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ABSTRACT

Discharge in rivers is commonly estimated by the use of rating curve constructed from pairs
of water level and discharge measurements. Water level measurements are collected con-
tinuously from each river while pairs of discharge and waterlevel are only collected couple
times a year due to high cost. The need for accurate estimation of discharge is important for
constructions as bridges, hydroelectric power plants as well as for hydrological models. The
methodology currently used by the Icelandic Meteorological Office is based on the standard
power-law. The power-law is derived from a theoretical basis and serves as an appropriate
model in most cases. However, in some natural settings deviations from this form arise.
The new methodologies presented in this thesis account for the deviations from the stan-
dard power-law by extending it with a smooth B-spline function or by assuming two of the
are a function of water level and modeled them with B-splines.These methodologies have
shown to perform equally well or better than the current methodology used by the Icelandic
Meteorological Office.

ÚTDRÁTTUR

Rennsli í ám er oft metið útfrá rennslislyklum sem eru smíðaður útfrá pari af vatnshæðar og
rennslismælingum. Vatnshæðarmælingum er safnað samfellt fráhverri á en par af rennslis-
og vatnshæðarmælingum eru einungis safnað nokkrum sinnum á ári vegna mikils kostn-
aðar. Milkil þörf er á nákvæmu mati á rennsli við hönnun á byggingum á borð við brýr,
vatnsaflsvirkjanir og einnig við gerð vatnalíkana. Aðferðafræðin sem er notuð á Veðurstofu
Íslands er byggð á standard power-law jöfnunni. Standard power-law er dregið úr fræðilegum
grunni og er viðeigandi líkan í flestum tilvikum, en í náttúrulegum aðstæðum geta frávik frá
þessari jöfnu komið upp. Hinar nýju aðferðir sem kynntar eruí þessari ritgerð gera ráð fyrir
fráviki frá standard power-law jöfnunni með því að útvíkka hana með B-spline föllum. En
það er gert með því að leggja B-spline föllin við standard power-law jöfnuna eða með því að
taka B-spline föllin inn í parametrana. Þessar aðferðir hafasýnt að þær eru jafn góðar eða
betri en núverandi aðferðir sem eru notaðar á Veðurstofu Íslands.
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1 INTRODUCTION

1.1 Goals of the Project

The main goal of the project described in this thesis is to create an objective methodology for
establishing hydrological rating curves based on the Bayesian approach which can be applied
to data from all rivers in Icelandic Meteorological Office (IMO) data base. A secondary
goal is to make the estimation of discharge rating curves accessible through an user-friendly
computer program.

1.2 Rating Curve

Discharge in rivers is commonly calculated by mapping watersurface elevations, measured
at a specific location in the river, to discharge by means of a rating curve. The rating curve is
usually an equation that describes a curve that is fitted through data points of measured wa-
ter surface elevation against measured discharge at a location where downstream hydraulic
control assures a stable, sensitive and monotonic relationship between water surface eleva-
tion and discharge (Mosley and McKerchar, 1993; ISO, 1983).This methodology is applied
as direct measurements of discharge are expensive comparedto measurement of water sur-
face elevation that are relatively straightforward and inexpensive undertaking and often well
suited for automation. The sources of uncertainty in the discharge obtained by a rating
curve methodology are several; both due to uncertainty in river discharge measurements and
uncertainty in the rating curve (Pelletier, 1988; Clarke, 1999; Moyeed and Clarke, 2005;
Di Baldassarre and Montanari, 2009).

In this thesis, a methodology for improved fit to the data points and improved extrapola-
tion of the rating curve for large discharges is proposed, based on the Bayesian approach and
B-spline functions. Based on hydraulic principles, the relationship between discharge and
water level is given by the standard power-law

q= a(w−c)b (1)

(Lambie, 1978; Mosley and McKerchar, 1993) whereq is discharge,w is water level,a is
a positive scaling parameter,b is a positive shape parameter andc is the water level when
the discharge is zero. These parameters are usually estimated from paired measurements
of water level and discharge. The Bayesian approach has been successfully applied to the
estimate of discharge rating curve (Moyeed and Clarke (2005), Arnason (2005) and Reitan
and Petersen-Øverleir (2008b)). However, an application of this method has shown that it
can not handle all data sets in the IMO database. That is due tothe fact that in natural setting
the shape of the riverbed can change with rising water level.To demonstrate this behavior
a riverbed is plotted in Figure 1. The parameterb in equation (1) represent the shape of the
riverbed, for example it takes the values 1.5 and 2.5 for rectangular and v-shaped sections,
respectively.

In Figure 1 it can be seen how the shape of the riverbed can be different from a rectan-
gular of v-shaped section for example. A common practice hasbeen to use multi-segment
discharge rating curves where the shape parameter is different between segments which has
been modeled by (Petersen-Øverleir and Reitan, 2005; Reitan and Petersen-Øverleir, 2008a).
Here different approaches are introduced which assume thatchanges in the rating curve
occur gradually.
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Figure 1:An example of a riverbed.

All methods that are presented here use the Bayesian approach. In the Bayesian approach
all unknown parameters are treated as random variables. Prior information about unknown
parameters based on previously collected data and/or scientific knowledge can be combined
with new data for parametric inference. The advantage is that all uncertainty can be taken into
account which allows for an accurate inference about the unknown parameters. Prediction
intervals for discharge can be evaluated accurately and thus it is possible to have a criteria
that shows if the new measurements are in line with the behavior of the river or if the riverbed
has changed.

1.3 Computer Program

The calculations are conducted with the software Matlab. The Matlab programs can be time
consuming to read through and work with, especially if the staff has not worked with Matlab
before. In addition people working with the rating curves should only be allowed to change
few parameters in the program and should not be allowed to change the algorithms. There-
fore a user-interface was created that connects the user to the Matlab programs. Therefore a
user-interface was created that connects the user to the Matlab codes. Matlab then runs the
calculations and stores the results in a well defined folder.The interface is shown in Figure 2.
The user-interface allows the user to plot up the data set andsee how well the starting values
for the parameters in the standard power-law fit the data set before running the calculations.
The user can choose the starting values by filling in fora, b, w0 or by filling only in for one
or two of them and let the program find the optimal solution forthe rest of the parameters,
that is if the optimization gives an optimal values. The usercan choose from three different
types of Bayesian models which are the models presented in this thesis. It can be necessary
to change the prior distributions however the user is only allowed to change the priors for the
parametersb andc which is marked asw0 in the interface. The user can also decide on the
length of the run, the number of B-spline kernels and at what water level the B-spline affects
the rating curve. Another important property is that the user can skip newest pairs to see if
they fit within the prediction interval of the data excludingthem, than a rating curve is plot-
ted and the excluded measurements are plotted as x-is to separate them from the others. The
output of the program is a report with all information desired by the IMO. All the changes
can be made from the user-interface shown in Figure 2 and usernever has to code in Matlab.
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Figure 2:The window of the Matlab user-interface.

1.4 Scope of the Work

Three papers are presented in this thesis. The paper by Ingimarsson et al. (2008) is a con-
ference paper and was published in XXV Nordic Hydrological Conference, Nordic Associ-
ation for Hydrology, 2008, Volume 1, 308-317. In Ingimarsson et al. (2008) the standard
power-law is extended by a smooth B-spline function and compared to the model presented
in Moyeed and Clarke (2005) and Arnason (2005). The paper Ingimarsson et al. (2010a)
was submitted to Hydrology and Earth Systems Sciences. In this paper the same models as
in Ingimarsson et al. (2008) are compared, however the B-spline model has been modified
from Ingimarsson et al. (2008). The extended model providessubstantially better fit than the
standard power-law model for about 30% of the data sets and when the standard power-law
appears to give an adequate fit, the extended model imitates the standard power-law model.
The extended model also performs better for 60% of the riverswhen predicting large dis-
charge values. The models and the results in Ingimarsson et al. (2008) and Ingimarsson
et al. (2010a) have been presented in the following conferences and workshops. They were
presented in a poster at Bayesian Environmetrics Workshop, Brisbane, Australia, at the 9th
International Society for Bayesian Analysis (ISBA) conference 2008, Hamilton Island, Aus-
tralia and at the XXV Nordic Hydrological Conference 2008 Reykjavik, Iceland. They were
presented as a talk in Statistics colloquium at the University of Iceland, April 2008, at the
Norwegian Computing Center at the Statistics for Innovation,Oslo, Norway, 24 Septem-
ber, 2008 and Nordic-Baltic Biometric Conference, 10-12 June 2009, Tartu, Estonia. Due
to the fact that Ingimarsson et al. (2008) is an earlier version of Ingimarsson et al. (2010a),
the paper Ingimarsson et al. (2008) is given in appendix. In the paper Ingimarsson et al.
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(2010b) the B-spline model in Ingimarsson et al. (2010a) is compared to three models in
which B-splines are used to estimate the parameters ofa andb as a function of water level.
These three models differ only in the variance function. Thevariance function of only one
of the new models has the flexibility to give fit that is similarto that of the B-spline model
presented in Ingimarsson et al. (2010a) for all data sets. There are however cases were the
models in Ingimarsson et al. (2010b) clearly outperforms the B-spline model in Ingimarsson
et al. (2010a) and vice versa.
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ABSTRACT

Discharge in rivers is commonly estimated by the use of a rating curve constructed

from pairs of measured water elevations and discharges at a specific location. The

Bayesian approach has been successfully applied to estimate discharge rating curves

that are based on the standard power-law. In this paper the standard power-law model is

extended by adding a B-spline function. The extended model is compared tothe stan-

dard power-law model by applying the models to discharge data sets from sixty one

different rivers. In addition four rivers are analyzed in detail to demonstrate the benefit

of the extended model. The models are compared using two measures, the Deviance

Information Criterion (DIC) and Bayes factor. The former provides robust comparison

of fit adjusting for the different complexity of the models and the latter measures the

evidence of one model against the other. The extended model captures deviations in

the data from the standard power-law but reduces to the standard power-law when that

model is adequate. The extended model provides substantially better fit thanthe stan-

dard power-law model for about 30% of the rivers and performs betterfor 60% of the

rivers when predicting large discharge values.
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INTRODUCTION

Discharge in rivers is commonly calculated by mapping watersurface elevations, measured
at a specific location in the river, to discharge by means of a rating curve. The rating curve is
usually an equation that describes a curve that is fitted through data points of measured wa-
ter surface elevation against measured discharge at a location where downstream hydraulic
control assures a stable, sensitive and monotonic relationship between water surface eleva-
tion and discharge (Mosley and McKerchar, 1993; ISO, 1983).This methodology is applied
as direct measurements of discharge are expensive comparedto measurement of water sur-
face elevation that are relatively straightforward and inexpensive undertaking and often well
suited for automation. The sources of uncertainty in the discharge obtained by a rating
curve methodology are several; both due to uncertainty in river discharge measurements and
uncertainty in the rating curve (Pelletier, 1988; Clarke, 1999; Moyeed and Clarke, 2005;
Di Baldassarre and Montanari, 2009).

In many instances, such as in engineering design, there is a great interest in an accurate
estimate of large discharges as in many cases property and even human life can depend
on obtaining reliable estimate of extreme discharges. Thisrelates, e.g., to transportation
structures such as roads and bridges or flooding of houses in urban areas due to over topping
of levees. Accurate prediction of large discharge, in whichcase the least data is available
in general as it is hard to obtained reliable data during extreme events, usually involves an
extrapolation of the rating curve beyond largest measured data points. An accurate estimation
of the discharge below the largest measured data point is also important to get an accurate
estimation of the annual discharge. Which can be used in engineering design for hydrological
power plants. In this paper, a methodology for improved extrapolation of the rating curve for
large discharges is proposed, based on the Bayesian approachand B-spline functions.

Based on hydraulic principles, the relationship between discharge and water level is given
by the standard power-law

q= a(w−c)b (2)

(Lambie, 1978; Mosley and McKerchar, 1993) whereq is discharge,w is water level,a is
a positive scaling parameter,b is a positive shape parameter andc is the water level when
the discharge is zero. These parameters are usually estimated from paired measurements of
water level and discharge.

The Bayesian approach has been successfully applied to discharge rating curves (Moy-
eed and Clarke, 2005; Reitan and Petersen-Øverleir, 2008b; Arnason, 2005). In the Bayesian
approach all unknown parameters are treated as random variables. Prior information about
unknown parameters based on previously collected data and/or scientific knowledge can be
combined with new data for parametric inference. For example, the fact that the parameter
b in equation (2) takes the values 1.5 and 2.5 for rectangular and v-shaped sections, respec-
tively, is an example of prior knowledge that can be used to form the prior distribution for
one of the unknown parameters. Combination of the prior distributions and the model for
the data results in the posterior distribution which can be used to obtain point estimates and
interval estimates of the parameters. Icelandic Meteorological Office (IMO) runs a water
level measuring system which collects water level data continuously from rivers in Iceland,
while the discharge is only measured a few times a year due to high cost. IMO has ap-
plied the Bayesian approach successfully to data on discharge and water level for discharge
rating curve estimation as presented in Arnason (2005), which is based on the model intro-
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duced in Petersen-Øverleir (2004). This model will be referred to as Model 1. Model 1
is not sufficient for about 30% of the data sets at IMO which calls for modifications (see
the section Results). The common practice would be to use multi-segment discharge rat-
ing curves (Petersen-Øverleir and Reitan, 2005; Reitan and Petersen-Øverleir, 2008a). Rei-
tan and Petersen-Øverleir (2008a) present a Bayesian approach to multi-segment discharge
rating curves which results in stable estimation while non-Bayesian methods can have prob-
lems with stability (Petersen-Øverleir and Reitan, 2005). Other methods like Takagi–Sugeno
fuzzy inference system which is a nonparametric estimationmethod, have been applied to
discharge rating curves (Lohani et al., 2006).

The power-law is derived from a theoretical basis and servesas an appropriate model in
most cases. However, in some natural settings deviations from this form arise. For example,
the river bed can change from a v-shape to a rectangular shapeas the water level increases.
Changes of this type are likely to occur gradually as opposed to occurring at a single point
with a sharp change or a jump around the breaking points (Petersen-Øverleir and Reitan,
2005). This motivates the use of a smooth function to describe deviation from the power-law
instead of using one or more segmentations. A new model, thatis an extension of Model 1
is proposed. This model, referred to as Model 2, captures themain trend in discharge as a
function of water level through the power-law part,a(w−c)b. To model the remaining vari-
ability in the mean response a B-splines function is added which allows for more flexibility
than in Model 1. The B-spline part is set equal to zero above a specified water level so the
fitted curve is only based on the power-law above this value and the power-law alone is used
to extrapolate discharge for large water level. The power-law part of Model 2 plays a similar
role as the curve in the segment for the highest water level values in a segmented rating curve
model.

The proposed method is similar to Lohani et al. (2006) since both methods rely on the
nonparametric approach to estimation. However, it has a fewadvantages over Lohani et al.
(2006) approach. It gives measures of uncertainty in parameters and fit. The complexity
and the fit of the model can be evaluated and compared with another Bayesian model with a
model criterion. This model criteria penalizes for the number of effective parameters which
is a measure of model complexity in the Bayesian setting against the fit of the model. An
important advantage of the model introduced here is that it has a structure that allows for
prediction of discharge above the largest observed water level.

In the section Data, a description of the sixty one dischargeand water level data sets
is given. In the following section, Deviance information criteria and Bayes factor, a brief
overview of the quantities listed in the section’s title is given. In the section Models the
two statistical models for discharge and water level measurements is introduced. In the
section Bayesian inference a description of the prior distributions and posterior distribution is
given. The two models are applied to these data sets in the section Results and a comparison
between the models is made. Finally, in the last section, conclusions are drawn.

DATA

The data which are analyzed in this paper were collected by the IMO water level measuring
system and are from sixty one different rivers in Iceland. For each river, time series of
water level measurement are available. The time series giveinformation about the range
of the water level for each river. Detailed analyses are performed for four rivers. They
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are Norðurá in Borgarfjörður by Stekk, Jökulsá á Fjöllum by Grímsstaðir, Jökulsá á Dal by
Brú and Skjálfandafljót by Aldeyjarfoss. The rivers were chosen such that Model 1 will fit
reasonably well in one case (Jökulsá á Fjöllum) and two caseswhere Model 1 is insufficient
(Norðurá and Skjálfandafljót) and one case where Model 1 is obviously performing poorly
(Jökulsá á Dal). The data sets contain pairs of discharge measurements (q), in m3/sec, and
water level measurements (w) in m.

DEVIANCE INFORMATION CRITERION AND BAYES FACTOR

To evaluate quantitatively the quality of a fit of the model toa data set a criterion called the
Deviance Information Criterion (DIC) (Spiegelhalter et al.,2002) is employed. The deviance
information criterion is defined as

DIC = Davg+ pD,

wherepD = Davg−Dθ̂ . The quantitypD is the effective number of parameters and measures
the complexity of the model. The quantitiesDavg andDθ̂ are based on the likelihood function
which arises from the proposed probability model of the data. Both Davg andDθ̂ measure
the fit of the model to the data. As the complexity of the model (pD) increases the fit of
the model as measured byDavg becomes smaller. Hence, DIC weights the fit of the model
against the complexity of the model. It is also noted that theprior distributions restrict the
unknown parameters with the effect that the effective number of parameters becomes less
than the actual number of parameters. The actual numbers of parameters in Model 1 and
Model 2 are five andL+ 8, respectively, whereL is the number of B-spline kernels as is
discussed in the next section. DIC is used to compare two or more models which are applied
to the same data in terms of their fit. In such a comparison the model with the lowest DIC
is considered as the first candidate out of the evaluated models. The candidate model needs
to be evaluated further in terms of goodness of fit. For details on DIC,Davg, Dθ̂ and pD,
see Spiegelhalter et al. (2002) and Gelman et al. (2004). In this paper, if DIC of Model 2 is
smaller than DIC of Model 1 by ten or more, then Model 2 is deemed as significantly better
than Model 1. The decision of selecting ten as a cut-off valueis supported by calculations of
Bayes factor (see section Results).

Bayes factors can be used to calculated the posterior probability for each of two or more
proposed models conditioned on the data. In case of two models for the datay the following
notation is used. Thei-th model is denoted byMi, pi(y|θi) is the data model,θi are the
model parameters,pi(θi) is the prior forθi, Θi is the parameter space andP(Mi) is the prior
probability of modeli, i = 1,2. The posterior probability of Model 1 is given by

P(M1|y) =
P(M1)

∫

Θ1
p1(y|θ1)p1(θ1)dθ1

∑ j=1,2P(M j)
∫

Θ j
p j(y|θ j)p j(θ j)dθ j

=

(

1+
P(M2)

P(M1)
×

1
B12

)−1

whereB12 is Bayes factor for the comparison of modelsM1 andM2 (Kass and Raftery, 1995),
given by

B12 =

∫

Θ1
p1(y|θ1)p1(θ1)dθ1

∫

Θ2
p2(y|θ2)p2(θ2)dθ2

.

Kass and Raftery (1995) presented a table to categorize the evidence against a null model
(based on a table from Jeffreys (1961)). Here the null model and the alternative model would
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be Model 1 and Model 2, respectively. If the Bayes factor values which mark the categories
in this table are transformed toP(M2|y) (rounding the numbers slightly) then the categories
presented in Table 1 arise.

Table 1: Categories for evidence against Model 1.

P(M2|y) Evidence against Model 1
0.50 to 0.75 Barely worth mentioning
0.75 to 0.90 Substantial
0.90 to 0.99 Strong
0.99 to 1.00 Decisive

Here the evidence against Model 1 is preferred to be strong ordecisive (P(M2|y)> 0.90)
along with a DIC difference of ten or more, favoring Model 2, for the selection of Model 2
over Model 1. The prior probabilities are selected asP(Mi) = 0.5, i = 1,2.

One way to computeB12 is by evaluating the integrals
∫

Θi
pi(y|θi)p(θi)dθi , i = 1,2, with

the formula






1
T

T

∑
t=1

1

pi

(

y|θ (t)
i

)







−1

whereθ (t)
i is thet-th posterior sample ofθi. See Robert (2007) for details.

MODELS

A Bayesian model for discharge rating curves based on the standard power-law is given by

qi = a(wi −c)b+ εi , i = 1, ...,n,

wheren is the number of observations for a given site,(wi ,qi) denotes thei-th pair of obser-
vations andεi is a mean zero measurement error such that

εi ∼ N(0,η2(wi −c)2bψ),

wherea, b andc are as in (2), the parameterψ controls how the error variance behaves as a
function of the expected value ofq, andη2 is a scaling parameter for the variance. In essence
this is the same model as the one presented by Petersen-Øverleir (2004) and it is currently
used at IMO. The parametera is a function ofϕ andb, that is,

a= exp(α0+α1b+ϕ) (3)

whereα0 = 4.9468 andα1 = −0.7674. This reparametrization is motivated by correlation
between estimates of ln(a) andb, denoted by ln(â) and b̂, which are based on data from
IMO, and the values forα0 andα1 are selected such that the correlation between ln(â) and
ln(â)−α0−α1b̂ is zero, see Arnason (2005).

A new model referred to as Model 2 is proposed. The form of thismodel is given by

qi = E(q(wi))+ εi , i = 1, ...,n,
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Figure 3: The prediction performance of Model 2 when wupp was set equal to the second
largest, third largest and fourth largest water level measurement. The bars show the fre-
quency of best prediction, second best prediction and thirdbest prediction.

whereεi is an error term such that

εi ∼ N
(

0,η2(wi −c2)
2b2

)

, i = 1, ...,n,

andη2, b2 andc2 are unknown parameters. The observed discharge is always positive soqi

is normally distributed under the constraintqi > 0. Note thatb2 andc2 play a similar role as
ψb andc in the variance of Model 1, so the variance of Model 2 is essentially the same as the
variance in Model 1. However, the variance of Model 2 does notinclude parameters of the
mean function. This is done to simplify the conditional distributions of the Gibbs sampler
and obtain more stable simulation from the posterior distribution. The expected value of
q(w) is given by

E(q(w)) =







a(w−c)b, w> wupp

a(w−c)b+∑L
l=1λl Gl (w), wlow < w≤ wupp, λL = 0

a(w−c)b+λ1, w0 ≤ w≤ wlow

(4)

where the parameter space ofa, b, c andλ is such that E(q(w)) ≥ 0. Note that E(q(w)) is
not defined forw< w0. The coefficientλL is set equal to zero to ensure continuity atwupp.
The termsGl (w) are such that

Gl (w) = Bl

(

w−wlow

wupp−wlow

)

, l = 1, ...,L, wlow ≤ w≤ wupp.

The termsBl (z), l = 1, ...,L, are cubic B-splines (Wasserman, 2006) which have support
on the intervalz∈ [0,1], wlow and wupp are the lower and upper points, respectively, of
the interval influenced by the B-splines. For a given river thequantitieswmin and wmax

are the smallest and the largest observed water level, respectively, within the pairs(wi ,qi),
i = 1, ...,n. Based on time series for that river, the smallest water levelever observed is found
and is denoted byw0.

The quantitywupp should be selected close towmax as the data points abovewupp have
little influence on the B-spline part but mainly influence the power-law curve and thus
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strengthen the estimation of the parameters of the power-law. For values abovewupp the
fitted curve is only based on the power-law curve as equation (4) indicates. However,wupp

should be smaller thanwmax as leaving no data points abovewupp will take away information
from the parameters of the power-law curve, in particular ifthe amplitude of the B-spline
part is large. This would also result in less accurate prediction of discharge abovewupp.
However, there is always some information on the power-law parameters in the data points
belowwupp, especially in the data points that are close towupp. This is partly due to the fact
thatλL is set equal to zero. Selectingwupp much smaller thanwmax results in less flexibility
of the model since the B-spline part is then effective over a smaller range of water level val-
ues. If that is done the power-law alone is used to fit over a larger range of water level values
which may result in a biased fit if there are substantial deviations from a single power-law
curve above the selectedwupp. Hence, when selectingwupp, there is a trade-off between a
good fit belowwmax and certainty in prediction intervals for water level abovewmax. Here, a
good fit is preferred at the cost of certainty in prediction. However,wupp is not set equal to
wmax but a few data points are left to direct the power-law curve for values abovewupp. In
order to evaluate the appropriate choose ofwupp the ability of the model to predict discharge
abovewmax was evaluated for three choices ofwupp. The quantitywupp was set equal to
the second largest, the third largest and the fourth largestwater level measurement but these
three choices ofwupp where deemed to be the ones leading to good prediction properties and
good fit. To evaluate these three choices ofwupp all data sets with fourteen or more pairs of
observations were analyzed. In each case, the three observations with the largest observed
water level were omitted in estimation of the rating curve and predicted with the fitted rating
curve. The sum of squared residuals was used to compare the three choices ofwupp in Model
2. Figure 3 shows the number of times the three models give thebest prediction, the second
best prediction and the third best prediction. The choice with wupp equal to the third largest
water level measurement gave predictions that were the bestand the second best in most
cases. Since the difference between the best and the second best prediction were usually
small,wupp is set equal to the third largest water level observation.

The lower end of the effective range of the B-spline,wlow, is set equal tow0 to ensure
that the fitted curve is influenced by the B-spline for all waterlevel values belowwupp and
down to the smallest water level for which discharge is predicted. If wlow would be set
equal to a value greater thanwmin the same power-law curve alone would apply to both large
and small water level values and restrict the flexibility of the model. The choicewlow = w0

will minimize the effect of the data points with the smallestwater level observations on the
parameters of the power law. The coefficient corresponding to the first B-spline kernel,λ1,
is allowed to be non-zero to introduce more flexibility to themodel. Hence atwlow the fitted
curve deviates by amount equal toλ1 from the power-law. The above selection ofwlow and
wupp leads then to the following ordering:w0 = wlow ≤ wmin < wupp< wmax.

The B-spline parameters inλ = (λ1, ...,λL) are unknown (with the constraint thatλL =
0) whereL is the number of B-spline kernels. For simplicity reasons thenumber of B-
splines kernels is fixed (the value ofL) and the spacing between the interior knots is also
fixed. Equally spaced B-splines are used to obtain consistentsmoothness over the entire
B-spline interval as well as to reduce computational complexity. It is not optimal to have
fixed number of B-spline kernels but a reasonable number can bededuced by using DIC
as a measure. Based on evaluation of the four discharge data sets shown in Table 2 it was
found that choosingL equal to nine captures the potential improvements gained byModel 2
compared to Model 1. Table 2 shows that there is a small difference in the DIC for values of
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L between seven and fifteen in favor of adding kernels. In the case of Norðurá withL equal to
five the model needs extra kernels to be able to fit the data accurately and it needs more than
seven kernels to become stable. However, it is of course possible to select a number different
from nine for individual data sets by optimizing DIC or applying some other criteria.

Table 2: The values of pd, DIC, for different number of L in Model 2 for the four rivers.

J. Fjöllum Norðurá J. Dal Skjálf.
L pd DIC pd DIC pd DIC pd DIC
5 3.27 594.35 3.00 134.30 6.32 676.96 5.63 255.04
7 3.12 594.23 0.95 118.12 7.80 673.95 6.95 253.79
9 3.07 593.84 4.33 121.95 8.68 675.50 7.75 251.98
11 3.08 593.65 4.99 123.19 10.00 675.92 8.29 252.98
13 3.14 593.27 5.94 124.65 10.91 675.48 8.95 251.67
15 3.07 592.97 5.95 125.17 11.53 674.57 9.50 251.57

BAYESIAN INFERENCE

The Bayesian approach requires specification of prior distributions for each of the unknown
parameters. The normal prior distributions selected forϕ, b, c andψ in Model 1 are the
same (with one exception) as those in Arnason (2005) where point estimates ofa, b andc
calculated from several data set at IMO were used to construct a prior for these parameters.
The exception is the standard deviation in the normal density for b. Arnason (2005) used
σb = 0.75 but in this paperσb = 0.4 is used. It is considered safe to decrease the value ofσb

since the previous value was based on point estimates which included sampling error. This
prior is reasonable in terms of sensible values ofb. The prior ofa was then transformed to
the prior ofϕ according to equation (3). The prior distributions forϕ, b andc are specified in
Appendix. Note that the prior density forb, denoted byp(b), is a truncated normal density
between 0.5 and 5 so values below 0.5 and above 5 are assumed invalid. The posterior
density ofc will be influenced by its prior density which is denoted byp(c) and also byw0.
Sincec is the water level at which discharge is zero, values ofc abovew0 are invalid. A vague
but a proper prior is chosen forη2 since the mean function forq is fairly well determined
by the priors for the parameters in the mean function and the deviation of the data from the
mean curve is allowed to form the posterior distribution. Aninverse–χ2 prior distribution
for η2 results in an inverse–χ2 conditional posterior distribution which is convenient when
using the Gibbs sampler. The hyperparameters in the prior distribution ofη2 are chosen to
have a minimal effect on the posterior distribution. The prior for η2 could be improved by
collecting point estimates ofη2 based on past data sets. This improvement is left for future
research.

Some of the prior distributions for the parameters in Model 2are the same as the prior
distributions of corresponding parameters in Model 1. First, b, c, ϕ andη2 in Model 2 have
the same prior distributions asb, c, ϕ andη2 in Model 1. The parameterc2 in Model 2 has
the same prior distributions asc in Model 1. The prior distribution ofb2 is constructed such
that it has a distribution that is similar to that ofb timesψ in Model 1.

A normal Markov random field prior (Rue and Held, 2005) with mean zero and co-
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variance matrixτ2D(I −φC)−1MD is assumed for the B-spline coefficients,λ , (see also in
Appendix). This prior works as a penalty forλ . The parametersτ2 andφ are unknown. In
Marx and Eilers (2005) methods for multidimensional splines using classical statistics are
discussed. The authors introduce penalty terms in their objective function for the estimation
of the spline coefficients. The prior distribution proposedhere for the B-spline coefficients
gives term in the logged posterior distribution which has a form very similar to the one di-
mensional penalty term in the objective function in Marx andEilers (2005). The parameter
τ2 plays the same role as one over the smoothing parameter in Marx and Eilers (2005). The
parameterφ needs to be one to obtain the same matrices as in Marx and Eilers (2005). But
for the prior on the B-spline coefficients to be properφ needs to be less than one, in fact
φ ∈ [0,1). In order to have the prior working similarly to the penalty in Marx and Eilers
(2005), the prior forφ is selected such that it favors values very close to one. To accomplish
this a beta prior distribution withα = 20 andβ = 0.5 is selected forφ . This distribution has
90% of its mass between 0.93 and 1. With these prior distributions forφ andλ rapid changes
in consecutiveλ are avoided, the uncertainty in theλs is reduced and the B-spline function
is smoother than ifφ was equal to zero. It was also found that ifφ = 0 then the Bayesian
computation becomes unstable and theλs do not converge to an optimal value.

The parameterτ2 controls the size of the elements ofλ . A vague inverse–χ2 prior is
chosen forτ2 due to the lack of knowledge about sensible values for this parameter. This
prior allows the posterior distribution to put a lot of mass close to zero which is a desirable
property since in many casesτ2 is in fact equal to zero (the B-spline part is zero). The prior
for τ2 also puts a lot of mass on larger values ofτ2. The variability in the data is bounded
which in turn bounds the variability in the posterior distribution ofτ2.

The matricesD andM are diagonal with known constants on their diagonals andC is a
constant first order neighborhood matrix. The role ofD is to let the prior variance of theλ ’s
decrease as the index goes from 1 toL which forces the B-spline part to become smaller as
w approacheswupp therefore it could be used to further force the model to be smooth at the
wupp. However, in this paperD is set equal to the identity matrix. The role of the matrixM
is to adjust for the end points.M is such that

Mll = 0.5, , l = 2, ...,L−1, M11 = 1, MLL = 1.

The neighborhood matrixC is such that

Cl ,l−1 =Cl ,l+1 = 0.5, , l = 2, ...,L−1, C12 = 1, CL,L−1 = 1.

The posterior distribution ofθ =(ϕ,b,c,η2,b2,c2,λ ,τ2,φ) given the dataq=(q1, ...,qn),
w= (w1, ...,wn), is given by

p(θ |q,w) ∝ ∏n
i=1 p(qi |θ ,wi)× p(ϕ)p(b)p(c)p(η2)p(b2)p(c2)

× p(λ |τ2,φ)p(τ2)p(φ)

wherep(qi |θ ,wi) is a normal density such that

p(qi |θ ,wi) = N

(

qi

∣

∣

∣

∣

a(wi −c)b+
L

∑
l=1

λl Gli ,η2(wi −c2)
2b2

)

,

whereGli = Gl (wi). The part∏n
i=1 p(qi |θ ,wi) is the likelihood function which is used for

the computation of DIC and Bayes factor.
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The inference about the unknown parameters is based on samples from the posterior dis-
tribution which are generated by a Markov chain Monte Carlo (MCMC) simulation. A Gibbs
sampler with Metropolis-Hastings steps is used for the MCMC simulation which consists of
the conditional distributions of the unknown parameters (see Gelman et al. (2004) for further
details on MCMC and the Gibbs sampler). The conditional distributions ofη2 andτ2 are
scaled inverse chi-square distributions. The conditionaldistributions ofλ is a multivariate
normal distribution whereλ is first generated without any constraints then the constraint
λL = 0 is taken into account. To generate from the conditional distributions ofϕ, b, c, b2, c2

andφ , a Metropolis–Hastings steps is needed in each case. However in Model 2 the values
for the parametersc andc2 are set as constants after they have been estimated in the Gibbs
sampler. Other parameters in the model are estimated again with c andc2 fixed, resulting in
more reliable estimates.

For the unknown parameters of Model 1 and Model 2 four separate chains of iterations
are used. Each chain takes a number of iterations to converge. Those iterations are thrown
away and referred to as burn-in period. The decision on the length of the burn-in period is
based on the data set that took the longest time to converge. Both models rely the same total
number of iterations or 450 thousand. Model 1 than has a burn-in period of 390 thousand
iterations. Every fourth value of each chain was stored after the burn-in period to reduce
correlation between iterations, yielding four chains of length 15 thousand for posterior in-
ference. For Model 2 the first burn-in period covers the first quarter of each chain. The
parametersc andc2 are estimated from the iterations in the second quarter of each chain. A
second burn-in period starts after the first half of each chain. Out of the 60 thousand remain-
ing iterations every fourth value of each chain is stored as in Model 1. Posterior simulations
for both Model 1 and Model 2 were stable and the simulated chains converged in all cases.
However, it is worth mentioning that in many cases both models converge when the total
number of iterations is 160 thousand.

RESULTS

In this section the two models introduced in the section Models are applied to the sixty one
data sets from IMO database for comparison between the two models. Analysis of four of
the data sets is shown here in details. As mentioned in the Data section these four data sets
come from Norðurá, Jökulsá á Fjöllum, Jökulsá á Dal and Skjálfandafljót. Figure 4 shows the
fitted discharge rating curves of the two models for these four data sets, along with prediction
intervals and posterior intervals for the discharge ratingcurves.
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Figure 4: The fit of Model 1 (left panel) and of Model 2 (right panel) to the four selected
data sets. The vertical axes shows water level (w) in m while the horizontal axes shows the
discharge (q), in m3/sec. The black solid curves show the posterior median ofE(q) and the
95% posterior interval ofE(q). The dotted curves show prediction intervals.
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In all cases, except for Jökulsá á Fjöllum, the 95% prediction intervals are wider for
larger values of water level in Model 1 than in Model 2. This ismainly due to the fact that
if the fit through the observations is adequate then the variability around the fitted curve is
smaller when compared to the variability around a poorer fit,this in turn results in narrower
prediction intervals.

Figure 5 shows the standardized residuals of the two models versus water level. In gen-
eral, when an adequate model is used then the standardized residuals should not show any
trend and appear to have the same variance for all values of the water level. In the case of
Norðurá, Model 2 yields more convincing standardized residuals than Model 1, which shows
a trend in the standardized residuals while that is not the case for Model 2. In the case of
Jökulsá á Fjöllum there is no visible difference in the standardized residuals which indicates
that Model 2 imitates Model 1 when Model 2 does not provide significant improvement over
Model 1. For Jökulsá á Dal the trend in the standardized residuals of Model 1 is obvious,
while the standardized residuals of Model 2 show no trend. Inthe case of Skjálfandafljót,
there appears to be a trend in the standardized residuals of Model 1 for water level values
lower than 1.84 m and greater than 2.37 m while the standardized residuals of Model 2 show
no trend. These examples demonstrate that Model 2 can provide better results than Model 1
and when Model 1 appears to be adequate, Model 2 performs as well as Model 1.
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Figure 5:Standardized residuals for the four selected data sets (vertical axes). Water level
is on the horizontal axes (cm) but the scale is nonlinear. Standardized residuals for Model 1
(left panel) and Model 2 (right panel).
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Figure 6 shows the roles that the standard power-law part andthe B-spline part play in
Model 2. The B-spline part models the variation in the data forthe values of the water level
below wupp that the standard power-law part can not adjust for on its own. The B-spline
part is zero at and abovewupp and it smoothly approaches zero asw approacheswupp from
below. In the case of Norðurá as well as Skjálfandafljót the B-spline part allows Model
2 to give a visibly better fit. The standard power-law model (Model 1) is adequate in the
case of Jökulsá á Fjöllum as is seen in the left panel of Figure6. The right panel shows
clearly the ability of the B-spline part of Model 2 to reduce toalmost zero, thus, the B-
spline addition has insignificant effect on the discharge rating curve for such case. In case of
Jökulsá á Dal it can be seen that the B-spline part can take as large values as needed when
the standard power-law part is inadequate for the data set. In Table 3, a comparison between
the two models is made through DIC and Bayes factor (see the section Deviance information
criterion and Bayes factor). Table 3 shows thatpD is less than the actual number of unknown
parameters in Model 1 and Model 2 which are 5 and 15 respectively. This is expected due to
the fact that the prior distributions constrain the unknownparameters. It seems that the more
the B-spline part is contributing, the larger the number of effective parameters. This shows
the adaptive nature of the Markov random field prior forλ .

Table 3 shows that in all cases except Jökusá á Fjöllum, Model2 has considerably lower
DIC than Model 1. The difference in DIC between Model 1 and Model 2 is about 19 and
23 for Norðurá and Skjálfandafljót, respectively, and about98 for Jökulsá á Dal. In the
case of DIC these are all relatively large differences. In the case of Jökulsá á Fjöllum the
difference in DIC is less than 3 which is viewed as a small difference. This is reflected in the
fitted discharge rating curves of Model 1 and Model 2 which show no visible differences for
Jökulsá á Fjöllum in Figure 6. The results in Table 3 and Figures 4, 5 and 6 show that the
B-spline part of Model 2 either improves the fit compared to Model 1 or gives a fit equally
good as that of Model 1 when Model 1 is adequate. The posteriorprobability of Model 2
(based on Bayes factor) is also computed for the four selecteddata sets in Table 3. The
computed probability values confirm that the DIC differences for Norðurá, Jökulsá á Dal
and Skjálfandafljót are relatively large and support selecting Model 2 over Model 1 while
the DIC difference for Jökulsá á Fjöllum is small and supports selecting Model 1 over Model
2.

Table 3: The values of Davg, Dθ̂ , pD and DIC for Model 1 and Model 2 for the four rivers.

Model 1 Model 2
Davg Dθ̂ pd DIC Davg Dθ̂ pd DIC

Norðurá 136.10 131.54 4.56 140.66 117.62 113.3 4.33 121.95
Jökulsá
á Fjöllum 592.11 587.64 4.46 596.57 590.76 587.69 3.07 593.84
Jökulsá
á Dal 768.87 764.00 4.88 773.75 666.83 658.15 8.68 675.50
Skjálfanda-
fljót 271.07 266.57 4.48 274.55 244.23 236.47 7.75 251.98
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Figure 6:The left panel shows the standard power-law part (solid red curves) of Model 2 and
the sum of standard power-law part and the B-spline part of Model 2 (solid black curves)
for the four selected data sets. The right panel shows the B-spline part of Model 2 for each
data set. Water level is on the vertical axes (m) while discharge is on the horizontal axes
(m3/sec).
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Figure 7: The difference in DIC between the two models is on the horizontal axis and the
posterior probability of Model 2 (based on Bayes factor) is on the vertical axes.

Figure 7 shows comparison between Model 1 and Model 2 for 61 stations analyzed from
the IMO database by plotting the difference in DIC between the Model 2 and Model 1 on the
horizontal axis (positive if Model 2 gives a better fit) and the posterior probability of Model 2
on the vertical axis. When the DIC difference is greater than ten and the posterior probability
of Model 2 is greater than 0.9, then Model 2 significantly improves the fit of Model 1 (see
the section Deviance information criterion and Bayes factor). This is the case for 16 rivers
which is about 26% of the data sets. When the probability of Model 2 is between 0.0 and
0.90 and the DIC diffence is less than 10 then Model 2 is not outperforming Model 1 and
that Model 1 is adequate. This is the case for 36 rivers out of 61, or 59%. In case when
the DIC difference is less than 10 and the posterior probability of Model 2 is greater than
0.9 (7 of 61), and in the case when the DIC difference is greater than 10 and the posterior
probability of Model 2 is less than 0.9 (2 of 61), a close look at the descriptive plots and
statistics is needed to determine whether Model 1 is adequate or not. This is true in general,
that is, a detailed analyzes of each data set is needed beforea final decision about Model 1 or
Model 2 is made. The DIC difference and the posterior probability of Model 2 are important
measures to support that decision.

Table 4 shows estimates of the parametersa, b, c which are sufficient to construct dis-
charge rating curves based on standard power-law. These parameters are presented for both
Model 1 and Model 2. There is a substantial difference in these parameters between Model
1 and Model 2 which is due to the extra flexibility of Model 2. The B-spline part in Model 2
has the ability to utilize information from lower values of water level in the data and there-
fore the standard power-law parameters can be estimated with a more focus on the higher
water level when needed. This can lead to a different posterior density fora, b andc in the
two models as seen in Table 4.
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Table 4: Parameter estimates of a, b and c in Model 1 and Model 2. * c is pre-estimated
and therefore a constant.

Model 1 Model 2
a b c a b c

Norðurá
Post. median 15.65 2.16 0.88 9.64 2.45 0.69∗

2.5 percentile 11.69 2.06 0.77 6.49 1.94
97.5 percentile 17.54 2.36 0.93 21.10 2.75
Jökulsá á Fj.
Post. median 69.89 2.13 0.29 65.96 2.16 0.25∗

2.5 percentile 49.42 1.94 0.11 59.44 2.03
97.5 percentile 92.16 2.34 0.43 75.36 2.27
Jökulsá á Dal
Post. median 112.71 1.68 0.74 107.87 1.48 0.44∗

2.5 percentile 92.57 1.52 0.64 73.64 1.22
97.5 percentile 134.97 1.87 0.82 151.10 1.76
Skjálfandaflj.
Post. median 7.61 3.01 0.06 24.37 2.39 0.58∗

2.5 percentile 4.05 2.85 −0.18 20.67 2.23
97.5 percentile 10.10 3.36 0.18 29.04 2.54

In Table 5, a posterior interval is given for rest of the parameters in Model 1 and in Model
2 except forλ . For Model 1 the parameterψ is multiplied byb so it can be compared to the
parameterb2 in Model 2. The posterior median ofτ2 varies from 2.99 in Jökulsá á Fjöllum
to 1180.6 in Jökulsá á Dal which shows the difference in the amplitude of the B-spline part
for these data sets. The parameterφ is forced to be close to one through its prior distribution
to ensure strong positive correlation between the elementsof λ . The effect of the prior is
clear in the posterior estimates ofφ .
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Table 5: Parameter estimates ofψ andη2 in Model 1 and b2, c2, η2, τ2 andφ in Model 2.
* c2 is pre-estimated and therefore a constant.

Model 1 Model 2
ψ ×b η2 b2 c2 η2 τ2 φ

Norðurá
Post. median 2.42 0.05 2.71 0.62∗ 0.22 19.80 0.95
2.5 percentile 2.12 0.02 2.30 0.12 0.32 0.80
97.5 percentile 2.63 0.15 3.12 0.47 597.33 0.99
Jökulsá á Fj.
Post. median 1.77 1.04 2.02 0.15∗ 8.87 2.99 0.95
2.5 percentile 1.17 0.06 1.48 4.14 0.0004 0.81
97.5 percentile 2.57 21.64 2.55 20.32 136.74 0.99
Jökulsá á Dal
Post. median 1.44 4.74 1.96 −0.19∗ 3.77 1180.6 0.96
2.5 percentile 1.03 0.84 1.52 1.67 437.8 0.83
97.5 percentile 1.84 45.17 2.40 9.09 4274.6 0.99
Skjálfandaflj.
Post. median 2.75 0.024 2.03 0.11∗ 0.26 17.11 0.95
2.5 percentile 1.98 0.002 1.43 0.11 3.88 0.82
97.5 percentile 3.72 0.231 2.63 0.64 79.43 0.99

As discussed in the Introduction section discharge rating curves are frequently used in
extrapolation of discharge. As a demonstration, the three highest water level observations,
along with corresponding discharges observations, were excluded from the data sets for the
four rivers previously analysed. Then both models were usedto extrapolate over the range
of the three excluded water level values. Figure 8 shows the results. In all cases the three
excluded discharge values are within the 95% prediction interval for Model 2 but only in two
cases for Model 1, namely, Jökulsá á Fjöllum and Norðurá. Forthese two cases the models
are similar for Jökulsá á Fjöllum but Model 2 looks better forNorðurá. For the other two
cases Model 1 is considerably of the mark. Hence, it can be concluded that for these four
cases Model 2 performs considerably better in predicting discharge for extrapolated water
level values greater thanwmax.

The data analysis conducted to selectwupp for Model 2 in the section Models was also
performed for Model 1. When Model 1 and Model 2 (withwupp equal to the third largest
water level observation) are compared in terms of prediction then Model 2 performs better
than Model 1 for 60% of the data sets. This is based on 48 data sets so 29 data sets give
better results under Model 2 in terms of prediction. However, 16 data sets out of 61 are such
that Model 2 is judged to give a better fit than Model 1. So, in some cases even if the fit for
Model 1 is better than or equally good as that of Model 2, then Model 2 appears to perform
better when predicting discharge for water level greater than wmax. However, in few cases
Model 1 performs better when predicting discharge for waterlevel greater thanwmax even
though Model 2 gives a better fit.
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Figure 8:The solid curves show the posterior median ofE(q), red for Model 1 and black for
Model 2 for the four selected data sets. The dotted curves show prediction intervals, red for
Model 1 and black for Model 2. Water level is on the vertical axes (m) while discharge is on
the horizontal axes (m3/sec).
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CONCLUTION

A Bayesian model for discharge rating curves, labeled Model 2, was developed by extending
the standard power-law model, labeled Model 1, by adding a B-spline function. Comparison
of these two models based on analysis of sixty one data sets from IMO shows that Model
2 outperforms or performs as well as Model 1. One of the most important properties of
Model 2 is the capacity of the B-spline part to catch deviationin the data from the standard
power-law model when that model is inadequate. In these cases, Model 2 achives a more
convincing fit to the data than Model 1. This is confirmed with calculations of DIC and
Bayes factor where Model 2 yields a substantially lower DIC values and higher posterior
probabilities than Model 1 in sixteen of sixty one cases (DICdifference greater than ten and
posterior probability of Model 2 greater than 0.9). In thirty six cases the DIC difference
is less than ten and the posterior probability of Model 2 lessthan 0.9 and it is debatable
whether the added complexity of Model 2 leads to an improvement. Another important
property of Model 2 is that when Model 1 appears to give an adequate fit as in the case of
Jökulsá á Fjöllum then Model 2 imitates Model 1 by reducing the amplitude of the B-spline
almost down to zero. Model 2 performs better than Model 1 whenit comes to prediction of
discharge for water level abovewmax as it gives better results for 60% of the analyzed data
sets, which supports the use of Model 2.

It is concluded that Model 2 can be used to fit discharge ratingcurves regardless of
whether the standard power-law model is adequate or not. Theexceptional cases are when
the data sets contain a few data pairs and there may not be enough information to estimate
the B-spline part successfully. Based on the experience gained here at least ten data pairs are
needed.

Finally, it is noted that segmentation has been commonly used in estimating discharge
rating curves and it could be argued that maybe it is more appropriate than Model 2 for data
sets where there is a visually apparent shift. A direct comparison between segmentation
models and Model 2 is needed to compare their performance. A joint use of multi-segment
discharge rating curves and B-splines could potentially be beneficial for such cases.
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APPENDIX

The following prior distributions are proposed for the unknown parameters.

p(ϕ) = N(ϕ|µϕ = 0,σ2
ϕ = 0.822)

p(b) ∝ N(b|µb = 2.15,σ2
b = 0.42)I(0.5< b< 5)

p(c) ∝ N(c|µc = 75,σ2
c = 502)I(c< w0)

p(ψ) ∝ N(ψ|µψ = 0.8,σ2
ψ = 0.252)I(0< ψ < 1.2)

p(b2) ∝ N(b2|µb2 = 2.15,σ2
b2 = 0.42)I(1< b< 6)

p(c2) ∝ N(c2|µc2 = 75,σ2
c2 = 502)I(c2 < w0)

p(η2) ∝ Inv-χ2(η2|νη = 10−12,S2
η = 1)

p(φ) = Beta(φ |αφ = 20,βφ = 0.5)

p(τ2) ∝ Inv-χ2(τ2|ντ = 10−12,S2
τ = 1)

p(λ |τ2,φ) ∝ N(λ |0,τ2D(I −φC)−1MD)

whereI(A) is such thatI(A) = 1 if A is true andI(A) = 0 otherwise. In the prior distribution
for λ , I is an identity matrix,D andM are diagonal matrices andC is a neighborhood matrix
with constants on the first off-diagonals, other elements are equal to zero.
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ABSTRACT

Bayesian methodology for estimating discharge rating curves that is based on the

standard power-law where the parameters are not constant with water level. The model

uses B-splines to estimate the parameters in the power-law equation. This modelis

compared to the standard power-law model with a B-spline smoothing function added to

it. These models are compared by using paired discharge and water level measurements

data sets from forty nine rivers.

INTRODUCTION

Hydrological rating curves give discharge as a function of water level. Based on hydraulic
principles, the relationship between discharge and water level is given by the standard power-
law

q= a(w−c)b

(Lambie, 1978; Mosley and McKerchar, 1993) whereq is discharge,w is water level,a is
a positive scaling parameter,b is a positive shape parameter andc is the water level when
the discharge is zero. These parameters are usually estimated from paired measurements of
water level and discharge.

The power-law is derived from a theoretical basis and servesas an appropriate model
in most cases. The Bayesian approach has been successfully applied to discharge rating
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curves(Moyeed and Clarke (2005), Reitan and Petersen-Øverleir (2008b) and Arnason (2005)).
However, in some natural settings the stream bed changes with water level and therefore
when using the power-law equation it becomes essential to allow the parameters to change
with water level according to the change in the stream bed. This can be executed in various
ways the classical way is to use the power-law with constant parameters for a given water
level interval and then change the parameters at the next interval if needed, this is called seg-
mentation as in (Petersen-Øverleir and Reitan, 2005; Reitan and Petersen-Øverleir, 2008a).
Another approach is to use smoothing function on top of the power-law as in Ingimarsson
et al. (2010a) where a B-spline smoothing function is used to describe deviation from the
power-law. Figure 9 demonstrate how the B-spline kernels work. Here a new method is pro-
posed that estimates the parameters in the power-law continuously as the water level raises.
This approach allows for easier interpretation of the discharge rating curve than for the model
introduced in Ingimarsson et al. (2010a).

In the section Data, a description of the forty nine discharge and water level data sets is
given. In the section DIC an brief overview of the model criteria DIC is given. In the section
Models the two statistical models for discharge and water level measurements is introduced.
In the section Bayesian Inference a description of the prior and posterior distributions is
given. The four models are applied to these data sets in the section Results and a comparison
between the models is made. Finally, conclusions are drawn in the last section Conclusions.

DATA

Estimation of discharge rating curves requires a data set with water level and correspond-
ing discharge measurement is needed. The IMO has collected this type of data form rivers
around Iceland. Forty nine data sets from equally many rivers are analyzed in this paper. For
each of these rivers, time series of water level measurementare available. These time series
give valuable information about the range of the water levelfor each river. For each river
the smallest observed water level within the time series is useful for the estimation of the
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discharge rating curve. The role of this value will be introduced in the chapter Models. The
data sets contain pairs of discharge measurements (q), in m3/sec, and water level measure-
ments (w) in m. One river is analyzed in more detailed due to apparent deviation from the
standard power-law with fixed parameters.

DEVIANCE INFORMATION CRITERION

To evaluate quantitatively the quality of a fit of the model toa data set a criterion called the
Deviance Information Criterion (DIC) (Spiegelhalter et al.,2002) is employed. The deviance
information criterion is defined as DIC =Davg + pD, wherepD = Davg−Dθ̂ . The quantity
pD is called the effective number of parameters andDavg andDθ̂ are based on the likelihood
function. Hence, the measure DIC penalizes for effective number of parameters. Also noted
that the prior distributions restrict the unknown parameters with the effect that the effective
number of parameters becomes less than the actual number of parameters but the actual
numbers of parameters in Model 1 and Model 2 are five andL + 6, respectively, whereL
is the number of B-spline kernels. DIC is used to compare two ormore models which are
applied to the same data. In such a comparison the model with the lowest DIC is considered
as the first candidate out of the evaluated models. The candidate model needs to be evaluated
further in terms of goodness of fit. For details on DIC,Davg, Dθ̂ and pD, see Spiegelhalter
et al. (2002) and Gelman et al. (2004).

MODELS

Here new models for discharge rating curves is introduced. Inference for this model is based
on the Bayesian approach. The Bayesian model for discharge rating curves that is used as a
comparison to the new model. This model is introduced in Ingimarsson et al. (2010a) and
the form of this model is given by

qi = E(q(wi))+ εi , i = 1, ...,n.

whereεi in an error terms such that

εi ∼ N
(

0,η2(wi −c2)
2b2

)

, i = 1, ...,n,

whereη2, b2 andc2 are unknown parameters. The observed discharge is always positive so
qi is normally distributed under the constraintqi > 0. The expected value ofq(w) is given by

E(q(w)) =







a(w−c)b, w> wupp

a(w−c)b+∑L
l=1λl Gl (w), wlow < w≤ wupp,λL = 0

a(w−c)b+λ1, w0 ≤ w≤ wlow

(5)

where the parameter space ofa, b, c andλ is such that E(q(w)) ≥ 0. Note that E(q(w)) is
not defined forw0 < w. The coefficientλL is set equal to zero to ensure continuity atwupp.
The termsGl (w) are such that

Gl (w) = Bl

(

(w−wlow)

(wupp−wlow)

)

, l = 1, ...,L, wlow ≤ w≤ wupp. (6)
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The termsBl (z) are cubic B-splines (Wasserman, 2006) which have support on the interval
z∈ [0,1], wlow and wupp are the lower and upper points of the interval influenced by the
B-splines, respectively. For a given river the quantitywmin andwmax are the smallest and
the largest observed water level, respectively, within thepairs(wi ,qi), i = 1, ...,n. Based on
time series for that river, the smallest water level of the time series for that river is denoted
by w0. Herewlow is set equal tow0. The quantitywupp is set equal to the third largest water
level observation with a corresponding discharge measurement. Therefore, the order of these
quantities here is such thatw0 = wlow ≤ wmin < wupp< wmax. The B-spline parameters in
λ = (λ1, ...,λL) are unknown (with the constraintλL = 0) andL is the number of B-spline
kernels. For simplicity it is decided to use fixed number of B-splines kernels (value ofL)
and to use fixed spacing between the interior knots. Equally spaced B-splines are used to
obtain consistent smoothness over the entire interval B-spline interval as well as to reduce
computational complexity. This Model will be referred to asModel 1.

Model 1 has the ability to pick up deviations from the power-law. This model is compared
to the standard power-law equation, this has been tested in the (ingimarsson.et.al) where the
parametersa andb were constants and then model lacked the flexibility that is needed in
many data sets. Here a model based on the standard power-law are proposed where the
parametersa andb are not constant with water level. This model has mean function is given
by

log(qi) = E(log(q(wi)))+ εi , i = 1, ...,n. (7)

E(log(q(w))) = a(w)+b(w)∗ log(w−c) (8)

wherec is a unknown parameter,a is given by

a(w) =







a1+ωL w> wupp

a1+∑L
l=1ωl Xl (w) wmin < w≤ wmax

a1+ω1 w> wmin

(9)

and whereb is given by

b(w) =







b1+ξK w> wupp

b1+∑K
k=1ξkUk(w) wmin < w≤ wmax

b1+ξ1 w> wmin

(10)

The functionsX andU are the same asG in Equation 6 with the exception thatwmax is
replaced withwupp.

This model requires variance function that is different from that in Model 1 and therefore
three different structures are tested for the error termεi in (7). These models will be referred
to as Models 2-4 and will all have the same expected value shown in Equation (8). The error
termεi in Equation (7) for Model 2 is given by

εi ∼ N
(

0,σ2
2{1+ r1exp[(w−wfix)/r2]

)

, i = 1, ...,n,

wherer1, r2 andσ2
0 are unknown constants andwfix is a constant set equal towmin.

The error termεi in Equation (7) for Model 3 is given by

εi ∼ N
(

0,σ2
3{1+exp[d(w)]

)

, i = 1, ...,n,
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whereσ2
0 is a unknown constant andd(w)is given by

d(w) =







κK w> wupp

∑K
o=1κoUo(w) wmin < w≤ wmax

κ1 w> wmin

(11)

whereκ is a unknown vector.
The error termεi in (7) for Model 4 is given by

εi ∼ N
(

0,σ2
4{1+s1(w−wfix)

s2
)

, i = 1, ...,n,

Whereσ2
4 , s1 ands2 are a unknown constants.

BAYESIAN INFERENCE

The Bayesian approach requires specification of prior distributions for each of the unknown
parameters. The prior distributions for Model 1 are the sameas in Ingimarsson et al. (2010a).
For Models 2, 3 and 4 the priors for the parameters in the expected value are the same. For
a1 andb1 a normal prior distributions are selected as in Ingimarssonet al. (2010a) however
due to the re-parametrization ofa in that paper the prior distributions fora1 becomes normal
with mean as -6.60 and variance as 4.10. The prior distributions forω andξ are a Gaussian
Markov random field distributions (Rue and Held, 2005) with mean zero and covariance
matrix τ2

j D(I − φ jC)−1MD where j is either 1 or 2 depending on whether it is in the prior
distribution forω or ξ . This prior works as a penalty forω andξ . The parametersτ2

j andφ j

are unknown. The parameterτ2
j controls the size of the elements ofω andξ and acts similar

to a smoothing parameter in a non-Bayesian approach. A vague inverse–χ2 prior is chosen
for τ2 due to the lack of knowledge about sensible values for this parameter. This prior allows
the posterior distribution to put a lot of mass close to zero which is a desirable property since
in many casesτ2 is in fact equal to zero (the B-spline part is zero). The prior for τ2

j also puts
a lot of mass on positive non-zero values ofτ2. The variability in the data is bounded which
in turn bounds the variability in the posterior distribution of τ2. The parameterφ is in the
interval[0,1). To obtain a strong positive correlation between theλ coefficients the value of
φ needs to be close to 1, but that is preferred here to avoid rapid changes in theλ ’s which can
lead to lack of smoothness in the B-spline part and thus in the rating curve. To accomplish
this a beta prior distribution withα = 20 andβ = 0.5 is selected forφ . This distribution has
90% of its mass between 0.93 and 1. The prior distributions for theσ2 parameters in Models
2, 3 and 4 are inverse–χ2 distributions. Other parameters in Model 2 have normal distributed
priors. A prior forr1 has the form N(r1|0,0.5) and forr2 N(r1|0,0.5). In Model 3 the prior
for a3 has the form N(a3i |0,2) where i = 1, ...,L. In Model 4 the prior distributions fors1

ands2 have the following form N(s1|0,0.5) and N(s2|2,1).
The posterior distribution ofθ = (a1,b1,c,ω,ξ ,τ2

1,τ
2
2,φ1,φ2,σ2

2 , r1, r2) given the data
q= (q1, ...,qn), w= (w1, ...,wn), for Model 2 is given by

p(θ |q,w) ∝ ∏n
i=1 p(qi |θ ,wi)× p(a1)p(b1)p(c)p(σ2

2)p(r1)p(r2)

× p(ω|τ2
1,φ1)p(τ2

1)p(φ1)

× p(ξ |τ2
2,φ2)p(τ2

2)p(φ2)
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wherep(qi |θ ,wi) is a normal density such that

p(qi |θ ,wi) = N

(

qi

∣

∣

∣

∣

(a′(w))+b(w)log(wi −c),σ2
2{1+ r1exp[(wi −wfix)/r2]

)

,

and the part∏n
i=1 p(qi |θ ,wi) is the likelihood function. The posterior distribution is derived

similarly for Model 3 and 4.
A Gibbs sampler with Metropolis–Hastings steps is used to generate samples from the

posterior distribution. The conditional distributions ofη2 andτ2 are scaled inverse–χ2 dis-
tributions. The conditional distributions ofω andξ are a multivariate normal distribution
whereω andξ are first generated without any constraints then the constraint of the first and
last values in the vector ofω andξ are taken into account. To generate from the conditional
distributions ofa1, b1, c, r1, r2, a3, s1, s2, andφ j where j = 1,2, a Metropolis–Hastings
steps is needed in each case. However in all models the value for the parametersc is set as
constant after it has been estimated with the Gibbs sampler.The parameters in the model are
estimated again withc fixed. This is to strengthen the estimate of other parameters.

RESULTS

In this section a comparison between the models introduced in the section Models is made.
For this comparison forty nine data sets from the data base ofIMO are used. To compare how
well the models are performing for different types of data sets DIC values were calculated for
all forty nine data sets and the difference between Model 1 and the other models is computed,
see Figure 10.

As can be seen from Figure 10, Model 3 clearly outperforms Model 2 and 4 in six cases.
However, for the rest of the DIC differences there is little difference between these models.
Model 2 and Model 4 give very similar results with one exception. Due to the fact that
Models 2, 3 and 4 all have the same mean function and DIC calculations are in favor of
Model 3 a focus will be on Model 3. It is apparent that Model 1 isperforming better in
more cases than Model 3 however in 32 cases the DIC differenceis less than 5 which means
that there is a small difference in how the models are performing. In fifteen cases Model 3
is performing with a smaller DIC values than Model 1 where fiveof these cases have DIC
difference grater than 5.
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Figure 10:On the vertical axis the difference in DIC between the Model 1 and Models 2, 3
and are denoted by stars and number of rivers is on the horizontal axes. The difference be-
tween Model 1 and Model 2 is denoted by red stars, green stars show the difference between
Model 1 and Model 3 and finally blue stars show the difference in DIC between Model 1 and
Model 4.

The river Jökulsá á Dal is used to show how the models proposedin this paper perform.
In Figure 11 the behavior of the parametersa andb are shown for Model 3. By allowing the
parametersa andb to be a function of water level Model 2, 3 and 4 can give a betterfit to the
data better than if the parameters are fixed. It is of interestto see how little both parameters
change with water level since this is the data set that gives the worst fit in the hole IMO data
base if a standard power-law model is used with fixed parameters and no segmentation.
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Figure 12:The fit of Model 1 to data (left panel), and that of Model 3 (right panel). The
vertical axes shows water level (w) in cm while the horizontal axes shows the discharge (q),
in m3/sec. The black solid curves show the posterior median ofE(q) and the 95% posterior
interval ofE(q) is displayed by the dotted curves. The broken lines show prediction intervals.
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Figure 13:The fit of Model 1 to data (left panel), and that of Model 3 (right panel). The
vertical axes shows water level (w) in cm while the horizontal axes shows the discharge (q),
in m3/sec. The black solid curves show the posterior median ofE(q) and the 95% posterior
interval ofE(q) is displayed by the dotted curves. The broken lines show prediction intervals
and the x show the excluded data points.

Figure 12 shows how well Model 1 and Model 3 fit the data set fromJökulsá á Dal.
Both models fit the data well. However, the posterior intervalis wider for Model 3 and DIC
calculation which has difference of the magnitude of 6.67 are in the favor of Model 1 which
suggests the use of Model 1 gives a better rating curve.

The fit alone may not be the only thing of interest when deciding which rating curve to
use in most cases the extrapolation is as important. Discharge rating curves are frequently
used in extrapolation of discharge. To test how well the two models extrapolate then a few
of the highest discharge observation are excluded from the data sets and the models are used
to predict these excluded discharge values. This is done forhighest, second, fourth and fifth
highest discharge observations. Figures 13 and 14 show these test results.
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Figure 14:The fit of Model 1 to data (left panel), and that of Model 3 (right panel). The
vertical axes shows water level (w) in cm while the horizontal axes shows the discharge (q),
in m3/sec. The black solid curves show the posterior median ofE(q) and the 95% posterior
interval ofE(q) is displayed by the dotted curves. The broken lines show prediction intervals
and the x show the excluded data points.
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Figure 13 shows that both models can predict the data if thereis one data point excluded
from this data set, however, both models overestimate the discharge if two data points are
excluded. In Figure 14 both models continue to overestimatethe discharge when four and
five data points are excluded. There is not an obvious difference from the Figures 13 and 14
in the way Model 1 and Model 3 extrapolate.

Table 6:The values of b for Model 1 and Model 2.

Model 1 Model 3
parameterb, 1 excluded point 1.81 1.94
parameterb, 2 excluded points 1.60 1.89
parameterb, 3 excluded points 1.50 1.82
parameterb, 4 excluded points 1.75 1.83
parameterb, 5 excluded points 1.42 1.8

From Table 1 and the fact that both models overestimate the discharge when extrapolation
then Model 1 more likely perform better when dealing with even greater water level than the
largest data point, this is due to lower value of the parameter b in Model 1.
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CONCLUSIONS

Even though Models 2, 3 and 4 have shown a lot of potential Model 1 performs better over
all. However there are data sets which Model 1 gives the worstfit of the four models and
for most data sets or 32 out of 49 the difference in DIC is not greater than 5. It would be
of interest to find out the characteristics of these data sets. It also could be beneficial to test
the models also by using the Bayes factor which combined with the DIC could give a more
accurate estimate of the performance of the models.
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ABSTRACT

The Bayesian approach has been successfully applied to the estimation of discharge

rating curves which are based on the standard power-law. Here the standard power-law

model is extended by adding a B-spline function to it. The extended model is compared

to the standard power-law model through discharge data from the direct run stream

Norðurá in Borgarfjörður in the Western part of Iceland. The extended model provides

a substantially better fit to these data than the standard power-law model.

INTRODUCTION

Hydrological Service in Iceland (HSI) runs a water level measuring system which collects
water level data continuously from rivers around the country while the discharge is only
measured a few times a year due to high cost. Hydrological rating curves give discharge as
a function of water level. Based on hydraulic principles, therelationship between discharge
and water level is given by the standard power-law relationship

q= a(w−c)b (12)

(Lambie, 1978; Mosley and McKerchar, 1993) whereq is discharge,w is water level,a is
a positive scaling parameter,b is a positive shape parameter andc is the water level when
the discharge is zero. These parameters are usually estimated from paired measurements of
water level and discharge.

The Bayesian approach has been successfully applied to discharge rating curves, see
Moyeed and Clarke (2005), Reitan and Petersen-Øverleir (2008b) and Arnason (2005). In
the Bayesian approach all unknown parameters are treated as random variables. Prior in-
formation about unknown parameters based on previously collected data and/or scientific
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knowledge can be combined with new data for parametric inference. For example, the fact
that the parameterb in equation (12) takes the values 1.5 and 2.5 for rectangular and v-shaped
sections, respectively, is an example of prior knowledge that can be used to form the prior
distribution for one of the unknown parameters. Combinationof the prior distributions and
the model for the data results in the posterior distributionwhich can be used to obtain point
estimates and interval estimates for the parameters. HSI has applied the Bayesian approach
successfully to data on discharge and water level for discharge rating curve estimation.

In the section Models two statistical models for discharge and water level measurements
are introduced. In the section Data a description of discharge and water level data is given.
The two models are applied to the data in the section Results and a comparison between the
models is made. Finally, in the last section conclusions aredrawn.

MODELS

The Bayesian model for discharge rating curves currently used at HSI is given by

qi = a(wi −c)b+ εi , i = 1, ...,n

wheren is the number of observations for a given site,(wi ,qi) denotes thei-th pair of obser-
vations,εi is a mean zero measurement error such that

εi ∼ N(0,η2(wi −c)2bψ).

In essence this is the same model as the one presented by Petersen-Øverleir (2004). The
parametera is a function ofϕ andb, that is,

a= exp(α0+α1b+ϕ)

whereα0 = 4.9468 andα1 = −5.3726. This reparametrization is motivated by correlation
between values of ln(â) andb̂ which are based on data from HSI, and the values forα0 and
α1 are selected such that there is no correlation between ln(â) and ln(â)−α0 −α1b̂, see
Arnason (2005). The parameterψ controls how the error variance behaves as a function of
the expected value ofq, andη2 is a scaling parameter for the variance. This model will be
referred to as Model 1.

Model 1 is not sufficient for about 5% of the data sets at HSI which calls for modifica-
tions. Here, a model is proposed that is an extension of Model1. It captures the main trend
in discharge as a function of water level through the power-law part,a(w−c)b, but a linear
combination of B-splines is added, which allows for more flexibility than in Model 1. The
form of this model is given by

qi = a(wi −c)b+
L

∑
l=1

λl Bli + εi

where
Bli = Bl ((wi −wlow)/r), l = 1, ...,L, i = 1, ...,n,

and the termsBl (z) are cubic B-splines (Wasserman, 2006) which have support on the in-
terval [0,1], r = wupp−wlow, wlow andwupp are the lower and upper points of the interval
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influenced by the B-splines, respectively. Usuallywlow = wmin, i.e., wherewmin is the small-
est observed water level. The quantitywupp is selected as the 90th percentile of the water
level observations or the number such that at least three water level observations are above
it. The parameters inλ = (λ1, ...,λL), are unknown andL is the number of B-spline kernels.
Further, the error terms are such that

εi ∼ N
(

0,η2(wi −c2)
2b2

)

, i = 1, ...,n,

whereb2 andc2 are unknown parameters. Note thatb2 plays a similar role asψ in Model 1.
This model will be referred to as Model 2. Further, Model 2 is such thatλL = 0 to avoid a
jump atw= wupp, and forw< wlow, E(q) = a(w−c)b+λ1.

The Bayesian approach requires specification of prior distributions for each unknown
parameter. The same normal prior distributions as used in Arnason (2005) are used here
for ϕ, b andc, see details in Appendix. The prior distribution forb is a truncated normal
distribution between 0.5 and 5. The posterior distribution ofc will be influenced by its
prior distribution but also by the smallest water level measurement, denoted bywmin since
c< wmin. A normal Markov random field prior (Rue and Held, 2005) is assumed forλ , see
details in Appendix.

The posterior distribution ofθ =(ϕ,b,c,η2,b2,c2,λ ,τ2,φ) given the dataq=(q1, ...,qn),
w= (w1, ...,wn) andwmin, is given by

p(θ |q,w,wmin) ∝ ∏n
i=1 p(qi |θ ,wi)× p(ϕ)p(b)p(c)p(η2)p(b2)p(c2)

× p(λ |τ2,φ)p(τ2)p(φ)

wherep(qi |θ ,wi) is a normal density such that

p(qi |θ ,wi) = N

(

qi

∣

∣

∣

∣

a(wi −c)b+
L

∑
l=1

λl Bli ,η2(wi −c2)
2b2

)

,

and the part∏n
i=1 p(qi |θ ,wi) is the likelihood function.

DATA

The data which are analyzed in this paper were collected by HSI water level measuring sys-
tem and are from Norðurá in Borgarfjörður by Stekk. The river is located in the Western part
of Iceland. The water level of Norðurá has been measured continuously since 1965. The data
contain 35 pairs of discharge measurements (q), in m3/sec, and water level measurements
(w) in cm. Norðurá is a direct run stream with 500 km2 drainage basin above Stekk. In direct
run streams the discharge dependents heavily on the season and rainfall.

RESULTS

Here the two models introduced in the section Models are applied to the data from Norðurá
in Borgarfjörður for comparison between the two models. Figure 15 shows the fit of the two
models to the data. There is a clear difference between the two models. Both models fit the
data very well for smaller values of water level while for larger values of water level Model
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Figure 15:Water level is on the vertical axes (cm) while discharge is on the horizontal axes
(m3/sec). The points show the observed data from Norðurá in Borgarfjörður and the fit of
Model 1 to these data (left panel), and the fit of Model 2 to the same data (right panel).
The solid curves show the posterior median ofE(q) while the dotted curves show prediction
intervals.

2 seems to perform better. This is due to the lack of flexibility of Model 1, it is not flexible
enough to give a good fit to the few observations with large values of water level. The 95%
prediction interval is wider for larger values of water level in Model 1 than in Model 2. This
is mainly due to the fact thatη2, the parameter controlling the variance of the errors, is
smaller in Model 2 than in Model 1. Figure 16 shows the standardized residuals of the two
models versus water level.
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Figure 16:Water level is on the horizontal axes (cm) but the scale is nonlinear, standardized
residuals are on the vertical axes. Standardized residualsfor Model 1 (left panel) and Model
2 (right panel).

In Figure 16, it can be seen that Model 1 (left panel) is not flexible enough to handle the
trend found in the standardized residuals while Model 2 yields more convincing standardized
residuals. In general standardized residuals should not show any trend and appear to have
the same variance for all values of the water level.
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Figure 17:Water level is on the vertical axes (cm) while discharge is on the horizontal axes
(m3/sec). The standard power-law part (solid line) and the B-spline part (dotted line) of
Model 2. The dotted line next to the solid line shows the sum of the two parts. The figure
shows the water level values where B-splines have an effect on the model.

Figure 17 shows the roles that the B-spline part (dotted line)and the standard power-law
part (solid line) play in Model 2. The B-spline part picks up the extra trend in the data for
the values of the water level belowwupp that the standard power-law part can not adjust for
to the same extent by itself. This, in turn, allows the standard power-law part in Model 2 to
give a better fit abovewupp. The B-spline part slowly dies out with increased water leveland
is practically zero above a value much smaller thanwupp. This behavior of the fit for Model
2 indicates that there is no breaking point in the discharge rating curve.

A model criterion called the deviance information criterion (DIC) (Spiegelhalter et al.,
2002) is used to further compare the two models. Three other quantities are computed for
each of the two models, namely,Davg andDθ̂ which are based on the likelihood function, and
pD, wherepD = Davg−Dθ̂ . The quantitypD is the effective number of parameters. Further,
DIC = Davg+ pD, where DIC is such that the lower it is, the better is the fit of the model to
the data. For details on DIC,Davg, Dθ̂ and pD, see Spiegelhalter et al. (2002) and Gelman
et al. (2004).

The values ofDavg, Dθ̂ , pD and DIC for Models 1 and 2 are shown in Table 7. Here Model
2 has lower DIC than Model 1, the difference is more than twelve which is a substantial
difference while a difference of size four or less leads to inconclusive results. This confirms
that the added complexity of Model 2 does improve the fit.
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Model 1 has five effective parameters, however, in the simulation the estimate ofpD is
4.65 which is slightly different from five but this difference can be explained by the stochas-
tic nature of the simulation. The estimated number of effective parameters in Model 2 is
7.66. The number of parameters in Model 2, if counted directly,is 23 since hereL = 15,
however, since theλ ’s are penalized through the prior of theλ ’s, the addition ofc2, λ , τ2

andφ in Model 2 compared to the five parameters in Model 1 is equivalent to two or three
unconstrained parameters.

Table 7:DIC and pD for Model 1 and Model 2 along with Davg and Dθ̂ .

Davg Dθ̂ pD DIC
Model 1 137.11 132.47 4.65 141.76
Model 2 120.95 113.29 7.66 128.62

Table 8 shows estimates of the parametersϕ, b, c, η2 andψ in Model 1 while Table 9
shows estimates of the parametersϕ, b, c, η2, b2 andc2 in Model 2. The posterior mean of
b is 2.17 for Model 1 while it is 2.51 for Model 2, so, the added flexibility of Model 2 yields
a larger shape parameter. Yet, this increase inb will result in a large increase in discharge
prediction for water level larger thanwmax. The precision of these five parameters is better
in Model 1 than in Model 2. For example, the 95% Bayesian confidence intervals forb and
c are about three times and six times wider in Model 2 than in Model 1, see the 2.5 and 97.5
percentiles forb andc in Tables 2 and 3.

Table 8:Parameter estimates for Model 1.

ϕ b c ψ η2

Post. mean -0.54 2.17 88.0 1.08 0.004
Post. median -0.54 2.16 88.4 1.09 0.004
2.5 percentile -0.66 2.03 78.7 0.94 0.002
25 percentile -0.57 2.11 85.5 1.05 0.003
75 percentile -0.51 2.21 91.0 1.13 0.005
97.5 percentile -0.45 2.33 95.0 1.18 0.012

The smaller precision seen in Model 2 results in less precision in the estimated discharge
curve, E(q), than in Model 1, see Figure??. For the larger values of water level the width of
the posterior interval for E(q) is around 35% greater in Model 2 when compared to Model 1.
However, for water level values greater than 200 cm Model 1 appears to lack the curvature
that the data suggest. The smaller precision in Model 2 is dueto its complexity relative to
Model 1 but what is gained is a better fit to the data.
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Table 9:Parameter estimates for Model 2.

ϕ b c b2 c2 η2

Post. mean -0.86 2.51 66.2 2.52 82.5 6.97e-009
Post. median -0.88 2.53 63.0 2.55 82.4 4.01e-011
2.5 percentile -1.38 2.05 24.6 1.96 51.1 4.42e-013
25 percentile -1.05 2.35 50.1 2.34 71.7 5.30e-012
75 percentile -0.66 2.68 81.5 2.71 93.5 4.58e-010
97.5 percentile -0.30 2.94 118.0 2.94 113.0 4.45e-008

Posterior simulations for both Model 1 and Model 2 are stableand the simulated chains
convergence in all in both cases. In case of Model 1 four chains of length 50 thousand are
sufficient while for Model 2 four chains of length 100 thousand are needed to obtain adequate
convergence.

CONCLUSIONS

Model 2 shows promising results when fitting rating curves incases where Model 1 lacks the
flexibility needed. The B-spline part of Model 2 is small relative to the standard power-law
part but it catches the small deviation from the standard power-law model which results in
a more convincing fit for Model 2 than Model 1. This is confirmedwith DIC calculations
where Model 2 yields a substantially lower value than Model 1.

Model 2 is formulated such that if Model 1 is the correct modelor the adequate model
then the B-spline part will be close to zero. However, furtherresearch is required to test the
performance of Model 2 when Model 1 is the correct model.
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APPENDIX

The following prior distributions are proposed for the unknown parameters.

p(ϕ) = N(ϕ|µϕ = 0,σ2
ϕ = 0.822)

p(b) ∝ N(b|µb = 2.15,σ2
b = 0.752)I(0.5< b< 5)

p(c) ∝ N(c|µc = 75,σ2
c = 502)I(c< wmin)

p(ψ) ∝ N(ψ|µψ = 0.8,σ2
ψ = 0.252)I(0< ψ < 1.2)

p(b2) ∝ N(b2|µb2 = 2.15,σ2
b2 = 0.752)I(1< b< 6)

p(c2) ∝ N(c2|µc2 = 75,σ2
c2 = 502)I(c2 < wmin)

p(η2) ∝ Inv-χ2(η2|νη = 10−12,S2
η = 1)

p(φ) = Beta(φ |αφ = 1,βφ = 20)

p(τ2) ∝ Inv-χ2(τ2|ντ = 10−12,S2
τ = 1)

p(λ |τ2,φ) ∝ N(λ |0,τ2D(I −φC)−1MD)

whereI(A) is such thatI(A) = 1 if A is true andI(A) = 0 otherwise. In the prior distribution
for λ , I is an identity matrix,D andM are diagonal matrices andC is a neighborhood matrix
with constants on the first off-diagonals, other elements are equal to zero.
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