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Abstract

The aim of this study is to investigate the possibility of using models to detect

fouling in a cross-flow heat exchangers, by only using measurements that are

attainable in normal operation of the heat exchanger, i.e., the hot and cold inlet

and outlet temperatures and the mass flow rates for the hot and cold fluids.

Real data of cross-flow heat exchangers is not easily attainable so simulated

data was used. Half of the data is of a clean heat exchanger, and the other

half is of a fouled heat exchanger. There should be no detection of fouling for

a clean heat exchanger, but should be as soon as possible for a fouled one.

The on-line detection of fouling is used by a new and more general method

that also takes into account that the input can be varying. The new method

finds a threshold for fouling based on the estimate of the steady states of the

effectiveness; this is called the effectiveness ratio method (ERM). The estimate

of the steady states can be done by applying a wavelet transform since the

transform is localised in both time and frequency. A simpler approach is also

applied, that of moving average, to show how the modelling approach needs

to be chosen carefully to get a good tool for detection of fouling.

The parameters of the method need to be chosen carefully, e.g. the step

size of the algorithm and the compromise between the frequency and time

localisation, thus a multiple objective genetic algorithm is implemented for

the optimisation. The new ERM approach is also compared with published

results for common means of detection of fouling using Kalman filters.
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Ágrip

Markmið þessarar rannsóknar er að kanna möguleikann á að nota líkan til

að greina útfellingar í krossflæðis varmaskiptum, með því að nota einvörðungu

mælingar sem eru í hefðbundnum rekstri varmaskiptisins, þ.e. hitastig við inn-

tak og úttak og streymi heita og kalda vatnsins. Erfitt er að nálgast raungögn

fyrir krossflæðis varmaskipta og því byggir rannsóknin á hermdum gögnum.

Helmingur gagnanna er miðaður við hreina varmaskipta og hinn helmingurinn

við varmaskipta með útfellingum. Útfellingar ættu ekki að greinast í hreinum

varmaskipti, en ætti að greina eins fljótt og auðið er í útfelldum varmaskipti.

Kynnt er ný og alhæfðari rauntíma aðferð til að greina útfellingar, en hún tekur

tillit til síbreytilegra gagna. Nýja aðferðin, sem kölluð er skilvirknis hlutfalla

aðferðin (ERM), finnur þröskuld byggðan á jafnvægisástandi skilvirkninnar.

Nálgunin á jafnvægisástandinu er fundin með því að beita smábylgjuummyn-

dun eða „wavelet“ ummyndun, sem er bæði bundin í tíma og tíðni. Jafnframt

er litið á hlaupandi meðaltal til að sýna fram á að nálgunaraðferðin þarf að

vera vandlega valin til að greina útfellingar nægilega vel.

Stikar aðferðarinnar þurfa að vera valdir gaumgæfilega, t.a.m. skrefstærð

reikniritsins eða ákvörðunin um hvort leggja eigi áherslu á tíma eða tíðni

nálgunarinnar. Stikarnir eru fundnir með fjölmarkmiða bestunarreikniriti með

erfðafræðilegu ívafi. Nýja ERM aðferðafræðin er borin saman við birtar niður-

stöður á greiningu útfellinga með hjálp Kalman sía.
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Chapter 1

Introduction

Research concerning fouling in heat exchangers is very prolific. Studies are

divided into different fields: principles of fouling; the mitigation of fouling;

and monitoring of fouling. Biannually an international conference on Heat

Exchanger Fouling and Cleaning is held to present the latest research and

technological developments in fouling and cleaning strategies. Focus of this

study is monitoring of fouling, specifically modelling fouling to detect it as

soon as possible.

1.1 Motivation

Fouling is when unwanted materials accumulate on solid surfaces, e.g. bio

film builds, or the surface starts to corrode, thus leading to an impediment to

the performance of the system it is taking place. For heat exchangers, fouling

results with worse hydraulic performance, and reduced thermal efficiency of

the effected equipment since there is an additional resistance to the heat flow.

For heat transfer between two fluids, fouling is inevitable. Once fouling is

present either the use of a hotter fluid or an increased hot fluid mass flow rate
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2 Introduction

is required to get the same desired outlet temperature for the cold fluid. This

would come at a greater cost to the consumer.

Besides the lack of thermal effectiveness, fouling can have dire consequences,

e.g. according to (Casanueva-Robles and Bott, 2005) they can create blockages

or cause unnecessary CO2 exhaust. Hence it is very important to detect fouling

as soon as possible both because of environmental standpoint and having the

system working at full capacity for minimal cost.

The classical methods for detecting fouling according to (S. Lalot and Desmet,

2007) are:

1. Examination of the heat transfer coefficient (or effectiveness);

2. Simultaneous observations of pressure drops and mass flow rates;

3. Temperature measurements;

4. Ultrasonic or electrical measurements;

5. Weighing of heat exchanger plates.

There are some drawback to these methods: The first three methods require

that the system has reached a steady state; the fourth monitors only local

fouling; and the fifth requires the process to be stopped. Another approach

would be modelling the heat exchanger and look for discrepancies between the

model predictions and actual measurements.

Model-based methods that have been used can either be based on physical

parameters such as extended Kalman filters (S. Lalot and Desmet, 2007); or

black-box methods such as artificial neural networks (Lalot and Lecoeuche,

2003); fuzzy logic model (F. Delmotte and Dambrine, 2008); and a recursive
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subspace identification algorithm (Lalot and Mercère, 2008). These papers

either model electrical circulation heaters or tube-in-tube heat exchangers. All

the proposed methods are focusing on reducing computational cost so on-line

implementation for detection of fouling is possible, without requiring steady

state and only using observable inputs and outputs. Depending on what kind

of fouling is being focused on, this can be extremely important, e.g. in the

dairy industry fouling can occur in a matter of a few hours; but for crude oil

it may take a few days for fouling to exist in its preheat train exchangers.

Estimation is thus feasible whilst the heat exchanger is in use.

1.2 Contribution and objectives

For this study the main contribution and objectives are:

1. Effectiveness ratio method (ERM);

2. Wavelet transform to model ERM;

3. Multiple objective genetic algorithm to estimate the parameters in ERM.

ERM uses the estimated steady state of the system’s effectiveness, and at

each time step the effectiveness’s average is used as a reference value. The

ratio between the estimated effectiveness and its average is then examined. If

the ratio falls below a certain threshold, fouling is detected, if not then the

heat exchanger is assumed to be still clean.

The system’s effectiveness never reaches a steady state, since the inputs are

always simultaneously varying. Thus an approximation of the effectiveness
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is needed for ERM. Wavelet transform is implemented since it can be both

localised in the time and frequency domain, depending on where the emphasis

needs to lie. Instead of working in the wavelet transform paradigm an equive-

lent filter is applied to the instantaneous effectiveness signal. First a low-pass

analysis filter and a down sampling by two are applied iteratively to the sig-

nal to obtain the approximation coefficients. Afterwards an up sampling by

2 and a low-pass synthesis filter is applied to the approximation coefficients

iteratively, yielding the original signal without noise, which is the desired esti-

mate of the effectiveness’s steady state. This approach was first presented in

(Ingimundardóttir and Lalot, 2009).

There are several parameters that need to be chosen for ERM. First there is

the choice of ERM’s step size, or offset. For the wavelet transform, e.g. with

a Daubechies basis, the parameters are the dimension of the basis, the scale

of the transform and its boundary condition coefficient. Finding the optimal

set of decision variables is done via MOGA optimisation, where its objectives

are: if CFHE is clean there should be no detection of fouling; and conversely

if CFHE is fouled there should be detection of fouling and preferably as soon

as possible.

1.3 Overview

In chapter 2 there is a general description of heat exchangers, focusing on

cross-flow heat exchangers and how they can be modelled and subsequently

simulated. With simulated data, for both clean and fouled cross-flow heat

exchangers, detection of fouling is found via a model-based method called the
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effectiveness ratio method (ERM), discussed in detail in chapter 3. ERM relies

on a sub method for the approximation of the heat exchanger’s steady state

of the effectiveness, the sub methods introduced are either moving average

or wavelet transform. The parameters of ERM are optimised using a multi-

ple objective genetic algorithm (MOGA). Results obtained from MOGA and

published results using an extended Kalman filter are presented in chapter

4. Comparison between the different methods of detection on fouling are dis-

cussed along with future work in chapter 5.
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Chapter 2

Heat Exchangers: Modelling and

Simulation

A heat exchanger is a device built for efficient heat transfer from one medium to

another. They are widely used in domestic and industrial applications. There

are several different types of heat exchangers. They may be classified according

to their flow arrangement, namely parallel-flow; counter-flow; and cross-flow

heat exchangers. Furthermore they can be classified by their construction.

The most common types being shell-and-tube heat exchanger and plate heat

exchanger.

A plate heat exchanger uses metal plates to transfer heat between two fluids.

The fluids are exposed to a larger surface area, resulting in a higher heat trans-

fer efficiency despite small physical size than compared to other conventional

heat exchangers. They are generally compact; can be used for various types of

fluids and conditions; can be easily dismantled for cleaning and/or replacing

individual damaged plates; and have a low manufacturing cost. A typical plate

7



8 Heat Exchangers: Modelling and Simulation

heat exchanger in the dairy industry is depicted in Figure 2.1. For further in-

formation the reader can refer to (Guðmundsson, 2008) and (Çengel and Boles,

2007).

Since the plate heat exchangers are both economic and efficient, and there-

fore common in practice, this study will focus on simple cross-flow plate heat

exchanger (CFHE), having both fluids unmixed and flowing perpendicular to

each other. The fluids are separated by a metal plate; the other side of the

fluid channels being perfectly insulated, the cold fluid flows along the x-axis

and the hot fluid flows along the y-axis (see Figure 2.2).

Figure 2.1. Principles of flow and heat transfer in a plate heat exchanger,

figure from Tetra Pak’s Dairy Processing Handbook (Bylund, 1995).
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Figure 2.2. Cross-flow heat exchanger, having both fluids unmixed.

2.1 Simulation

The simulations are primarily to calculate the outflow temperatures for given

mass flow rates and inflow temperatures. It is noted that in an accurate

simulation there are no measurement errors that would be present in real

data, thus need to be added if appropriate.

When it comes to modelling a heat exchanger, one must take into consider-

ation the laws of thermodynamics. Especially the conservation of energy, in

particular where heat is a form of energy. Entropy of an isolated macroscopic

system never decreases, and consequently heat transfer is the transition of

thermal energy from a hotter medium to a cooler medium, not vice versa.

One must also consider the means of how heat transfers. Heat transfer can

either be due to conduction; convection and/or thermal radiation. Conduction

is heat transfer by direct contact of particles of matter, i.e., it is due to com-
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bination of vibrations between adjacent atoms and free electrons moving from

atom to atom. Convection takes place through diffusion and advection in flu-

ids. The greater the fluid motion, the greater the convection heat transfer.

Radiation is heat transfer through electromagnetic waves, thus no medium is

necessary for it to occur, (Çengel and Boles, 2007).

In a plate heat exchangers, heat is transferred by convection from the hot fluid

to the separating plate, by conduction through the separating plate, and by

convection from the separating plate to the cold fluid.

Last but not least, to model a heat exchanger, it is necessary to divide it into

cells (i, j), i ∈ {1, ..., ni}, j ∈ {1, ..., nj}, as depicted in Figure 2.3.

For this study there are some assumptions for ease of calculations: The heat

exchanger is perfectly insulated, i.e., heat loss to the surroundings is negligible;

There is uniform temperature in each cell of the heat exchanger; The specific

heat capacities are constant throughout the heat exchanger.

xTp,I,JxTc,I,j+1

x
Tc,I,j

x Tℎ,i+1,JxTℎ,i,J

-

6

Figure 2.3. Discretisation of the CFHE.
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Using the aforementioned laws of thermodynamics, the energy change in a cell

is equal to the energy flow in the fluid in the cell and the energy that is trans-

ferred from or to the cell. Hence according to (Ingimundardóttir and Lalot,

2009), in each cell (I, J) there are three differential equations describing the

energy balance that have to hold, namely, one for the hot fluid:

Mℎcℎ
d

dt
Tℎ⋅,i,J = ṁℎ,Jcℎ (Tℎ,i,J − Tℎ,i+1,J) (2.1)

+�I,JAℎ,I,J

(

Tp,I,J −
Tℎ,i,J + Tℎ,i+1,J

2

)

,

where Tℎ⋅,i,J :=
(

Tℎ,i,J+Tℎ,i+1,J

2

)

. One for the cold fluid:

Mccc
d

dt
Tc⋅,I,J = ṁc,Icc (Tc,I,j − Tc,I,j+1) (2.2)

+�I,JAc,I,J

(

Tp,I,J −
Tc,I,j + Tc,I,j+1

2

)

,

where Tc⋅,I,J :=
(

Tc,I,j+Tc,I,j+1

2

)

. Lastly one for the separating plate:

Mpcp
d

dt
Tp,I,J = −�I,JAℎ,I,J

(

Tp,I,J −
Tℎ,i,J + Tℎ,i+1,J

2

)

(2.3)

−�I,JAc,I,J

(

Tp,I,J −
Tc,I,j + Tc,I,j+1

2

)

,

for all I ∈ {1, ..., ni} and J ∈ {1, ..., nj}, and each temperature is taken at a

given time t.

Lets define the following variables:

ntuℎI,J =
�I,JAℎ,I,J

ṁℎ,Jcℎ
(2.4)

ntucI,J =
�I,JAc,I,J

ṁc,Icc
(2.5)

as the number of transfer units for the hot and cold cells respectively, and

�ℎ,I,J =
Mℎ

ṁℎ,J
(2.6)
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as the residence time in one cell and

I,J =
�I,JAℎ,I,J

Mpcp
(2.7)

�I,J =
�I,JAc,I,J

Mpcp
(2.8)

as the inverses of response times for the hot and cold cells respectively.

Using these newly defined variables, it is possible to rearrange the terms of

Equation (2.1), to get an equivalent differential equation for the hot fluid,

d

dt
Tℎ⋅,i,J =

1

�I,J
(2Tℎ,i,J − 2Tℎ,i+1,J) +

ntuℎI,J

�I,J
(2Tp,I,J − Tℎ,i,J − Tℎ,i+1,J) ,

=
1

�I,J

(
2− ntuℎI,J

)
Tℎ,i,J

︸ ︷︷ ︸

Product1

− 1

�I,J

(
2 + ntuℎI,J

)
Tℎ,i+1,J

︸ ︷︷ ︸

Product2

+
2ntuℎI,J
�I,J

Tp,I,J

︸ ︷︷ ︸

Product

(2.9)

With this rearrangement, and integrating rather than differentiating, it is easy

to simulate the hot fluid in Simulink, and it is shown schematically in Fig-

ure 2.4. Equations (2.2) and (2.3) can be similarly manipulated to yield the

Simulink schematics given in Figures 2.5 and 2.6, respectively.

Together these three modules define a single cell in a cross-flow heat exchanger,

and its Simulink schematic is depicted in Figure 2.7. The hot fluid module

is at the top; the separating plate module is in the middle; and the cold fluid

module is at the bottom.



2.1 Simulation 13

Figure 2.4. Simulink module for the hot fluid for Eq. (2.1) (one cell).

Figure 2.5. Simulink module for the cold fluid for Eq. (2.2) (one cell).
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Figure 2.6. Simulink module for the separating plate for Eq. (2.3) (one

cell).

Figure 2.7. A single cell of a CFHE using Simulink.
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2.2 Determination of cell numbers

To compute an accurate enough solution one has to determine how many cells

are needed to divide the heat exchanger into. For this an electrical heater

model is used, for which an analytical solution exists. This is appropriate

because the electrical heater has to solve the same differential equations as

for the cross-flow heat exchanger, except the boundary conditions are slightly

different.

The electrical heater’s geometry is a thin plate heated by Joule effect, so that

a constant heat flux is generated all along the heater. The temperature of the

plate is assumed to be homogeneous in the direction perpendicular to the flow.

For this case, the exact solution in the Laplace space for the transfer function

is, (Ingimundardóttir and Lalot, 2009),

ℒ{Tℎ} =
ntu
�

s
(
s+ ntu

�
+ 

) ×
{

1− exp (−�s) exp
(

−ntu s

s+ 

)}

(2.10)

where ntu = ℎA
ṁℎcℎ

, � = Mℎ

ṁℎ
, and  = ℎA

Mpcp
.

When applying a Heaviside function for the heat flux, the inverse Laplace

solution is given by:

Tℎ =
ntu
�

ntu
�

+ 
×

[

1− exp

(

−
(
ntu

�
+ 

)

t

)]

− ntu

�
exp (−ntu)×

{(

exp
(

−
(
ntu

�
+ 

)

t
)

×
[ ntu

�
ntu
�

+ 

]

+


ntu
�

+ 

)

∗
(
exp(−t)× I0

(
2
√
ntu t

))
}

(t− �) (2.11)

where I0 is the modified Bessel function of the first kind and of order 0.

Comparing this analytical solution for electrical heater to the solution obtained
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with Simulink’s CFHE approximation one finds that 20 cells leads to a very

accurate solution (Figure 2.8).

Conversely, studying a heat exchanger with constant plate temperature leads

to the same conclusion: 20 cells are sufficient in the mass flow direction.
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Figure 2.8. Comparison of the results obtained using the approximated

model and analytical results (transient states).



2.2 Determination of cell numbers 17

To make sure the approximated Simulink model is correct, the model should

reach a steady state regardless to the temperature level mass flow rates. This

is done by comparing the effectiveness (defined by Equation (3.1)) for a large

range of number of transfer units, ntu, and a large range of heat capacity rate

ratios, C, for both the analytical solution and the approximated Simulink’s

model using 20×20 cell groups (or 1200 blocks). Figure 2.9 shows effectiveness

as a function of the number of transfer units, and the approximated Simulink

model comes to the same conclusion as the analytical results for steady states.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ntu

E
ff
ec

ti
ve

n
es

s

Analytical solutions

Solution for 20 × 20 × 3 blocks

C = 0.25

C = 0.5

C = 0.75

C = 1

Figure 2.9. Comparison of the results obtained using the approximated

model and analytical results (steady states).
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2.3 Data

To be able to evaluate the efficiency of the methods proposed in chapter 3

it has been chosen to work with simulated data. In this case, it is possible

to introduce an arbitrary time variation of the fouling factor, i.e. thermal

resistance due to fouling, Rf ; and consequently to know what this factor is

when fouling is detected.

Generated are 200 sets of data, each time series going from time t = 0 to time

t = 1 (dimensionless time). Each data set consists of six time series. Four

of them being the inputs, {T ℎ
in, T

c
in, ṁℎ, ṁc}, namely the inlet temperatures

and mass flow rates for the hot and cold fluids, and the second two being

the simulated outputs, {T ℎ
out, T

c
out}, the outlet temperatures for the hot and

cold fluids. First hundred data sets are of a clean heat exchanger, and the

latter hundred sets are of a heat exchanger where fouling occurs. The clean

and fouled data sets share the same inputs, except the output differs. For the

fouled data sets a continuous fouling factor is applied to the heat exchanger’s

hot side and it is increased as time goes by with exponential growth. This is in

accordance with Paul Watkinsons’s findings on crude oil (Watkinson and Li,

2009). Figure 2.10 shows the evolution of the fouling factor.

For heat transfer the overall heat transfer coefficient U is generally studied.

Its formula is given by Equation (2.12).

Uclean =
1

1
Acℎc

+ 1
Aℎℎℎ

/

A (2.12)
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Figure 2.10. Evolution of the fouling factor Rf .

where

ℎi =
Nuiki

Dℎi
(2.13)

Nui = 0.023Re
4

5

i Pr
1

3

i (2.14)

Pri =
ci�i�i

ki
(2.15)

Rei =
ViDℎi

�i
(2.16)

and i = ℎ, c denotes the hot and cold side of the heat exchanger, respectively.

When fouling accumulates in a heat exchanger surface coatings builds on the

heat transfer surfaces during its operations. This adds an extra thermal re-

sistance to the wall and may noticeably decrease the overall heat transfer

coefficient and thus performance. The relationship for thermal resistance due

to fouling deposits is usually as follows:

Ufouled =
1

1
Acℎc

+
Rf

Ac
+ 1

Aℎℎℎ

/

A (2.17)
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Input min max

Mass flow rates for hot and cold fluids: 0.6 kg
s

1.2 kg
s

Inlet temperatures for the cold fluid: 16 C̊ 24 C̊

Inlet temperatures for the hot fluid: 56 C̊ 64 C̊

Table 2.1. Ranges of the inputs

Since U is highly sensitive to the mass flow rates through the Reynolds num-

bers, Eq. (2.16), which in this study are not time invariant, it is impossible to

observe U directly, hence it must be observed indirectly.

The ranges of the inputs are given in Table 2.1. Although in practise, the

variation ranges would be much smaller, this is done to give a better gen-

eralization of the methods’ abilities to detect fouling. The input values are

randomly varying throughout the time series, as can be seen in Figure 2.11.

To prevent too fast fluctuations in the input, a random permutation was im-

plemented on several replicates of equally distributed values in the range of

the inputs, that were then interpolated, yielding an input of 10,000 samples.

The corresponding outlet temperatures are shown in Figure 2.13. Note that

for a clean set, the corresponding fouling set uses exactly the same inputs, but

of course the outputs vary.
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Figure 2.11. Inputs – inlet temperatures and mass flow rates.
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Figure 2.12. Partial view of the inputs.
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Figure 2.13. Outputs – outlet temperatures.
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Figure 2.14. Partial view of the outputs.

2.4 Summary

In this chapter a cross-flow heat exchanger was introduced, and how it could

be modelled using the laws of thermodynamics and subsequently simulated

with Simulink. For each random input time series there were two time series

simulated: one of a clean CFHE and one of a fouled CFHE, where the difference

is due to a continuous exponentially growing fouling factor added to the fouled

CFHE. All in all, there were 200 clean and 200 fouled data sets generated.

Each data set was presented in dimensionless time, going from time tstart = 0

to time tfinisℎ = 1. The each data set had 10,000 time steps.



Chapter 3

Effectiveness Ratio Method

On-line monitoring of fouling for steady state systems can be based on the

evolution analysis of the thermal effectiveness of the heat exchanger. Where

the effectiveness is defined in relation to the temperatures of the inlets and

outlets of the hot and cold sides of the heat exchanger at time t:

E(t) =
T ℎ
in(t)− T ℎ

out(t)

T ℎ
in(t)− T c

in(t)
. (3.1)

In the best case scenario there would be a complete heat transfer if T ℎ
out = T c

in

and T c
out = T ℎ

in. When fouling is present the heat exchanger loses its efficiency

and the T ℎ
out increases, so once the effectiveness starts to drop it shows an

indication of presence of fouling. Equation (3.1) also takes into consideration

the random deviations that occur between the inlet hot and cold temperatures.

For the constantly varying data generated in chapter 2 analysis has to be car-

ried out. As Figure 3.1 shows, or Figure 3.2 shows more clearly, it is impossible

to detect fouling using the raw evolution of the instantaneous effectiveness de-

fined by Eq. (3.1). For the equation to be valid the time series needs to attain

23
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a steady state, but with the inputs always simultaneously varying that is never

possible.
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Figure 3.1. Evolution of the instantaneous effectiveness.
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Figure 3.2. Partial view of the evolution of the instantaneous effectiveness.
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To detect fouling, a new definition has been formed for the effectiveness, called

the effectiveness ratio method (ERM) The method is quite generic for detec-

tion of fouling since it is not dependent of the model of the heat exchanger.

Therefore, it can be utilised on different types of data than for the CFHE

proposed in chapter 2.

The method skips the first t = 0.1 in dimensionless time of the samples in

order to show that the analysis can be applied to an ongoing process. The

method is dependent on the choice of its step size, or offset �, in dimensionless

time. The following � samples make up the expanding observation window (see

Figure 3.3), where an approximation of the effectiveness is computed. This

is done by applying the methods discussed in the following subsections on

the instantaneous effectiveness. For each observation window, the mean of the

approximated effectiveness is used as a reference value. If the ratio between the

approximated effectiveness and its mean falls below the predefined theshold, � ,

fouling is detected, otherwise the heat exchanger is assumed to be still clean.

The algorithm for ERM is given in Table 3.1.

0

Skipped

0.1 Dimensionless time, t 0.9 1

Last observation window

Observation window at time ki
�

Observation window at time ki+1 -

-
-
�

-

Figure 3.3. Expanding observation window scheme.
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Initial step Skip the first 10% of the samples.

Step 1 Expand the observation window by an offset

of length �.

Step 2 Compute the instantaneous effectiveness of

this window.

Step 3 Approximate the effectiveness with a method

introduced in the subsequent sections.

Step 4 Compute the effectiveness ratio for the

window with respect to its average.

Step 5 If the ratio falls below the threshold, � , foul-

ing is detected. Else return to step 1.

Table 3.1. Effectiveness ratio method algorithm

3.1 Threshold for ERM

The detection of fouling with ERM is fundamentally up to the choice of its

threshold, � . For this the ratios, r, between the approximated effectiveness

and its mean for the clean training sets, J , are used. Their median minimum

value is chosen as the threshold for the fouled data sets, i.e.

� = median{min
j∈J

r(j)} (3.2)

Using the median minimum value of the ratios allows some false positive de-

tection of fouling for clean CFHE, but this is done to reduce the likelihood of

false negative detection of fouling for fouled CFHE.
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3.2 Moving average

A common technique for smoothing out short-term fluctuations to focus on

long-term trends in a time series is that of a moving average. A simple mov-

ing average with a sliding window of length !, calculates the average of the

previous ! points. For the instantaneous effectiveness defined in Eq. (3.1) its

moving average is a sequence of values

Ẽt =
1

!

t∑

i=t−!+1

Ei, t = !, ! + 1, ... (3.3)

For ease of computation this can be simplified to

Ẽt = Ẽt−1 −
Et−!

!
+
Et

!
, t = ! + 1, ... (3.4)

3.3 Wavelet transform

When analysing non-stationary signals it is necessary to take careful con-

sideration to the time and frequency domains and what compromises should

be made between the two. Standard Fourier transform is only localised in

frequency; the short-time Fourier transform is limited by its fixed window

length. On the contrary, wavelets are localised both in time and in frequency;

but it is possible to control the localisation, depending on where the emphasis

needs to lie for a good estimate. In fact, wavelets separate data into frequency

components and analyses each component with a resolution matched to its

scale. The more the wavelet is similar to the signal components the larger is

the corresponding wavelet coefficient.

Wavelet transform can be beneficial for feature extraction, e.g. fingerprints
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recognition (J.A. Montoya Zegarra and da Silva Torres, 2009), or even for di-

agnosis, e.g. (C.K. Sung and Chen, 2000), (V. Belotti and Rossi, 2006) and

(Saravanan and Ramachandran, 2009).

Wavelets are functions that satisfy certain requirements, e.g. they should

integrate to zero, waving above and below the x-axis; be well localised; and

other requirements are technical to insure quick and easy calculations to the

direct and inverse wavelet transform.

Wavelets are structured basis in discrete or continuous time, and they permit

different time versus frequency resolution trade-offs.

For a short introduction to wavelet transform one can refer to

(Vidakovic and Mueller, 1994), or more extensively in (Vetterli and Kovaĉević,

1995) and (Pereyra and Mohlenkampy, 2004).

Matlab code for the wavelet transform is given in Appendix B.

3.3.1 Orthonormal wavelet basis

For wavelet transforms an orthonormal bases has the form

 j,k(x) = {2j/2 (2jx− k) : j, k ∈ ℤ} (3.5)

so each element of the basis is a translated and dilated version of a single

wavelet. Usually  j,k are called daughter wavelets of the mother wavelet  .
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Signal f(t) can be expressed in terms of dilated and translated wavelets up to

a scale j:

f(t) =
∑

k

�j(k)�(2
jt− k) (3.6)

If one would like to step to scale j − 1, one has to add wavelets in order to

keep the same level of detail, f(t) is expressed as:

f(t) =
∑

k

�j−1(k)�(2
j−1t− k) +

∑

k

j−1(k) (2
j−1t− k) (3.7)

Where

�j−1(k) = ⟨f(t), �j,k(t)⟩ low-pass filter

j−1(k) = ⟨f(t),  j,k(t)⟩ high-pass filter

and  is the inverse transform of the wavelet �. The low-pass filter is thought

as the averaging filter whilst the high-pass filter produces the detail.

There is an important property for the wavelet series basis function called the

two-scale equation property. The two-scaling equation for the scaling function

is given by:

�(t) =
√
2
∑

n∈ℤ

�(n)�(2t− n) (3.8)

that is to say that it is a series expansion of itself. The two-scale equation for

the wavelet function is given by:

 (t) =
√
2
∑

n∈ℤ

(n)�(2t− n) (3.9)

Thus the two-scaled relation states that the scaling function of a certain scale

can be expressed in terms of translated scaling function at the next smaller

scale.
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Note that greater scale means more detail. Therefore, one can successively

approximate a function starting from a coarse version going to a fine resolution

version.

For this study concentrated was on on the Daubechies wavelet basis. It is com-

pactly supported and can be designed with as much smoothness as desired. It

relies on the iteration of the discrete filter bank that converges to a continuous

time wavelet basis. Daubechies wavelets are designed so that they have the

minimum length of support for a given number of vanishing points. Note that

the shorter the support the fewer wavelets interact with a given singularity.

3.3.2 Filter bank tree

Once a basis has been decided, there exists an equivalent filter that can be

worked with instead. Therefore, for the instantaneous effectiveness defined

in Eq. (3.1) its wavelet transform f(t) := E[n] can be implemented in the

following manner:

A signal E is calculated by passing it through a series of filters: First the

samples are passed through a low-pass analysis filter with impulse response �

resulting in a convolution of the two. The signal is also decomposed simul-

taneously using a high-pass filter . The output gives the detail coefficients

(from the high-pass filter) and approximation coefficients (from the low-pass

filter). Since half of the frequencies of the signal have now been removed, half

of the samples can be disregarded according to Nyquist’s rule, leading to the

filter outputs being down sampled by 2. This decomposition has halved the

time resolution since only half of the filter output characterise the signal. This
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decomposition is repeated to further increase the frequency resolution and the

approximation coefficients decomposed with high- and low-pass analysis fil-

ters and down sampling by 2. This is represented as a binary tree, known as

a filter-bank, with nodes representing a subspace with different time-frequency

localisation, shown in Figure 3.4. This process is repeated in accordance of

the scale chosen. This results in the wavelet coefficients, consisting of the

wavelet approximation coefficients and the detail coefficients. Now, to recover

the original signal the filter outputs needs to be up sampled by 2 and passed

through the synthesis filters as often as the scale dictates.

For this study only the wavelet transform is being used to get rid of the detail,

i.e. the noise, of the effectiveness, thus only the low-pass filters are of interest

so the high-pass filter do not need to be computed.

E[n]

[n]

�[n] ↓2���� [n]

�[n] ↓2���� . . . etc.

Figure 3.4. Filter bank tree with for signal E using analysis filters  and �.

3.4 Optimisation

For this optimisation problem there are multiple objectives: minimising the

times of detection and maximising the correct classification for clean and fouled

data. The decision variables are the offset of the effectiveness ratio method

and the parameters of its sub method. To achieve this a multi objective genetic
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algorithm (MOGA) implemented in C++ for Matlab is used, (Sastry, 2007).

3.4.1 Multi-Objective Optimisation

The multi-objective optimisation problem (MOOP) for this study has three

objective functions: the ratio of correctly classified fouled CFHE, f1; the ratio

of correctly classified clean heat CFHE, f2; and the mean time of detection for

fouled CFHE, f3. The first two need to be maximised, and the thrid one needs

to be minimised. The objective functions are dependant to some constraints

of the decision variables, its mathematicall form is given as

Maximise fj(x⃗) j = 1, 2

Minimise f3(x⃗)

subject to x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, ..., n

(3.10)

where a solution x⃗ = (x1, x2, ..., xn) are the n decision variables; fj are the

objective functions; x(L)i and x(U)
i are the lower and upper bounds for decision

variable xi, respectively. ERM always has the offset as its first decision vari-

able, i.e. x1 = �. Other decision variables depend on the modelling technique.

For the wavelet transform they are the dimension of the basis, the scale of the

transform, and the boundary condition coefficient, i.e. x2 = �, x3 = �, x4 = %.

For the moving average the additional decision variable is the length of the

sliding window, i.e. x2 = !.

Generally some of the objective functions are conflicting, thus there cannot be

a single optimum solution that simultaneously optimises all of the objectives.

Assume f⃗ : D ⊂ ℝ
n → ℝ

M is to be maximised in all its coordinates, then a

solution x ∈ D dominates z ∈ D if each coordinate of f⃗(x⃗) is no greater than

the corresponding coordinate of f⃗(z⃗), and at least one coordinate of f⃗(x⃗) is
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strictly less than the corresponding coordinate of f⃗(z⃗). A set of dominated

solutions are solutions that are not dominated by any other solution in the

feasible region D. None of these solutions can be chosen to be better than the

other with respect to all of the objectives. This set of dominated solutions are

called a Pareto set, or a Pareto frontier, (Deb, 2003).

Thus the goal in multi-objective optimisation is to find a set of solutions that

are as close as possible to the Pareto frontier; and are as diverse as possible

to be able to achieve global optimum or at least a very good local optimum.

Depending on the importance of each objective function a single optimum

solution is chosen from the Pareto set.

3.4.2 Optimisation using a Genetic Algorithm

A genetic algorithm (GA) is an evolution strategy that uses same fundamen-

tal principals that of Charles Darwin’s natural selection in biology. Natural

selection describes that genes that give an organism a higher chance of sur-

vival and reproduction rate are more common in a population over successive

generations.

From an optimisation stand point each solution, or individual, x⃗ ∈ D ⊂ ℝ
n

for the MOOP described in Eq. (3.10) is characterised by its genotype that

consists of n genes, which determine its vitality, i.e. its fitness. In GA an

individual’s genotype is represented as a binary bit string, so each objective

parameter needs to be encoded accordingly.

For each iteration, or generation, of the optimisation process, the set of indi-

viduals used are referred to as its population of size �.
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Initial step Random population for the first generation, chosen

uniformly over the feasible region.

Step 1 Selection

� pairs of parents are chosen with probabilities

proportional to their rank (via Pareto ranking)

within the current population.

Reproduction

Step 2 Recombination

From each parental pair, given a recombination

probability, pc, there is a crossover of the two

parental genotypes. There can be nc number of

crossover points per individual. See Figure 3.5.

Of the two recombined offspring, only one is used.

Repeated until there are � new individuals for the

following generation.

Step 3 Mutation

For a given probability, pm, a point mutation on

an individual’s gene occurs, independent to other

individuals, by changing either a zero to one or

vice versa.

Step 4 Return back to step 1.

Table 3.2. Multi objective genetic algorithm (MOGA) algorithm.
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Parents

Crossover points

Offsprings ss ssss ss
Figure 3.5. Recombination of a parental pair

After the initialisation process, the GA algorithm, given in Table 3.2, is a

circular process of selection and reproduction, that consist of recombination

and mutation, which literally yields the survival of the fittest.

According to (Schwefel, 1995) the canonical values for the recombination prob-

ability are pc = 0.6; for the number of crossover points nc = 2; and for the

mutation probability pm = 0.001.

3.5 Summary

On-line monitoring of fouling is generally done by examining the evolution

of the effectiveness. This is only valid if the system reaches steady state.

When the inputs are constantly simultaneously varying the system is always

in transient state, thus an approximation of the instantaneous effectiveness is

needed. The approximation schemes presented in this chapter were moving

average and wavelet transform. The mean of the approximated effectiveness is

then used as a reference. If the ratio between the approximation and its mean

exceeded a certain threshold, it is implied that fouling has been detected.

This method is referred to as the effectiveness ratio method. For the optimum
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selection of the parameters in the approximation, a multiple objective genetic

algorithm is applied to a training set consisting of clean and fouled data sets,

with its goal being both correct detection of fouling for both clean and fouled

CFHE and early detection time if CFHE is fouled.



Chapter 4

Results

In this chapter the main results for ERM will be given, using a MOGA for the

optimal parameter selection. ERM will have both moving average and wavelet

transform as its sub method. Published results for the Kalman filter are also

presented.

4.1 Effectiveness ratio method

The effectiveness ratio method is dependent on its sub method, either moving

average or wavelet transform. Both types have parameters that need to be

optimised, for that reason the clean and corresponding fouled data sets are

split into two equal parts, half for the training set and the latter half for

the test set. Supervised learning takes place on the training set, yielding the

optimal parameter estimate for the methods that can then be used on the test

set, that has not yet been presented to the method.
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Training set Test set

� ! f1 f2 f3 f1 f2 f3 �

■ 0.0054 0.070 0.90 0.77 0.769 1.00 0.82 0.762 1.01

♦ 0.0312 0.081 1.00 0.94 0.783 1.00 0.84 0.776 1.03

▲ 0.0052 0.082 1.00 0.84 0.765 1.00 0.84 0.759 1.03

▼ 0.0163 0.073 1.00 0.92 0.780 1.00 0.86 0.776 1.02

Table 4.1. Solutions on the Pareto front for MA.

The parameters of ERM that need to be optimised are the offset, �, and the

parameters of its sub method. As discussed in (Ingimundardóttir and Lalot,

2009) the offset was chosen to be t = 0.02 since the fouling is relatively slow,

so the range of � in MOGA had a lower bound of t = 0.01 and an upper bound

of t = 0.04.

4.1.1 Moving average

There is only one parameter involved with the moving average, the length of

the sliding window, !, that needs to be optimised. Its range was chosen to

have a lower bound of t = 0.01 and an upper bound of t = 0.1.

The results from MOGA are given in Figure 4.1. The surface is the inter-

polation of the MOGA’s evaluated population and its Pareto front is given in

Table 4.1 along with a unique colour and character coding, and for clarity are

moved slightly from the surface.
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Figure 4.1. MOGA’s Pareto front for MA.

4.1.2 Wavelet transform

For the Daubechies wavelet transform there are three parameters that need

to be chosen, namely the dimension of the Daubechies basis, �; the number

of iterations for the approximation scheme, i.e. its scale, �; and the boundary

coefficient, %.

For the paper (Ingimundardóttir and Lalot, 2009) a low dimension of WT was

preferred so the approximation would be similar to that of a step-function

and consequently ERM too, which would be more easily interpreted for when

fouling occurs. Lower dimension would also imply that singularities would be

less as fewer wavelets were to interact, which is advantageous since the data is
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quite noisy. For this reason the range of � in MOGA had an upper bound of a

dimension lower than 20, as well as being an even integer, so the basis would

be well defined.

There were some boundary effects on the wavelet transform, and it was thought

better to use real entries instead of adding pseudo entries, e.g. adding mirrored

entries from both ends of the time series before approximating and that would

would be immediately deleted afterwards, since the data is not periodic. Thus

there are only the first % entries considered in the approximation to be certain

that the boundary effects did not effect the results. To make sure not too

much information would be lost, the range of % had a lower bound of 80% and

an upper bound of 100% of the time series.

The results from MOGA are given in Fig. 4.2. The surface is the interpolation

of the MOGA’s evaluated population and its Pareto front is denoted by red

asterisks. Selected solutions on the Pareto front are given in Table 4.2. Each

solution is given a unique colour and character coding, and for clarity are

moved slightly from the surface, so they can be easily identified in Fig. 4.3.
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Figure 4.2. MOGA’s evaluated solutions for WT.
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Training set Test set

� � � % f1 f2 f3 f1 f2 f3 �

■ 0.0267 4 9 0.887 0.82 0.94 0.776 0.76 0.90 0.752 0.96

♦ 0.0047 2 9 0.845 0.96 0.84 0.645 0.98 0.80 0.606 0.95

▲ 0.0203 2 9 0.859 0.96 0.82 0.614 0.98 0.70 0.553 0.96

▼ 0.0204 2 9 0.850 0.96 0.90 0.669 0.98 0.84 0.621 0.96

▶ 0.0015 2 8 0.916 0.88 0.92 0.786 0.90 0.96 0.776 0.92

◀ 0.0310 4 9 0.889 0.84 0.94 0.779 0.78 0.92 0.729 0.95

★ 0.0329 10 10 0.806 1.00 0.62 0.546 0.98 0.58 0.546 0.98

∙ 0.0135 14 10 0.989 1.00 0.32 0.442 1.00 0.20 0.445 0.59

■ 0.0329 20 9 0.916 1.00 0.52 0.482 1.00 0.50 0.485 0.94

♦ 0.0073 4 10 0.816 1.00 0.00 0.244 1.00 0.00 0.244 0.99

▲ 0.0377 14 8 0.830 0.30 0.96 0.731 0.18 0.90 0.785 0.91

▼ 0.0377 14 8 0.832 0.32 0.96 0.731 0.18 0.90 0.786 0.91

▶ 0.0179 10 10 0.994 1.00 0.34 0.473 1.00 0.28 0.499 0.55

◀ 0.0126 8 9 0.891 1.00 0.74 0.636 1.00 0.64 0.593 0.95

Table 4.2. Selected solutions on the Pareto front for WT.
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4.2 Kalman filter

For comparison of the new ERM to an established method of detection of

fouling, this study focuses on detection of fouling using extended Kalman

filters (EKF), which is a state space method.

Detection of fouling using EKF has been studied extensively at the Univer-

sity of Iceland. Oddgeir Guðmundsson, Halldór Pálsson and Ólafur Pétur

Pálsson have published numerous papers on the subject. Their latest paper

(O. Guðmundsson and Pálsson, 2009) was on a on-line detection of fouling us-

ing EKF for a CFHE using the exact same data as this study. See Appendix

A for a short introduction to the Kalman filter and extended Kalman filter.

To use the EKF to detect fouling for CFHE, one needs to write Eq. (2.1), (2.2)

and (2.3) in a state form, see (S. Lalot and Desmet, 2007) and (Guðmundsson,

2008).

d

dt
T̂ = f(x̂(t)). (4.1)

In all of these studies, the parameters of interest are

�(t) =
FAℎUij(t)

ṁℎ(t)cℎ
(4.2)

�(t) =
FAcUij(t)

ṁc(t)cc
(4.3)

where F is a correction factor. By observing the parametrisation � = {�, �}
one can observe U indirectly via Eq. (4.2), e.g. for U to decrease so must

the parameters � and �. To detect the shift in the parameters the Cumulative

sum control chart is used. Their results were a mean detection of fouling at

time t = 0.83 with a 95% confidence interval of t ∈ [0.59, 0.98].
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4.3 Summary

Optimal parameters for ERM are chosen using a MOGA optimisation. The

bounds for the decision variables were chosen in accordance with the assump-

tions of the underlying data. The optimisation was done for both a moving

average and a wavelet transform as the ERM’s sub method. The resulting

three dimensional Pareto front were plotted in Figures 4.1 and 4.2, and selected

solutions listed in a Tables 4.1 and 4.2.



Chapter 5

Discussions and conclusion

MOGA gives a variety of optimal solutions, the Pareto front, for ERM since

all of its objective functions are considered equally important. The selection

of optimal parameters for ERM is therefore entirely up to the demands of the

heat exchanger’s operator, depending on where his emphasis lies, whether it

is a lower detection time of fouling on average; or lower chance of false alarm

on detection of fouling.

For instance, if there were the restriction of at least correctly classifying 80%

of the fouled and clean CFHE, the evaluated solutions are those depicted in

Figure 5.1, and its Pareto front is denoted using the same coding as before in

Table 4.2.
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Figure 5.1. Retricted Pareto front of the MOGA for WT.

5.1 Improvements on ERM

For the paper (Ingimundardóttir and Lalot, 2009) the decision variables were

chosen ad hoc as (�, �, �, %) = (0.02, 2, 10, 0.85). The threshold was also chosen

ad hoc as � = 0.85 and the results were 100% correct detection of fouling for

both fouled and clean CFHE and the mean detection time was t = 0.6556.

If the threshold were chosen according to Eq. (3.2) it would be � = 0.96,

yielding: a 94% and 12% correct detection of fouling for fouled and clean

CFHE respectively, and a mean detection time of t = 0.354 for the training

set; a 90% and 8% correct detection of fouling for fouled and clean CFHE

respectively, and a mean detection time of t = 0.374 for the test set. The

great difference in the correct detection of fouling for the clean CFHE and the
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mean detection times for the fouled CFHE between the results of the paper

and this study is due to the fact the trials did not use the same data sets.

The simulation of the CFHE was improved between the trials; also the paper

did not split the data into training and test tests, so it is most likely that the

data in the paper was overfitted; giving a loss of generality. On the other hand

ERM is consistent, as the results from the training and test set do not vary

greatly.

This particular solution, coded as ★ in Fig. 4.2, is not Pareto optimal. For

instance (�, �, �, %) = (0.0203, 2, 9, 0.859), coded as ▲ in Fig. 4.2, is believed to

be Pareto optimal. Its threshold would be � = 0.96, yielding: a 96% and 82%

correct detection of fouling for fouled and clean CFHE respectively, and a mean

detection time of t = 0.614 for the training set; 98% and 70% correct detection

of fouling for fouled and clean CFHE respectively, and a mean detection time

of t = 0.5533 for the test set. The detection of fouling for the test set is shown

schematically in Figure 5.3, where the blue line denotes the threshold � , and

the grey and black lines denote ERM ratios for the clean and fouled data

sets, respectively. The first time the ratio falls below the threshold fouling

is detected for that particular CFHE. False positive detection of fouling are

the ratios of the clean CFHE that fall below the threshold; false negative

detection of fouling are the ratios of the fouled CFHE that do not fall below

the threshold. From the figure it is evident there is clean data set that doesn’t

fit with the others, and is therefore most likely an outlier. Removing it would

yield a better correct classification rate for the clean CFHE, but outlier removal

would be be too computationally expensive to implement along with MOGA.
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Figure 5.2. Detection of fouling using an ERM with MA on clean CFHE

(left) and fouled CFHE (right).
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Figure 5.3. Detection of fouling using an ERM with WT on clean CFHE

(left) and fouled CFHE (right).

5.2 Difference between methods

Comparing the Pareto optimal solutions for ERM using either MA or WT

as its sub method, one can notice that WT can achieve a faster detection

of fouling than using MA, and still retain similar correct detection rates for
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fouling.

Lets look closer at the solutions: ♦ for MA, and ▼ for WT. Their mean de-

tection time of fouling is t = 0.7764 and t = 0.5526, with a 95% confidence

interval of t ∈ [0.5618, 0.8816] and t ∈ [0.2615, 0.8411], for MA and WT re-

spectively, using the test set. WT outperforms MA in all aspects, it is on

average doing better than the lower bound of MA’s confidence interval and

still WT manages to have a lower upper bound on its confidence interval. WT

transform is then a better option for ERM’s sub method.

Using an Extended Kalman filter the mean detection time of fouling is reported

t = 0.83 with a 95% confidence interval of t ∈ [0.59, 0.98]. All of the methods

fit well to previous research that typically the fouling factor are comprised in

the range [0.0001, 0.0007]1. There is not much difference between the ERM

with MA and EKF to infer one is better than the other, but ERM with WT

would be a wiser choice.

The optimal solutions for MA do no vary much, the length of the window has a

mean t = 0.076, and the outcome is invariant on the offset. WT on the other

hand has more desicion variables, so it is hard to infer how the parameters

infer with the outcome. Restricting the Pareto frontier to at least 80% correct

classification of fouling a general rule of thumb for the selection of parameters

would be a dimension of 2 or 4 and a scale of 9. The boundary condition and

offset are not as convergent, they would need to be optimised with MOGA

using a training set.

1Typical fouling factors can be found at: http://engineeringpage.com/technology/

thermal/fouling_factors.html

http://engineeringpage.com/technology/thermal/fouling_factors.html
http://engineeringpage.com/technology/thermal/fouling_factors.html
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5.3 Conclusion

ERM does not rely on any expert knowledge on the underlying data. It is

robust in detection of fouling, but it is sensitive to its parameter selection.

Clean training data is needed to find the threshold for ERM. For an optimal

result MOGA is implemented, but that needs both clean and fouled data for

the training set. MOGA is computationally expensive, and depending on the

selection of parameters of ERM each run can be quite time consuming. Luckily

the solutions on the Pareto front are of a low dimension and low scale for WT,

so it relatively quick. Depending on the underlying data, e.g. dairy versus

crude oil, time implementation can matter a great deal.

The confidence interval for ERM’s mean detection time is much greater than

the comparable state space model using the extended Kalman filter. Even

if there is a lower mean detection time it still might not be applicable to use

ERM instead of EKF; one should rather use a more consistent model like EKF.

EFK has more knowledge of the underlying system and can be further ex-

ploited. For EKF the relationship between detection time and corresponding

fouling factor can be investigated, but this is not trivial using ERM since it is

a black-box method.

5.4 Future work

The effectiveness ratio method is independent of the physical characteristics

of underlying data, so it would be of interest to study detection of fouling in
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other type of heat exchangers, whether it being different flow arrangement or

different construction, e.g. shell-and-tube or parallel flow plate heat exchanger.

Also it would of interest to try other sub methods to estimate the steady state

trend for the effectiveness ratio method than those discussed in this study.

An investigation if there is a generalised link between the ERM’s threshold

and the its corresponding fouling factor for the mean detection time of fouling

would be of interest. For this more varied type of data would be needed, but

unfortunately access to real data is scarce.

Currently there is test rig cross-flow heat exchanger being constructed at Uni-

versité de Valenciennes et du Hainaut-Cambrésis in Northern France. Once

it is functional the methods discussed in this thesis will be put to the test:

whether or not they can actually adequately detect fouling in the real world,

or at least for dairy products.
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Appendix A

Kalman filter

The Kalman filter is a set of mathematical equations that recursively estimates

a state of a process, such that it minimises the mean squared error. The filter

is robust when estimating past, present, and future states, even if the precise

nature of the modelled system is unknown.

A short introduction to the Kalman filter and the extended Kalman filter the

reader can refer to (Welch and Bishop, 2006).

A.1 Standard Kalman filter

The standard Kalman filter estimates a state x ∈ ℝ
n of a discrete-time con-

trolled process that is governed by the linear stochastic differential equation,

xk = Fkxk−1 +Bkuk−1 + wk−1, (A.1)
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with a measurement z ∈ ℝ
n that is

zk = Hxk + vk, (A.2)

where the random variables wk and vk denote the process and measurement

noise, respectively. They are assumed to be independent Gaussian white noise

process, i.e.,

wk ∼ N (0, Qk), (A.3)

vk ∼ N (0, Rk). (A.4)

As the equations above show, the Kalman filter filters out the noise from the

measurements, yielding a desired estimate for the desired state noise free. The

algorithm for a standard discrete Kalman filter is given in table A.1.

A.2 Extended Kalman filter

The extended Kalman filter, EKF, is the non-linear counterpart of the standard

Kalman filter which linearises about the current mean and covariance. It esti-

mates a state x ∈ ℝ
n of a discrete-time controlled process that is governed by

the non-linear stochastic differential equation,

xk = f(xk−1, uk−1) + wk−1, (A.5)

with a measurement z ∈ ℝ
n that is

zk = ℎ(xk) + vk, (A.6)

where the random variables wk and vk denote the process and measurement

noise, respectively. They are assumed to be independent Gaussian white noise

process, same as in equations A.3 and A.4.
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Initial step Set initial estimates.

KF’s prediction equations:

Step 1 Predicted state

x̂k∣k−1 = Fkx̂k−1∣k−1 +Bkuk−1

Step 2 Predicted estimate covariance

Pk∣k−1 = FkPk−1∣k−1F
T
k +Qk−1

KF’s update equations:

Step 3 Innovation or measurement residual

ỹk = zk −Hkx̂k∣k−1

Step 4 Innovation (or residual) covariance

Sk = HkPk∣k−1H
T
k +Rk

Step 5 Optimal Kalman gain

Kk = Pk∣k−1H
T
k S

−1
k

Step 6 Updated state estimate

x̂k∣k = x̂k∣k−1 +Kkỹk

Step 5 Updated estimate covariance

Pk∣k = (I −KkHk)Pk∣k−1

Step 6 Return back to step 1, with k ← k + 1

Table A.1. Standard Kalman filter algorithm
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In this case the non-linear function f in equation A.5 relates the state at the

previous time step t to the state of the current step t and an arbitrary driving

function uk−1. The non-linear function ℎ in equation A.6 relates to the state

xk to the measurement zk. The algorithm for an extended discrete Kalman

filter is given in table A.2.

If f and ℎ are both linear functions then equations A.5 and A.6 are equivalent

to A.1 and A.2, respectively.

Unlike its linear counterpart, the extended Kalman filter is not necessarily

an optimal estimator. It is dependent on its initial estimates, and if chosen

poorly the filter my quickly diverge. Also it is noted that the EKF tends to

underestimate the true covariance matrix.
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Initial step Set initial estimates.

EKF’s prediction equations:

Step 1 Predicted state

x̂k∣k−1 = f(x̂k−1∣k−1, uk−1)

Step 2 Predicted estimate covariance

Pk∣k−1 = FkPk−1∣k−1F
T
k +Qk−1

EKF’s update equations:

Step 3 Innovation or measurement residual

ỹk = zk − ℎ(x̂k∣k−1)

Step 4 Innovation (or residual) covariance

Sk = HkPk∣k−1H
T
k +Rk

Step 5 Optimal Kalman gain

Kk = Pk∣k−1H
T
k S

−1
k

Step 6 Updated state estimate

x̂k∣k = x̂k∣k−1 +Kkỹk

Step 5 Updated estimate covariance

Pk∣k = (I −KkHk)Pk∣k−1

Step 6 Return back to step 1, with k ← k + 1

where the state transition and observation matrices

are defined to be the following Jacobians

Fk =
∂f
∂x

∣
∣
x̂k−1∣k−1,uk

Hk =
∂ℎ
∂x

∣
∣
x̂k−1∣k−1

Table A.2. Extended Kalman filter algorithm
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Appendix B

Matlab code

1 function [objConst ,correct ,detect_times ,th] = ERM(offset ,

submethod ,subparm ,train ,test)

2 % Author: Helga Ingimundardóttir

3 % Call: [objConst ,correct ,detect_times ,th] = ERM(offset ,

submethod ,subparm ,train ,test)

4 % Input: offset = ERM offset

5 % submethod = ERM sub method , either WT or MA

6 % subparm = parameters for ERM ’s sub method

7 % train = training data

8 % test = test data

9 % Output: objConst = objective functions for ERM

10 % correct = boolean , 1 if correct classifiction , 0

otherwise

11 % detect_times = dection times for fouling

12 % th = ERM threshold

13
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14 ratio.train = ratios(offset ,@submethod ,subparm ,train ,

ts);

15 ratio.test = ratios(offset ,@submethod ,subparm ,test ,ts)

;

16

17 th=compute_threshold(ratio.train);

18

19 [detect_times.train ,correct.train] = detection (ratio.

train ,th);

20 objConst .train(1) = mean(correct.train.f);

21 objConst .train(2) = mean(correct.train.c);

22 objConst .train(3) = mean(detect_times.train.f)/ts.

final;

23

24 [detect_times.test ,correct.test] = detection (ratio.

test ,th);

25 objConst .test(1) = mean(correct.test.f);

26 objConst .test(2) = mean(correct.test.c);

27 objConst .test(3) = mean(detect_times.test.f)/ts.final;

28

29 end

1 % Author: Helga Ingimundardóttir

2 % Call: ratio = ratios(method ,methodParm ,data ,ts)

3 % Input: method: Function to approximate effectiveness

4 % methodParm: Parameters for the method

5 % data: Datasets to be used

6

7 % Output: ratio: Ratios for the effectiveness
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8 % detect: When ratio first falls below threshold

9

10 function ratio_burn = ratios(offset ,method ,methodParm ,data

,ts)

11 i f length(methodParm) == 4 % only the wavelet transfrom

has 4 methodParm

12 ts.boundarycondition=methodParm{4};

13 e l se

14 ts.boundarycondition = 1;

15 end

16 ts.firstpt =1;

17

18 % Ratio param

19 ratio.offset = offset;

20 ratio.number_of_sets = data.nb;

21 ratio.intervals = f loor ((ts.final -ts.begin)/ratio.offset)

+1;

22

23

24 for k=1:data.nb

25 whom = k; where = ts.begin:ts.final;

26 c = struct (...

27 ’Tho’,data.(data.name{whom}).clean.Tho(where) ,...

28 ’Tco’,data.(data.name{whom}).clean.Tco(where) ,...

29 ’Thi’,data.(data.name{whom}).clean.Thi(where) ,...

30 ’Tci’,data.(data.name{whom}).clean.Tci(where) ,...

31 ’m_h’,data.(data.name{whom}).clean.m_h(where) ,...

32 ’m_c’,data.(data.name{whom}).clean.m_c(where));

33 f = struct (...
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34 ’Tho’,data.(data.name{whom}).fouling.Tho(where) ,...

35 ’Tco’,data.(data.name{whom}).fouling.Tco(where) ,...

36 ’Thi’,data.(data.name{whom}).fouling.Thi(where) ,...

37 ’Tci’,data.(data.name{whom}).fouling.Tci(where) ,...

38 ’m_h’,data.(data.name{whom}).fouling.m_h(where) ,...

39 ’m_c’,data.(data.name{whom}).fouling.m_c(where));

40

41 % Lowpass approximation for the given number of

iterations

42 j=0;

43 for i=ts.begin:ratio.offset:ts.final

44 j=j+1;

45 f_tmp = method(Eff(f.Thi(1:i),f.Tho(1:i),f.Tci(1:i)),

methodParm);

46 c_tmp = method(Eff(c.Thi(1:i),c.Tho(1:i),c.Tci(1:i)),

methodParm);

47

48 ts.lastpt= f loor ( length(c_tmp)*ts.boundarycondition);

49

50 f_tmp = f_tmp(ts.firstpt:ts.lastpt);

51 c_tmp = c_tmp(ts.firstpt:ts.lastpt);

52

53 ratio.f{k,j} = f_tmp/mean(f_tmp);

54 ratio.c{k,j} = c_tmp/mean(c_tmp);

55

56 ratio.N(j) = length(f_tmp);

57

58 end % end i for ratio

59 end % end k for set
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60

61 ratio.final = ts.lastpt;

62 ratio.begin = f loor (0.3* ratio.final);

63 ratio_burn = cut_burnin(ratio);

64 end % Main function finished

65

66 %% --- AUXILIARY FUNCTIONS ---

67

68 function E = Eff(Thi ,Tho ,Tci)

69 E = (Thi -Tho)./(Thi -Tci);

70 end

71 function ratio_burn = cut_burnin(ratio)

72 for j=1: ratio.intervals

73 i f ratio.N(j) < ratio.begin

74 burn_set = j+1;

75 end

76 end

77 ratio.begin = ratio.N(burn_set );

78

79 ratio_burn.offset = ratio.offset;

80 ratio_burn.number_of_sets = ratio.number_of_sets;

81 ratio_burn.intervals = ratio.intervals -burn_set +1;

82 ratio_burn.begin = ratio.begin;

83 ratio_burn.final = ratio.final;

84 ratio_burn.N = ratio.N(burn_set :end);

85 for k=1: ratio.number_of_sets;

86 for j=burn_set :ratio.intervals

87 ratio_burn.c{k,j-burn_set +1}=ratio.c{k,j}(

ratio.begin:end); % Henda burn -in svaedi
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88 ratio_burn.f{k,j-burn_set +1}=ratio.f{k,j}(

ratio.begin:end); % Henda burn -in svaedi

89 end

90 end

91 end

1 function threshold =compute_threshold(ratio)

2 total_min = [];

3 for k=1: ratio.number_of_sets

4 for j=1: ratio.intervals

5 total_min = [total_min ;min(ratio.c{k,j})];

6 end

7 end

8 threshold .mean = mean(total_min );

9 threshold .quant = quantile (total_min ,[0.025 ,0.975]);

10 %fprintf(’Threshold : %6.4f, CI: [%6.4f,%6.4f]\n’,threshold

.mean ,threshold .quant(1),threshold .quant(2));

11 end

1 function [detection_times ,correct] = detection (ratio ,th)

2 % Author: Helga Ingimundardóttir

3 % Call: [detection_times ,correct ,detect_times] =

detection (ratio ,th)

4 % Input: ratio = ratio is the time series of

approximated effectiveness

5 % wrt to its average

6 % th = threshold for ERM

7 % Output: detection_times = all the detection time of

fouling

8 % correct = percentage of correctly classified
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detection

9

10 detection_times.c = ones(1,ratio.number_of_sets)*ratio.

final;

11 detection_times.f = ones(1,ratio.number_of_sets)*ratio.

final;

12

13 for j=1: ratio.intervals

14 for k=1: ratio.number_of_sets

15 i f min(ratio.c{k,j}) < th.quant(1)

16 i f detection_times.c(k) == ratio.final

17 detection_times.c(k) = ratio.N(j);

18 end

19 end

20 i f min(ratio.f{k,j}) < th.quant(1)

21 i f detection_times.f(k) == ratio.final

22 detection_times.f(k) = ratio.N(j);

23 end

24 end

25 end

26 end

27

28 correct.f = (detection_times.f ~= ratio.final);

29 correct.c = (detection_times.c == ratio.final);

30 end

1 % Author: Helga Ingimundardóttir

2 % Call: filters = daub(N)

3 % Input: N = width of the support (number of
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coefficients) and must be an even number

4 % Output: filters is a struct with the fields

5 % filters.an.low = analysis lowpass filter

6 % filters.an.high = analysis highpass filter

7 % filters.sy.low = synthesis lowpass filter

8 % filters.sy.high = synthesis highpass filter

9 % ... for the Daubechies Wavelet basis

10 function filters = daub(N)

11

12 i f rem(N,2)

13 error( ’Error: width of the support must be of even

length’)

14 end

15 A = N/2;

16

17 % Have to implement the polynomial ’p’ [see research book]

18 tmp = zeros(A,A+A-1);

19 tmp(1,A) = 1;

20

21 for k=1:A-1

22 subtmp = [1 -2 1];

23 for j=2:k

24 subtmp = conv(subtmp ,[1 -2 1]);

25 % conv is inbuilt in MATLAB and if the inputs are

vectors of polynomial coefficients , convolving them

is equivalent to multiplying the two polynomials.

26 end

27 subtmp = nchoosek (A-1+k,k)*( -1/4)^k*subtmp;

28 % Add the zeros on each side of the subtmp
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29 tmp(k+1,:) = [zeros(1,A-k-1),subtmp ,zeros(1,A-k-1)];

30 end

31

32 % The tmp -matrix has to be summed for each column (for the

represent the same term in the polynomial ’p’

33 polyp = sum(tmp ,1);

34

35 % Finding the roots/vanishing points of the polynomial ’p’

36 poly_zeros = roots(polyp); % inbuilt in MATLAB

37

38 % For the ’extremal phase ’ we choose the roots within the

unit circle

39 zerosinside = poly_zeros( f ind (abs(poly_zeros) <=1));

40

41 % Need to sort the zeros for real and imaginary for ease

of computation

42 imagzero = [];

43 realzero = [];

44 for i=1: length(zerosinside)

45 i f imag(zerosinside(i))~=0

46 imagzero (end+1)=zerosinside(i);

47 e l se

48 realzero (end+1)=zerosinside(i);

49 end

50 end

51

52 % From the vanishing points we can make the synthesis

lowpass filter ’rh’

53 rh = [1,1];
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54 for i=2:A

55 rh = conv(rh ,[1 ,1]);

56 end

57 for i=1: length(realzero )

58 rh = conv(rh ,[1 -realzero (i)]);

59 end

60 for i=1:2: length(imagzero )

61 rh = conv(rh ,[1 -2* real (imagzero (i)) (abs(imagzero (i

)))^2 ]);

62 % Note: Conjugate roots are multiplied together before

they ’re convolved with other roots. That ’s why we

sorted out the real zeros from the imaginary ones.

63 end

64

65 % Normalizing term derived from the polynomial ’p’ for the

filter ’rh’

66 norm_term = 1;

67 for i=1:A-1

68 norm_term = norm_term * abs(zerosinside(i));

69 end

70 norm_term = abs(polyp(1))/norm_term ;

71 norm_term = (1/2)^A * sqrt (2) * sqrt (norm_term );

72

73 rh = norm_term * rh;

74

75 % Since the Daubechies filter is orthogonal we get the

other filters in the following manner:

76 for i=1: length(rh)

77 rg(i) = (-1)^(i+1)*rh(end-i+1);
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78 % ’rg’ is ’rh’ reversed with everyother term

multiplied by -1

79 end

80 % ’h’ and ’g’ are reversals of ’rh’ and ’rg’ respectively.

81 h = rh( length(rh):-1:1);

82 g = rg( length(rh):-1:1);

83

84 filters.an = struct(’low’,h,’high’,g);

85 filters.sy = struct(’low’,rh,’high’,rg);

86 end

1 % Author: Helga Ingimundardóttir

2 % Call: yhat = aprox(y,parm)

3 % Input: y: time series that is to be approximated

4 % parm: {h,rh,sc}; where

5 % h: lowpass analysis filter

6 % rh: lowpass synthesis filter

7 % sc: how often the filters should be applied

8 % Output: yhat: is the approximated result after using

9 % lowpass analysis , and lowpass synthesis filter

10 % on the time series y for a smoother trendline .

11 function yhat = aprox(y,parm)

12

13 h = parm{1}; rh = parm{2}; sc = parm{3};

14 % Make sure that ’y’,’h’ and ’rh’ are column vectors

15 y=y(:) ’; h=h(:) ’; rh=rh(:) ’;

16

17 % Using the theory on page 15 in wavelet_01.pdf

18 ytmp=y;
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19 for i=1:sc

20 % Convolving the analysis filter with the detailed data

(at scale i-1)

21 ytmp=conv(h,ytmp); % yielding data on a rougher scale (

at scale i)

22 % Downsampling by 2

23 ytmp=ytmp(1:2: length(ytmp));

24 end

25

26 for i=1:sc

27 % Upsampling by 2

28 y_before = ytmp;

29 ytmp = zeros (2* length(y_before ) ,1);

30 ytmp(1:2:end) = y_before ;

31 % convolving the synthesis filter with the rough data

32 ytmp = conv(rh,ytmp);

33 end

34

35 % Have to cut off excess entries in the beginning and end

of ’ytmp ’

36 D= f loor (( length(h)+ length(rh))/2) -1;

37 for i=1:sc

38 d(i) = D*2^(i-1);

39 end

40 d=sum(d);

41 yhat=ytmp(1+d: length(y)+d)’;

42 end
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