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Erlendur Jónsson

i



Abstract
The HCl molecule is a very popular molecule for spectroscopic studies. At the Science Institute
of the University of Iceland, HCl has been studied for a few years with the REMPI (resonance
enhanced multiphoton ionization) technique. This technique enables the study of previously
unknown excited states.

Parallel to that research are the ab-initio calculations, where potentials of the excited states are
calculated. From the potentials it’s possible to find the spectroscopic parameters of each excited
state. Several excited states of the HCl molecule have been calculated.

Some calculations were also run for the HF molecule.
The capability to simply do useful calculations for excited states of molecules is fairly recent.

The method, which is used here, is the equation-of-motions (EOM) formulations for the coupled
cluster methods (CC).

Ágrip
HCl sameindin er vinsæl í rannsóknum með litrófsgreiningu. Sameindin hefur verið rannsökuð í
nokkurn tíma við Raunvísindastofnun Háskólans með REMPI aðferðinni (Resonance Enhanced
Multiphoton Ionization). Þessi aðferð gerir kleift að rannsaka áður óþekkt örvuð ástönd sameind-
arinnar.

Samhliða þessum rannsóknum eru ab-initio útreikningar, þar sem hægt er að reikna mættisferla
örvuðu ástandanna. Út frá þessum mættisferlum er hægt að reikna litrófsfasta hvers ástands fyrir
sig. Nokkur örvuð ástönd HCl sameindarinnar hafa verið reiknuð.

Einhverjir útreikningar voru einnig keyrðir fyrir HF sameindina.
Getan til að beita útreikningum einfaldlega á örvuð ástönd sameinda er fremur nýleg. Að-

ferðinni sem hér er beitt er equations of motion (EOM), sem er stækkun á coupled cluster (CC)
aðferðinni.
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The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated
to be soluble. It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too much computation.

Paul A. M. Dirac [1]

1 Introduction
Hydrogen halides are popular molecules to use in spectroscopic studies. They have been used in
the photochemistry research group of Ágúst Kvaran at the Science Institute of the University of
Iceland for some years now. The main focus has been on spectroscopic studies using the REMPI
spectroscopic technique. Recently, interest in the ab-initio side of these experiments has increased.
This thesis and, at the moment, one article by Kvaran, et al. [2], is a results of this interest.

The application of ab-initio calculations for these studies has three aims. One is aiding the
identification of states, i.e. what state corresponds to each peak in the experimental spectra since
there can be very many peaks in a REMPI spectra. Second is to make sense of ionization pathways
as they depend on potential-interactions between states. The third aim is to predict states that
haven’t been found yet or have been mislabeled.

Ab-initio calculations of hydrogen halides has a long history as hydrogen fluoride is often
used as a benchmark molecule [3] and since hydrogen chloride has a wealth of experimental
results, e.g. the work of Green et al. [4, 5, 6]. Some ab-initio work has already been done on HCl.
However, since HCl has eight more electrons than HF, ab-initio calculations are considerably
more challenging because of the computational complexity of the available ab-initio methods.
But nonetheless some work has been done on calculations for both molecules.

Let us focus on HCl. The oldest calculation on its excited states, that I’m aware of, were
done in 1980 by Hirst and Guest [7], which calculated the X1Σ+ ground-state and the following
excited states, a3Π, A1Π and t3Σ+, using configuration interaction. Bettendorff et al. did some
further calculations in 1982 [8]. Those calculations included the C1Π and F1∆ states. Previously
Bettendorff et al. did some multi-reference configuration interaction calculations on HF [9].

The only subsequent ab-initio work on the excited states of HCl to my knowledge is a very
recent article by Pitarch-Ruiz, et al. published this year [10]. The article only calculates vertical
excitation energies using the coupled cluster method.

Ab-initio methods that are capable of handling calculations of spectroscopic quality are
fairly expensive computationally. A lot of work in recent years has been done to both simplify
calculations and segment them to enable parallelization. Modern computational chemistry is
getting more inexpensive because of better computers, algorithms and programs. There are still
plenty of difficulties entailed in these high-performance computings [11], but these hurdles can be
overcome.
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One way which is used here at the University of Iceland, is using a Beowulf cluster1. They
enable small universities to run high-level ab-initio calculations such as the ones described in this
thesis.

In the future, it will be possible to use graphics processing units (GPU), the video cards,
of computers to run calculations. Yasuda published this year two articles using GPUs in quan-
tum chemistry, both to evaluate two-electron integrals [12] and to accelerate density functional
calculations [13].

2 REMPI
Resonance enhanced multi-photon ionization is a spectroscopy technique where multiple photons
are used to probe the physical properties of molecules. As multiple photons are absorbed in this
spectroscopic technique, the usual selection rules are used multiple times. This gives rise to spectra
that are not viewable with the more normal single-photon methods. Hence more spectroscopic
information can be found with this technique.

A number of molecules has been studied using this technique, such as acetylene, [14], wa-
ter [15, 16] and of course a plethora of hydrogen halides. Our research group, the Kvaran
photochemistry research group, has looked at a number of them, such as HCl, DCl, HBr, HI
[17, 18, 19, 20, 21, 22, 23]. Interestingly in the process of studying HF, Kvaran, et al. discov-
ered that the hydrogen bonded complex of (HF)2 can be seen in REMPI-TOF experiments [24].
Recently some ab-initio calculations have been incorporated into the analysis of REMPI-TOF
experimental results [2].

Other groups have used other REMPI techniques in their studies of HCl, such as the "mass-
resolved" REMPI technique of Chichinin et al. [25], which looks specifically at the photodissocia-
tion and photoionization processes of HCl.

2.1 Simulation of REMPI spectra
As can be seen in [26] and [19], it is quite simple to find the line positions of rovibrational lines,
as they are given with (entirely in cm−1)

νJ′,v′←J′′,v′′ = ν0
v′,v′′ + ∆ĒJ′,J′′ (1)

where ν0
v′,v′′ is the band origin of a vibrational band defined as:

ν0
v′,v′′ = T ′e +

{
ω′e(v

′ +
1
2

) − ωex′e(v
′ +

1
2

)2
}
−

{
ω′′e (v′′ +

1
2

) − ωex′′e (v′′ +
1
2

)2
}

(2)

and T ′e is the excitation energy from the bottom of the ground state potential to the bottom of
the excited state potential. ω′′e and ω′e are the vibrational frequencies of the ground state and
excited state, respectively. So the ′′ marks the ground state and ′ marks the excited state. ωexe

1A Beowulf cluster is a group of inexpensive computers that are used in high-performance parallel calculations.
Beowulf is from the eponymous Old English poem, he slew the monster Grendel.
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is the anharmonic constant and v is the vibrational quantum number. ∆ĒJ′,J′′ is the difference in
rotational energies.

∆ĒJ′,J′′ is a function of the rotational constants of these non-rigid linear rotors2 (B′, B′′,D′,D′′)
and the rotational quantum numbers (J′, J′′) as can be seen:

∆ĒJ′,J′′ = (J + ∆J)(J + ∆J + 1)B′ − (J + ∆J)2(J + ∆J + 1)2D′ − J(J + 1)B′′

+ J2(J + 1)2D′′ (3)

In this equation, J = J′′ and ∆J = J′ − J′′.
These equations reveal the line positions of the REMPI spectra, but they don’t show the line

intensities (Irel). However, that can be attained by using

Irel = CS ∆Ω exp
(
−Ē(J′′)hc

kT

)
(4)

which is the product of the Boltzmann distribution and the n-photon absorption strength, S ∆Ω. C
is a factor that is independent of the rotational quantum numbers J′ and J′′:

C(v′, v′′) = KF(v′, v′′)Pnσ1(v′) (5)

where F(v′, v′′) is the Franck-Condon factor of the v′ ← v′′ transition, K is a parameter that
depends on geometric and electronic structure and sample strength of the molecule, and Pn is
laser power over n photons [17].

The REMPI absorption strength, S ∆Ω, was originally derived in 1976 by Bray and Hochstrasser
[27] for the two-photon case. Halpern et al. further developed this theory to include three-photon
excitations [28]. The algebraic form of S ∆Ω is fairly complex as it depends on Clebsch-Gordan
coefficients and number of photons. A simplified version, where the ground-state is assumed to
be a Σ-state was demonstrated by Kvaran et al., first for three-photons [19] and then for two- and
three-photons [21].

3 Ab-initio calculations
Many methods exist for ab-initio calculations of both, ground and excited states. Hartree-Fock
(SCF3) is ever so useful, originally proposed by Hartree and later refined by Fock. It remains
popular to this day, especially as a starting point for more advanced methods as the full variational
calculations of many methods would be even more expensive if it weren’t for a fairly good guess
for a starting point.

The main drawback of the Hartree-Fock method is the complete lack of electron correlation
so a lot of new methods have been designed with this correlation in mind. They are usually

2The difference between the rigid and non-rigid is the inclusion of the centrifugal distortion constant which tries
to account for bond stretching at high rotations.

3Self-consistent field is often used instead of Hartree-Fock as HF can easily be confused with hydrogen fluoride.
Though sometimes in literature, you can see FH for hydrogen fluoride
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referred to as post Hartree-Fock methods. These methods are e.g. configuration interaction (CI),
Møller-Plesset perturbation theory 4 (MPn, n = 2, 3, . . .) and coupled cluster (CC). All of these
methods are more accurate than Hartree-Fock, but then again, they are a lot more computationally
expensive.

It is assumed that solutions to the Hartree-Fock can be written as a single Slater determinant.
These Slater determinants are defined in a orbital basis χ j(x j)5 for electrons xl:

|Φi〉 = Φi(x1, x2, . . . , xN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2) · · · χN(x2)
...

...
...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣ . = |χ1(x1)χ2(x2) · · · χN(xN)〉

(6)
The Slater determinant is a simple way to get an antisymmetric wavefunction, so it fulfills the
condition:

Φi(. . . , xi, . . . , x j, . . .) = −Φi(. . . , x j, . . . , xi, . . .) (7)

so it fulfills the Pauli exclusion principle.

3.1 Many-body perturbation theory
The many-body perturbation theory is a correction to the Hartree-Fock energies by perturbation.
The Hamiltonian of the MPn has an additional term

Ĥ = Ĥ0 + λV̂ (8)

where V is a small perturbation and λ is an arbitrary parameter. H0 is the Fock operator, so the
calculations start with known eigenvectors and eigenvalues. The V̂ is the electronic correlation
potential.

V̂ = Ĥ − F̂ (9)

The wavefunction and energies are then expanded into a power series. The highest power in the
series is n, and so we have many-body perturbation theory of the n-th order (MPn). MP2 was
originally developed by Møller and Plesset in 1934 [29], where it was also demonstrated that the
contribution of the MP1-energy is zero (i.e. the perturbation is zero) so the HF energy is the same
as the total MP1 energy. For more information about the formulation, see Helgaker, et al. [30] or
Szabo and Ostlund [31].

Unlike CI and CC, the accuracy of MPn does not necessarily increase with an increase
in n. Hirata and Bartlett show this clearly with calculations on hydrogen fluoride, with MPn,
n = 2, . . . , 20. [32]

4Also known as the many-body perturbation theory, which fortunately has the same abbreviation.
5It is not necessary to have N orbitals for N electrons, so Φi could be |χi · χk〉.
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Big-O notation Input
O(N) 1 2 10

O(N2) 1 4 100
O(N6) 1 64 1,000,000
O(N!) 1 2 3,628,800

Table 1: The effect of increasing the size of an input, e.g. the number of atoms, by a factor of 2
and 10, on computer time. O(N6) is the computational complexity of CCSD.

3.2 Configuration interaction
Configuration interaction (CI) is one of the more powerful post Hartree-Fock methods but it has
a fairly high computational complexity. If Φ0 is a solution to the Hartree-Fock equations (it’s a
Slater determinant). Then the exact (non-relativistic) wavefunction, Ψ, is a linear combination of
Slater determinants as follows:

|Ψ〉 = c0|Φ0〉 +
∑

ar

cr
a|Φ

r
a〉 +

∑
a<b
r<s

crs
ab|Φ

rs
ab〉 +

∑
a<b<c
r<s<t

crst
abc|Φ

rst
abc〉 + . . . (10)

where |Φr
a〉 is a singly excited Slater determinant. One orbital in it is different from Φ0. So the

|Φrs
ab〉 is a doubly excited Slater determinant and so on. In a full configuration interaction (FCI)

calculation, all the Slater determinants, Φ0 and |Φr...
a...〉, are included in the calculations. This is

unfortunately prohibitively expensive to calculate as the computational complexity is O(n!), so
it is very impractical in use. On the other hand, it’s very handy in the benchmarking of other
quantum chemistry methods as it gives the exact non-relativistic solution, provided that you use a
large enough basis.

Computational complexity is usually described by the big O notation, such as O(n!). This
means that the dominant factor of the calculations grows factorially with increasing input. Other
factors can be huge but as n→ ∞, this will become dominant. Table 1 explores this in detail.

The configuration interaction equation (10) can be simplified by truncating it. One can, for
example, assume that only singly and doubly excited determinants are relevant to the calculations.
Hence the equation becomes:

|Ψ〉 = c0|Φ0〉 +
∑

ar

cr
a|Φ

r
a〉 +

∑
a<b
r<s

crs
ab|Φ

rs
ab〉 (11)

This method is called the configuration interaction singles and doubles (CISD). It is variational6,
but it is not size-extensive. [31]

Size-extensivity is the property of some quantum chemistry methods, where two distinct
non-interacting systems can be calculated separately, i.e. the calculations give the same result
when system A and B are calculated simultaneously and seperate. Then the energy of the total
system would be [30]

EAB = EA + EB (12)
6A variational method is a method where there is a lower bound, which is the solution. So it is possible to try use

trial functions and attempt to minimize them.
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CI can be extended to calculate excited states. [33] That method is referred to as CI-Singles.
The method creates excited states by replacing an occupied spin-orbital with a virtual spin-orbital.
This is then used to create singly excited determinants. This method does not handle electron
correlation properly, so its handling of excited states can be very uneven, as the amount of electron
correlation in each state can vary. [34] It could be called excited state "Hartree-Fock".

3.3 Coupled cluster
Coupled cluster is another post Hartree-Fock methods and possibly one of the more important
ones. It’s application on quantum chemistry problems was originally developed by Čižek in 1966.
[35] Coupled cluster assumes that the wavefunction, |Ψ〉 of a molecule can be written as

|Ψ〉 = eT̂ |Φ0〉 (13)

where |Φ0〉 is a trial wavefunction (Slater Determinant), usually implemented as the converged
Hartree-Fock wavefunction of the molecule in question. T̂ is the excitation operator

T̂ =

Nel∑
n=1

T̂n (14)

T̂n is the n-fold excitation operator, which expresses all n-fold excitations, so T̂1 is the operator
of all single excitations. The size of the calculations with this operator depends entirely on the
number of orbitals which it effects, so T̂1 would tend to∞ as the basis tends to∞. This finite sum
has a upper bound of terms, i.e. the number of electrons in the molecule, Nel, as you cannot excite
more electrons than are in it. However, that’s impractical because of the computational complexity,
so the sum is usually trunctated to a few terms. This excitation operator can be visualized, as is
seen in figure 1.

One version of coupled cluster theory is the CCSD method, which is an acronym for coupled
cluster singles and doubles, so the T̂n is:

T̂n = T̂1 + T̂2 (15)

and CCSDTQ, coupled cluster, singles, doubles, triples and quadruples would have the excitation
operator:

T̂n = T̂1 + T̂2 + T̂3 + T̂4 (16)

As this is a convergent sum, it is possible to increase the accuracy with each additional excitation
operator term, albeit with diminishing returns. Hirata and Bartlett demonstrate this [32], with
calculations where FH, H2O and F− are used as test cases. In their article excitations from singles
to octuples are used, whereas the octuple excitation is formally exact as each molecule has eight
electrons. That corresponds to a full configuration interaction calculation on the molecules.

Unlike truncated CI calculations, such as CISD, the corresponding CCSD calculation are size-
extensive, making coupled cluster more preferable in all thermodynamic calculations. Additionally
coupled cluster calculation are, depending on choice of a reference wavefunction, size consistent.
However CCSD is not a variational method.
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|Φ0〉 T̂1 T̂2

Figure 1: This is a conceptual drawing of the effect of the T̂1 and T̂2 operators on a |Φ0〉 wave-
function. This drawing ignores electron spin entirely. Note that the upper configuration of the T̂1

operator is the same as the lower left corner of the T̂2 operator. One might even naively assume
that this demonstrates the size-extensivity of the coupled cluster method, far from it, this is similar
to the configuration method. The difference is the exponential in equation 13 which is the key to
the size-extensivity of the CC method [30].

One inherent problem with this approach is the computational complexity of each additional
excitation operator as CCSD has O(n6), CCSDT O(n8), CCSDTQ O(n10), and so forth. [36] So it
follows that we either need some further approximations or to confine ourselves to very small
molecules despite the so called Moore’s Law of the semiconductor industry.7 One method that’s
often called the golden standard of quantum chemistry is CCSD(T), the T within parentheses
is an approximation of the triple excitation operator and is included via perturbation. But the
computational complexity of CCSD(T) is O(n7), so it’s just in the middle of CCSD and CCSDT.
Interestingly, in some cases, one sees better results from CCSD(T) than from CCSDT. For some
molecules CCSDT isn’t even enough, e.g. ozone, O3, seems to require quadruple excitations. [37]
Ozone has a good amount of static correlation8, so a single Slater determinant does not handle
its ground-state properly. This can be remedied by using a multi-reference method9, though the
renormalized methods, mentioned later in this thesis aim to fix this [40]. Further developments
have included CCSD(TQ f ) which extends CCSD(T) with pertubative quadruple excitations with a
factorization approximation. This approach has the same computational complexity as CCSD(T)
[41].

One key disadvantage of the coupled cluster methods is the fact that the methods don’t handle

7The amount of transistors that can be placed on an integrated circuit doubles every 18 to 24 months. Though this
is not law, but an observation of a trend this has held true for more than four decades.

8Static correlation (also known as near-degeneracy correlation) is the long range part of electron correlation,
which can be though of as the effect of molecular dissociation on electrons. [38]

9See Bartlett [39] for an introduction into multi-reference calculations.
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non-equilibrium bond lengths well. Some recent developments have focused on fixing that
disadvantage.

One development was the Method of Moments CC or MMCC. Its basic idea is to correct
a CC calculation with a non-iterative correction δ. This correction is an attempt to get the FCI
energy.[42] Special cases of this method are the renormalized coupled cluster methods. One of
these special cases is the completely renormalized CCSD(T) (CR-CCSD(T)) method. It can give
better results than CCSDT for large internuclear distance, Piecuch, et al.[3] look at the application
of that method to remedy the deficiencies of a single-reference coupled cluster method with
relation to the vibrational spectra of HF. Unfortunately these methods are not size-extensive and
thereby lose one of the more important advantages of the coupled cluster theory.

However, there are attempts underway to correct this flaw of the renormalized methods. One
result of this, is the development of the locally renormalized CCSD(T), LR-CCSD(T), method
[43, 40] which is an attempt to regain the size extensivity property of the normal CCSD(T)
method.

Kowalski and Piecuch [44] look at the dissociation of the N2 triple bond, which is one of the
classic problems to tackle, because of the significant complexity of addressing the triple bond
itself. It usually requires a multi-reference calculation.

Further improvements to handle systems that aren’t at equilibrium, e.g. the potential energy
surface of explosives, especially the reaction mechanism of the explosive process, have resulted
in the ΛCCSD(T), [45, 46]. The authors of [45] explore a transition state of the explosive RDX10.

There have also been efforts in reducing the computational complexity of coupled cluster
methods, e.g. the natural linear scaling coupled cluster method [47]. However, that method does
not simplify the calculations when you have a small molecule, as this is a method where one
tries to divide the molecule into smaller parts, similar to a unit of a polymer is representative of
the whole. This means that larger molecules can be tackled, provided that they have the correct
structure for this method.

Hence, one can say that the coupled cluster method is very powerful, and has even been used
in modeling artificial atoms, i.e. quantum dots [48].

For a comprehensive review of this theory, see Bartlett and Musial [49] and Helgaker et al.
[30].

3.4 Basis sets
The selection of Gaussian basis sets is a fairly complex issue as the number of available basis sets
is large with all kinds of uses and logic behind them. It is important to select carefully. A review
by Davidson and Feller [50] shows the rationale behind selection of basis sets.

Currently the correlation consistent basis sets [51, 52] are a very popular set of bases, as they
are fairly accurate and it is easy to get better results with them because of their systematic method
of construction. This even enables the use of extrapolation to approximate the energy values at
the complete basis set limit.

10RDX is also known as cyclonite. Its IUPAC name is 1,3,5-trinitroperhydro-1,3,5-triazine 1,3,5-trinitro-1,3,5-
triazacyclohexane.
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If we look at the correlation consistent basis sets, the smallest basis set in it is cc-pVDZ. cc-
pVDZ is an acronym for correlation consistent-polarization valence double zeta. The multiplicity
of zeta is a measure of the size of each basis, which goes in most cases from double to sextuple.
These basis are usually referred to by their acronyms, cc-pVnZ, (n = D,T,Q,5 and 6).

The zeta of these correlation consistent basis sets is a measure of how many s orbitals are
defined in each basis set. So for the hydrogen atom, cc-pVDZ has [2s,1p], cc-pVTZ [3s,2p,1d],
cc-pVQZ [4s,3p,2d,1 f ] and cc-pV5Z [5s,4p,3d,2 f ,1g]. However this is not applicable to all basis
sets.

As good as these basis sets are, they aren’t capable of handling some calculations as they
lack the necessary diffuse functions that are needed. If we looked at calculations involving e.g.
fluorine, the cc-pVnZ basis sets are unable to handle the very electronegative atom. To remedy
this, it’s possible to get an augmented version of the basis sets [53]. They are usually referred
to as aug-cc-pVnZ (n = D, T, Q, 5 and 6), similar to the cc-pVnZ basis sets. The more diffuse
functions enable calculations with electron polarizabilities and since they are less biased towards
the ground state, they enable better excited state calculations [54]. So for size comparison: the
augmented version of the basis for hydrogen, aug-cc-pVDZ has [3s,2p], aug-cc-pVTZ [4s,3p,2d],
aug-cc-pVQZ [5s,4p,3d,2 f ] and aug-cc-pV5Z [6s,5p,4d,3 f ,2g].

When further accuracy is needed, it’s possible to add functions to treat core-core and core-
valence correlation effects [55]. This results in the aug-cc-pCVnZ basis sets, where C is for core.
This unfortunately overestimates the core-core correlation energy so the weighted core valence
basis sets is the result from taking this into consideration [56].

Other systematic basis sets exist, such as the polarization consistent basis sets of Jensen
[57, 58, 59, 60, 61, 62]. These basis sets are usually referred to as pc-n (n = 0, 1, 2, 3 and 4). This
n is measure of size similar to the n in the correlation consistent basis sets. In the pc-1 basis, the
hydrogen atom is [2s,1p] and pc-2 basis is [3s,2p,1d], so the polarization consistent basis sets
have a dissimilar numbering scheme from the correlation consistent basis. These basis sets have
been optimized for use in DFT calculations.

It has a similar structure as the correlation consistent basis sets and it’s also possible to
extrapolate results from calculations with them to a complete basis set (CBS) limit. Shahbazian
and Zahedi demonstrate this clearly in their article [63], which looks at calculations at the SCF-
level. Kupka and Lim [64] in turn look at calculations at the MP2 and CCSD(T) level. They also
look at spectroscopic parameters and their basis set dependence. There exists also an expansion
of the basis sets, which additional tight s, p, d and f function, these are the pcJ-n basis sets [65].
This expansion is specifically designed to calculate spin-spin coupling constants with DFT.

Figure 2 shows how the CBS limit is reached by the choice of both basis and method.

3.5 Excited states
3.5.1 Time dependent density functional theory

Density functional theory (DFT), is one of the most common theories used today in quantum
chemistry. This is because of it’s low computational complexity, O(n4),11 which makes it applica-

11This does depend on the functional, as they add all kinds of calculations in the mix.
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Figure 2: The effect of increasing size of an arbitrary basis set and the level of calculation. By
going from the upper left corner down to bottom right corner, the results of calculations are
improved, however the cost is great. Note that the FCI calculation with an∞Z basis set give the
exact non-relativistic energy.

ble to fairly large problems. It relies upon reformulating the Schrödinger equation, so that it’s a
function of the electron density, ρ(r),

ρ(r) =

N∑
i=1

|ψi(r)|2 (17)

This equation (and others) were originally published by Hohenberg and Kohn [66] and form the
core of DFT as they show that for a ground-state density ρ0(r), it is possible to calculate the
corresponding ground-state wavefunction Ψ0(r1, . . . , rN). Despite having a proof of existence of
that relation, we do not have a constructive proof, so we are forced to use numerical methods to
approximate the solution.

Kohn and Sham introduced the usage of a noninteracting (single-body) [67] system in a
potential vs(r). This potential was chosen to be

vs(r) = v(r) + vH(r) + vXC(r) (18)

where v(r) is a potential, vH(r) is the Hartree potential

vH(r) =

∫
dr′

ρ(r′)√
(r − r′)2

(19)

and vXC(r) is the exchange-correlation (XC) potential. It’s supremely important as it gives all
of the many-particle effects, yet unattainable as there doesn’t exist an exact functional for it.
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However there do exist many approximate functionals, such as LDA, GGA [67] and B3LYP [68]
which has seen great use in quantum chemistry as it gives impressive results in geometric structure
optimization despite it’s flaws in energies. An introduction to the density-functional theory can be
found in Parr’s and Yang’s book. [69]

Despite the many advantages of DFT, it doesn’t handle excited states, so time-dependent
density functional theory (TD-DFT) was formulated. [70] TD-DFT tries to solve the time-
dependent Schrödinger equation with the DFT formalism. It is a powerful theory, applicable to
many kinds of calculations. One such application is the calculation of the interaction between a
laser pulse and acetylene. One disadvantage is the fact that Rydberg states tend to be unbound.
[71]

The exchange-correlation potential of the ground-state has inaccuracies, which in turn, gives
wrong eigenvalues. These eigenvalues are influenced by the behaviour of the approximated
Kohn-Sham potentials for they decay exponentially, instead of (−1/r). Some functionals exist to
correct this, i.e. asymptotically correct functionals. But this means that this thesis will focus more
on other methods. For more insight into TD-DFT look at a review by Elliott et al. [72]

3.5.2 Equation-of-motion

The coupled cluster method can be extended to handle excited states. One such extension is the
equation-of-motion coupled cluster method, EOM-CC. It has similar characteristics as the normal
coupled cluster method, i.e. size-extensive. [30] The usual usage of an EOM-CC method is to
calculate first a CC ground-state and then try to find the corresponding excited state(s). This can
be seen from

|Ψx〉 = R|Ψg〉 (20)

where Ψx is an excited state and Ψg is the ground state. Since this ground-state is a CC wavefunc-
tion, it can be expressed algebraically

|Ψg〉 = eT̂ |Φ0〉 (21)

which is the same as equation 13. R is an excitation operator, similar to CI excitations,

R = R0 + R1 + . . . (22)

where
Rn =

1
n!2

∑
rabc···

i jk··· a
†ib† jc†k · · · (23)

For further details on the mathematics see both Stanton and Bartlett [73] and Bartlett and Musial
[49].

If the EOM-CC calculations are to be practical, both the ground state T̂ and excited state R
excitation operators need both to be truncated. They are usually truncated to the same level, e.g.
CCSD has a corresponding EOM-CCSD for excited states, where

R = R0 + R1 + R2 (24)
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Each method does have a similar computational complexity as its corresponding ground-state
method, i.e. EOM-CCSD and CCSD, both have O(n6). Interestingly R and T̂ do not need to
be truncated at the same level. The authors of [74] go through those possibilities for CH+ and
CH2. This article shows in turn the effect of increasing the level of the method, i.e. going from
EOMCCS to EOMCCSD to . . . to EOM-CCSDTQPH which is a FCI calculation for CH2 (when
the lowest orbital is frozen).

Hirata has incidentally developed a general method to develop parallel programs which
calculate EOM-CC up to an arbitrary level. The method is encapsulated in a program called the
Tensor Contraction Engine [75] which then handles all of the parallelization and memory details.
It even exploits symmetries to minimize some calculations. NWChem has built in support for
EOM-CCSD, EOM-CCSDT and EOM-CCSDTQ because of the program. [76]

However, to be practical, one should limit oneself to only a few excitations, otherwise one
would have to wait for too long. EOM-CCSD and EOM-CCSD(T) are two methods that are
practical for a number of calculations and have a tolerable computational complexity. However,
they do not address excited states where two-electron transitions dominate so few methods have
been designed to take care of this. An example is the CCSDt/EOM-CCSDt method, which uses
triple excitations within active orbitals. A system that requires this treatment is the beryllium
trimer, Be3 [77].

Excited-state calculations have similar issues to ground-state calculations, such as the problem
of multi-reference determinants. This problem can arise quite naturally with small molecules.
For example nitrogen, can be handled fairly well close to the equilibrium bond length with
single-reference methods, but as the bond is stretched more, the multi-reference character takes
over. Larsen et al. [78, 79] have done a FCI benchmark calculation of N2, utilizing also coupled
cluster methods, including response theory calculations, to calculate excited states. They show
in their article that as the internuclear bond length increases, the results of the CC methods get
worse, i.e. compared to the FCI calculations.

Multi-reference calculations are inherently more complicated to implement and use compared
to single-reference calculations, some efforts have been focused on trying to get a multi-reference
character into single-reference calculations, i.e. try to have your cake and eat it too. One of
these attempts is the application of the method of moments to EOM-CC, similar to its application
in ground-states. The main idea of the MM-EOM-CC method is to use a non-iterative energy
correction to correct an EOM-CC energy to approximate the exact FCI energy. These ideas were
developed by Kowalski and Piecuch [80] and then developed by them [81]. However, the methods
that they developed first are not entirely comparable with the more common EOM-CC methods as
they use a higher level of R than T̂ .

This method of moments theory was developed further and yielded the completely renor-
malized equation-of-motion coupled cluster singles, doubles and perturbative triples, CR-EOM-
CCSD(T) [82]. This method corresponds to the CR-CCSD(T) ground-state method [42]. The
CR-EOM-CCSD(T) method is capable of handling both excited states which have strong double
excitations and states with multi-reference character. This includes molecules such as N2, C2,
O3 [83] and the CH-radical [84], results of course vary, but they are better than with the more
common EOM-CCSD method.

One caveat with the MM-EOM-CC methods, is that they are not size-extensive, so some
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work has gone into fixing that liability. One method which results from that work is the locally
renomalized equations of motion coupled cluster singles and doubles method, LR-EOM-CCSD of
Kowalski [85]. That method alleviates some of the single-reference problems of EOM-CCSD, but
not all of them.

4 Ab initio REMPI spectra
The results of coupled cluster and EOM-CC calculations are unfortunately not directly comparable
with experimental results for they are energies and excitation energies as a function of bond length,
i.e. potentials. As the ab initio calculations are neede for experimental purposes, this is not an
optimal scenario. Hence we need to compare the experimental spectra with either the calculated
spectroscopic constants or simulated spectra.

The two methods, that are used in this thesis, are to fit the potentials with a function and to
use a numerical method called Fourier grid Hamiltonian.

4.1 Fits
Igor Pro 6.03 was employed to fit the potentials with a Morse potential function

U(r) = Te + De

(
1 − e−β(r−re)

)2
(25)

The resulting parameters, the excitation energy from a lower potential to this one (bottom of
the potential well), Te, the dissociation energy (from the bottom of the potential well), De, the
empirical constant, β, and the equilibrium bond length, re, can easily be used to calculate the more
convential spectroscopic parameters of diatomic molecules, such as the vibrational frequency

ωe =
β

0.12177

√
De

µ
(26)

the anharmonic constant

ωexe =
ω2

e

4De
(27)

the rotational constant

Be =
~2

8π2µr2
e

(28)

the centrifugal distortion constant

Dv =
4B3

v

ω2
e

(29)

µ is the reduced mass of the molecule, given by

µ =
m1m2

m1 + m2
(30)

13



where m1 is the mass of atom 1, i.e. hydrogen, and m2 is the mass of atom 2, i.e. chlorine.
To find the vibrational bond length 〈rv〉, one finds the weighted average of the vibrational

wavefunction:

〈rv〉 =

∫ ∞

0
rψv dr =

∑∞
i=1 ri|ψi|

2∑∞
i=1 |ψi|

2 (31)

and the rotational constant of each vibrational level:

Bv =
~2

8π2µ〈rv〉
2 (32)

4.2 Fourier Grid Hamiltonian
The Fourier Grid Hamiltonian is a numerical method which uses a potential at a discrete set
of grid points [86]. The potential which is used, can be, for example, a Morse potential or the
resulting calculations from some ab-initio method. This method gives the bound state eigenvalues
and eigenfunctions, which are the vibrational levels and wave-functions. The Hamiltonian matrix
elements were first derived by Marston and Balint-Kurti [86] and subsequently extended by
Balint-Kurti, et al. [87] to use a Fast Fourier Transform to handle better larger grid sizes.

We look at a potential, V(x) on a grid of xi-values, with a fixed grid spacing of ∆x, this grid
has an even number of points, nx. Let’s define n = nx/2. The Hamiltonian matrix elements are

Hi j =
1

∆x


 n−1∑

l=1

2 cos
(
l2π(i − j)

nx

)
· Tl

 + (−1)(i− j)Tn

 + V(xi)δi j (33)

where

Tl =
~2

2µ

(
l

2π
nx∆x

)2

(34)

After this matrix is constructed, the only thing left is to find its eigenvectors and eigenvalues.

4.3 AIREMPICalc 1.0
Ab-initio REMPI Calc is a Python program, more easily referred to as AIREMPICalc. It is
designed to enable simple calculations and analysis on the ab-initio potentials, since the results of
tables 6 and 9, which were first published by Kvaran, et al. [2], are extremely labor intensive.

They required a workflow, where one needed first to fit a potential with a Morse curve (Te,De,β
and rE) with the Igor Pro (versions 4.01 and 6.03 were used), these numbers were then moved
into Microsoft Excel (part of Microsoft Office 2004) and used to calculate the missing numbers
(ωe, ωexe) for evaluation with a custom set of macros for Igor Pro called FCF 1 [2]. These macros
generated the vibrational wavefunction at a set of bond lengths. The wavefunction was then
copied into Excel to calculate the vibrational bond length of each vibrational level with equation
31. After that it’s straigthforward to calculate Bv with equation 32.

This workflow is error-prone and time-consuming, hence I wrote AIREMPICalc to take care
of it. AIREMPICalc is both a program and a set of utility modules that handle most of the work.
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This program and its modules are written in Python (version 2.5.1), using SciPy (version 0.6.0)
and NumPy (version 1.0.4). 12 SciPy is a package for scientific programming with functions that
e.g. fit data and integrate numerically. NumPy is a package that implements N-dimensional arrays
and numerical operations with them.

The utility modules are:

potent Handles loading of potentials, can also create a Morse potential function from spectroscopic
parameters.

fitter Fits an ab-initio potential curve with a function, such as the Morse potential.

fgh Implements the Fourier Grid Hamiltonian (FGH), using both a copy of FGHEVEN of Balin-
tkurti, et al. [87] and a re-implementation of it in Python. This module, both has an atomic
unit version and one in Å and cm−1.

spec Calculates rv, Bv, ωe and ωexe from the FGH results.

Since Python has an interactive interpreter, it is possible to use all of the module functionality
without having to run the AIREMPICalc program. However, the program does nearly all of the
work for you, since the only thing you need to do, to use it, is a setup file and a potential in a text
file.

The AIREMPICalc program does the following:

1. Loads the potentials that have been calculated with the methods described in section 3.

2. If it is supposed to fit the potentials, then it fits (section 4.1) and creates a Python function
from the results.

3. If it should interpolate the potentials, then it creates a Python function that uses a spline to
interpolate the potential curve.

4. Uses the Fourier grid hamiltonian method (section 4.2) and a Python function to calculate
the vibrational wavefunctions and vibrational levels.

5. Calculates the vibrational bond lengths, rv, (equation 31) and rotational constants, Bv

(equation 32). Then it fits the vibrational levels to find the anharmonic vibrational constant,
ωexe. It also calculates the vibrational frequence ωe

6. It should then use the theory of section 2.1 to calculate the REMPI spectra. However, this is
not implemented yet.

12SciPy and NumPy are both open source and can be downloaded, free of charge, at http://scipy.org/
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5 Results
Most program packages support only few point groups. One group, that wasn’t supported in the
programs, that were used in this thesis, is the C∞v group. To be able to run all the calculations, a
subgroup of C∞v was used, the C2v group. This heavily impacts the excited state calculations, as
the excited states are grouped by symmetry. By looking at the a1, a2, b1 and b2 symmetries, it is
possible to see that a1 = Σ, a2 = ∆ and b1 = b2 = Π.

5.1 HCl
The calculations of HCl were run on Jötunn, a computer cluster at the University of Iceland,
owned by the University Computing Service13. They were done with ACESII [88] and NWChem
(both version 5.0 [89] and version 5.1 [90]) program packages.

The general procedure was to calculate the ground state and excited states at a set of bond
lengths. This yields of course a set of potential curves, a subset of which can be seen in figure 3.
Both ab initio programs give their ground state results in atomic units, i.e. hartree, so the units
need to be converted to cm−1 and then shifted so that the minima of the ground state potential is
0.0 cm−1.

When NWChem runs EOMCCSD calculations, it calculates the excitation energy, in eV, as
opposed to the energy of the state. This means that, to calculate the excited state potentials, one
needs first to convert the excitation energy into cm−1, Eexcitation(r) and then add it to ground state
potential, Ugs(r). For a bond length, r0, the excited state potential would be:

Uex(r0) = Ugs(r0) + Eexcitation(r0) (35)

The alternate setup are the CR-EOMCCSD(T) calculations of NWChem and EOMCCSD
calculations of ACESII, where all results are in hartrees. One only needs to convert the energies
into cm−1 and shift all the potential curves so that the ground state has a minima of 0.0 cm−1.

The bond length sets are usually centered on r = 1.27 Å. One problem with the bond length
sets is that sometimes, one particular bond length simply doesn’t work, i.e. I am unable to get the
programs to converge to a solution for a given calculation method, bond length and basis. Therefor
it’s sometimes necessary to tweak a lot of program settings manually to be able to calculate a
particular state. The sets often have gaps in them, either states or entire bond lengths. This can be
seen in figure 3.

Interestingly these convergence problems seem to depend on the basis, method and the
computer the calculation is run on. For instance, should one bond length prove to be stubborn
on computer A, you could simply try the calculations on another machine. I have tried this by
moving a set of calculations that didn’t work on Jötunn to my laptop, where they did work. This
is suggestive that it is due to some numerical instabilities, for example in the linear algebra library.
The resources to eliminate all the other possible cause were not available.

13Reiknistofnun Háskóla Íslands, RHÍ.
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Figure 3: HCl potentials where the ground state, X1Σ+, was calculated with CCSD/aug-cc-pVQZ
and the excited states, F1∆2 and C1Π were calculated with CR-EOMCCSD(T)/aug-cc-pVQZ.

5.1.1 FGH implementation

As the Fourier Grid Hamiltonian (FGH) is a numerical method, one needs to run comparisons to
find out what its parameters should be to get results that are converged. The grid, that’s used in
the FGH method, which is very important, has three variables. The start point, rmin, end point,
rmax, and number of grid points, nx.

Since the most important part of the potential is around the equilbrium bond length, re, it
would be prudent to focus on the area surrounding it in the potential curve. One should focus
on the area bounded by rmin < re < rmax, but if we look first at the number of grid points and it’s
effect on the results. In figure 4, rmin = 0.8re, rmax = 2.0rE and re = 1.27Å. In this figure, it is easy
to see the effect of nx on the resulting vibrational frequency. The figure shows the ratio

Ratio =
ωe calculated

ωe experimental
=

ωe calculated

2990.946 cm−1 (36)

as a function of nx. It’s quite clear that increasing the number of points increases the accuracy of
the calculation. However, the quality of the final results (when nx is very large) depends highly on
which potential curve is used.

Let’s look similarly at the other spectroscopic constants, i.e. as a ratio of calculated to
experimental, Bv, rV , ωe and ωexe in figure 5. Interestingly the anharmonic vibrational constant,
ωexe, doesn’t show the same nx-dependent improvement as seen in figure 4, but it gets worse as
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nx gets higher. Unfortunately the nx-dependency effect of ωexe is so large compared to everything
else, that no other effects are seen in figure 5(a) so if we look at figure 5(b) where ωexe has been
removed.

Since rv seems not be affected by the selection of nx, same holds for Bv as it is a function of rv.
Similar effect is also visible for ωe as in figure 4. So the selection of nx effects the anharmonic
constant, ωexe the most, but has also some impact on the vibrational frequency ωe. Hence, it has
little impact on the vibrational bond length, rv, and the rotational constant, Bv.

Now if we look at the outer limits of the grid, i.e. rmin and rmax, we can see figure 6. In it, we
have rmin_factor and rmax_factor, defined thusly:

rmin = re · rmin_factor rmax = re · rmax_factor (37)

where re is the equilibrium bond length of the X1Σ+ state of HCl, which is re = 1.27Å. This is
a contour map of the ratio of ωe as described before. The figure shows clearly that being in the
bottom of the potential well is not optimal, but that’s within the boundary of rmin = 0.99Å and
rmax = 1.55Å. By going to at least rmin_factor=0.7 and rmax_factor=1.3, optimal results are
obtained for this state. To be absolutely sure, it would be prudent to increase rmax_factor, as
that end of the potential has a more gradual curve. rmax_factor needs to be a bit higher to get
all of its information.
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Figure 4: The ratio of the calculated vibrational frequency, ωe, and experimental frequency as a
function of the Fourier grid Hamiltonian grid points, nx. This is calculated for the X1Σ+ state of
HCl at the CCSD level of theory. This graph was made with AIREMPICalc.
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Figure 6: This contour map shows the effect of changing the rmin_factor and rmax_factor of
the AIREMPICalc program on the ratio of the calculated vibrational frequency and experimental
vibrational frequency (ωe calc/ωe exp). These two variables control the outer points of the FGH
grid. The potential used was the CCSD/aug-cc-pVQZ point set fitted with a Morse potential. The
number of grid point, nx was 200.

5.1.2 The X1Σ+ state

The ground state of HCl is the X1Σ+ state. The potential curves were fitted with a Morse potential
with a threshold of 5000 cm−1 14. The results can be seen in table 2. These results were obtained
with the help of Igor Pro and a homegrown program used in the research group of Ágúst Kvaran,
called FCF1. For more info on this methodology, see [2]. That program calculates the vibrational
wavefunctions of the Morse potential. These can then be used to find the vibrational bond lengths
(equation 31) and rotational constant (equation 32).

One noticeable feature of these calculations, is the lack of complete basis set (CBS) limit for
the spectroscopic parameters in the case of CCSD/aug-cc-pVxZ, x = T,Q and 5, as one would

14I.e. all values that were lower than 5000 cm−1.
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Figure 7: The resulting vibrational wavefunction, of CCSD/aug-cc-pVQZ calculations of the
X1Σ+ ground state of HCl. They have been ordered in ascending order, so the lowest vibrational
level is the lowest one on the graph. Each subsequent levels is offset by 0.1.

expect the values to follow an exponential curve. This is likely due to the fitting. However, to
be get proper CBS-limit results, it would be necessary to first extrapolate with the aug-cc-pVxZ
results to an infinite zeta and then use a core-valence correction and calculate the spectroscopic
parameters. The resulting spectroscopic parameters would then be the parameters at the CBS-limit.

The AIREMPICalc program automates this methodology, it’s even quite simple to visualize
the vibrational wavefunctions, which can be seen in figure 7. The results of running the program
with the calculated potential curves can be seen in table 3. Instead of having to calculate the
spectroscopic constants manually as was done in table 2, this is done automatically. A demo
output from the program can be seen in section A.3.7.

The fitting threshold used in the AIREMPICalc program was 5000.0 cm−1, the same as in the
manually fitted section. This means that the results should be the same, or at least very close15.
Here it’s quite clear that the results are the same, so the program works for fitting potentials when
using a threshold.

Table 3 shows also results of fitting when a threshold isn’t used. They are quite similar,
however there is a small improvement when this threshold is used. This can best be seen for the
anharmonic constant ωexe

It is not necessary to fit the potential curve to be able to use the FGH method to calculate
vibrational levels and wavefunctions. There are two other options that I explored. One of which is
to use a spline function to interpolate missing values in the potential curve, i.e. missing values for
the evaluation of the FGH matrix elements. The resulting spectroscopic parameters can be seen in

15There are often some minor numerical differences in implementations of the same algorithm, in this case, a least
squares fit.
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Method re [Å] Bv=0 [cm−1] ωe [cm−1] ωexe [cm−1]
Experiments 1.274551 2990.9461 2 52.81861 2 10.4398263

B3LYP/ aug-cc-pVTZ 1.284 2957 57 10.19
B3LYP/ aug-cc-pVQZ 1.282 2955 57 10.21

MPW1PW91/ aug-cc-pVQZ 1.278 3007 56 10.27
MP2/ aug-cc-pVTZ 1.271 3070 56 10.40
MP2/ aug-cc-pVQZ 1.272 3055 55 10.39
MP4/ aug-cc-pVTZ 1.275 3025 58 10.33
MP4/ aug-cc-pVQZ 1.276 3009 57 10.32

CCSD/AQZ 1.273 3030 57 10.36
CCSD/aug-cc-pVTZ 1.273 3053 53 10.36
CCSD/aug-cc-pVQZ 1.274 3042 51 10.53
CCSD/aug-cc-pV5Z 1.268 3079 61 10.44

CCSD/aug-cc-pCVQZ 1.272 3050 52 10.38
CCSD(T)/ aug-cc-pVTZ 1.275 3016 58 10.32
CCSD(T)/ aug-cc-pVQZ 1.276 3002 57 10.31

CR-CCSD(T)/ aug-cc-pVTZ 1.246 3022 58 10.33
CR-CCSD(T)/ aug-cc-pVQZ 1.256 3008 56 10.32

Table 2: Spectroscopic parameter of the X1Σ+ state of HCl. They were obtained with various ab
initio calculations and experiment. These results are based on fitted potential curves, that were
fitted with a Morse potential. The parameters were then calculated using the methods described in
[2] where they were previously published.
The ab-initio calculations that are in bold were run by Andras Bodi, however I did the subsequent
calculation of spectroscopic parameters.
1) ref. [91] ; 2) ref. [17]; 2) B0 = Be − αe ∗ (1/2); for Be and αe in ref. [91];
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table 4. The ab-initio calculations that use the aug-cc-pV5Z do not have a large enough potential
curve, as it only goes out to r = 1.48 Å. The impact of core-valence correlation does not seem to
impact the calculations at the triple zeta level as the difference between the CCSD/aug-cc-pVTZ
and CCSD/aug-cc-pCVTZ is minor. There is, however, a larger difference at the quadruple zeta
level.

Method Bv=0 [cm−1] Bv=1 [cm−1] Bv=2 [cm−1] ωe [cm−1] ωexe [cm−1]
Experiment [6, 91] 10.4401 10.1361 9.8345 2990.0 52.0

CCSD/aug-cc-pVTZ 10.361 9.848 9.335 2929.8 42.9
CCSD/aug-cc-pVQZ 10.351 9.842 9.333 2920.4 41.5

CCSD/aug-cc-pCVTZ 10.367 9.852 9.335 2929.1 42.6
CCSD/aug-cc-pCVQZ 10.381 9.867 9.352 2930.8 41.5

Table 4: Spectroscopic parameter of the X1Σ+ state of HCl. They were calculated using the
AIREMPICalc program. The potential curves used a spline to interpolate values on the potential
curve for the Fourier Grid Hamiltonian calculations, which used 200 grid points. The CCSD/aug-
cc-pV5Z potential curve is not large enough to use this method, as its outer limit is r = 1.48
Å.

Another method used to evaluate the FGH matrix elements, is simply to use the ab-initio
potential directly in the construction of the FGH matrix. Table 5, looks at that method, using a
specifically generated point set for that purpose. That point set uses CCSD/aug-cc-pVTZ level of
theory and is available with a ∆x of 0.005 Å. A subset of these points are obviously then available
with differing ∆x which were used in the FGH method.

The effect of increasing the size of the grid, i.e. increasing nx and decreasing ∆x, is minor for
the rotational constants, albeit it does increase with each vibrational level, but in each case the
values move a bit closer to the experimental one. The opposite of this, is found in the case of ωe

and ωexe.

Method nx ∆x [Å] Bv=0 [cm−1] Bv=1 [cm−1] Bv=2 [cm−1] ωe [cm−1] ωexe [cm−1]
Experiment [6, 91] 10.4401 10.1361 9.8345 2990.0 52.0

CCSD 0.0250 84 10.360 9.852 9.365 2960.4 51.2
CCSD 0.0200 104 10.360 9.854 9.368 2953.8 50.9
CCSD 0.0150 140 10.361 9.855 9.371 2946.7 50.7
CCSD 0.0100 210 10.362 9.857 9.374 2939.9 50.4
CCSD 0.0050 420 10.362 9.859 9.376 2933.2 50.2

Table 5: Spectroscopic parameter of the X1Σ+ state of HCl. The ab-initio method used here
was CCSD/aug-cc-pVTZ. The spectroscopc parameters were calculated using the AIREMPICalc
program. The points of the potential curve were used directly in the Fourier Grid Hamiltonian
method.
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5.1.3 The C1Π state

The C1Π state was measured originally by Tilford, et al. [92], where it’s noted that the structure is
very diffuse and accurate measurements are difficult. This is also noted by Green, et al. [4]. This
means that the spectroscopic constants might not be as precise as one would like them to be.

AIREMPICalc was used to calculate the spectroscopic constants for the C1Π state. It used
three methods that are available in it, i.e. fits 6, interpolation with spline functions 7 and a direct
potential evaluation 8.

The table of Morse fits, table 6, shows that limiting oneself to potential values below a
certain energy threshold improves the resulting calculations somewhat. This was also seen for
the X1Σ+ state. The results of the CR-EOM-CCSD(T) calculations are generally better than the
corresponding EOM-CCSD calculations. Interestingly, all of the EOM-CCSD Tv=0 values are
approximately 1000 cm−1 higher than the experimental value of 77485.3 cm−1. The best of the
CR-EOM-CCSD(T) results, 77468.0 cm−1 use aug-cc-pCVTZ basis, without a fit threshold, are
less than 20 cm−1 from the experimental value. This is a very impressive result.

The anharmonic constants are impacted heavily by the fit threshold, as without it, the error
being from 9 % up to more than 50 %. When the fit threshold is used, all the anharmonic constants
of the ab-initio calculations deviate less than 10 % from the experimental value of 66.6 cm−1.

Let’s look at the results that use a spline interpolation in table 7. There is again visible
difference between the EOM-CCSD and CR-EOM-CCSD(T) methods of around 1000 cm−1. If we
look at the Tv=0 value, the best results is 77498.6 cm−1 for the CR-EOM-CCSD(T)/aug-cc-pVQZ
calculations, which is 13.3 cm−1 more than the experimental value, so it’s even better than the
best fitted value. This set of ab-initio calculations also has the best rotational constant, Bv=0 =

9.332 cm−1 a difference of 0.001 cm−1! The vibrational frequencies, ωe, are then generally better
when using CR-EOM-CCSD(T), but the opposite is true for ωexe.

The previous comments are also applicable to table 8 of direct evaluations.
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5.1.4 The F1∆2 state

The F1∆2 state has been studied by Green et al. [4, 5, 6] and more recently in the photochemistry
group of Ágúst Kvaran [2]. It is the lowest Delta state of HCl.

Table 9 shows the results of using the previously mentioned manual Morse potential fit
methodology, with a threshold of 9000 cm−1. This table was previously published in [2] where
a description of the homegrown Igor Pro macro set, FCF1, is found. Andras Bodi calculated
TD-DFT ab-initio potential curves that were used to make a part of this table. If we look at the
results in this table, the best Tv=0 is clearly the EOM-CCSD/AQZ value, where the difference
between it and the experimental value is only around 160 cm−1.

The CR-EOM-CCSD(T) Tv=0 values are yet again slightly better than the EOM-CCSD values.
However, there is a lot more variance in the results here, than for the C1Π and X1Σ+ states.
However, there is a general trend for the EOM-CC methods to overestimate the ωe of the state.
The TD-DFT methods are even higher for ωe. The same holds for the anharmonic constant, ωexe.
However, the equilibrium bond length and the rotational constants are somewhat better for the
TD-DFT calculations.

If we look now at the results of using the AIREMPICalc program. Table 10 shows the result
of using a Morse potential to fit the ab-initio potential curves, both without and with a threshold
of 9000 cm−1. Most of the spectroscopic constants are not affected much by the threshold, but the
dissociation energy, De, is affected to a larger extent than the others. The largest deviation from it,
in case of the fitted parameters without the threshold is approximately 16000 cm−1, but in the case
of the fit with a threshold, the largest deviation is around 4000 cm−1.

When we look at the results from AIREMPICalc when using a interpolated spline function, it
is clear that the effect of going from EOM-CCSD to CR-EOM-CCSD(T) is slight, but not very
much. The Tv=0 and ωe get closer to their experimental values, Bv=0 goes only slightly closer to its
experimental value. However ωexe deviates from the experimental value.

The same is seen in table 12 where a direct evaluation method is used for AIREMPICalc. The
effect of using a larger grid is very little.
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5.2 HF
Hydrogen fluoride is another of the hydrogen halides that has been studied at the Science Institute
by the Kvaran research group. However the experimental results are inconclusive since the
photodissociation processes that HF undergoes seem to be very fast. So HF dissociates too quickly
to be usable in REMPI studies, so the amount of experimental results on the HF molecule is little.
However the HF dimer was discoverd by Kvaran, et al. in 2006 [24].

Older experiments used absorptions in the electronic spectra to probe the structure of HF. Di
Lonardo and Douglas did a study in 1973 on the B1Σ+ state [93]. Not much more work has been
done on the excited states of HF because of experimental difficulties.

I performed ab-initio calculations using the ACESII program for HF. These results were then
fed in the AIREMPICalc program. I focused on three states. The X1Σ+ ground state which all the
calculations found easily. The C1Π state was selected as the potential was without gaps and jumps
in most of the calculated curves. The B1Σ+ was then select as its distinguishing features are easily
found in the results of the calculations, i.e. it’s easy to see the ion-pair state amongst a bundle
of Rydberg states. Only results from the calculations that have an experimental counterpart are
displayed in the result tables.

Table 13 shows the results of using a Morse potential to fit the ab-initio potential curve of the
X1Σ+ ground state, with and without a threshold of 5000.0 cm−1. These fits are then fed into the
FGH method to calculate the spectroscopic constants. The effect of using a threshold depends on
what spectroscopic parameter one looks at, as the ωe and ωexe get worse (deviates more from the
experimental value) for it. The re, Be and B0 are all improved by the usage of a threshold.

Next we look at table 14, where a spline interpolation is used instead of a Morse potential fit.
The results are similar to the fitted results (w/threshold), however ωexe is considerably better.

Next we turn our attention to the lower Rydberg state, the C1Π state. The experimental values
are not of a high quality but it is interesting to look at tables 15 and 16. Table 15 uses a similar
fit methodology as before (threshold is 9000.0 cm−1). The threshold fits are a bit closer for Be,
similar for re. However, the ωe is a lot closer and the same holds for Te. Table 16 shows the
results when using spline interpolation methodology for this state. It has similar results to the
fitted results (w/threshold).

The B1Σ+ state, seems to be a bit more of a challenge, since all the fits I tried failed, i.e. the
results were non-physical, such as negative excitation energies and bond lengths. But nonetheless
the spline interpolation methodology performed fairly as is seen in table 17. Despite the odd
negative values of ωexe, the magnitude of most of them are correct. There is a possibility that this
is a subtle bug in AIREMPICalc as the ωe values are around 10% from the experimental value.
The T0 is also off by 10%.

There is a possibility that the potential curves for the B1Σ+ state are incorrect since there is a
fair amount of potential crossing between it and other excited states. This means that there could
be some errors in the ordering of excited states of some bond lengths. This would impact the
results to some degree. It could be interesting to look at this phenomenon in the future.
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Method ωe [cm−1] ωexe [cm−1] re [Å] Be [cm−1] B0 [cm−1]
Experiment1 4138.32 89.88 0.91680 20.9557 20.5567

CCSD/aug-cc-pV5Z 4198.7 82.8 0.926 20.054 19.951
CCSD/aug-cc-pVQZ 4200.6 83.3 0.927 20.045 19.940

CCSDT/aug-cc-pVQZ 4123.4 86.2 0.929 19.937 19.814
CCSD/d-aug-cc-pV5Z 4198.1 82.8 0.926 20.053 19.950
CCSD/d-aug-cc-pVQZ 4198.4 83.1 0.927 20.036 19.932
CCSD/t-aug-cc-pVQZ 4198.9 83.2 0.927 20.038 19.934

UHF-CCSD/aug-cc-pV5Z 4198.9 82.8 0.926 20.055 19.952
UHF-CCSD/aug-cc-pVQZ 4200.6 83.3 0.927 20.045 19.940

With threshold
CCSD/aug-cc-pV5Z 4015.7 101.3 0.913 20.630 20.424
CCSD/aug-cc-pVQZ 4019.1 100.8 0.914 20.603 20.400

CCSDT/aug-cc-pVQZ 3967.3 101.8 0.917 20.477 20.264
CCSD/d-aug-cc-pV5Z 4015.5 101.0 0.913 20.629 20.424
CCSD/d-aug-cc-pVQZ 4017.8 101.3 0.914 20.604 20.399
CCSD/t-aug-cc-pVQZ 4018.3 101.3 0.914 20.605 20.401

UHF-CCSD/aug-cc-pV5Z 4015.7 101.3 0.913 20.630 20.424
UHF-CCSD/aug-cc-pVQZ 4019.1 100.8 0.914 20.603 20.400

Table 13: The X1Σ+ state of HF. These spectroscopic constant were calculated with AIREMPICalc
using a Morse potential to fit ab-initio potentials and then inputing that into the Fourier Grid
Hamiltonian method (200 grid points). Note that UHF means that the calculations were open-shell
calculations. The threshold used was 5000.0 cm−1.
1 Obtained from the NIST Webbook http://webbook.nist.gov/cgi/cbook.cgi?ID=C7664393&Units=SI&Mask=1000

Method ωe [cm−1] ωexe [cm−1] B0 [cm−1]
Experiment1 4138.32 89.88 29.5567

CCSD/aug-cc-pV5Z 4025.2 77.2 20.422
CCSD/aug-cc-pVQZ 4027.5 77.3 20.398

CCSDT/aug-cc-pVQZ 3976.0 79.9 20.263
CCSD/d-aug-cc-pV5Z 4024.9 77.2 20.422
CCSD/d-aug-cc-pVQZ 4026.3 77.3 20.397
CCSD/t-aug-cc-pVQZ 4026.8 77.3 20.399

UHF-CCSD/aug-cc-pV5Z 4025.2 77.2 20.422
UHF-CCSD/aug-cc-pVQZ 4027.5 77.3 20.398

Table 14: The X1Σ+ state of HF. These spectroscopic constant were calculated with AIREMPICalc
using a spline interpolation of an a ab-initio potential in the Fourier Grid Hamiltonian method
(200 grid points). Note that UHF means that the calculations were open-shell calculations.
1 Obtained from the NIST Webbook http://webbook.nist.gov/cgi/cbook.cgi?ID=C7664393&Units=SI&Mask=1000
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Te [cm−1] ωe [cm−1] re [Å] Be [cm−1]
Experiment1 105280 2636 1.04 16.0

EOM-CCSD/aug-cc-pV5Z 104432 3219.2 1.032 16.2
EOM-CCSD/aug-cc-pVQZ 104823 3171.8 1.045 15.8

EOM-CCSDT/aug-cc-pVQZ 105623 3178.4 1.044 15.8
EOM-CCSD/daug-cc-pV5Z 103429 3284.7 1.015 16.7
EOM-CCSD/daug-cc-pVQZ 103049 3282.7 1.017 16.6
EOM-CCSD/taug-cc-pVQZ 103029 3285.2 1.016 16.7

With a threshold
EOM-CCSD/aug-cc-pV5Z 106597 2746.0 1.035 16.1
EOM-CCSD/aug-cc-pVQZ 107083 2702.9 1.049 15.6

EOM-CCSDT/aug-cc-pVQZ 107888 2679.7 1.052 15.5
EOM-CCSD/daug-cc-pV5Z 105260 2844.1 1.019 16.6
EOM-CCSD/daug-cc-pVQZ 104938 2841.3 1.019 16.6
EOM-CCSD/taug-cc-pVQZ 104912 2841.9 1.019 16.6

Table 15: The C1Π state of HF. These spectroscopic constant were calculated with AIREMPICalc
using a Morse potential to fit ab-initio potentials and then inputing that into the Fourier Grid
Hamiltonian method (200 grid points). The threshold used was 9000.0 cm−1.
1 Obtained from the NIST Webbook http://webbook.nist.gov/cgi/cbook.cgi?ID=C7664393&Units=SI&Mask=1000

Method Tv=0 [cm−1] ωe [cm−1]
Experiment1 105090.8 2636

EOM-CCSD/aug-cc-pV5Z 105973.7 2707.7
EOM-CCSD/aug-cc-pVQZ 106417.4 2683.7

EOM-CCSDT/aug-cc-PVQZ 107229.2 2657.8
EOM-CCSD/daug-cc-PV5Z 104694.4 2806.7
EOM-CCSD/daug-cc-PVQZ 104368.5 2801.3
EOM-CCSD/taug-cc-PVQZ 104343.3 2801.4

Table 16: The C1Π state of HF. These spectroscopic constant were calculated with AIREMPICalc
using a spline interpolation of an a ab-initio potential in the Fourier Grid Hamiltonian method
(200 grid points).
1 Obtained from the NIST Webbook http://webbook.nist.gov/cgi/cbook.cgi?ID=C7664393&Units=SI&Mask=1000
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Method T0 [cm−1] ωe [cm−1] ωexe [cm−1] B0 [cm−1]
Experimental 83304.96 1159.18 18.005 4.0203

EOM-CCSD/aug-cc-pV5Z 91143.3 1069.9 -17.5 4.416
EOM-CCSD/aug-cc-pVQZ 91085.1 1071.5 -17.9 4.427

EOM-CCSDT/aug-cc-pVQZ 94235.5 1167.2 0.3 5.026
EOM-CCSD/daug-cc-pV5Z 91127.6 1069.2 -15.3 4.416
EOM-CCSD/daug-cc-pVQZ 91048.0 1071.0 -14.6 4.432

Table 17: The B1Σ+ state of HF. These spectroscopic constant were calculated with AIREMPICalc
using a spline interpolation of an a ab-initio potential in the Fourier Grid Hamiltonian method
(200 grid points).
1 Obtained from the NIST Webbook http://webbook.nist.gov/cgi/cbook.cgi?ID=C7664393&Units=SI&Mask=1000

6 REMPIControl
REMPIControl is a set of programs that controls the excimer/dye laser setup, at Raunvísindastof-
nun Háskólans, that’s currently being used for REMPI-TOF experiments. They were programmed
in the LabVIEW 16 development environment. I used LabVIEW 8.0 for MacOSX and Windows.

Each program and subroutine in LabVIEW is contained in a file called a virtual instrument
(VI). This programming work was based on the manual of the LeCroy 9310A digital oscilloscope
[94] and the ScanmatePro dye LASER manual [95].

6.1 Oscilloscope
The VIs provided by the manufacturer of the oscilloscope are designed to work with a General
Purpose Interface Bus (GPIB). However the lab computer does not have such a port, so the
oscilloscope is connected through the serial port (COM10). This meant that to be able to
communicate with the oscilloscope, a new driver for Labview was a necessity.

So I developed two VI modules to handle the communcations with the oscilloscope. The first
one oscilloscope_setup sets up the serial port for the program and initializes the oscilloscope
with the communication parameters, such as the data transfer rate, what characters signify a line
break, i.e. the carriage return or line feed characters. This module also sets the oscilloscope to
the remote mode, i.e. blocks tampering with the settings on the oscilloscope. When the program
finishes a run it releases the oscilloscope from this mode.

The other VI module, oscilloscope_read handles all the grunt work. It reads data from
the oscilloscope and then clears the math buffer17 of the oscilloscope. A lot of work went into this
part as the Labview and oscilloscope manuals were somewhat ambigious on some points.

One interesting issue that had to be settled was interaction between the endianness of the
oscilloscope, computer and Labview. Endianness is the ordering of integer values in computer
memory. The number one thousand, two hundred thirty four, 1234 is stored as a sequence of

16Short for Laboratory Virtual Instrumentation Engineering Workbench
17The math buffer, also known as Display A in this case, stores an average of the measurements, though this is

possible to configure on the oscilloscope itself.
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Figure 8: REMPIControl is a program that controls the experimental setup in the picture. The com-
puter sets up the oscilloscope and dye LASER. The dye LASER then handles the excimer LASER.
Then the computer oversees the dye LASER and oscilloscope and controls the experimental setup.

smaller numbers, if one would write it out in the more natural way (at least in English and
Icelandic), it would be, one, two, three, four. However if it were a little-endian ordering, it
would be four, three, two, one. This is understandably an issue when transferring integer
values (the oscilloscope stores the data that way) of the oscilloscope and onto a computer.

It is possible to set the endianness of the oscilloscope to either little- or big-endian. The CPU
of the computer is an Intel x86 architecture chip, so it is little-endian. However Labview works
in big-endian. This means that one needs to take a serious look at this issue or the result will be
subtle nonsense, but nonsense none the less.

6.2 Dye LASER
Labview VIs were included with the Scanmate Pro. These were used to set up most of the
functionality of the REMPIControl suite. The VIs handle the intricacies of communicating with
the dye laser. Two modules were programmed, REMPI_Record and REMPI3.

The REMPI3 module is based on the Scan example module, provided by the manufacturer
of the dye laser. It was modified to read data from an oscilloscope during scanning. This also
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displays the data retrieved in each scan step on the computer screen. There is also a grap of
the integral of the data. This integral is numerically integrated over the oscilloscope data. It is
possible to select a region of the data to focus on.

The other module, REMPI_Record, handles the experimental setup during a repeating firing
on a single wavelength, i.e. repeats the LASER firing sequence at a single wavelength.

This module was based on the Record VI, provided by the manufacturer of the dye LASER.
Interestingly, the manual [94] was incorrect in stating that to trigger the dye laser, the N serial
command would be needed. So if 50 laser shots were repeated 10 times, the dye laser would
trigger the excimer laser 500 times at the chosen frequency. This is clearly a bug! However, this
is a bug that’s easy to circumvent, as it’s simple to simply set it so that REMPI_Record would fire
n shots once and then repeat the procedure by calling setup_record again.

7 Conclusions
This thesis looked at ab-initio calculations of excited states, both the theory and its application to
the excited states of hydrogen chloride and hydrogen fluoride. The spectroscopic constants of the
excited states that the Kvaran’s research group has interest in were evaluated with both manual
calculations and a specifically designed program.

The AIREMPICalc program, which was implemented using Python and Scipy, is capable of
using ab-initio potentical curves of diatomic molecules to calculate their spectroscopic constants
in very simple fashion, i.e. a setup file and a potential file are input into a program which then
outputs the spectroscopic constants.

These calculations result in spectroscopic constants that can be close to the experimental
values. This depends somewhat on the level of ab-initio calculations, however which internal
calculations methodology is used in AIREMPICalc is also important. However, this program
gives a simple method to use with new high-level ab-initio calculations.

This program was used to evaluate the spectroscopic constants of the following states: the
X1Σ+, C1Π and F1∆2 states of HCl and the X1Σ+, C1Π and B1Σ+ states of HF. The results are
fairly good and it should be straightforward to improve them with future calculations.

This thesis also describes the development and function of a control program for the REMPI
experimental setup at the University of Iceland’s Science Institue. The control program was
implemented in Labview.
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A Appendices

A.1 Acronyms
Methods

Acronym Meaning

AIREMPICalc Ab initio Resonance enhanced multi-photon ionization calculation
program

B3LYP Becke 3-parameter Lee-Yang-Parr
CBS Complete basis set
CCSD Coupled cluster singles doubles
CCSD(T) Coupled cluster singles doubles perturbative triples
CCSDT Coupled cluster singles doubles triples
CCSDTQ Coupled cluster singles doubles triples quadruples
CI Configuration Interaction
CISD Configuration Interaction Singles Doubles
CR-CCSD(T) Completely renormalized coupled cluster singles doubles perturba-

tive triples
CR-EOM-CCSD(T) Completely renormalized equation-of-motion coupled cluster singles

doubles perturbative triples
EOMCCSD Equation-of-motion coupled cluster singles doubles
FCI Full Configuration Interaction
FGH Fourier Grid Hamiltonian
HF Hydrogen fluoride (not Hartree-Fock within this thesis)
GGA Generalized gradient approximation
LDA Local density approximation
MP2 Møller-Plesset perturbation theory to the second order
MP4 Møller-Plesset perturbation theory to the fourth order
MR Multi-reference
SCF Self-consistent field
REMPI Resonance enhanced multi-photon ionization
VI Virtual Instrument

Table 18: Various acronyms that are used in this thesis.
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A.2 Raw data

A.3 AIREMPICalc - Source code
Ab Initio REMPI Calc is a program that calculates REMPI (2+1) and REMPI (3+1) spectra by
using diatomic potentials.

This program implements the Fourier grid hamiltonian method of section 4.2. This is actually a
re-implementation as Balint-Kurti et al. [87] show a implementation of the method called FGHEVEN.
That program was in Fortran 77 and used atomic units throughouts. Here it is implemented as a
Python function using cm−1 (wavenumbers) as the energy units and angstrom as the unit of length.

Please note that tabs are important for the syntax of the Python programming language, so
tabs are printed here with the→ character.

A.3.1 airempi.py

1 #!/usr/bin/python
2 from numpy import *
3 from scipy import linalg
4 import airempi
5 import math
6 import potent
7 import fitter
8 import fgh
9 import spec

10
11 #from pylab import *
12 #from scipy import interpolate
13
14 def main():
15 → """main"""
16 → # Load the setup file
17 → import ConfigParser
18 → import string
19
20 → debug = 1
21
22 → config = ConfigParser.ConfigParser()
23
24 → config.read("setup")
25
26 → ## GENERAL POTENTIAL SETUP
27 → number_of_potentials = config.getint(’potentials’,’number’)
28 → pot_files = config.get(’potentials’,’pot_file’).split(’,’)
29 → do_fit = config.getboolean(’potentials’,’fit’) # Are we fitting the

potential ?
30 → do_threshold = config.getboolean(’potentials’,’threshold’) # when we fit,

do we use a threshold ?
31 → do_inter = config.getboolean(’potentials’,’interpolate’) # should we

interpolate U(r) ?
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32 → do_direct = config.getboolean(’potentials’,’direct’) # are we using
straight values from the potential file ?

33 → no_fgh_points = config.getint(’fgh’,’points’)
34 → no_fgh_vib_levels = config.getint(’fgh’,’vib_levels’)
35 → rmin_factor = config.getfloat(’fgh’,’rmin_factor’)
36 → rmax_factor = config.getfloat(’fgh’,’rmax_factor’)
37 → print ’rmin_factor = ’, rmin_factor
38 → print ’rmax_factor = ’, rmax_factor
39
40 → ## MOLECULE SETUP
41 → mol_name = config.get(’molecule’,’name’) # What molecule?
42 → mol_red_mass = config.getfloat(’molecule’,’reduced_mass’) # The reduced

molecular mass
43 → mol_r0 = config.getfloat(’molecule’,’r0’)
44
45 → ## GROUND STATE
46 → gs_name = config.get(’ground_state’,’name’)
47 → gs_threshold = config.getfloat(’ground_state’,’threshold’)
48
49 → ## EXCITED STATES
50 → ex_name = config.get(’excited_states’,’name’).split(’,’)
51 → no_ex = config.getint(’excited_states’,’no_ex’)
52 → ex_pos = [int(i) for i in config.get(’excited_states’,’pos’).split(’,’)]
53 → ex_threshold = config.getfloat(’excited_states’,’threshold’)
54
55 → ## Doing sanity check
56 → if ((no_ex != len(ex_pos)) or (no_ex != len(ex_name))) and (no_ex != 0):

# do the number match up?
57 → → print ’Mismatch in no_ex: ’, no_ex, ’; ex_pos: ’, len(ex_pos),’;

ex_name: ’, len(ex_name)
58 → → return
59 → if do_fit: # if we are fitting
60 → → fit_type = config.get(’fit_setup’,’fit_type’) # what kind of a

diatomic potential are we using, a morse potential ?
61 → → fit_guess = [float(i) for i in config.get(’fit_setup’,’fit_guess’).

split(’,’)]
62 → → if fit_type == ’’: # do we have a fitting type?
63 → → → print ’No defined fit type’
64 → → → return
65
66 → if not (do_fit or do_inter or do_direct):
67 → → print ’There is nothing to do!’
68 → → return
69
70 → #if (do_fit and do_inter) or (do_fit and do_direct) or (do_inter and

do_direct):
71 → if sum([do_fit,do_inter,do_direct]) >= 2: # Prettier than the syntax

above
72 → → print ’Doing multiple passes!’
73
74 → ## Our setup should be sane, so we move forward
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75 → ## However this doesn’t check the validity of the data in the text files
76 → ## But let’s begin the calculations
77
78 → print ’Starting calculations’
79 → for i in range(number_of_potentials):
80 → → print ’Running on potential file: ’, pot_files[i]
81 → → r, gs, ex, state_names = potent.loader(pot_files[i])
82 → → # print ’ GS name: ’, gs_name, ’, in file: ’, state_names[1]
83 → → # for j in range(no_ex):
84 → → #→ print ’ EX name: ’, ex_name[j], ’, in file: ’, state_names[ex_pos[

j]+2]
85 → → if do_fit: # start
86 → → → if fit_type.lower() == ’morse’:
87 → → → → print " Fitting with a morse potential"
88 → → → → fit_pot = fitter.morse_fitter
89 → → → else:
90 → → → → print "Not a defined fit type!"
91 → → → → return
92 → → → ## Now do the fitting
93 → → → print ’ GS name: ’, gs_name, ’, in file: ’, state_names[1]
94 → → → if do_threshold:
95 → → → → gs_fit, gs_pot = fitter.small_fitter(fit_pot,gs_threshold ,r,gs,

fit_guess)
96 → → → else:
97 → → → → gs_fit, gs_pot = fit_pot(r,gs,fit_guess)
98 → → → print ’ Fitted parameters: ’, gs_fit[0]
99

100 → → → fitted_list = [gs_pot]
101 → → → for j in range(no_ex):
102 → → → → print ’ EX name: ’, ex_name[j], ’, in file: ’, state_names[

ex_pos[j]+2]
103 → → → → if do_threshold:
104 → → → → → ex_fit, ex_pot = fitter.small_fitter(fit_pot,ex_threshold ,r,

ex[:,ex_pos[j]],fit_guess)
105 → → → → else:
106 → → → → → ex_fit, ex_pot = fit_pot(r,ex[:,ex_pos[j]],fit_guess)
107 → → → → print ’ Fitted parameters: ’, ex_fit[0]
108 → → → → fitted_list.append(ex_pot)
109 → → → ## Now do the FGH
110 → → → r_vs = []
111 → → → B_vs = []
112 → → → wes = []
113 → → → wexes = []
114 → → → T_vs = []
115 → → → for f in fitted_list:
116 → → → → val, vec, x = fgh.wave(f, mol_red_mass , mol_r0,no_fgh_points ,

rmin_factor ,rmax_factor)
117 → → → → r_v, B_v, we, wexe = spec.constants(x,mol_red_mass ,vec,

no_fgh_vib_levels ,val)
118 → → → → T_vs.append(val[0:no_fgh_vib_levels])
119 → → → → r_vs.append(r_v)
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120 → → → → B_vs.append(B_v)
121 → → → → wes.append(we)
122 → → → → wexes.append(wexe)
123 → → → ## Outputting the spectroscopic parameters
124 → → → print ’ GS name: ’, gs_name, ’, in file: ’, state_names[1]
125 → → → print ’ r_v: ’, r_vs[0]
126 → → → print ’ B_v: ’, B_vs[0]
127 → → → print ’ wes: ’, wes[0]
128 → → → print ’ wexes: ’, wexes[0]
129 → → → print ’ T_v: ’, T_vs[0]
130 → → → for j in range(no_ex):
131 → → → → print ’ EX name: ’, ex_name[j], ’, in file: ’, state_names[

ex_pos[j]+2]
132 → → → → print ’ r_v: ’, r_vs[j+1]
133 → → → → print ’ B_v: ’, B_vs[j+1]
134 → → → → print ’ wes: ’, wes[j+1]
135 → → → → print ’ wexes: ’, wexes[j+1]
136 → → → → print ’ T_v: ’, T_vs[j+1]
137
138 → → # do_fit end
139 → → if do_inter: # start do_inter
140 → → → print " Making interpolated functions"
141 → → → print ’ GS name: ’, gs_name, ’, in file: ’, state_names[1]
142 → → → gs_pot = potent.make_spline(r,gs)
143 → → → inter_list = [gs_pot]
144 → → → for j in range(no_ex):
145 → → → → print ’ EX name: ’, ex_name[j], ’, in file: ’, state_names[

ex_pos[j]+2]
146 → → → → ex_pot = potent.make_spline(r,ex[:,ex_pos[j]])
147 → → → → inter_list.append(ex_pot)
148 → → → ## Now do the FGH
149 → → → r_vs = []
150 → → → B_vs = []
151 → → → wes = []
152 → → → wexes = []
153 → → → T_vs = []
154 → → → for f in inter_list:
155 → → → → val, vec, x = fgh.wave(f, mol_red_mass , mol_r0,no_fgh_points ,

rmin_factor ,rmax_factor)
156 → → → → r_v, B_v, we, wexe = spec.constants(x,mol_red_mass ,vec,

no_fgh_vib_levels ,val)
157 → → → → r_vs.append(r_v)
158 → → → → B_vs.append(B_v)
159 → → → → wes.append(we)
160 → → → → wexes.append(wexe)
161 → → → → T_vs.append(val[0:no_fgh_vib_levels])
162 → → → print ’ Spectroscopic constants from interpolation’
163 → → → ## Outputting the spectroscopic parameters
164 → → → print ’ GS name: ’, gs_name, ’, in file: ’, state_names[1]
165 → → → print ’ r_v: ’, r_vs[0]
166 → → → print ’ B_v: ’, B_vs[0]
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167 → → → print ’ wes: ’, wes[0]
168 → → → print ’ wexes: ’, wexes[0]
169 → → → print ’ T_v: ’, T_vs[0]
170 → → → for j in range(no_ex):
171 → → → → print ’ EX name: ’, ex_name[j], ’, in file: ’, state_names[

ex_pos[j]+2]
172 → → → → print ’ r_v: ’, r_vs[j+1]
173 → → → → print ’ B_v: ’, B_vs[j+1]
174 → → → → print ’ wes: ’, wes[j+1]
175 → → → → print ’ wexes: ’, wexes[j+1]
176 → → → → print ’ T_v: ’, T_vs[j+1]
177 → → # do_inter end
178 → → if do_direct: # start do_direct
179 → → → print " Using direct potentials !"
180 → → → ## Now do the FGH
181 → → → r_vs = []
182 → → → B_vs = []
183 → → → wes = []
184 → → → wexes = []
185 → → → T_vs = []
186 → → → print ’ Spectroscopic constants from direct evaluation’
187 → → → ## Outputting the spectroscopic parameters
188 → → → val, vec = fgh.wave_direct(gs, mol_red_mass , r)
189 → → → r_v, B_v, we, wexe = spec.constants(r,mol_red_mass ,vec,

no_fgh_vib_levels ,val)
190 → → → r_vs.append(r_v)
191 → → → B_vs.append(B_v)
192 → → → wes.append(we)
193 → → → wexes.append(wexe)
194 → → → print ’ GS name: ’, gs_name, ’, in file: ’, state_names[1]
195 → → → print ’ r_v: ’, r_vs[0]
196 → → → print ’ B_v: ’, B_vs[0]
197 → → → print ’ wes: ’, wes[0]
198 → → → print ’ wexes: ’, wexes[0]
199 → → → print ’ T_v: ’, T_vs[0]
200 → → → for j in range(no_ex):
201 → → → → val, vec = fgh.wave_direct(ex[:,ex_pos[j]], mol_red_mass , r)
202 → → → → r_v, B_v, we, wexe = spec.constants(r,mol_red_mass ,vec,

no_fgh_vib_levels ,val)
203 → → → → r_vs.append(r_v)
204 → → → → B_vs.append(B_v)
205 → → → → wes.append(we)
206 → → → → wexes.append(wexe)
207 → → → → T_vs.append(val[0:no_fgh_vib_levels])
208 → → → → print ’ EX name: ’, ex_name[j], ’, in file: ’, state_names[

ex_pos[j]+2]
209 → → → → print ’ r_v: ’, r_vs[j+1]
210 → → → → print ’ B_v: ’, B_vs[j+1]
211 → → → → print ’ wes: ’, wes[j+1]
212 → → → → print ’ wexes: ’, wexes[j+1]
213 → → → → print ’ T_v: ’, T_vs[j+1]
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214
215
216
217
218
219 if __name__ == "__main__":
220 → main()
221
222
223
224 def rempi():
225 → """docstring for rempi"""
226 → pass

A.3.2 fgh.py

1 from numpy import *
2 from scipy import linalg
3 #import airempi
4 import math
5 #import potent
6 #import fitter
7
8 def hf_potential_hartree(x):
9 → """hf_potential - returns the value of the potential at the x values (

bohr)
10 → This is the Morse potential of HF ground-state - gotten from the original

FGHEVEN program"""
11
12 → r0 = 1.7329 # The equilibrium bond length of HF [bohr]
13 → beta = 1.1741 # The exponential parameter of HF
14 → diss = 0.2250073497 # The dissociation energy of HF [hartree]
15
16 → return diss * (exp(-beta*(x-r0))-1.0)**2
17
18
19 def hcl_potential_morse(x):
20 → """hcl_potential_morse - returns the value of the potential at the x

values (angstrom)
21 → These numbers are from NIST (http://webbook.nist.gov/cgi/cbook.cgi?ID=

C7647010&Units=SI&Mask=1000#Diatomic)
22 → beta was calculated from them, """
23
24
25 → r_e = 1.27455 # The equilibrium bond length of HCl [angstrom]
26 → beta = 1.8663889082348262# The exponential parameter of HCl
27 → # calculated from NIST values:
28 → # beta = we * 0.12177 * sqrt(mju/De)
29 → # mju_HCl = 0.9795925068
30 → # we = 2990.946
31 → diss = 37302.584352507351 # The dissociation energy of HCl [cm^-1], found

by 7.41e-19/1.60217733e-19 * 8065.5 (found at page 409 in Physical
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Chemistr by Engel & Reid)
32
33 → return diss * (exp(-beta*(x-r_e)) - 1.0)**2
34
35
36 def fgh_hf(the_potential):
37 → """docstring for fhg_hf"""
38 → zma = 1837.9822 # Mass of hydrogen
39 → zmb = 34629.61319 # Mass of fluorine
40 → r0 = 1.7329 # Equilibrium bond length, used to decide the grid
41 → print ’The mass of molecule A = ’, zma
42 → print ’The mass of molecule B = ’, zmb
43
44 → zmu = (zma*zmb) / (zma+zmb)
45
46 → return fgh_atomic(the_potential , zmu, r0)
47
48
49 def atomic(the_potential , zmu, r0):
50 → """fgh - Fourier Grid Hamiltonian - in atomic units
51 → the_potential is the potential to be used
52 → mju is the reduced mass
53 → r0 is the equilibrium bond length
54 → returns wch,zr and xa
55 → """
56 → ########
57 → ########
58 → # This function is a direct write-up of the FGHEVEN of G. Balint-Kurti,
59 → # C. Ward, and C. Clay Marston. Two computer programs for solving the
60 → # Schrodinger equation for bound-state eigenvalues and eigenfunctions
61 → # using the Fourier grid Hamiltonian method.
62 → # Computer Physics Communications , 67(2):285-292, 1991.
63 → # The difference between FGHEVEN and this function is that FGHEVEN was

written in Fortran 77
64 → ########
65 → ########
66
67 → nx = 64 # number of grid points
68 → ar = zeros((nx,nx),dtype=float) # The Hamiltonian matrix
69
70 → cevau = 27.211648 # Conversion in to electron volts, NOT USED
71 → nwrite = 10 # Number of eigenvalues/eigenfunctions to be printed
72 → rmin = r0*0.8
73 → rmax = r0*2.3
74
75 → print ’The first ’, nwrite, ’ energy levels for the relevant molecule’
76
77 → if nx % 2 != 0:
78 → → print "nx isn’t even"
79 → → return
80 → print ’Number of grid points in 1D grid = ’, nx
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81
82 → nhalf = nx/2
83 → nham1 = nhalf - 1
84 → print ’nhalf:’,nhalf,’ nahm1:’,nham1
85
86 #→ Compute the coordinate grid spacing dz
87 → zl = rmax - rmin
88 → print ’Grid lenght = ’, zl
89 → dx = zl / nx
90 → print ’Grid spacings = ’, dx
91 #→ Compute reduced mass zmu
92 → print ’Reduced mass of the given molcule = ’, zmu
93
94 #→ Now set up the hamiltonian matrix ar(i,j)
95 → darg = 2.0 * pi/nx
96 → targ = 4.0 * ((pi/zl)**2) / (zmu*nx)
97
98 → x = rmin # copy
99 → fv1 = zeros(nx,dtype=float)

100 → fv2 = zeros(nx,dtype=float)
101 → xa = zeros(nx,dtype=float)
102
103 → for i in range(0,nx):
104 → → fv1[i] = targ * ((i+1)**2)
105 → → fv2[i] = cos(darg*(i+1))
106
107 #→ Initialize variables
108 #→ const - ((-1)**(i-j))*T(nx/2)
109 #→ inij - (i-j)
110 #→ sum - total summation of equation within sum
111
112 → const = 0.0
113 → equij = 0.0
114
115 → for i in range(0,nham1):
116 → → equij = equij + fv1[i]
117
118 → for i in range(0,nx):
119 → → xa[i]=x
120 → → for j in range(0,i+1):
121 → → → ij = i - j
122 → → → inij = ij
123 → → → summa = 0.0
124 → → → if ij == 0:
125 → → → → summa = equij
126 → → → else:
127 → → → → for l in range(0,nham1):
128 → → → → → summa = summa + fv1[l]*fv2[ij-1]
129 → → → → → ij = ij + inij
130 → → → → → # cosine is periodic, so only need value within one cycle/

period
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131 → → → → → if ij > nx:
132 → → → → → → ij = ij % nx
133
134 → → → # Add in T(nx/2)
135 → → → const = ((-1)**inij)*fv1[nhalf]/2
136 → → → ar[i,j] = summa + const
137 → → # Add the potential value when kronicker delta function equals 1, i.e.

when i and j are equal
138 → → ar[i,i] = ar[i,i] + the_potential(x)
139 → → x = x + dx
140 → #Filling out the Hamiltonian matrix
141 → for i in range(0,nx):
142 → → for j in range(0,i):
143 → → → ar[j,i] = ar[i,j]
144
145 → # now call eigenvalue solver
146 → wch, zr = linalg.eigh(ar)
147
148 → return wch, zr, xa
149
150
151 def wave(the_potential , zmu, r0,nx,rmin_factor=0.8,rmax_factor=2.0):
152 → """fgh - Fourier Grid Hamiltonian - in wavenumbers and angstrom
153 → the_potential is the potential to be used
154 → mju is the reduced mass
155 → r0 is the equilibrium bond length
156 → returns wch,zr and xa
157 → """
158
159 → n = (nx / 2)
160 → h_bar = 1.05459e-34 # in Joule*seconds
161
162 → H = zeros((nx,nx),dtype=float) # The Hamiltonian matrix
163 → T_l = zeros(n,dtype=float)
164 → rmin = r0*rmin_factor
165 → rmax = r0*rmax_factor
166
167 → zl = rmax - rmin # in angstrom
168 → dx = zl / nx
169 → zmu = zmu/(1000*6.022e23) # in kilograms per single atom
170 → dk = (2 * math.pi) / zl; # in angstrom
171 → dk = dk * 1e10 # in meter
172 → T_l = (arange(1,n+1)*dk)**2 * ((h_bar*h_bar)/(2*zmu)) # in Joule
173 → T_l = T_l*5.035e22 # in cm^-1
174 → x = dx*arange(nx) + rmin # in angstrom
175
176 → V = the_potential(x) # in cm^-1
177 → from scipy import weave
178
179 → for i in range(1,nx+1): # note that for memory storage the indices are 1

lower than they should be according to the mathematical equations
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180 → → for j in range(1,nx+1):
181 → → → H[i-1,j-1] = sum((2*cos(arange(1,n)*2*math.pi * (i-j)/nx)) * T_l

[0:(n-1)])
182 → → → H[i-1,j-1] = (H[i-1,j-1] + (-1)**(i-j)*T_l[n-1])/nx
183 → → → if (i == j):
184 → → → → H[i-1,j-1] = H[i-1,j-1] + V[i-1]
185
186 → # now call eigenvalue solver
187 → eig_vals , eig_vecs = linalg.eigh(H)
188
189 → return eig_vals , eig_vecs , x
190
191 def wave_direct(V, zmu, r):
192 → """fgh - Fourier Grid Hamiltonian - in wavenumbers and angstrom
193 → the_potential is the potential to be used
194 → mju is the reduced mass
195 → r0 is the equilibrium bond length
196 → returns wch,zr and xa
197 → """
198 → if (len(r) % 2):
199 → → print ’******’
200 → → print ’** nx is not even’
201 → → print ’******’
202 → → return
203 → n = (len(r) / 2)
204 → h_bar = 1.05459e-34 # in Joule*seconds
205 → nx = len(r)
206 → H = zeros((nx,nx),dtype=float) # The Hamiltonian matrix
207 → T_l = zeros(n,dtype=float)
208
209 → rmin = r[0]
210 → rmax = r[-1] # the last point in r
211
212 → zl = rmax - rmin # in angstrom
213 → #dx = zl / nx
214 → dx = r[0] - r[1]
215 → zmu = zmu/(1000*6.022e23) # in kilogramms per single atom
216 → dk = (2 * math.pi) / zl; # in angstrom
217 → dk = dk * 1e10 # in meter
218 → T_l = (arange(1,n+1)*dk)**2 * ((h_bar*h_bar)/(2*zmu)) # in Joule
219 → T_l = T_l*5.035e22 # in cm^-1
220
221 → #V = the_potential(x) # in cm^-1
222
223
224 → for i in range(1,nx+1): # note that for memory storage the indices are 1

lower than they should be according to the mathematical equations
225 → → for j in range(1,nx+1):
226 → → → H[i-1,j-1] = sum((2*cos(arange(1,n)*2*math.pi * (i-j)/nx)) * T_l

[0:(n-1)])
227 → → → H[i-1,j-1] = (H[i-1,j-1] + (-1)**(i-j)*T_l[n-1])/nx
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228 → → → if (i == j):
229 → → → → H[i-1,j-1] = H[i-1,j-1] + V[i-1]
230
231 → # now call eigenvalue solver
232 → eig_vals , eig_vecs = linalg.eigh(H)
233
234 → return eig_vals , eig_vecs

A.3.3 fitter.py

1 from scipy import *
2 from scipy.optimize import leastsq
3
4 def morse_fitter(r,U,guess):
5 → """docstring for morse_fitter"""
6 → def morse_residuals(p,r,U):
7 → → """docstring for morse_residuals"""
8 → → return U - morse(r,p)
9

10 → def morse(r,p):
11 → → """p[0] = T_e
12 → → p[1] = D_e
13 → → p[2] = beta
14 → → p[3] = r_e"""
15 → → return p[0] + p[1] * (exp(-p[2]*(r-p[3])) - 1.0)**2.0
16
17 → final = leastsq(morse_residuals ,guess,args=(r,U),full_output=1)
18
19 → return final, lambda r: morse(r,final[0])
20
21
22 def small_fitter(fitter, threshold , r, U, guess):
23 → """fitter is the fitter that is being used
24 → threshold is the energy threshold for fittings, e.g. 5000 cm^-1 for

ground states
25 → r are the bond lengths
26 → U are the energies
27 → guess is the fitting guess"""
28
29 → bonds = []
30 → energies = []
31 → the_corrected_threshold = min(U) + threshold
32
33 → for i in range(len(r)):
34 → → if U[i] <=the_corrected_threshold:
35 → → → energies.append(U[i])
36 → → → bonds.append(r[i])
37
38 → bonds = array(bonds)
39 → energies = array(energies)
40
41 → return fitter(bonds,energies,guess)
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A.3.4 potent.py

1 from numpy import *
2 from scipy import interpolate
3 import math
4 import potent
5
6 def main():
7 → r,gs,ex = potent.aug_cc_pvqz()
8
9 if __name__ == "__main__":

10 → main()
11
12 def make_spline(r,U):
13 → """docstring for make_spline"""
14 → return interpolate.UnivariateSpline(r,U)
15
16 def make_morse(T_e,D_e,beta,r_e):
17 → """docstring for make_morse"""
18 → return lambda r: T_e + D_e * (exp(-beta*(r-r_e)) - 1.0)**2.0
19
20 def loader(the_file):
21 → f = open(the_file,’r’)
22 → lines = f.readlines()
23 → f.close()
24
25 → state_names = lines[0].split()
26
27 → n_stuff = len(lines[1].split())
28
29 → a = array([])
30
31 → for i in lines:
32 → → a = concatenate((a,array(i.split())))
33
34 → b = a.reshape(len(a)/n_stuff,n_stuff)[1:,:]
35 → b = b.astype(float)
36
37
38 → r = b[:,0]
39 → gs = b[:,1]
40 → ex = b[:,2:]
41
42 → return r, gs, ex, state_names

A.3.5 spec.py

1 from numpy import *
2 from scipy import linalg
3 import math
4
5 def find_wexe(we):
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6 → """find_wexe - fits vibrational quantum number vs. we
7 → returns the we (the factor at x**2)"""
8
9 → v = arange(0.5,len(we)+0.5,dtype=float64) # the (shifted) vibrational

quantum number, 0.5, 1.5, ...
10 → # we are fitting to e_total = e_{J,v} = BJ(J+1) + (v+1/2)we - wexe(v+1/2)

^2 + (T_e?)
11
12 → fits = polyfit(v,we,2) # fit the data to: -(v+1/2)^2wexe + (v+1/2)we
13 → return -1.0 * fits[0]
14
15
16 def find_r_v(r,psi):
17 → """find_r_v, finds the weighted average of the wavefunction , which is in

this case the vibrational wavefunction
18 → so we find the vibrational bond length of this wavefunction
19 → r are the r_i values where the wavefunction is know at, in angstrom
20 → psi is the vibrational wavefunction , not squared"""
21 → psi_sq = psi**2
22 → return sum(dot(r,psi_sq))/sum(psi_sq)
23 → #return sum(map(lambda x,y:x*y,r,psi**2))/sum(psi**2)
24
25
26 def find_B_r(r,mju,psi_many ,first):
27 → """find_B_r is function that returns both r_{v=0} and B_{v=0} for the

first values that are asked for
28 → r are the r_i values where the wavefunction is known at, in angstrom
29 → mju is the weighted mass of the diatomic molecule that is being

calculated , in g/mol
30 → psi_many is an array that contains the wavefunctions of the first

vibrational levels, it is not the squared wavefunction
31 → first is how many vibrational levels should be looked at"""
32
33
34 → c = 29979200000 # The speed of light in cm/s
35 → N_A = 6.0221e23# Avogadros number in 1/mol
36 → h_bar = 6.6262E-27 # Planck’s constant in erg?/s
37
38 → r_v = zeros(first,dtype=float)
39 → B_v = zeros(first,dtype=float)
40 → B_factor = (h_bar*N_A*1.0e16)/(c*8.0*math.pi*math.pi*mju)
41
42 → for i in range(0,first):
43 → → r_v[i] = find_r_v(r,psi_many[:,i]) # get each vibrational bond length
44 → → B_v[i] = B_factor/(r_v[i]**2) # The rotational constant of each bond

length
45
46 → return r_v, B_v
47
48 def constants(r,mju,psi_many,vib_levels ,energ_vib):
49 → """docstring for constants"""
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50 → r_v, B_v = find_B_r(r,mju,psi_many ,vib_levels)
51 → wexe = find_wexe(energ_vib[range(vib_levels)])
52 → we = energ_vib[1] - energ_vib[0]
53 → return r_v, B_v, we, wexe

A.3.6 Setup file

This is a setup file from the AIREMPICalc program

[potentials]
number: 2
pot_file: aug-cc-pvqz_cm-1.txt,aug-cc-pv5z_cm-1.txt
fit: True
interpolate: True
direct: false
threshold: true
do_rempi: False

[fit_setup]
fit_type: Morse
fit_guess: 0.0, 40000.0, 2.0, 1.27

[molecule]
name: HCl
reduced_mass: 0.9795925068
# not needed when doing direct evaluations
r0: 1.27

[ground_state]
name: x1sigma+
threshold: 5000.0
symmetry: Sigma

[excited_states]
no_ex: 2
name: c1pi,f1delta
#remember that 0 is the first position, not zero!
pos: 21,10
threshold:9000.0
#Available states: sigma,pi,delta,phi
symmetry: Pi,Delta

[rempi]
n+1:2

[fgh]
# needs to be a multiple of 2
points: 64
# This is how many vibrational levels should be used for the
# spectroscopic constant calculations
vib_levels: 10
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A.3.7 Demo output

This is a demo of the AIREMPICalc output, when run on the X1Σ+ CCSD/aug-cc-pVTZ ground
state and C1Π and F1∆2 CR-EOMCCSD(T)/aug-cc-pVTZ excited states

Starting calculations
Running on potential file: aug-cc-pvtz_cm-1.txt
Fitting with a morse potential
GS name: x1sigma+ , in file: cr_tz_gs
Fitted parameters: [ -4.05921672e+00 4.02899876e+04 1.82575121e+00 1.27292748e+00]

EX name: c1pi , in file: cr_tz_b1_2
Fitted parameters: [ 7.78895130e+04 3.41943617e+04 1.88918570e+00 1.34937443e+00]

EX name: f1delta , in file: cr_tz_a2_1
Fitted parameters: [ 8.55324838e+04 3.36932736e+04 1.81798592e+00 1.30852041e+00]

GS name: x1sigma+ , in file: cr_tz_gs
r_v: [ 1.28870084 1.32155732 1.35708355 1.39642722 1.44037263 1.48889899
1.54138754 1.597142 1.65582072 1.71683174]
B_v: [ 10.36222588 9.85338084 9.34424257 8.82512093 8.29483121
7.76295035 7.24325186 6.74637091 6.27668959 5.83850705]
wes: 2927.74577643
wexes: 52.0281934577
T_v: [ 1502.21056024 4429.95633667 7247.84630138 9961.24894645
12575.11228624 15090.98669771 17506.00779804 19814.23628419
22008.60641956 24083.73613469]
EX name: c1pi , in file: cr_tz_b1_2
r_v: [ 1.3664639 1.40187247 1.439201 1.47865356 1.52047116 1.56494067
1.6124116 1.66323318 1.71858021 1.77446232]
B_v: [ 9.21639221 8.75669575 8.30834211 7.87090027 7.44390643 7.02686358
6.61919916 6.22086813 5.82663298 5.46542215]
wes: 2775.79816287
wexes: 61.9010319692
T_v: [ 79323.48707993 82099.28524281 84752.19513074 87282.146135
89688.97015949 91972.34098527 94131.70244974 96166.36481172
98073.75801564 99862.74480656]
EX name: f1delta , in file: cr_tz_a2_1
r_v: [ 1.32573771 1.36143247 1.39926036 1.43979952 1.48379098 1.53194708
1.58475959 1.64232895 1.70563611 1.76866766]
B_v: [ 9.79133833 9.28463994 8.78941997 8.3014361 7.81649086 7.33279853
6.8522074 6.38023947 5.91540538 5.50129338]
wes: 2655.30501396
wexes: 55.5623198129
T_v: [ 86902.73510367 89558.04011763 92100.14742691 94529.90346402
96848.44622233 99056.73002133 101154.90660572 103142.14791332
105014.60278505 106781.21361102]

A.4 Jötunn utilities
The two parsing scripts of sections A.4.2 and A.4.3 both assume that the output files come from
NWChem and that the files is prefix.bond.o11111, where o11111 is the job number on Jötunn
and bond is the bond length of the diatomic molecule.
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A.4.1 NWChem file

This is a NWChem job file which uses the aug-cc-pVTZ basis to calculate nine excited states,
in the a1, a2, b1 and b2 symmetries of the C2v group. It uses a CCSD ground state calculation
and the performs the EOM-CCSD calculations. After it has converged to a solution it starts the
CR-EOM-CCSD(T) calculations to find the δ correction.

start job_sing_AVTZ_1.270

memory global 3700 mb heap 150 mb stack 200 mb

scratch_dir /scratch/erlendj
permanent_dir /scratch/erlendj

geometry
symmetry c2v
H 0.0 0.0 0.0
Cl 0.0 0.0 1.270
end

echo

basis spherical
H library aug-cc-pvtz
Cl library aug-cc-pvtz
end

title "HCl CR-EOM-CCSD(T) - singlet"

scf
rohf
end

tce
io ga
tilesize 20
CREOMSD(T)
nroots 9
maxiter 50
print high
end

task tce energy

A.4.2 Parsing script - EOMCCSD calculations

This files outputs a file with the following column structure
Bond length [Å] Ground state energy [hartree] Excited states [eV], all symmetries, . . .

1 files=$(ls HCl_sin.AVDZ_RO.*)
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2
3 for i in $files; do
4 → echo $i
5 → echo $i | gnused -e ’s/HCl_sin.AVDZ_RO.//g’ -e ’s/.o[0-9]....//g’ | tr ’\

n’ ’\t’ >> output_file
6 → grep ’CCSD total energy’ $i | gnused -e ’s/-/\n-/g’ | grep [0-9] | tr ’\

n’ ’\t’ >> output_file
7 → # The following line assumes that nine excited states were calculated , i.

e. nroots 9
8 → cat $i | grep Iterations -B 11 | grep vectors -A 9 | grep [0-9] | grep -v

vectors | gnused -e ’s/./\n gnu/48’ | grep -v gnu | gnused -e ’s/./gnu\n
/39’ | grep -v gnu | tr ’\n’ ’\t’>> output_file

9 → echo ’’ >> output_file
10 done

A.4.3 Parsing script - CR-EOMCCSD(T) calculations

This files outputs a file with the following column structure
Bond length [Å] Ground state energy [hartree] Excited states [hartree], all symmetries, . . .

1 files=$(ls HCl_sin.AVDZ_RO.*)
2
3 for i in $files; do
4 → echo $i
5 → echo $i | gnused -e ’s/HCl_sin.AVDZ_RO.//g’ -e ’s/.o[0-9]....//g’ | tr ’\

n’ ’\t’ >> output_file
6 → grep ’CCSD total energy’ $i | gnused -e ’s/-/\n-/g’ | grep [0-9] | tr ’\

n’ ’\t’ >> output_file
7 → # The following line assumes that nine excited states were calculated , i.

e. nroots 9
8 → cat $i | grep Iterations -B 11 | grep vectors -A 9 | grep [0-9] | grep -v

vectors | gnused -e ’s/./\n gnu/48’ | grep -v gnu | gnused -e ’s/./gnu\n
/39’ | grep -v gnu | tr ’\n’ ’\t’>> output_file

9 → echo ’’ >> output_file
10 done
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A.5 REMPIControl - Source code
The following sections show the source code of the REMPIControl program. Since LabVIEW
uses the G graphical programming language, all of the source code is pictures.

A.5.1 oscilloscope_setup

Figure 9: oscilloscope_setup - Start
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Figure 10: oscilloscope_setup - If false
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A.5.2 oscilloscope_read

Figure 12: oscilloscope_read
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A.5.3 setup_record

Figure 13: setup_record - True

Figure 14: setup_record - False
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A.5.4 REMPI_Record

Figure 15: REMPI_record - Beginning
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Figure 16: REMPI_record - Inner stack - level 0

Figure 17: REMPI_record - Inner stack - level 1
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Figure 18: REMPI_record - Inner stack - level 2

Figure 19: REMPI_record - End
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A.5.5 REMPI3

Figure 20: REMPI3 - Beginning
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Figure 21: REMPI3 - Inner stack - level 0

Figure 22: REMPI3 - Inner stack - level 1

A-28



Figure 23: REMPI3 - Inner stack - level 2
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Figure 24: REMPI3 - Wavelength calibration
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