
Viðskipta- og raunvísindadeild

Faculty of Business and Science

Setup of a DNS Server with Dynamic Updates

Final Year Project

2009

Eric Erlandsson

Frans Englund

Jenny Schulze (Háskólinn á Akureyri)

Mattias Sjöblom

Setup of a DNS Server with Dynamic Updates
Bachelor of Science Thesis

FRANS ENGLUND ERIC ERLANDSSON
JENNY SCHULZE MATTIAS SJÖBLOM

University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden 2009
Report No. 2009:26

Setup of a DNS Server with Dynamic Updates
Bachelor of Science Thesis

FRANS ENGLUND ERIC ERLANDSSON
JENNY SCHULZE MATTIAS SJÖBLOM

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2009
Report No. 2009:26

Setup of a DNS Server with Dynamic Updates

© Frans Englund, Eric Erlandsson, Jenny Schulze, Mattias Sjöblom, May 2009.
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden

Abstract

Today the need for dynamic reconfiguration of IP addresses increases. This is mostly
due to the increased mobility among Internet connected devices. The purpose of the
project was to develop a solution for dynamic DNS with updates initiated by the client.
There are already various commercial solutions available today, but they have some
limitations. The goal was to implement a system based on already available components
with only minor adaptations. This report describes an implementation based on a
RADIUS server (FreeRADIUS), which is accessed through a web interface
(daloRADIUS). The authentication process is secured by a server certificate. Due to
time constraints the implemented result should be considered as an early prototype. The
conclusion of the project is that the concept works and that it is possible with some
effort to solve the problem in a relatively simple way.

Sammanfattning

I dag ökar behovet av att dynamiskt kunna konfigurera IP-addresser. Detta beror
mestadels på en ökad mobilitet bland Internet-anslutna enheter. Syftet med projektet var
att utveckla en lösning för dynamiska DNS uppdateringar som initieras av klienten. Det
finns redan i dag ett antal kommersiella lösningar på detta problem, men de har vissa
begränsningar. Målet var att implementera ett system baserat på redan tillgängliga
komponenter med bara några få justeringar. Den här rapporten beskriver en
implementation baserad på en RADIUS server (FreeRADIUS), som nås via ett web-
gränssnitt (daloRADIUS). Autentiseringsprocessen skyddas av ett certifikat. På grund
av tidsbegränsningar bör det implementerade resultatet ses som en tidig prototyp.
Slutsatsen av projektet är att konceptet fungerar och att det går att lösa problemet med
viss ansträngning, på ett relativt enkelt sätt.

Table of Contents

1. Introduction .. 1
1.1 Background ... 1
1.2 Purpose .. 2
1.3 Limitations .. 2
1.4 Problem Description ... 2
1.5 Method .. 3

2. Technical Background ... 5
2.1 DNS .. 5
2.2 RADIUS .. 7
2.3 LAMP ... 7
2.4 Certificates .. 7
2.5 Iptables .. 9

3. Implementation ... 10
3.1 Equipment ... 10
3.2 Network Topology .. 11
3.3 Design ... 11
3.4 Service Configuration ... 12

3.4.1 Basic Implementation ... 13
3.4.2 RADIUS.. 14
3.4.3 The Script .. 15
3.4.4 Apache .. 15
3.4.5 Certificates .. 16
3.4.6 Firewall ... 16

4. Results and Discussion ... 17
4.1 RADIUS .. 17
4.2 DDNS .. 17
4.3 Certificates .. 18
4.4 Test and Verification .. 18

5. Conclusions ... 19
5.1 Advantages and Disadvantages of the Solution .. 19
5.2 Future Work .. 20
5.3 Final Conclusion ... 21

References.. 22

Appendix A - Contribution Report ... 25

Glossary

BIND - Berkeley Internet Name Domain, a DNS Server.
DDNS - Dynamic Domain Name System, DNS with dynamic updates whenever a client
changes its IP address.
DHCP - Dynamic Host Configuration Protocol, a service that supplies network
configuration information for hosts.
DNS - Domain Name System, a service that translates names to numerical addresses
and vice versa.
DNS lookup – Name query for an address of a domain name to a DNS server, the DNS
server performs the work and answers.
FQDN - Fully Qualified Domain Name. The complete name of a computer including
the domain. "computer.chalmers.se" is a FQDN while "computer" is not a FQDN.
FreeRADIUS - Open source implementation of a RADIUS server.
IP - Internet Protocol, the network protocol used to communicate between units in the
Internet.
IP address - The numerical address to a unit in the network.
ISC - Internet Systems Consortium, Inc., maintains BIND and DHCP implementations.
MAC address - Media Access Control address. An identity on a physical network
interface. The identity should be unique and used in link-layer switching.
NTP - Network Time Protocol. Protocol for time synchronization over IP.
NTPD - NTP daemon. Unix implementation of a NTP client/server.
RADIUS - Remote Authentication Dial In User Service. A network protocol used for
centralized Authentication, Authorization and Accounting (also known as the AAA
concept). It is used when managing computers or people that have to access some kind
of network service.
Router - A computer or a standalone networking device that connects subnets with each
other, and routes traffic between subnets.
SQL - Structured Query Language. A computer language used in programming and
managing relational databases.
SSH - Secure Shell, a secure protocol used for accessing a computer remotely. It is
widely used in the Linux/Unix world, but there are implementations available for other
operating systems as well.
SSL/TLS - Secure Sockets Layer/Transport Layer Security are cryptographic protocols
implemented on top of TCP/IP. They are used to provide an encrypted point to point
connection over an insecure network (e. g. The Internet).
Switch - A layer-2 network device that extends the network physically but does not
route traffic between different subnets it does only work within a subnet.
TSIG - Transaction SIGnature, symmetric key system, mostly used in DNSSEC.
TTL - Time To Live. A time value telling how long some kind of data is valid.
Watchdog - A function that supervises some other function and reacts on changes.

 1

1. Introduction

Dynamic Domain Name System (DDNS) is a method to change Domain Name System
(DNS) entries in a DNS server automatically, without any need for manual
reconfiguration. To fully gasp the content of this report basic network knowledge is
required. It is also needed to understand the purpose of the product. More technical
details will be explained in chapter 2.

1.1 Background

Nowadays many client computers often change their Internet Protocol (IP) addresses.
Owing to the shortage of IP addresses many users have dynamic IP addresses instead of
a static one. Also, a lot of people own a laptop or other portable device connected to the
Internet. This furthermore increases the need for mobility since they will often join
different networks and will obtain a different IP address each time.

A problem arises if you want to host a service like a File Transfer Protocol (FTP) server
or a web server. When users connect to a service they want to use the same information
every time they connect. The way to accomplish this is either to have a static IP address
or a static Fully Qualified Domain Name (FQDN) e.g. "mywebserver.ddns.com". Since
a static IP address is not always possible the solution has to be a static FQDN. Usually
the FQDN is mapped to a static IP address in the DNS server, but for a laptop this
normally does not work.

The ideal solution is called DDNS (Albitz & Liu, 2001). DDNS permits automatic
changes of DNS entries in the name server. In that way a new IP address can be mapped
to the FQDN, allowing the server administrator to make use of dynamic IP addresses. In
this way the user who wants to connect to a server only needs the FQDN.

DDNS would also allow clients to keep their hostnames even if the IP configuration is
done dynamically. Especially when they are moved in smaller environments, e.g. a
computer lab in a university. In this case the DDNS would allow an administrator to
move computers without any reconfiguration at all.

Similar solutions
DynDNS is a DNS service provided by Dynamic Network Services Inc. (DynDNS.com,
1997). Its primary concept is to allow dynamic updates of DNS entries. This is done by
client software that periodically checks whether the IP address of the host has changed.
If a change is detected, the changed IP address is sent to the DynDNS server and the
DNS entry is updated. In this way the computer hosting the service can always be
accessed although its IP address changes. A similar implementation is provided by no-
ip.org (No-IP, 2000).

 2

1.2 Purpose

The main purpose of the project is to implement a DDNS solution that works across the
Internet. The only requirements should be that the client is connected to Internet and has
an IP address configured. The initial sub goal is to implement this DDNS solution in a
lab at the Lindholmen campus. If a computer with a registered name is moved to a new
network consequently its IP number in the DNS database should automatically be
reconfigured, allowing it to keep the same FQDN. This implementation is supposed to
use only standard software packages, have client authentication and be easy to
implement.

The goal of the project is to find a complete and working solution to the problem. The
solution might be usable outside the scope of the project, but mainly to satisfy the
necessary functionality for the specific computer lab.

1.3 Limitations

Only already available software will be used, which means that there will be no
developing of any new software. Small adaptations might be done to the available
software, but they will be kept to a minimum.

The solution will only be tested on:

 Debian servers
 Debian and Windows XP Pro clients
 a wired network with approximately 20 computers

There is a limited availability of hardware, consequently testing will only be conducted
on available hardware. In a commercial point of view a larger test base would be
required. Doing large scale testing is outside the scope of the project, since there are
limited resources available.

1.4 Problem Description

The task is to find a working solution for the problem defined and do a basic
implementation. The implementation does not need to be complete and may leave room
for further improvements. The project focuses on finding and implementing a solution
that is as simple and as basic as possible.

Initially the hardware that is available needs to be configured. This consists of building
a test network and setting up the routers and switches. When there is a test network
available the test computers need to be configured. This work consists of connecting the
computers to the test network and then installing a suitable operating system. For the
servers this would be Debian Linux. The clients would be a mix of Windows XP and
Debian Linux. Some of the computers might already be installed with a suitable
operating system.

 3

The next thing to do would be to get the basic services running. In this project the key
service is the DNS system. A Dynamic Host Configuration Protocol (DHCP) server is
also needed for testing purposes. Both the DNS and DHCP service should be made
redundant (i. e. a primary/secondary pair should be used for both services). The initial
purpose is to get basic DNS and DHCP running to make testing and experimenting with
various solutions possible.

The next phase would be to start looking for a suitable solution. This will include
finding a suitable authentication solution and adding auxiliary services. It is also time
for decisions of what should be included in the project implementation and what to put
in the list of possible improvements.

Finding a solution is one of the major challenges of the project. There are some
commercial solutions that the project can use for inspiration. However, most of them
rely on some kind of host agent which this project would like to avoid, if possible.
There is also a challenge in minimizing the transition time whenever a client changes its
IP number since DNS relies heavily on different caching techniques.

The solution itself should provide some way of allowing a client to authenticate itself.
Whenever a client authenticates the corresponding DNS entry should be updated. The
simplest form of authentication would be a login and a password. The project will also
look into the possibility of using some kind of certificate based authentication.

The solution should be able to handle that the client could be anywhere on the Internet.
As soon as the client has acquired an IP address it should be able to update its home
DNS server with this new IP address. At that moment the DNS server should update the
records with the new IP address. This will allow the client to roam the entire Internet as
long as it can acquire an IP address and connect to its home DNS server.

Finally the project management itself is also a challenge since the project has limited
resources. At various points, the project will have to make decisions on what should be
included in this project and what should be left to possible future project.

1.5 Method

The methodology of the project consisted of three basic parts. First of all the problem
was specified, relevant sources identified and a preliminary design developed. This
included looking for solutions and evaluating them. In the second part the project used a
prototyping approach to gain continuous feedback from the customer or in this case the
supervisor. The second part used several iteration steps as shown in Table 1.

 4

Table 1: Method
iteration achievement
1 get running DHCP and DNS service
2 setup RADIUS
3 setup website to work with RADIUS
4 secure server with firewall
5 implement certificates on website
6 perform final testing

During the iteration process, the supervisor was consulted and some testing was made.
These steps lead to some changes during the project. The implementation in the project
mainly consisted of editing configuration files. As they were stationary on the servers,
there was no synchronization problem and no version tracking was needed. Backups
were made of the relevant files on a regular basis. The final part was to compose
everything and finalize the product.

As the project goals changed the initial design had to be revised. This was done more in
an implementation on demand than in a coordinated way. As a result much time was
spent in following dead ends. As an example much time was paid to find a Remote
Authentication Dial-In User Services (RADIUS) client for Local Area Networks
(LANs) supporting certificates if the website could use certificates.

The final stage was simply a matter of rounding up the project and finalizing
everything. This included deciding what to include in the current implementation and
what to set as future possibilities. It also included finalizing the documentation of the
project.

Since the project had four members most of the work was divided into smaller parts.
Most parts of the project were done either by one member of the project individually or
by two members working together. It was discovered to be a much more efficient way,
allowing all active members to contribute in a more efficient way. This allowed the
other member to do other work, allowing the project to be more time efficient.

 5

2. Technical Background

This section gives a brief description of software and protocols that are used in the
solution. How they were used in this project is described in chapter 3.

2.1 DNS

The DNS is used to translate host names and service names (e. g. www.chalmers.se) to
numeric IP addresses (e.g. 129.16.221.8), which is a more suitable format for
computers. In short this is done by a lookup in the DNS server's database, and if not
found the server will contact other DNS servers to get the correct IP address for the
requested lookup (Figure 1).

IP addresses to other DNS servers and hosts will be cached in the local DNS server
performing a lookup. How long an address is valid in the cache is decided by the TTL
value of the IP address. TTL is set when the address is added in its authoritative DNS
server's database. This cache function results in that commonly used addresses and
domains are often found in the cache. With cached information the time of the lookup
decreases and less data traffic is produced.

In a full DNS lookup without any cached information, the local DNS server will request
a root name server for an IP address to the correct top level domain DNS server (e.g.
.se, .com). The top level server, which knows what lower level DNS servers' IP
addresses are, redirects the local DNS server further down the hierarchy of DNS
servers. This proceeds between the local DNS server and other DNS servers until the IP
of the requested hostname is known or results in an error. The local DNS server also
sends the correct address or an error to the client that requested the DNS lookup.

The DNS server contacted last in a lookup which is responsible for a portion of the
name space delegated to its organisation, which is called the DNS zone. This
authoritative DNS server has the address saved in its database along with the TTL
value.

An example of a DNS lookup where the top level domain server is known by the local
DNS server is illustrated in Figure 1.

 6

Figure 1: Standard DNS lookup

1. Client asks for an IP address to a certain name of for example a web server.
2. Local DNS server asks a top level domain server for an address to a lower level DNS
server.
3. The top level domain server answers with an IP-address to an authoritative DNS
server.
4. Local DNS server asks the new DNS server for the address of the web server.
5. The server was an authoritative DNS server thus it answers with the correct IP
address.
6. The IP address is forwarded to the client.
7. Now the client can ask for the web page from the web server since it got the exact
address.
8. Data exchange between client and web server starts.

DNS Security Extensions (DNSSEC)
DNSSEC is a software solution that adds security to the DNS protocol (Arends, 2005).
It provides origin authentication, data integrity and authenticated denial of existence for
the DNS protocol. In regular DNS lookups the client can ask for digital signed DNS
data sent from all DNS servers used in the lookup. A server of one level higher position
in the hierarchy can verify the origin of the DNS server below. Signing can be done
with a symmetric key (e.g. TSIG) or an asymmetric key (e.g. SIG) (Albitz & Liu, 2001).

DNSSEC is also used when updating the DNS database which is useful over an open
network (Albitz & Liu, 2001). If redundancy is needed, i.e. the DNS implementation is
based on two or more computers; in that case it is vital to use DNSSEC for sending the
DNS database between the servers to maintain full security. In this case it is not only
encryption that is needed, other security solutions are useful e.g. Message
Authentication Code (MAC).

 7

2.2 RADIUS

The RADIUS is an Authentication, Authorization and Accounting (AAA) network
authentication protocol (Rigney, C. et al, 2000), (Cisco, 2006). RADIUS is used for
authentication and can easily be combined with other software. The client sends a
request to the Network Access Server (NAS) in order to use a specific resource. The
NAS forwards the request to the RADIUS server, which replies with a challenge for the
request (e.g. password). If the client's password is found in the RADIUS server's
database and several other credentials (e.g. IP address) are met access is granted, else
access is denied. The RADIUS protocol is in widely spread usage which means there
are a large number of client implementations. This allows most platforms to make use
of the solution.

FreeRADIUS is a server implementation of the RADIUS protocol. It comes with a PHP
web interface which can be modified at users' discretion.

daloRADIUS provides a web interface for administration of FreeRADIUS. It is written
in PHP and JavaScript, thus it can easily support various database formats
(daloRADIUS, 2008). Also it provides a login interface for users.

2.3 LAMP

LAMP is a solution stack of software (ONLamp.com, 2001). That means it is a package
of software which together works as a full solution. LAMP is an acronym for Linux,
Apache, MySQL and PHP (also Perl or Python). These components together works as a
web server. The LAMP concept is used in this project.

Apache HTTP Server is open source software which is used for web page hosting
(Laurie, B & Laurie, P, 1999). It is the most common web hosting application used
(Netcraft, 2009). There are many modules for apache which extends the possibilities of
usage.

MySQL is an open source implementation of a relational database (MySQL, 1998). The
distribution also contains the tools necessary for editing and managing databases. As the
name implies it uses the database computer language SQL.

PHP, which is the chosen scripting language in this project, is a server scripting
language designed for dynamic web pages i.e. the content of the web site is changing.

2.4 Certificates

Certificates are used for secure connection between a client and a server. When the
client tries to connect to a web page the server will send a certificate containing
information that the client can use for encrypting further traffic exchanges with the
server. If the client accepts the certificates the server grants access to the requested web
page and all data traffic goes under encryption.

 8

TLS/SSL handshake with certificates
If a client wants to connect to a secured web site, it first sends a "client hello" message
to the server (Figure 2). This message includes information about the TLS/SSL protocol
version, what ciphers and compression method the client supports, and some initial
random numbers. The server send the same information about itself to the client in
response, it also adds its certificate ("server hello"). The server might request a client
certificate to verify the client, but this is optional.

In any case client calculates a pre-master secret out of the two random numbers and
sends it to the server ("client_key_exchange"). The pre-master secret is encrypted with
the public key of the server. Now both the server and the client can calculate a master
secret out of the pre-master secret, by applying a combination of the MD5 and SHA
algorithms on the two random numbers and the pre-master secret. This master secret is
used to calculate six further keys, three for each side. One key for writing, one key for
signing and the last one as initialisation vector for block encryption. All these new keys
are symmetric, to limit the time needed for decryption. Finally a control message is sent
containing all messages send previously but encrypted. The server returns the same
information. From now on every further message is encrypted.

This function is included in Apache as a module called mod_ssl (Engelschall, 2001).
If the signing process is done by the server itself the resulting certificate is called a self-
signed certificate and the user is informed about this by its web browser. On the other
hand if it is signed by a registered certificate provider no extra information is provided.

Figure 2: TLS/SSL handshake (Panko, 2003)

 9

2.5 Iptables

Iptables is open source software, often preinstalled with many linux distributions
(netfilter.org, 2002). Iptables is used to decide what should be done with incoming or
outgoing packets, they can e. g. be dropped, accepted or logged. Decisions can be made
based on several cases. For example which interface or what port that is used, whether
the connection was already established or not. It is also possible to filter by protocol.
Iptables is often used as firewall software but can also be extended to other purposes
e.g. routing and forwarding of data traffic.

 10

3. Implementation

This section describes details about the designed solution, the available equipment and
the configuration of services. The major focus in the project was to use readily available
components and compose them into a single working system. The project mostly used
packages available from Internet, as this simplified the installation. All software used
was under free license and was open source.

3.1 Equipment

For testing purposes the project had access to two Cisco 2600 series routers and a
DLink switch for the network setup. The two routers were preconfigured by our
supervisor. Only DHCP forwarding was added to the configuration (Cisco
Documentation, 2000). That means that the broadcast packages sent by a client when
asking for a IP address will be forwarded to the subnet where the DHCP server is. The
two routers were connected through a serial line to supply the test network with a total
of four router interfaces and consequently four attached subnets. Only three of them
were actually used, one subnet for each server subnet and one subnet for the test clients.

There were a number of computers available for development and testing. These
computers were Intel based (x86) standard desktop computers. Two of them were used
as servers and the remaining ones were used as test clients. It was decided to run the
servers with Debian Linux as operating system.

 11

3.2 Network Topology

Figure 3: Topology of test network

The basic network topology is quite simple (Figure 3). The solution itself does not rely
on the network topology therefore it is used for testing purposes only. The servers got
fixed IP addresses, 10.0.0.4 for master and 10.1.0.4 for slave as they remain in place.
Except for the servers and router interfaces, all addresses in the different subnets are
provided by a pair of DHCP servers.

It is preferred to have the primary and the secondary server of a service on different
networks. This gives some protection against local network hardware failure. However,
when being far from any service (in a networking point of view) this has a minor impact
since there will be a multitude of network equipment that might fail between the
computer and the name service.

3.3 Design

The technical design is kept as simple as possible (Figure 4). All necessary client
information (user name, password, host name, domain name, last IP) is stored in a
MySQL database. The client is able to update its IP in the database through a web page
which asks for an account name and a password. The password transmission is
protected by SSL/TLS (https). The account data is evaluated through a RADIUS server
(FreeRADIUS) that verifies the login data against the stored one in the database. If the
username and password provided are correct, the current IP of the user is updated in the
MySQL database and a script is evoked. The script is provided with host name, domain
name and IP address of the user that just logged in. Then the script communicate with
the DNS service, deletes the old entry for the combination of host name, domain name
and adds a new entry with the new IP address.

 12

The reason a RADIUS server was used is that it is easy to add other ways of
authentication at a later time. For example, RADIUS has built in support for
authentication through cryptographic certificates and there are RADIUS clients
available for most platforms.

Figure 4: Implementation of the solution

1. Client asks for connection
2. RADIUS and client set up a secure connection
3. Client provides user name and password
4. Authentication OK
5. Update of clients new IP in the DNS database

3.4 Service Configuration

The implementation was started with basic services like DHCP and DNS. Later on
FreeRADIUS with MySQL, daloRADIUS and Apache where set up. Lastly, a firewall
was added.

 13

3.4.1 Basic Implementation

The DNS and DHCP servers were implemented at a basic level. The project chose ISC
BIND for the DNS part of the project and ISC DHCP for DHCP (Internet Systems
Consortium, 1997). Both of them are widely used implementations of DNS and DHCP.
Furthermore both BIND and DHCP have already made packages for Debian (Debian
Manual, 2006). Both were configured manually to work as they should in our small
network.

DHCP Servers
Initially the DHCP servers were intended to be part of the solution. The idea was to use
the DHCP server as initiator of the updates. Since this would require control over the
DHCP server, the mobility would be limited to networks under the direct control of the
solution. As the design goal was to allow mobility over the entire Internet, this solution
was abandoned about halfway through the project. However, the DHCP servers were
kept for testing purposes throughout the project.

The DHCP servers were configured as a master and a slave server. If the slave has not
gotten any signal from the master for more than 30 seconds, it assumes the master has
failed and the slave takes over (Heinlein, 2005), (jny.dk, 2007). This setup ensures that
if only one server fails the clients can still get a valid IP address in a network known to
the routers. The master and slave splits the addresses of the different subnets between
them to avoid address collisions. If one server goes down, the other server takes over
the responsibilities for the other server’s addresses. This operation is reversed when the
faulty server comes online again.

DNS
Also the DNS servers were implemented redundant, i. e. there is a master and a slave
server (Albitz & Liu, 2001). The default configuration only contains standard data.
There was need to create a new zone that we gave the name warning. In order to allow
for updates the zone property "allow-update" was set accordingly. The two servers
synchronize each other periodically and on changes in the DNS table (semicomplete,
2008), i. e. when the master gets updated through the script it immediately sends the
new entry to its peer. For this synchronization a TSIG key is used to increase security.

NTP
Both DNS and DHCP require the time difference on the different servers to be within a
certain limit, especially the TSIG includes a time stamp which has to be accurate. In
order to ensure DHCP and DNS to work correctly it is necessary to synchronize the
time on the servers, therefore they were set up as peers using NTPD version 4.2.2
(ntp.org, 2000). The local clock on Server2 acts as reference clock. Since ordinary PCs
are used as test computers the Local Clock in this case is the bios clock, which is the
built-in clock in the hardware of the computer. This allows Server1 and Server2 to have
the same time even though the real time will be inaccurate. As the test network is
completely isolated from the Internet and there is no access to a better time source, this
is sufficient. The accuracy of the bios clock is very poor, but the goal is to keep a global
clock in synchronization and not to have accurate time.

 14

3.4.2 RADIUS

Since it is aimed to have a perfect match between security and simplicity of
implementation, it was decided to make use of the RADIUS protocol (Rigney, C. et al,
2000). It provides security features like encrypted passwords and can make use of
certificates. Furthermore its accounting abilities can be used to limit access to the
service and track the use of the service. This gives enough security for most small to
medium sized networks.

FreeRADIUS
It was decided to use FreeRADIUS as RADIUS server (FreeRADIUS, 2006). First an
older Debian package (version 1.3) was installed, but it did not support certain password
features, e. g. plain text passwords that are good for testing. Consequently it was
updated to version 2.1, which created some inconsistency in the system, as example
some language warnings turned up when installing new packages. Still there were some
features regarding certificates missing. The source code was consulted and needed files
were copied.

MySQL was used to store user data (e. g. passwords, user names). FreeRADIUS is also
able to interact with Oracle and a variety of other databases, but they were not that
easily available as MySQL (Elmasri & Navathe, 2007). FreeRADIUS provided a script
which made it easy to add all necessary tables to the database.

daloRADIUS
daloRADIUS is a web interface for FreeRADIUS. It requires some additional tables in
the database in order to manage user accounts, like login/logout time or for more
commercial use like billing information. These were easily added using a provided
script.

It also provides an interface to administrate the FreeRADIUS database tables. This
means that there is no need to interact with MySQL directly (i. e. writing SQL
statements), just to fill out a form particularly made for RADIUS.

In order to be useful for IP updating information the userinfo table was modified. It
normally holds contact information like name, address, company. As such information
is not needed for this project, the existing rows were reused. The rows containing first
name, last name and email address now hold host name, domain name and IP address
respectively. The table header has not been changed, only the file that maps the table
header to HTML output. This technique was used because there are multiple references
to the table header and it would have been a tremendous work to modify every single
file.

 15

daloRADIUS does not seem to read all information stated in the FreeRADIUS
configuration file. This information includes the "Exec-Program-Wait" entry, that can
be used to execute a script before or after the authentication process. Therefore in order
to execute a script that could update the DNS records it was needed to update the
dologin.php file of daloRADIUS. This file is used to authenticate the user. After the
user is authenticated, its IP address is obtained, and the data containing host name and
domain name is extracted from the userinfo table, mentioned before. This information is
send to the script (HowtoForge, 2008). The file dologin.php now becomes responsible
also for updating the IP address in the MySQL database.

3.4.3 The Script

The script is responsible for updating Server1. It uses nsupdate and a TSIG key. It only
updates the actual zone. First the DNS entry is cleared then the new DNS entry is added.
The information needed is provided by the PHP script in daloRADIUS.

#!/bin/bash
USER="$1"
IP="$2"
HOSTNAME="$3"
DOMAIN="$4"
update DNS entry
nsupdate << EOF
server 10.0.0.4
key updatekey <some-secret-key>
zone warning
update delete $HOSTNAME.$DOMAIN
update add $HOSTNAME.$DOMAIN. 600 IN A $IP
send
quit

Figure 5: The script file “DNS-update”

3.4.4 Apache

The user needs to log in independently from the computer (s)he uses at the moment.
Having a specific client program may create some inconvenience for the user, why a
more widely interface like a web site is needed.

Nowadays Apache is the most widely available web server for Linux. First an
appropriate Debian package was used, but when it came to certificates, an additional
package was needed. This resulted in some incompatibilities and a problem, the PHP
code was not processed correctly anymore. Therefore Apache and PHP where installed
from source code, resulting in having the most up to date version of Apache - 2.2.11.

 16

3.4.5 Certificates

The login interface uses a certificate. Since there is no Internet access available for the
servers, it is impossible to sign them by any trusted agency. If the client decides to
accept the certificate the normal key negotiation process takes place.

3.4.6 Firewall

In order to enhance the level of security for the servers a firewall was implemented on
each server. It was chosen to use iptables, as it came already installed with the system.
The configuration was kept simple, all incoming ports that were used are allowed and
all others are blocked (LinuxHelp, 2002). There is no filter on outgoing ports. Allowed
incoming ports include:

Table 2: Firewall
Port Service
80 http (website)
443 SSL (certificate)
1812 - 1817 RADIUS
67 DHCP
53 DNS
22 SSH (administration)

 17

4. Results and Discussion

The project used a number of services in the implemented solution. Some of them are
critical to the solution while others are of a more auxiliary nature. Critical services
include daloRADIUS, FreeRADIUS, Apache, MySQL and the DNS server on Server1.
All services on Server2 are auxiliary, as it only implements a slave DNS server, DHCP
and NTP. DHCP is not at all needed in the solution, as clients could get an IP address
by manual configuration as well. As NTP is only used to synchronize Server1 and
Server2 it is also auxiliary.

The core services create a critical chain of dependency while the auxiliary services
provide helper functions. The helper functions are less critical and the solution will in
most cases survive without the helper functions for a short period of time.

4.1 RADIUS

Radius uses two services for its help, an Apache server and a MySQL database. These
services were implemented on Server1 and they are working as they should do.
However we had plans on making the services fully redundant. To achieve full
redundancy the Apache server, the MySQL database as well as the RADIUS server
should have been installed on both servers. Due to time constrains we chose not to make
these services redundant.

The RADIUS implementation consists of two parts, the FreeRADIUS server and the
daloRADIUS web interface. The daloRADIUS interface contains too many functions
for our needs. We only needed a login box and a page to view hostname, domain name
and IP address. The extra information in the daloRADIUS interface does not affect our
implementation, especially not on a version used in a test environment. If it would be
implemented in a real world solution it would be better to make use of this information.
Moreover, additional settings and information might also be built in.

When logging in through the daloRADIUS interface the FreeRADIUS database is read
for validation of the user. If the login is approved a script is run which updates the DNS
server and the database with the client’s new IP address. This is working exactly as it
was intended to do.

4.2 DDNS

The standard functions of the DNS servers are working just as they should and they are
redundant. If the master DNS server (Server1) goes down the slave server will take
over. However since the RADIUS server, Apache server and the database were only
implemented on Server1, the DDNS solution is not redundant. If Server1 goes down it
will be no longer possible to update the records. Server2 will still work as a standard
DNS server without the functionality to update the records.

 18

4.3 Certificates

As mentioned in subsection 3.4.5 the server certificate was not signed by a trusted
agency. However if the client chooses to trust the server the normal key negotiation
process takes place. We also planned on using client certificates but were unable to find
a solution for it. The only solutions we found were for WLAN.

4.4 Test and Verification

Originally the plan was to test the solution in one of the lab rooms on Lindholmen with
approximately 20 computers but due to lack of time we only tested the solution in a
simpler network with three clients. The results would probably not differ but a success
on a larger test would have shown even more that the solution does work.

 19

5. Conclusions

The DynDNS solution is similar to our solution. The main difference is that we chose to
use RADIUS as the outward interface. This allows our solution to work with certificates
as well in a future version. There are RADIUS agents available for most common
operating systems, which eliminates the need of a special agent.

5.1 Advantages and Disadvantages of the Solution

The solution is easy to implement as it uses a combination of well documented standard
services like Apache, MySQL and RADIUS. Also, the very basic services like DNS and
DHCP are redundant, enabling the user to obtain address resolution and IP changes even
if one of the servers fail.

Another good aspect is the use of RADIUS. Since there are standard clients available in
many operating systems, a special agent will not be necessary. There is still need for an
update script, in this case embedded in FreeRADIUS and not in daloRADIUS as today.
Such a script is relatively trivial to develop, but on the other hand would require a lot of
testing, since a lot of agents have to be included.

Parts of the project that could be improved are to implement redundancy for the web,
RADIUS and MySQL servers. Since they rely one on each other which means that there
is a chain of dependency, if one of them fails, it will be impossible for the user to update
its DNS entry. Furthermore, all of these services are located on the same physical
computer, which makes that computer a single point of failure. If this solution is to be
deployed in a large network, it would be necessary to increase the redundancy by
having more than two copies of each service. However, for testing purposes, our
implementation was enough.

A serious weakness of this implementation is the amount of outdated packages, due to
an old CD distribution of Debian. Sometimes, there was a need for up to date packages.
Mostly, this was needed for special options in Radius and certificates in Apache. In case
of installing the packages which created conflicts reinstallation was forced. This also
resulted in some minor warnings.

The project also implemented a solution based on server certificates. As the certificate is
self-signed the user gets a warning message about this nature. On the other hand
certificates greatly enhance security as the communication is encrypted.

The solution only supports IP version 4. IP version 6 is becoming more popular and it is
already in wide spread use in some parts of the world. A future solution would need to
support both IP version 4 and IP version 6.

 20

5.2 Future Work

There are several functions we have thought of during the project that would add more
functionality to our solution. However, due to time constrains this was limited to the
functions we have implemented.

Certificates
One major function that would be useful is to be able to use client certificates, and
certificates within RADIUS (Panko, 2003). Now only the client is able to verify the
identity of the server. However, if using client certificates, also the server could identify
the client. Certificates are more secure than a simple password and user name
combination which are more prone to shoulder surfing and eavesdropping. Certificates
could be implemented both in the web server and in the RADIUS server. Certificates
also simplify automated updates through an agent or a script.

Agent
It is also a good idea to have an automated agent installed on the client. The agent
would automatically detect an IP address change of the client and immediately send a
request to update the address record in the DNS server through the RADIUS server.
This is manageable both through the web interface, i. e. the client connects to the
website and makes use of the HTTP protocol or directly through RADIUS. The
RADIUS method is probably more efficient as it does not need a helper application like
the web interface. Security will not be harmed as both RADIUS and Apache can use
certificates. Moreover, there are RADIUS clients available to most common operating
systems that are significantly reducing the administration work.

Redundancy
If the web server would fail, no client can connect to it and therefore it is not able to
update its DNS entry in case its IP address changes. Resulting in no client service is
reachable, as the IP address stored in DNS entries is outdated. The same problem arises
if the RADIUS server would fail. This problem can be solved by adding a redundant
solution for both the web service and the RADIUS service. Depending on the
implementation of the redundancy there might be a need for some round robin DNS
entries and a watchdog updating the entries if one service is down.

Another problem arises if the database fails, the user cannot be identified although the
web interface is reachable and RADIUS is giving correct replies but probably a "user
cannot be identified" error message. To enable redundancy for the database, one
solution would be to have two database instances that are synchronized somehow. The
synchronization could be implemented as a master/slave system or by having an
external master for example.

 21

IP Version 6
Since IP version 6 is already in commercial use in several parts of the world, adding
support for IP version 6 to the solution will be necessary for future use. The solution
will have to be able to support both IP version 4 and IP version 6 at the same time, since
a client might move between IP version 4 and IP version 6 networks. This work would
require more research to be done and it would also be necessary to do more testing since
IP version 6 software is less mature. Part of the challenge would be to ensure proper
behaviour with a client using both IP version 4 and IP version 6.

5.3 Final Conclusion

There were some ups and downs during the project and we had to do a major redesign
once. We also made several smaller adjustments to the design during the project. The
product itself is working as intended. We feel confident that the solution would work
perfectly in the lab rooms at Lindholmen, which we could not test due to lack of time. It
would need further improvement to be really applicable in a commercial point of view.
Hopefully, the results of this project will be utilized in the future, maybe by us or some
other group.

 22

References

Albitz, P & Liu, C., 2001. DNS and BIND. 4th Ed. Sebastopol, California: O'Reilly
Media, Inc.

Arends R. et al., 2005. DNS Security Introduction and Requirements. [Online] The
Internet Society
Available at: http://www.ietf.org/rfc/rfc4033.txt [Accessed 18 May 2009].

Cisco, 2004, How Does RADIUS Work? [Online] (Updated 18 May 2009)
Available at:
http://www.cisco.com/en/US/tech/tk59/technologies_tech_note09186a00800945cc.shtm
l [Accessed 18 May 2009].

Cisco Documentation, 2000. Routing IP. [Online] (Updated 20 Dec 2003)
Available at:
http://www.cisco.com/univercd/cc/td/doc/product/software/ssr83/rpc_r/48383.htm
[Accessed 18 May 2009].

daloRADIUS, 2008. About. [Online] (Updated 19 May 2009)
Available at: http://www.daloRADIUS.com/?q=node/1 [Accessed 19 May 2009]

Debian Manual, 2006. How to setup DHCP. [Online] (Updated 18 May 2009)
Available at: http://www.crazysquirrel.com/computing/debian/servers/dhcp.jspx
[Accessed 18 May 2009].

DynDNS.com, 1997. DynDNS.com: DNS Hosting, E-mail Delivery, VPS Hosting and
Other Services. [Online] (Updated 18 May 2009)
Available at: http://www.dyndns.com [Accessed 18 May 2009].

Elmasri, R & Navathe, SB, 2007. Fundamentals of Database Systems. 5th Ed. Boston,
Addison-Wesley.

Engelschall, RS, 2001. User Manual [Online] (Updated 7 April 2009)
Available at: http://www.modssl.org/docs/2.8/ [Accessed 18 May 2009].

FreeRADIUS, 2006, HOWTO - FreeRADIUS Wiki [Online] (Updated 7 January 2009)
Available at: http://wiki.freeradius.org/HOWTO [Accessed 18 May 2009].

Heinlein, P., 2005. Failover with ISC DHCP. [Online] (Updated 28 Mars 2009)
Available at: http://www.madboa.com/geek/dhcp-failover/ [Accessed 18 May 2009].

 23

HowtoForge, 2008, Authentication, Authorization & Accounting with FreeRadius &
MySQL backend & web based Management with daloRADIUS [Online] (Updated 18
May 2008)
Available at: http://www.howtoforge.com/authentication-authorization-and-accounting-
with-freeradius-and-mysql-backend-and-webbased-management-with-daloRADIUS
[Accessed 18 May 2009].

Internet Systems Consortium, 1997. Internet Systems Consortium. [Online] (Updated 18
May 2009)
Available at: https://www.isc.org/ [Accessed 18 May 2009].

jny.dk, 2007. ISC-dhcpd failover article. [Online] (Updated 18 May 2009)
Available at: http://www.jny.dk/?q=node/10 [Accessed 18 May 2009].

Laurie, B. & Laurie, P., 1999. Apache: The Definitive Guide. 2nd Ed. Sebastopol,
California: O'Reilly Media, Inc.

LinuxHelp, 2002. Firewall Script. [Online] (Updated 18 May 2009)
Available at: http://www.linuxhelp.net/guides/iptables/ [Accessed 18 May 2009].

MySQL, 1998. MySQL :: The world's most popular open source database. [Online]
(Updated 18 May 2009)
Available at: http://www.mysql.com/ [Accessed 18 May 2009].

Netcraft, 2009. March 2009 Web Server Survey. [Online] (Updated 29 May 2009)
Available at:
http://news.netcraft.com/archives/2009/03/15/march_2009_web_server_survey.html
[Accessed 29 May 2009].

netfilter.org, 2002. netfilter/iptables project homepage - The netfilter.org project.
[Online] (Updated 6 Apr 2009)
Available at: http://www.netfilter.org/ [Accessed 18 May 2009]

No-IP, 2000. No-IP - Dynamic DNS, Static DNS for Your Dynamic IP. [Online]
(Updated 18 May 2009)
Available at: http://www.no-ip.com/ [Accessed 18 May 2009].

ntp.org, 2000. Reference clocks. [Online] (Updated 18 May 2009)
Available at: http://www.ntp.org/ntpfaq [Accessed 18 May 2009].

ONLamp.com, 2001, What is LAMP? [Online] (Updated 18 May 2009)
Available at: http://www.onlamp.com/ [Accessed 18 May 2009].

Panko, RR, 2003. Corporate Computer and Network security. Upper Saddle River, New
Jersey: Prentice Hall.

 24

Rigney, C. et al., 2000. RFC2865 - Remote Authentication Dial In User Service
(RADIUS). [Online] The Internet Society
Available at: http://www.ietf.org/rfc/rfc2865.txt [Accessed 18 May 2009].

semicomplete, 2006. Dynamic DNS and DHCP - Easy to do, and you'll thank yourself
later. [Online] (Updated 18 May 2009)
Available at: http://www.semicomplete.com/articles/dynamic-dns-with-dhcp/ [Accessed
18 May 2009].

 25

Appendix A - Contribution Report

Responsibilities
At the start of the project, we split the project into areas of responsibility. Eric was
responsible for structuring of the reports. Frans took on the role as leader. Jenny and
Mattias were responsible for the technical development of the solution.

Early part of the project
Eric and Frans did most of the planning and structure work on the planning report. All
of us contributed to the writing of the report. We also shared the work of looking for
articles, books and web sites that we could use in the project.

Implementation
In the early part of the project all of us contributed equally to the technical
implementation. Jenny and Mattias were responsible for the structure and later in the
project Jenny and Mattias did most of the work with the technical implementation while
Eric and Frans still made minor contributions.

Final Report
Eric was responsible for the structure of the report and did most of the formatting work.
Frans wrote a lot of text to the report during the entire project. In the last part of the
project we all contributed to the report and we also split up the report in to areas of
responsibilities.

Eric: 4, References
Frans: 1, 5, Contribution Report
Jenny: 3, 4
Mattias: 2, 3, Figures

Presentations
Half time presentation: Frans and Mattias
Posters: Eric and Mattias
Final oral presentation: Eric and Jenny
Final oral opposition: Frans and Mattias

Summary
It was an advantage to spread the different types of work among different persons to
increase the efficiency. This also allowed us to do several things in parallel and while
we might have wished to add more functionality to the solution, it kept the workload on
a reasonable level during the whole project. All in all, we feel that we managed to share
the work equally and that we all contributed to project on a similar level.

