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ABSTRACT

Discharge in rivers is commonly estimated by the use of gatirve constructed from pairs
of water level and discharge measurements. Water levelureagnts are collected con-
tinuously from each river while pairs of discharge and wéteel are only collected couple
times a year due to high cost. The need for accurate estimattidischarge is important for
constructions as bridges, hydroelectric power plants disasdor hydrological models. The
methodology currently used by the Icelandic Meteoroldgi¥féice is based on the standard
power-law. The power-law is derived from a theoretical basid serves as an appropriate
model in most cases. However, in some natural settings titmvéafrom this form arise.
The new methodologies presented in this thesis accounh&udeviations from the stan-
dard power-law by extending it with a smooth B-spline funeta by assuming two of the
are a function of water level and modeled them with B-splindsese methodologies have
shown to perform equally well or better than the current méttogy used by the Icelandic
Meteorological Office.

UTDRATTUR

Rennsli i am er oft metid Gtfra rennslislyklum sem eru smidadina pari af vatnshaedar og
rennslismeaelingum. Vatnsheedarmaelingum er safnad samfefivémdi & en par af rennslis-
og vatnshaedarmaelingum eru einungis safnad nokkrum sinnuinvagira mikils kostn-
adar. Milkil porf er & nakveemu mati & rennsli vid hénnun a bypggim a bord vid bryr,
vatnsaflsvirkjanir og einnig vid gerd vatnalikana. Adfdréadin sem er notud a Vedurstofu
islands er byggd & standard power-law jéfnunni. Standangpéaw er dregid ur fraedilegum
grunni og er videigandi likan i flestum tilvikum, en i nattiagum adsteedum geta fravik fra
pessari jofnu komid upp. Hinar nyju adferdir sem kynntarigvassari ritgerd gera rad fyrir
fraviki fra standard power-law j6fnunni med pvi ad Utvikkanla med B-spline follum. En
pad er gert med pvi ad leggja B-spline follin vid standard pelae j6fnuna eda med pvi ad
taka B-spline follin inn i parametrana. Pessar adferdir Bgfd ad peer eru jafn gédar eda
betri en nGverandi adferdir sem eru notadar & Vedurstofundisl.
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1 INTRODUCTION

1.1 Goals of the Project

The main goal of the project described in this thesis is tateran objective methodology for
establishing hydrological rating curves based on the Baypegpproach which can be applied
to data from all rivers in Icelandic Meteorological Officévi0) data base. A secondary
goal is to make the estimation of discharge rating curvesssible through an user-friendly
computer program.

1.2 Rating Curve

Discharge in rivers is commonly calculated by mapping watgface elevations, measured
at a specific location in the river, to discharge by means afiag curve. The rating curve is
usually an equation that describes a curve that is fitteditfir@lata points of measured wa-
ter surface elevation against measured discharge at adocahere downstream hydraulic
control assures a stable, sensitive and monotonic retdtiprbetween water surface eleva-
tion and discharge (Mosley and McKerchar, 1993; ISO, 198Bjs methodology is applied
as direct measurements of discharge are expensive compamegasurement of water sur-
face elevation that are relatively straightforward ancpensive undertaking and often well
suited for automation. The sources of uncertainty in theldisgge obtained by a rating
curve methodology are several; both due to uncertaintyar discharge measurements and
uncertainty in the rating curve (Pelletier, 1988; Clarke99;9Moyeed and Clarke, 2005;
Di Baldassarre and Montanari, 2009).

In this thesis, a methodology for improved fit to the data fsoand improved extrapola-
tion of the rating curve for large discharges is proposeget@n the Bayesian approach and
B-spline functions. Based on hydraulic principles, the retethip between discharge and
water level is given by the standard power-law

q=aw-c) (1)

(Lambie, 1978; Mosley and McKerchar, 1993) wheres dischargew is water level,a is

a positive scaling parametds,is a positive shape parameter anis the water level when
the discharge is zero. These parameters are usually estirfrain paired measurements
of water level and discharge. The Bayesian approach has beeassfully applied to the
estimate of discharge rating curve (Moyeed and Clarke (200%ason (2005) and Reitan
and Petersen-@verleir (2008b)). However, an applicaticthie method has shown that it
can not handle all data sets in the IMO database. That is dhe fact that in natural setting
the shape of the riverbed can change with rising water Iek@ldemonstrate this behavior
a riverbed is plotted in Figure 1. The paramedien equation (1) represent the shape of the
riverbed, for example it takes the value$ And 25 for rectangular and v-shaped sections,
respectively.

In Figure 1 it can be seen how the shape of the riverbed canffeeedfit from a rectan-
gular of v-shaped section for example. A common practiceble@s to use multi-segment
discharge rating curves where the shape parameter isatiffeetween segments which has
been modeled by (Petersen-@verleir and Reitan, 2005; ReithRetersen-@verleir, 2008a).
Here different approaches are introduced which assumeliaages in the rating curve
occur gradually.
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Figure 1:An example of a riverbed.

All methods that are presented here use the Bayesian appiodbk Bayesian approach
all unknown parameters are treated as random variables: iRformation about unknown
parameters based on previously collected data and/ortsicidamowledge can be combined
with new data for parametric inference. The advantage tsathancertainty can be taken into
account which allows for an accurate inference about th@owk parameters. Prediction
intervals for discharge can be evaluated accurately arslithsi possible to have a criteria
that shows if the new measurements are in line with the beha¥the river or if the riverbed
has changed.

1.3 Computer Program

The calculations are conducted with the software Matlale Wiatlab programs can be time
consuming to read through and work with, especially if ttadf $tas not worked with Matlab
before. In addition people working with the rating curvesudd only be allowed to change
few parameters in the program and should not be allowed togehthe algorithms. There-
fore a user-interface was created that connects the udes tddtlab programs. Therefore a
user-interface was created that connects the user to tHalMaides. Matlab then runs the
calculations and stores the results in a well defined folOee. interface is shown in Figure 2.
The user-interface allows the user to plot up the data sesemthow well the starting values
for the parameters in the standard power-law fit the dataefetérunning the calculations.
The user can choose the starting values by filling insfds, wg or by filling only in for one
or two of them and let the program find the optimal solutiontfer rest of the parameters,
that is if the optimization gives an optimal values. The uss®T choose from three different
types of Bayesian models which are the models presentedsithiasis. It can be necessary
to change the prior distributions however the user is orbnadd to change the priors for the
parameter® andc which is marked asy in the interface. The user can also decide on the
length of the run, the number of B-spline kernels and at whag¢miavel the B-spline affects
the rating curve. Another important property is that ther wse skip newest pairs to see if
they fit within the prediction interval of the data excludithggm, than a rating curve is plot-
ted and the excluded measurements are plotted as x-is tagegem from the others. The
output of the program is a report with all information dedit®y the IMO. All the changes
can be made from the user-interface shown in Figure 2 ancheser has to code in Matlab.
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Figure 2:The window of the Matlab user-interface.

1.4 Scope of the Work

Three papers are presented in this thesis. The paper bydnggon et al. (2008) is a con-
ference paper and was published in XXV Nordic Hydrologicahfecence, Nordic Associ-
ation for Hydrology, 2008, Volume 1, 308-317. In Ingimanssat al. (2008) the standard
power-law is extended by a smooth B-spline function and coaethto the model presented
in Moyeed and Clarke (2005) and Arnason (2005). The papemiagson et al. (2010a)
was submitted to Hydrology and Earth Systems Sciences.idp#per the same models as
in Ingimarsson et al. (2008) are compared, however the Bxspliodel has been modified
from Ingimarsson et al. (2008). The extended model provsdéstantially better fit than the
standard power-law model for about 30% of the data sets are Wie standard power-law
appears to give an adequate fit, the extended model imitagestdndard power-law model.
The extended model also performs better for 60% of the riwdrsn predicting large dis-
charge values. The models and the results in Ingimarssoh &088) and Ingimarsson
et al. (2010a) have been presented in the following conéa®and workshops. They were
presented in a poster at Bayesian Environmetrics Workshaghdre, Australia, at the 9th
International Society for Bayesian Analysis (ISBA) confeze 2008, Hamilton Island, Aus-
tralia and at the XXV Nordic Hydrological Conference 2008 Rayk, Iceland. They were
presented as a talk in Statistics colloquium at the Unitaesi Iceland, April 2008, at the
Norwegian Computing Center at the Statistics for Innovati®oslo, Norway, 24 Septem-
ber, 2008 and Nordic-Baltic Biometric Conference, 10-12 Jub@92 Tartu, Estonia. Due
to the fact that Ingimarsson et al. (2008) is an earlier warsif Ingimarsson et al. (2010a),
the paper Ingimarsson et al. (2008) is given in appendix.héhgaper Ingimarsson et al.
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(2010b) the B-spline model in Ingimarsson et al. (2010a) imgared to three models in
which B-splines are used to estimate the parameteasaofdb as a function of water level.
These three models differ only in the variance function. Vaeance function of only one
of the new models has the flexibility to give fit that is simitarthat of the B-spline model
presented in Ingimarsson et al. (2010a) for all data setsreTare however cases were the
models in Ingimarsson et al. (2010b) clearly outperfornesBkspline model in Ingimarsson
et al. (2010a) and vice versa.
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ABSTRACT

Discharge in rivers is commonly estimated by the use of a rating curve cotestru
from pairs of measured water elevations and discharges at a specitoioc The
Bayesian approach has been successfully applied to estimate dischtngectrves
that are based on the standard power-law. In this paper the standed|pas model is
extended by adding a B-spline function. The extended model is compatied sban-
dard power-law model by applying the models to discharge data sets fraynosiz
different rivers. In addition four rivers are analyzed in detail to dest@te the benefit
of the extended model. The models are compared using two measures, ihadeev
Information Criterion (DIC) and Bayes factor. The former providesustltomparison
of fit adjusting for the different complexity of the models and the latter measthe
evidence of one model against the other. The extended model capawiasahs in
the data from the standard power-law but reduces to the standard-fzawethen that
model is adequate. The extended model provides substantially better fthéhatan-
dard power-law model for about 30% of the rivers and performs bftte80% of the

rivers when predicting large discharge values.



INTRODUCTION

Discharge in rivers is commonly calculated by mapping wateface elevations, measured
at a specific location in the river, to discharge by means afiag curve. The rating curve is
usually an equation that describes a curve that is fittedithiralata points of measured wa-
ter surface elevation against measured discharge at adocahere downstream hydraulic
control assures a stable, sensitive and monotonic rekdtiprbetween water surface eleva-
tion and discharge (Mosley and McKerchar, 1993; ISO, 198Bj)s methodology is applied
as direct measurements of discharge are expensive compameshsurement of water sur-
face elevation that are relatively straightforward andcpensive undertaking and often well
suited for automation. The sources of uncertainty in theldisgge obtained by a rating
curve methodology are several; both due to uncertaintywar discharge measurements and
uncertainty in the rating curve (Pelletier, 1988; Clarke99;9Moyeed and Clarke, 2005;
Di Baldassarre and Montanari, 2009).

In many instances, such as in engineering design, thererisad igterest in an accurate
estimate of large discharges as in many cases property amdhaiman life can depend
on obtaining reliable estimate of extreme discharges. Télates, e.g., to transportation
structures such as roads and bridges or flooding of housebam areas due to over topping
of levees. Accurate prediction of large discharge, in widake the least data is available
in general as it is hard to obtained reliable data duringeexé events, usually involves an
extrapolation of the rating curve beyond largest measua&ambints. An accurate estimation
of the discharge below the largest measured data pointasiralsortant to get an accurate
estimation of the annual discharge. Which can be used in eaging design for hydrological
power plants. In this paper, a methodology for improvedapdtation of the rating curve for
large discharges is proposed, based on the Bayesian apmoad&ispline functions.

Based on hydraulic principles, the relationship betweechdisye and water level is given
by the standard power-law

q=aw-c)" (2)

(Lambie, 1978; Mosley and McKerchar, 1993) wheres dischargew is water levela is

a positive scaling parametds,is a positive shape parameter ang the water level when
the discharge is zero. These parameters are usually estirffiratn paired measurements of
water level and discharge.

The Bayesian approach has been successfully applied tcadigchating curves (Moy-
eed and Clarke, 2005; Reitan and Petersen-@verleir, 2008asan, 2005). In the Bayesian
approach all unknown parameters are treated as randonbblesiaPrior information about
unknown parameters based on previously collected dataascientific knowledge can be
combined with new data for parametric inference. For exaitple fact that the parameter
b in equation (2) takes the valuebland 25 for rectangular and v-shaped sections, respec-
tively, is an example of prior knowledge that can be used tmfthe prior distribution for
one of the unknown parameters. Combination of the prioritdigions and the model for
the data results in the posterior distribution which can $sduo obtain point estimates and
interval estimates of the parameters. Icelandic Metegroéd Office (IMO) runs a water
level measuring system which collects water level dataicoatsly from rivers in Iceland,
while the discharge is only measured a few times a year duégtodost. IMO has ap-
plied the Bayesian approach successfully to data on disetzard water level for discharge
rating curve estimation as presented in Arnason (2005)wisi based on the model intro-
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duced in Petersen-@verleir (2004). This model will be meférto as Model 1. Model 1
is not sufficient for about 30% of the data sets at IMO whichscdr modifications (see
the section Results). The common practice would be to use-sagtnent discharge rat-
ing curves (Petersen-@verleir and Reitan, 2005; Reitan atetdea-Jverleir, 2008a). Rei-
tan and Petersen-@verleir (2008a) present a Bayesian appt@anulti-segment discharge
rating curves which results in stable estimation while Bayesian methods can have prob-
lems with stability (Petersen-@verleir and Reitan, 2003he®methods like Takagi—Sugeno
fuzzy inference system which is a nonparametric estimatethod, have been applied to
discharge rating curves (Lohani et al., 2006).

The power-law is derived from a theoretical basis and seasean appropriate model in
most cases. However, in some natural settings deviations this form arise. For example,
the river bed can change from a v-shape to a rectangular sisaihe water level increases.
Changes of this type are likely to occur gradually as opposextturring at a single point
with a sharp change or a jump around the breaking points rfg&gtédverleir and Reitan,
2005). This motivates the use of a smooth function to desctdviation from the power-law
instead of using one or more segmentations. A new modeljdfzat extension of Model 1
is proposed. This model, referred to as Model 2, capturesitia trend in discharge as a
function of water level through the power-law paatw — c)®. To model the remaining vari-
ability in the mean response a B-splines function is addedhvaillows for more flexibility
than in Model 1. The B-spline part is set equal to zero aboveesaifspd water level so the
fitted curve is only based on the power-law above this valaktla@ power-law alone is used
to extrapolate discharge for large water level. The powerpart of Model 2 plays a similar
role as the curve in the segment for the highest water le\aésan a segmented rating curve
model.

The proposed method is similar to Lohani et al. (2006) siraé Imethods rely on the
nonparametric approach to estimation. However, it has aafitvantages over Lohani et al.
(2006) approach. It gives measures of uncertainty in paemand fit. The complexity
and the fit of the model can be evaluated and compared witthenBayesian model with a
model criterion. This model criteria penalizes for the nembf effective parameters which
is a measure of model complexity in the Bayesian setting agéie fit of the model. An
important advantage of the model introduced here is thaastd structure that allows for
prediction of discharge above the largest observed watet. le

In the section Data, a description of the sixty one dischaumg water level data sets
is given. In the following section, Deviance informationteria and Bayes factor, a brief
overview of the quantities listed in the section’s title igem. In the section Models the
two statistical models for discharge and water level meaments is introduced. In the
section Bayesian inference a description of the prior distidbns and posterior distribution is
given. The two models are applied to these data sets in thies&esults and a comparison
between the models is made. Finally, in the last sectionglosions are drawn.

DATA

The data which are analyzed in this paper were collecteddMI© water level measuring
system and are from sixty one different rivers in Iceland.r €ach river, time series of
water level measurement are available. The time seriesigigemation about the range
of the water level for each river. Detailed analyses aregoeréd for four rivers. They
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are Nordura in Borgarfjorour by Stekk, Jokulsé & Fjollum byntastadir, Jokulsa & Dal by
Bru and Skjalfandafljét by Aldeyjarfoss. The rivers were @msuch that Model 1 will fit
reasonably well in one case (Jokulsa a Fjollum) and two cakese Model 1 is insufficient
(Nordura and Skjalfandafljot) and one case where Model 1 vsoBly performing poorly
(Jokulsa & Dal). The data sets contain pairs of dischargsumementsd), in m*/sec, and
water level measurements)(in m.

DEVIANCE INFORMATION CRITERION AND BAYES FACTOR

To evaluate quantitatively the quality of a fit of the modehtdata set a criterion called the
Deviance Information Criterion (DIC) (Spiegelhalter et aD02) is employed. The deviance
information criterion is defined as

DIC = Davg+ Pp,

wherepp = Dayg— Dy. The quantitypp is the effective number of parameters and measures
the complexity of the model. The quantitieg,gandD, are based on the likelihood function
which arises from the proposed probability model of the d&ath Dayg andDy measure
the fit of the model to the data. As the complexity of the moghg)) (increases the fit of
the model as measured By,g becomes smaller. Hence, DIC weights the fit of the model
against the complexity of the model. It is also noted thatgher distributions restrict the
unknown parameters with the effect that the effective nunolbgparameters becomes less
than the actual number of parameters. The actual numberarameters in Model 1 and
Model 2 are five and. + 8, respectively, wheré is the number of B-spline kernels as is
discussed in the next section. DIC is used to compare two o2 models which are applied
to the same data in terms of their fit. In such a comparison tha@emhwith the lowest DIC

is considered as the first candidate out of the evaluated Isiotlee candidate model needs
to be evaluated further in terms of goodness of fit. For detail DIC,Dayvg Dj and pp,

see Spiegelhalter et al. (2002) and Gelman et al. (2004hidmpaper, if DIC of Model 2 is
smaller than DIC of Model 1 by ten or more, then Model 2 is degae significantly better
than Model 1. The decision of selecting ten as a cut-off vedseipported by calculations of
Bayes factor (see section Results).

Bayes factors can be used to calculated the posterior piddbr each of two or more
proposed models conditioned on the data. In case of two mdaoleihe data the following
notation is used. Théeth model is denoted b\, pi(y|6) is the data modelg, are the
model parameters;(6;) is the prior for8, ©; is the parameter space aR@\M;) is the prior
probability of model, i = 1,2. The posterior probability of Model 1 is given by

P(My) Jo, P(y[61)P1(61)d6, ( P(Mp) i) -1
> j=1.2P(Mj) Jo, Pj(¥16;)p; (6;)d6; P(M1)  Ba

whereB, is Bayes factor for the comparison of modklsandM, (Kass and Raftery, 1995),

given by
- Joo, P1(y|61) p1(61)d6y
Jo, P2(Y162) P2(62)d6,”

Kass and Raftery (1995) presented a table to categorize ttienee against a null model
(based on a table from Jeffreys (1961)). Here the null moaktiae alternative model would

P(M1ly) =
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be Model 1 and Model 2, respectively. If the Bayes factor valwbich mark the categories
in this table are transformed R(M.|y) (rounding the numbers slightly) then the categories
presented in Table 1 arise.

Table 1: Categories for evidence against Model 1.

P(M2ly)  Evidence against Model 1
0.50to Q75 Barely worth mentioning

0.75to Q90 Substantial
0.90 to 099 Strong
0.991t0 100 Decisive

Here the evidence against Model 1 is preferred to be strodgasive P(M|y) > 0.90)
along with a DIC difference of ten or more, favoring Model @t the selection of Model 2
over Model 1. The prior probabilities are selectedP@sl;) = 0.5,i =1, 2.

One way to computB; is by evaluating the integralg, pi(y|8)p8)d6;, i = 1,2, with

the formula .
1J 1

where@i(t) is thet-th posterior sample df. See Robert (2007) for details.

MODELS

A Bayesian model for discharge rating curves based on thedatdmpower-law is given by
qi:a(Wi—C)b-I-Ei, i:la"'7n7

wheren is the number of observations for a given s{i®,, q;) denotes thé-th pair of obser-
vations and; is a mean zero measurement error such that

& ~ N(07 ’72(Wi - C)wa)7

wherea, b andc are as in (2), the parametgrcontrols how the error variance behaves as a
function of the expected value gf andn? is a scaling parameter for the variance. In essence
this is the same model as the one presented by Peterseref@(2004) and it is currently
used at IMO. The parametaiis a function of¢ andb, that is,

a=exp(ap+aib+¢) (3)

whereap = 4.9468 anda; = —0.7674. This reparametrization is motivated by correlation
between estimates of (a) andb, denoted by If&) andb, which are based on data from
IMO, and the values foap anda; are selected such that the correlation betwe¢d) land
In(&4) — ap — aibis zero, see Arnason (2005).

A new model referred to as Model 2 is proposed. The form ofrtiaslel is given by

g =E(qw))+¢&, i=1...n,
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Figure 3: The prediction performance of Model 2 whegpywas set equal to the second
largest, third largest and fourth largest water level measunent. The bars show the fre-
guency of best prediction, second best prediction and tiest prediction.

whereg; is an error term such that
& NN<O7n2(Wi_CZ)2b2>7 I :17"'7n7

andn?, b, andc, are unknown parameters. The observed discharge is alwait&/psoq

is normally distributed under the constragpt> 0. Note that, andc; play a similar role as

b andcin the variance of Model 1, so the variance of Model 2 is esaliynthe same as the
variance in Model 1. However, the variance of Model 2 doesimdtide parameters of the
mean function. This is done to simplify the conditional dizitions of the Gibbs sampler
and obtain more stable simulation from the posterior distion. The expected value of
g(w) is given by

aw—c)®, w>wypp
E(qw)) ={ aWw—c)P+SH NG (W), Wiy <W < Wypp, AL =0 (4)
aw—c)°+A1, Wo < W< Wiy

where the parameter spaceapi, c andA is such that Eg(w)) > 0. Note that Eq(w)) is
not defined fow < wp. The coefficient is set equal to zero to ensure continuitynghyp.
The termsG; (w) are such that

W — Wiow
GW) =B | ———2 ), 1=1,...L, Wiow<W< Wypp.
I( ) l(Wupp—Wlow) low upp
The termsB;(2), | = 1,...,L, are cubic B-splines (Wasserman, 2006) which have support

on the intervalz € [0,1], wiow andwypp are the lower and upper points, respectively, of
the interval influenced by the B-splines. For a given river guantitieSwWmin and Wmax
are the smallest and the largest observed water level,atdgglg, within the pairsiwi,q;),
i=1,...,n. Based on time series for that river, the smallest water evel observed is found
and is denoted bwy.

The quantitywypp should be selected close Wp,ax as the data points above,p, have
little influence on the B-spline part but mainly influence thewvpr-law curve and thus
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strengthen the estimation of the parameters of the power-for values abovevpp, the
fitted curve is only based on the power-law curve as equatipm(icates. Howeveryypp
should be smaller thanmax as leaving no data points abowgpp will take away information
from the parameters of the power-law curve, in particuldhd amplitude of the B-spline
part is large. This would also result in less accurate pteaticof discharge aboveypp.
However, there is always some information on the power-lavameters in the data points
belowwypp, especially in the data points that are closeg,. This is partly due to the fact
thatA_ is set equal to zero. Selectimgpp much smaller thammay results in less flexibility
of the model since the B-spline part is then effective over alenrange of water level val-
ues. If that is done the power-law alone is used to fit overgelarange of water level values
which may result in a biased fit if there are substantial dena from a single power-law
curve above the selected,p,. Hence, when selectingypp, there is a trade-off between a
good fit belowwmnax and certainty in prediction intervals for water level aboygyx. Here, a
good fit is preferred at the cost of certainty in predictiorowéver,wypp is not set equal to
Wmax but a few data points are left to direct the power-law curvevidues abovevypp. In
order to evaluate the appropriate choosagf, the ability of the model to predict discharge
abovewmax Was evaluated for three choiceswfpp. The quantityw,p, was set equal to
the second largest, the third largest and the fourth largatdr level measurement but these
three choices ofv,pp Wwhere deemed to be the ones leading to good prediction giepand
good fit. To evaluate these three choicesvgfp all data sets with fourteen or more pairs of
observations were analyzed. In each case, the three obeasvith the largest observed
water level were omitted in estimation of the rating curvd predicted with the fitted rating
curve. The sum of squared residuals was used to compareréeectioices ofv,pp in Model

2. Figure 3 shows the number of times the three models givbakeprediction, the second
best prediction and the third best prediction. The choidé wipp equal to the third largest
water level measurement gave predictions that were thednesthe second best in most
cases. Since the difference between the best and the seesnhgrbdiction were usually
small,wypp is set equal to the third largest water level observation.

The lower end of the effective range of the B-spling,,, is set equal tavy to ensure
that the fitted curve is influenced by the B-spline for all waésel values belowv,pp and
down to the smallest water level for which discharge is mtedi. If wio, Would be set
equal to a value greater than,i, the same power-law curve alone would apply to both large
and small water level values and restrict the flexibility leé imodel. The choiceioy = Wo
will minimize the effect of the data points with the smallestter level observations on the
parameters of the power law. The coefficient correspondirtge first B-spline kernel)s,
is allowed to be non-zero to introduce more flexibility to thedel. Hence at,, the fitted
curve deviates by amount equalAg from the power-law. The above selectionvaf,, and
Wypp leads then to the following orderingiy = Wiow < Wimin < Wypp < Wmax-

The B-spline parameters ih= (A1,...,AL) are unknown (with the constraint that =
0) wherelL is the number of B-spline kernels. For simplicity reasonsribenber of B-
splines kernels is fixed (the value bJ and the spacing between the interior knots is also
fixed. Equally spaced B-splines are used to obtain consistanbthness over the entire
B-spline interval as well as to reduce computational compyet is not optimal to have
fixed number of B-spline kernels but a reasonable number cadebtaced by using DIC
as a measure. Based on evaluation of the four discharge datah&svn in Table 2 it was
found that choosingi equal to nine captures the potential improvements gaindddnel 2
compared to Model 1. Table 2 shows that there is a small éifiez in the DIC for values of
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L between seven and fifteen in favor of adding kernels. In tee o&Nordura with. equal to
five the model needs extra kernels to be able to fit the dataa@etyiand it needs more than
seven kernels to become stable. However, it is of courselpess select a number different
from nine for individual data sets by optimizing DIC or apiply some other criteria.

Table 2: The values of g DIC, for different number of L in Model 2 for the four rivers.

J. Fj6llum Nordura J. Dal Skjalf.

L pg DIC Pd DIC Pd DIC Pd DIC

5 327 59435 300 13430 632 67696 563 25504
7 312 59423 095 11812 780 67395 695 25379
9 307 59384 433 12195 868 67550 7.75 25198
11 308 59365 499 12319 1000 67592 829 25298
13 314 59327 594 12465 1091 67548 895 25167
15 307 59297 595 12517 1153 67457 950 25157

BAYESIAN INFERENCE

The Bayesian approach requires specification of prior figions for each of the unknown
parameters. The normal prior distributions selectedgfpb, c and ¢y in Model 1 are the
same (with one exception) as those in Arnason (2005) wherg pstimates of, b andc
calculated from several data set at IMO were used to corisdrpdor for these parameters.
The exception is the standard deviation in the normal defaitb. Arnason (2005) used
0, = 0.75 but in this papeoy, = 0.4 is used. It is considered safe to decrease the valag of
since the previous value was based on point estimates wietidied sampling error. This
prior is reasonable in terms of sensible valueb.of he prior ofa was then transformed to
the prior of¢ according to equation (3). The prior distributions §grb andc are specified in
Appendix. Note that the prior density for denoted byp(b), is a truncated normal density
between (b and 5 so values below.® and above 5 are assumed invalid. The posterior
density ofc will be influenced by its prior density which is denoted jpic) and also bywyp.
Sincec s the water level at which discharge is zero, valuesaiiovewy are invalid. A vague
but a proper prior is chosen fay? since the mean function faris fairly well determined
by the priors for the parameters in the mean function and ¢veton of the data from the
mean curve is allowed to form the posterior distribution. iAversex?2 prior distribution
for n? results in an inverseg? conditional posterior distribution which is convenientevh
using the Gibbs sampler. The hyperparameters in the pritritulition ofn? are chosen to
have a minimal effect on the posterior distribution. Thepfor n? could be improved by
collecting point estimates af2 based on past data sets. This improvement is left for future
research.

Some of the prior distributions for the parameters in Modar@ the same as the prior
distributions of corresponding parameters in Model 1.tFirsc, ¢ andn? in Model 2 have
the same prior distributions &sc, ¢ andn? in Model 1. The parametes in Model 2 has
the same prior distributions &n Model 1. The prior distribution o, is constructed such
that it has a distribution that is similar to thatlofimesy in Model 1.

A normal Markov random field prior (Rue and Held, 2005) with mezro and co-
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variance matrixr?D(l — ¢C)~IMD is assumed for the B-spline coefficienls, (see also in
Appendix). This prior works as a penalty far The parameters? and @ are unknown. In
Marx and Eilers (2005) methods for multidimensional sginising classical statistics are
discussed. The authors introduce penalty terms in thegotilbg function for the estimation
of the spline coefficients. The prior distribution proposexsie for the B-spline coefficients
gives term in the logged posterior distribution which hasrmf very similar to the one di-
mensional penalty term in the objective function in Marx &ilers (2005). The parameter
12 plays the same role as one over the smoothing parameter kafarEilers (2005). The
parameterp needs to be one to obtain the same matrices as in Marx and E2@05). But
for the prior on the B-spline coefficients to be progeneeds to be less than one, in fact
@ € [0,1). In order to have the prior working similarly to the penaltyMarx and Eilers
(2005), the prior forp is selected such that it favors values very close to one. domaplish
this a beta prior distribution witlr = 20 andf3 = 0.5 is selected fowp. This distribution has
90% of its mass betweendB and 1. With these prior distributions fprandA rapid changes
in consecutivel are avoided, the uncertainty in the is reduced and the B-spline function
is smoother than ifp was equal to zero. It was also found thatpit= 0 then the Bayesian
computation becomes unstable andAlsedo not converge to an optimal value.

The parameter? controls the size of the elements df A vague inversex? prior is
chosen forr? due to the lack of knowledge about sensible values for thiamater. This
prior allows the posterior distribution to put a lot of massse to zero which is a desirable
property since in many case$ is in fact equal to zero (the B-spline part is zero). The prior
for 2 also puts a lot of mass on larger valuesréf The variability in the data is bounded
which in turn bounds the variability in the posterior distriion of 2.

The matriceD andM are diagonal with known constants on their diagonals@igla
constant first order neighborhood matrix. The roléas to let the prior variance of the’s
decrease as the index goes from Ltehich forces the B-spline part to become smaller as
w approachesy,pp therefore it could be used to further force the model to beamat the
Wypp- However, in this papeD is set equal to the identity matrix. The role of the matvix
is to adjust for the end point#/ is such that

My =05 ,1=2..L-1 Mp=1 M, =1
The neighborhood matri is such that
Ci-1=C1=05 ,1=2...,L-1 Cp=1 C i1=1

The posterior distribution & = (¢, b, ¢, n?, by, ¢z, A, 12, @) given the data = (qy, ..., qn),
W= (Wy,...,W), IS given by

p(Bla,w) O Ly p(cil8,wi) x p(¢)p(b)p(c)p(n?) p(b2)p(c2)

X P(AIT2,9)p(T%)p(@)

wherep(q;|6,w;) is a normal density such that

p(ci| 6. wi) =N <Qi a(wi —c)° + i/\IGIi,rIZ(Wi —02)2"2) :
=

whereGjj = G(w;). The part[]i_; p(qi|6,w) is the likelihood function which is used for
the computation of DIC and Bayes factor.
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The inference about the unknown parameters is based onasingin the posterior dis-
tribution which are generated by a Markov chain Monte Carl€WC) simulation. A Gibbs
sampler with Metropolis-Hastings steps is used for the MClb@utation which consists of
the conditional distributions of the unknown parameteeg (Gelman et al. (2004) for further
details on MCMC and the Gibbs sampler). The conditional ithistions ofn? and 2 are
scaled inverse chi-square distributions. The conditiaiisttibutions ofA is a multivariate
normal distribution where\ is first generated without any constraints then the comdtrai
AL = 0 is taken into account. To generate from the conditionatitigions of¢, b, c, by, ¢,
and @, a Metropolis—Hastings steps is needed in each case. HoweMmdel 2 the values
for the parameters andc; are set as constants after they have been estimated in the Gib
sampler. Other parameters in the model are estimated agghic @ndc; fixed, resulting in
more reliable estimates.

For the unknown parameters of Model 1 and Model 2 four separfadins of iterations
are used. Each chain takes a number of iterations to convétgese iterations are thrown
away and referred to as burn-in period. The decision on thgttheof the burn-in period is
based on the data set that took the longest time to convergle nBmlels rely the same total
number of iterations or 450 thousand. Model 1 than has a iouperiod of 390 thousand
iterations. Every fourth value of each chain was stored afie burn-in period to reduce
correlation between iterations, yielding four chains ofgth 15 thousand for posterior in-
ference. For Model 2 the first burn-in period covers the firsrter of each chain. The
parameters andc; are estimated from the iterations in the second quarteralf elaain. A
second burn-in period starts after the first half of eachrchaut of the 60 thousand remain-
ing iterations every fourth value of each chain is storechddadel 1. Posterior simulations
for both Model 1 and Model 2 were stable and the simulatednshednverged in all cases.
However, it is worth mentioning that in many cases both mn®dehverge when the total
number of iterations is 160 thousand.

RESULTS

In this section the two models introduced in the section Modee applied to the sixty one
data sets from IMO database for comparison between the tvdelsioAnalysis of four of
the data sets is shown here in details. As mentioned in tha §atdtion these four data sets
come from Nordura, Jokulsa a Fjollum, Jokulsa & Dal and &kjdkfljot. Figure 4 shows the
fitted discharge rating curves of the two models for thesedata sets, along with prediction
intervals and posterior intervals for the discharge ratingyes.
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Figure 4: The fit of Model 1 (left panel) and of Model 2 (right panel) te flour selected
data sets. The vertical axes shows water level (w) in m while thedrtal axes shows the
discharge (q), in f/sec. The black solid curves show the posterior medid(gf and the
95% posterior interval oE(q). The dotted curves show prediction intervals.
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In all cases, except for Jokulséa a Fjollum, the 95% prediciidervals are wider for
larger values of water level in Model 1 than in Model 2. Thisnainly due to the fact that
if the fit through the observations is adequate then the b#itiaaround the fitted curve is
smaller when compared to the variability around a poorettis, in turn results in narrower
prediction intervals.

Figure 5 shows the standardized residuals of the two moaetsis water level. In gen-
eral, when an adequate model is used then the standardeiddals should not show any
trend and appear to have the same variance for all valuezafdlter level. In the case of
Nordura, Model 2 yields more convincing standardized resglthan Model 1, which shows
a trend in the standardized residuals while that is not tise éar Model 2. In the case of
Jokulsa & Fjollum there is no visible difference in the stadized residuals which indicates
that Model 2 imitates Model 1 when Model 2 does not providaigicant improvement over
Model 1. For JOkulsa a Dal the trend in the standardized wetsdof Model 1 is obvious,
while the standardized residuals of Model 2 show no trendhéncase of Skjalfandafljot,
there appears to be a trend in the standardized residual®délM for water level values
lower than 184 m and greater than3 m while the standardized residuals of Model 2 show
no trend. These examples demonstrate that Model 2 can prbeiter results than Model 1
and when Model 1 appears to be adequate, Model 2 performsleasidodel 1.
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Figure 5: Standardized residuals for the four selected data setsi¢atiaxes). Water level
is on the horizontal axes (cm) but the scale is nonlineam&iedized residuals for Model 1
(left panel) and Model 2 (right panel).
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Figure 6 shows the roles that the standard power-law partlen&-spline part play in
Model 2. The B-spline part models the variation in the dataHervalues of the water level
below wypp that the standard power-law part can not adjust for on its. olvme B-spline
part is zero at and abowe,pp and it smoothly approaches zerovaspproachesvypp from
below. In the case of Nordura as well as Skjalfandafljot thepBis part allows Model
2 to give a visibly better fit. The standard power-law modeb@dl 1) is adequate in the
case of Jokulsa & Fj6llum as is seen in the left panel of Figur&he right panel shows
clearly the ability of the B-spline part of Model 2 to reduceaimnost zero, thus, the B-
spline addition has insignificant effect on the dischargi@gecurve for such case. In case of
Jokulsé & Dal it can be seen that the B-spline part can takeges\values as needed when
the standard power-law part is inadequate for the datars@ablle 3, a comparison between
the two models is made through DIC and Bayes factor (see thies&eviance information
criterion and Bayes factor). Table 3 shows thgtis less than the actual number of unknown
parameters in Model 1 and Model 2 which are 5 and 15 respéctilbis is expected due to
the fact that the prior distributions constrain the unkn@arameters. It seems that the more
the B-spline part is contributing, the larger the number &ative parameters. This shows
the adaptive nature of the Markov random field prior Aor

Table 3 shows that in all cases except Jokusa & Fj6llum, Mbtak considerably lower
DIC than Model 1. The difference in DIC between Model 1 and Ela2iis about 19 and
23 for Nordura and Skjalfandafljot, respectively, and ab@itfor Jokulsa & Dal. In the
case of DIC these are all relatively large differences. mdhse of Jokulsa & Fjollum the
difference in DIC is less than 3 which is viewed as a smalkdéhce. This is reflected in the
fitted discharge rating curves of Model 1 and Model 2 whichasho visible differences for
Jokulsa a Fjollum in Figure 6. The results in Table 3 and Fégut, 5 and 6 show that the
B-spline part of Model 2 either improves the fit compared to Blddor gives a fit equally
good as that of Model 1 when Model 1 is adequate. The postprairability of Model 2
(based on Bayes factor) is also computed for the four seletdéal sets in Table 3. The
computed probability values confirm that the DIC differenéer Nordura, Jokulsa a Dal
and Skjalfandafljot are relatively large and support seigdviodel 2 over Model 1 while
the DIC difference for Jokulsa a Fjollum is small and suppediecting Model 1 over Model
2.

Table 3: The values of B, Dg, pp and DIC for Model 1 and Model 2 for the four rivers.

Model 1 Model 2

Davg Dj Pd DIC Davg Dj Pd DIC
Nordura 13610 13154 456 14066 11762 1133 433 12195
Jokulsa
a Fjollum 59211 58764 446 59657 59076 58769 307 59384
Jokulsa

a Dal 76887 76400 488 77375 66683 65815 868 67550
Skjalfanda-
fljot 27107 26657 448 27455 24423 23647 775 25198
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Figure 6:The left panel shows the standard power-law part (solid redes)y of Model 2 and
the sum of standard power-law part and the B-spline part of &@l(solid black curves)
for the four selected data sets. The right panel shows thdiBespart of Model 2 for each
data set. Water level is on the vertical axes (m) while disghas on the horizontal axes

(m?/sec).
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Figure 7: The difference in DIC between the two models is on the horitanta and the
posterior probability of Model 2 (based on Bayes factor)nstloe vertical axes.

Figure 7 shows comparison between Model 1 and Model 2 for&iosts analyzed from
the IMO database by plotting the difference in DIC betweenModel 2 and Model 1 on the
horizontal axis (positive if Model 2 gives a better fit) and fyosterior probability of Model 2
on the vertical axis. When the DIC difference is greater tlearaind the posterior probability
of Model 2 is greater than 0.9, then Model 2 significantly ioya@s the fit of Model 1 (see
the section Deviance information criterion and Bayes factohis is the case for 16 rivers
which is about 26% of the data sets. When the probability of &@dis between 0.0 and
0.90 and the DIC diffence is less than 10 then Model 2 is ngperfvrming Model 1 and
that Model 1 is adequate. This is the case for 36 rivers outlofoB 59%. In case when
the DIC difference is less than 10 and the posterior prolhgluf Model 2 is greater than
0.9 (7 of 61), and in the case when the DIC difference is greatam 1.0 and the posterior
probability of Model 2 is less than.® (2 of 61), a close look at the descriptive plots and
statistics is needed to determine whether Model 1 is adeguatot. This is true in general,
that is, a detailed analyzes of each data set is needed laefiosd decision about Model 1 or
Model 2 is made. The DIC difference and the posterior prdiilof Model 2 are important
measures to support that decision.

Table 4 shows estimates of the parametens, ¢ which are sufficient to construct dis-
charge rating curves based on standard power-law. Theamptars are presented for both
Model 1 and Model 2. There is a substantial difference inglggameters between Model
1 and Model 2 which is due to the extra flexibility of Model 2.€lB-spline part in Model 2
has the ability to utilize information from lower values o&ter level in the data and there-
fore the standard power-law parameters can be estimatédawitore focus on the higher
water level when needed. This can lead to a different pastdansity fora, b andc in the
two models as seen in Table 4.
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Table 4. Parameter estimates of a, b and ¢ in Model 1 and Model 2. * c ésgstimated
and therefore a constant.

Model 1 Model 2
a b c a b c

Nordura

Post. median 165 216 088 964 245 069
2.5 percentile 159 206 077 649 194

97.5 percentile 154 236 093 2110 275
Jokulsa a Fj.

Post. median 689 213 029 6596 216 025
2.5 percentile 4912 194 011 5944 203

97.5 percentile 926 234 043 7536 227
Jokulsa a Dal

Post. median 1121 168 074 10787 148 044
2.5 percentile  95%7 152 064 7364 122

97.5 percentile 1397 187 082 15110 176
Skjalfandafi;.

Post. median Bl 301 006 2437 239 058
2.5 percentile 05 285 -0.18 2067 223

97.5 percentile 100 336 018 2904 254

In Table 5, a posterior interval is given for rest of the pagtans in Model 1 and in Model
2 except forA. For Model 1 the parametey is multiplied byb so it can be compared to the
parameteb, in Model 2. The posterior median of varies from 2.99 in Jékulsa & Fjdllum
to 1180.6 in Jokulsa & Dal which shows the difference in thplénde of the B-spline part
for these data sets. The paramepes forced to be close to one through its prior distribution
to ensure strong positive correlation between the elen@ms The effect of the prior is
clear in the posterior estimates @f
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Table 5: Parameter estimates gf andn? in Model 1 and b, ¢, n?, 12 and @ in Model 2.
* Co is pre-estimated and therefore a constant.

Model 1 Model 2
wxb  n? b, C n? T2 @

Nordura
Post. median 22 005 271 062 022 1980 095
2.5 percentile 22 002 230 012 032 080
97.5 percentile B3 015 312 047 59733 099
Jokulsa a Fj.
Post. median X7 104 202 015¢ 887 299 095
2.5 percentile 17 006 148 414 00004 081
97.5 percentile 57 2164 255 2032 13674 099
Jokulsa a Dal
Post. median 14 474 196 -0.19¢ 3.77 11806 0.96
2.5 percentile D3 084 152 167 4378 083
97.5 percentile B4 4517 240 909 42746 099
Skjalfandafi;.
Post. median 75 0024 203 011 026 1711 095
2.5 percentile D8 0002 143 011 388 082
97.5 percentile 32 0231 263 064 7943 099

As discussed in the Introduction section discharge ratinges are frequently used in
extrapolation of discharge. As a demonstration, the thigleest water level observations,
along with corresponding discharges observations, werkiged from the data sets for the
four rivers previously analysed. Then both models were tisexktrapolate over the range
of the three excluded water level values. Figure 8 showsdhelts. In all cases the three
excluded discharge values are within the 95% predictiarvwal for Model 2 but only in two
cases for Model 1, namely, Jokulsa a Fjollum and Nordura.tfese two cases the models
are similar for Jokulsa & Fjollum but Model 2 looks better Mordura. For the other two
cases Model 1 is considerably of the mark. Hence, it can beleded that for these four
cases Model 2 performs considerably better in predictisghdirge for extrapolated water
level values greater thamyax.

The data analysis conducted to sebeg, for Model 2 in the section Models was also
performed for Model 1. When Model 1 and Model 2 (withpp equal to the third largest
water level observation) are compared in terms of predidii@n Model 2 performs better
than Model 1 for 60% of the data sets. This is based on 48 dédasee?9 data sets give
better results under Model 2 in terms of prediction. Howgt6rdata sets out of 61 are such
that Model 2 is judged to give a better fit than Model 1. So, ime@ases even if the fit for
Model 1 is better than or equally good as that of Model 2, thexrd® 2 appears to perform
better when predicting discharge for water level greatanth,.x. However, in few cases
Model 1 performs better when predicting discharge for whateel greater thamvmax even
though Model 2 gives a better fit.
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Figure 8:The solid curves show the posterior mediarf(d), red for Model 1 and black for
Model 2 for the four selected data sets. The dotted curves ghediction intervals, red for
Model 1 and black for Model 2. Water level is on the verticasgm) while discharge is on
the horizontal axes (fisec).
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CONCLUTION

A Bayesian model for discharge rating curves, labeled MopekE2 developed by extending
the standard power-law model, labeled Model 1, by adding plBesfunction. Comparison
of these two models based on analysis of sixty one data setsli¥iO shows that Model
2 outperforms or performs as well as Model 1. One of the mogbmant properties of
Model 2 is the capacity of the B-spline part to catch deviatiothe data from the standard
power-law model when that model is inadequate. In thesescédedel 2 achives a more
convincing fit to the data than Model 1. This is confirmed wittlcalations of DIC and
Bayes factor where Model 2 yields a substantially lower DIG&a and higher posterior
probabilities than Model 1 in sixteen of sixty one cases (Difference greater than ten and
posterior probability of Model 2 greater tham). In thirty six cases the DIC difference
is less than ten and the posterior probability of Model 2 kss Q9 and it is debatable
whether the added complexity of Model 2 leads to an improvemeé\nother important
property of Model 2 is that when Model 1 appears to give an adefit as in the case of
Jokulsa a Fjollum then Model 2 imitates Model 1 by reducingdmplitude of the B-spline
almost down to zero. Model 2 performs better than Model 1 wheames to prediction of
discharge for water level abowayax as it gives better results for 60% of the analyzed data
sets, which supports the use of Model 2.

It is concluded that Model 2 can be used to fit discharge ratinyes regardless of
whether the standard power-law model is adequate or not.eXteptional cases are when
the data sets contain a few data pairs and there may not bglendormation to estimate
the B-spline part successfully. Based on the experience djaiere at least ten data pairs are
needed.

Finally, it is noted that segmentation has been commonlg isestimating discharge
rating curves and it could be argued that maybe it is moreagu@te than Model 2 for data
sets where there is a visually apparent shift. A direct cammpa between segmentation
models and Model 2 is needed to compare their performanceinfyse of multi-segment
discharge rating curves and B-splines could potentiallydyeshcial for such cases.
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APPENDIX

The following prior distributions are proposed for the uakm parameters.
P(¢) = N(|up = 0,05 = 0.82)

p(b) O N(b|u, = 2.15, 62 = 0.4%)1 (0.5 < b < 5)
p(c) ON(c|pec = 75,02 = 50%)1 (¢ < wo)
p(W) ON(Y|py = 08,05 = 0.25%)1 (0< Y < 1.2)
p(bz) O N(ba| e = 2.15, 072, = 0.4%)| (1 < b < 6)
p(c2) O N(Cz| ez = 75,0 = 50°)I (C2 < Wo)
p(n?) Oinv-x2(n?lvy =102 5 = 1)
p(¢p) = Beta¢|ap = 20,3, = 0.5)

p(1?) O Inv-x2(T?|v; = 10712, £ = 1)

p(A |12, @) ON(A|0,72D(I — C) MD)

wherel (A) is such that (A) = 1 if Ais true and (A) = 0 otherwise. In the prior distribution
for A, | is an identity matrixD andM are diagonal matrices ai@lis a neighborhood matrix
with constants on the first off-diagonals, other elemergsgual to zero.
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ABSTRACT

Bayesian methodology for estimating discharge rating curves that is bast o
standard power-law where the parameters are not constant with wagkrTeée model
uses B-splines to estimate the parameters in the power-law equation. This isodel
compared to the standard power-law model with a B-spline smoothing funditedao
it. These models are compared by using paired discharge and water lasinerments

data sets from forty nine rivers.

INTRODUCTION

Hydrological rating curves give discharge as a function afew level. Based on hydraulic
principles, the relationship between discharge and watet Is given by the standard power-
law
q=aw-c)"

(Lambie, 1978; Mosley and McKerchar, 1993) wheres dischargey is water levela is
a positive scaling parametds,is a positive shape parameter ang the water level when
the discharge is zero. These parameters are usually estirfram paired measurements of
water level and discharge.

The power-law is derived from a theoretical basis and seagean appropriate model
in most cases. The Bayesian approach has been successfligdajp discharge rating
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Figure 9:Ten b-spline kernels.

curves(Moyeed and Clarke (2005), Reitan and Petersen-@n@0@8b) and Arnason (2005)).
However, in some natural settings the stream bed changbswaiter level and therefore
when using the power-law equation it becomes essentialdw @éhe parameters to change
with water level according to the change in the stream beds ddm be executed in various
ways the classical way is to use the power-law with constardrmpeters for a given water
level interval and then change the parameters at the nexvaltf needed, this is called seg-
mentation as in (Petersen-@verleir and Reitan, 2005; ReitdrPatersen-@verleir, 2008a).
Another approach is to use smoothing function on top of thegosdaw as in Ingimarsson
et al. (2010a) where a B-spline smoothing function is usedesxidbe deviation from the
power-law. Figure 9 demonstrate how the B-spline kernel&kwdere a new method is pro-
posed that estimates the parameters in the power-law cantsty as the water level raises.
This approach allows for easier interpretation of the dasgé rating curve than for the model
introduced in Ingimarsson et al. (2010a).

In the section Data, a description of the forty nine dischagd water level data sets is
given. In the section DIC an brief overview of the model ¢idIC is given. In the section
Models the two statistical models for discharge and waissl lmeasurements is introduced.
In the section Bayesian Inference a description of the pnmt osterior distributions is
given. The four models are applied to these data sets in ttiesé&esults and a comparison
between the models is made. Finally, conclusions are drawheilast section Conclusions.

DATA

Estimation of discharge rating curves requires a data détwater level and correspond-
ing discharge measurement is needed. The IMO has colldutetype of data form rivers
around Iceland. Forty nine data sets from equally manysiaee analyzed in this paper. For
each of these rivers, time series of water level measureaneravailable. These time series
give valuable information about the range of the water Iéoekach river. For each river
the smallest observed water level within the time serieseful for the estimation of the
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discharge rating curve. The role of this value will be introdd in the chapter Models. The
data sets contain pairs of discharge measuremgptis(m®/sec, and water level measure-
ments () in m. One river is analyzed in more detailed due to apparewiation from the
standard power-law with fixed parameters.

DEVIANCE INFORMATION CRITERION

To evaluate quantitatively the quality of a fit of the modehtdata set a criterion called the
Deviance Information Criterion (DIC) (Spiegelhalter et 2D02) is employed. The deviance
information criterion is defined as DIC Bayg + pp, Wherepp = Dayg— D. The quantity
pp is called the effective number of parameters &gy andDj are based on the likelihood
function. Hence, the measure DIC penalizes for effectivalmer of parameters. Also noted
that the prior distributions restrict the unknown parametth the effect that the effective
number of parameters becomes less than the actual numbaraheters but the actual
numbers of parameters in Model 1 and Model 2 are five lard6, respectively, wheré

is the number of B-spline kernels. DIC is used to compare twmare models which are
applied to the same data. In such a comparison the modelhdtloivest DIC is considered
as the first candidate out of the evaluated models. The catedodel needs to be evaluated
further in terms of goodness of fit. For details on DZ,g, Dy and pp, see Spiegelhalter
et al. (2002) and Gelman et al. (2004).

MODELS

Here new models for discharge rating curves is introduag@rénce for this model is based
on the Bayesian approach. The Bayesian model for dischaiigg ratrves that is used as a
comparison to the new model. This model is introduced innragsson et al. (2010a) and
the form of this model is given by

g =E(Qqw))+&, i=1,..n
whereg; in an error terms such that

& ~N <07’72(Wi - C2>2b2> , = 1,....n,

wheren?, b, andc, are unknown parameters. The observed discharge is alwajts/p®o
g is normally distributed under the constraipt> 0. The expected value ofw) is given by

aw—c)®, W > Wypp
E(qw)) ={ aW—0)P+ S AG (W), Wiow <W < Wypp, AL =0 (5)
a(W—c)°+A1,  Wo <W < Wigw

where the parameter spaceapi, c andA is such that Eg(w)) > 0. Note that Eq(w)) is
not defined fomwp < w. The coefficientA_ is set equal to zero to ensure continuityngpp.
The termsG, (w) are such that

(W — Wiow)
(Wupp— Wiow)

Gi(w) =B, (

) ) I = 17 "'7L7 W|0W S WS Wupp- (6)
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The termsB,(z) are cubic B-splines (Wasserman, 2006) which have suppofiemterval

z € [0,1], wiow andwypp are the lower and upper points of the interval influenced gy th
B-splines, respectively. For a given river the quantityi, andwnax are the smallest and
the largest observed water level, respectively, withinghies (w;,q;i), i = 1,...,n. Based on
time series for that river, the smallest water level of tieetiseries for that river is denoted
by wo. Herewio, is set equal tavp. The quantitywypp is set equal to the third largest water
level observation with a corresponding discharge measemeriherefore, the order of these
quantities here is such that = Wigw < Wmin < Wypp < Wmax. The B-spline parameters in
A = (A1,...,AL) are unknown (with the constraint = 0) andL is the number of B-spline
kernels. For simplicity it is decided to use fixed number ofdires kernels (value df)
and to use fixed spacing between the interior knots. Equphlyed B-splines are used to
obtain consistent smoothness over the entire interval Besjphterval as well as to reduce
computational complexity. This Model will be referred toMedel 1.

Model 1 has the ability to pick up deviations from the poweas:l This model is compared
to the standard power-law equation, this has been testée ifiigimarsson.et.al) where the
parametera andb were constants and then model lacked the flexibility thateisded in
many data sets. Here a model based on the standard powerdagraposed where the
parametera andb are not constant with water level. This model has mean fangs given

by

log(qi) = E(log(q(wi))) +&, i=1,..,n. (7)

E(log(a(w))) = a(w) + b(w) log(w—c) (8)

wherec is a unknown parametea,is given by

aw) =4 a1+ Z}:l WX (W) Wmin < W < Wmnax 9
ar+w W> Wnin

and wherd is given by

b1 +ék  W>Wypp
b(w) =< b+ ZEzl EUK(W)  Winin < W < Wiax (10)
bi+é1 W> Win

The functionsX andU are the same &S in Equation 6 with the exception thekyay is
replaced withwypp.

This model requires variance function that is differentdrthat in Model 1 and therefore
three different structures are tested for the error tgrim (7). These models will be referred
to as Models 2-4 and will all have the same expected value sio&quation (8). The error
termg; in Equation (7) for Model 2 is given by

& ~N (0,05 {1+ riexpl(W—wx)/r2]), i=1..,n,

whererq, ro and002 are unknown constants amgy is a constant set equal ¥gy;,.
The error tern; in Equation (7) for Model 3 is given by

& ~N(0,02{1+expdw)]), i=1,..,n,
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wheredg is a unknown constant are{w)is given by

dw) =< TK ; KoUo(W)  Wimin < W < Winax (11)
wherek is a unknown vector.
The error terne; in (7) for Model 4 is given by

& NN(O7O-42{1+81(W_WfIX)Sz)7 i =1,..,n,

Wherea}, s; ands, are a unknown constants.

BAYESIAN INFERENCE

The Bayesian approach requires specification of prior digions for each of the unknown
parameters. The prior distributions for Model 1 are the sasia Ingimarsson et al. (2010a).
For Models 2, 3 and 4 the priors for the parameters in the égde@lue are the same. For
a; andb; a normal prior distributions are selected as in Ingimarssa. (2010a) however
due to the re-parametrization @fn that paper the prior distributions fag becomes normal
with mean as -6.60 and variance as 4.10. The prior distabatforw andé are a Gaussian
Markov random field distributions (Rue and Held, 2005) withameero and covariance
matrix erD(I — gojC)—lMD wherej is either 1 or 2 depending on whether it is in the prior

distribution forw or &. This prior works as a penalty faw andé. The parameten%2 andg
are unknown. The parametq% controls the size of the elements@fandé and acts similar

to a smoothing parameter in a non-Bayesian approach. A vagaesex? prior is chosen
for T2 due to the lack of knowledge about sensible values for thiarpater. This prior allows
the posterior distribution to put a lot of mass close to zelnatvis a desirable property since
in many cases? is in fact equal to zero (the B-spline part is zero). The pm’mrrf also puts

a lot of mass on positive non-zero valuesréf The variability in the data is bounded which
in turn bounds the variability in the posterior distributiof 72. The parameteg is in the
interval [0,1). To obtain a strong positive correlation betweenihepefficients the value of
@ needs to be close to 1, but that is preferred here to avoid cdygainges in th&’s which can
lead to lack of smoothness in the B-spline part and thus indtieg curve. To accomplish
this a beta prior distribution witlr = 20 andf = 0.5 is selected fowp. This distribution has
90% of its mass betweendB and 1. The prior distributions for the? parameters in Models
2, 3 and 4 are inversg? distributions. Other parameters in Model 2 have normatitisted
priors. A prior forr, has the form Nr1|0,0.5) and forra N(r1|0,0.5). In Model 3 the prior
for ag has the form Nag;|0,2) where i=1,...,L. In Model 4 the prior distributions fog;
ands; have the following form Ns;|0,0.5) and N(s|2,1).

The posterior distribution 08 = (a3,by,c,w, &, 12,12, @1, @, 02,11,17) given the data
g=(qs,--.-,qn), W= (W4, ..., W), for Model 2 is given by

p(6la,w) O Ly p(ci|6,w) x p(ar)p(b)p(c)p(az)p(r1)p(rz)
< p(w|t2, @) p(12)p(er)
< p(&|T2, @) p(12)p(e)
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wherep(q;|6,w;) is a normal density such that

p(ci|6,wi) =N (qi

(@(w)) +b(w)log(w; — c), 022{1 +riexp/(w — Wﬁx)/rz]) ,

and the parf]_; p(qi|6,w) is the likelihood function. The posterior distribution isrived
similarly for Model 3 and 4.

A Gibbs sampler with Metropolis—Hastings steps is used tegge samples from the
posterior distribution. The conditional distributionsmpf and 12 are scaled inverse: dis-
tributions. The conditional distributions @b and & are a multivariate normal distribution
wherew and¢ are first generated without any constraints then the canstéthe first and
last values in the vector @b andé are taken into account. To generate from the conditional
distributions ofay, by, c, ry, o, a3, s1, S, andg; where j = 1,2, a Metropolis—Hastings
steps is needed in each case. However in all models the \@luledf parametersis set as
constant after it has been estimated with the Gibbs samigterparameters in the model are
estimated again with fixed. This is to strengthen the estimate of other parameters

RESULTS

In this section a comparison between the models introdutéuki section Models is made.
For this comparison forty nine data sets from the data badé©fare used. To compare how
well the models are performing for different types of dats 84C values were calculated for
all forty nine data sets and the difference between Modetlllamother models is computed,
see Figure 10.

As can be seen from Figure 10, Model 3 clearly outperformséi@dind 4 in six cases.
However, for the rest of the DIC differences there is littifedence between these models.
Model 2 and Model 4 give very similar results with one excepti Due to the fact that
Models 2, 3 and 4 all have the same mean function and DIC ediook are in favor of
Model 3 a focus will be on Model 3. It is apparent that Model Jpesforming better in
more cases than Model 3 however in 32 cases the DIC diffefisriess than 5 which means
that there is a small difference in how the models are peiffaymin fifteen cases Model 3
is performing with a smaller DIC values than Model 1 where tve¢hese cases have DIC
difference grater than 5.
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Figure 10:0n the vertical axis the difference in DIC between the Modehd lslodels 2, 3
and are denoted by stars and number of rivers is on the hogta@xes. The difference be-
tween Model 1 and Model 2 is denoted by red stars, green stas gie difference between
Model 1 and Model 3 and finally blue stars show the differend@lC between Model 1 and
Model 4.

The river Jokulsa & Dal is used to show how the models propostbis paper perform.
In Figure 11 the behavior of the parameta@ndb are shown for Model 3. By allowing the
parametera andb to be a function of water level Model 2, 3 and 4 can give a béittery the
data better than if the parameters are fixed. It is of intéoesée how little both parameters
change with water level since this is the data set that givesvbrst fit in the hole IMO data
base if a standard power-law model is used with fixed parasiatel no segmentation.
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Figure 11:The 95% posterior interval and the posterior median for tlaegmeters a (left

panel) and b (right panel) in Model 3 for Jokulsa a Dal are peted. The vertical axes
shows water level (w) in cm while the horizontal axes shows how dheneters in the

standard power-law vary with water level.
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Figure 12: The fit of Model 1 to data (left panel), and that of Model 3 (tiglanel). The
vertical axes shows water level (w) in cm while the horizontataskews the discharge (q),
in m3/sec. The black solid curves show the posterior medid(@f and the 95% posterior
interval ofE(q) is displayed by the dotted curves. The broken lines shovigtied intervals.
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Figure 13: The fit of Model 1 to data (left panel), and that of Model 3 (tiglanel). The
vertical axes shows water level (w) in cm while the horizontatastews the discharge (q),
in m*/sec. The black solid curves show the posterior medid# @f and the 95% posterior
interval ofE(q) is displayed by the dotted curves. The broken lines shovighiedl intervals
and the x show the excluded data points.

Figure 12 shows how well Model 1 and Model 3 fit the data set fditkulsa & Dal.
Both models fit the data well. However, the posterior intersavider for Model 3 and DIC
calculation which has difference of the magnitude of 6.@&iarthe favor of Model 1 which
suggests the use of Model 1 gives a better rating curve.

The fit alone may not be the only thing of interest when degdumich rating curve to
use in most cases the extrapolation is as important. Digehating curves are frequently
used in extrapolation of discharge. To test how well the twamlais extrapolate then a few
of the highest discharge observation are excluded fromakteskts and the models are used
to predict these excluded discharge values. This is doneidtest, second, fourth and fifth
highest discharge observations. Figures 13 and 14 show tésisresults.
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Figure 14:The fit of Model 1 to data (left panel), and that of Model 3 (tiglanel). The
vertical axes shows water level (w) in cm while the horizontataskews the discharge (q),
in m®/sec. The black solid curves show the posterior medid(@f and the 95% posterior
interval ofE(q) is displayed by the dotted curves. The broken lines shovigie intervals
and the x show the excluded data points.
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Figure 13 shows that both models can predict the data if ikemee data point excluded
from this data set, however, both models overestimate thehdrge if two data points are
excluded. In Figure 14 both models continue to overestirttaadischarge when four and
five data points are excluded. There is not an obvious diffexrérom the Figures 13 and 14
in the way Model 1 and Model 3 extrapolate.

Table 6:The values of b for Model 1 and Model 2.

Model1 Model 3
parameteb, 1 excluded point Bl 194
parameteb, 2 excluded points 60 189
parameteb, 3 excluded points 50 182
parameteb, 4 excluded points 5 183
parameteb, 5 excluded points A2 18

From Table 1 and the fact that both models overestimate sobdige when extrapolation
then Model 1 more likely perform better when dealing withregeeater water level than the
largest data point, this is due to lower value of the paranieit®@ Model 1.
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CONCLUSIONS

Even though Models 2, 3 and 4 have shown a lot of potential Mbgerforms better over

all. However there are data sets which Model 1 gives the witrst the four models and

for most data sets or 32 out of 49 the difference in DIC is netatgr than 5. It would be

of interest to find out the characteristics of these data $ieddso could be beneficial to test
the models also by using the Bayes factor which combined Ww#&XIC could give a more

accurate estimate of the performance of the models.
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ABSTRACT

The Bayesian approach has been successfully applied to the estimatieahzfrde
rating curves which are based on the standard power-law. Here tliasigrower-law
model is extended by adding a B-spline function to it. The extended modehisared
to the standard power-law model through discharge data from the directtream
Nordura in Borgarfjorour in the Western part of Iceland. The extdndedel provides

a substantially better fit to these data than the standard power-law model.

INTRODUCTION

Hydrological Service in Iceland (HSI) runs a water level sw@ang system which collects

water level data continuously from rivers around the coumthile the discharge is only

measured a few times a year due to high cost. Hydrologicalgaurves give discharge as
a function of water level. Based on hydraulic principles, idationship between discharge
and water level is given by the standard power-law relatigns

q=a(w—c)® (12)

(Lambie, 1978; Mosley and McKerchar, 1993) wheres dischargew is water levela is

a positive scaling parametdy,is a positive shape parameter ants the water level when
the discharge is zero. These parameters are usually estiritam paired measurements of
water level and discharge.

The Bayesian approach has been successfully applied toadigcinating curves, see
Moyeed and Clarke (2005), Reitan and Petersen-@verleir (0281 Arnason (2005). In
the Bayesian approach all unknown parameters are treateahdsm variables. Prior in-
formation about unknown parameters based on previouslgatetl data and/or scientific
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knowledge can be combined with new data for parametric emiee. For example, the fact
that the parametdyin equation (12) takes the value®kand 25 for rectangular and v-shaped
sections, respectively, is an example of prior knowledge: tlan be used to form the prior
distribution for one of the unknown parameters. Combinatibthe prior distributions and
the model for the data results in the posterior distributidmch can be used to obtain point
estimates and interval estimates for the parameters. HSafyalied the Bayesian approach
successfully to data on discharge and water level for drgehiating curve estimation.

In the section Models two statistical models for dischange &ater level measurements
are introduced. In the section Data a description of digghand water level data is given.
The two models are applied to the data in the section Resudta aomparison between the
models is made. Finally, in the last section conclusionsiea/n.

MODELS

The Bayesian model for discharge rating curves currentlgd as&iSl is given by
g=aw—cP+g, i=1..,n

wheren is the number of observations for a given s(i®,, g;) denotes thé-th pair of obser-
vations,&; is a mean zero measurement error such that

& ~ N(0,n?(w; —c)®¥).

In essence this is the same model as the one presented bgdPefrerleir (2004). The
parameten is a function of¢ andb, that is,

a=-exp(ap+ a1b+¢)

whereap = 4.9468 anda; = —5.3726. This reparametrization is motivated by correlation
between values of [i&) andb which are based on data from HSI, and the valuesxfoand

a; are selected such that there is no correlation betwe@® bnd I(&) — ag — a1b, see
Arnason (2005). The parametgrcontrols how the error variance behaves as a function of
the expected value af, andn? is a scaling parameter for the variance. This model will be
referred to as Model 1.

Model 1 is not sufficient for about 5% of the data sets at HSlcilualls for modifica-
tions. Here, a model is proposed that is an extension of Mbdglcaptures the main trend
in discharge as a function of water level through the powarpart,a(w— c)°, but a linear
combination of B-splines is added, which allows for more ity than in Model 1. The
form of this model is given by

L
g =aw —c)° + Z AIBji + &
=1

where
Bii = By (Wi —Wiow)/r), |=1..L, i=1..n

and the term$, (z) are cubic B-splines (Wasserman, 2006) which have suppotteint
terval [0, 1], r = Wupp — Wiow, Wiow @andwypp are the lower and upper points of the interval
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influenced by the B-splines, respectively. Usuallyy = Wnin, I.€., Wherewm, is the small-
est observed water level. The quantitypp is selected as the 90th percentile of the water
level observations or the number such that at least threerweasel observations are above
it. The parameters in = (A1,...,AL), are unknown and is the number of B-spline kernels.
Further, the error terms are such that

& ~N <O,I’]2(Wi - 02)2b2> s I = 17 N,

whereb, andc, are unknown parameters. Note thatplays a similar role ag/ in Model 1.
This model will be referred to as Model 2. Further, Model 2usltsthatA; = 0 to avoid a
jump atw = Wypp, and forw < Wigy, E(q) = a(w—c)®+ A;.

The Bayesian approach requires specification of prior digions for each unknown
parameter. The same normal prior distributions as used agan (2005) are used here
for ¢, b andc, see details in Appendix. The prior distribution fois a truncated normal
distribution between @ and 5. The posterior distribution afwill be influenced by its
prior distribution but also by the smallest water level meament, denoted by, since
C < Wmin- A normal Markov random field prior (Rue and Held, 2005) is assd forA, see
details in Appendix.

The posterior distribution d = (¢, b, c,n?,by, o, A, T2, @) given the data = (qy, ..., qn),
W= (Wy,...,Wn) andWpin, is given by

p(6]a,W,Wmin) O [y p(ci|6,w) x p(¢)p(b)p(c)p(n?)p(b2) p(c2)

x p(AT2,0)p(T?)p(e)

wherep(qi|6,w;) is a normal density such that

p(ci|6,wi) =N (Qi

L
a(w; —c)° + Z)\l Bii, n%(wi — C2)2b2) ,
|=
and the parf]i_, p(ai|6,w;) is the likelihood function.

DATA

The data which are analyzed in this paper were collected dyndgr level measuring sys-
tem and are from Nordura in Borgarfjorour by Stekk. The rigdocated in the Western part
of Iceland. The water level of Nordura has been measuredntanisly since 1965. The data
contain 35 pairs of discharge measuremeq}si m*/sec, and water level measurements
(w) in cm. Nordura is a direct run stream with 500%drainage basin above Stekk. In direct
run streams the discharge dependents heavily on the seadoaiafall.

RESULTS

Here the two models introduced in the section Models areieghpd the data from Nordura
in Borgarfjordur for comparison between the two models. Fadlb shows the fit of the two
models to the data. There is a clear difference between thenwdels. Both models fit the
data very well for smaller values of water level while fordar values of water level Model
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Figure 15:Water level is on the vertical axes (cm) while discharge ishanhorizontal axes
(m?/sec). The points show the observed data from Nordura in Béjigéur and the fit of
Model 1 to these data (left panel), and the fit of Model 2 to thmes data (right panel).
The solid curves show the posterior mediarfed) while the dotted curves show prediction
intervals.

2 seems to perform better. This is due to the lack of flexipdit Model 1, it is not flexible
enough to give a good fit to the few observations with largeeslof water level. The 95%
prediction interval is wider for larger values of water leweModel 1 than in Model 2. This

is mainly due to the fact thay?, the parameter controlling the variance of the errors, is
smaller in Model 2 than in Model 1. Figure 16 shows the statidad residuals of the two
models versus water level.

3— : : : : : — 3
2t s 2t
1 1
0 o 0
-1t -1

3132.2 153 170.8 183.5 191.3 241 334 535 3132.2 153 170.8 183.5 191.3 241 334 535

Figure 16:Water level is on the horizontal axes (cm) but the scale idimear, standardized
residuals are on the vertical axes. Standardized residiaaldodel 1 (left panel) and Model
2 (right panel).

In Figure 16, it can be seen that Model 1 (left panel) is noilflexenough to handle the
trend found in the standardized residuals while Model Zdg@hore convincing standardized
residuals. In general standardized residuals should ot simy trend and appear to have
the same variance for all values of the water level.
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Figure 17:Water level is on the vertical axes (cm) while discharge ishenhtorizontal axes
(m?/sec). The standard power-law part (solid line) and the Brsplpart (dotted line) of
Model 2. The dotted line next to the solid line shows the surheofwto parts. The figure
shows the water level values where B-splines have an effeceandtel.

Figure 17 shows the roles that the B-spline part (dotted ane))the standard power-law
part (solid line) play in Model 2. The B-spline part picks ug tbxtra trend in the data for
the values of the water level belowp, that the standard power-law part can not adjust for
to the same extent by itself. This, in turn, allows the stadg@wer-law part in Model 2 to
give a better fit abovey,pp. The B-spline part slowly dies out with increased water |@vel
is practically zero above a value much smaller thgp,. This behavior of the fit for Model
2 indicates that there is no breaking point in the dischaatjeg curve.

A model criterion called the deviance information criteri(®IC) (Spiegelhalter et al.,
2002) is used to further compare the two models. Three oth@ntgies are computed for
each of the two models, namelyayg andD4 which are based on the likelihood function, and
Pp, Wherepp = Dayg— Dg. The quantitypp is the effective number of parameters. Further,
DIC = Davg+ pp, Where DIC is such that the lower it is, the better is the fithef model to
the data. For details on DIQayg, Dy and pp, see Spiegelhalter et al. (2002) and Gelman
et al. (2004).

The values 0D4yg, Dy, pp and DIC for Models 1 and 2 are shown in Table 7. Here Model
2 has lower DIC than Model 1, the difference is more than teebhich is a substantial
difference while a difference of size four or less leads tmirclusive results. This confirms
that the added complexity of Model 2 does improve the fit.
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Model 1 has five effective parameters, however, in the sitiuiadhe estimate opp is
4.65 which is slightly different from five but this differencarm be explained by the stochas-
tic nature of the simulation. The estimated number of eilfegbarameters in Model 2 is
7.66. The number of parameters in Model 2, if counted direc$\23 since herdé. = 15,
however, since tha’s are penalized through the prior of thés, the addition ofcy, A, 12
and @ in Model 2 compared to the five parameters in Model 1 is egetatio two or three

unconstrained parameters.

Table 7:DIC and p for Model 1 and Model 2 along with f3g and Dy.

Davg Dy Pp DIC
Model1 13711 13247 465 14176
Model 2 12095 11329 766 12862

Table 8 shows estimates of the parameterb, ¢, n2 and ¢ in Model 1 while Table 9
shows estimates of the paramet@td, c, n?, b, andc, in Model 2. The posterior mean of
bis 2.17 for Model 1 while it is 251 for Model 2, so, the added flexibility of Model 2 yields
a larger shape parameter. Yet, this increase will result in a large increase in discharge
prediction for water level larger thamnax. The precision of these five parameters is better
in Model 1 than in Model 2. For example, the 95% Bayesian contidentervals fob and
c are about three times and six times wider in Model 2 than in &liddsee the B and 975

percentiles fob andc in Tables 2 and 3.

Table 8:Parameter estimates for Model 1.

¢ b c ¢ n’
Post. mean -0.54 2.17 88.0 1.08 0.004
Post. median  -0.54 2.16 88.4 1.09 0.004
2.5 percentile -0.66 2.03 78.7 0.94 0.002
25 percentile  -0.57 2.11 85.5 1.05 0.003
75 percentile  -0.51 2.21 91.0 1.13 0.005
975 percentile -0.45 2.33 95.0 1.18 0.012

The smaller precision seen in Model 2 results in less pratisi the estimated discharge
curve, EQq), than in Model 1, see Figur®?. For the larger values of water level the width of
the posterior interval for &) is around 35% greater in Model 2 when compared to Model 1.
However, for water level values greater than 200 cm Modeldears to lack the curvature
that the data suggest. The smaller precision in Model 2 istoluts complexity relative to
Model 1 but what is gained is a better fit to the data.



Table 9:Parameter estimates for Model 2.

2

¢ b c b c n
Post. mean -0.86 251 66.2 252 825 6.97e-009
Post. median -0.88 253 63.0 255 824 4.0le-011
2.5 percentile -1.38 2.05 246 196 51.1 4.42e-013
25 percentile  -1.05 2.35 50.1 2.34 717 5.30e-012
75 percentile  -0.66 2.68 815 2.71 93.5 4.58e-010
97.5 percentile -0.30 2.94 118.0 2.94 113.0 4.45e-008

Posterior simulations for both Model 1 and Model 2 are stabié the simulated chains
convergence in all in both cases. In case of Model 1 four chainength 50 thousand are
sufficient while for Model 2 four chains of length 100 thoudame needed to obtain adequate

convergence.

CONCLUSIONS

Model 2 shows promising results when fitting rating curvesases where Model 1 lacks the
flexibility needed. The B-spline part of Model 2 is small relatto the standard power-law
part but it catches the small deviation from the standardgrdaw model which results in
a more convincing fit for Model 2 than Model 1. This is confirmeith DIC calculations

where Model 2 yields a substantially lower value than Model 1
Model 2 is formulated such that if Model 1 is the correct moalethe adequate model

then the B-spline part will be close to zero. However, furttesearch is required to test the
performance of Model 2 when Model 1 is the correct model.
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APPENDIX

The following prior distributions are proposed for the uokm parameters.
P(¢) = N(|up = 0,05 = 0.82°)

p(b) O N(b|up, = 2.15, 6 = 0.75%)1(0.5 < b < 5)
p(c) ON(c|pe = 75,02 = 50°)1 (C < Wnin)
p(Y) ON(¢|py = 08,05 = 0.259)1 (0 < P < 1.2)
p(b2) O N(bz| ip2 = 2.15, 0%, = 0.75%)1 (1 < b < 6)
p(c2) O N(Cz| ez = 75, 0% = 50°)1 (C2 < Winin)
p(n?) Olnv-x2(n?vy = 10 2§ = 1)
p(¢p) = Betag|ay =1, By = 20)

p(t?) O Inv-x2(1?|v; =10 12 £ = 1)

p(A |12, @) ON(A|0,72D(I — C) MD)

wherel (A) is such that (A) = 1 if Ais true and (A) = 0 otherwise. In the prior distribution
for A, | is an identity matrixD andM are diagonal matrices a@lis a neighborhood matrix
with constants on the first off-diagonals, other elemergsegual to zero.
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