaches over 30
knots and the wave height over 10 meters.

surements as they induce noise and extreme values. No attempt has been
made to remove data segments corresponding to rough weather even though
the application of optimal pitch configuration is not useful in these condi-
tions.
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3.3.3 Noise and Outliers

Measurements made by the meters are often susceptible to noise, specifically
in rough weather conditions as can be seen in figure 4.10. It is important to
filter this noise as well as defective outliers.

3.3.4 Gyroscope Installation

The gyroscope was installed such that the head of the device was misaligned
with the head of the ship. This resulted in a high correlation between the
roll and the pitch measurements, which had to be remedied.

3.3.5 Data Range

The range of the data must be broad in order to successfully generate an
adequate black-box model that predicts the shaft power usage for various
conditions. However, the difficulty with data sampled under normal opera-
tional conditions is, that the range of many of the parameter values can be
quite narrow and may in turn limit the predictive accuracy of a regression
model. See for example the histogram of the pitch in figure 3.9.

Furthermore, in this study, the focus is on how the shaft power changes
with pitch while other input parameter values affecting the resistance remain
fixed. Ideally, the data should be obtained from controlled experiments where
the pitch is the only variable parameter. Clearly, this will not be the case
when data is collected under operational conditions. Figure 3.10 illustrates
this problem. The dots correspond to available data while the estimate is on
data values along straight lines parallel to the pitch axis.

← Prediction Line

Other input values

P
it
c
h

Figure 3.10: The distribution of the data is nonuniform making it difficult to
predict how the shaft power changes with pitch, while other input values remain
fixed.
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3.4 Summary

This chapter describes the input and output parameters that will be used
to generate the black-box models in subsequent chapters. The data series
are measurements of both operational and external conditions believed to
have the most influence on the vessel’s shaft power. However, they are not
without defects, which must be overcome in order to successfully generate
the models.
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Chapter 4

Data Preprocessing

The data series sampled from the vessel must be well formed, i.e. synchro-
nized and corresponding to reality as much as possible in order to generate
adequate black-box models. Due to the complications described in the pre-
vious chapter some preprocessing must be performed on the data in order to
achieve this.

This chapter describes which actions are taken in order to generate a well
formed data series. These include removing data segments, patching gaps in
data, synchronizing the series in time, correcting data values, noise filtering
and, removing outliers.

4.1 Data Pruning

Some sections of the data must be removed manually, i.e. data series that are
severely corrupted or are otherwise not desirable based on visual inspection.
This applies, in particular, to series where data values seem to be frozen for
too long.

4.1.1 Automatic Data Removal

Some data sections are not interesting in this problem and only introduce
additional complexity if included. Data sections acquired while the ship is
in harbour are removed since the most important component in terms of
fuel savings is when the ship is sailing. The next paragraph details how the
harbour data is removed.

Removing Harbour Data

The Maren system on-board the vessel saves the shaft’s rpm values to the
database. They can be used to detect when the ship is in harbour since
those values are non-zero while the ship is cruising. Therefore, gaps over
30 minutes in the time series are considered to be the time when the ship

27
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28 Data Preprocessing

is in harbour. Based on the rpm data series, all data series are split into
chunks, each corresponding to one trip. Trips lasting less than three hours
are considered to occur when the vessel is in pilot within a port, i.e. in
control of the harbour authority, and are thus removed.
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Figure 4.1: The shaft’s rpm data series with the shaft power for two trips. The
RPM measurements, which exist only when the vessel is cruising, are used to detect
when the ship is in harbour.

Figure 4.1 illustrates the engine’s rpm while cruising.

Additionally, the data segments at the start and end of a journey, where the
ship is accelerating, are removed since these are relatively short and thus
do not play a significant role in overall sailings. The following paragraph
describes in detail how they are removed.

Removing the endpoints of a journey

The data chunks created by the method in the previous paragraph still hold
data corresponding to start and end of a journey. The log speed (see figure
3.4) is used to detect the endpoints for each chunk in the following way:
first, the log speed is resampled to create a time series with a uniform time
interval between consecutive data points. Then it is filtered with a high or-
der Equiripple Lowpass filter with a cut off frequency 1/400. The result is a
noiseless data series which can be used in a simple peak detection algorithm:
it finds those points where the derivative is zero. Figure 4.2 illustrates nu-
merous peaks in a journey. The start of a journey is defined to be when the
first peak value above 14 is detected (marked with a big circle in figure 4.2).
Likewise, the last peak above 14 is considered to be the end of a journey.
All data series are subsequently synchronized with intervals defined by these
peaks values.
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Figure 4.2: Peaks detected in a journey. The big circles represents the start and
the end of the journey.

The log speed series was preferred to the shaft power data since the
nature of the former was considered to be better suited for this task.

4.2 Data Patching

Some series change slowly over time, where it is normal to have recurrent
consecutive values. Since the data points are not written to the database they
must be generated to conform to other data series. Figure 4.3 illustrates how
data points, for the propeller pitch measurements, are generated in between
two consecutive points by assigning them with a value of the older point.
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Figure 4.3: Data points are inserted in between two consecutive propeller pitch
measurements with a value from the older point.
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In cases, where measurements have not arrived, a linear interpolation is
applied to “patch” the data series with data samples if the time gap is not
too long. Gaps over 30 minutes are not patched as the condition of the ship
might have changed too much for a simple linear interpolation correction.

None of the data series, where the value is rapidly changing, contain gaps
that are too large to be patched with a linear interpolation. Gaps in those
series rarely exceed 30 seconds.

4.2.1 Data Synchronization

After all unnecessary data sections have been removed the remaining data
series are still not synchronized in time or of equal length. In this section
the aim is to create time series of equal length for all parameters in such a
way that the times of corresponding data points coincide.
As mentioned above, all data series are broken down into data chunks cor-
responding to approximately one trip. The data series for a given trip are
synchronized with each other by removing non-overlapping data sections (see
figure 4.4). Subsequently, the data points within each chunk are synchro-
nized in time with the shaft power series by creating data points with linear
interpolation and removing other points where applicable. This creates time
series with nonuniform time intervals between data points. Usual filters can-
not operate on such data without some kind of resampling. This problem is
addressed in section 4.4 below.
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Figure 4.4: Data series are synchronized for each trip by removing non-overlapping
data sections.

4.3 Data Correction

Some data series must be corrected before they can be used. The correction
for the roll and the pitch series is described in the following section.
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4.3.1 Roll and Pitch Corrections

The correlation between the pitch and the roll measurements should be zero
since they are orthogonal. However, there is a correlation between them
which indicates that the sensor was misaligned with the head of the ship.
The pitch and the roll measurements from the gyroscope are corrected in
this section to make them resemble the true pitch and roll measurements as
much as possible.
Assume that the sensor is installed such that its alignment error is twofold.
Figure 4.5 illustrates how the device is installed, at location O, with respect
to the coordinates, XY Z, of the vessel where the pitch and the roll of the
vessel is zero. The direction angle of the sensor is offset by a constant, θ,
from the XZ-plane, i.e. the angle between OS and OP is θ. The pitch
error, pe, is the offset of the plane formed by OPS, which the device resides
on, from the XY plane. That is, the angle between OP and OV is pe.
Implicitly, it is assumed that there is no roll error, i.e. that PS||V D, to
simplify calculations.

θ

p
e

Head of the vessel

Z

Y

X

Direction of the SMC device

Pitch error

Direction angle error

S

O

P

V D

Figure 4.5: The device is installed, at location O, with respect to the coordinates,
XY Z, of the vessel where the pitch and the roll of the vessel is zero. The direction
angle of the sensor is offset by a constant, θ, from the XZ-plane, i.e. the angle
between OS and OP is θ. The pitch error, pe, is the offset of the plane formed by
OPS, which the device resides on, from the XY plane. That is, the angle between
OP and OV is pe. Implicitly, it is assumed that there is no roll error, i.e. that
PS||V D, to simplify calculations.
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32 Data Preprocessing

The correction of the roll and the pitch parameters are readily described
according to the following definitions of the parameters used for this problem:
pe: The constant pitch error of the SMC gyroscope as described

above (see figure 4.5). This constant is to be determined.
θ: The direction angle error of the SMC gyroscope from the

ship’s heading as described above (see figure 4.5). This con-
stant is to be determined.

φ: The SMC’s measurement of the pitch as described below (see
figure 4.6).

γ: The SMC’s measurement of the roll as described below.
f : Forward trim parameter value, measured from the forward

trim sensor.
a: Aft trim parameter value, measured from the aft trim sensor.
L: The length between the forward and aft trim sensors.
p: The true pitch of the vessel.
r: The true roll of the vessel.

The true pitch of the vessel is calculated from the forward trim and the aft
trim measurements, f and a, when the vessel is in harbour since they are
reliable when the ship is not operated in dynamic conditions. The true pitch
of the vessel is calculated from these measurements as follows

p = sin−1(f−aL ) (4.1)

where the L is the length between the forward and aft sensors. L is not
available for this problem and must be determined.

In order to correct the SMC’s pitch and the roll measurements, φ and γ,
a connection between them and the true pitch of the vessel, p, must be
available.

To simplify calculations even more, the pitch error, pe, is assumed to be on
theXZ plane for all true roll values, r. This is a sensible approximation since
the true roll values are close to zero. Then a connection between the SMC’s
pitch, φ, and the true pitch of the vessel, p, can be derived as can be seen in
figure 4.6. The pitch of the vessel, i.e. the true pitch p, is the angle between
OV and OA. The roll of the vessel, i.e. the true roll r, is the angle between
PS and RS. The SMC’s pitch measurement, φ, is the angle between OD
and OS. If |OS| = 1, it follows that |SD| = |RA| = sin(φ), |OP | = cos(θ)
and |PR| = sin(r) sin(θ). Then, by applying a simple trigonometry on the
triangle 4OPA the following ensues

sin(p+ pe) =
sin(r) sin(θ) + sin(φ)

cos(θ)
(4.2)

The connection between the SMC’s roll, γ, and the true pitch of the vessel
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Head of the vessel
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Direction of the SMC device

Direction angle error
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p

True pitch

Φ

SMC's pitch measurement

r

True roll
sin(Φ)

sin(r)sin(θ)

cos(θ)
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Figure 4.6: The connection between the SMC’s pitch, φ, and the true pitch of the
vessel. The pitch of the vessel, i.e. the true pitch p, is the angle between OV and
OA. The roll of the vessel, i.e. the true roll r, is the angle between PS and RS.
The SMC’s pitch measurement, φ, is the angle between OD and OS. If |OS| = 1,
it follows that |SD| = |RA| = sin(φ), |OP | = cos(θ) and |PR| = sin(r) sin(θ).
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34 Data Preprocessing

can be derived with similar reasons that will not be disclosed here:

sin(p+ pe) =
sin(γ)− sin(r) cos(θ)

sin(θ)
(4.3)

By isolating sin(r) in equations 4.2 and 4.3 and solving them together the
following is derived

sin(p+ pe) = sin(γ) sin(θ) + sin(φ) cos(θ) (4.4)

That is, a relationship between p, φ and γ.

In order to find pe, θ and L the following minimization problem is solved with
an unconstrained nonlinear optimization1 for the data points from when the
vessel was in harbour

min
θ,pe,L

||p′ − p′′||

where
p′′ := sin−1(sin(γ) sin(θ) + cos(θ) sin(φ))− pe

is equation 4.4 where p has been isolated and renamed p′′, and

p′ := sin−1(f−aL )

is equation 4.1 with p′ instead of p.

The results are (pe, θ, L) = (−2.03, 14.5, 154) and the correlation changes
from −0.33 to −0.11. The remaining correlation could stem from the fact
that the SMC gyroscope isn’t situated directly at the ship’s centre of gravity,
even though it is in close approximation.

Figure 4.7 illustrates how the roll and the pitch signals are correlated
and how the correlation has diminished by applying the corrections to the
data series.

Figure 4.8 depicts how the corrected SMC pitch compares with the pitch
calculated from the forward and aft trim sensors. The RMS error between
these data series is 0.1005.

4.4 Filtering the Data

Noise and outliers are undesirable in data series when it comes to employing
them as inputs and outputs in black-box modelling. The learning machine
could simply learn the noise, since the root mean square (RMS) error is used
as the quality measure; rendering an unreliable model. Figure 4.9 illustrates
two models where the one below has over-fitted the noisy data but has a
lower RMS error value than the model on top.
When selecting the filter some considerations must be kept in mind:

1See fminsearch in Matlab
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Figure 4.7: Above: a correlation between the roll and the pitch. Below: the
correlation has been removed.
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Figure 4.8: The vessel’s true pitch calculated from the forward and aft trim sensors
and the corrected SMC pitch.
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Original Data

Model Estimation

 

 
Original Data

Model Estimation

Figure 4.9: The model below has over-fitted the noisy data but has a lower RMS
error value than the top model.

• The filter must be "as much" on-line as possible as this method is to
be used on-board a ship for real time analysis. A delay of less than
thirty minutes will be tolerable since the status of the ship will not
change dramatically in that period on calm seas.

• The filter must handle data points that are not uniformly sampled.

A filter based on local linear regression, which is resistant to outliers and
can handle data points that are not uniformly sampled2, is applied to all
data series. Figure 4.10 depicts how the noise is successfully removed and
how the outlier is discarded without showing any sign of instability. The
spike is obviously incorrect even though a few neighboring data points are
contributing to the outlier.
The following paragraph describes in detail how the local linear regression
filter, which is resistant to outliers, is implemented[22].

Local linear regression smoothing This method filters a data point
over a span of n data points.

The weights for each data point within the span is calculated with:

wi =

√√√√(1−
∣∣∣∣ t− tid(t)

∣∣∣∣3
)3

, i = 1, ..., n

where t is the time of the data point to be filtered. tj , j = 1, ..., n, is
the time of a data point j within the span. And

d(t) = max
i

(|x− xi|)

2See rloess in Matlab
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Figure 4.10: The shaft power series and a filtered shaft power series where the
outlier has been discarded.

The data point which is to be filtered has the most weight while the
weight of neighboring points decreases with distance from this point.

A weighted linear least squares regression using a quadratic function,
β0 + β1t+ β2t

2 is performed by choosing β̂ = [β0 β1 β2]T such that

||W · (Xβ̂ − y)||2

is minimized. Here

X =

1 t1 t21
...

...
1 tn t2n


W is the diagonal weight matrix and tj , j = 1, ..., n, are the time
stamps for the data points, yi, i = 1, ..., n, in the span.

The filtered value is given by

yfiltered = Xi · β̂

where i is the index of the y value to be filtered and Xi is the i-th row
in X.

In order to remove the effect of the outliers the filtering is repeated five times
with modified weights as follows

Calculate the residuals ri, for each data point.

Let rmed := median({ri}ni=1)

Let ρi := |ri − rmed|, for i = 1, . . . , n
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Let M := median({ρi}ni=1)

Define a modified weight for each data point as wiRi where wi is the
previous weight value and

Ri =
{

1−
( ρi

6M

)2 |ρi| < 6M
0 otherwise

Repeat the filtering calculations with these modified weights.

The final modified weight will be close to 1 if ρi is small; i.e. if the error
is not significant. If, however, ρi is large (compared to other errors) then it
will exceed a certain limit which will reduce the weight to zero.

This filter does not need a uniform sampling time and data points far away
in time have no influence on the data point being filtered. A span of 50 data
points was chosen for all the series as it was considered, by visual inspection,
that the noise had been removed without removing vital information from
the data series.

4.5 Summary

This chapter presents some preprocessing methods that are applied to the
data series to be used to generate black-box models. The data series are
pruned and synchronized such that the remaining data points correspond
only to the vessel’s journeys out of harbour, devoid of the acceleration that
occurs at the start and the end of a trip. Moreover, they are patched, cor-
rected and filtered which makes them suited for input and output parameters
in learning machines.
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Chapter 5

Black-box Models

This chapter describes the black-box models used in this study to simulate
the shaft power. First a general description of functional learning is presented
along with how model parameters are evaluated and how data is prepared.
Support Vector Regression method is subsequently presented followed by a
description on the k Nearest Neighbor model. The chapter then concludes
with a brief description of Classification and Regression Trees, Bagging and
Artificial Neural Networks.

Many types of problems cannot be solved by using classical programming
techniques since the precise mathematical model is not at hand. This applies
in particular when it proves difficult to relate the output to the inputs due to
complexity or other factors such as noise, measurement inaccuracy, incorrect
measurements or lack thereof. To remedy the situation, methods have been
devised where the computer learns the relationship between input and output
from given data.

5.1 Functional Learning

Given a set of data points, (xi, yi), i = 1, ..., n, which is a relationship between
input vector values xi ∈ X and output values yi ∈ Y , the aim is to find a
target function

f : X × Rk → Y ; (x,w) 7→ y

where w ∈ Rk is a value of function parameters. The aim is to find a
parameter value, ŵ, such that f(xi, ŵ) ≈ yi, i = 1, ..., n, but also such
that f(x, ŵ) resembles reality for all x ∈ X. I.e. ŵ is chosen so that a
certain generalization error is minimized. The determination of ŵ is based
on a given subset of the total data set, often referred to as the training set,
while the validation of the resulting target function or model is based on the
remaining subset, referred to as the test set.

The resulting target function, f , is chosen from a set of candidate func-
tions forming a hypotheses space. The algorithm which takes the training

39
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40 Black-box Models

data as input and selects a hypothesis from the hypotheses space is referred
to as the learning algorithm. Even though a hypothesis can be found that
is consistent with the training data, it does not imply that the function will
work well on unseen data. The ability of a hypothesis to give estimations on
data points outside the training set is known as its generalization, and it is
this property that is to be optimized.

The function, f , is often dependent on additional parameters, referred
to as model parameters, that control the shape of the function. They are
determined by a cross validation over the training set as is elucidated in the
following section.

Cross Validation It is not necessarily desirable to achieve too high train-
ing accuracy, as that could lead to an over-fitted model which generalizes
poorly. In order to improve the overall performance of the model, its param-
eters must be determined differently. A common way is to split the training
data into n subsets of approximately equal size, train on n − 1 subsets and
validate on the remaining one. Training takes place n times where each of the
subsets is used as a validation set. n validation accuracies are generated this
way and their average is the estimated generalization error for the model
parameters. These set of parameters that yield the lowest generalization
error should be chosen when the final model is trained. This method[23]
prevents over-fitting of the model but, alternatively, introduces additional
computational time.

Data Entities When the data has to be filtered, as is the case in this
study, care must be taken when splitting the data into training and test
sets.

The data is split into approximately one hour chunks, each of which is
to be used as an entity. The entity is filtered as a whole and used in either
the training data or the test data.

Entities are subsequently randomly selected into training and test data
sets at ratio 80% vs. 20% respectively.

5.2 Support Vector Regression

Support Vector Regression (SVR)[24, 25, 26, 27] is a learning machine that
has yielded promising results in recent years. The attractiveness of SVRs
stem from the process itself; first, the data is implicitly mapped, through the
introduction of kernels of data point pairs, into a high dimensional feature
space. In this space, a conventional linear regression can be applied to the
mapped data, effectively handling noise and outliers implicitly. It is easy to
find the linear function since the kernel ensures that the optimization prob-
lem will be convex. The corresponding function in the original data space
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will be nonlinear, but its shape will depend on the choice of kernels. This
can be performed with moderate computational efforts. The resulting model
is sparse, i.e. comprised of only a few vectors, leading to a computationally
efficient solution.

Problem Statement. In essence the ε-Support Vector Regression problem
can be stated as the following optimization problem.

Define the linear ε-insensitive loss function by

Lε(y, f(x,w)) = max(0, |y − f(x,w)| − ε)

where x is a vector of input values, w ∈ Rk is a vector of function parameters,
ε is a real positive error tolerance value and

f : X× Rk → R; x 7→ 〈w · φ(x)〉+ b

where φ is a feature map (see below). It measures the quality of estimates
by emphasizing on errors that are outside the distances of the true value.
Given {(x1, y1), . . . , (xn, yn)}, a set of input/output data point pairs, the
parameters w are chosen such that

1
2
||w||2 + C

n∑
i=1

Lε(y, f(x,w)) (5.1)

is minimized for some values C and ε. An equivalent optimization problem
form is as follows:

min
w,b,ξ,ξ∗

1
2
||w||2 + C

n∑
i=1

(ξi + ξ∗i )

subject to f(xi; w)− yi ≤ ε+ ξi,

yi − f(xi; w) ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , n.

where ξi and ξ∗i are slack variables that measure the difference from the data
points to the ε-insensitive tube (see figure 5.2)
The corresponding dual optimization problem can be expressed as follows:

min
α,α∗

1
2

(α− α∗)TQ(α− α∗) + ε

n∑
i=1

(αi + α∗i ) +
n∑
i=1

yi(αi − α∗i )

subject to
n∑
i=1

(αi − α∗i ) = 0,

0 ≤ αi, α∗i ≤ C, i = 1, . . . , n.
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42 Black-box Models

where Q is an n× n positive semidefinite matrix defined by the kernel :

Qij = K(xi,xj) := 〈φ(xi) · φ(xj)〉 (5.2)

This is a convex optimization problem without any local minima with an
efficient solution algorithm based on the Lagrangian theory.
The resulting function can be expressed as follows

f̂(x) =
nsv∑
i=1

(−αi + α∗i )K(xi,x) + b (5.3)

where −αi + α∗i 6= 0 only for the vectors xi located on the boundary of the
ε-insensitive tube (see figure 5.2); namely the support vectors.
The feature map φ and the kernel K are explained further in the next para-
graph.

Kernels. The feature map, φ, maps the input data into a high dimensional
feature space F where there is a linear relationship between the data points
(see figure 5.1):

X 3 x = (x1, . . . , xk) 7→ φ(x) = (φ1(x), . . . , φN (x)) ∈ F

Φ

Figure 5.1: Data can be mapped into a higher dimensional feature space.

Determining φ can be a daunting task but from equation 5.2 it can be
seen that there is no need to do that explicitly. By replacing the inner
product with a kernel function defined on the original data space

K : X ×X → R; (x1,x2) 7→ y

the data can be implicitly projected into a high dimensional feature space
since this is the only place where the mapping enters into the dual optimiza-
tion problem.
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Kernels can be defined in various ways, as long as they satisfy the following
conditions in order that they correspond to an inner product in the feature
space. The kernel function must be symmetric:

K(x1,x2) = K(x2,x1)

and satisfy the following inequality

K(x1,x2)2 ≤ K(x1,x1) ·K(x2,x2)

for all xi,xj ∈ X. And, finally, the kernel matrix

K = (K(xi,xj))ni,j=1

must be positive semi-definite.
The kernel effectively measures the similarity between data points. The

most common kernels are the linear, polynomial, sigmoid and the Gaussian
kernel (radial basis function (RBF)). The RBF kernel that will be used in
this thesis measures the similarity between data points x1 and x2 as

K(x1,x2) = exp(−γ||x1 − x2||2) =
∞∑
i=0

(−γ||x1 − x2||2)i

i!
(5.4)

where γ > 0 is a kernel parameter. Thus, equation 5.4 implies that the
induced feature space is infinite dimensional.

SVR Generalization The aim is to optimize the generalization bounds
given in equation 5.1. Figure 5.2 illustrates the ε-insensitive tube around the
estimated function. Parameter ε determines the width of the ε-insensitive
margin, used to fit the training data. It affects the number of support vectors
where larger ε values imply fewer support vectors. C is a penalty parameter
which determines the degree to which errors larger than ε are tolerated when
finding the optimization solution. This parameter affects outliers and noisy
data. The generalization error will depend both on C and the number of
support vectors.

SVR Model. The solution model, i.e. the output from the learning algo-
rithm, is comprised of support vectors that lie on the ε-insensitive tube (see
figure 5.2). Model parameters C and ε depend on the data domain and are
usually considered as an input from the user.

The kernel chosen for this study is the RBF kernel from equation 5.4. Apart
from the model parameters C and ε, the kernel parameter, γ, has to be
specified.
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Error measured 
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Figure 5.2: The ε-insensitive tube around the estimated function. The support
vectors are located on the boundary of the tube.

5.3 k Nearest Neighbor

The k Nearest Neighbor (kNN) regression [28, 29, 30] consists of estimating
the mean of the given output values at the k closest data points to a given
point. The distance is a Euclidean distance metric where input parameter
values are first normalized and subsequently given different weights to reduce
the error and thus overcome the problem of the curse of dimensionality[28,
30].

Target Function. kNN is based on instance based approaches where the
output from data point x will be estimated from the k nearest input points
that are in the neighborhood. More precisely, the estimate of the output
value for a input point x is the mean of the output values of the k nearest
input points

f̂ : Rn → R; x 7→
∑

i∈Nk(x) f(xi)

k

where Nk(x) denotes the set of the k input vectors that are closest to x in
the training set.

Hence, kNN is an instance based model as the whole training set is stored
and, generalization of the target function (i.e. the model) is not performed
until the query instance is given. Therefore, the model is locally constrained
and estimates differently for each query data point.
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The advantage of this method is that no information is lost but, on the
other hand, the cost of estimating new instances can be high if the training
set is large.

Distance Metrics. The distance metric used to measure the k nearest
input points to a given instance x is usually based on Euclidean distance
metric:

d(x1,x2) =

√√√√ k∑
i=1

(x1i − x2i)2 (5.5)

where x1 and x2 are input points from the training set.
Figure 5.3 illustrates how the k nearest input points are determined with

the Euclidean distance metric.

x1

x2

X

Figure 5.3: k nearest input points to the instance x determined with a Euclidean
distance metric.

Often, the k nearest input points are given weights, according to their dis-
tance to the query instance x, by assigning higher weights to closer neighbor
input points. The distance-weight method is commonly defined as follows:

f̂(x) =
∑k

i=1wif(xi)∑k
i=1wi

(5.6)

where
wi =

1
d(x,xi)2

If x = xi the output estimation can be assigned the training output value,
f̂(x) = f(xi).
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46 Black-box Models

Coordinate Weights. One disadvantage with the kNN method is how
poorly it scales with an increased number of coordinates. The distance of
the nearest data points are based on all input parameters even though some
of the input parameters are irrelevant. Data points that are in essence iden-
tical with respect to important input parameters could be distant from one
another in higher dimensional space. The distance between points will be
dominated by irrelevant input parameters resulting in an unreliable distance
metric. This problem is known as the curse of dimensionality.

An approach to remedy this problem is to normalize the whole data set
to a certain interval, e.g. [−1, 1]. Another is to weight the coordinates of the
input parameters:

d(x1,x2) =

√√√√ k∑
i=1

wi(x1i − x2i)2 (5.7)

This method stretches the i-th axis with a weight wi. Input parameters that
should be more influential receive a higher weight while the less relevant ones
receive lower weights. Figure 5.4 illustrates how the distance to nearest data
points changes when one axis is lengthened.

X1

X2

w*X1

X2

x x

Figure 5.4: The results from the distance metric can change if the weights are
applied to the coordinates.

kNN Model. The choice of k is a compromise between wanting to ob-
tain a reliable estimate and wanting the k nearest data points to be as near
the query instance, x, as possible to ensure similarity. Thus, the model-
parameters are k and the weights for the normalized coordinates from equa-
tion 5.7. The distance metrics from equations 5.5 and 5.6 are both used in
this thesis.
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5.4 Other Black-box Models

The main attention, in this study, has thus far been on the SVR and the kNN
models. This section describes other black-box models that have also been
applied. These are Classification and Regression Trees (CART), Bagging
and Artificial Neural Networks (ANN).

Decision Trees. Classification and Regression Trees[28, 30, 31] are founded
on hierarchical concepts where the most important input parameter is
determined at each node and a choice is made on how to proceed
dependent upon the value of this parameter. The tree is comprised of
inner nodes where the choice is made and leaf nodes where the output
value is specified. Figure 5.5 illustrates a simple regression tree.

X1 > 7

yes

y=8

y=3

no

X2 < 314

yes no

y=42

Figure 5.5: A very simple regression tree. The choice is made on how to
proceed down the tree dependent upon the value for the most important
parameter at each node. The output value is specified in the leaf nodes.

The only model parameter used in this study is a number n such that
nodes must have n or more observations to be split into two descendant
nodes1.

Bagging. The CART model is unstable in the sense that a slight difference
of an input value could render a completely different tree. A modifica-
tion to the CART model is to generate a bag [32, 33] of diverse models
which is less unstable. This is accomplished by rendering a model from
samples that have been randomly sampled from the training set with
replacement. The mean from the output of the models determine the
output of the total model for a given data point.

1See treefit in Matlab
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The model parameters are the number of bags and the number n as
readily described above in the CART section.

Artificial Neural Network. Artificial Neural Network[30] (ANN) is a feed-
forward back-propagation network of nodes which is capable of express-
ing various non-linear functions.

In a network with one hidden layer with m nodes the function to be
learned takes the form

y =
m∑
i=1

w̃i tanh(
n∑
j=1

wijxj + wi0) + w̃0

Figure 5.6 illustrates the network that is used in this thesis.
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w
1
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w 
0

Figure 5.6: A network of nodes with n input parameters, m hidden nodes
and one output node.

The weight and bias values, i.e. the function parameters, are deter-
mined by the Levenberg-Marquardt back-propagation algorithm2. It
updates the weights at each iteration step, decreasing the training error

2See trainlm in Matlab
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in the process. This can lead to an over-fitted model since the function
can be approximated to an arbitrarily degree of accuracy, by choosing
m large enough.

Therefore, the model parameters are the number of nodes in the hidden
layer and the number of iterations performed by the training algorithm.

5.5 Implementation

The SVR model implementation is based on libSVM [27]. The implementa-
tion for the other machines is embedded in Matlab3.

The model parameters are determined with a simple grid search over
possible parameter values and a 5-fold cross validation on the training data
to choose the parameters that give the best fit.

5.6 Summary

This chapter briefly describes the learning machines employed in this thesis.
The support vector regression is a model that, through kernels, maps data
with non-linear relationship into a feature space where the data has a some-
what more linear relation. In this space, a conventional linear regression can
be applied to the mapped data ensuing in a function in the original data
space that is nonlinear. The k Nearest Neighbor model consists of estimat-
ing the mean of the given output values at the k closest data points to a
given point. Other machines are also introduced for comparison to the SVR
and the kNN models.

The black-box models that have been introduced in this chapter will be
used to simulate the shaft power in the next chapter.

3See http://www.mathworks.com.
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Chapter 6

Experimental Study

In this chapter, the black-box models presented in Chapter 5 are used to
simulate how the shaft power of the vessel depends on various external and
operational conditions, using the data set described in Chapter 3 after it has
been preprocessed according to the description in Chapter 4. The aim is to
be able to derive an optimal pitch configuration with respect to fuel usage for
given values of all the remaining external and operational parameters. The
chapter commences with a discussion on input parameter selection, followed
by results from the model parameter search. Subsequently, modifications to
the SVR and kNN models are introduced and tested. Predictive results for
the optimal pitch are then presented and the chapter concludes by proposing
the introduction of a prediction score function.

6.1 Parameter Selection

The model selection must be based on as few features as possible without
sacrificing too much information on the process. Even though a feature con-
tributes to a model it might be discarded since the contribution is marginal,
while adding it will add to the complexity of the model. Numerous feature
selection methods were applied in an attempt to reduce the number of input
parameters.

Weka The WEKA project[34] contains a feature selection method where a
combination of sequential forward selection and sequential backward
selection is applied to select a subset of parameters that are most dis-
criminative. It searches the space of parameter subsets by greedy hill-
climbing augmented with a backtracking facility.

AIC The Akaike Information Criterion[35] can be used in conjunction with
a simple linear least-squares model on all permutations of input pa-
rameters. AIC is defined as

AIC = n log(SS(E)/n) + 2d

51
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where d is the number of input parameters, n is the number of data
points and SS(E) is the sum of squared errors

SS(E) =
n∑
i=1

(yi − ŷi)2

A combination of features with the lowest AIC value is considered to
contribute the most to the model without sacrificing too much infor-
mation.

CART The CART model constructed from the training data can be used
to determine whether an input parameter should be included or not
by inspecting whether it is used to construct the decision tree (see
treefit in Matlab).

Each of these methods returned a different preference of input param-
eter selection. Consequently, it was decided to use all the available input
parameters. Figure 6.1 illustrates how the setup is for all black-box models.

Shaft Power

Wind Speed

Wind Direction

Roll

Pitch

Wave Height

Propeller Pitch Port

Propeller Pitch Stb

Mean Draught

Black-box

Log Speed

Figure 6.1: The setup for all black box models.

6.2 Model Parameters

The results from a grid search of the optimal model parameters are pre-
sented in this section. Model parameters for the SVR and kNN models are
given special attention as they will be used in section 6.3 to construct a new
coordinate-weighted distance metric.

6.2.1 SVR Parameters

The model parameters for the SVR model turn out to be

(γ, ε, C) = (0.3, 100, 7000) (6.1)
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6.2.2 kNN Parameters

The model parameters for the kNN model are

k = 20, w = (0.1, 0.1, 0.01, 0.1, 1, 0.1, 5, 5, 0.1)

Due to time constraints, a thorough search for the coordinate weights with
the intention of finding the best fit for the kNN model were not performed.
Only values from the set wi ∈ {0.01, 0.1, 1, 5} were tested which limits the
hypothesis space considerably.

The parameters corresponding to the coordinate weights are shown in
table 6.1. The propeller pitch parameters turn out to be assigned a dominant

Input Parameter Weight
Log Speed 0.1
Wind Speed 0.1
Wind Direction 0.01
Roll 0.1
Pitch 1
Wave Height 0.1
Propeller Pitch Port 5
Propeller Pitch Stb. 5
Mean Draught 0.1

Table 6.1: The parameters corresponding to the coordinate weights in the kNN
model.

weight value, indicating that they are the most important input parameters
in detecting optimal pitch values. Significantly, in terms of this study, the
pitch parameter is likewise quite important as it has a higher value than the
remaining parameters.

6.2.3 Parameters of other Models

In the bagging method, the number of bags turns out to be 20. In ANN,
the number of hidden nodes turns out to be 20. These numbers are not
particularly intuitive and, therefore, will not be discussed further.

6.3 Augmented Distance Metric

Instinctively, use can be made of the parameters obtained for the SVR model
in the kNN model and vice versa

• add the coordinate weights from the kNN model to the distance metric
in the RBF kernel for the SVR model, and
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• introduce a RBF induced distance-weight to the k nearest points in
the kNN model.

This reflects, to a certain degree, the similarities between these two model
types. A key ingredient of both methods is how one estimates the importance
of neighboring points from the appropriate measure of distance to them.

These modifications are described in detail in the following subsections.

6.3.1 Coordinate Weighted RBF Distance in SVR

A new kernel based on the coordinate weights, w = (w1, ..., w9), from the
kNN model can be constructed for the SVR model:

K(xi,xj) = e−γ||W·(xi−xj)
T||2

where xi and xj are data points, γ is from equation 6.1 and

W =

w1 · · · 0
...

. . .
...

0 · · · w9

 (6.2)

The difference between this kernel and the RBF kernel is the introduction
of coordinate weights that are applied to the input parameters.

6.3.2 RBF Induced Weight Distance in kNN

A RBF induced weight distance metric for the k nearest neighborhood points
is defined as follows

ωj =
e−γ||W·(x−xj)

T||2∑k
i=1 e

−γ||W·(x−xi)T||2
, j = 1, . . . , k

where W is from equation 6.2 and γ is the same as used in the SVR model
(equation 6.1). This method adds weights to the nearest points in a similar
fashion as to the SVR model.

The results from these modifications are presented with other model results
in section 6.5.

6.4 Model Quality

The root mean square (RMS) error is the model quality metric of choice:

RMS(e) =

√∑n
i=1 e

2
i

n

where the error ei = (yi−ŷi) for point i, i = 1, ..., n, is the difference between
the observed response value yi and the estimated response value ŷi.
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6.5 Results

The results from this study are twofold. First, the results of the overall qual-
ity of the model for shaft power prediction are displayed. Subsequently, the
results on how the models perform in predicting the optimal pitch configu-
ration are presented.

6.5.1 Predictive Results

Table 6.2 shows how all models perform on unseen test data and how large
their error RMS is compared to the RMS of the power shaft values. All

Model Error RMS % of total RMS
ε-SVR 289 2.00
Weighted Coordinates ε-SVR 282 1.95
Normal kNN 373 2.58
Weighted Coordinates kNN 277 1.91
Euclidean Distance-Weight kNN 372 2.58
RBF-Distance-Weight kNN 278 1.92
CART 369 2.55
Bagging 291 2.01
ANN 315 2.18
Shaft Power 14442

Table 6.2: RMS error results from black-box models.

models perform adequately, indicating that they are viable as a model that
can be used to predict the shaft power usage for different configurations of the
pitch. Figure 6.2 depicts the prediction result for the weighted coordinates
kNN model (the figure for other models is quite similar). The black line is
the predicted shaft power, which essentially overlaps the original shaft power
measurements, displayed as a thick grey line. The error is shown below.

Figure 6.3 illustrates an alternative view of the error for the weighted
coordinates kNN model. The histogram of the shaft power estimation error
is on the figure to the left side. On the right side, the estimated shaft power
is plotted against the observed shaft power. It is interesting to see that there
seems to be a pattern in the error for some cases. This may indicate that
additional input parameters are needed for the black-box models that could
explain this error pattern.

It is of interest to note, that the introduction of weights for different
normalized input parameter values reduces the RMS error significantly, in
the cases of the kNN model and the SVR model. No attempts were, however,
made to find the SVR parameters that give the weighted coordinates SVR
model the best fit, leaving it open for improvements. It is also of interest to
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Figure 6.2: Shaft power prediction using the weighted coordinates kNN model.
The black line is the predicted shaft power, which essentially overlaps the original
shaft power measurements, displayed as a thick grey line. The error is shown below.
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Figure 6.3: The histogram of the shaft power estimation error is on the figure to
the left and, a scatter plot of the estimated shaft power plotted against the observed
shaft power to the right.
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note that using a distance weight on the neighboring points does not change
the performance of the kNN model at all.

6.5.2 Optimal Pitch Configuration

Although the model thus predicts shaft power satisfactorily for unseen data
of input parameters, it does not necessarily imply that it will accurately
predict variations on shaft power when changing the pitch while keeping
other input variables fixed. Figure 6.4 depicts how this prediction can be in
certain situations.

The point X marked in the figure corresponds to a data point where all
the input parameters, as well as the shaft power, are known. The vertical
segment through the point shows the overall RMS error of 290. The curves
then show how the predicted shaft power varies according to all models when
all the input parameters except for the pitch are held constant at these
values. The models are not predicting convincingly for pitch values far from
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Figure 6.4: An example of a poor shaft power prediction for pitch values far from
zero. The vertical segment through the known data point, marked with X, shows
the RMS error of 290.

zero. They all suggest that extreme pitch values, possibly beyond physical



i
i

“thesis” — 2009/6/15 — 22:49 — page 58 — #66 i
i

i
i

i
i

58 Experimental Study

capacity, are the optimal ones. The problem stems from the external or
operational conditions that the point presents. There are not enough points
in the data set that include similar conditions but with different pitch values.
This causes the model to give predictive results induced from data points
where the values of the remaining input variables differ significantly from
the fixed ones. The data range is not broad enough to generate black-box
models that can predict the dependence of shaft power on pitch for these
conditions.

Alternatively, figure 6.5 illustrates where there is a general consensus
between the SVR, the kNN and the ANN models on a realistic location of
the optimal pitch, while the CART and the bagging models do not yield
useful information in determining the optimal pitch. This could be useful if
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Figure 6.5: An example of the SVR, kNN and ANN models agreeing on the optimal
pitch location while the CART and the bagging models are not useful.

the vessel happened to be incorrectly trimmed.

Selected Model Types

The SVR and kNN model types will be used from now on as the other model
types are performing similarly or worse. For clarity, figures 6.4 and 6.5 are



i
i

“thesis” — 2009/6/15 — 22:49 — page 59 — #67 i
i

i
i

i
i

6.5 Results 59

displayed again in figure 6.6 where only the results from the kNN model and
the SVR model are illustrated:
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Figure 6.6: Shaft power estimation for various pitch configurations illustrated for
the kNN model and the SVR model.

kNN Prediction Score

The variation of the prediction curves indicates a need of introducing some
form of a prediction score, for a generated data point, reflecting the closeness
of neighboring data points. It can be chosen such that values become 1
when the neighboring points coincide with the generated point. Equation
6.3 proposes a prediction score function of this kind, based on the RBF-
distance-weighted kNN model, for a pitch value p:

S(p) =
1
k

k∑
i=1

e−||W·(xi−x̃(p))T||2 ∈ ]0, 1] (6.3)

The score is the average of the scaled weighted distance from a given point,
x̃(p) with pitch p, to k nearest points, xi, i = 1, ..., k. The weights in
the matrix, W, are the same as in equation 6.2. The data points x̃(p) are
generated input points where all the input parameters, excluding the pitch,
are held constant.

Figure 6.7 illustrates this score function, displayed along with the model
predictions. The score function suggests that the kNN model predicts ad-
equately for pitch values from -0.4 to -0.05. If the vessel happened to be
trimmed around -0.4 this figure would indicate that the ship should instead
be trimmed around -0.1, in order to reduce the shaft power consumption
by approximately 800 kW, which is outside the error margin of 300 kW. A
power reduction of 500 kW for 20 hours (one trip) implies a 1.9 MT savings
in fuel usage, given that the engines are running at 190 g/kWh in specific
fuel consumption; a reduction of 3.4% or $540 if the price for 1 MT is $3001.

1See http://www.bunkerworld.com
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Figure 6.7: An example of how a prediction score can be displayed along with
predicted values. The score indicates reliable predictions of values from -0.4 to
-0.05.

In particular, the score function must indicate when the shaft power estima-
tions should be discarded.

Figure 6.8 illustrates when the score function is too far from 1, indicating
that the shaft power estimations are unreliable. The figure suggests that a
cut-off value as high as 0.99 may be needed to indicate reliable predictions
but, this remains to be investigated more fully.

Sensitivity of the Models

As a further indication of the potential usefulness of these types of models
a sensitivity analysis has been carried out assessing how much the optimal
pitch values, dependent upon the models, change when one of the input
parameter values are altered while keeping the remainder fixed. The base
case for this analysis is given in table 6.3. These values, denoted by µi, are
the average values of each input parameter value in the training data set.
Also shown is the standard deviation, σi, for all input parameters except
the Log Speed and the Propeller Pitches. The σi for the Log Speed and
the Propeller Pitches were determined empirically, since changing one of
these parameters by the proposed standard deviation is in effect unrealistic
without changing the other two as well.

The SVR-model and the kNN-model almost agree on the optimal pitch
value for this base case, being −0.07 according to the SVR model and −0.09
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Figure 6.8: An example of how a prediction score can be used to indicate that the
shaft power estimations are unreliable.

µi σi
Log Speed 17.2 1.6
Wind Speed 11.2 6.4
Wind Direction 213 30
Roll -0.73 0.9
Wave 1.34 1.3
Propeller Pitch Prt 80 2
Propeller Pitch Stb 78 2
Mean Draught 6.51 0.1

Table 6.3: The average of the input parameters in the training data set is given in
the µi column. The σi column lists the standard deviation for all input parameters
except the Log Speed and the Propeller Pitches which, in turn, were determined
empirically.
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according to the kNN model.
We now calculate for each model the optimal pitch value by replacing in

turn each input parameter value by µi − σi and µi + σi. These results are
shown in table 6.4, which also shows the offset in the optimal pitch value
from the baseline value in each case.

SVR kNN
−σi ∆ +σi ∆ −σi ∆ +σi ∆

Log Speed 0.06 0.13 -0.15 -0.08 -0.01 0.08 -0.08 0.01
Wind Speed -0.08 -0.01 -0.05 0.02 -0.23 -0.14 -0.12 -0.03
Wind Dir. -0.09 -0.02 -0.04 0.03 -0.06 0.03 -0.09 0
Roll -0.02 0.05 -0.12 -0.05 -0.08 0.01 -0.08 0.01
Wave -0.01 0.06 -0.10 -0.03 -0.05 0.04 -0.32 -0.23
Pr.Pitch Prt -0.10 -0.03 -0.03 0.04 0.05 0.14 -0.18 -0.09
Pr.Pitch Stb -0.07 0 -0.07 0 -0.12 -0.03 -0.04 0.05
Mean Draught -0.10 -0.03 -0.04 0.03 -0.10 -0.01 -0.04 0.05

Table 6.4: The ±σi columns list the optimal pitch values for each model, where
the input parameter value, i, has been replaced by µi ± σi, and ∆ designates the
offset of the optimal pitch configuration from the optimal pitch configuration for
the base case.

This table brings out a number of noteworthy facts:

• The results of the SVR-model are smoother, and possibly more robust,
in that the optimal baseline value lies in all cases between the optimal
values of the two extreme cases. For the kNN model this does not hold
true in the cases of Log Speed, Wind Speed and Roll. This is also
reflected by typical model curves as those shown in figure 6.7.

• There a considerable discrepancy in the optimal values between the two
models, in particular in the cases of Wind Speed, Wave and Propeller
Pitch Port.

• The highest offset value for the smoother SVR-model is only 0.06, apart
from the case of Log Speed.

6.6 Summary

The black-box models perform well on unseen test data, indicating that they
are viable in predicting the shaft power for various pitch values. However,
in some cases, they do not perform adequately in finding the optimal pitch
configuration. Nevertheless, even though the models cannot predict fuel
consumption accurately for all occasions, there is evidence that they can aid
the captain when the trim of the vessel is incorrectly configured. Specifically,
if a prediction score would be used to indicate whether the estimate of the
optimal pitch configuration is reliable.
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Chapter 7

Conclusion

This thesis examined the feasibility of using black-box models to simulate
the power consumption of a vessel for different trim values in an attempt
to derive an optimal trim configuration with respect to fuel usage. The
objective was to create a simulation model to be used in a decision support
system for potential fuel usage savings.

The investigation was based on empirical data sampled at the passenger
and freight vessel, Norröna, which has a cruising schedule in the North-
Atlantic Ocean. The data chosen for this study were those considered to
contribute primarily to the total resistance of the vessel.

Careful attention was given to the preprocessing of the data. Data seg-
ments corresponding to the voyages of the vessel were isolated. Those that
contained gaps were either patched or removed. Data series that contained
incorrect measurements were corrected. Noisy data were filtered and outliers
were removed. Finally, all the data series were synchronized in time to make
them well formed for black-box models.

Five models types were tested but two of them were considered specifi-
cally; the support vector regression model and the k nearest neighbor model.
The models’ performance for estimating the shaft power for unseen data
turned out to be adequate. Subsequently, they were used to estimate the
variability of the power consumption with different trim configurations. They
turned out to be unreliable when estimating the power consumption for trim
values outside the range of the data set. An introduction to a prediction
score was presented to indicate the proximity of the data that the models
based their estimation on.

Conclusion

In this study, black-box models did not perform adequately in finding the
optimal trim configuration in some cases. The main reason is the nature of
the data set where the range of some of the parameters was too narrow to
generate a complete model. Sampling more data to broaden the data set is

63
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64 Conclusion

not necessarily achievable, since some of the parameters cannot be controlled
due to external conditions.

Even though the models cannot predict fuel consumption accurately in
all cases, there is evidence that it can aid the captain when the trim of the
vessel is incorrectly configured, in particular, if the prediction score would
be used to indicate whether the estimate of the optimal trim configuration
is reliable.

A typical application would be if the vessel is cruising in calm weather and
the trim is incorrectly configured. The decision system would then indicate
to the captain that the vessel is indeed improperly trimmed and that he
could enhance the energy efficiency by trimming the vessel correctly.

The method presented here can likewise be applied to other types of
vessels such as cruise liners, cargo ships and tank ships but the models must
be adapted for each ship. The aim is to make such models part of an overall
energy management system on board marine vessels.

7.1 Future Work

The sensitivity of the models must be further assessed by observing how the
optimal trim value changes with different input parameter values under the
normal operating condition of the vessel. The coordinate weights should be
tuned better, as well, as their search space was reduced considerably due to
time constraints. A more elaborate method for determining them should be
considered instead of the simple grid search.

An application of this method would introduce a problem, regarding the
data behind the models, which must be solved. The physical attributes of
a vessel are continually changing over the course of time. The resistance
factors of the vessel are likewise continually changing. This would render
the models useless if they were not retrained, as the data that rendered
them will become obsolete. An autonomous method should be devised, in
order to retrain the models at specific intervals to update the models.

Likewise, a graphical user interface must be designed to relay the decision
support messages in a proper and concise manner. The relationship between
the prediction score function and the model estimates must, in particular,
be considered more closely.

Other types of vessels should be subjected to this method for comparison
reasons. Cargo ships and oil tankers are interesting subjects as their trim
configuration are variable compared to passenger vessels.

Applying these models in conjunction with white-box models should also
be considered. They could aid the predictive capabilities of the black-box
models for data points outside the proximity of the data set. Moreover, they
could estimate the physical capacity of the hull, preventing the vessel from
incorrect trim configurations.
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