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Abstract

The conformational properties of six-membered heterocycles is an active field of study, 

yet silacyclohexanes have not been investigated nearly as thoroughly as other 

heterocycles. With the recent experimental data that has been obtained for the axial/

equatorial energy difference of several mono- and disubstituted 1-silacyclohexanes, we 

carried out a computational study with the intent of reproducing the experimental results 

as well as possible. Density functional theory is a practical computational method but 

standard density functionals do not always yield accurate energies compared to 

experiment. Some severe problems of standard density functionals for simple organic 

systems, have been highlighted in the literature recently. New density functionals, 

designed to better describe medium-range correlation in molecules than previous 

functionals, were evaluated against coupled cluster (CCSD(T)) results for the axial/

equatorial energy difference of several heterocyclic systems. The results show that the 

recent M06-2X and B2PLYP-D functionals are clearly superior to traditional functionals 

like B3LYP for conformational problems like ours and calculated free energy differences 

are in good agreement with experiments.

Using the M06-2X functional, we investigated systematically the effect of silicon 

substitution on a monosubstituted cyclohexane ring. The conformational energy 

difference was predicted for a large number of silacyclohexanes, ranging from 1 to 6 

silicon atoms in the ring, most of which have never been studied experimentally or 

theoretically. The remarkably different conformational properties of silacyclohexanes 

compared to cyclohexanes and other heterocycles indicate that we do not yet fully 

understand conformational behaviour of simple organic molecules and identification of 

possible dominating stereoelectronic effects on the conformational behaviour would be 

of great interest.

A follow-up study on the potential energy surface of the parent (unsubstituted) 

disilacyclohexanes was undertaken and lowest energy pathways of ring inversion 

calculated. Geometries and enthalpies of formation were calculated and simulation 

attempted on the complicated 1H NMR spectra of the disilacyclohexanes.
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Ágrip

Rannsóknir á stellingajafnvægi kísilinnihaldandi sexhringja eru af skornum skammti ef 

borið er saman við rannsóknir á súrefnis- og niturinnihaldandi sexhringjum. Með 

tilkomu nýrra mæligagna fyrir stellingajafnvægi milli áslægrar og þverlægrar stellingar 

einsetinna og 1,1-tvísetinna 1-silacyclohexanafleiða, ákváðum við að framkvæma 

ítarlega rannsókn með tölvuútreikningum, með því takmarki að ná samræmi milli 

kennilegra reikninga og tilraunaniðurstaðna. Skammtafræðilegir tölvureikningar eru 

margs konar, en DFT reikningar eru sérlega hentugir fyrir mörg efnafræðileg vandamál. 

Hefðbundnar DFT aðferðir hafa hins vegar ekki alltaf gefið ásættanlegar niðurstöður og 

vandamál tengd DFT aðferðum á lífrænum sameindum hafa verið í brennidepli í 

fagtímaritum nýlega. Ný kynslóð DFT aðferða getur hins vegar spáð fyrir um orkumun 

stellinga mun nákvæmar en áður, skv. samanburði okkar við coupled cluster reikninga 

og tilraunaniðurstöður.

Einnig voru rannsökuð, áhrif þess að bæta kísilatómi inn í einsetinn cyclohexanhring á 

kerfisbundin hátt. Spáð var fyrir um orkumun fjölmargra silacyclohexana, sem innihéldu 

allt frá einu kísilatómi upp í sex og mismunandi sethópa. Sumar þessara sameinda hafa 

aldrei verið rannsakaðar, hvorki með tilraunum né reikningum. Stellingajafnvægi 

kísilinnihaldandi sexhringja er skv. reikningum okkar, töluvert frábrugðið því sem þekkt 

er fyrir cyclohexan og aðra heterohringi og niðurstöðurnar benda til þess að við eigum 

enn talsvert eftir í land með að skilja stellingajafnvægi einfaldra lífrænna sameinda.

Orkuyfirborð ósetinna disilacyclohexanafleiða hafa áður verið kortlögð og ferlar fyrir 

umhverfingu stólforms í annað verið reiknaðir. Með notkun nýrra reikniaðferða til að 

finna söðulpunkta, voru ferlar endurbættir og reiknaðir á nákvæmari hátt en áður.

Með tilkomu GED (gas electron diffraction) mælinga hafa byggingar sameindanna verið 

greindar og voru nýir tölvureikningar bornir saman við tengjalengdir og tengjahorn úr 

tilraunum. Þá voru reikningar á myndunarvarma efnanna framkvæmdir og tilraunir 

gerðar til að herma flókin 1H NMR róf disilacyclohexana.



iii

iv

v



iv

v

vi

Acknowledgements

• Ingvar Árnason, for great supervision and allowing my transition from a synthetic 

organosilicon chemist to a computational organosilicon chemist.

• Andras Bödi, for showing me the ropes in computational chemistry.

• Sunna Ólafsdóttir Wallevik for sharing experimental results and discussions.

• Erlendur Jónsson, for many valuable discussions about computational chemistry 

and computational expertise.

• Ester Eyjólfsdóttir and Sunna Ólafsdóttir Wallevik, for great company throughout 

our graduate studies in the office, lab and Ottawa.

• Fellow grad students, project students, faculty and staff at the Science Institute for 

a friendly and supportive atmosphere.

•  The computational facilites used for this project are gratefully acknowledged: the 

Apple Xserve G5 cluster of Hannes Jónsson’s group and Jötunn, the Intel Linux 

cluster of Reiknistofnun, The University Computing Service, without which, this 

project simply would not have been possible.

•  The Icelandic Research Fund and the University of Iceland Research Fund, for 

financial support.

• And finally my family, for at least pretending from time to time to show an 

interest in computational organosilicon chemistry.



v

vi

vii



vi

vii

viii

Table of contents
Page nr. 

Introduction
Chapter 1 – Conformational properties of mono- and disubstituted 1-
silacyclohexanes: Theory vs. experiment

1.1 Introduction

1.2 Experimental conformational analysis

1.3 A short introduction to modern computational chemistry

1.4 Calculating accurate energy differences

   1.4.1 Basis sets

1.4.2 Problems with DFT in computational organic chemistry

1.4.3 Recent functionals

1.4.4 Benchmarking density functionals

1.5 Obtaining accurate molecular geometries

 1.5.1 Bond lengths

 1.5.2 Angles

 1.5.3 Effect of geometries on the single-point energy

1.6 Obtaining corrections to enthalpy and free energy

1.7 Modelling a low-temperature conformational equilibrium in solution

1.8 Comparing theory with experiment

Chapter 2 – Silicon substitution effects on the conformational properties of 
the cyclohexane ring: From cyclohexane to cyclohexasilane

2.1 Introduction

2.2 Trends in ΔE values of silacyclohexane families

2.2.1 Choosing families and substituents

2.2.2 Monosilacyclohexane families

2.2.3 Disilacyclohexane families

2.2.4 Trisilacyclohexane families

2.2.5 The tetra- and penta-silacyclohexanes and cyclohexasilane

2.2.6 General observations

2.3 Stereoelectronic analysis

1

9

11

12

23

25

30

33

35

42

44

47

47

48

53

55

59

60

60

62

66

70

72

74

76



vii

viii

ix

Chapter 3 – Disilacyclohexanes - physical properties and NMR spectra

3.1 Introduction

3.2 Potential energy surfaces

3.3 Structure and stability

3.4 NMR spectra and attempted simulation

Summary

References

Publications and presentations regarding this thesis

Curriculum vitae

Appendices

79

80

84

90

97

99

106

108

111



viii

ix

x

List of figures
Page nr.

Figure 1  The lowest energy path of the chair-chair inversion of cyclohexane. 2
Figure 2  The chair conformer of cyclohexane showing the axial and equatorial protons. 3
Figure 3  The axial/equatorial equilibrium of monosubstituted cyclohexane. 4
Figure 4  1,3-diaxial steric repulsion in axial tertbutylcyclohexane. 5
Figure 5  The hyperconjugation explanation of the anomeric effect in carbohydrates. 6
Figure 6  The monosubstituted silacyclohexane families investigated. 61
Figure 7  The monosilacyclohexane families and cyclohexane. 62
Figure 8  Graph showing the trends in ΔE values of the monosilacyclohexane families. 64
Figure 9  Plot of ΔE values of 1-silacyclohexane vs. cyclohexane. 65
Figure 10  Plot of ΔE values of 2-silacyclohexane vs. cyclohexane. 65
Figure 11  Plot of ΔE values of 3-silacyclohexane vs. cyclohexane. 65
Figure 12  Plot of  ΔE values of 4-silacyclohexane vs. cyclohexane. 65
Figure 13  The disilacyclohexane families. 66
Figure 14  Trends in ΔE values of the mono- and disilacyclohexanes. 67
Figure 15  Plot of ΔE values of 1,4-disilacyclohexane vs. 1-silacyclohexane. 68
Figure 16  Plot of  ΔE values of 1,4-disilacyclohexane vs. 4-silacyclohexane. 68
Figure 17  Plot of ΔE values of 2,6-disilacyclohexane vs. 1-silacyclohexane. 69
Figure 18  Plot of ΔE values of 3,5-disilacyclohexane vs. 3-silacyclohexane. 69
Figure 19  Plot of ΔE values of 2,6-disilacyclohexane vs. 1,4-disilacyclohexane. 69
Figure 20  Plot of ΔE values of 2,6-disilacyclohexane vs. 1-silacyclohexane. 69
Figure 21  The trisilacyclohexane families. 70
Figure 22  Trends in ΔE values of the trisilacyclohexane families. 71
Figure 23  Plot of ΔE values of 2,6-disilacyclohexane vs. 2,4,6-trisilacyclohexane. 71
Figure 24  Plot of ΔE values of 3,5-disilacyclohexane vs. 1,3,5-trisilacyclohexane. 72
Figure 25  The tetra- and pentasilacyclohexane families and cyclohexasilane. 72
Figure 26  Trends in ΔE values of the tetra- and pentasilacyclohexanes. 73
Figure 27  Lowest-energy path of 1,2-disilacyclohexane. 81
Figure 28  Lowest-energy path of 1,3-disilacyclohexane. 82
Figure 29  Lowest-energy path of 1,4-disilacyclohexane. 82
Figure 30  Calculated path between twistforms Twist-1a and Twist-1b of 1,3-disilacyclohexane. 83
Figure 31  Diagram for the calculation of enthalpies of formation of the disilacyclohexanes. 88
Figure 32  Simulated vs. measured NMR spectrum of 1,2-disilacyclohexane. 93
Figure 33  Ball-and-stick model of 1,2-disilacyclohexane. 93
Figure 34  Simulated vs. measured NMR spectrum of 1,3-disilacyclohexane. 94
Figure 35  Ball-and-stick model of 1,3-disilacyclohexane. 94
Figure 36  Simulated vs. measured NMR spectrumof 1,4-disilacyclohexane. 95
Figure 37  Ball-and-stick model of 1,4-disilacyclohexane. 95



ix

x

1

List of tables
Page nr.

Table 1  A values (in kcal/mol) of a few monosubstituted cyclohexanes. 5
Table 2  Physical properties of organosilicon compounds. 7
Table 3  Experimental data of monosubstituted 1-silacyclohexanes. 9
Table 4  The scaling of the HF and post-HF computational methods. 16
Table 5  Calculated vs. experimental A values of a few monosubstituted 1-silacyclohexanes. 24
Table 6  B3LYP calculated ΔE values of 1-silyl-1-silacyclohexane with different basis sets. 27
Table 7  B3LYP and M06-2X calculations using different grid settings. 36
Table 8  ΔE values of several heterocycles using different computational methods. 38
Table 9  ΔE values of 2-ethoxy-tetrahydropyran with different computational methods. 40
Table 10  Calculated geometric parameters of silacyclohexanes compared to GED parameters. 46
Table 11  M06-2X/pc-3 ΔE values on different geometries of 1-silyl-1-silacyclohexane. 47
Table 12  Relative corrections to enthalpy and free energy by different methods for 
1-fluoro-1-methyl-1-silacyclohexane. 51
Table 13  A values from DNMR experiments compared with solvent-corrected A values (IPCM). 54
Table 14  ∆H values of monosubstituted 1- silacyclohexanes obtained from Raman experiments 
in different solvents. 54
Table 15  Experimental data of mono- and disubstituted 1-silacyclohexanes compared with 
quantum calculated data. 56
Table 16  Raman ΔH values compared to calculated ΔH values of monosubstituted 
1-silacyclohexanes. 57
Table 17  M06-2X/pc-3 calculated ΔE values of different monosilacyclohexane familes. 63
Table 18  M06-2X/pc-3 calculated ΔE values of different disilacyclohexane familes. 66
Table 19  M06-2X/pc-3 calculated ΔE values of different trisilacyclohexane familes. 70
Table 20  M06-2X/pc-3 calculated ΔE values of different tetrasilacyclohexane families. 73
Table 21  M06-2X/pc-3 calculated ΔE values of different pentasilacyclohexane and 
cyclohexasilane families. 73
Table 22  ΔE values of 1-CCl3-2,3,4,5,6-pentasilacyclohexane with different computational 
methods. 75
Table 23  Relative energies of conformers of 1,2-disilacyclohexane with different methods. 84
Table 24  Relative energies of conformers of 1,3-disilacyclohexane with different methods. 84
Table 25  Relative energies of conformers of 1,4-disilacyclohexane with different methods. 84
Table 26  Experimental and calculated geometric parameters of 1,2-disilacyclohexane. 85
Table 27  Experimental and calculated geometric parameters of 1,3-disilacyclohexane. 86
Table 28  Experimental and calculated geometric parameters of 1,4-disilacyclohexane. 86
Table 29  The bond skeleton of the disilacyclohexanes. 87
Table 30  Calculated enthalpies of formation for the disilacyclohexanes using different methods. 89
Table 31  Relative enthalphy differences for the disilacyclohexanes. 89
Table 32  Simulated coupling constants and linewidths of 1,2-disilacyclohexane. 93
Table 33  Simulated coupling constants and linewidths of 1,3-disilacyclohexane. 94
Table 34  Simulated coupling constants and linewidths of 1,4-disilacyclohexane. 95



x

1

2

Introduction

The conformational properties of six-membered saturated heterocycles is the focus of 

this work. Conformational analysis of cycloalkanes and heterocycles is a field that has 

contributed much to the understanding of bonding and energy in organic chemistry. 

Understanding the conformational properties of cycloalkanes and heterocycles is crucial 

if one intends to study and understand the conformations of biological macromolecules 

like proteins and nucleic acids; some biomolecules like sugars and steroids even include 

5- and 6-membered ring systems. Conformational analysis plays also a role in drug 

discovery. When a drug (that often includes a heterocycle) binds to an enzyme it doesn’t 

necessarily react through the lowest energy conformation. The human body temperature, 

37°C, can be sufficiently high for low energy minor conformers of a drug to be 

significantly populated  [1]. One cannot but wonder how much attention is paid to this 

fact when screening large receptor databases (that probably only include the lowest 

energy conformer) to enzyme active sites.

Cyclohexane is the most stable of the simplest cycloalkanes, with an ΔHf
° of -29.9 kcal/

mol, compared to -18.3 , +6.7, and +12.7 to cyclopentane, cyclobutane, and 

cyclopropane, respectively  [2]. The common explanation for this energy difference 

involves considering the lowest energy conformer of cyclohexane as having zero strain 

energy, with its almost perfect tetrahedral bond angles and staggered bonds, thus 

resulting in no torsional strain and minimal steric strain as compared to the smaller 

cycloalkanes.

Also in contrast to other cycloalkanes, the lowest energy conformer of cyclohexane, the 

chair form, dominates in general. Other known conformers are the half-chair, twist-boat 

and boat.

To understand the conformational landscape of cyclohexane it is informative to look at 

the chair-chair lowest energy path (figure 1).
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Figure 1. The lowest energy path of the chair-chair inversion of cyclohexane.

The twist-boat is another minimum on the potential energy surface (PES) of cyclohexane 

but lies 5-6 kcal/mol higher  [2]. The half-chair and boat are both saddle points on the 

PES. The half-chair conformer constitutes the barrier to chair inversion, it lies at 10-11 

kcal/mol on the PES, thus 10-11 kcal/mol being the activation energy of the chair-chair 

inversion. The half-chair connects the chair and the twist-boat. The twist-boat can then 

undergo conversion (through a transformation known as pseudorotation) to other twist-

boats through a boat transition state; all twist-boat forms being equivalent due to 

symmetry (applies to cyclohexane but not necessarily to heterocycles).

The half-chair is strained due to the 5 carbons lying in one plane. This strain can be 

relieved by converting into the twist-boat. The boat form is higher in energy than the 

twist-boat, that can be explained as being due to hydrogen flagpole interactions (steric 

strain) and eclipsed bonds (torsional strain). The twist-boat also has similar steric and 

torsional strain but just not as much as the boat form.

It should also be noted that another possible conformer, planar cyclohexane, is never 

encountered in the chair-chair inversion and has never been encountered experimentally, 

as this would be a highly strained structure (calculations suggest > 25 kcal/mol higher in 

energy than the chair form).i

i M06-2X/pc-2//B3LYP/6-31G(d)
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Another way of showing the conformational landscape of six-membered rings is the 

conformational globe by Cremer and Szabo  [3], that can be very helpful in 

understanding the possible conformational pathways, especially when the ring system 

contains a heteroatom. An example for utilizing this model in our group involves 1-

silacyclohexane  [4]. Each point of the globe (of the volume of the sphere) corresponds 

to a specific conformation of cyclohexane but the energetically most favorable 

conformers are on the surface. Going from the north pole of the globe to the equator is 

e.g. the chair to twist-boat transformation. Transformation along the equator is the 

process of pseudorotation mentioned earlier.

Though the chair conformer is highly symmetric, there exist two different types of 

hydrogens, usually designated as axial and equatorial hydrogens; axial hydrogens 

sticking up and down from the “ring plane” (figure 2).

The difference between hydrogens or substituents in the axial and equatorial positions is 

an important part of cyclohexane and heterocyclic chemistry.

Figure 2. The chair conformer of cyclohexane showing the axial and equatorial protons.

Because of a low enough barrier, chair-chair inversion or ring flipping takes place at 

room temperature. During the ring inversion, the axial bonds become equatorial and vice 

versa. A single resonance is detected for all 12 protons in the nuclear magnetic resonance 

(NMR) experiment at room temperature, due to interconversion taking place at a 

timescale faster than the NMR timescale (ms range).

Lowering the temperature down to 200 K, the interconversion is slowed sufficiently 

down so separate resonances are detected for the axial and equatorial protons.
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Conformational analysis of substituted cyclohexanes mainly involves the axial/

equatorial equilibrium of the chair conformer; other conformers of cyclohexane can 

often be disregarded.  A classic example of conformational analysis in general is that of 

methylcyclohexane. When measuring the conformational equilibrium of 

methylcyclohexane (ignoring twist-boat and boat forms), using integration of peaks from 

each conformer in an 13C NMR spectrum for example, one would detect that the 

conformer with the methyl group in the equatorial position is in great excess (95 %) 

compared to the conformer where the methyl group posesses the axial position.

Thermodynamically this can be descibed as A = - ΔG = RT ln(K) where K is the 

equilibrium constant of the conformational equilibrium shown in figure 3.

Figure 3. The axial/equatorial equilibrium of monosubstituted cyclohexane.

The A value is the free energy difference of the two conformers, for methylcyclohexane 

a value of ~1.7 kcal/mol  [5]. A positive A value means that the equatorial conformer is 

more stable than the axial conformer, in this case by 1.7 kcal/mol while a negative value 

would mean that the axial conformer is in excess. It is important to realize what an 

energy difference of 1.7 kcal/mol means in terms of population of conformers. 

At room temperature the equatorial conformer is 95 % of the methylcyclohexane 

conformers and the axial conformer is only 5 %.

What is the nature of this energy difference between conformers, one might wonder?

The classical explanation is the one found in almost all organic chemistry textbooks 

from 1940-2006, the so called 1,3-diaxial repulsion [2], [6].

This constitutes steric strain between an axial substituent with the axial hydrogens of 

two carbons of the ring, thus destabilizing the axial conformer with respect to the 

equatorial conformer where this interaction is nonexistent (figure 4).

A more steric substitutent in the axial position should thus result in the further 

destabilization of the axial conformer and thus a larger equilibrium constant and A value. 

And a less steric substituent should result in a smaller A value.
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This simple model appears to be reasonable when considering the cases of tert-

butylcyclohexane ( a rather bulky substituent) and 

fluorocyclohexane (a very small substituent), see 

table 1. In fact,  A values are often used as a measure 

of the steric bulkiness of a substituent.

Figure 4. 1,3-diaxial steric repulsion in axial tertbutylcyclohexane.

Monosubstituted cyclohexanes thus have a general equatorial preference and with the 

rare exceptions of mercurybonded substituents, all monosubstituted cyclohexanes have 

positive A values  [5].

The conformational analysis of heterocycles has mostly involved nitrogen and oxygen as 

heteroatoms, due to the availability of piperidine and piperazine rings in natural products 

like alkaloids and in pharmaceuticals, while oxygen-containing rings play a big role in 

carbohydrate chemistry where most common sugars are tetrahydropyran derivatives.

An obvious consequence of heteroatom insertion is different bond lengths and both C-O 

and C-N bonds are shorter than C-C bonds. This often causes considerable strain in the 

rings and among with electronic effects this leads to different conformational properties.

A very interesting conformational effect in heterocycles originates from carbohydrate 

chemistry, the anomeric effect. It can be described as a trend of the glycosidic linkage at 

the carbon next to the oxygen atom, to have an axial preference rather than an equatorial 

one. This preference seems to result from the alignment of the exocyclic C-O bond anti 

to the lone pair of the ring oxygen.

Table 1. A values (in kcal/mol) of a few monosubstituted cyclohexanes  [5].

Substituent
F

Me
CF3

SiH3

t-Bu

A value
0.28-0.38

1.74
2.5
1.45
4.9

% eq
62-66 %

95 %
99 %
92 %

~100 %

Experiment
19F NMR at 180-187 K

13C NMR at 300 K
19F NMR at 300 K
13C NMR at 188 K
13C NMR at 153 K
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Explanations of the anomeric effect generally involve favorable orbital interaction, 

hyperconjugation, a stereoelectronic effect, where the lone pair of the ring oxygen acts 

as a donor towards the exocyclic acceptor C-O bond and stabilizes the axial conformer 

more due to greater orbital overlap (figure 5). Other factors have also been suggested, as 

for example that the axial arrangement of the exocyclic C-O bond cancels repulsive 

electrostatic interations or that dipoles are more favorably aligned  [7].

This hyperconjugative interaction as an explanation for the anomeric effect in 

carbohydrates has been widely accepted for some time, but has recently been questioned 

by recent QTAIM calculations (quantum theory of atoms in molecules) [8], [9].

Figure 5. The hyperconjugation explanation of the anomeric effect in carbohydrates.

The anomeric effect has in later years been extended as the general description of the 

gauche preference of the C-Y bond in an X-C-Y-C system where X and Y are 

heteroatoms having lone pairs (known examples are O, N, S and F).ii One of the simplest 

systems where the anomeric effect takes place is dimethoxyethane. The conformational 

properties of tetrahydropyrans will be discussed more later.

This thesis is about the conformational analysis of heterocycles where the heteroatom is 

silicon and focuses mostly on the axial/equatorial equilibrium of mono- and 

disubstituted silacyclohexanes. The conformational properties of cyclohexanes and N- 

and O- heterocycles have been studied extensively for a long time but heterocycles 

containing silicon atoms have not been investigated nearly as thoroughly as is evident in 

a recent review of the conformational properties of six-membered heterocycles by 

Kleinpeter  [10]. This is despite the fact that silicon is in the same group as carbon in the 

periodic table, has similar electronic structure with its 4 valence electons and the atom 

usually forms 4 covalent bonds. It is thus interesting to study heteroatom effects of an 

atom so similar to carbon.

ii IUPAC Compendium of Chemical Terminology, Electronic version, http://goldbook.iupac.org/A00372.html.
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Main differences between carbon and silicon, from a physical organic point of view, are 

less electronegativity and a greater atomic radius of silicon, silicon thus forms longer 

bonds in general. Some physical properties that highlight these differences are shown in 

table 2.

The conformational properties of silacyclohexanes in the last few years have mostly 

come from research conducted in the group of Prof. Ingvar Arnason at the University of 

Iceland. Important milestones in the area of conformational analysis of silacyclohexanes 

are given below:

• Several papers in 1998-2001 investigated 1,3,5-trisilacyclohexanes that were 

synthesized, their NMR properties evaluated [14], [15], [16], conformational 

properties calculated [17], [18] and the structures measured by gas-phase electron 

diffraction  [19].

• The conformational landscape of silacyclohexane was calculated for the first time 

in detail in 2000  [20] and confirmed in 2006  [4].

• The conformational  analysis of the 1-methyl-1-silacyclohexane [21] was 

thoroughly reinvestigated in 2002 where contradicting old results were discussed 

and different experimental and theoretical methods were evaluated. The much 

smaller A value of 1-metyl-1-silacyclohexane (0.45 kcal/mol) as compared to 1-

methylcyclohexane (1.74 kcal/mol) is an interesting result.

Table 2. Physical properties of organosilicon compounds.

C-C
C-H
Si-C
Si-Si
Si-H

a [11]
b Bond length of SiH4 [12].
c [13]

Bond length
 1.54 Åa

1.09 Åa

 1.87 Åa

 2.34 Åa

 1.47 Åb

Bond energya

80 kcal/mol
99 kcal/mol
75 kcal/mol
47 kcal/mol
75 kcal/mol

C
H
Si

Electronegativitya

2.5
2.1
1.8

Covalent radiusc

76 pm
31 pm
111 pm
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• Another paper in 2007 dealt with the conformational properties of 1-

trifluoromethyl-1-silacyclohexane [22]. While the carbon analogue shows a clear 

preference (A= 2.5 kcal/mol) for the equatorial conformer the silicon analogue 

shows a small axial preference (A= -0.19 kcal/mol from GED). This is quite a 

surprising result as one would expect, based on the steric repulsion model, the A 

value to be smaller for the silicon analogue but certainly not of opposite sign.

The sharp contrast between the conformational equilibrium of the CF3-substituted 

cyclohexane and CF3-substituted silacyclohexane is one of the reasons why the 

conformational properties of silacyclohexanes continue to be of great interest in the 

group of Ingvar Arnason.

Using quantum chemical calculations as a tool to perform conformational analysis, we 

have investigated and reinvestigated several silacyclohexanes as well as cyclohexanes 

(for comparison) in this thesis. Our aim has been not only to achieve coherence with the 

results of the experimental methods but also to go a step further in the conformational 

analysis where ‘experiment’ cannot go and make an attempt at understanding what 

drives the conformational equilibrium of the various silacyclohexane families. This 

project was carried out at the same time as a sister project by Sunna Ólafsdóttir Wallevik 

that dealt with the synthesis and spectroscopic measurements of several mono- and 

disubstituted 1-silacyclohexanes  [23].
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Chapter 1 – Conformational properties of mono- and disubstituted 1-
silacyclohexanes: Theory vs. experiment

1.1 Introduction

In the recent years conformational data has emerged for a few monosubstituted 1-

silacyclohexanes using several experimental and theoretical methods. 

The experimental methods involve gas-phase electron Diffraction (GED), dynamic 

nuclear magnetic resonance (DNMR), Raman spectrocopy and microwave spectroscopy. 

These different experimental methods offer different kind of conformational data: 

different thermodynamic properties and can be measured in different phases (gas, pure 

liquid, solvated). While we obtain molecular structures, vibrational frequencies, free 

energies of activation and other information from the experimental methods mentioned 

above, we are mainly interested in the conformational energy difference of the axial and 

equatorial conformers. The M.Sc. project of Sunna Ólafsdóttir Wallevik as well as work 

from previous M.Sc. student Pálmar Ingi Guðnason  [24] has culminated in the synthesis 

of several mono- and disubstituted 1-silacyclohexanes. Experimental results of some of 

these molecules are summarized in table 3.

What is evident from the experimental data in table 3, is not only the dramatically 

different conformational properties of 1-silacyclohexanes compared to cyclohexanes 

(table 1), but also the general low energy difference between conformers (less than 0.5 

Table 3. Experimental data of monosubstituted 1-silacyclohexanes  [23]. A values and ∆H values in kcal/mol.

CH3

CF3

F

SiH3

a Low temperature NMR measurements were performed in a 1:1:3 solvent mixture of CD2Cl2, CHFCl2, and CHF2Cl.  
b SiD4 was used as solvent for the low temperature measurements.
c Raman measurements were carried out at variable temperatures and the van’t Hoff relation was used for analysis. 
d Raman measurements were carried out for 1-deuterium-1-methyl-silacyclohexane. 

GED (A / mol % axial)
0.45(14) / 32 (7) %    

T = 298 K

-0.19(29) / 58 (12) %   

T = 293 K

-0.31(20) / 63 (8) %   

T = 293 K

-0.17(15) / 57(7) %   

T = 321 K

DNMR ( A / mol % axial)
0.23 (2) / 26(1) % a 

T = 110 K

0.4 (1) / 17(2) % a    

T = 113 K

-0.13 (2) / 64(2) % a  

T = 112 K

0.12 (3) / 45(3) % b 

T = 100 Kc

Raman (∆H)c

0.15 (neat)d   
0.15 (pentane)d   
0.16 (CH2Cl2)d   

-0.53 (neat)  
-0.51 (pentane)  
-0.62 (CH2Cl2)   

-0.25 (neat)   
-0.22 (pentane)   
-0.28 (CH2Cl2)   

-0.19 (neat)   
-0.22 (heptane)   
-0.19 (THF)   
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kcal/mol). This is a problem for experimental methods as well as theoretical methods if 

one hopes to accurately acquire energy differences of conformers and then compare 

differently substituted molecules in order to understand what drives the conformational 

equilibrium.

One main objective in this thesis was to do a thorough analysis of what is needed to 

properly calculate accurate energy differences of the synthesized silacyclohexanes and 

understand the reason for the failure of some computational methods, as will be dicussed 

later, and see if it is possible with one method to get reasonably accurate values that 

compare well with the experimental results. Such a method could be used to explore 

other similar systems and thus provide an (hopefully) economic and robust alternative 

tool to synthesis and measurement to get conformational data of silacyclohexanes and 

heterocycles in general.

A thorough investigation of the difference between data obtained from experiment and 

theory is important, not only for our main objective in understanding what drives the 

conformational equilibrium of the silacyclohexanes, but this work also serves as error 

analysis for computational chemistry. Development of computational methods 

(especially density functional theory and force-field modelling) depends on 

understanding why different methods do worse or fail dramatically for different 

chemical systems. Theoretical determination of thermodynamic properties like entropies, 

can even be more troublesome, as will be discussed later.

The different experimental methods provide different thermodynamic properties and are 

carried out in different environments. For theory to be able to successfully model all the 

different experiments is actually a formidable problem, we are looking at very small 

energy differences (compared with the total energy of the system), trying to account for 

zero-point energy, enthalpic and entropic effects due to many possible vibrations and 

even trying to model different environments. A short introduction to the experiments that 

we are modelling, follows.
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1.2 Experimental conformational analysis

The gas-phase electron diffraction experiment involves obtaining a diffraction pattern 

from molecules being hit by an electron beam in the gas phase. It is one of the most 

valuable methods to get accurate molecular structures in the gas phase (that are unaltered 

by intermolecular effects) and by examining closely the diffraction pattern, usually with 

the help of theoretical methods, one can obtain the ratio of the different conformers 

present at room temperature.  The resulting equilibrium constant is then related to the 

free energy difference, ΔG = -RT ln(K) . The experiment is carried out in the gas-phase, 

typically at room temperature or close to it.

In the dynamic NMR experiment the rate of the conformational equilibrium is slowed 

down by lowering the temperature (sometimes even down to 100 K) until one obtains 

different resonances from the nuclei of the different conformers. Magnetic resonances 

from 1H, 13C and 19F can all be used successfully for conformational analysis although 
1H resonances from different conformers have often too small chemical shift differences 

to be of practical use. 29Si nuclei, while having reasonably high abundance, have too low 

sensitivity to be useful for conformational analysis. By peak integration, one obtains the 

ratio of conformers and thus the free energy difference and by line shape analysis at the 

coalescence temperature one can also obtain the free energy of activation for the 

equilibrium. The experiment is carried out in the solvated phase, using solvents with 

very low freezing points (typically freons).

Temperature-dependent Raman spectroscopy can be used for conformational analysis by 

examining the line intensitites of analogous vibrational frequencies from the different 

conformers. Using the van’t Hoff relation, ln(Aa/Ae) = -∆H/RT + constant,

one obtains the enthalpy difference of the conformers; where A is the intensity of a 

vibrational frequency from either conformer. Entropy contributions are not obtained 

from the experiment due to the fact that we generally don’t know the extinction 

coefficents of the spectral bands, thus the free energy difference is not obtained. The 

experiment can be carried out in the vapour phase, neat liquid or in a solvated phase  

[25].
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1 Elementary Quantum Chemistry

In this introductory chapter we will review some of the fundamental aspects of electronic
structure theory in order to lay the foundations for the theoretical discussion on density
functional theory (DFT) presented in later parts of this book. Our exposition of the material
will be kept as brief as possible and for a deeper understanding the reader is encouraged to
consult any modern textbook on molecular quantum chemistry, such as Szabo and Ostlund,
1982, McWeeny, 1992, Atkins and Friedman, 1997, or Jensen, 1999. After introducing the
Schrödinger equation with the molecular Hamilton operator, important concepts such as
the antisymmetry of the electronic wave function and the resulting Fermi correlation, the
Slater determinant as a wave function for non-interacting fermions and the Hartree-Fock
approximation are presented. The exchange and correlation energies as emerging from the
Hartree-Fock picture are defined, the concepts of dynamical and nondynamical electron
correlation are discussed and the dissociating hydrogen molecule is introduced as a proto-
type example.

1.1 The Schrödinger Equation

The ultimate goal of most quantum chemical approaches is the – approximate – solution of
the time-independent, non-relativistic Schrödinger equation

!
"Ψ = Ψ

! ! ! ! ! !! ! ! ! ! !
" " " "i 1 2 N 1 2 M i 1 2 N 1 2 MĤ (x ,x , ,x ,R ,R , ,R ) (x ,x , ,x ,R ,R , ,R ) (1-1)

where Ĥ  is the Hamilton operator for a molecular system consisting of M nuclei and N
electrons in the absence of magnetic or electric fields. Ĥ  is a differential operator repre-
senting the total energy:
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Here, A and B run over the M nuclei while i and j denote the N electrons in the system.
The first two terms describe the kinetic energy of the electrons and nuclei respectively,
where the Laplacian operator 2

q∇  is defined as a sum of differential operators (in cartesian
coordinates)
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and MA is the mass of nucleus A in multiples of the mass of an electron (atomic units, see
below). The remaining three terms define the potential part of the Hamiltonian and repre-
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1.3 A short introduction to modern computational chemistry

Our objective is aimed at getting relative energies between two conformers of small 

molecules. Modelling by molecular mechanics involves defining a molecule in terms of 

Newtonian mechanics where atoms are treated as single particles and bonds treated as 

springs. It is often the only theory available to model large biological molecules. Due to 

the general bad performance of molecular mechanics to model the conformational 

equilibrium we are interested in, as is demonstrated by Halgren  [26], these methods will 

not be discussed further.

Using quantum mechanics we can obtain the total energy of a molecule, which is defined 

as containing the kinetic energies of the electrons and the nuclei, the attraction of the 

electrons to the nuclei and interelectronic and internuclear repulsions of the molecular 

system. As all of chemistry is essentially governed by quantum mechanics it is the most 

rigorous theory one can use to explain chemical problems of interest, like 

conformational equilibria.

As the performance of different quantum mechanical methods on the properties of 

chemical systems will be closely discussed in this thesis, an introduction to quantum 

chemistry follows.

Computational methods in quantum chemistry involve solving (approximately) the 

many-electron, non-relativistic, time-independent Schrödinger equation:  

      (1-1)

where the Hamiltonian operator is defined as:

 (1-2)

The Schrödinger equation can only be solved approximately for real chemical systems 

as the only exact analytical solutions known to the Schrödinger equation exist for the 

hydrogen atom, He+, H2
+ and similar systems containing only a single electron.
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nuclei. This is the famous Born-Oppenheimer or clamped-nuclei approximation. Of course,
if the nuclei are fixed in space and do not move, their kinetic energy is zero and the poten-
tial energy due to nucleus-nucleus repulsion is merely a constant. Thus, the complete Ham-
iltonian given in equation (1-2) reduces to the so-called electronic Hamiltonian
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The solution of the Schrödinger equation with elecĤ  is the electronic wave function
Ψelec and the electronic energy Eelec. Ψelec depends on the electron coordinates, while the
nuclear coordinates enter only parametrically and do not explicitly appear in Ψelec. The
total energy Etot is then the sum of Eelec and the constant nuclear repulsion term,
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, i. e.,

elecelecelecelecĤ Ψ=Ψ % (1-5)

and

nucelectot %%% += . (1-6)

The attractive potential exerted on the electrons due to the nuclei – the expectation value
of the second operator NeV̂  in equation (1-4) – is also often termed the external potential,
Vext, in density functional theory, even though the external potential is not necessarily lim-
ited to the nuclear field but may include external magnetic or electric fields etc. From now
on we will only consider the electronic problem of equations (1-4) – (1-6) and the subscript
‘elec’ will be dropped.

The wave function Ψ itself is not observable. A physical interpretation can only be asso-
ciated with the square of the wave function in that

Ψ ! ! ! ! ! !
" "

2
1 2 N 1 2 N(x ,x , ,x ) dx dx dx (1-7)

represents the probability that electrons 1, 2, …, N are found simultaneously in volume
elements N21 xdxdxd

!
"

!!
. Since electrons are indistinguishable, this probability must not

change if the coordinates of any two electrons (here i and j) are switched, viz.,

Ψ = Ψ! ! ! ! ! ! ! ! ! !
" " " "

2 2
1 2 i j N 1 2 j i N(x ,x , ,x ,x , ,x ) (x ,x , ,x ,x , ,x ) . (1-8)

Thus, the two wave functions can at most differ by a unimodular complex number eiφ. It
can be shown that the only possibilities occurring in nature are that either the two functions
are identical (symmetric wave function, applies to particles called bosons which have inte-

1.1  The Schrödinger Equation
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1.1  The Schrödinger Equation

Quantum chemistry thus involves different approximations to the Schrödinger equation. 

An almost universal approximation in quantum chemistry, that is applied to further 

simplify the Schrödinger equation, is the Born-Oppenheimer approximation. Due to the 

significant mass differences of the nuclei vs. the electron (even the proton weighs 1800 

times more than the electron) the nuclei move much slower than the electrons and it is 

thus possible to disregard the kinetic energy term of the nuclei and look at the repulsion 

energy of the nuclei as a constant. The problem thus simplifies to solving only the 

electronic Schrödinger equation with the electronic Hamiltonian (equation 1-3) and 

adding the nuclear repulsion term to get the total energy (often called the electronic 

energy nonetheless).

    (1-3)

The Born-Oppenheimer approximation is also vital with regard to chemistry, as without 

it we wouldn’t have a potential energy surface (PES) in quantum chemistry, a 

frightening thought, as so much in chemistry can be explained by the concept of a PES. 

The validity of the Born-Oppenheimer approximation has actually been in the news 

recently iii due to startling experimental evidence a few years ago that suggested failure 

of the approximation. A follow-up experimental and theoretical study, however, 

reconfirmed the validity of the Born-Oppenheimer approximation.

While we can set up the electronic Hamiltonian operator for a specific chemical system, 

the problem is finding the eigenfunctions ψi, i.e. the electronic wave functions of the 

chemical system. Once the eigenfunctions are determined, the operators of the 

Hamiltonian can be applied to the eigenfunctions and yield the energy eigenvalues. This 

is a problem because it isn’t possible to find the eigenfunctions in a direct way.

However, due to the variational principle there is a systematic way of approaching the 

ground state eigenfunction ψ0 . It states that the energy computed by using an 

appropriate normalized trial wave function, will be an upper bound to the true energy of 

the ground state, as shown in equation 1-4.

iii http://www.rsc.org/chemistryworld/News/2008/January/03010802.asp
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= Ψ Ψ ≡ Ψ Ψ∫ ∫ ! ! !
" #*

trial trial 1 2 N trial trial
ˆ ˆ ˆO O dx dx dx O (1-11)

where we introduce the very convenient bracket notation for integrals first used by Dirac,
1958, and often used in quantum chemistry. The star in *

trialΨ  indicates the complex-conju-
gate of Ψtrial.

The variational principle now states that the energy computed via equation (1-11) as the
expectation value of the Hamilton operator Ĥ  from any guessed Ψtrial will be an upper
bound to the true energy of the ground state, i. e.,

Ψ Ψ = ≥ = Ψ Ψtrial trial trial 0 0 0
ˆ ˆH E E H (1-12)

where the equality holds if and only if Ψtrial is identical to Ψ0. The proof of equation (1-12)
is straightforward and can be found in almost any quantum chemistry textbook.

Before we continue let us briefly pause, because in equations (1-11) and (1-12) we
encounter for the first time the main mathematical concept of density functional theory. A
rule such as that given through (1-11) or (1-12), which assigns a number, e. g., Etrial, to a
function, e. g., Ψtrial, is called a functional. This is to be contrasted with the much more
familiar concept of a function, which is the mapping of one number onto another number.
Phrased differently, we can say that a functional is a function whose argument is itself a
function. To distinguish a functional from a function in writing, one usually employs square
brackets for the argument. Hence, f(x) is a function of the variable x while F[f] is a func-
tional of the function f. Recall that a function needs a number as input and also delivers a
number:

yx )x(f  → .

For example, f(x) = x2 + 1. Then, for x = 2, the function delivers y = 5. On the other hand,
a functional needs a function as input, but again delivers a number:

→F[f(x)]f(x) y .

For example, if we define [ ]= ∫
1

2

0

F[f] f(x) dx  and use f(x) as defined above as input,

this functional delivers F [f(x) = x2 + 1] = 28/15. If, instead we choose f(x) = 2x2+1, the
result is F [f(x) = 2x2 + 1] = 47/15.

Expectation values such as 〉〈Ô  in equation (1-11) are obviously functionals, since the
value of 〉〈Ô  depends on the function Ψtrial inserted.

Coming back to the variational principle, the strategy for finding the ground state energy
and wave function should be clear by now: we need to minimize the functional E[Ψ] by
searching through all acceptable N-electron wave functions. Acceptable means in this con-
text that the trial functions must fulfill certain requirements which ensure that these func-
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instances the Hartree-Fock solution is usually characterized by having doubly occupied
spatial orbitals, i. e., two spin orbitals χp and χq share the same spatial orbital φp connected
with an α and a β spin function, respectively and have the same orbital energy. If we impose
this double occupancy right from the start, we arrive at the restricted Hartree-Fock approxi-
mation, RHF for short. Situations where the RHF picture is inadequate are provided by any
system containing an odd number of electrons (the methyl radical or even the hydrogen
atom with its single electron fall into this category) or by systems with an even number of
electrons, but where not all of these electrons occupy pair-wise one spatial orbital – i. e.,
open-shell situations, such as the triplet ground states of methylene, CH2 ( 1

3BX
~

) or the
oxygen molecule ( −Σg

3X ). There are two possibilities for how one can treat such species
within the Hartree-Fock approximation. Either we stay as closely as possible to the RHF
picture and doubly occupy all spatial orbitals with the only exception being the explicitly
singly occupied ones, or we completely abandon the notion of doubly occupied spatial
orbitals and allow each spin orbital to have its own spatial part. The former is the restricted
open-shell HF scheme (ROHF) while the latter is the much more popular unrestricted
Hartree-Fock variant (UHF). In UHF the α and β orbitals do not share the same effective
potential but experience different potentials, α

HFV  and β
HFV . As a consequence, the α- and

β-orbitals differ in their spatial characteristics and have different orbital energies. The UHF
scheme affords equations that are much simpler than their ROHF counterparts. Particu-
larly, the ROHF wave function is usually composed not of a single Slater determinant, but
corresponds to a limited linear combination of a few determinants where the expansion
coefficients are determined by the symmetry of the state. On the other hand, in the UHF
scheme we are always dealing with single-determinantal wave functions. However, the
major disadvantage of the UHF technique is that unlike the true and also the ROHF wave
function, a UHF Slater determinant is no longer an eigenfunction of the total spin operator,

2Ŝ . The more the 〈 〉2Ŝ  expectation value of a Slater determinant deviates from the correct
value – i. e., S(S+1) where S is the spin quantum number representing the total spin of the
system – the more this unrestricted determinant is contaminated by functions correspond-
ing to states of higher spin multiplicity and the less physically meaningful it obviously
gets.

1.5 Electron Correlation

As we have seen in the preceding section a single Slater determinant ΦSD as an approxi-
mate wave function captures a significant portion of the physics of a many electron system.
However, it never corresponds to the exact wave function. Thus, owing to the variational
principle, EHF is necessarily always larger (i. e., less negative) than the exact (within the
Born-Oppenheimer approximation and neglecting relativistic effects) ground state energy
E0. The difference between these two energies is, following Löwdin, 1959, called the cor-
relation energy

HF0
HF
C EEE −= . (1-30)
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approximation is not only the corner stone of almost all conventional, i. e., wave function
based quantum chemical methods, it is also of great conceptual importance. An under-
standing of the physics behind this approximation will thus be of great help in our later
analysis of various aspects of density functional theory. In what follows we will concen-
trate on the interpretation of the HF scheme rather than on a detailed outline how the rel-
evant expressions are being derived. An excellent source for an in-depth discussion of many
aspects of the HF approximation and more sophisticated techniques related to it is the book
by Szabo and Ostlund, 1982.

As discussed above, it is impossible to solve equation (1-13) by searching through all
acceptable N-electron wave functions. We need to define a suitable subset, which offers a
physically reasonable approximation to the exact wave function without being unmanage-
able in practice. In the Hartree-Fock scheme the simplest, yet physically sound approxima-
tion to the complicated many-electron wave function is utilized. It consists of approximat-
ing the N-electron wave function by an antisymmetrized product4 of N one-electron wave
functions )x( ii

!χ . This product is usually referred to as a Slater determinant, ΦSD:
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or using a convenient short-hand notation, where only the diagonal elements are given:

{ }Φ = χ χ χ! ! !
$SD 1 1 2 2 N N

1
det (x ) (x ) (x )

N!
. (1-16)

The one-electron functions )x( ii
!χ  are called spin orbitals, and are composed of a spa-

tial orbital )r(i
!φ  and one of the two spin functions, α(s) or β(s).

βα=σσφ=χ ,),s()r()x(
!!

. (1-17)

The spin functions have the important property that they are orthonormal, i. e., <α|α> =
<β|β> = 1 and <α|β> = <β|α> = 0. For computational convenience, the spin orbitals them-
selves are usually chosen to be orthonormal also:

4 A simple product )x()x()x()x()x( NNjjii2211
!

"
!!

$
!!

χχχχχ=Ξ  is not acceptable as a model wave func-
tion for fermions because it assigns a particular one-electron function to a particular electron (for example χ1
to x1) and hence violates the fact that electrons are indistinguishable. In addition,

)x()x()x()x()x()x()x()x()x()x( NNijji2211NNjjii2211
!

$
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$
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$
!!

χχχχχ−≠χχχχχ ,
i. e. such a product is not antisymmetric with respect to particle interchange.
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where we introduce the very convenient bracket notation for integrals first used by Dirac,
1958, and often used in quantum chemistry. The star in *

trialΨ  indicates the complex-conju-
gate of Ψtrial.
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The Hartree-Fock approximation involves constructing this N-electron trial wave 

function as an antisymmetrized product of N one-electron wave functions (that we can 

solve) that is called a Slater determinant, equation 1-5.

(1-5)

Using the variational principle we can then find the best Slater determinant that yields 

the lowest energy (which will be closest to the true energy).

While we won’t go into the specifics of the Hartree-Fock equations and the self-

consistent field procedure of solving them, we note that this strategy can never yield the 

true wave function or the true ground state energy. The Hartree-Fock approximation 

neglects instantaneous electron-electron interaction or electron correlation as the Fock 

operator is only a simple one-electron operator with an average repulsive potential term, 

which means each electron interacts only with a mean field within the Hartree-Fock 

approximation. The difference between the true ground state energy and the Hartree-

Fock energy is the electron correlation energy. The Hartree-Fock approximation is, 

however, variational. The total HF energy will always be higher than the exact total 

energy, never lower.

  (1-6)

The post Hartree-Fock methods involve how to calculate the electron correlation energy 

correctly. This is the so called wave function based ab initio quantum chemistry, ab 

initio meaning ‘from the beginning’ and means that empirical observations of chemical 

systems do not enter into the equations in any way.
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1 Introduction

Resonance enhanced multi!photon ionization is a spectroscopic technique where multiple pho!
tons are used to probe the physical properties of molecules.

2 REMPI

2.1 Simulation of REMPI spectra

3 Ab initio calculations

Many methods exist for ab!initio calculations of both, ground and excited states. Hartree!Fock
"SCF1# is ever so popular, originally proposed in XXXX$xx%. It remains popular to this day, espe!
cially as a starting point for more advanced methods as the full variational calculations of many
methods would be even more expensive if it weren’t for a fairly good guess for a starting point.

The main drawback of the Hartree!Fock is the complete lack of electron correlation.

3.1 Coupled cluster

Coupled cluster is one of the post Hartree!Fock methods. It’s application on quantum chemistry
problems is originally is found in $3%. Coupled cluster assumes that the wavefunction, |Ψ〉 of a
molecule can be written

|Ψ〉 = eT̂ |Φ0〉 "1#

where |Φ0〉 is a trial wavefunction "Slater Determinant#, usually implemented as the convergerd
Hartree!Fock wavefunction of the molecule in question. T̂ is the excitation operator

T̂ =
∞∑

n=1

T̂n "2#

T̂n is the n!fold excitation operator, which expresses all n!fold excitations, so T̂1 is the operator
of all single excitations. This infinite series of excitations is usually truncated to a finite sum.

One version of coupled cluster is the CCSDmethod, which is an acronym for coupled cluster
singles, double, so the T̂n of it is:

T̂n = T̂1 + T̂2 "3#

so CCSDTQ, coupled cluster, singles, doubles, triples and quadruples would have this excitation
operator:

T̂n = T̂1 + T̂2 + T̂3 + T̂4 "4#

As this is an infinite convergent sum,it is possible to increase the accuracy with each additional
excitation operator term, albeit with diminishing returns. This can be seen clearly in $6%, where
FH, H2O and F− are used as test cases. In the article excitations from singles to octuples are
used, whereas the octuple excitation is formally exact as each molecule has eight electrons.

One inherent problem with this approach is the computational complexity of each additional
excitation operator as CCSD has O(n6), CCSDT O(n8), CCSDTQ O(n10), and so forth. So
it follows that we either need some further approxmations or to confine ourselves to very small

1Self!consistent field is often used instead of Hartree!Fock as HF can easily be confused with hydrogen fluoride.
Though sometimes in literature, you can see FH for hydrogen fluoride
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A conceptually simple way of accounting for electron correlation is through the 

perturbation approach by Møller and Plesset. The HF wave function is mapped onto a 

perturbation theory formulation, becoming a first-order perturbation. Adding the second 

order level of perturbation, which results in the MP2 method, captures most of the 

correlation. MP2 is the most popular perturbation method. One can continue infinitely 

and the perturbation levels of MP3 and MP4 are also sometimes used. The sometimes 

oscillating convergence of the perturbational approach  [27] is the reason that it is not 

used systematically for approaching the wave function by increasing gradually the order 

of perturbation. MP2 shows the most reliable convergence but it is not uncommon to 

find MP2 total energies being lower than the exact total energy. None of the MPn 

methods are variational.

Another way of accounting for electron correlation is by using a multiple determinant 

wave function. Configuration interaction and coupled cluster theory are two different 

approaches where the Hartree-Fock wave function is systematically expanded by taking 

into account excited Slater determinants and in principle one can approach the true wave 

function and energy in this way. Approximations are, however, almost always used.

In the coupled cluster formulation the wave function is built in this way:

                (1-7)

The excitation operator is expressed as a sum of excitations. One of the most famous 

coupled cluster approximations is the CCSD(T) approach where the S and D stand for 

single and double excitations and the (T) means that triple excitations are accounted for 

in a perturbative way. 

As electron correlation is such a vital part of almost all chemical systems the standard 

Hartree-Fock approximation as a computational method is often insufficient. All the 

procedures of going beyond the HF approximation have dramatic computational 

consequences, however. The formal scaling of HF calculations is N4 where N can for 
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example be a measure of molecular sizeiv. This means that a calculation twice as big 

would take 16 times as long to complete. The more elaborate post HF methods have 

even more troubling scaling behaviour as shown in table 4.

The orbitals used for building up the wave function must be specified somehow. A 

convenient starting point is to use the functions from the exact solution of the 

Schrödinger equation for the hydrogen atom (Slater-type orbitals). It is computationally 

more convenient, however, to use combinations of Gaussian functions to mimic the 

Slater-type orbitals. Multiple Gaussians are needed to accurately mimic each Slater-type 

orbital or basis function. A minimal basis would have one basis function (made out of 3 

Gaussians for example) for each occupied orbital of an atom and is called a single-zeta 

basis set. It is usually inadequate as there isn’t enough flexibility to describe different 

molecular environments. In a double-zeta basis set there are 2 basis functions to describe 

each orbital. Since most of chemistry is about the interaction of valence electrons, John 

Pople (coauthor of the Gaussian software  [28] and Nobel laureate ) developed the split-

valence basis sets that are single-zeta in the core region and double- or triple-zeta in the 

valence region. To provide even more flexibility in the basis set to describe electron 

distribution in molecular systems, multi-zeta basis sets aren’t enough. The basis set is 

thus expanded to include functions that mimic orbitals with angular momentum one 

higher than the valence region (sometimes even higher). These basis functions are called 

polarization functions and would involve adding d functions to p-block elements like 

carbon and p functions to hydrogens. When the molecule carries a negative charge 

(anions) the basis set is usually augmented with extra diffuse functions that allow the 

electron density to expand into a larger volume. The split-valence basis sets by Pople, 

which are shown below, are probably the best known basis set family and are still very 

much in use.

Table 4. The scaling of the HF and post-HF computational methods.

HF
MP2

MP3, CCSD
MP4, CCSD(T)
MP7, CCSDTQ

H2O
1
1
1
1
1

2 H2O
16
32
64
128
1024

Scaling
N4

N5

N6

N7

N10

iv Strictly, N is the number of basis functions required to approximate all the one-electron wave functions in a Slater determinant
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STO-3G : A minimal single-zeta basis set.

6-31G : A double-zeta split-valence basis set.

6-31G(d) : A double-zeta split-valence basis set with d polarization functions.

6-31+G(d): Same as above but with diffuse functions.

6-311+G(d,p) : A triple-zeta basis set with diffuse functions and both d and p 

polarization functions.

6-311++G(3df,3pd): A triple-zeta basis set with many diffuse and higher order 

polarization functions.

As mentioned before, the scaling of the post-HF methods is clearly quite unfavorable 

and it turns out that these methods depend heavily on the number of basis functions to 

reach good accuracy; i.e. many basis functions are needed to achieve good accuracy and 

due to unfavorable scaling with respect to basis functions, such calculations will take a 

long time.

The composite methods were developed to achieve accurate energies by these post-HF 

methods, but by taking advantage of the additive effects of basis sets. Instead of doing 

one calculation with an expensive method like CCSD(T) and a large basis set, many 

smaller calculations are done with a less expensive method with several basis sets and an 

expensive method calculation is done with a small basis. Adding all these effects 

together the net outcome is an energy roughly equivalent to that of an expensive method/

large basis calculation in much less time. Well known composite methods are G3B3 

theory  [29], [30] and CBS-QB3  [31], [32].

Density functional theory is another way of solving the Schrödinger equation. Unlike HF 

and post-HF methods, DFT stays away from the complicated many-electron wave 

function. Instead its equations are based on the electron density, a quantity that is a 

function of only three spatial variables (compared to the N electron wave function that 

depends on 3N variables).

Although equations relating the electron density of a quantum system to its energy are 

almost as old as the Schrödinger equation itself, it wasn’t until the arrival of the 

Hohenberg-Kohn theorems in 1964 where the ground state electron density was directly 

related to the ground state wave function, that density functional theory had a firm 

theoretical basis  [33]. Furthermore they stated that the density that minimized the total 
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system in terms of the separation described by equation (5-11), highlighting the depend-
ence on the orbitals as indicated in equations (5-9) and (5-10):
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The only term for which no explicit form can be given, i. e., the big unknown, is of
course EXC. Similarly to what we have done within the Hartree-Fock approximation, we
now apply the variational principle and ask: what condition must the orbitals {ϕi} fulfill in
order to minimize this energy expression under the usual constraint of ijji | δ=〉ϕϕ〈 ? The
resulting equations are (for a detailed derivation see Parr and Yang, 1989):
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If we compare this equation with the one-particle equations from the non-interacting
reference system, we see immediately that the expression in square brackets, i. e. Veff, is
identical to VS of equation (5-8) above
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Thus, once we know the various contributions in equation (5-15) we have a grip on the
potential VS which we need to insert into the one-particle equations, which in turn deter-
mine the orbitals and hence the ground state density and the ground state energy by em-
ploying the energy expression (5-13). It should be noted that Veff already depends on the
density (and thus on the orbitals) through the Coulomb term as shown in equation (5-13).
Therefore, just like the Hartree-Fock equations (1-24), the Kohn-Sham one-electron equa-
tions (5-14) also have to be solved iteratively.

One term in the above equation needs some additional comments, namely VXC, the po-
tential due to the exchange-correlation energy EXC. Since we do not know how this energy
should be expressed, we of course also have no clue as to the explicit form of the corre-
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5.2  The Kohn-Sham Equations

energy was the exact groundstate energy; DFT now had it’s own variational principle as 

well.

While the Hohenberg-Kohn theorems showed that it was possible to solve the 

Schrödinger equation using the ground state density, they provided no way of how to get 

the ground state density. The equations of Kohn and Sham provided such a way a year 

later, in a 1965 paper where the problem was reformulated by taking as a starting point a 

fictitious system of non-interacting electrons that has the same overall density as the real 

interacting system  [34]. This density can be expressed as a Slater determinant of one-

electron functions.

The energy functionalv can be expressed  [35]:

 

       (1-8)

where Ts[ρ] is the non-interacting kinetic energy functional, J[ρ] is the classical 

Coulomb electron-electron interaction, ENe[ρ] the nuclei-electron interaction and Exc[ρ] 

is the exchange-correlation functional. The Exc[ρ] term contains the quantum-

mechanical contributions to the potential energy, that is the exchange energy and 

correlation energy and also the rest of the kinetic energy that isn’t covered by Ts.

The Kohn-Sham approach thus involves calculating as much as possible of the density 

but putting everything that isn’t known how to deal with directly, into the exchange-

correlation term, Exc[ρ].  The above energy expression can be subjected to the 

variational principle with respect to the individual orbitals and the resulting equations 

solved self-consistently (very similar as the Hartree-Fock SCF procedure), if an 

expression for the Exc term can be given. 

v A functional is a function of a function. The energy functional acts on the density (another function) yielding the energy (a number) 
as output.
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This is the big unknown of density functional theory and it is important to realize that if 

the exact exchange correlation functional was known the Kohn-Sham strategy would 

lead to the exact energy and thus an exact solution to the Schrödinger equation  [35].

Unfortunately it isn’t. 

Density functional development has thus mainly revolved around making 

approximations to the exchange-correlation functional in order to come up with an 

expression of the functional that is as close to the real, exact (and unknown) functional 

as possible. The different flavours of density functional theory available are thus usually 

only different approximations to the exchange-correlation functional. The functional is 

generally divided into two seperate terms, an exchange term and a correlation term and 

an approximation made to each term individually:

Exc[ρ] = Ex[ρ] + Ec[ρ]                       (1-9)      

The simplest form of an approximate exchange-correlation functional is the local density 

approximation, LDA. It assumes that the exchange-correlation energy at any point in 

space is a function of the electron density at that point in space only and can be given by 

the electron density of a homogeneous electron gas of the same density.

The electron density of a molecular system is generally very different from a 

homogeneous electron gas. The LDA approximation isn’t satisfactory for molecular 

systems (overbinding of chemical bonds and underestimation of barrier heights) and 

LDA-based DFT hardly made an impact on computational chemistry and was mainly 

used in solid-state physics  [35].

In the early eighties, the generalized gradient approximation (GGA) was developed as an 

extension to the LDA approximation. Within the GGA approximation the exchange and 

correlation energies depend not only on the density but also on the gradient of the 

density. Density functionals based on GGA are a significant improvement over LDA and 

give much better total energies, atomization energies, structural energy differences and 

energy barriers. Examples are the BLYP, PBE, BP86, HCTH and mPWPW91 

functionals.
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Hybrid functionals give even better performance. By combining exchange-correlation 

from GGA with exact (Hartree-Fock) exchange in the hybrid functional one obtains the  

recipe for a class of functionals that have been the most successful for a large number of 

properties since they were introduced. Usually only a certain percentage of HF exchange 

is introduced and this introduces a degree of empiricism into the functional 

approximation as each component of the exchange functional now has a weight factor 

that cannot be determined from first-principles and is thus usually fitted to experimental 

data. It is informative to look at the formulation for the very popular B3LYP functional  

[36]:

Exc
B3LYP = Exc

LDA + a0 (Ex
HF - Ex

LDA) + ax (Ex
B88 - Ex

LDA) + ac (Ec
LYP - Ec

LDA) (1-10)
a0 = 0.20 , ax = 0.72 and ac = 0.81 are the three empirical parameters. B3LYP thus has 20 % Hartree-Fock exchange.

Other examples of hybrid functionals include B3P86, B97-1, B98, PBE1PBE, BH&LYP, 

MPW1K, mPW3LYP etc. 

The B3LYP functional, since its introduction in 1994  [36],  is by far the most popular 

functional in chemistry today, with around 80 % usage in the chemistry literature of all 

density functionals  [37]. This is a very interesting observation, that implies both that 

functional development since 1994 has not been as successful as people had hoped for, 

but perhaps also that chemists sometimes blindly choose B3LYP over other functionals 

that might be much more successful for several properties.

In the recent few years, a new class of density functionals have begun to appear, named 

meta-GGA functionals. They are dependent on higher order density gradients or the 

kinetic energy density. Examples are TPSS, BB95, VSXC.

Hybrid variants of the meta-GGA class have also appeared that include HF exchange 

and recent comparisons show them to be a general improvement over GGA and GGA-

hybrids for several properties  [37]. Examples are B1B95, TPSSh, BB1K, BMK.

Density functional theory is a nice alternative to the wave-function theories, its attractive 

scaling being one of the most important aspects. Keeping in mind the scaling of the 

wave function theories in table 4, DFT usually scales as N3 (GGA and meta-GGA) or N4 

(hybrids) and one can generally use the same basis functions as the HF and post-HF 
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methods. In solid-state physics, plane-waves are often used instead of Gaussians, that are 

more convenient in systems with periodic boundary conditions.

Density functional theory is, however, not without its problems. 

• Due to the exchange-correlation functional being an approximation and not the 

true exact functional, DFT as we know it, is non-variational; total energies less 

than the exact total energy can thus be obtained. 

• The functionals used today, also have not reached “chemical accuracy”, the 

ultimate goal of most quantum mechanical methods, that involves calculating 

thermodynamical quantities like enthalpies of formation within 1 kcal/mol. The 

performance of B3LYP for the well known G3/99 database of 223 enthalpies of 

formations is a mean absolute error of 4.8 kcal/mol against experimental data  

[38].

• Current density functionals also experience something called the self-interaction 

error which can be described as the interaction of the electron with itself.

• Weak or nonbonding interactions are also a limitation of DFT with most 

functionals failing dramatically for van der Waals complexes for example. This 

limitation of DFT will be discussed more later.

• Perhaps the most serious problem of current density functional theory is that it 

cannot be systematically improvable. The exact density functional is not known, 

and although we have several clues about its nature, we have no real path towards 

finding it, unlike wave function theory where the wave function can be 

systematically improved by increasing the level of electron correlation (by excited 

determinants). Perdew, however, has recently categorized the current and future 

development of DFT into five different stages or rungs of a “Jacob’s ladder”  [39]. 

The LDA and GGA approximations are the first two stages of the ladder while 

meta-GGA’s enter into the third stage. As one goes up the ladder, one approaches 
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“heaven” or the exact density functional. Much of DFT development is right now 

at the third rung but fourth and fifth rung functionals are starting to appear.
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1.4 Calculating accurate energy differences

Popular tools for calculating conformational energy differences of small molecules have 

for the last few years, mainly been density functionals like B3LYP and the MP2 method. 

B3LYP and MP2 thus were the most obvious choices to try, to see if we could reproduce 

the recent experimental results for the synthesized 1-silacyclohexanes. Most calculations 

in chapter 1 and 2 were carried out with NWChem 5.1, the computational chemistry 

software package by Pacific Northwest National Laboratory  [40].

The energetic quantities used in this thesis are shown below:

ΔE = Eax - Eeq : The electronic energy difference between conformers.

ΔH = Hax - Heq : The enthalpy difference between conformers.

H = E + Hcorr : The enthalpy that equals the electronic energy plus the thermal correction to 
energy and enthalpy (includes zero-point energy).

Hcorr = Ezpe + Evib + Erot + Etransl + RT : Zero-point energy (ZPE), thermal corrections due to vibrations, 
rotations and translations.

A = Gax - Geq = The free energy difference (or A value) between conformers.

G = E + Gcorr = The freee energy equals the electronic energy plus the free energy correction.

Gcorr = Hcorr -TStot : The free energy correction consists of the correction to enthalpy plus a term 
           containing the thermal correction to entropy.

Results of the MP2vi and B3LYP calculations for several 1-silacyclohexanes, first 

presented at the 12th European symposium on gas electron diffraction in Blaubeuren 

June 2007, compared with GED experimental results, are shown in table 5.

vi MP2 and CCSD(T) calculations are usually performed using the frozen-core approximation where only the valence electrons are 
correlated while the core electrons are HF-approximated. All MP2 and CCSD(T) calculations mentioned in this thesis are frozen-core 
approximated.
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As shown in table 5, the popular B3LYP functional seems rather inconsistent in 

predicting A values of the molecules in question. While it predicts the energy difference 

for the 1-fluoro-1-silacyclohexane quite well, it predicts the wrong sign for the 1-

trifluoromethyl molecule, and both wrong sign and significant deviation for 1-silyl-1-

silacyclohexane. Generally, B3LYP appears to predict too much stabilization of the 

equatorial conformer.

The MP2 method seems more consistent, predicting in general smaller deviations from 

experiment than B3LYP (except 1-fluoro). It still predicts the wrong sign for 1-silyl-

silacyclohexane though, but is much closer to the experimental result than B3LYP.

When comparing experimental free energies to computational free energies, the 

comparison can be quite risky since the computations involve several factors: calculation 

of a molecular geometry with one method and one basis set, calculation of a single-point 

energy with one method and one basis set and finally a frequency calculation with 

perhaps another method and basis set. Obviously errors are associated with each 

calculation that might build up or cancel out. However, in table 5, the same geometries 

and thermal corrections to free energy were used for both the B3LYP and MP2 

calculations. Since the MP2 results generally seem to be better, the errors associated 

with the B3LYP results must mainly be due to the single-point energy B3LYP 

calculation and thus either a deficiency of the functional or the basis set used 

(6-311+G(d,p) vs. aug-cc-pVTZ).

One must of course also be aware that errors are associated with the experimental values 

as well and the uncertainties given for the GED A values are often considerable. 

Table 5. Calculated vs. experimental A values (in kcal/mol) of a few monosubstituted 1-silacyclohexanes, C5H10SiHX .

X=

CH3

CF3

F

SiH3

a Geometries and thermal corrections to free energy calculated at the B3LYP/6-311+G(d,p) level of theory in all cases. The MP2 
electronic energies are calculated with the aug-cc-pVTZ basis set but the B3LYP calculations with the 6-311+G(d,p) basis set.

GED results 
(A /mol % axial)

0.45(14)
32(7) %
-0.19(29)
58(12) %
-0.31(20)
63(8) %

-0.17(15) kcal/mol
57(7) %

B3LYPa

(A /mol % axial)
0.66
25 %
0.13
45 %
-0.24
60 %

0.52 kcal/mol
29 %

MP2a

(A /mol % axial)
0.35
36 %
-0.28
63 %
-0.15
56 %

0.20 kcal/mol
42 %
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However, the tendency for equatorial-overstabilization of the B3LYP calculations and 

the much better results of the MP2 calculations (MP2 conformational energies are more 

reliable according to recent reports  [41],  [42]), seemed to point towards a deficiency of 

the DFT calculations.

This apparent failure of the B3LYP functional, the most popular density functional used 

in computational chemistry today, to predict consistent energy differences of these 

molecules, interested us. We wanted to understand whether this error was associated 

with our own calculations or if B3LYP or perhaps density functional theory in general 

was inadequate of predicting accurate conformational energy differences of this small 

magnitude.

Few studies have been reported, concerning the accuracy of density functionals to 

predict conformational energy differences  [41].

1.4.1 Basis sets

We started to look at the basis set, as we wanted to see how large effect the basis set has 

on the calculation and if the basis we used before was inadequate in some way.

It is important to remember here that the concept of a basis set is an approximation and 

that ideally one would use as many basis functions as is needed until the energy has 

converged (a complete basis), instead of tailormade basis sets for specific calculations. 

This is not universal, as sometimes density functionals are parameterized for a specific 

basis set and are intended for use with that basis set only. 

When the energy is converged in DFT calculations, all that remains is the error of the 

functional approximation. A complete basis is, however, obviously not practical.

One can, however, approach a complete basis by using basis set families designed to 

systematically approach the basis set limit, by including more functions of the correct 

nature in each step and then inspect if the difference between each step is low enough for 

one’s purpose of accuracy. Sometimes it is also possible to extrapolate to the complete 

basis set limit.

The basis set family by Dunning, the correlation-consistent basis sets (cc-pVnZ, where n 

stands for the multi-zeta level of the basis set)  [43], [44], are very popular for 

systematic expansion of the basis set. While designed for configuration interaction (and 

also intended for coupled cluster calculations) they have been used for MP2, HF and 
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DFT calculations as well. It has been pointed out though that these basis sets might not 

be ideal for DFT calculations and use of them can lead to unreliable convergence, 

despite them having more basis functions  [45].

Recently, it has also been pointed out that the correlation-consistent basis sets are 

insufficient with regard to d-polarization functions of second-row elements (Al-Cl). This 

includes silicon. By adding extra tight d-functions and reoptimizing exponents of d-

functions in the basis set, the energy of a second-row element containing molecule 

converges more normally. This has led to the cc-pV(n+d)Z basis sets by Wilson et al. 

and are generally recommended when calculating properties of molecules with second-

row elements (Al-Ar)  [46].

The polarization-consistent basis sets were introduced in 2001 by Jensen and are still 

being developed and evaluated  [47-54]. This basis set family was designed for DFT and 

HF calculations, by noticing that the basis set convergence of DFT and HF is 

exponential  [55], [56], as opposed to the inverse power series convergence of 

correlation energies of the post-HF methods  [57]. By careful selection of angular 

momentum functions and optimization of constants in each basis set, the basis set family 

systematically approaches the complete basis set limit, but in a much more economic 

way than the correlation-consistent basis sets, i.e. less basis functions.

Systematically approaching the complete basis set limit was something we wanted to 

explore and to begin with we explored the basis set expansion of our molecules using the 

B3LYP functional. We are comparing the basis set convergence of relative energies of 

conformers (i.e. ΔE values) that few studies have been devoted to, although several 

recent studies on the behaviour of density functionals with respect to basis set have been 

carried out  [58-62].

As a benchmark molecule we chose the 1-silyl-1-silacyclohexane molecule as this was 

one of the molecules in table 5 with significant deviations from the experimental results 

and it contained 2 silicon atoms (i.e. 2 second-row atoms).
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Several B3LYP single-point energy calculations on 1-silyl-1-silacyclohexane were 

carried out on a geometry optimized at the B3LYP/6-311+G(d,p) level, using several 

different basis sets. Results are shown in table 6 where one can see the effect of 

increasing basis set on the electronic energy difference. The ΔE values for the split-

Table 6. ΔE values (in kcal/mol) of the axial/equatorial equilibrium of 1-silyl-1-silacyclohexanea. 

B3LYP calculations with different basis sets.

Basis setb

Split-valence basis sets
6-31G(d)

6-31G(d,p)
6-31++G(d,p)

6-311G(d)
6-311G(d,p)

6-311++G(d,p)
6-311++G(2d,2p)

6-311++G(3df,3pd)
Correlation-consistent basis sets

cc-pVDZ
cc-pVTZ
cc-pVQZ

aug-cc-pVDZ
aug-cc-pVTZ
aug-cc-pVQZ

cc-pV(D+d)Zc

cc-pV(T+d)Zc

cc-pV(Q+d)Zc

Polarization-consistent basis setsc

pc-0
pc-1
pc-2
pc-3

aug-pc-0
aug-pc-1
aug-pc-2
aug-pc-3

a A = -ΔG = -0.17(15) kcal/mol for 1-silyl-1-silacyclohexane, according to the GED experiment.
b The aug-prefix means the basis set is augmented with diffuse functions.
c Basis sets were obtained from the EMSL library at https://bse.pnl.gov/bse/portal.
d Total number of basis functions for describing the atomic orbitals of 1-silyl-1-silacyclohexane in 

each basis set.

ΔE

0.464
0.466
0.551
0.519
0.487
0.482
0.519
0.546

0.531
0.514
0.547

0.432
0.546
0.535

0.554
0.527
0.555

0.184
0.474
0.520
0.549

0.123
0.394
0.550
0.553

Nr. functionsd

134
176
218
184
226
268
345
541

176
414
813

295
652

1212

186
424
823

  99
 176
 414
 924

 141
 295
 652
1323
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valence basis sets show some zig-zag behaviour when diffuse functions (+) and 

polarization functions are added. The largest split-valence basis set is 6-311++G(3df,

3pd) that should be the closest to the basis set limit (judged by the number of basis 

functions) but the path from the smallest basis set to the largest is not smooth. An 

apparent basis set error of ~0.08 kcal/mol for some of the split-valence basis sets 

compared to the largest basis set calculated (aug-pc-3) is significant, if one keeps in 

mind the small energy differences that we are interested in.

Using the larger correlation-consistent basis sets the energy appears to be converged at 

the cc-pVQZ (quadruple-zeta) and the aug-cc-pVQZ level at 0.547 kcal/mol and 0.535 

kcal/mol, respectively. The cc-pVQZ and aug-cc-pVQZ basis sets are considerably 

larger than the biggest Pople basis set though. Adding diffuse functions to cc-pVDZ, i.e. 

aug-cc-pVDZ, causes some ΔE deviation, worse in fact than the similarly small split-

valence basis sets.

The cc-pV(n+d)Z basis sets by Wilson et al. have a noticable effect on the convergence 

for the double and triple-zeta basis sets but a very small effect on the quadruple-zeta 

basis set. These basis sets are designed to better describe second-row elements and thus 

it seems possible that they might be more important if a molecule includes even more 

second-row elements. This was explored in conjunction with calculations in chapter 2 

and results can be found in appendix 1.3.

Using the polarization-consistent basis sets by Jensen we obtained converged ΔE values 

at 0.549 and 0.553 kcal/mol using the pc-3 and aug-pc-3 basis sets, respectively. This is 

very similar to the correlation-consistent basis set results. It’s a very encouraging result, 

that the by far largest basis set, aug-pc-3 (see number of functions in table 6) yields a ΔE 

value that is almost the same as the smaller pc-3 and cc-pV(Q+d)Z values and very close 

to pc-2 and cc-pV(T+d)Z values as well.

Diffuse functions seem to have larger effects on the ΔE values when the polarization 

level of the basis set is low or medium and often seem to result in ΔE values that deviate 

more from the basis set limit (compare cc-pVDZ and aug-cc-pVDZ). When the 

polarization level is high, diffuse functions have small effects (compare cc-pVQZ vs. 

aug-cc-pVQZ and pc-3 vs. aug-pc-3). Diffuse functions thus do not seem necessarily 
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very useful for approaching the basis set limit of molecules like ours, although we note 

that the aug-pc-2 value is closer to the basis set limit than the pc-2 value.

The effects of diffuse functions were considered for some of our molecules that contain 

fluorine, an element where diffuse functions are sometimes recommended, due to the 

high electronegativity of the element and its non-bonding electron pairs. The effects are, 

however, still very small and approaching the basis set limit with increasing polarization 

functions only, seems more convenientvii. Diffuse functions are mainly important when 

calculating anions, excited states, acidities or electron affinities  [63].

Grimme has also argued [64] that diffuse functions are non-ideal for neutral organic 

molecules where intramolecular basis set superposition error can occur, especially with 

small basis sets (due to an unbalanced basis). A study of functionals and different basis 

sets by Merz et al. on conformational energy differences showed that for all functionals 

compared, cc-pVTZ resulted in smaller average errors (%) than aug-cc-pVTZ  [41]. It 

seems likely that addition of diffuse functions to incompletely polarized basis sets (or 

perhaps also basis sets that have not been developed for DFT like the cc-pVnZ basis 

sets) can result in unbalanced basis sets that are subject to basis set superposition errors.

Generally it is rather easy, based on these results, to approach the basis set limit of our 

DFT calculations. A triple-zeta basis set with properly selected polarization functions 

can be rather close to the limit. The split-valence basis sets seem to yield similar results 

as the systematic basis sets but care should probably be taken in selecting properly 

polarized basis sets.

As the pc-n basis sets are designed for systematically approaching the basis set limit, 

using balanced polarization functions optimized for DFT, with d-functions properly 

optimized for second-row elements and appear to converge nicely, they have become our 

basis sets of choice. We also decided generally not to use diffuse basis sets due to the 

drawbacks discussed before.

This basis set study only compares the energy difference of a single molecule and 

obviously is not a complete basis set study. In our experience, however, these results are 

general for the molecules and properties we are interested in, a similar table for the basis 

set convergence of 1-fluoro-1-methyl-1-silacyclohexane is available in appendix 1.1. 

vii There have also been SCF convergence problems in our calculations with augmented diffuse functions. 
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The basis set convergence of the pc-n basis sets (and occasionally aug-pc-n) as well as 

other basis sets with other functionals are also discussed more later and more data are 

available in appendices.

The errors of our B3LYP calculations seem not to be related to the basis set used. It 

seems quite easy to approach the basis set limit with the functional using several basis 

sets families but this doesn’t seem to improve the overall deviation of the functional very 

much. In fact using larger basis sets than used in table 5 (6-311+G(d,p)) give larger 

deviations from the experimental (and MP2) results.

The functional approximation must thus be the main reason for the bad performance of 

B3LYP.

1.4.2 Problems with DFT in computational organic chemistry

During the past few years there have been many papers in the chemical literature about 

problems with density functionals regarding calculations of enthalpies of formation and 

isomerization energies of medium to large organic molecules.

These papers grabbed our attention as they seemed relevant to our own results with the 

B3LYP functional.

Gilbert et al. noted the systematic underestimation of reaction energies by the B3LYP 

functional and other functionals as the number of carbon-carbon bonds increased while 

the MP2 method did not show this trend. Gilbert concluded that “a computational 

chemist cannot trust a one-type DFT calculation”  [65].

A particularly frightening graph from a paper by Schleyer et al.  [66], showed a 

systematic trend for density functionals to overestimate isodesmic stabilization energies 

of n-alkanes by increasing n. Notable is that B3LYP performs not much better than 

Hartree-Fock in this comparison.

Schleyer concluded: “Energies computed by B3LYP and other popular DFT functionals 

are flawed by systematic errors, which can become considerable for larger molecules... 

Newer functionals, designed to describe weak interactions, give somewhat better 

agreement with experiment, but are not fully satisfactory“.
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In the same issue of Organic Letters as the Schleyer paper  [66], Schreiner et al. noted 

the failure of many density functionals to give reliable isomer energy differences of large 

hydrocarbons  [67]. Schreiner concluded with “Our recommendation is to use higher 

level, non-DFT energy single points on DFT- or MP2-optimized structures.”

Grimme has argued that while atomization energies (or heats of formation) may 

represent a worst-case scenario for quantum chemical methods, it is much more 

informative and much more related to typical chemistry to look at reaction energies or 

barriers [64]. Atomization energies involves calculating both the free (open-shell) atoms 

as well as the closed-shell molecules and such calculations can be subject to systematic 

errors  [68].

Isomerization energies on the other hand are well-defined and accompanied by small to 

large changes in electronic structure (but still closed shell reactions). Grimme looked at 

34 different isomerization reactions and showed how poor a performer B3LYP and many 

other density functionals can be for calculations of relative energies, sometimes not 

performing much better than Hartree-Fock theory [64].

Grimme has also studied specifically the performance of computational methods for the 

isomerization energies of branched to linear alkanes in a 2006 paper  [69] and found that 

the inability of density functionals to predict accurate ΔE values (or even the right sign; 

no standard DFT method predicted the correct sign for the isomerization energy of n-

octane -> 2,2,3,3-tetramethylbutane reaction), stems mainly from the inability of them to 

describe nonlocal electron correlations between localized sigma-bonds at medium range; 

i.e. the inability of density functionals to describe stereoelectronic effects properly. 

Using localized molecular orbitals as the basis in MP2 calculations, Grimme showed 

that it is possible to partition the correlation energy to different regions in space and by 

plotting the correlation energy as a function of the distance between MOs, it is evident 

that the main correlations that determine the relative energy of octane isomers (branched 

vs. linear forms) are on the medium-range length scale (1.5-3.5 Å).

This is a very persuasive argument and a sound explanation why so many current density 

functionals fail for this seemingly simple isomerization reaction. Grimme argues that 

long-range van der Waals interactions which are often put to blame for defiencies of 
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DFT are only of secondary importance here but medium-range interactions are on the 

other hand crucial.

Grimme also looked at branched and linear forms of pentane and octane, with a carbon 

and silicon skeleton, respectively, and hydrogen, chlorine and fluorine substituents and 

found that these deficiencies of current functionals don’t seem to be element specific 

[136].

Schreiner summarized in an Angewandte highlight “Relative Energy Computations with 

Approximate Density Functional Theory - A caveat!” the many recent failures of density 

functionals and possible solutions and ways forward [70].

All these results on the deficiencies of density functionals (and especially B3LYP) 

seemed to be relevant to us. Even though, in the conformational analysis of 

cyclohexanes, we are not dealing with isomerization energies where the electronic 

structure changes nearly as much as e.g. the isomerizatition reaction of n-octane, we are 

nevertheless dealing with energy differences of a very small magnitude and to 

satisfactorily describe the energy differences, the computational method must describe 

the electronic structure of each conformer well enough. While some cancellation of 

errors, due to the similarity of conformers, undoubtedly takes place (which is beneficial), 

the description of the diverse electronic structure must still be good enough, or else 

simple Hartree-Fock or semi-empirical methods would work just as well.

It seemed thus clear that our disappointing DFT results for conformational energies were 

part of a bigger problem and MP2 now seemed a much more reliable (although more 

expensive and more basis-set dependent) method and we had almost given up on using 

density functional theory for achieving accurate conformational energies when we 

noticed the recent appearance of new density functionals, designed to take into account 

some of the many problems with the density functionals mentioned before.
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1.4.3 Recent functionals

There are many different strategies currently used for functional development and this is 

reviewed in a book chapter by Scuseria and Staverov [71]. Mainly there are six 

strategies: (1) local density approximation, (2) density-gradient expansion, (3) constraint 

satisfaction, (4) modelling the exchange-correlation hole, (5) empirical fits and (6) 

mixing of approximate exchange and exact Hartree-Fock exchange.

The group of Donald Truhlar has been working on functional development since 2000 

and the group’s most recent M06 functionals are based on constraint satisfaction, 

modelling the exchange-correlation hole, empirical fits and the mixing of approximate 

and Hartree-Fock exchange  [72]. The group’s main objective has been to develop 

density functionals that can describe noncovalent interactions well, at the same time as 

describing main-group thermochemistry and barrier heights. The M06 functionals are 

meta-GGA functionals (include kinetic energy density in the functional), of which M06, 

M06-2X and M06-HF are hybrid meta-GGA functionals that incorporate some HF 

exchange while the M06-L functional is a local functional with no HF exchange. 

M06-2X is parameterized against main-group chemistry especially. The functionals are 

considerably complex and are also heavily parameterized against a number of diverse 

databases, developed in the Truhlar group, for many different energetic properties  [73]. 

Truhlar et al. evaluated the M06 functionals (and the previous M05 functionals of 

similar composition) against several databases and well known troublesome reactions 

(not used in the training set) and found that the functionals show excellent results 

compared to other well known functionals  [74], [75]. It is argued that while the M05/6 

functionals do not describe properly the dispersion-dominated noncovalent interactions 

at distances larger than 6 Å, most noncovalent interactions in organic molecules take 

place at distances less than ~5 Å, so called medium-range correlation, that the M05/6 

functionals describe very well due to a better correlation functional than most current 

functionals  [74].

Looking at cases relevant to our own conformational systems, the M06 functionals have 

been shown to predict much more satisfying conformational energy differences for the 

challenging systems of alanine tetrapeptide and the 1,3-butadiene  [72]. We also note 

that the difficult problem of the isomerization energy of octane, singled out by Grimme, 
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is predicted within 0.2 kcal/mol by the M06-2X functional compared to the ~10 kcal/mol 

deviation of the B3LYP functional.

Density functional development work of the Truhlar group is summarized in a recent 

Accounts of Chemical Research review  [72].

The group of Stefan Grimme introduced in 2006 the double hybrid functionals  [76], 

[77] where the typical hybrid GGA approximation (Becke exchange/mPW exchange and 

LYP correlation and a percentage of exact HF exchange) was combined with a 

perturbative second-order correlation part (PT2) that is dependent on Kohn-Sham 

orbitals. Part of Grimme’s motivation was to build a functional that could describe non-

local medium- and long-range interactions and introducing orbitals into the functional 

can do that to some extent. This would classify these functionals as fifth-rung functionals 

according to the Jacob’s ladder scheme. Results for the G3/05 test set of experimental 

enthalpies of formation, where mean absolute deviations (MAD) of 2.1 and 2.5 kcal/mol 

for B2-PLYP and mPW2-PLYP respectively, were obtained, are excellent compared to 

the 4.4 kcal/mol MAD for the B3LYP functional. An MAD of 3.8 kcal/mol was the 

lowest result of other standard DFT functionals  [77].

Analytical derivatives for the double-hybrid functionals were implemented in the 

program Orca and in the same 2007 paper it was found that B2-PLYP and mPW2-PLYP 

predict excellent geometries, even superior to standard DFT functionals and MP2  [78].

In another 2007 paper  [79], the doubly hybrid functionals were extended by 

implementing a classical dispersion correction  [80], [81] in order to describe medium- 

and long-range correlation that the perturbation-correction does not completely take care 

of.

It also turned out that this classical dispersion correction in combination with the 

standard DFT functionals had generally very positive results as well, with the MAD of 

B3LYP being 5.6 kcal/mol for the G3/99 set (enthalpies of formation), but the dispersion 

corrected functional B3LYP-D, having a MAD of 3.1. The B2PLYP-D and mPW2PLYP-

D functionals both had an even lower MAD of 1.7 kcal/mol which is quite close to 

chemical accuracy (1 kcal/mol).

Conformational analysis of a tripeptide was also explored by Grimme et al.  [79] where 

it was found that the dispersion correction resulted in dramatic improvements for 
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B3LYP, B2-PLYP and mPW2PLYP, compared to CCSD(T) reference values. The 

combination of the classical dispersion correction and a orbital-dependent perturbation 

correction (in the double hybrid functionals) to achieve especially accurate 

conformational energies was highlighted. 

The DFT development work in the Grimme group is summarized in a recent Accounts of 

Chemical Research review  [82].

1.4.4 Benchmarking density functionals

The apparent excellent performance of these new functionals from the groups of Stefan 

Grimme and Donald Truhlar for a number of properties (including conformational 

energies) and a plausible reason for the failure of other density functionals (improper 

description of medium-range correlation for stereoelectronic effects) for simple organic 

isomerization reactions, indicated that these new functionals might perform better for 

our low-magnitude conformational energy differences of heterocyclic systems.

The M06 functionals recently became available in the NWChem electronic structure 

software  [40].

The B2PLYP functional and the classical dispersion correction was recently incorporated 

into the Orca programviii.

Doing some initial trial calculations with the M06-2X functional in NWChem, we 

obtained very interesting results for our troublesome 1-silyl-1-silacyclohexane molecule. 

The ΔE value of B3LYP was +0.549 kcal/mol with the large pc-3 basis set as shown in 

table 6. The M06-2X/pc-3 calculation (on the same B3LYP/6-311+G(d,p) geometry) 

gave -0.003 kcal/mol which is much closer to the GED free energy difference (A= 

-0.17(15) kcal/mol).

We noticed immediately that different size of the integration grid had strong effects on 

the conformational energies for several basis sets when doing the M06-2X calculations 

in NWChem. The default grid size turned out to result in, not only oscillating 

convergence, but also “wrong” energy differences, as shown in table 7. When the larger 

viii http://www.thch.uni-bonn.de/tc/orca/
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‘xfine’ grid is used instead, the convergence is normal. This is quite surprising. It’s 

unclear if this is related to the M06 functionals, the implementation of the functionals in 

NWChem or general integral accuracy in NWChem. This extreme effect is, however, not 

noticed for B3LYP calculations in NWChem where the difference between the default 

and xfine grid is on the order of 0.02 kcal/mol. To be on the safe side, the xfine grid has 

been used in all NWChem calculations ever since and similarly large grids have been 

used in other programs.

This deserves to be mentioned especially, as users might not necessarily pay sufficient 

attention to grid size when doing DFT calculations. A recent paper on the precision of 

several DFT codes in electronic structure software is also well worth mentioning  [83].

Recently, results of Tschumper et al. came to our attention, where CCSD(T) calculations 

had been carried out on a few monosubstituted 1-silacyclohexanes  [84]. Before, the 

same group had done similar calculations on monosubstituted cyclohexanes and 

tetrahydropyrans  [85].

Tschumper’s approach involved calculating complete basis set (CBS) extrapolated 

CCSD(T) values using low basis CCSD(T) calculations and large basis MP2 

calculations, which can be described as a composite method, mentioned before.

CCSD(T) calculations are among the most accurate calculations one can do and have 

been used for example for calculating the atomization energy of benzene within one 1 

kcal/mol of the experimental result (1306.6 kcal/mol vs. 1305.7 kcal/mol)  [86]. Also 

recently, the heats of formation of the alkanes pentane, hexane and octane were 

calculated within 0.3 kcal/mol  [87]. The accuracy of CCSD(T) is thus well documented 

but this ab initio method is very expensive and out of reach for us.

Table 7. B3LYP and M06-2X calculations on 1-silyl-1-silacyclohexane using the default grid and the xfine grid in 
NWChem. ΔE values in kcal/mol.

Basis set:
pc-0

pc-1

pc-2

pc-3

B3LYP
default grid
+0.162

+0.466

+0.507

+0.525

xfine grid
+0.184

+0.474

+0.520

+0.549

Basis set:
pc-0

pc-1

pc-2

pc-3

M06-2X
default grid
-0.617

-0.398

+0.493

-0.575

xfine grid
-0.396

-0.084

-0.061

-0.003
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Tschumper et al. also noted the rather erratic results when comparing earlier calculations 

of monosubstituted cyclohexanes, including several B3LYP calculations and the 

CCSD(T) calculations were thus intended to set the record straight for the 

conformational energies of several monosubstituted cyclohexanes and tetrahydropyrans.

This collection of conformational energies of cyclohexanes and heterocycles, calculated 

with a highly accurate ab initio method, seemed to us a good benchmark database to 

validate the recent DFT methods by Truhlar and Grimme and other functionals as well 

and to see if they are capable of predicting accurate axial/equatorial energy differences 

of six-membered rings.

Using the same geometries that the CCSD(T) single-point energy calculations were done 

on, MP2/6-311G(2d,2p) (from the supporting material of Tschumper et al.  [84],  [85]), 

and leaving out thermal and ZPE corrections, we could evaluate the error associated 

with our single-point DFT calculations much better than by comparing to experimental 

free energies.

We decided to do a thorough evaluation of the following methods:

B3LYP: the very popular density functional.

B3LYP-D : B3LYP with Grimme’s classical dispersion correction as implemented in 

Orca.

B97-1 : another hybrid functional that often performs slightly better than B3LYP  [45].

B2PLYP: The double-hybrid functional by Grimme.

B2PLYP-D : B2PLYP with the the dispersion correction as implemented in Orca.

M06-2X : Truhlar’s hybrid meta-GGA functional as implemented in NWChem.

We decided to use very large basis sets to ensure the convergence of the relative 

energies. This was done to effectively remove the basis-set error and evaluate the 

performance of the functional only and also to see the basis set convergence of the new 

functionals for a set of molecules.

The pc-n basis set were used with the B97-1 and M06-2X functionals up to pc-4 with 

NWChem.
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The def2-basis sets  [88], up to def2-QZVPP, were used for the B3LYP and B2PLYP 

calculations in the Orca program. These basis sets have been used before, for B2PLYP 

and B3LYP calculations by Grimme  [78] and def2-QZVPP  was found to be sufficiently 

large for the energy differences to be convergedix. Density fitting basis sets  [89] were 

used for the perturbation step in the B2PLYP calculations as implemented in Orca to 

speed up the perturbation step. This involves using the resolution-of-identity (RI) 

approximation that has been shown to give negligible errors at a dramatical speed-up  

[90].

 

Table 8 shows the calculated conformational energies of 15 different rings for the DFT 

methods compared to the reference CCSD(T) values. The most informative part of the 

table is the mean absolute deviation (MAD) and maximum deviation of the density 

functional calculations, compared to the CCSD(T) values.

Table 8. Electronic energy differences (ΔE ) in kcal/mol between the axial and equatorial conformers of monosubstituted 
cyclohexanes, tetrahydropyrans and 1-silacyclohexanes on MP2/6-311G(2df,2pd) geometries.

Cyclohexanes
Methyl
Fluoro
Methoxy
Hydroxy

Tetrahydropyrans
2-Methyl
2-Fluoro
2-Methoxy
2-Hydroxy

1-Silacyclohexanes
Methyl
Fluoro
Methoxy
Hydroxy
Chloro

MAD
MD
MaxD
a Extrapolated MP2 and CCSD(T) energies to the complete basis set limit  [84], [85].

CCSD(T)/CBSa

1.75
0.20
0.21
0.56

2.82
-2.45
-1.27
-0.86

0.21
-0.09
-0.15
0.03

-0.40

ref.
ref.
ref.

MP2/CBSa

1.73
0.23
0.03
0.52

2.90
-2.45
-1.37
-0.88

0.14
-0.05
-0.23
0.01

-0.58

0.11
-0.07
-0.18

B97-1

2.15
0.51
0.97
1.01

3.12
-2.15
-0.46
-0.33

0.53
-0.11
0.20
0.13

-0.01

0.63
0.63
0.81

B3LYP

2.37
0.50
1.11
1.07

3.38
-2.29
-0.37
-0.35

0.70
-0.13
0.30
0.16
0.14

0.76
0.75
0.90

B3LYP-D

1.31
0.21
0.32
0.70

2.24
-2.55
-1.17
-0.72

-0.03
-0.26
-0.31
-0.07
-0.41

0.29
-0.16
-0.58

B2PLYP

2.09
0.35
0.64
0.81

3.18
-2.42
-0.81
-0.61

0.45
-0.15
0.06
0.06

-0.20

0.38
0.36
0.46

B2PLYP-D

1.54
0.20
0.23
0.62

2.58
-2.56
-1.23
-0.81

0.07
-0.23
-0.26
-0.06
-0.49

0.16
-0.12
-0.24

M06-2X

1.72
0.16
0.11
0.50

2.60
-2.45
-1.31
-0.87

0.10
-0.17
-0.24
-0.06
-0.64

0.14
-0.14
-0.24

ix We noticed during these calculations that using the def2-aug-TZVPP basis set resulted in energy differences that were very close to 
the def2-QZVPP values but at considerably lower cost.
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The MAD for the B3LYP columnx is a good confirmation of our suspicion that the 

B3LYP functional is inadequate for calculating conformational energies of this type. A 

mean deviation of 0.76 kcal/mol is a disastrous result for conformational energies of 

cyclohexanes and heterocyclic compounds. The B97-1 functional (MAD=0.63 kcal/mol) 

is a small improvement over B3LYP but neither functional can be considered 

trustworthy of predicting accurate conformational energy differences, based on these 

results. An almost 1 kcal/mol maximum deviation for the B3LYP functional is a 

completely unacceptable error.

Applying the empirical dispersion correction to the B3LYP functional improves the 

performance significantly. The MAD drops from 0.76 kcal/mol to 0.29 kcal/mol.

The performance of the more expensive B2PLYP functional is a definite improvement 

over the B3LYP and B97-1 functionals, the MAD of B2PLYP is 0.38 kcal/mol and 

notable is also the quite low maximum deviation of 0.46 kcal/mol (which is actually 

smaller than the MAD of B3LYP and B97-1.

When applying the dispersion correction to the B2PLYP functional the MAD drops 

considerably like before and the MAD is now only 0.16 kcal/mol and a maximum 

deviation of only -0.24 kcal/mol. This is a very positive result and shows a clear 

difference in performance of density functionals.

The M06-2X functional interestingly achieves almost the exact same result as the 

B2PLYP-D method. This is important also due to the less expensive nature of M06-2X 

compared to B2PLYP-D.

This density functional comparison of conformational energies has yielded a clear result 

that the M06-2X and the B2PLYP-D functionals are much more capable functionals of 

reproducing complete basis set estimated CCSD(T) conformational energy differences, 

at least for the axial/equatorial energy differences of six-membered systems, than 

popular functionals like B3LYP and B97-1.

Both methods have in common that they were designed to take into account a better 

description of nonbonding interactions, medium- or longrange.

x We note that our B3LYP results are different from Tschumper’s B3LYP values because the latter values were calculated on B3LYP 
optimized geometries. The difference is as large as 0.3 kcal/mol in some cases. We opted for using the same (MP2) geometries in all 
our calculations.
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It thus seems highly likely that this is the main reason for the bad performance of other 

DFT functionals for these conformational systems and perhaps relative energies of 

organic molecules in general.

Woodcock et al. recently studied computationally another tetrahydropyran, the 2-ethoxy 

substituted one  [91].  This ring is a model carbohydrate system that mimics the glycosyl 

linkage in disaccharides and glycolipids and the authors wanted to evaluate several 

theoretical methods for calculating the axial/equatorial energy difference. Using a 

similar methodology as Grimme, they calculated the CBS extrapolated CCSD(T) energy 

difference of 2-ethoxytetrahydropyran. Comparison with the experimental results 

involved taking into account thermal and solvation effects, that will not be discussed 

here, but again a dramatic difference between B3LYP calculations and the CBS 

extrapolated CCSD(T) energy difference is notable, deviations of 0.84 and 1.03 kcal/mol 

from the CCSD(T) value, using basis sets 6-311+G(d,p) and cc-pVTZ, respectively. The 

B3LYP calculations are in fact no better than HF calculations.

As a further confirmation of the ability of the functionals B2PLYP-D and M06-2X to 

reproduce CCSD(T) results, we calculated the energy difference of 2-ethoxy 

tetrahydropyran in the same way as before (table 9). The CCSD(T) calculations were 

done on MP2/cc-pVTZ geometries that we recalculated as well.

Again, we have a very positive result for the M06-2X and B2PLYP-D functionals as 

they are very close to the CCSD(T)/CBS value. The B3LYP-D functional performs also 

very well, showing that the classical dispersion correction can improve B3LYP results 

Table 9. The axial/equatorial electronic energy difference of 2-ethoxy-tetrahydropyran 
with different density functionals on MP2/cc-pVTZ geometries. Values in kcal/mol.

CCSD(T)/CBS
M06-2X/pc-3

B2PLYP-D/def2-TZVPP
B2PLYP/def2-TZVPP
B3LYP-D/def2-TZVPP

B3LYP/def2-TZVPP
a The B3LYP and B2PLYP values might not be completely converged at the def2-
TZVPP level (but probably within 0.1 kcal/mol). There were problems with the SCF 
convergence using the def2-QZVPP basis set.

ΔE
1.42
1.30
1.28
0.78
1.25
0.30

Deviation
-

0.12
0.14
0.64
0.17
1.12
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significantly. The M06-2X and B2PLYP-D functionals thus seem quite capable methods 

of accurate conformational energies of carbohydrate model systems.

One might also speculate about the nature of the stabilization of the axial and equatorial 

conformers in six-membered rings from all these results. It is very noteworthy in table 8 

that B97-1 and B3LYP functionals, always (except 1-fluorosilacyclohexane) 

overestimate the stabilization of the equatorial conformer (or underestimate the 

stabilization of the axial conformer).

Applying a dispersion correction or using functionals that take into account medium-

range correlation (like M06-2X and B2PLYP-D) functionals then this effect disappears. 

Thus it seems likely that nonbonding interactions that generally seems to stabilize the 

axial conformer to some extent and that B3LYP and B97-1 account badly for, play a key 

role in the conformational equilibrium of these monosubstituted six-membered rings. 

This will be discussed further in chapter 2.

We have not discussed the MP2/CBS column in table 8 so far. The CCSD(T) 

calculations of Tschumper et al. are based on these extrapolated MP2 energies with an 

applied low-basis CCSD(T) correction. It turns out that MP2 actually performs very 

well, with a slightly less MAD than M06-2X and B2PLYP-D, meaning the CCSD(T) 

calculation acts only as a slight correction of higher order correlation in Tschumper’s 

composite method. Jensen recently recommended MP2/aug-cc-pVTZ as a method/basis 

combination capable of predicting accurate amino acid conformational energies based on 

results that compared MP2 and B3LYP to CCSD(T) conformational energies  [42]. It 

thus seems that MP2 conformational energies can be quite reliable when carried out with 

large enough basis sets (low-basis MP2 calculations have previously yielded erroneous 

energy differences for carbohydrate model systems  [92], [93]).

Large basis set MP2 calculations are sometimes required to achieve complete 

convergence, often up to the 5Z level, as well as extrapolation to the basis set limit for 

optimal results. This is especially notable for the 1-silacyclohexane calculations. 

Meanwhile, the M06-2X calculations are completely converged at the pc-3 level, the 

pc-4 level numbers most likely only being numerical fluctuation (less than 0.01 kcal/

mol). Comparison of the basis set convergence of M06-2X and MP2 is shown in 



41

42

43

appendix 1.2. This smaller basis set dependence is one of the great benefits of density 

functional theory.

To summarize, we have done a comparison of several density functionals and found that 

two recent functionals described in the literature predict very accurate conformational 

energies compared to CCSD(T) results and represent a clear improvement over B3LYP 

results. These functionals have been thoroughly tested elsewhere and found to be 

generally accurate for thermochemistry and they are perhaps the most accurate density 

functionals for main-group chemistry right now. The MP2 method seems also to be very 

reliable for conformational energies. We note that MP2 and B2PLYP-D both are more 

basis set dependent than M06-2X (MP2 and B2PLYP include a perturbation step) and 

both methods scale as N5 compared to M06-2X that scales as N4.

It appears, based on the results presented in table 8, that we might expect errors around 

0.15 kcal/mol in ΔE values with these methods. This is much more acceptable than an 

error of 0.75 kcal/mol that might be expected by the B3LYP method.

1.5 Obtaining accurate molecular geometries

The previous section dealt with obtaining accurate single-point electronic energies on 

previously calculated molecular geometries. Doing accurate single-point calculations is 

often much more important than getting accurate structures as the electronic energy is 

more basis set dependent than bond lengths and angles  [58], [59].

Nevertheless, we felt it was important to explore how best to calculate accurate 

molecular geometries for our systems and see how differently calculated structures affect 

the single-point energies. Usually MP2 or DFT (B3LYP being most popular) is used for 

structure optimization. Just like for energies, CCSD(T) calculations are more accurate 

but are usually only possible for very simple molecules. 

We thus evaluated the basis set dependence of our molecular geometries, how differently 

calculated geometries affect single-point energies and compared our calculated 

geometries to recent gas-phase electron diffraction (GED) results of 1-silacyclohexanes.
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It is important to begin with, discussing the difference between the geometries obtained 

from quantum calculations and those obtained from GED experiments.

Optimizing a molecular geometry with quantum calculations involves numerous single-

point energy calculations, and is thus always done with an economic basis set and 

method. The gradient, the differentiated energy with respect to atomic coordinates, is 

calculated in each step and the molecular geometry changed in order to minimize the 

gradient until one reaches a minimum that is defined by boundary conditions. A good 

starting geometry is important, both to ensure that the optimization finds the correct 

minimum on the potential energy surface and it is also beneficial to reduce the number 

of optimization steps.

A calculated geometry, obtained by minimizing the gradient of the electronic energy is, 

however, a theoretical (or even fictional) geometry. It is obtained at 0 K (i.e. no external 

thermal energy) and ‘assumes’ that the nuclei don’t possess any vibrational motion. This 

is called the equilibrium geometry (re).

The experimental geometry from the GED experiment (ra), however, is usually obtained 

at room temperature and the diffraction pattern obtained in the experiment is the 

statistical average of all vibrational conformers in the gas phase.

The experimental geometry is thus often refined using harmonic force constants from 

calculations (e.g. quantum calculations) so that it can be related to the re geometry. There 

are several problems associated with this, however, as vibrational motion is for example 

not always harmonic. New and better refinement methods in GED analysis have been 

developed in the last years and this continues to be an important field of study  [94].

We carried out a set of calculations for comparison with experimental geometries, 

including MP2 with different basis sets, and a few density functionals and basis set 

combinations, some that are quite popular and are for example used for the geometry 

optimization step in the composite method G3B3 (B3LYP/6-31G(d)).

While a thorough analysis should involve comparing many different molecules we only 

calculated two molecules, the axial conformer of 1-silyl-1-silacyclohexane and 1-

fluoro-1-silacyclohexane. We were mainly interested in seeing the basis set dependence 
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and if there are large differences between different functionals and MP2 theory. We also 

included calculations from the semi-empirical methods PM3 and the very recently 

developed method PM6 (includes new and updated parameters for over 70 elements)  

[95].

We then calculated the mean absolute deviation from the GED geometry for bond 

lenghts and angles separately.

Our intent was to judge the quality of the equilibrium geometries by comparing with the 

GED geometry by assuming that an accurate equilibrium geometry would have lower 

MAD from the GED geometry than a less accurate one, bearing in mind, however, that 

the geometries are by definition different.

Vibrational averaging of the gas-phase geometry should mainly involve larger angles 

than the calculated angles, as the low-frequency motions of molecules usually are 

bending or torsional modes rather than stretching modes. Bond lengths should thus be 

less affected.

The results are given in table 10.

1.5.1 Bond lengths

Increasing the basis set from a double-zeta basis to triple-zeta nearly always lowers the 

MAD. This is consistent with reviews that have pointed out that a triple-zeta basis set 

nearly always give better geometries. Interestingly, the MAD for both the 1-fluoro and 

the 1-silyl molecule increases somewhat between B3LYP/6-31G(d) and B3LYP/

6-311+G(d,p). When using both the pc-1 and pc-2 basis set instead (for 1-fluoro) the 

MAD gets lower and is completely converged at the pc-3 level. Thus, despite B3LYP/

6-311+G(d,p) being a larger basis set (triple-zeta) than pc-1 (double-zeta) the pc-1 basis 

set appears to be better balanced (yielding a lower MAD); it is possible that the diffuse 

functions are responsible for this effect. A clear trend toward basis set convergence of 

the geometry is also observed for the B97-1 functional calculations from pc-1 to pc-3 on 

1-silyl-1-silacyclohexane.

Increasing from a triple-zeta basis set (pc-2) to a quadruple-zeta basis set (pc-3) appears 

to generally have a negligible effect on the MAD. It appears that doing geometry 
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optimization with a quadruple-zeta basis set has very little effect on molecular 

geometries. This is rather fortunate since such optimizations are very expensive. This 

result was expected and has been pointed out before  [50], [58], [59].

An interesting comparison is shown for the semi-empirical methods PM3 and the very 

recently released PM6 method. Not unexpectedly, the methods perform generally worse 

than the DFT and MP2 methods. For the 1-fluoro molecule the PM6 performs better than 

PM3 (and actually yields a rather low MAD) but then fails badly for the 1-silyl molecule 

and especially for the Si-Si bond length. It appears that the silicon parameters are worse 

in PM6 and neither method can be considered reliable for geometry optimization of our 

molecules.

While it seems that B3LYP and B97-1 give low MAD with appropriate basis sets (pc-2 

seems a good choice) the best performing functionals for both molecules, however, are 

interestingly the same functionals that gave the lowest MAD for energies in chapter 

1.4.4, B2PLYP-D/def2-TZVPP and M06-2X. MP2 methods performs also very well.

In the paper describing the GED geometry of 1-fluorosilacyclohexane  [96], 

MP2/6-31G(d,p) and B3LYP/6-31G(d,p) calculated geometries were compared to the 

experimental geometry and it was found that both methods overestimate the Si-C and Si-

F bond lengths. We note that B2PLYP-D and M06-2X methods do not overestimate 

these crucial parameters as much, in combination with triple-zeta basis sets.

Another very positive result was the excellent result of the M06-L functional, with and 

without density fitting, that gave a very good MAD, similar to B3LYP and B97-1 

functional. Local functionals (no HF exchange), like M06-L, always scale more 

favorably (N3) than hybrid functionals (N4) and one has the possibility to use density 

fitting to speed-up calculations even more without significant loss of accuracy  [97]. 

Using this functional with density fitting for initial optimization or for doing geometry 

optimization on large molecules seems promising.
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1.5.2 Angles

The two semi-empirical methods gave notably worse angles than all other methods with 

deviations of 1.5 - 2.3 °.

While we didn’t expect comparing angles would be of much use, the methods that 

predict lowest MAD’s for bond lengths generally seem to predict the lowest angle 

deviations as well. We note that both bond lengths and bond angles are generally worse 

predicted for the 1-silyl-1-silacyclohexane. The MAD of angles do not show normal 

convergence with respect to increasing basis set, however, as seen if one inspects the 

B3LYP/pc-n and B97-1/pc-n series. Angles are thus probably bad indicators of 

accurately calculated geometries of these kind of molecules.

1.5.3 Effect of geometries on the single-point energy

We also wanted to see what effect different geometries have on the single-point 

electronic energy differences.

We thus did single-point energy M06-2X/pc-3 calculations on a few differently 

calculated geometries of 1-silyl-1-silacyclohexane to see if there was some variation. 

This is shown in table 11.

Interestingly, there is a visible trend in the M06-2X/pc-3 calculated ΔE values on 

different geometries. Geometries calculated with M06-2X/pc-2 and B2PLYP-D/def2-

TZVPP, that showed the lowest MAD’s from the GED geometries and predicted more 

axial stabilization (hence lower ΔE values) than other functionals in chapter 1.4.4, are 

here responsible for further lowering of the ΔE values while the B3LYP geometries with 

Table 11. M06-2X/pc-3 single-point energy calculations on 
different geometries of 1-silyl-1-silacyclohexane. ΔE values 
(Eax -Eeq) in kcal/mol.

Geometry:
B3LYP/6-31G(d)

B3LYP/6-311+G(d,p)
B3LYP/pc-1
B3LYP/pc-2

B3LYP/aug-cc-pVTZ
B2PLYP-D/def2-TZVPP

MP2/cc-pVTZ
M06-2X/pc-2

ΔE
+0.039
-0.003
+0.033
+0.031
+0.035
-0.077
-0.129
-0.138
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different basis sets all yield very similar ΔE values. This much variation is unexpected 

and suggests that functionals such as M06-2X and B2PLYP-D that describe medium-

range correlation better than other functionals and hence yield better energies, can also 

have significant effects on molecular structure. This effect is here ~0.15 kcal/mol if one 

compares the M06-2X/pc-2 geometry and B3LYP/6-31G(d) geometry entries in table 11, 

which is significant if one keeps in mind the low-magnitude conformational energies we 

are interested in.

The results reported in this section are based on tests done on just 2 molecules. This is, 

however, strong indication that geometry optimization of six-membered rings should be 

done on a well-balanced triple-zeta basis set (like pc-2) with MP2 or a density functional 

that is not plagued by the deficiencies mentioned in chapter 1.4.2. This should be 

explored further.

1.6 Obtaining corrections to enthalpy and free energy

Calculating single-point electronic energy differences on optimized geometries gives the 

electronic energy difference that is hopefully already quite comparable to the energy 

difference between conformers that can be obtained experimentally.

However, the electronic energy difference is not zero-point energy corrected and it 

doesn’t include enthalpic and entropic effects. The ΔE is thus not the same energy 

difference as the enthalpy difference (ΔH) or the free energy difference (ΔG or A) that 

are the thermodynamic quantitites one usually obtains from experiments.

Traditionally, a frequency calculation is carried out on the optimized geometry (where 

the first derivatives are zero) where one obtains the harmonic vibrational frequencies of 

the molecule in question. This involves calculating the second derivatives of energy with 

respect to atom coordinates. The vibrational frequencies can then be used to calculate the 

thermodynamic corrections to the electronic energy and hence get calculated zero-point 

energy corrected energies, enthalpies and free energies.
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conventions are used routinely, and one must simply be careful to ensure consistency – the
entropy is independent of the choice of convention, and the internal energy varies by the
ZPVE as a function of which convention is chosen.

Here, we will adopt the convention of including the ZPVE in the zero of energy
[Eq. (10.1)], so that each zeroth vibrational level has an energy of zero. In that case, any
individual mode’s partition function can be written as

q
QMHO
vib (T ) =

∞∑

k=0

e−khω/kBT (10.26)

The sum in Eq. (10.26) is well known as a convergent geometric series, so that we may
write

q
QMHO
vib (T ) = 1

1 − e−hω/kBT
(10.27)

This is a serendipitous result, insofar as the energy level spacing for most molecular vibra-
tions is sufficiently large that significant errors would be introduced by replacing the sum
by the corresponding indefinite integral as we did successfully for translation and rotation
(such a replacement actually would amount to assuming a classical harmonic oscillator,
for which qvib = kBT /hω; by expanding the exponential in Eq. (10.27) as its corresponding
power series, one can see that the classical and quantum partition functions agree only
when kBT # hω).

Using Eq. (10.27) for each mode, the full vibrational partition function of Eq. (10.25) can
be expressed as

qvib(T ) =
3N−6∏

i=1

(
1

1 − e−hωi /kBT

)
(10.28)

where " implies a product series (the multiplicative analogy of a sum), and the upper limit
would be 3N − 5 for a linear molecule. Evaluation of the vibrational components of the
internal energy and entropy using the partition function of Eq. (10.28) provides

Uvib = R

3N−6∑

i=1

hωi

kB(ehωi /kBT − 1)
(10.29)

and

Svib = R

3N−6∑

i=1

[
hωi

kBT (ehωi /kBT − 1)
− ln(1 − e−hωi /kBT )

]
(10.30)

Note that Eqs. (10.29) and (10.30) take the vibrational frequencies as independent vari-
ables, and as such cannot be calculated ab initio without first optimizing a structure at some
level of theory and then computing the second derivatives in order to obtain the frequencies
within the harmonic oscillator approximation. (Of course, one could avoid the harmonic
oscillator approximation (see, for example, Barone 2004), but the necessary calculations and
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tions is sufficiently large that significant errors would be introduced by replacing the sum
by the corresponding indefinite integral as we did successfully for translation and rotation
(such a replacement actually would amount to assuming a classical harmonic oscillator,
for which qvib = kBT /hω; by expanding the exponential in Eq. (10.27) as its corresponding
power series, one can see that the classical and quantum partition functions agree only
when kBT # hω).

Using Eq. (10.27) for each mode, the full vibrational partition function of Eq. (10.25) can
be expressed as

qvib(T ) =
3N−6∏

i=1

(
1

1 − e−hωi /kBT

)
(10.28)

where " implies a product series (the multiplicative analogy of a sum), and the upper limit
would be 3N − 5 for a linear molecule. Evaluation of the vibrational components of the
internal energy and entropy using the partition function of Eq. (10.28) provides

Uvib = R

3N−6∑

i=1

hωi

kB(ehωi /kBT − 1)
(10.29)

and

Svib = R

3N−6∑

i=1

[
hωi

kBT (ehωi /kBT − 1)
− ln(1 − e−hωi /kBT )

]
(10.30)

Note that Eqs. (10.29) and (10.30) take the vibrational frequencies as independent vari-
ables, and as such cannot be calculated ab initio without first optimizing a structure at some
level of theory and then computing the second derivatives in order to obtain the frequencies
within the harmonic oscillator approximation. (Of course, one could avoid the harmonic
oscillator approximation (see, for example, Barone 2004), but the necessary calculations and

Zero-point (vibrational) energy is an important correction as it is the vibrational energy 

of a molecule at 0 K. 

Ezpe = 1/2 Σωi , where ωi is the ith normal-mode vibrational frequency. 

The thermal correction to energy, Ecorr
, includes the zero-point energy and also the 

energy associated with all vibrations, rotations and translations of the system at a 

specific temperature: Ecorr = Ezpe+ Evib + Erot + Etrans .

The thermal correction to enthalpy, Hcorr,  includes the thermal correction to energy and 

also the RT term, where the assumption of an ideal gas has been made: 

Hcorr = Ecorr + RT.

The thermal correction to free energy is the thermal correction and an entropy term, 

-TStot , where Stot is the total entropy associated with all vibrational, rotational and 

translational motion: Gcorr = Hcorr -TStot .

The calculated vibrational frequencies enter into most of the above terms and are thus 

the main ingredients in the thermodynamical corrections to the electronic energy. 

Calculations of vibrational frequencies involve, however, the use of a harmonic potential 

to solve the Schrödinger equation for vibrations of molecules. The harmonic 

approximiation is a simple approximation, where an exact solution can be given and 

other potentials are too complicated too be solved easily.

The question, however, arises, how good the harmonic approximation is?

The harmonic approximation is actually a very good approximation for many systems at 

normal temperatures. Typically, Hartree-Fock calculations systematically overestimate 

frequencies by around 10 % due to anharmonicity, but this can be corrected for by 

scaling factors. 

However, problems arise when a system has several low-frequency motions. Low-

frequency motions would contribute very little to the zero-point vibrational energy but 

unfortunately, if one examines the vibrational entropy term closely (equation 1-11),

                                         (1-11)
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the molar internal energy, since in Eq. (10.29), both the numerator and the denominator of
the term associated with the vanishing frequency go to zero. However, if we examine this
behavior using a power series expansion for the exponential, we see that

lim
ω→0

[
R

hω

kB(ehω/kBT − 1)

]
= lim

ω→0






Rhω

kB

[

1 + hω

kBT
+ 1

2!

(
hω

kBT

)2

+ · · · − 1

]






= lim
ω→0




Rhω

kB

(
hω

kBT

)





= RT (10.44)

Thus, each vanishing frequency contributes a factor of RT to the molar internal energy (and
thus the enthalpy).

Equation (10.44) can also be used to indicate that the first term in brackets on the r.h.s. of
Eq. (10.30) goes to 1 as the frequency vanishes. However, if we examine the second term
in brackets on the r.h.s. of Eq. (10.30), we discover

lim
ω→0

[−R ln(1 − e−hωi /kBT )] = lim
ω→0

{

−R ln

[

1 − 1 + hω

kBT
− 1

2!

(
hω

kBT

)2

+ · · ·
]}

= lim
ω→0

[
−R ln

(
hω

kBT

)]

= ∞ (10.45)

which is certainly not a very pleasant result, since free energies will become infinitely
negative with infinitely positive entropies. A careful analysis of Eq. (10.45) also indicates
that small errors in very small non-zero frequencies can lead to very large errors in entropies.
Unfortunately, it is precisely for low-frequency motions that we typically expect the harmonic
oscillator approximation to be most poor. Thus, when a molecule is characterized by one
or more very low-frequency vibrations, it is usually best not to discuss the molecular free
energy, but instead restrict oneself to enthalpy or internal energy.

Note that there is nothing ‘wrong’ with Eq. (10.45). The entropy of a quantum mechanical
harmonic oscillator really does go to infinity as the frequency goes to zero. What is wrong
is that one usually should not apply the harmonic oscillator approximation to describe those
modes exhibiting the smallest frequencies. More typically than not, such modes are torsions
about single bonds characterized by very small or vanishing barriers. Such situations are
known as hindered and free rotors, respectively.

More accurately, ‘free rotor’ is used to imply any torsion having a barrier substantially
below kBT . In such a situation, the contribution of the free rotor to the molar internal

= !
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= !

it can be shown that as frequencies go to zero , the vibrational entropy goes to infinity 

(equation 1-12)  [63].

      (1-12)

 

This means that small errors in the low-frequency modes modes can lead to large errors 

in entropies. Unfortunately, errors in the low-frequency modes can be expected due to 

the common anharmonicity of such modes. Low-frequency modes are often torsions 

about single bonds with small barriers. These modes are often considered as free or 

hindered rotors.

The systems we are interested in unfortunately include a fair share of low-frequency 

motions (typically classified as < 625 cm-1 xi), 1-silyl-1-silacyclohexane including 12 

low-frequency vibrations. While we make no attempt here of classifying these vibrations 

(some of them might be described as ring-puckering or ring-breathing modes) it is worth 

noting that these low-frequency modes might not be best calculated with the harmonic 

approximation and could thus be a significant source of error in the calculation of free 

energies.

The influence of low-frequency modes on free energy corrections in conformational 

analysis has been studied by De Almeida et al. for several molecules including 1,2-

dihaloethanes  [98], cyclodecane  [99], cyclononane [100], cyclooctane  [101] and 

cycloheptane [102]. For cycloheptane and cyclooctane the authors found that the free 

energy correction was very sensitive to low-frequency modes and that excluding the 

lowest modes from the free energy correction gave much more satisfactory results 

compared to experiment. This procedure was not found to work well for 1,2-

difluoroethane and cyclononane, however.

Several different ways exist to treat specially low-frequency vibrations that can be 

classified as free rotors or hindered rotors and a black-box approach now exists in the 

xi http://www.gaussian.com/g_whitepap/thermo.htm
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Gaussian program for the treatment of hindered rotors in the frequency calculation  

[103]. These procedures are, however, not intended for ring systems where coupling of 

modes occur.

Also implemented in Gaussian  [28] is a second-order perturbation approach to go 

beyond the harmonic approximation by perturbation treatment of the vibrational 

frequencies  [104]. Such methods are extremely expensive however and probably not 

suitable for low-frequency modes.

Recently, path integral Monte Carlo (PIMC) methods have begun to make an appearance 

that make it possible to go beyond the harmonic approximation and include all rotation-

vibration interactions and anharmonicities  [105], [106], [107], [108].

Using the disubstituted 1-fluoro-1-methyl-1-silacyclohexane (another molecule that we 

have used for benchmarking) we calculated harmonic frequencies with several methods, 

table 12. Frequency calculations are quite expensive and bigger basis sets than triple-

zeta are out of reach.

As can be seen from table 12, some fluctuation is witnessed between methods. The free 

energy correction is especially sensitive. There is a notable difference between B3LYP/

6-31G(d) with the default optimization criteria and default grid and B3LYP/6-31G(d) 

Table 12. Relative corrections to enthalpy and free energy calculated by 
serveral different methods. The conformational equilibrium is with respect 
to methyl substituent. Values are in kcal/mol.
Method/basis

B3LYP/6-31G(d)a

B3LYP/6-31G(d)b

B3LYP/6-311+G(d,p)a

B3LYP/6-311+G(d,p)b

B3LYP/aug-cc-pVDZb

B3LYP/aug-cc-pVTZb

MP2/6-311+G(d,p)b

B3LYP/pc-2c

B97-1/aug-cc-pVTZc,d

B97-1/pc-2c,d

a Calculated in Gaussian 03  [28] with default optimization criteria and 
grid.
b Calculated in Gaussian 03  [28] with tight optimization criteria and 
ultrafine grid (does not apply to MP2).
c Calculated in NWChem 5.1 with tight optimization criteria and xfine grid.
d Numerical frequencies calculated.

ΔHcorr

0.0571
0.0194
0.0483
0.0307
0.0075
0.0176
0.0220
0.0260
0.0496
0.0307

ΔGcorr

0.2046
0.0345
0.0621
0.0508
0.0119
0.0426
0.0828
0.0552
0.1908
0.1884
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with tight optimization criteria and a larger grid. The B3LYP calculations with triple-zeta 

basis sets are, however, quite consistent and the MP2 value is not far off. The B97-1 

calculations with triple-zeta basis sets aug-cc-pVTZ and pc-2 are consistent at ~0.19 

kcal/mol but at odds with the B3LYP calculations where the correction is notably 

smaller. The enthalpic correction is of small magnitude and with generally smaller 

variation.

Radom et al.  [109] recently did an evaluation of methods for predicting harmonic 

frequencies for several molecules and suggested scale factors for each method. B3LYP is 

generally recommended for predicting low-frequency vibrations (as well as possible 

within the harmonic approximation) and enthalpies and entropies. The B97-1 functional 

performed better overall, but only marginally.

We note that scale factors are of little use to us, scaling of the frequencies only results in 

corrections that are less than 0.001 kcal/mol.

With all this in mind, we decided that calculating harmonic frequencies was best done 

with B3LYP/pc-2, with tight optimization criteria and a large integration grid to be on 

the safe side. We chose B3LYP instead of B97-1, due to analytical frequencies being 

only available for B3LYP in NWChem, which decreases calculation time considerably, 

compared to calculating frequencies numerically (unfortunately we have no way of 

knowing whether the free energy correction calculated by B3LYP is more correct than 

B97-1). MP2 frequencies are also very expensive.

The pc-2 basis set was chosen due to it being a well-balanced basis set (as we have 

shown for energies and geometries), and Jensen has shown that it is closer to the basis 

set limit for harmonic frequencies than similar triple-zeta split-valence and correlation-

consistent basis sets  [50].

We do note, however, that a special treatment of low-frequency vibrations has not been 

been carried out in these calculations and we are relying on cancellation of errors to 

some extent.
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1.7 Modelling a low-temperature conformational equilibrium in solution

Some of our experimental energy differences have been carried out in solution. The 

Dynamic NMR experiments that have been carried out in our group, have been carried 

out at 100-150 K temperature, usually in a freon mixture, see results in table 3. When 

comparing free energies from the GED experiment and free energies from the DNMR 

experiment there are significant differences in the free energies, so much that in the gas 

phase experiment the axial conformer of the CF3-1-silacyclohexane is in slight excess (A 

= -0.19 kcal/mol) while in the low-temperature freon solution NMR experiment, the 

equatorial conformer is in excess (A = +0.4 kcal/mol).

Several other 1-silacyclohexanes have now been measured by GED and DNMR and a 

similar effect takes place, the DNMR experiment generally predicts a more stabilized 

equatorial conformer compared to GED results.

Our initial suspicion regarding these different results, were the different experimental 

conditions. The DNMR experiments do take place in solution, most in polar freon 

solvents, thus making possible several intermolecular effects that might stabilize the 

equatorial conformer more than the axial conformer.

Attempts to correct for this effect with a continuum solvation model (IPCM/PCM  [110], 

[111], [112],) have been done previously in our group  [22], [96], where the solvent is 

modelled as a dielectric medium similar to the experimental solvents and the solvation 

free energy added to the gas phase electronic energy. 

For 1-trifluoromethyl-1-silacyclohexane  [22], a shift from a negative A value to a 

positive value that agrees very well with the solvated NMR experiment, was obtained. 

Since then, calculation of solvation free energies for other 1-silacyclohexanes have been 

carried out, in order to explain the difference between the GED and DNMR results but 

with mixed results (table 13).
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Recent results from Raman analysis of the 1-silacyclohexanes, where conformational 

enthalpy differences were obtained in different solvents, sheds new light on the problem 

(table 14)  [23]. According to the Raman results, the conformational enthalpy differences 

don’t seem to be very dependent on the solvent. Very similar values are obtained 

whether the measurements are carried out in a nonpolar medium (n-pentane or n-

heptane), a polar medium (dichloromethane or THF) or as a neat liquid.

Table 13. A values from DNMR experiments compared with calculated A values 
with solvent corrections (IPCM).

CH3

CF3

F

F-Mec

a Low-temperature NMR measurements were done in a 1:1:3 solvent mixture of 
CD2Cl2, CHFCl2, and CHF2Cl. 
b MP2/aug-cc-pVTZ//B3LYP/6-311+G(d,p) energies calculated with solvent 
effects for both a CH2Cl2 and a CHCl3 solution with the IPCM/PCM solvation 
model (B3LYP/6-311+G(d,p)) as implemented in Gaussian 03  [28].
c Equilibrium with respect to methyl substituent.

DNMR ( A / mol % axial)a

0.23 (2) / 26(1) % 
T = 110 K

0.4 (1) / 17(2) % 
T = 113 K

-0.13 (2) / 64(2) % 
T = 112 K

0.26(7) / 25(5) %
T = 126 K

QC (A with solvent effectsb)

0.08 to 0.09

0.37 to 0.50

-0.61 to -0.53

0.72

Table 14. ∆H values (Hax - Heq) for several monosubstituted 1- silacyclohexanes obtained from Raman experiments in different 
solvation phases  [23]. All values in kcal/mol.

F

Cl

Br 

SiH3 

OMe 

N(Me)2

Vibrational 
mode
νsSiC2

νsSiCl

νsSiBr

νasSiSi

νsSiC2

νsSiC2

Method of 
deconvolution
Peak heights
Peak areas

Peak heights
Peak areas

Peak heights
Peak areas

Peak heights
Peak areas

Peak heights
Peak areas

Peak heights
Peak areas

Neat liquid

   (∆H)
-0.25
-0.26
-0.48
-0.69
-0.69
-0.57
-0.19
-0.29
-0.08
-0.15
0.27
0.30

Pentane 
solution 

(∆H)
-0.21
-0.24

-
-
-
-
-
-
-
-
-
-

Heptane 
solution 

(∆H)
-
-

-0.35
-0.46
-0.33
-0.47
-0.22
-0.09
-0.06
-0.11
0.31
0.27

CH2Cl2 
solution 

(∆H)
-0.25
-0.30

-
-
-
-
-
-
-
-
-
-

THF  
solution 

(∆H)
-
-

-0.58
-0.62
-0.31
-0.89
-0.19
-0.10
-0.06
-0.10
0.29
0.28
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Based on these results, it thus seems that solvent effects are relatively non-important for 

conformational enthalpy differences. This suggests that a solvation entropy effect of 

some magnitude takes place in the low-temperature freon-solution NMR experiment.

As most continuum solvation models are mainly based on modelling electrostatic 

effects, they only take into account a rough estimate of the solvation entropy  [113]. 

Furthermore, as we are modelling the solvated phase as being homogeneous (either 

CHCl3 or CH2Cl2) we might be missing crucial solvation entropy effects that might take 

place in the actual heterogeneous freon solution. It is also quite likely that before 

mentioned errors in entropies due to low-frequency modes play a role here as well.

A recent low-temperature NMR experiment of 1-silyl-1-silacyclohexane in our group, 

utilized SiD4 as the solvent, with good results. This might be a simpler system to model 

by solvation models, but solvation parameters unfortunately do not yet exist.

Recently, a solvation model, SM8 was introduced that claims high accuracy of 

calculated solvation free energies  [114]. It will be interesting to see how that model 

performs for our systems.

Since it appears that modelling the low-temperature solvent phase is very hard to carry 

out, the DNMR results for the 1-silacyclohexanes, while still very interesting, do not 

help in our understanding of which electronic or steric effects are responsible for the 

difference between cyclohexanes and silacyclohexanes as the environmental factors of 

the experiment are too complicated to account for.

It will nonetheless be very interesting in the future, as solvation modelling progresses, to 

see if the low-temperature NMR experiment can one day be successfully modelled.

1.8. Theory vs. experiment

We can now return to our main objective in this chapter that involved calculating 

conformational enthalpies and free energies for direct comparison with experiment. 

Table 15 contains the experimental results of table 3 with added quantum chemical 

calculations and additional recent data on disubstituted silacyclohexanes.
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Calculated values generally compare quite favorably. The largest disrepancies occur 

between calculated A values and A values from the GED experiments for CH3, and CF3/

CH3 cases. We note that these are cases where comparison of the Raman ΔH values and 

the GED A values suggests especially large entropic factors, Δ(-TStot), to contribute to 

the free energy difference. For the F/CH3 case, experiments also suggest a notable Δ(-

TStot) factor that the harmonic calculations do not account for. It is thus likely that the 

harmonic B3LYP/pc-2 calculations are a source of error here.

There are also slight differences in the ΔE values of B2PLYP-D and M06-2X  

(maximum 0.25 kcal/mol) and sometimes M06-2X performs better for one case while 

B2PLYP-D performs better for another.

Four recently synthesized molecules have only been analyzed by Raman spectroscopy. 

Results are shown in table 16 and compared to M06-2X and B2PLYP-D ΔH values.

Table 15. Experimental data of mono- and disubstituted 1-silacyclohexanes  [23] with added values from quantum chemical 

calculations. Values in kcal/mol.
Substituent(s)

CH3

CF3

F

SiH3

F and CH3
a

CF3 and CH3
a

a Conformational equilibrium defined with respect to methyl substituent.
b Electronic energies calculated on M06-2X/pc-2 geometries. Enthalpic and entropic corrections calculated at the B3LYP/pc-2 level. 
M06-2X energies calculated with pc-3 basis set. B2PLYP-D energies calculated with def2-aug-TZVPP basis set.
c Low temperature NMR measurements were performed in a 1:1:3 solvent mixture of CD2Cl2, CHFCl2, and CHF2Cl.  
d SiD4 was used as solvent for the low temperature measurements.

GED (A / mol % axial)
0.45(14) / 32 (7) %    

T = 298 K
-0.19(29) / 58 (12) %   

T = 293 K
-0.31(20) / 63 (8) %   

T = 293 K
-0.17(15) / 57(7) %   

T = 321 K

0.11(13) / 45(6) %

T = 282 K
-0.02(11) / 51(5)%

T = 262 K

DNMR ( A / mol % axial)
0.23 (2) / 26(1) % 

T = 110 Kc

0.4 (1) / 17(2) % 

T = 113 Kc

-0.13 (2) / 64(2) % 

T = 112 Kc

0.12 (3) / 45(3) % 

T = 100 Kd

0.26(7) / 25(5) %

T =126 Kc

not available yet

Raman (∆H)
0.15 (neat)  
0.15 (pentane)  
0.16 (CH2Cl2)   
-0.53 (neat)  
-0.51 (pentane)  
-0.62 (CH2Cl2)   
-0.25 (neat)   
-0.22 (pentane)   
-0.28 (CH2Cl2)   
-0.19 (neat)   
-0.22 (heptane)   
-0.19 (THF)   

0.50 (neat)
0.48 (hexane)
0.51 (THF)
0.73 (neat)

0.67 (hexane)
0.78 (THF)

QC(∆H)b

0.15 (M06-2X)
0.12 (B2PLYP-D)

-0.50 (M06-2X)
-0.71 (B2PLYP-D)

-0.18 (M06-2X)
-0.25 (B2PLYP-D)

-0.14 (M06-2X)
 0.11 (B2PLYP-D)

0.19 (M06-2X)
0.28 (B2PLYP-D)

0.49 (M06-2X)
0.70 (B2PLYP-D)

QC (A=-∆G)b

0.20 (M06-2X)
0.17 (B2PLYP-D)

-0.30 (M06-2X)
-0.51 (B2PLYP-D)

-0.16 (M06-2X)
-0.23 (B2PLYP-D)

-0.12 (M06-2X)
 0.12 (B2PLYP-D)

0.22 (M06-2X)
0.31 (B2PLYP-D)

0.29 (M06-2X)
0.50 (B2PLYP-D)
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In table 16 we note that there is some uncertainty present in the experimental values as 

there is a significant disrepancy between values obtained using peak height comparison 

and peak area comparison for the Cl and Br cases. In fact the Raman experiment alone is 

unable to determine which molecule has lower conformational ΔH value. Both 

calculation methods suggest 1-bromo-1-silacyclohexane to have lower ΔH.

The 1-silacyclohexanes represent very difficult cases for a quantitative comparison 

between theory and experiment, due to the very low-magnitude energy difference 

between conformers and errors associated with the experiments as well as the theoretical 

methods. The harmonic frequency calculations are probably a source of error, as are our 

calculated ΔE values with the M06-2X and B2PLYP-D functionals. We do think these 

calculations are improvements over similar calculations with the B3LYP functional, 

because as we showed in table 8, the B3LYP functional is subject to systematic errors 

that can become very high in magnitude for several cases.

B2PLYP-D and M06-2X, represent in our belief, the best density functionals for 

conformational analysis of this kind. MP2 can also be recommended.

Table 16.  Raman ΔH values (Hax-Heq), compared to calculated ΔH values of monosubstituted 1-
silacyclohexanes. All values in kcal/mol.

Substituent
Cl

Br

OMe

N(Me)2

a Enthalpic corrections at the B3LYP/pc-2 level.
b Electronic energies at M06-2X/pc-3//M06-2X/pc-2 level.
c Electronic energies at B2PLYP-D/def2-aug-TZVPP//M06-2X/pc-2 level.
d Electronic energies at M06-2X/def2-QZVPP//M06-2X/def2-TZVPP level. pc-n basis sets don’t include 
third-row elements.

Peak heights
Peak areas
Peak heights
Peak areas
Peak heights
Peak areas
Peak heights
Peak areas

Raman (ΔH)
-0.48
-0.69
-0.69
-0.57
-0.08
-0.15
+0.27
+0.30

M06-2X (ΔH)a,b

-0.67

-0.78d

-0.26

-0.03

B2PLYP-D (ΔH)a,b

-0.51

-0.60

-0.31

-0.28
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Chapter 2 – Silicon substitution effects on the conformational properties of the 

cyclohexane ring: From cyclohexane to cyclohexasilane

2.1 Introduction

Chapter 1 focused on calculating accurate conformational free energy and enthalpy 

differences for direct comparison with experiment. We argued that accurate calculations 

of the electronic energy difference can be done by recently developed density 

functionals that predict electronic energy differences that are very close to the CBS 

estimated CCSD(T) values. The electronic energy difference is the main factor behind 

the conformational equilibrium of the cyclohexanes and tetrahydropyrans as the 

enthalpic and entropic effects are only small shifts from the ΔE values. Similarly, for the 

1-silacyclohexanes the electronic energy difference is the reason for the conformational 

equilibrium. The fact that accounting for enthalpic and entropic effects are more 

important for them is only because the ΔE values are so near zero.

Looking at the bigger picture, getting very accurate conformational energies that agree 

perfectly with experiment, is perhaps not the most important objective of our 

silacyclohexane investigation. More important is to describe and try to understand the 

dramatic ΔE difference that occurs when a carbon atom is replaced with silicon in 

monosubstituted cyclohexanes and how ΔE changes with different substituents.

We wanted to investigate systematically this phenomenon for more silicon-containing 

heterocycles, by purely computational methods, now that our computational 

investigation in chapter 1 suggests that DFT can be a tool to obtain reliable 

conformational energies. The ultimate goal is to identify the major factor that is 

responsible for the different conformational properties of silacyclohexanes. Instead of 

calculating free energies and enthalpies, the focus in this chapter is purely on electronic 

energies (zero-point energy exclusive) as experimental data for the compounds is not 

available for comparison anyway. Should experimental data become available for some 

of the molecules in this chapter, our ΔE values can easily be related to ΔH and A values 

by independent frequency calculations.

The conformational properties of many heterocycles have been investigated and a lot of 

models been proposed for differing conformational properties, while silacyclohexanes 
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have not been subject to many such experimental or theoretical investigations outside 

our group as is evident in a recent review by Kleinpeter  [10].

The concept of stereoelectronic effects has become an important model in the 

conformational analysis of cyclohexanes, heterocycles and similar molecules, as an 

alternative to the steric repulsion model for explaining conformational behaviour. The 

anomeric effect in carbohydrates is often explained by hyperconjugative interactions 

between lonepairs and antibonding orbitals  [7], [10]. 

We will attempt to relate some of this knowledge to the conformational properties of 

silacyclohexanes.

2.2 Trends in ΔE values of silacyclohexane families

2.2.1 Choosing families and substitutents and setting up the calculations

We have mainly been concerned with the monosilacyclohexane family until now, where 

the substituent is bonded to the silicon. But what about other silacyclohexane families? 

Does silicon in the 1-position cause an unique effect, or does silicon have similar effects 

in other positions? What happens if one adds 2 or 3 silicon atoms? How does an Si6H11X 

ring compare to a C6H11X ring?

The polysilacyclohexane families are numerous and we decided only to consider 

families that retain Cs symmetry when monosubstituted (except some of the 

monosilacyclohexanes), as both the conformational analysis and the calculations get too 

complicated without it. Only monosubstituted rings were considered.

The families investigated are shown in figure 6.
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Figure 6. The monosubstituted silacyclohexane families investigated.

We adopted our own naming system for distinguishing between families. It is useful, for 

our purposes, to define the atom bonded to the substitutent as being always in the 1-

position, to avoid confusing nomenclature when additional silicon atoms are added.

We wanted to investigate a few interesting substituents: 

F, Cl, SiH3, CH3, CF3, CCl3, t-Bu .

Most of these substituents were chosen as they have been investigated experimentally 

for cyclohexane and 1-silacyclohexane and are chemically diverse, but we decided not to 

include substitutents that break the symmetry and for which several rotamers are 

possible, thus complicating both the conformational analysis and the number of 

calculations needed to be carried out. We wanted to include the tertbutyl substituent as 

this is the classic bulky substitutent in organic chemistry and results of this substituent 

could give us valuable information about the importance of steric repulsion on the 

conformational properties of silacyclohexanes.



61

62

63

In order to do these calculations as conveniently as possible we set up a standardized 

input file ( Appendix 2.1). The input files for all molecules and their conformers differed 

only in the cartesian coordinates that define the different geometry for each conformer, 

thus ensuring that the calculations are carried out identically.

The different ring systems with different substituents were calculated at the same level 

of theory that was chosen as being both economic and accurate enough. Geometries 

were thus optimized at the M06-2X/pc-2 level, a theory level that we had previously 

shown to be able to predict accurate geometries compared to GED results.  Single-point 

energies were then calculated with the same functional up to the pc-3 level, a basis set 

that we considered to be large enough for the energy difference to be converged. As a 

continuing analysis on the basis set convergence of our calculations, we always did 

calculations with basis sets from pc-0 to pc-3. Generally, it seems quite clear that the 

pc-2 basis set is satisfactory and the use of pc-3 changes substantially, only in a few 

cases, the ΔE value.

Starting geometries were either built in Gaussview 3.0 or modified manually with a text 

editor. Due to the starting geometries often being far from the optimized ones, pre-

optimization with the M06-L functional was carried out, using density fitting, to reduce 

the number of optimization steps at the M06-2X/pc-2 level. This turned out to be a 

convenient way of optimizing accurate geometries quite quickly.

2.2.2 Monosilacyclohexane families

Figure 7: The monosilacyclohexane families and cyclohexane.

The focus of the experimental work in our group has mainly been on monosubstituted 

silacyclohexanes with the silicon in the 1-position (bonded to the substituent). This is an 

interesting family and both experimental and theoretical results were presented in 
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chapter 1. But what effect has it on the conformational properties if the silicon occupies 

another position? The 1-position is clearly special as the substituent is not only 

“interacting” with a different ring system but it is also connected to the heteroatom 

directly, thus subject to different bond polarization and different bond length if compared 

to the cyclohexane reference system.

Placing silicon in the 2-, 3-, or 4- position should result in different properties but how 

different?

It seems rather difficult to predict offhand what will happen as we don’t understand the 

conformational properties of 1-silacyclohexane to begin with. It should be noted that 5-

silacyclohexane and 6-silacyclohexane are also possible ring systems, they, however, are 

enantiomers of 2- and 3-silacyclohexane and as such have identical energetic properties.

Calculations were performed for the four monosilacyclohexane families and the 

cyclohexane system and the results are shown in table 17.

While it is informative to look at the numbers it is easier to discover trends in the 

numbers using a graphical representation. We thus plot the energy values for each family 

on a single graph, figure 8. The x-axis is not a real numerical axis as we don’t attempt to 

relate the different substitutents to any single chemical property. The connecting lines 

between points similarly have no meaning and their only purpose is to distinguish 

clearly between families. The substituents were ordered according to ascending energy 

values of the cyclohexane family. The resulting graph is easy to understand and one can 

see the different trends in the families. The same graphical representation will be used 

for other families in this chapter.

Table 17.  M06-2X/pc-3 calculated ΔE values (Eax-Eeq) of different monosilacyclohexane familes (and cyclohexane) for a few 

substituents. Values in kcal/mol.

F
Cl
SiH3

CH3

CF3

CCl3
t-Bu

cyclohexane
+0.12
+0.23
+1.26
+1.70
+2.26
+4.87
+5.39

1-sila
-0.15
-0.64
-0.14
+0.12
-0.50
+0.30
+1.03

2-sila
-0.37
-0.43
+0.34
+0.86
+0.69
+2.11
+2.44

3-sila
+0.94
+0.82
+1.55
+1.33
+2.41
+4.65
+4.08

4-sila
-0.05
-0.44
+0.70
+1.10
+1.52
+3.87
+4.91
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Figure 8. Graph showing the trends in ΔE values of the monosilacyclohexane families compared to cyclohexane.

From the graph it is quite clear that 1-silacyclohexane is unique in being the family 

where the equatorial conformer is the least predominant in the conformational 

equilibrium. Two substituted 1-silacyclohexanes were not discussed in chapter 1, these 

are the CCl3 and t-Bu molecules. Comparing the 1-silacyclohexane values for these 

substituents with the cyclohexane values is very interesting, with large differences in ΔE 

values of ~4.5 kcal/mol between families.

The 2-silacyclohexane family is also very interesting as it decreases the ΔE values of the 

cyclohexane family considerably, despite the silicon atom not being directly bonded to 

the substituent as in the 1-silacyclohexane family. Silicon in the 4-position is the farthest 

away from the substituent. It still has a noticeable lowering effect on the ΔE value. 

Especially interesting are the results of the 3-silacyclohexane family. One might perhaps 

guess beforehand that the 3-silacyclohexane family might behave somewhat inbetween 

the 2-silacyclohexane family and the 4-silacyclohexane. Instead, however, the energy 

values closely resemble the cyclohexane values and interestingly for four substituents of 

3-silacyclohexane, the ΔE values are higher than for cyclohexane. Placing a silicon in 

the 3-position thus seems to have a peculiar effect that seems different from placing 

silicon in the other positions.
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We were interested in seeing if the energy values of the different families might 

correlate. We thus plotted the energy values of cyclohexane vs. each 

monosilacyclohexane family. Interestingly, plots of 2-, 3- and 4-silacyclohexane vs. 

cyclohexane correlate rather well while the correlation is noticeably worse for 1-

silacyclohexane vs. cyclohexane. 

!"#"$%&'()"*"$%(+'"

,-"#"$%./0"

*$%+$"

*$%.$"

*$%($"

*$%&$"

$%$$"

$%&$"

$%($"

$%.$"

$%+$"

'%$$"

'%&$"

$%$$" '%$$" &%$$" 0%$$" (%$$" /%$$" .%$$"

!"#$%&'(#)'*+*%,-./&0.'

  

!"#"$%&'()"*"$%+,-"

./"#"$%0,1"

*2%$$"

*$%&$"

$%$$"

$%&$"

2%$$"

2%&$"

'%$$"

'%&$"

+%$$"

$%$$" 2%$$" '%$$" +%$$" (%$$" &%$$" 1%$$"

!"#$%&'(#)'*+*%,-./&0.'

Figure 9. Left: Plot of ΔE values of 1-silacyclohexane vs. cyclohexane. Both axes are in units of kcal/mol.

  Figure 10. Right: Plot of  ΔE values of 2-silacyclohexane vs. cyclohexane. Both axes are in units of kcal/mol.
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Figure 11.  Left: Plot of ΔE values of 3-silacyclohexane vs. cyclohexane. Both axes are in units of kcal/mol.

 Figure 12. Right: Plot of  ΔE values of 4-silacyclohexane vs. cyclohexane. Both axes are in units of kcal/mol.

It is an interesting observation that the 1-silacyclohexane family shows notably worse 

correlation with cyclohexane than the other monosilacyclohexane families. As 

mentioned before, the silicon occupying position 1 is unique in being directly bonded to 

the substituent.

The correlations between cyclohexane and 2-, 3- and 4-silacyclohexane energy values 

are interesting and suggest that silicon has a systematic effect on the cyclohexane system 

and the overall conformational properties, one that perhaps might be explainable by 

simple means. This also suggests that it might be possible to build an empirical model 

that could predict energy differences of heterocyclic systems containing silicon. One 

would have to relate the substituents to some chemical property though for this to be 

useful (steric size, electronegativity, Lewis base/acidity etc.)
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2.2.3 Disilacyclohexane families

Figure 13: The disilacyclohexane families.

Three disilacyclohexane families (figure 13) were selected and calculated for the same 

substituents. They are interesting systems, mainly because they can be directly related to 

the monosilacyclohexanes discussed before (and the polysilacyclohexane families in the 

later subchapters).

Results for the disilacyclohexane families are given in table 18 and figure 14.

Table 18.  M06-2X/pc-3 calculated ΔE values (Eax-Eeq) of the disilacyclohexane familes. 
Values in kcal/mol.

F
Cl
SiH3

CH3

CF3

CCl3
t-Bu

1,4-disila
-0.26
-0.84
-0.24
+0.12
-0.58
+0.36
+1.50

2,6-disila
-0.48
-0.90
-0.06
+0.26
-0.36
+0.15
+1.42

3,5-disila
+1.49
+1.35
+1.86
+1.04
+2.55
+4.62
+4.95
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Figure 14. Graph showing the trends in ΔE values of the monosilacyclohexane and disilacyclohexane families compared to the 
cyclohexane family.

In figure 14 we show the energy values of cyclohexane, all monosilacyclohexanes and 

the disilacyclohexanes in one plot for direct comparison.

The 1,4-disilacyclohexane system has rather low energy values and comparing this 

system to the related 1-silacyclohexane and 4-silacyclohexane families one sees that:

1. adding a silicon to the 4-position of 1-silacyclohexane causes a very small ΔE 

lowering effect for all cases but curiously not for the CCl3 and t-Bu cases.

2. Adding a silicon atom to the 1-position of 4-silacyclohexane causes considerable ΔE 

lowering.

Adding a second silicon atom to the 2-silacyclohexane family in to the symmetrically 

equivalent 6-position, resulting in 2,6-disilacyclohexane, causes considerable lowering 

of ΔE values. The 2,6-disilacyclohexane and the 1,4-disilacyclohexane families in fact 

behave rather similarly, which is interesting as the silicon atoms are in different positions 

of both rings. The 1-silacyclohexane family also behaves similarly. Interestingly, it takes 

2 silicon atoms in the 2- and 6- positions to get energy lowering of the same magnitude 

as placing a single silicon atom in the 1-position. We do note that 1-silacyclohexane and 
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2,6-disilacyclohexane both have two Si-C bonds, next to the substituent, in common, 

and it is possible that this might explain the similarity in conformational properties.

The 3,5-disilacyclohexane family is very interesting. Adding another silicon to the 5-

position (symmetrically equivalent to the 3-position) causes ΔE to increase for the same 

four substituents of the 3-silacyclohexane that had higher ΔE values than cyclohexane. 

ΔE decreases for the methyl substituent, however. 

Placing silicon atoms in positions 3 and 5 appear to have completely different effects 

than placing silicon atoms in other positions of the ring.

We note that the ΔE lowering effect of adding silicon atoms (into the 1- and 4- position,  

2- and 6- position, and 3- and 5- positions) is not an additive effect as is easily 

demonstrated by adding e.g. the ΔΔE difference between 1-silacyclohexane and 

cyclohexane on one hand and the ΔΔE difference between 4-silacyclohexane and 

cyclohexane on the other, to the cyclohexane ΔE values.

Like before we did notice correlation between families. 1,4-silacyclohexane and 1-

silacyclohexane families correlate strongly while 1,4-silacyclohexane and 4-

silacyclohexane don’t correlate nearly as well.
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Figure 15.  Left: Plot of ΔE values of 1,4-disilacyclohexane vs. 1-silacyclohexane. Both axes are in units of kcal/mol.

Figure 16. Right: Plot of  ΔE values of 1,4-disilacyclohexane vs. 4-silacyclohexane. Both axes are in units of kcal/mol.

This seems to be related to the fact that we similarly had small correlation between 

cyclohexane and 1-silacyclohexane families before. This suggests that placing silicon in 

the 1-position generally has a non-linear effect on the conformational equilibrium.
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The 2,6-disilacyclohexane family vs. the 2-silacyclohexane family don’t correlate as 

well as one would have expected, mainly due to one point breaking the trend. The point 

corresponds to the ΔE values of the CCl3 substituent. 

The 3,5-disilacyclohexane family correlates, however, well with the 3-silacyclohexane 

family.
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Figure 17.  Left: Plot of ΔE values of 2,6-disilacyclohexane vs. 1-silacyclohexane. Both axes are in units of kcal/mol.

Figure 18. Right: Plot of ΔE values of 3,5-disilacyclohexane vs. 3-silacyclohexane. Both axes are in units of kcal/mol.

Interestingly, the 1,4-disilacyclohexane family and the 2,6-disilacyclohexane family 

correlate rather well and same goes for 2,6-disilacyclohexane and 1-silacyclohexane. 

This is strange because these families don’t even have a single silicon position in 

common. More points should be calculated here to confirm that a correlation actually 

exists.
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Figure 19.  Left: Plot of ΔE values of 2,6-disilacyclohexane vs. 1,4-disilacyclohexane. Both axes are in units of kcal/mol.

Figure 20.  Right: Plot of ΔE values of 2,6-disilacyclohexane vs. 1-silacyclohexane. Both axes are in units of kcal/mol.
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2.2.4 Trisilacyclohexanes

Figure 21: The trisilacyclohexane families.

Four trisilacyclohexane families were calculated. Two of these, 1,3,5-trisilacyclohexane 

and 2,4,6-trisilacyclohexane, have a homogeneous ring skeleton, i.e. consisting only of 

Si-C bonds.

Inspecting the 1,3,5-trisilacyclohexane ring and using the information gathered from the 

mono- and disilacyclohexane families before, we would expect that the 1,3,5-

trisilacyclohexane family would have lower ΔE values than 3,5-disilacyclohexane, since 

we are placing a silicon in the 1-position. The ΔE values would be higher than the 1-

silacyclohexane values due to silicon occupying the 3- and 5- positions. Similarly 

placing a silicon in the 4-position of 3,5-disilacyclohexane would also lower the ΔE 

values of the resulting 3,4,5-trisilacyclohexane. This is approximately what happens.

Table 19.  M06-2X/pc-3 calculated ΔE values (Eax-Eeq) of the trisilacyclohexane familes. Values in kcal/mol.

F
Cl
SiH3

CH3

CF3

CCl3
t-Bu

1,2,6-trisila
+0.13
+0.15
-1.24
-0.44
-0.84
-1.32
-0.23

2,4,6-trisila
-1.00
-1.30
-0.24
+0.16
-1.11
-0.38
+0.96

1,3,5-trisila
+0.49
+0.10
+0.14
-0.15
+0.99
+1.90
+1.69

3,4,5-trisila
+1.04
+0.47
+1.22
+1.23
+0.57
+1.97
+2.45
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Figure 22. Graph showing the trends in ΔE values of the trisilacyclohexane families compared to some of the monosila- and 

disilacyclohexane families.

Placing a silicon in the 4-position yields considerable ΔE lowering when comparing  

cyclohexane and 4-silacyclohexane. The effect is not as big when comparing 1-

silacyclohexane and 1,4-disilacyclohexane.

However when comparing 2,6-disilacyclohexane and 2,4,6-trisilacyclohexane, the effect 

is quite notable again, yielding ΔE values that are generally lower than 1-

silacyclohexane. Even more interesting is the 1,2,6-trisilacyclohexane system where, 

apart from F and Cl substituents, very low ΔE values are obtained. Especially 

noteworthy is the CCl3 case with ΔE = -1.32 kcal/mol and the t-Bu case that yields 

remarkably a slightly negative ΔE value.                     
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Figure 23.  Plot of ΔE values of 2,6-disilacyclohexane vs. 2,4,6-trisilacyclohexane. Both axes are in units of kcal/mol.
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The 2,6-disilacyclohexane and 2,4,6-trisilacyclohexane ΔE values correlate as shown in 

figure 23. 3,5-disilacyclohexane and 1,3,5-trisilacyclohexane families also correlate 

well, in contrast to previous graphs where the correlation was not so good when 

comparing families with and without silicon in the 1-position.
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Figure 24.  Plot of ΔE values of 3,5-disilacyclohexane vs. 1,3,5-trisilacyclohexane. Both axes are in units of kcal/mol.

2.2.5 The tetra- and pentasilacyclohexanes and cyclohexasilane

Figure 25: The tetra- and pentasilacyclohexane families and cyclohexasilane.

Lastly, we consider three tetrasilacyclohexane families, two pentasilacyclohexane 

families and finally cyclohexasilane, a family where the ring skeleton consists 

exclusively of silicon atoms. The results are shown in tables 20 and 21 and figure 26.
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Figure 26. Graphical representation of the trends in ΔE values of the tetra- and pentasilacyclohexane and cyclohexasilane families  

compared to the cyclohexane family.

Table 20.  M06-2X/pc-3 calculated ΔE values (Eax-Eeq) of the 
tetrasilacyclohexane familes. Values in kcal/mol.

F
Cl
SiH3

CH3

CF3

CCl3
t-Bu

2,3,5,6-tetrasila
+0.34
-0.03
-0.35
+0.14
-0.34
-0.12
+0.75

1,2,4,6-tetrasila
-0.25
-1.24
-0.45
+0.15
-1.57
-1.50
+0.05

1,3,4,5-tetrasila
+0.36
-0.22
+0.78
-0.13
-0.07
+1.29
+1.99

Table 21.  M06-2X/pc-3 calculated ΔE values (Eax-Eeq) of the pentasilacyclohexane familes and 
cyclohexasilane. Values in kcal/mol.

F
Cl
SiH3

CH3

CF3

CCl3
t-Bu

2,3,4,5,6-pentasila
-0.10
-0.33
-1.44
-0.22
-0.68
-1.45
-0.32

1,2,3,5,6-pentasila
+0.50
-0.13
-0.54
-0.23
-0.37
-0.53
+0.21

cyclohexasilane
+0.12
-0.59
-0.22
-0.22
-0.79
-0.84
+0.29
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The tetra, penta- and hexasilacyclohexane families (except the 1,3,4,5-

tetrasilacyclohexane family) show a general tendency for negative ΔE values. 1,2,4,6-

tetrasilacyclohexane show the lowest ΔE values for CF3 and CCl3 substituents for any 

silacyclohexane family so far (and in fact for any substituent as well). 2,3,4,5,6-

pentasilacyclohexane family shows a very low ΔE for the SiH3 substituent, -1.44 kcal/

mol and the lowest ΔE value for the t-Bu substituent of all silacyclohexanes, -0.32 kcal/

mol.

The cyclohexasilane family does not stick out if compared to the tetra- and 

pentasilacyclohexane families but it is nonetheless interesting to compare it to it’s 

carbon analogue, cyclohexane, that shows completely different conformational 

properties.

2.2.6 General observations

The conformational data just discussed, was obtained very recently and the above 

discussion only reflects a first impression of the results. Clearly, however, silicon 

introduces a very interesting effect on the conformational properties of the cyclohexane 

ring. Especially interesting is the sharp contrast between CCl3-substituted cyclohexane 

and 1,2,6-trisila, 1,2,4,6-tetrasila and 2,3,4,5,6-pentasilacyclohexanes, where there is a 

clear preference for the axial conformer for the mentioned silacyclohexanes but a very 

high preference for the equatorial conformer in cyclohexane. It is also remarkable to 

regard the cases where the t-Bu substituent has a slight axial preference or the ΔE is 

close to zero for a few of the silacyclohexanes.

The last systems calculated here are obviously quite different from the cyclohexanes, 

tetrahydropyrans and 1-silacyclohexanes, that we used to benchmark density functionals  

in chapter 1.4.4, as the systems consist here mostly of Si-Si and Si-H bonds and could 

hardly be called organic molecules anymore. The question springs to mind whether the 

M06-2X functional is as accurate for these systems. While we don’t have CCSD(T) 

values to compare to, we decided to pick one molecule with a ring skeleton consisting 

mainly of silicon atoms and calculate the energy difference with B3LYP, B97-1, 
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B2PLYP-D and MP2 and see how the methods compare now. B2PLYP-D, M06-2X and 

MP2 methods have generally resulted in very similar values while we found that the 

B3LYP and B97-1 functionals suffered from equatorial overstabilization. We decided 

thus to see how a molecule would compare, that showed surprisingly much axial 

stabilization, 1-CCl3-2,3,4,5,6-pentasilacyclohexane, with ΔE= -1.45 kcal/mol, 

according to the M06-2X calculations.

The results in table 22 show that the M06-2X and MP2 methods are very much in 

agreement and B2PLYP-D is not far off. The B3LYP and B97-1 functionals, however, 

appear to show disastrous failure for this system. This is a worrying result, and suggests 

that the B3LYP functional can fail even worse than our comparison in chapter 1 

indicated.

The reliability of B3LYP for doing conformational analysis of heterocyclic systems 

seems thus questionable.

Finally, while this is the first systematic investigation of this kind on the silicon 

substitution effect on the cyclohexane system, it is far from complete. We have given no 

attention to geometry effects, how the geometries of the ring systems change with 

different substituents and how particular bonds and angles change when carbon is 

substituted for silicon. A systematic study of geometry changes (bonds, angles and 

intramolecular distances) of the systems discussed in this chapter would be very 

interesting and could yield valuable information regarding possible stereoelectronic or 

steric effects. All of this geometric data exists but has yet to be analyzed.

Table 22.  The axial/equatorial energy difference of 1-CCl3-2,3,4,5,6-pentasilacyclohexane 
with different methods.

Method
M06-2X/pc-3
B3LYP/pc-3
B97-1/pc-3
B2PLYP-D

/aug-def2-TZVPP
MP2/cc-pV(Q+d)Z

ΔE
-1.45
+0.56
+0.12

-0.86

-1.21

Deviation from M06-2X
-

2.01
1.57

0.59

0.24



75

76

77

No calculations were done to describe the potential energy surfaces of the different ring 

systems or to calculate activation barriers.

To the best of our knowledge, there exist no experimental results for any of these 

molecules (except cyclohexane and 1-silacyclohexane families). It would definitely be 

interesting to confirm some of these observations with experiments.

2.3 Stereoelectronic effects

Inspection of the tables and figures in chapter 2.2 reveals that steric effects, like 1,3-

diaxial repulsion that is used to explain the conformational properties of cyclohexanes, 

don’t seem to apply to the conformational properties of silacyclohexanes. While silicon 

introduces longer bonds in the molecule (both in the ring and also in the substituent 

when silicon is in the 1-position) that would certainly diminish such steric effects, this is 

not a satisfactory explanation for the the conformational properties of silacyclohexanes 

because it doesn’t explain why CF3-substituted cyclohexane for example, with a large 

equatorial preference (ΔE = +2.26), “changes” into a slight axial preference (ΔE = -0.5 

kcal/mol) when silicon occupies the 1-position. This is also a larger effect than CH3-

substituted cyclohexane vs. 1-silacyclohexane. The large axial preference of several 

substituents of the polysilacyclohexane families also point to 1,3-diaxial interactions not 

playing a significant role. It would thus appear that some conformational effect is 

stabilizing the axial substituent more in silacyclohexanes, or perhaps destabilizing the 

equatorial substituent.

While we are not necessarily questioning the fact that 1,3-diaxial steric repulsion effects 

might play a role in systems like these, they do not appear to play a major role. 

What is then the major factor(s) behind the conformational properties of 

silacyclohexanes? While other steric effects are definitely possible (we again note that a 

proper investigation of geometric effects of the silacyclohexanes in chapter 2.2 has not 

been performed), much work in the recent years has revolved around stereoelectronic 

effects like hyperconjugation, for explaining conformational problems. The stabilization 

of the gauche conformer of 1-fluoropropane for example, is explained by an 
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hyperconjuative electron-donating interaction into an antibonding σ*(C-F) bond by a 

σ(C-H) donor [115]. 

Hyperconjugation as a major factor behind conformational properties remains a 

controversial subject, however. A discussion took place recently in the literature about 

the origin of the rotational barrier of ethane, whether it is of hyperconjugative or steric 

origin  [116], [117], [118], [119]. Hyperconjugation as an explanation for the anomeric 

effect, mentioned in the introduction, has also been accepted for some time but has 

recently been questioned from recent QTAIM calculations (quantum theory of atoms in 

molecules) [8] [9].

Recent research on the conformational properties of monosubstituted cyclohexanes has 

also revealed several surprises. Wiberg et al.  [120] suggested, based on geometric 

analysis, that there was no evidence for 1,3-diaxial interactions in monosubstituted 

cyclohexanes and Ribeiro et al.  [121] came to the same conclusion and suggested a 

hyperconjugative explanation for the conformational properties involving the axial 

hydrogens.

Cuevas et al.  [122] also demonstrated by QTAIM analysis that the 1,3-diaxial 

interactions are not repulsive but are instead attractive, generally. They also suggested 

that substituents generally are stable in the axial positions but in turn they destabilize the 

cyclohexyl ring that results in the observed conformational properties.

Taddei et al.  [123], [124] investigated the role of hyperconjugative interactions in 

substituted cyclohexanes using natural bond orbital analysis (NBO)  [125] and found 

that the hyperconjugative effect is often more important for O-including substituents 

than alkyl substituents.

Alabugin et al. have investigated stereoelectronic effects of σ-bonds in general  [126], 

and stereoelectronic effects in heterocycles  [127], [128] with many interesting findings.

It seems especially hard to relate our results to the numerous studies on cyclohexane and 

heterocycles just mentioned, as the conformational properties of cyclohexane are 

perhaps just beginning to be understood fully. Heterocyclic systems that have been 

studied (excluding silicon heterocycles) usually include heteroatoms with lonepairs and 

their conformational properties are usually explained by hyperconjugative interactions 

involving them  [129], [128]. The silacyclohexanes do not include lone pairs but yet 
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exhibit interesting conformational properties and the work presented in this chapter 

should contribute valuable knowledge to the continuing investigation of the 

conformational properties of six-membered rings. It is possible that the conformational 

properties of our systems might be explained by something as simple as donor- acceptor 

hyperconjugative interactions involving the Si-C bonds or perhaps the hydride character 

of the hydrogens connected to silicon but this awaits further study. 

We did attempt NBO calculations using the NBO 5.Gxii package, that was implemented 

in NWChem with the help of NWChem programmers. Natural bond orbital analysis 

involves transforming the molecular orbitals of a quantum calculation into localized 

orbitals. Filled localized orbitals, that describe as much as possible of the total electron 

density correspond to the Lewis structure of the molecule. The rest would involve 

delocalization of electron density and by comparing the nature and magnitude of the 

delocalization energy one can explain different chemical properties of conformers for 

example.xiii Unfortunately we ran into problems involving the convergence of the 

delocalization energy, that we do not understand completely how to solve.

Finally, while we had hoped during the course of this project to be able to shed some 

light on the heteroatom effects that silicon has on the conformational properties of the 

cyclohexane ring we are still very much in the dark on this and future studies should 

definitely focus on identifying these effects. Natural bond orbital analysis  [125], 

BLW(Block-localized wave function)  [130] or QTAIM  [131] approaches seem to be 

viable methods for such investigations. We have, however, using a computational 

method that we consider trustworthy for calculating energy differences of these systems, 

explored the conformational properties of silacyclohexanes considerably, with 

sometimes counterintuitive results.

xii http://www.chem.wisc.edu/~nbo5/ 
xiii http://www.chem.wisc.edu/~nbo5/tur_ch.htm
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Chapter 3 – Disilacyclohexanes - physical properties, energy surfaces and NMR 

spectra

3.1 Introduction

Monosubstituted disilacyclohexanes were discussed in the previous chapters. This 

chapter, however, is about the parent (unsubstituted) disilacyclohexanes.

Three configurational isomers of the disilacyclohexanes exist: 

1,2-disilacyclohexane, 1,3-disilacyclohexane and 1,4-disilacyclohexane.

These molecules were synthesized for the first time by graduate student Pálmar I. 

Gudnason in the research group of Ingvar Arnason. The synthesis of all three rings was a 

challenging problem that required novel synthetic procedures as well as uncommon 

starting materials  [132].

In his M.Sc. thesis, Silicon-containing six-membered rings  [24], Gudnason describes the 

conformational energy surfaces as well as the lowest energy pathways of the chair-chair 

equilibrium of all three molecules. Conformational energy surfaces (CES) were 

calculated using Gaussian 98 by varying two dihedral angles of the ring and calculating 

the energy of each conformation with the B3LYP/STO-3G method. While this basis set 

is very incomplete, it served its purpose for this rough description of the potential energy 

surface and all important minima and maxima of the three molecules were located. The 

lowest energy pathways were then obtained from the data of the CES-scan. The critical 

points were also re-optimized with additional methods, using more complete basis sets. 

While the work done serves well as a general description of the CES and most stationary 

points of these molecules were located, Gudnason did run into a few computational 

obstacles, mainly related to his modest computational facilities (a single 1.15 GHz PC). 

Our work has involved the following:

• We wanted to solve the problems that Gudnason ran into, as well as confirm the 

lowest energy pathways using modern optimization- and saddle-point location 

techniques and finally recalculate the conformational energies of the minima and 

saddle points with higher level methods.
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• Gas electron diffraction data for the disilacyclohexanes also became available 

recently and the structures were compared to calculated structures.

• Enthalpies of formation for the molecules were calculated and are discussed.

• Another interesting aspect of the disilacyclohexanes concerns their NMR spectra 

that interestingly enough are very complicated. Simulations of the spectra were 

carried out by Gudnason but were not completely successful. Using different 

simulation techniques, the spectra were simulated with better results.

3.2 Potential energy surfaces

The conformational energy surfaces were mapped with the B3LYP functional and the 

STO-3G basis set by Gudnason. The STO-3G basis is a minimal basis set, meaning that 

it contains the minimum number of basis functions that are needed to describe each 

atom. This small basis set was chosen due to the large amount of points that needed to be 

calculated for each surface. By varying two dihedral angles of the rings in steps of 5° 

from -90° to +90° and calculating the energy at each point, surfaces were obtained that 

include essentially all the important conformations that can be expected from a six-

membered heterocyclic ring.

While the 3D surfaces have their uses, they are not as easy to understand as the 2D 

lowest energy pathways, that Gudnason shows in his thesis. They were made using the 

information from the calculated energy surfaces and reoptimization of the stationary 

points (minima and maxima) with DFT methods using larger basis sets.

We wanted to confirm these pathways: make sure that the correct saddle points had been 

found, that the path was possible and recalculate the energy of the stationary points with 

the M06-2X functional that we used successfully for the axial/equatorial energy 

differences in chapter 1 and 2. In the Gaussian 03 software  [28], the synchronous 

transit-guided quasi-newton (STQN) method [133] is implemented that enables one to 

locate and optimize saddle points conveniently, by using as input the approximate 
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geometries of the reactant and product (QST2 keyword) and possibly also a good guess 

for the saddle point geometry (QST3 keyword) if needed.

We used the B3LYP method with the 6-311+G(d,p) basis set, this functional/basis 

combination has been used previously in our group for calculating lowest energy 

pathways for substituted monosilacyclohexanes  [4], [22], [96]. Starting structures for 

the minima were built by hand in Gaussview. QST2 calculations, with no symmetry 

constraints, were carried out for locating and optimizing saddle points and the option 

added to minimize in the same calculation, the reaction path from structure A to B with 8 

extra intermediate conformers (Gaussian keyword path=11). Frequency calculations 

were then carried out on the geometry of all stationary points to confirm that they were 

either minima or maxima. A saddle point should have exactly one imaginary frequency 

while a minimum should have no imaginary frequencies.

Calculated pathways are shown in figures 27-29, where the dots indicate the different 

conformations. They are essentially the same pathways that Gudnason presented in his 

thesis.

Figure 27. B3LYP/6-311+G(d,p) calculated lowest-energy path of 1,2-disilacyclohexane using the QST2 method.
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Figure 28. B3LYP/6-311+G(d,p) calculated lowest-energy path of 1,3-disilacyclohexane using the QST2 method.

Figure 29. B3LYP/6-311+G(d,p) calculated lowest-energy path of 1,4-disilacyclohexane using the QST2 method.

The 1,3-disilacyclohexane pathway and surface was, however, improved upon. Two low 

energy conformers, Twist-1 and Boat-1 are very similar in energy, so similar that it was 

unclear which conformer was lower than the other, according to Gudnason’s 
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calculations. By doing tight geometry optimizations  (keyword: opt=vtight) and using a 

large grid (keyword: int=ultrafine), we were able to accurately locate both conformers 

unambigously and relate them to each other by a QST3 calculation. It turned out that 

Boat-1 was a connecting saddle point between two conformers of type Twist-1, i.e. 

Twist-1a and Twist-1b. The transformation from Twist-1a to Twist-1b through Boat-1 is 

the same kind of pseudorotation as the well known twist-boat-twist transformation for 

cyclohexane along the equator of the conformational globe, that was mentioned in the 

introduction. In this case, however, we note a very subtle pseudorotation with an 

extremely low activation barrier of 0.04 kcal/mol (B3LYP/6-311+G(d,p) (figure 30).

Figure 30. B3LYP/6-311+G(d,p) calculated path between the two equivalent twistforms (Twist-1a and Twist-1b).

Single-point M06-2X/pc-3 calculations were then carried out on the B3LYP/

6-311+G(d,p) geometries for all stationary points. These calculations were performed in 

NWChem 5.1.

Table 23-25 shows the relative energies of all stationary points for all three 

disilacyclohexanes. Compared are the B3LYP/6-311+G(d,p) calculations and the 

M06-2X/pc-3//B3LYP/6-311+G(d,p) calculationsxiv.

The M06-2X energies are qualitatively similar to the B3LYP energies with some 

variation for a few conformers. We note that the activation barrier for the pseudorotation 

of Twist 1a to Twist 1b is higher according to the M06-2X calculations than the B3LYP 

calculations predicted (0.20 kcal/mol vs. 0.04 kcal/mol). We believe that the M06-2X 

xiv The relative energies are generally very similar to the DFT calculations by Gudnason with the variations most likely being only 
due to different basis sets used for energy evaluation and geometry optimization.
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energies are more accurate, based on the arguments presented in chapter 1, due to a 

better functional and a more complete basis set.

3.3 Structure and stability

The disilacyclohexanes were measured by gas electron diffraction in the group of Heinz 

Oberhammer, University of Tübingen, in order to determine their structures in gas phase. 

According to the calculations in the previous chapter, no conformer of 1,2- and 1,3- 

disilacyclohexane, except the chair form, is low enough in energy to be significantly 

populated at room temperature to be detectable in the GED experiment in the previous 

chapter. The twist-form of 1,4-disilacyclohexane has a relative energy of 1.72 kcal/mol 

and might thus be detectable, but wasn’t found during the course of the experiment.

Table 23. Relative energies (in kcal/mol) of conformers of 1,2-disilacyclohexane with 
different methods.

Chair-1
Boat-1
Twist

Boat-2
a B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p) .
b M06-2X/pc-3//B3LYP/6-311+G(d,p) .

B3LYP/6-311+G(d,p)a

0.00
4.54
3.45
5.10

M06-2X/pc-3b

0.00
4.71
2.96
5.00

Table 24. Relative energies of conformers of 1,3-disilacyclohexane with 
different methods.

Chair
TS

Twist-1
Boat-1
Boat-2
Twist-2

B3LYP/6-311+G(d,p)
0.00
3.15
2.59
2.62
4.63
4.20

M06-2X/pc-3
0.00
3.76
2.67
2.87
4.73
3.99

Table 25. Relative energies of conformers of 1,4-disilacyclohexane with different 
methods.

Chair
TS

Twist

B3LYP/6-311+G(d,p)
0.00
5.98
1.65

M06-2X/pc-3
0.00
6.70
1.72
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We optimized the molecular structure of the chair form of all three disilacyclohexanes at 

the M06-2X/pc-2 level as this method seemed to give accurate bond lengths of two 

monosilacyclohexanes in chapter 1.5. MP2/6-31G(d,p) and B3LYP/6-311+G(2d,p) 

calculations were performed by Heinz Oberhammer.

Experimental and theoretical bond lengths and angles are shown in tables 26-28.

Table 26. Experimental and calculated geometric parameters of 1,2-disilacyclohexane. Bond lengths 
in Å and angles and dihedral angles in °. Error limits are 3σ values and refer to the last digit.

Si−Si

Si−C

C3−C4

C4−C5

(Si−H)mean

(C−H)mean

Si1−Si2−C3

Si2−C3−C4

C3−C4−C5

H−Si−H

(H−C−H)mean

τ( C6−Si1−Si2−C3)

τ( Si1−Si2−C3−C4)

τ( Si2−C3−C4−C5)

τ( C3−C4−C5−C6)

GED (rh1)

2.324(4)

1.884(3) 

1.548(3)

1.544(3)

1.468(10)

1.105(5)

101.5(11)

113.8(13)

115.8(18)

108.0

106.3(36)

40.5(46)

-49.5(28)

66.2(22)

-73.0(42)

MP2/
6-31G(d,p)

2.328

1.899

1.539

1.553

1.481

1.094

101.9

113.5

115.7

108.0

106.1

38.0

-47.9

67.0

-75.9

B3LYP/
6-311+G(2d,p)

2.347

1.900

1.545

1.540

1.487

1.095

102.2

14.5

116.0

107.9

105.8

35.7

-46.0

65.8

-75.0

M06-2X/
pc-2

2.326

1.888

1.538

1.534

1.482

1.093

101.9

113.5

115.3

108.2

106.1

37.9

-48.0

67.5

-76.6
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Table 27. Experimental and calculated geometric parameters of 1,3-disilacyclohexane. Bond lengths 
in Å and angles and dihedral angles in °. Error limits are 3σ values and refer to the last digit.

Si1−C2

Si1−C6

C−C

(Si−H)mean

(C−H)mean

Si1−C2−Si3

C2−Si3−C4

Si3−C4−C5

C4−C5−C6

H−Si−H

(H−C−H)mean

τ( Si1−C2−Si3−C4)

τ( C2−Si3−C4−C5)

τ( Si3−C4−C5−C6)

GED (rh1)

1.870(1)

1.878(1) 

1.552(4)

1.485(10)

1.101(5)

110.5(3)

109.0(16)

113.6(10)

112.5(11)

108.1 

105.5(23)

42.4(22)

- 53.8(19)

66.7(17)

MP2/
6-31G(d,p)

1.883

1.891

1.538

1.482

1.093

109.2

108.2

113.7

113.6

108.1

106.3

45.5

- 54.9

65.8

B3LYP/
6-311+G(2d,p)

1.885

1.891

1.543

1.486

1.095

110.0

108.9

114.5

114.0

107.9

106.1

43.0

- 52.9

64.1

M06-2X/
pc-2

1.873

1.880

1.538

1.482

1.093

109.1

108.3

113.6

113.4

108.3

106.5

45.8

-55.2

65.9

Table 28. Experimental and calculated geometric parameters of 1,4-disilacyclohexane. Bond lengths in 
Å and angles and dihedral angles in °. Error limits are 3σ values and refer to the last digit.

Si−C

C−C

(Si−H)mean

(C−H)mean

C−Si−C

Si−C−C

H−Si−H

H−C−H

τ( Si−C−C−Si)

τ( C−C−Si−C)

GED (rh1)

1.877(1)

1.559(4)

1.467(8)

1.103(5)

109.4(6)

112.4(5)

108.3

106.8(24)

56.0(6)

- 54.4(9)

MP2/
6-31G(d,p)

1.892

1.546

1.492

1.097

108.2

112.2

108.3

105.9

57.9

- 55.7

B3LYP/
6-311+G(2d,p)

1.893

1.550

1.486

1.095

108.4

112.9

108.4

105.8

56.2

- 54.4

M06-2X/
pc-2

1.881

1.544

1.482

1.093

108.2

112.1

108.7

106.1

58.0

-55.8
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M06-2X calculated geometric parameters do not always show the smallest deviation 

from the GED structure, but interestingly M06-2X predicts Si-Si and Si-C bond lengths 

that are considerably closer to the GED values than the B3LYP and MP2 calculations.

The three disilacyclohexanes are configurational isomers and differ specifically in the 

distance between the silicon atoms. 1,2-disilacyclohexane also differs from the other 

isomers by the number of different bonds, table 29.

In table 2, in the introduction of this thesis, the bond energies of organosilicon 

compounds are listed. The Si-C bond is a slightly weaker bond than the C-C bond (75 

kcal/mol vs. 80 kcal/mol). The Si-Si bond is much weaker with a bond energy of 47 

kcal/mol.

We were interested in knowing the different enthalpies of formation of the disilacyclo-

hexanes, the enthalpy of formation being a measure of stability. It is possible to calculate 

enthalpies of formation of organic molecules by a simple group increment method that 

assumes that bond energies are roughly additive. This method holds while the molecules 

are relatively strain-free (a highly strained molecule like cyclopropane shows, for 

example, significant deviation between it’s group increment ΔH°f and the experimental 

ΔH°f )  [2]. A six-membered ring is, as mentioned in the introduction, almost strain-free. 

Unfortunately, group increments for organosilicon groups are not available.

By inspection of the above mentioned bond energies, we might guess, that 1,2-disila-

cyclohexane would be less stable than the other disilacyclohexanes due to the low bond 

energy of the Si-Si bond. 1,3-disilacyclohexane and 1,4-disilacyclohexane have the same 

number of bonds, however, and should by this very rough model have a similar ΔH°f .

We decided to calculate the enthalpies of formation for the disilacyclohexanes by 

quantum chemical calculations. The enthalpy of formation of a molecule is essentially 

Table 29. The bond skeleton of the disilacyclohexanes. Number of 
different bonds.

1,2-disilacyclohexane
1,3-disilacyclohexane
1,4-disilacyclohexane

C-C
3
2
2

Si-C
2
4
4

Si-Si
1
0
0
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the reaction energy (enthalpy change) of the elements in their standard state reacting to 

form the molecule in question.

We are thus interested in the reaction energy of this reaction.

    
 4 C(s) + 6 H2(g) + 2 Si(s)  → Si2C4H12  (disilacyclohexane)     ΔH = ΔH°f   (3-1)

This reaction energy is obviously not calculated directly, as calculating an infinite 

graphite or silicon surface is not practical. The enthalpies of formation for the reactants 

in the above equation are all zero by definition. To calculate the enthalpy of formation of 

the product we need to relate the above reactants to something we can calculate.

The atomization enthalpy of a reaction is an easier equation to deal with:

                               

4 Catom + 12 Hatom + 2 Siatom  → Si2C4H12  (disilacyclohexane)     ΔH = ΔH°atom. (3-2)

The equation for the atomization enthalpy can then be given as:

    ΔH°atom. = H(Si2C4H12) - [4H(C) +12 H(H) + 2H(Si)]            (3-3)

The enthalpies of formation of the atoms is then what you need to relate the atoms to the 

elements in their standard states. They have been obtained from experiment. A diagram 

that explains the whole calculation is shown in figure 31.

Figure 31. Diagram for the calculation of enthalpies of formation of the disilacyclohexanes.
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The final equation to get the enthalpy of formation of a molecule is then:

ΔH°atom = ΔH°f(Si2C4H12) - [4ΔH°f(C) +12 ΔH°f(H) + 2ΔH°f(Si)] (3-4)

The quantities that need to be calculated by quantum mechanics are then the enthalpy of 

the molecule and the enthalpies of the single atoms silicon, carbon and hydrogen, all at 

the same level of theory.

The geometries of disilacyclohexanes thus need to be optimized and then a single-point 

energy calculation as well as a frequency calculation to get the thermal correction to 

enthalpy (including zero-point energy).

The individual atoms need to be calculated at the same level of theory, i.e. a single-point 

energy and Hcorr = 5/2RT added.

Calculating enthalpies of formation of molecules can be very hard for quantum chemical 

calculations. In fact it is one of the hardest quantities to calculate, due to the immense 

change in electronic structure, from free atoms to covalent molecules.

Recently, it has been pointed out that calculating energies of free atoms might be one of 

the main weaknesses of DFT  [68]. 

We tried out several different calculations: the composite methods G3B3 and CBS-QB3, 

MP2 calculations and the DFT functional B3LYP.

All methods agree on the ordering of stability of the disilacyclohexanes and the relative 

energies are quite close for all methods (table 31) but there is significant disagreement in 

the absolute values (table 30).

Table 30. Calculated enthalpies of formation for the disilacyclohexanes using different methods. Values 
in kcal/mol.

1,2
1,3
1,4

G3B3

-0.8
-15.1
-9.2

CBS

-1.2
-16.2
-10.3

MP2/aug-cc-pVTZ

-17.4
-32.8
-27.2

B3LYP/aug-cc-pVTZ

+21.1
+8.9

+14.2

Table 31. Relative enthalphy differences for the disilacyclohexanes with respect to 1,3-disilacyclohexane. 
Values in kcal/mol.

1,2
1,3
1,4

G3B3

+14.3
0

+5.9

CBS

+15.0
0

+5.9

MP2/aug-cc-pVTZ

+15.4
0

+5.6

B3LYP/aug-cc-pVTZ

+12.2
0

+5.3
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Like expected, 1,2-disilacyclohexane is the least stable of the disilacyclohexanes. 

However, 1,3-disilacyclohexane is also substantially more stable than the 1,4-

disilacyclohexane which is quite interesting as both molecules contain the same number 

of different bonds. Clearly the closer distance between silicons in 1,3-disilacyclohexane 

plays a role in the overall stability.

The G3B3 and CBS-QB3 calculations are in very good agreement (for both absolute and 

relative enthalpy differences) and we expect these values to be more accurate than the 

MP2 and DFT calculations as the composite methods are designed for very accurate 

computation of properties like enthalpies of formation.

3.4 NMR spectra and attempted simulation

The disilacyclohexanes are simple molecules. Yet, their 1H NMR spectra have proven 

difficult to analyze. The spectra indicate strong second order coupling that makes 

analysis troublesome. Spectral analysis of complicated NMR spectra usually involves 

simulation with iteration methods where the parameters of a calculated spectrum are 

gradually changed in order to converge with the experimental spectrum. Traditionally, 

LAOCOON xv spectral analysis has been used while Gudnason used gNMR 4.1xvi for 

simulation of 1,3-disilacyclohexane  [24].

As the calculated conformational energy surfaces of the compounds showed, low-lying 

transition states (4-6 kcal/mol) between conformers are characteristic for these 

compounds and low-lying twist conformers as minima and boat conformers as 

saddlepoints, are found on the potential energy surface. The low activation energy for 

the chair-chair inversion indicates a very dynamic system at room temperature.

Dynamic spin-systems are often simplified by measuring the NMR spectra at lower or 

higher temperature. Such a temperature analysis has been carried out from -90°C to 

+90°C in a toluene solution. No difference between spectra was detected, however. 

Judging from the NMR experiments and the DFT-calculations, the rings must be in a fast 

xv http://qcpe.chem.indiana.edu : QCPE 111 
xvi http://www.adeptscience.co.uk/products/lab/gnmr/
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equilibrium between the conformers and couplings in the NMR spectra are average 

values of the couplings in the different conformers. 

The simulation of a complicated NMR spectrum involves solving the non-linear 

equations  [134]: 

  F1(ν, J, D, ∆) = O1 

           F2(ν, J, D, ∆) = O2                                             (3-5)

... 

   Fn(ν, J, D, ∆) = On 

where ν is the chemical shift, J the scalar coupling vector, D the dipolar coupling vector 

and ∆ includes the linewidth and a few lineshape terms: i.e. Lorentzian contribution, 

normal dispersion and Gaussian. These equations are solved by iteration procedures, and 

in the case of LAOCOON analysis they would be solved by a plain Gauss-Newton type 

algorithm.

The Integral-Transform (IT) procedure  [134] involves first transforming the NMR data 

into integral transforms that are fast to compute and differentiate. The frequency domain 

is multiplied with a set of basis functions, fi (v) and each product integrated to produce a 

set of integral transforms:   

   ITi = ∫ fi (v) I (v) dv                                           (3-6)

The integral transforms are then used as solutions to the non-linear equations above. The 

basis functions, fi (v) , are A-shaped functions, A(νi, SPAN) where νi is the midpoint of 

the A-function and SPAN the width of the function. By setting SPAN high in the 

beginning of the procedure (splittings are then completely dissolved) and then gradually 

decreasing until the IT spectrum approaches the original one, one gets good convergent 

behavior as demonstrated by Laatikainen et al.  [134].

Using adequate starting parameters (chemical shifts and coupling constants) the IT-

procedure can usually find a good solution for 2-14 spins. 

Total-Line-Shape-fitting (TLS)  [135] is another iteration procedure that involves 

changing the ∆ parameter as well as fine-tuning of the couplings. It requires very good 

starting parameters and is typically performed after the IT-procedure if a good 

simulation, of a system that involves abnormal lineshape, is required. The IT and TLS 
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procedures are implemented in the program Perchxvii and are available also as add-ons to 

the Topspin NMR software from Bruker-Biospinxviii.

The experimental spectra (400 MHz 1H NMR in toluene-d8) was imported into the 

program Perch, Fourier-transformed, phase-corrected, baseline-corrected and solvent 

peaks were deleted. The experimental spectrum generally must be well prepared for a 

simulation to be successful  [134]. The lineshape was then estimated. Based on the 

structure of the molecule one can obtain adequate starting parameters. DFT-optimized 

structures were used and starting parameters obtained by a simple empirical procedure in 

Perch. Perch also includes parameter estimation in combination with a molecular 

dynamics simulation that can give averaged parameters from several conformers.

Even though the starting parameters are very crude (chemical shifts especially) the IT 

procedure appears to find a solution very quickly, fixes the chemical shifts and then 

moves on to tuning the coupling constants. The simulation was considered successful 

when the RMS% < 20 %.

A Total-Line-Shape analysis was then performed using the IT parameters which was of 

importantance in order to obtain spectra with the correct lineshape.

The results of the simulations are shown in the following tables and figures.

xvii Perch NMR Software: http://www.perchsolutions.com
xviii http://www.bruker-biospin.com/topspin.html
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Figure 32. Measured (below) and simulated (above) spectrum of 1,2-disilacyclohexane.

Figure 33. Ball-and-stick model of 1,2-disilacyclohexane with atom numbering used in simulation.

Table 32. Simulated coupling constants and linewidths of 1,2-disilacyclohexane in Hz.
Coupling constants (Hz)

1
2
3
4
5
6

1
0.0

-18.101
0.119
0.0
0.0
0.0

2
13.700
0.004
0.0
0.0
0.0
0.0

3
0.0

14.667
0.0
0.0

0.001
0.404

4
0.0

6.419
0.0
0.0

4.160
8.125

5
0.0
0.0
0.0

2.817
0.156
4.378

6
0.0
0.0
0.0
0.0

-10.574
3.664

Linewidth (Hz)
0.024
1.433
4.924
0.384
0.618
5.854
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Figure 34.  Measured (below) and simulated (above) spectrum of 1,3-disilacyclohexane.

Figure 35. Ball-and-stick model of 1,3-disilacyclohexane with atom numbering used in simulation.

Table 33. Simulated coupling constants and linewidths of 1,3-disilacyclohexane in Hz.
Coupling constants 

(Hz)
1
2
3
4
5
6
7
8

1

0.0
4.050
3.427
-6.509

0.0
0.0
0.0
0.0

2

4.050
-

-6.684
3.459
0.0
0.0
0.0
0.0

3

3.427
-6.684

-
4.034
0.0
0.0
0.0
0.0

4

0.0
3.459
4.034
0.0

1.425
4.509
0.0
0.0

5

3.624
0.0
0.0
0.0
0.0
0.0

3.090
9.836

6

1.532
0.0
0.0
0.0

-0.406
-0.479
10.188
2.694

7

0.0
0.0
0.0
0.0

3.090
10.188

-
2.694

8

0.0
0.0
0.0
0.0

9.836
2.694
-8.086

-

Linewidth (Hz)

0.377
0.868
0.860
2.877
2.080
0.317
1.671
1.604
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 Figure 36. Measured (below) and simulated (above) spectrum of 1,4-disilacyclohexane.

Figure 37. Ball-and-stick model of 1,4-disilacyclohexane with atom numbering used in simulation.

Table 34. Simulated coupling constants and linewidths in Hz.
Coupling constants (Hz)

1
2
3
4
5
6

1
3.569
0.0

-3.117
0.0
0.0
0.0

2
0.0

15.765
0.0

1.244
0.0
0.0

3
2.847
0.0

12.780
0.0

3.824
2.905

4
0.0

-8.891
0.0

12.300
0.0
0.0

5
2.527
4.754
0.0

0.960
0.0
0.0

6
3.760
2.629
0.0

4.952
-10.049

0.0

Linewidth (Hz)
0.117
0.434
0.806
0.103
0.479
0.355
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While the simulated spectra look very much like the experimental spectra, the NMR 

simulation of the disilacyclohexanes continue to be a work in progress. Due to a bug in 

the program, the correct symmetry of 1,4-disilacyclohexane cannot be given, thus 

resulting in a wrong solution of the spin-system. Furthermore the coupling constants of 

1,2- and 1,3-disilacyclohexanes show indications of wrong solutions and need to be 

critically evaluated to make sure that the correct solutions have been found. These 

simulations thus appear to be incomplete.
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Summary

In this thesis, computational studies were carried out with the intent of calculating 

accurate conformational energy differences of substituted six-membered heterocycles, as 

an alternative to experiment. The computational strategy was used to predict 

conformational properties of silacyclohexanes that are currently out of reach for 

experimental methods.

The work done, while related to silacyclohexanes in general, can be summarized into 

three major themes, that are described below.

1. Calculating accurate conformational energies of substituted six-membered rings 

with computational methods that were critically evaluated:

We compared a few density functionals for conformational energy differences of 13 

different monosubstituted six-membered rings and by comparing mean absolute 

devations from accurate CCSD(T) values, we were able to show that recent functionals 

M06-2X and B2PLYP-D, are much more accurate than functionals like B3LYP for this 

kind of conformational analysis. Both functionals have in common, that they were 

intended to include a better description of medium-range correlation and it seems likely 

that this is the reason for the better performance. Basis sets were compared and 

systematic basis set expansion using e.g. the polarization-consistent basis sets was found 

to suit quite well for achieving converged relative energies. By comparing calculated 

geometries of the axial conformer of two silacyclohexanes with recent gas electron 

diffraction results, there is data to suggest that M06-2X and B2PLYP-D predict bond 

lengths that are closer to the experimental bond lengths for silacyclohexane systems. By 

calculating harmonic frequencies we could relate the electronic energy difference to 

recent experimental enthalpy and free energy differences of 1-silacyclohexanes and the 

comparison is quite favorable overall, although the question of the reliability of the 

harmonic approximation arises.
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2. Mapping the conformational properties of silacyclohexanes systematically by 

step-by-step silicon substitution on the cyclohexane ring, with an accurate yet 

affordable computational method:

Using one of the computational methods, that we showed to be capable of predicting 

quite accurate conformational energy differences of cyclohexanes and heterocycles with 

one heteroatom, we calculated a considerable number of different silacyclohexanes, with 

silicon in differing positions and numbers, and with several different substituents. Our 

predictions suggest remarkably different conformational properties of several 

silacyclohexane families compared to cyclohexanes and other heterocycles, even more 

than for the 1-silacyclohexane family. A study of geometric parameters of all these 

silacyclohexane families and attempt to identify the dominating effects behind the 

conformational properties would be a highly interesting future study.

3. Investigating the structure, stability, magnetic resonance spectra and potential 

energy surfaces of the parent disilacyclohexanes:

Former graduate student Pálmar Guðnason, successfully synthesized the parent 

disilacyclohexanes and described the potential energy surfaces of the molecules. We 

contributed some additional calculations to this work.

The lowest energy pathways of chair-chair ring inversion were recalculated, using a 

reliable saddle-point locating technique implemented in Gaussian [28] and single-point 

energy calculations with M06-2X/pc-3 were carried out on stationary points.

Recent gas electron diffraction structural data of the disilacyclohexanes was compared to 

M06-2X/pc-2 calculated data. Calculations of enthalpies of formations of the molecules 

were carried out with interesting results.

We attempted simulation of the 1H NMR spectra of the parent disilacyclohexanes, that 

have proven difficult to analyze. While we succeeded in obtaining simulated spectra that 

by visual inspection appear to be very close to the measured spectra, the parameters of 

the spin systems suggest that there is still work to be done.
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Appendix 1.1

Basis set convergence of 1-fluoromethyl-1-silacyclohexane.

ΔE values (in kcal/mol) of the axial/equatorial equilibrium of 1-fluoro-1-methyl-1-
silacyclohexane. B3LYP calculations with different basis sets.

Basis setb

Pople basis sets
6-31G(d)

6-31G(d,p)
6-31++G(d,p)

6-311G(d)
6-311G(d,p)

6-311++G(d,p)
6-311++G(2d,2p)

6-311++G(3df,3pd)

cc-pVDZ
cc-pVTZ
cc-pVQZ

aug-cc-pVDZ
aug-cc-pVTZ
aug-cc-pVQZ

cc-pV(D+d)Z
cc-pV(T+d)Z
cc-pV(Q+d)Z

pc-0
pc-1
pc-2
pc-3

aug-pc-0
aug-pc-1
aug-pc-2
aug-pc-3

aTotal number of basis functions for describing 1-fluoro-1-methyl-1-silacyclohexane
bThe aug-prefix means the basis set is augmented with diffuse functions.

ΔE

-0.571
-0.562
-0.576
-0.482
-0.487
-0.602
-0.591
-0.528

-0.682
-0.499
-0.489

-0.704
-0.521
-0.498

-0.643
-0.491
-0.483

+0.363
-0.547
-0.474
-0.483

-0.719
-0.550
-0.502
-0.487

Nr. functionsa 

142
181
226
191
230
275
354
554

181
426
834

305
671

1242

186
431
839

102
181
426
954

147
305
671

1362
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Appendix 1.2

The basis set convergence of MP2/anZxix compared to M06-2X/pc-n for the 13-molecule 
test set in chapter 1.4.4.

The MP2/anZ  [85], [85] and M06-2X basis set convergence of ΔE values (in kcal/mol) for the axial/equatorial equilibirum of 
several cyclohexanes, tetrahydropyrans and silacyclohexanes.

Cyclohexanes

Methyl

Fluoro

Methoxy

Hydroxy

Tetrahydropyrans

2-Methyl

2-Fluoro

2-Methoxy

2-Hydroxy

Silacyclohexanes

Methyl

Fluoro

Methoxy

Hydroxy

Chloro

MAD

ME

MaxE

MP2/aDZ

-1.79

0.27

0.40

-0.08

-3.13

3.13

1.80

1.32

-0.28

0.29

0.41

0.18

0.6

0.57

0.46

0.68

MP2/aTZ

-1.70

-0.10

0.12

-0.38

-2.92

2.59

1.51

1.03

-0.18

0.10

0.28

0.08

0.77

0.25

0.22

0.37

MP2/aQZ

-1.73

-0.17

0.01

-0.49

-2.91

2.51

1.40

0.92

-0.18

0.00

0.16

-0.06

0.62

0.13

0.08

0.22

MP2/a5Z

-1.73

-0.20

-0.01

-0.50

-2.91

2.48

1.39

0.90

-0.13

0.11

0.30

0.07

0.64

0.14

0.12

0.24

MP2-CBS

-1.73

-0.23

-0.03

-0.52

-2.90

2.45

1.37

0.88

-0.14

0.05

0.23

-0.01

0.58

0.11

0.07

0.20

M06-2X/pc-0

-0.86

2.25

2.69

2.31

-0.52

6.57

5.93

5.48

0.74

-0.74

0.98

0.57

1.80

3.68

3.47

4.66

M06-2X/pc-1

-1.45

0.79

0.98

0.47

-2.32

3.81

2.55

2.09

-0.05

0.38

0.63

0.37

0.91

1.22

1.22

1.36

M06-2X/pc-2

-1.69

-0.14

-0.05

-0.45

-2.60

2.50

1.35

0.91

-0.08

0.20

0.29

0.10

0.63

0.19

0.19

0.23

M06-2X/pc-3

-1.70

-0.15

-0.12

-0.50

-2.59

2.46

1.31

0.87

-0.11

0.16

0.23

0.06

0.63

0.14

0.14

0.23

M06-2X/pc-4

-1.72

-0.16

-0.11

-0.50

-2.60

2.45

1.31

0.87

-0.10

0.17

0.24

0.06

0.64

0.14

0.14

0.24

xix Basis sets were mixed with aug-cc-pVnZ basis sets only used on O and F atoms, while cc-pVnZ basis sets were used on C and H 
atoms and cc-pV(n+d)Z used on Si atoms  [85], [85].
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Appendix 1.3

The basis set convergence of silylcyclohexasilane using cc-pVnZ and cc-pV(n+d)Z basis 

sets and functionals B3LYP and M06-2X. 

Calculations were carried out in order to see if the conformational energy difference of a 

six-membered ring with many second-row atoms, is dependent on using basis sets with 

tight d-functions (cc-pV(n+d)Z basis sets).

The difference in ΔE values using the cc-pVnZ and the cc-pV(n+d)Z basis sets is very 

small for this example and can safely be ignored.

It appears that the cc-pV(n+d)Z basis sets do not offer any improvement over cc-pVnZ 

basis sets for conformational analysis of our systems, even those containing many 

silicon atoms.

Effect of basis sets on the conformational energy difference of silylcyclohexasilane with B3LYP and 
M06-2X functionals. Values in kcal/mol.

B3LYP

cc-pVDZ
cc-pVTZ
cc-pVQZ

cc-pV(D+d)Z
cc-pV(T+d)Z
cc-pV(Q+d)Z

ΔE

0.912
1.111
1.144

0.913
1.106
1.143

M06-2X

cc-pVDZ
cc-pVTZ
cc-pVQZ

cc-pV(D+d)Z
cc-pV(T+d)Z
cc-pV(Q+d)Z

ΔE

-0.317
-0.234
-0.237

-0.311
-0.237
-0.240
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Appendix 2.1

NWChem 5.1 input file, used for the M06-2X/pc-n calculations in chapter 2.

START
MEMORY 1950 MB
echo
GEOMETRY
*cartesian coordinates*
END
DRIVER
tight
maxiter 150
END
DFT
xc m06-l
direct
END

BASIS spherical
* library def2-tzvp file /home/ragnarbj/def2-grunnar/
END
BASIS "cd basis" spherical
* library "Ahlrichs Coulomb Fitting"
END
TASK dft optimize

BASIS spherical
* library def2-tzvpp file /home/ragnarbj/def2-grunnar/
END
BASIS "cd basis" spherical
* library "Ahlrichs Coulomb Fitting"
END
TASK dft optimize

STOP
DFT
xc m06-2x
direct
tolerances tight
grid xfine
END
BASIS spherical
* library pc-2 file /home/ragnarbj/jensen/
END
TASK dft optimize

BASIS spherical
* library pc-0 file /home/ragnarbj/jensen/
END
TASK dft energy
BASIS spherical
* library pc-1 file /home/ragnarbj/jensen/
END
TASK dft energy
BASIS spherical
* library pc-2 file /home/ragnarbj/jensen/
END
TASK dft energy
BASIS spherical
* library pc-3 file /home/ragnarbj/jensen/
END
TASK dft energy


