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Abstract

Calculation of the rate of atomic rearrangements, such as chemical reactions and dif-
fusion events, is an important problem in chemistry and condensed matter physics.
When light particles are involved, such as hydrogen, the quantum e�ect of tun-
neling can be dominating. Harmonic quantum transition state theory (HQTST),
sometimes referred to as 'instanton theory', is analogous to the more familiar clas-
sical harmonic transition state theory (HTST) except that it includes the e�ect of
quantum delocalization. In this thesis, a new method for �nding quantum mechan-
ical saddle points, or instantons, is presented. The method is based on �nding the
classical periodic orbits on the inverted potential by a path optimization method.
A chosen number of the system replicas are distributed along a path to give a con-
venient numerical representation of the classical orbit, independent of the physical
parameters. This is in contrast with the distribution according to equal time seg-
ments which places most replicas near the end points. The overall computational
cost of estimating rate constants with this method is lower than in previously used
formulations of HQTST which is especially important when using directly atomic
forces obtained from �rst principles calculations where each evaluation of the energy
and atomic forces usually is computationally demanding. The method was tested
on several two dimensional models as well as a multi dimensional problem involving
hydrogen molecule adsorption/desorption from a crystal surface, yielding results in
excellent agreement with quantum rate constants calculated using full free energy
calculations and previously published implementation of HQTST.
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Glossary

CLASSICAL DYNAMICS: The time evolution of Newton's equations for a classical
system.

CFP: Closed Feynman path. The Feynman paths that are periodic in imaginary
time, start and terminate at the same point. Since the quantum partition function
is given by the trace of the density matrix, it is represented only with closed Feynman
paths.

DFT: Density functional theory. An approximate method of solving Schrödinger's
equation for a system of electrons. The energy and force of the system is calculated
from the electron density. DFT scales better than many-body-orbital based quantum
chemistry methods and can be used with larger systems.

EAM: Embedded atom method. A form of empirical potential function which quite
accurately describes some metals including copper.

FEYNMANN PATH INTEGRAL: One formulation of quantum mechanics. The
probability of a particle starting from a given con�guration and ending at another
some time later is given by an integral over all possible paths connecting the two
con�gurations. In real time it describes quantum dynamics and in imaginary time,
quantum statistical dynamics.

HTST: Harmonic transition state theory. A simpli�ed form of the transition state
theory in which the potential is assumed to be of harmonic form both at the mini-
mum and at the saddle point. This is a good approximation at low enough temper-
ature, unless quantum e�ects become important.

HESSIAN MATRIX: The matrix of force constants (second derivatives of the poten-
tial energy function). When this matrix is divided by the masses of the atoms, the
eigenvectors are the normal modes of vibrations, and the eigenvalues are the square
of the normal mode frequencies.

HQTST: Harmonic quantum transition state theory. Approximate quantum me-
chanical rate is obtained by expanding the Euclidean action around the instanton.
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INSTANTON: The saddle point along the MAP, the CFP with highest action. A
quantum analog to the classical saddle point in HTST.

MAP:Minimum action path. Optimal sequence of closed Feynman paths connecting
the reactant and product states and passing through the instanton. The path has
the highest statistical relevance in the quantum mechanical partition function since
it represents the lowest action.

MAXIMUM TUNNELING PATH: A path between two points on a potential surface
with minimum action and maximum tunneling probability. Typically found between
classical turning points with the same energy.

MEP: Minimum energy path. A path between two points on a potential surface of
the lowest possible energy. This path follows the direction of steepest descent.

NEB: Nudge elastic band. A method for �nding the MEP between two points on a
potential surface. A path of discrete images of a system are connected by springs
(elastic band) and allowed to collectively relax. The nudging refers to the fact
that the spring forces act only along the band, and the potential forces act only
perpendicular to the band.

POTENTIAL ENERGY SURFACE: Each point in con�guration space represents one
con�guration or position of the atoms in the system. For this position, there is a
potential energy. The potential enrgy surface is the surface de�ned by the value of
the potential energy at each point in con�guration space.

QQ-HTST: Quasi-quantum HTST. A form of HTST where the quantum e�ect of
zero point energy is included. The classical partition function is substituted with
their quantum mechanical analogs.

SADDLE POINT: A point on a potential surface at which the force is zero and at
which there is one negative curvature or unstable mode in the Hessian matrix.

SCT: Small curvature tunneling theory. A semi-classical approximation to compute
the tunneling probability of a system. The e�ect of reaction path curvature is
included in an e�ective reduced mass.

TRANSITION STATE: A bottle neck region which a system must cross in order to
undergo a transition from a given initial state. The transition state has one less
dimension than the full system.

TST: Transition state theory. A theory for calculating the rate at which a system
leaves a given initial state through a bottle neck region.
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WKB: Wentzel�Kramers�Brillouin theory. A semi-classical approximation to com-
pute the tunneling probability of a system.
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1 Introduction

The calculation of the rate of transitions such as chemical reactions or di�usion
events is a common problem in theoretical chemistry and condensed matter physics.
What changes during a transition from initial state to �nal state is the con�guration
of particles. In chemical reactions the con�guration of atoms is changed from the
reactant state R to the product state P. The interaction between the atoms can
be obtained by solving the Schrödinger equation or from an otherwise determined
potential energy function.

A transition, such as a typical chemical reaction, is a rare event, in the sense that it
is many orders of magnitude slower than the vibrations of the atoms. It takes a large
�uctuation of the energy, coming from the heat bath, in just the right coordinates for
the system to be able to reach the transition state and proceed over to P. A direct
simulation of the classical dynamics is therefor not useful. The most important
theoretical approach in analyzing the rate of chemical reactions is the so called
'transition state theory' (TST). The main strength of TST is that the rate at which a
transition takes place can be calculated statistically instead of dynamically, avoiding
the time scale separation problem. The transition state is de�ned as a subspace that
consists of a narrow region around a dividing surface representing a bottle neck for
the transition of the system from R to P. It is the part of the reaction path where the
probability of �nding the system is particularly small and the width of this subspace
is in�nitesimal. The key approximation in TST is that if the system makes it to the
transition state and is heading towards P, then we can assume that the system will
end up in P for an extended time. In most cases, there is a natural separation of
time scale. The time it takes the system to leave the transition state is very short
compared with the time between thermally activated transitions from R to P or from
P to R. For transitions in classical systems, the path with largest statistical weight
is the minimum energy path (MEP) which can be represented as a chain of system
replicas stretching from the reactant region to the product region in con�guration
space in such a way that the perpendicular force on each replica is zero and the
replicas are connected together via springs obeying Hook's law. The MEP of a
system can be found via the Nudge Elastic Band (NEB) method [1].

TST is inherently classical but quantum mechanical e�ects are especially important
at low temperatures and when the transition involves light particles. Extensions
of TST to quantum mechanical systems is still a matter of active research but two
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1 Introduction

types of e�ects are particularly important. The zero point energy e�ect displays
in the fact that a quantum particle is delocalized and therefore cannot have the
minimum potential energy. A stronger e�ect is when a quantum particle tunnels
from one point on the potential energy surface to another. In such cases the system
does not follow the minimum energy path, instead a so called tunneling path is the
dominating path from a statistical view. In general, the tunneling path shortens the
distance between R and P and lowers the activation energy. In this thesis the focus
will be on methods for calculating the quantum mechanical rate constant, consider-
ing quantum e�ects, both tunneling and zero-pont energy. One of the most widely
used method for approximating quantum mechanical rate constants is the harmonic
quantum transition state theory (HQTST), or instanton theory, which is based on
Feynman path integrals. It has shown to yield good approximations but in practice,
when used with �rst principles calculations, it can require high computational e�ort.
The aim of the work presented was to lower computational e�ort of quantum rate
constant calculations, improvement of instanton theory showed to be most promis-
ing. In chapter 2 various methods for calculating rate constants will be reviewed. In
chapter 3 a general path optimization method is proposed and applied to the case
of tunneling paths. This path optimization represents an extension of the nudged
elastic band method where endpoints can move freely along the energy contours and
it is tested on di�erent test examples in chapter 4. Comparison between rate con-
stant calculations using di�erent methods is given in chapter 5 and the resemblance
of maximum tunneling paths and instantons is addressed in chapter 6, along with
implementation of the tunneling path method to HQTST rate constant calculations.
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2 Methods

2.1 Classical Transition State Theory

Consider a potential function V (x) where two minimas represent the initial state R
of the system and the �nal state P. If the transition state, with in�nitesimal width σ,
represents a tight bottle neck for going from R to P, then one can approximate the
rate constant in a simple way, using the key assumption of TST, as a multiplication
of the probability of making it to the transition state and the rate of crossing it from
R to P

kTST =
σ
∫
‡ e
−V (x)/kBTdx∫

R
e−V (x)/kBTdx

∗ < υ⊥ >

σ
(2.1)

where ‡ denotes the transition state, < υ⊥ > is the average velocity in crossing the
transition state, in a direction normal to the dividing surface and kB is Boltzmann
constant. If the system leaves the transition state in the direction towards the
product region, P, it will continue to stay in the product region and spend an
extended time there until another energy �uctuation takes it back to R. This is
a good approximation if the dynamics are simple and the classical trajectories do
not go back and forth over the dividing surface before landing in either R or P.
The two other approximation in TST are the assumption that classical dynamics
on the Born-Oppenheimer surface is a valid description of the dynamics, and that
the reactant has reached equilibrium conditions, i.e. the energy in each degree of
freedom is described by the Boltzmann distribution. For a typical transition rate,
there is a very large number of vibrations in between reactive events, on the order
of 1010, so the last approximation is usually an excellent one.

Since the width of the transition state is in�nitesimal, the potential energy can be
taken to be constant in the direction normal to the dividing surface. The average
velocity in crossing the transition state, < υ⊥ >, can be calculated from the Maxwell
distribution

< υ⊥ > =

∫∞
0
υe
−

P
i

1
2
µiν

2
i /kBT

dν∫∞
−∞ e

−
P
i

1
2
µiν2

i /kBT
dν

=

√
kBT

2πµ
(2.2)
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2 Methods

Here µ is the e�ective mass for the motion across the transition state, a linear
combination of the masses of the atoms that get displaced in the transition. The
TST approximation to the rate constant can then be written as

kTST =

√
kBT

2πµ

Z‡

ZR
(2.3)

where Z denotes the integral of the Boltzmann factor over the speci�ed region of
con�guration space.

2.2 Harmonic Transition State Theory

For systems where the atoms are vibrating about �xed average positions, such as
atoms in solids, or molecules reacting on the surface of a solid, the region of the
potential surface that is of greatest importance can be represented by a harmonic
approximation. For a diatomic molecule, the interaction potential, which is only a
function of the distance between the atoms, can be expanded in Taylor expansion
that gets truncated at the second power to give

V (r) ≈ V (r0) +
1

2
k(r − r0)2 (2.4)

where r0 is the distance at which the potential energy is minimal and k = V ′′(r0),
also called force constant or spring constant as in Hook's spring force F = −kx.
The generalization of this towards systems with more than one vibrational degree of
freedom involves the calculation of mixed second derivatives but if one uses instead
the coordinates corresponding normal modes of vibration, qi, such mixed derivatives
vanish since the normal modes are independent and do not mix within the harmonic
approximation. The construction of the normal modes of vibration can be carried
out for any point on the potential energy surface, in particular at the minimum
corresponding to R. Since the force is zero at the minimum, the �rst derivative of
the potential vanishes and the expansion of the potential is

V R(q) ≈ Vmin +
D∑
i=1

1

2
kRi q

2
R,i (2.5)

in the region close to the minimum. Here Vmin is the energy at the minimum, kRi are
the force constants for each normal mode and D is the number of degrees of freedom.
While this will not be a good approximation for regions far from the minimum, it
is good enough if the potential energy is high enough in those regions so that the
probability of �nding the system there is insigni�cant.
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2.2 Harmonic Transition State Theory

If the dividing surface is chosen to lie along the potential energy ridge that separates
the reactant state from the product state, then the most important point on the
dividing surface, the point with largest statistical weight, is a saddle point. It is a
minimum with respect to all the degrees of freedom within the dividing surface, but
a maximum with respect to the motion normal to the dividing surface. If more than
one saddle point exists on the potential energy ridge, the one with lowest energy is
most important. For each low lying saddle point, one can carry out a second order
Taylor expansion of the potential energy within the dividing surface

V ‡(~q) ≈ VSP +
D−1∑
i=1

1

2
k‡i q

2
‡,i (2.6)

where VSP is the energy at the saddle point. The normal mode corresponding to
motion normal to the dividing surface is not included so the number of normal
modes is D − 1. The width of the transition state, σ, is so small normal to the
dividing surface that the potential is taken to be constant in that direction. With
these approximation to the potential energy surface, the TST expression for the rate
constant becomes the harmonic TST, HTST, approximation

kHTST =

√
kBT

2πµ

Z‡

ZR
=

√
kBT

2πµ

e−VSP /kBT
∞∫
−∞

exp

[
−

D−1∑
i=1

1
2
k‡i q

2
‡,i/kBT

]
d‡,i

e−Vmin/kBT
∫∞
−∞ exp

[
−

D∑
i=1

1
2
kRi q

2
R,i/kBT

]
dqR,i

(2.7)

For each one of the normal mode i, the integral over the Gaussian in equation 2.7 is

∞∫
−∞

e−
1
2
kiq

2
i /kBTdqi =

√
2πkBT

ki
(2.8)

and the rate constant is

kHTST =

√
kBT

2πµ

D−1∏
i=1

√
2πkBT
k‡,i

D∏
i=1

√
2πkBT
kR,i

e−(VSP−Vmin)/kBT (2.9)

All the factors of kBT cancel out and all except one of 2π. Multiplying the square
root of the e�ective mass in both the numerator and the denominator gives

kHTST =
1

2π

D∏
i=1

√
kR,i/µ

D−1∏
i=1

√
k‡,i/µ

e−(VSP−Vmin)/kBT (2.10)
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2 Methods

Recalling that the vibrational frequency is ν = ω/2π = 1
2π

√
k
µ
one yields

kHTST =

D∏
i=1

νR,i

D−1∏
i=1

ν‡,i

e−(VSP−Vmin)/kBT (2.11)

Since only vibrational contributions to the partition function are to be considered
equation 2.11 can be written in terms of the angular vibrational frequency, ω, of the
reactant state and the saddle point.

kHTST =
1

2π

3N∏
i=1

ωRi

3N−1∏
i=1

ω‡i

e−(VSP−Vmin)/kBT (2.12)

The number of atoms used is N and the imaginary frequency corresponding to the
unstable vibrational mode at the saddle point is left out from the product in the
denominator.

The HTST approximation agrees with the empirically observed Arrhenius expression
for the temperature dependence of the rate constant, k = Ae−Ea/RT , where Ea is
the activation energy which is simply the potential energy di�erence between the
saddle point and the minimum corresponding to the reactant region. The prefactor
has to do with the vibrational entropy. If the vibrational frequencies are low at the
saddle point compared to the minimum, corresponding to a wide mountain pass,
the prefactor is large. On the other hand, if the potential energy rises quickly away
from the saddle point within the dividing surface, quicker than the vicinity of the
minimum, the prefactor is small.

2.3 quasi-quantum HTST

The classical treatment of the vibration of atoms is often not good enough at low
temperatures. When considering the quantum e�ects one needs to take into ac-
count the zero point energy of the vibrational ground state and in some cases the
probability of the system tunneling from the reactant con�guration to the product
con�guration. The simplest inclusion of zero point energy can be made if the system
is most likely in the lowest energy level both initially and at the transition state.
To include the zero-point energy in the activation energy, the term Vmin − VSP is
replaced with

Ea =

(
VSP +

D−1∑
i=1

hν‡,i
2

)
−
(
Vmin +

D∑
i

hνR,i
2

)
(2.13)
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2.4 Harmonic Quantum TST

Since there is one fewer vibrational mode at the saddle point than at the minimum,
the addition of zero-point energy tends to reduce the energy barrier.

Another simple way to include quantum e�ects of zero-point energy in the HTST
rate constant expression is to replace the classical harmonic partition function for
each vibrational normal mode with the corresponding quantum mechanical partition
function. Substitution in equation 2.12 gives

kqq-HTST(T ) =
kBT

2πh

3N∏
i=1

2sinh(~ωRi /2kBT )

3N−1∏
i=1

2sinh(~ω‡i /2kBT )

e−(VSP−Vmin)/kBT (2.14)

This introduces the zero-point energy in a more self-consistent manner than simply
adding it to the exponent but no tunneling has been accounted for. Inclusion of
tunneling e�ects in rate constant calculations will be the topic of following sections.

2.4 Harmonic Quantum TST

Several versions of quantum mechanical TST have been proposed. The most widely
used formulation is based on statistical Feynman path integrals. The method pro-
poses a quantum analog to MEP, the minimum action path, MAP, de�ning the path
of minimum Euclidean action where real time is rotated to imaginary time through
Wick rotation. In Feynman's formalism for quantum statistical dynamics, a quan-
tum partition function is the trace of the equilibrium, thermal density matrix[2, 3].
The density matrix is directly derived from the real-time propagator from quantum
dynamics, which gives the amplitude for a system to go from q1 to q2 in time τ . The
density matrix is

ρ(q1, q2, τ) =

∫
e−SE [q(τ)]/~D[q1→2(τ)] (2.15)

D[q1→2(τ)] extends over all possible paths connecting q1 and q2 in imaginary time
τ = β~. Each path is weighted by the exponent of the corresponding Euclidean
action SE =

∫ β~
0
Hdτ where H is the classical Hamiltonian. In the real time quantum

dynamics, the action is a time line integral of the classical Lagrangian. When
imaginary time is substituted for real time in the Lagrangian, two i will change
the sign on the potential energy term, converting the Lagrangian to a Hamiltonian.
By considering the trace of the density matrix, the quantum partition function is
obtained as

Q = Tr(ρ(q1, q2, β~)) (2.16)

=

∫
e−SE [q(τ)]/~D[q1→1(τ)] (2.17)

7



2 Methods

Since the trace operator Tr only acts on the diagonal of the density matrix, only
closed paths are included. Thus the quantum partition function relies only on paths
starting at con�guration q1, traveling along a path for β~ time and returning to the
point of origin. Each point on the MAP is such a path, called closed Feynman path
(CFP). The path is described as a distribution or a chain of replicas of the system
connected through Hook springs. The statistical mechanics of a quantum system is
mathematically equivalent to classical statistical mechanics of a CFP. An e�ective
temperature depended potential energy function is de�ned as[4, 5]

Ve�(q, T ) =
P∑
i=1

[
1

2
ksp(T ) |qi+1 − qi|2 +

V (qi)

P

]
(2.18)

where P is the number of images and kSP is the temperature dependent spring
constant

ksp(T ) = µP

(
kBT

~

)2

(2.19)

The CFP of maximum action along the MAP is a saddle point of this extended quan-
tum mechanical energy surface and is called the instanton. This e�ective potential
energy function is connected to the Euclidean action SE through

SE
~

=
Ve�
kBT

(2.20)

An schematic illustration of the CPF compared to a classical particle is presented
in �gure 2.1.

At low enough temperature, the e�ective potential will develop saddle points o�
the classical MEP which correspond to paths where thermally assisted tunneling
is the dominant mechanism. At higher temperature the e�ective potential equals
the classical potential as all the system replicas collapse to a single point in the
coordinate space. The cross-over temperature, where tunneling starts to play a
signi�cant role can be estimated from the curvature of the MEP at the classical
saddle point. If ω is the magnitude of the imaginary vibrational frequency of the
unstable mode at the saddle point, the cross-over temperature is given by[6]

Tc =
~ω

2πkB
(2.21)

As in HTST, where the reaction rate is estimated by expanding the potential en-
ergy surface around the classical saddle point in a second order Taylor polynomial,
the quantum mechanical rate can be obtained by expanding the e�ective poten-
tial around the instanton on the MAP to second order, analogous to saddle point
expansion in HTST. The instanton rate constant, kins, is then given by[5, 7]

QRkins =

√
S0

2π~
~P

kBT |
∏′

j λj|
eVe�(qins)~/kBT (2.22)
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2.5 Standard WKB method and Small Curvature Tunneling method13
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Figure 1.1: Closed Feynman path (CFP) for a diatomic molecule. The classical molecule is
situated on the left hand side of the figure, the quantum mechanical CFP on the right. P is
the number of system replicas (here P = 12). The kinetic energy term (due to the imaginary
time) is presented as springs with temperature dependent spring constants (ksp) between
the system replicas where each atom is connected to itself in the neighboring replicas and the
interatomic (within each replica) potential energy is scaled by the number of replicas. Given
a high enough temperature the springs will contract the CFP to the classical configuration.

the saddle point. The quantum mechanical analog of the MEP is the MAP (minimum action

path) [9]. Along the MAP, each point is a CFP and the MAP is traced out in such a way as

to be parallel to the gradient of the Euclidian action in each point and the neighboring CFPs

are connected through Hook springs. Being the path of least action, the MAP is the path

that contributes most to the quantum partition function. The CFP of maximum action

along the MAP (the saddle point) is a saddle point of an extended, quantum mechanical

energy surface and is called the instanton [22].

In accordance with harmonic transition state theory, the task is to locate the saddle

point along the MAP, i.e. the point of maximum action along the MAP. By using a discrete

Figure 2.1: Schematic illustration of a closed Feynman path (CFP) for a diatomic
molecule. The classical molecule is situated on the left hand side of the �gure, the
quantum mechanical CFP on the right. P is the number of system replicas (here
P=12). The kinetic energy term is presented as springs with temperature dependent
spring constants, ksp, between the systems replicas where each atom is connected to
itself in the neighboring replicas and the interatomic potential energy, within each
replica, is scaled by the number of replicas. Given a high enough temperature the
springs will contract the CFP to the classical con�guration.

Ve�(qins) is the value of the e�ective potential at the instanton and S0 is twice the
instanton action due to the (imaginary-time) kinetic energy, or

S0 =
µP

β~

P∑
j

|qj+1 − qj|2 (2.23)

λj in equation 2.22 are the frequencies of the normal modes of vibration of the
chain at the instanton. One vibrational mode has zero eigenvalue, namely the one
corresponding to moving the images along the CFP or shifting labels. The prime
on the product sign in equation 2.22 denotes the absence of the zero-mode.

2.5 Standard WKB method and Small Curvature

Tunneling method

In TST the tunneling is often included by multiplying the rate constant computed
with the usual classical treatment by a tunneling correction Γ = k/kcl. This correc-
tion factor is a function of temperature and is de�ned as the ratio of the thermally

9



2 Methods

averaged quantum mechanical transmission probability, P(E), to the thermally av-
eraged classical transmission probability for the same potential energy barrier.

Γ(T ) =

∞∫
0

P (E)e−βEdE

∞∫
Vmax

e−βEdE

(2.24)

where Vmax is the maximum of the potential energy barrier and β = 1/kBT . The
integral must extend up to in�nity because the quantum correction must account for
non classical re�ection at energies above the barrier height as well as non classical
transmission at energies below the barrier height [8].

Generally, the Wentzel�Kramers�Brillouin approximation[9, 10, 11], or WKB ap-
proximation is based on solving the Schrödinger equation by expanding the wave
function in powers of ~. The one-dimensional WKB method is the most widely used
semi-classical approximation to compute the tunneling probability. According to
the method the semi classical approximation to the transmission probability for an
energy E below the barrier height Vmax is given by [12]

P (E) =
1

1 + e2θ(E)
(2.25)

where the action integral θ is given by

θ(E) =
1

~

s2∫
s1

√
2µ(V (s)− E))ds (2.26)

The classical turning points representing V (s) = E are s1 and s2 and µ is the reduced
mass for the motion along the reaction coordinate. For energies near and above the
barrier height, Vmax, the turning points are purely imaginary. θ(E) is still given by
equation 2.26 but the tunneling probability by [8]

P (E) =


(1 + exp[2θ(E)])−1 E0 ≤ E ≤ Vmax
1− (1 + exp[2θ(2Vmax − E0)])

−1 Vmax ≤ E ≤ 2Vmax − E0

1 2Vmax − E0 < E
(2.27)

Where E0 is the threshold energy

E0 = max[V (s = −∞), V (s = +∞)] (2.28)

The rate constant can be evaluated from the tunneling probability through the
correction factor but most often people are only interested in the temperature de-
pendence so it is convenient to calculate the reactive �ux, i.e. the multiple of the
rate constant and the partition function QR [13]

QRk =
1

2π~

∞∫
0

P (E)e−βEdE (2.29)

10



2.5 Standard WKB method and Small Curvature Tunneling method

and plotting a Arrhenius plot with ln(QRk) vs. 1/T displays the temperature depen-
dence. As described here, the WKB method is a method for evaluating transmission
through a one dimensional energy barrier. Various multidimensional WKB methods
have been proposed [14, 15, 16] but will not be specially reviewed here. It is however
possible to take a MEP of a two dimensional potential energy surface and treat it as
a one dimensional barrier. This is done by de�ning the reaction coordinate as arc
length of the MEP and present the barrier as a potential function of one variable.
Although this is not the most accurate approximation in two dimensions since only
one degree of freedom is taken into account it allows the use of this simple one
dimensional method for higher dimensional cases.

Another method for calculating the quantum mechanical rate constant which also
includes the e�ects of curvature along the reaction path is small curvature tunneling
(SCT) approximation [17, 18]. It is based on considering a harmonic expansion of
the potential energy surface written in terms of the reaction coordinate, s, and the
3N-1 orthonormal modes of vibration, centered along s,

V (s) = VMEP (s) +
3N−1∑
i=1

(
1

2
+mi

)
~ωi(s) (2.30)

where mi is the vibrational state of mode i orthogonal to the MEP. Averaging the
resulting Hamiltonian over the vibrational degrees of freedom introduces an e�ective
tunneling mass into the one dimensional description of the system movement along
the reaction coordinate. The e�ective tunneling mass can be interpreted in terms
of the curvature along the reaction coordinate κ(s) given by

κ(s) =

(
F−1∑
i=1

[κi(s)]
2

)1/2

(2.31)

where the summation is over all generalized normal modes. κi(s) is the reaction-path
curvature component of mode i given by

κi(s) = −LTi H
∇V
|∇V |2 (2.32)

where LTi is the transpose of the generalized normal mode eigenvector of mode i, H
is the Hessian matrix.

If t(s) is the distance from the tunneling path to the MEP in the direction of the
curvature vector the e�ective mass is given as

µe�(s) = µ

[
(1− |κ(s)t(s)|)2 +

(
dt(s)

ds

)2
]

(2.33)
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2 Methods

The transmission probability P (E) is calculated in the same way as in equation 2.25
with the imaginary action integral now dependent on this new e�ective tunneling
mass µe�(s) instead of µ before. Ignoring the reaction path curvatures yields µe� = µ
and tunneling along the classical reaction coordinate is recovered. For large systems,
this procedure is still prohibitively expensive.

12



3 Optimization of paths

The motivation for developing a path optimization method was to �nd a path on
the potential energy surface with lowest action and highest tunneling probability.
In section 3.1 this topic is further discussed but lets �rst consider the general rep-
resentation. The method is based on a similar procedure as in the Nudge Elastic
Band method (NEB) [1], where the result is a MEP between two given minimas
on the surface. The path is composed of so called images with a speci�c coordi-
nate vector R representing their position and the potential energy of each image
is minimized, see reference [1] for more details. NEB has been shown to work in
systems with many degrees of freedom so the following discussion is not restricted
to dimensionality.

Now, in the general case, let's assume we have a function V of many variables and
some functional S(V ). V could be a potential energy function or any other kind
of a function of many variables. We want to �nd a path between some two points
with values V1 and V2, call them s1 and s2 respectively, where this functional S is
minimized. Before the optimization starts, we construct some path according to our
initial guess and distribute a number of images along the path. Let the coordinate
of each image be represented by a vector Rj. The end points of the path, s1 and s2,
do not have a given coordinate, only a given value of V so their position is optimized
within corresponding equi-value contours.

Let's de�ne the derivative of the functional with respect to position of each image j
as

φj = − ∂S

∂Rj

(3.1)

φ can be seen as a generalized force, analogous to the force F = −∇V in NEB.
The object to be zeroed in the optimization is the component of φj normal to path,
denoted as φ⊥j . If τ̂j is the unit tangent we can write

φ
‖
j = (φj · τ̂j)τ̂j (3.2)

φ⊥j = φj − φ
‖
j (3.3)

13



3 Optimization of paths

The images can be distributed along the path in any way wanted, for example evenly
distributed by string method [19] or by adding spring force between the images as
in NEB. The parallel part of φ is then replaced by a spring force de�ned as

φsp
j = k (|Rj+1 −Rj| − |Rj −Rj−1|) τ̂j (3.4)

where k is a spring constant and with vector summation we get the total e�ective
φ:

φe�
j = φ⊥j + φsp

j (3.5)

So far the equations resemble the NEB method but since in this case the end points
do not have a �xed position they will also have to be minimized. However, the
end images are only movable within their equi-value curve so the e�ective φ0,n

is calculated a bit di�erently than φj for intermediate images. The spring force
component parallel to the gradient of V is projected out and instead a constraining
force component is added. Let the derivative of V in each point be denoted as
Fj = − ∂V

∂Rj
, the constraining force is then

(V (R0,n)− V1,2)F̂0,n (3.6)

where the hat denotes unit vector. The generalized e�ective force to be zeroed on
the end images is then a sum of the spring force normal to the gradient of V and
the constraining force.

φe�
0,n = φsp

0,n − (φsp
0,n · F̂0,n)F̂0,n + (V (R0,n)− V1,2)F̂0,n (3.7)

φe� is then minimized to zero iteratively with respect to coordinates of all images
using Quick-min1 or other minimization methods.

As an example, the equations listed above were tested on a simple functional de-
scribing the distance between two energy points on a potential energy surface. The
minimization yields the path with shortest distance between two energy values. The
functional can be written as

S(R) =

s2∫
s1

dR ≈
n∑
i=1

|Ri −Ri−1| (3.8)

n being the number of images along the path between initial and �nal points, s1 and
s2. Now di�erentiating the equation above gives

φj = − ∂S

∂Rj

= − Rj −Rj−1

|Rj −Rj−1| +
Rj+1 −Rj

|Rj+1 −Rj| (3.9)

Following the outline of equations 3.2 to 3.7 and minimizing iteratively gives R
for the path with shortest distance between two potential energy curves. This is
illustrated in �gure 3.1.
1A simple but quite e�cient minimization method based on the Verlet algorithm for simulating

classical dynamics[20]. At each timestep the coordinates and velocities are updated from the
coupled �rst order equations of motion based on the force evaluated at the current coordinates.
If the velocity is zeroed at each step, the algorithn gives a steepest descent minimization.
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3.1 Maximum tunneling paths

(a) (c)(b)

Figure 3.1: Illustration of the path optimization method. (a) shows an initial path
between two potential energy points, (b) shows a intermediate step in the minimiza-
tion of distance and (c) shows the �nal path with shortest distance between the equi-
potential curves.

3.1 Maximum tunneling paths

The maximum tunneling path is de�ned as a path between corresponding classical
turning points for each di�erent cross-over energy, where the action is minimized.
These maximum tunneling paths di�er from the classical MEP, they should represent
minimum action and can therefore be described as classical periodic orbits for the
inverted potential corresponding to a speci�c energy, see appendix A for more details.
Note that in discussion of a maximum tunneling path only half a orbit is considered
because it is totally symmetric, i.e. the system will turn around, so to speak, at
the end point of the maximum tunneling path and return to its origin to complete
a whole orbit, following the same path.

The optimization procedure described in the previous section can be used to �nd
maximum tunneling paths between various classical turning points s1 and s2. The
functional in this case is the action integral θ in equation 2.26, written now as a
function of the coordinate vector R for one particular cross-over energy Ec.

θ(R) =
1

~

s2∫
s1

√
2µ(V (R)− Ec)dR (3.10)

Minimizing this functional yields a path corresponding to the lowest action integral
and hence the highest tunneling probability. Note that although the mass is simply
noted here as µ, for multi dimensional systems the mass can be di�erent for each
coordinate and an e�ective reduced mass in each point on the path is possible to write
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3 Optimization of paths

as a weighted average of the individual masses with respect to tangent components
[21]. Lets start with using the Trapezoidal rule

Tn =
n∑
i=1

1

2
(f(xi) + f(xi−1)) |xi − xi−1| (3.11)

to approximate the integral in equation 3.10

θ(R) ≈ 1

2~

n∑
i=1

(√
2µ(V (Ri)− Ec) +

√
2µ(V (Ri−1)− Ec)

)
|Ri −Ri−1| (3.12)

De�ning a new function

ξi =
1

~
√

2µ(V (Ri)− Ec) (3.13)

with the unit of 1/length, simpli�es the equation and gives

θ(R) ≈ 1

2

n∑
i=1

(ξi + ξi−1) |Ri −Ri−1| (3.14)

Di�erentiating the above equation with respect to the position of jth image then
gives φ as in eq. 3.1

φj = − ∂θ

∂Rj

= −1

2

{
µ ∂V
∂Rj

~2ξj
|Rj −Rj−1|+ (ξj + ξj−1)

Rj −Rj−1

|Rj −Rj−1|

+
µ ∂V
∂Rj

~2ξj
(ξj+1 + ξj)

Rj+1 −Rj

|Rj+1 −Rj|(−1)

}
(3.15)

Now de�ning

dj = Rj −Rj−1 (3.16)

dj = |dj| (3.17)

d̂j =
dj

dj
(3.18)

and using the fact that the potential force on jth image is Fj = − ∂V
∂Rj

, equation 3.15
is simpli�ed

φj =
µ

2~2ξj
Fjdj − (ξj + ξj−1)

2
d̂j +

µ

2~2ξj
Fjdj+1 +

(ξj+1 + ξj)

2
d̂j+1

=
µ

2~2ξj
(dj + dj+1)Fj − (ξj + ξj−1)

2
d̂j +

(ξj+1 + ξj)

2
d̂j+1. (3.19)
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3.1 Maximum tunneling paths

Following the outline of equations 3.2 to 3.7, the generalized e�ective force φe� is
established for all images along the path between the classical turning points. Quick-
min iterations yield the maximum tunneling path, i.e. the coordinate vector R with
the lowest possible value of θ and the highest value of tunneling probability P. To
illustrate the iteration procedure a plot of θ and φe� versus number of iterations
is shown in �gure 3.2 along with a graph of θ vs. a shift in the tunneling path to
emphasize that it is in fact the minima.
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Figure 3.2: Above: Convergence of the value of θ for energy E = 0.5 as a function
of the number of iteration. Below: Convergence of the maximum value of φe� for
the same minimization as a function of the number of iterations, converges to zero
as expected. Right: The value of minimization object θ vs. a shift in the path, the
path obviously corresponds to minimum value as intended.

As mentioned above, the calculation of a maximum tunneling path should give the
same result as �nding a periodic orbit for the inverted potential energy function
-V(R) using classical dynamics. To test the result of the optimization procedure,
classical dynamics were run on an inverted potential for a test example case, using
the Verlet algorithm [20]. The initial point was chosen to be the same as an arbitrary
tunneling path and the trajectory corresponding to a classical periodic orbit was
found. An example is presented in �gure 3.3 showing both the maximum tunneling
path and the result of classical dynamics calculations when the initial point is chosen
the same as the tunneling path's.

As expected, the paths are the same. However, �nding the classical periodic orbit
using classical dynamics of the Verlet algorithm requires extremely high accuracy
of the initial position coordinates. For example, when �nding the path in �gure 3.3
for Ec=0.20eV a total of 10 correct digits in the initial position vector was necessary
to get a proper path of a whole orbit with conservation of energy. Even more accu-
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3 Optimization of paths
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Figure 3.3: The classical periodic orbit shown in the �gure can be calculated either
by running classical dynamics trajectories on the inverted potential or by �nding the
maximum tunneling path with the optimization method. Both results are shown in
the �gure along with a contour plot of the potential function.

racy, is required for lower energies, for example over 60 digits for Ec=0.10eV. Such
accuracy in position of the path has however no e�ect on rate constant estimation
and the tunneling paths o�er therefore a much cheaper way of �nding these paths
for rate constant calculations.
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4 Test models

Various test model potential functions are presented in this chapter, some of them
represent a physical model but others were designed only to emphasize di�erent
aspects of the resulting maximum tunneling paths. Maximum tunneling paths were
found for all these test potential as described in following sections and rate calcu-
lations were also performed and are addressed in chapter 5 and 6. The paths are
energy dependent and can be found for all energies where there is a chance of tun-
neling, starting from the energy of the state with higher potential up to the barrier
height.

4.1 Symmetric Eckart barrier coupled to a

harmonic oscillator

The �rst two dimensional model to be considered as a test example is the so called
Eckart potential coupled to a harmonic oscillator. This model was constructed to
describe a reaction in solution with a single solute coordinate coupled to a solvent
represented by a harmonic oscillator. The potential function consists of a symmetric
Eckart barrier along the solute coordinate x with a single harmonic oscillator bath, y,
linearly coupled through a coupling constant to the solute reaction coordinate. This
model system has been used in the past to make critical comparisons of approximate
and accurate quantum mechanical calculations of the rate constants [22].

The potential energy function has a rather simple form:

V (x, y) = Vosech
2(αx/2) +

1

2
µω2(y − Cx)2 (4.1)

The parameters are chosen Vo = 0.425eV , α = 3.97Å, µ = 0.672amu and ω =
0.092τ−1 and are meant to mimic a H+H2 gas-phase reaction. The coupling constant
C represents the linear response of a Gaussian friction kernel and is calculated by

C =
4fωx
πω

e−π
2/32 (4.2)

where ωx is the magnitude of the imaginary angular frequency at the top of the
Eckart barrier, ω is the angular frequency of the harmonic oscillator and f is a
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4 Test models

dimensionless friction parameter. Here the coupling constant is chosen to be C =
10.0. The base units used in this model are eV for energy, Å for length, amu for
mass, K for temperature and τ = 10.18fs for time. A contour plot of the potential
energy surface along with the classical MEP, traced out by NEB, and a tunneling
path is shown in �gure 4.1.
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Figure 4.1: Eckart+HO potential function with MEP shown as a white solid line
and a maximum tunneling path with cross over energy Ec=0.1eV shown as a dashed
line.

4.1.1 Zero-point energy correction

This potential function is especially interesting when considering the quantum e�ect
of zero-point energy. The �rst and most simplest quantum correction one could think
of doing when treating a two dimensional potential function and its MEP is to do a
harmonic expansion normal to the path in each point along the path and adding the
zero-point energy, ~ω/2, to the potential energy of the path. The expansion normal
to and around a point r0 on the path yields

V (r) = V (r0) + (r − r0)2 ∂
2V

∂r2

∣∣∣∣
r=r0

= V (r0) + µω2(r − r0)2 (4.3)
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4.2 Electron scattered by embedded Gaussian peaks in a parabolic potential

where r is the coordinate normal to the MEP. Note that the �rst derivative is zero.
The vibrational frequency at each point r0 on the path, ω(r0), is then calculated by

ω(r0) =

√
1

µ

∂2V

∂r2

∣∣∣∣∣
r=r0

(4.4)

The results of adding the zero-point energy to the MEP are shown in �gure 4.2. As
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Figure 4.2: Eckart+HO potential barrier as a function of arc length. (a) shows the
MEP barrier and (b) shows the barrier after addition of zero-point energy.

can be seen in the �gure, the shape of the potential energy barrier is changed after
adding the zero-point energy. Two local minimas appear at the 'corners' position
on the MEP. The vibrational frequency is increasing from the initial point, and
the potential valley is narrowing, up to the point where the MEP starts to curve
signi�cantly. Then the frequency decreases rapidly and the valley gets even wider
at the saddle point than in the initial state. These drastic changes in ω cause the
appearance of the two minimas in �gure 4.2b. From this it is obvious that adding
the zero-point energy to the potential along the path would not give a relativistic
picture of the quantum e�ect.

4.2 Electron scattered by embedded Gaussian

peaks in a parabolic potential

The second two dimensional model considered is an electron traveling through a
quantum nanowire with embedded impurities in zero magnetic �eld. Numerical as
well as theoretical studies have previously been performed on electron conductance
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4 Test models

in such a wire [23, 24, 25]. The potential energy function constructed to describe
the system is composed of two independent components.

V (x, y) =
1

2
mω2x2 +

N∑
i=1

Vie
−β2

i (x−xi)
2+(y−yi)

2) (4.5)

The wire is described to be of in�nite length but parabolically con�ned along the
transverse direction, and the scattering potential is chosen to be one or two Gaus-
sians. The potential parameters are chosen to mimic the GaAs semi-conductor
system as much as possible, m = 0.067me, ω = 3.04 · 1012s−1 and the barrier height
is Vo = 4.0meV . In the case of a single Gaussian barrier situated at the center
of the wire β = 0.012247nm, x1 = z1 = 0.0nm and when considering two Gaus-
sian barriers they are symmetrically o�set around the center with β = 0.031623nm,
x1 = z1 = 20nm and x2 = z2 = −20nm. The base units used in this model are meV
for energy, 10nm for length, 0.067me for mass, K for temperature and τ ′ = 195.176fs
for time. A contour plot of the two potential surfaces is shown in �gure 4.3.
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Figure 4.3: Potential surfaces for electron traveling along a model quantum nano-
wire with embedded impurity. A single Gaussian impurity on the left and two sym-
metrically o�set impurities on the right. Also shown are the two di�erent MEP
and maximum tunneling paths for the second potential with Ecross = 0.10meV and
Ecross = 1.10meV.

Maximum tunneling paths were calculated for all energies up to the barrier height
in the case of the two Gaussian potential, examples of two paths are shown in �gure
4.3b where the corner cutting of the MEP (found with NEB) is obvious. The corner
cutting is most extreme for low cross over energies, at energies near the barrier
height Vmax they only di�er slightly from the MEP. In the case of the one Gaussian
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4.3 A simple LEPS potential coupled to a harmonic oscillator

potential the MEP is as straight line so no corner cutting is possible, however, any
calculation of the rate constant using the MEP should give an insight to the e�ect
of MEP curvature.

4.3 A simple LEPS potential coupled to a

harmonic oscillator

This model represents a system of four atoms where an atom B can form a chemical
bond with either one of two �xed atoms, A or C, and is simultaneously coupled in
a harmonic way to a fourth atom D. This type of model has frequently been used
as a simple representation of an activated process coupled to a medium, such as a
chemical reaction in a liquid solution or in a solid matrix.

The reaction involving three atoms A, B and C con�ned to motion along a line can
be described with the LEPS potential [26]. Only one bond can be formed, either
between atoms A and B or between atoms B and C. The horizontal coordinate x is
the distance between A and B and the vertical coordinate y is the distance between
B and C.

V LEPS(rAB, rBC) =
QAB

1 + a
+
QBC

1 + b
+
QAC

1 + c
−
[

J2
AB

(1 + a)2
+

J2
BC

(1 + b)2
+

J2
AC

(1 + c)2

− JABJBC
(1 + a)(1 + b)

− JBCJAC
(1 + b)(1 + c)

− JABJAC
(1 + a)(1 + c)

] 1
2

(4.6)

The Q functions represent Coulomb interactions between the electron clouds and the
nuclei and the J functions represent the quantum mechanical exchange interactions.
The form of these functions is

Q(r) =
d

2

(
3

2
e2α(r−r0) − e−α(r−r0)

)
(4.7)

and
J(r) =

d

4

(
e2α(r−r0) − 6e−α(r−r0)

)
(4.8)

The parameters are chosen to be a = 0.05, b = 0.80, c = 0.05, dAB = dBC = 4.746,
dAC = 3.445, r0 = 0.742 and α = 1.942.

Now the location of the end point atoms A and C is is �xed, allowing only atom B
to move, and an additional degree of freedom is introduced. This can be interpreted
as a fourth atom D which is coupled in a harmonic way to atom B.

V (rAB, rBD) = V LEPS(rAB, rAC − rAB) + 2kc

(
rAB −

(rAC
2
− x

c

))2

(4.9)
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4 Test models

where rAC = 3.742, kc = 0.2025 and c = 1.154. The base units used in this model
are eV for energy, Å for length, amu for mass, K for temperature and τ = 10.18fs
for time. A contour plot of the potential function is shown in �gure 4.4 along with
examples of maximum tunneling paths.
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Figure 4.4: LEPS+HO potential energy surface is shown on the left as a contour
plot and the classical MEP as a white dotted line between the two minimas. Also
shown are two tunneling paths, one corresponding to cross-over energy 2.10eV and
the other to 1.89eV. On the right is the one dimensional classical MEP barrier.

The LEPS+HO potential is an asymmetric potential and the product state is 1.89eV
higher than the reactant state. Maximum tunneling paths were calculated for ener-
gies from 1.89eV up to the height of the barrier, Vmax = 3.64eV . In �g 4.4 the shift
of the end points position of the path away from the MEP is quite obvious, the shift
is larger for lower energies and smaller for higher energies.

4.4 Large corner cutting e�ect

A model was constructed to give an example of a system were the maximum tun-
neling paths would yield a large corner cutting of the MEP. The potential energy
function is composed of two parabolic components and three Gaussian components.

V (x, y) =
kx
2
x2 +

ky
2
y2 +

3∑
i=1

βie
−α((x−xi)

2+(y−yi)
2) (4.10)

The parameters chosen are shown in table 4.1.
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4.4 Large corner cutting e�ect

Table 4.1: Parameters used for test example potential.

x1 = 1.5Å y1 = 0.9Å β1 = kx

2
x2

1 + ky

2
y2

1

x2 = 0.8Å y2 = −1.2Å β2 = kx

2
x2

2 + ky

2
y2

2

x3 = 0.0Å y3 = 0.0Å β3 = 0.5eV

kx = 4.0eV/Å2 ky = 3.0eV/Å2 α = 2.5Å

The base units used in this model are eV for energy, Å for length, amu for mass, K
for temperature and τ = 10.18fs for time. A contour plot of the potential energy
surface along with the classical MEP and examples of tunneling paths is shown in
�gure 4.5. The classical MEP barrier is asymmetric in shape and the product state
is slightly lower in energy than the reactant state.
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Figure 4.5: On the left is a contour plot of a potential function designed to yield
large corner cutting. Also shown are the classical MEP (white dotted line) and
three tunneling paths corresponding to di�erent cross-over energies (green=0.2eV,
yellow=0.7eV and red=1.0eV). On the right is a one dimensional plot of the classical
MEP barrier.

As intended the maximum tunneling paths reduce the curvature signi�cantly and
also shorten the distance between initial and �nal state. The asymmetry of the
surface also results in quite large shifting of end points, as they also di�er quite
from the MEP.
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4 Test models

4.5 Constant MEP curvature

To investigate further the e�ect of MEP-curvature and vibrational frequency normal
to MEP a model was proposed where the curvature of the MEP is constant. The
shape of the MEP was chosen to be a half circle and the potential energy barrier as
a function of arc length has the form of a Gaussian. Normal to the MEP the poten-
tial is a a parabola in the form of a harmonic oscillator with constant vibrational
frequency along the path. The potential is a sum of two components a harmonic
oscillator component and a Gaussian component. If the center of the circle is at
(x0, y0) the distance from the center to each point on the surface is

s =
√

(x− x0)2 + (y − y0)2 (4.11)

If R is the radius of the MEP circle then the minimum distance from each point on
the surface to a point on the MEP is rm = s − R. The harmonic oscillator part of
the potential is written

VHO(x, y) =
mω2

2
r2
m (4.12)

where ω is the angular frequency and m is the mass of the particle taking part in
the transition. The angle from the center of the circle can be written

T = arcsin
(
y − y0

s

)
(4.13)

and the arc length of MEP is q = (Tπ/2)R so the Gaussian component of the
potential function can be written

VG(x, y) = V0e
−aq2 (4.14)

where V0 is the maximum height of the barrier and a is a parameter controlling the
width of the barrier. The total potential is then a sum of the two components

V (x, y) = VHO + VG =
mω2

2
r2
m + V0e

−aq2 (4.15)

The parameters were chosen to be x0 = 0.0Å, y0 = −2.0Å, R = 2Å, ω = 1.1τ−1,
Vo = 0.62eV , a = 2/Å2 and µ = 0.672amu. A contour plot of the potential along
with it's MEP along with an example of a maximum tunneling path is shown in
�gure 4.6. The base units used in this model are eV for energy, Å for length, amu
for mass, K for temperature and τ = 10.18fs for time.

The maximum tunneling paths yield severe corner cutting of the circle-shaped MEP.
In this case the shifting of end points from the MEP occurs mostly when the cross-
over energy is high, as opposed to the models in two previous sections.
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4.6 Associative desorption of a hydrogen molecule from a Cu(110) surface
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Figure 4.6: A contour plot of a potential function where the MEP has the shape of
a half circle. Also shown are examples of maximum tunneling paths with cross-over
energy Ec=0.001eV (green) and Ec=0.300eV (red).

4.6 Associative desorption of a hydrogen molecule

from a Cu(110) surface

The last analytical potential energy function presented in this thesis as a test model
is the associative desorption of a H2 molecule from a Cu(110) surface. Both experi-
mental and quantum calculations indicate unambiguous deviation from the classical
Arrhenius law at lower temperatures [27]. Results of calculations of this system using
an empirical many-body EAM potential have been published, where the potential
form include a pair potential term for the screened Coulomb repulsion interaction
between ions and a term for each ion embedded into a valence electron density of
its neighboring ions [4, 28]. The system used here is the same as in references [4, 29]
and consists of 216 Cu atoms representing the (110) surface. The Cu atoms are
separated into 6 layers, each containing 36 atoms. The EAM potential gives the
energetically most favorable con�guration of the hydrogen atoms on the surface as
aligned symmetrically along a surface valley, separated by a long bridge. The energy
of the transition state lies 0.544eV above the energy of the adsorbed state. The MEP
has been traced out by the NEB method and is depicted in �gure 4.7 along with the
tunneling paths of the hydrogen atoms.

The MEP is completely contained within a plane spanned by the initial, transition
and �nal state and is symmetric about a plane parallel to the surface normal, or-
thogonal to the MEP plane and intersecting the transition state. The movement of
the surface Cu atoms is minimal compared to the movement of the H atoms, or just
about 0.1Å for the two nearest Cu atoms in the initial state. In �gure 4.8 are more
examples of the tunneling path shown.
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4 Test models

Figure 4.7: A Cu(110) surface with the MEP for associative desorption of H2 is
shown in dashed lines. The maximum tunneling path for cross-over energy equal to
0.10eV is shown in small gray circles.
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Figure 4.8: The MEP for associative desorption of H2 and three examples of max-
imum tunneling paths with di�erent cross-over energies. The coordinates represent
position of one of the hydrogen atoms, position of the other atom is a re�ection of
the path here about the z-axis. All the paths are completely contained within the xz
plane.
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4.6 Associative desorption of a hydrogen molecule from a Cu(110) surface

It has been shown that the particular parameters set employed here reproduces
the physical characteristics of the interaction potential energy surface somewhat
poorly [30] but the aim is only to emphasize that the method proposed to �nd
maximum tunneling paths is applicable to systems with large number of degrees of
freedom. HQTST calculations of this model have shown excellent agreement with
full anharmonic rate constant calculations [31] which indicates that we might expect
as good results if we use maximum tunneling paths to �nd the instantons.
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5 WKB rate constant calculations

Calculating the quantum mechanical rate constant with HQTST method according
to equation 2.22 has some numerical problems which one would like to avoid. In
order to calculate the rate constant, the Hessian matrix needs to be calculated for
each image in each CFP point of the MAP which requires numerous evaluations
of second derivatives of the potential function. Since one is most often interested
in the rate constant as a function of temperature, the alternative is to evaluate
the reactive �ux according to equation 2.29. This would require estimating the
transmission probability P(E) and numerically involving only two integrations, one
over the action integral and one over the probability.

Using the WKB formula for P(E), equation 2.25, one can estimate the transmission
probability from the action integral θ. It can be done in a simple way using the MEP
as a reaction path or by taking advantage of the maximum tunneling paths. This was
done for the test models in chapter 4 along with calculations using other methods,
described in chapter 2. When the maximum tunneling paths are used, one path is
found for each cross-over energy E and a corresponding tunneling probability value
P (E) is calculated from the maximum action θ(E). When only the MEP is used,
the integration between classical turning points is always over the MEP. Results for
rate constant calculations of the Eckart+HO and LEPS+HO model are shown in
�gure 5.1. The method referred to as exact involves full quantum mechanical wave
function calculations for the rate constant with �ux-�ux autocorrelation function
formalism [32]. Unfortunately, the exact method is only applicable to unbound
potentials, see appendix B for more details.

Since calculations using the maximum tunneling paths yield higher tunneling proba-
bility than MEP the rate constant will always be some what larger using them. The
rate constant results for WKB calculations are close to exact and HQTST calcu-
lations in these examples, although a bit higher, especially for lower temperatures.
Other models did not give such good comparison, results for the two models of a
wire with Gaussian shaped impurities are shown in �gure 5.2.

The rate constant results for the calculation using P(E) according to WKB clearly
have some inaccuracies, this might not be surprising since the method applied is
de�ned as a one dimensional method. In next section the use of a multi-dimensional
extension to the tunneling paths is proposed in hope to get a better agreement

31



5 WKB rate constant calculations
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Figure 5.1: Reactive �ux for the Eckart+HO potential energy function on left and
the LEPS+HO function on right. WKB MEP stands for calculations of WKB rate
constant using the minimum energy path and WKB MTP stands for calculations of
WKB rate constant using maximum tunneling paths.
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Figure 5.2: Results for the calculation of reactive �ux for the potential function
of a electron traveling along a model quantum nanowire with embedded impurity.
Results for a single Gaussian impurity are shown on left and two symmetrically
o�set impurities on right.

with HQTST and exact results. However, redirecting the focus from �nding P(E)
to HQTST again, some computational disadvantages of HQTST described above
might be prevented by �nding instantons from the maximum tunneling paths as
described in chapter 6.
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5.1 Multi dimensional WKB

5.1 Multi dimensional WKB

Since the goal is always to be able to handle multi dimensional system an attempt
was made to propose a method for evaluating the transmission probability and the
rate constant more accurately for the two dimensional test examples considered in
this thesis.

This attempt involved taking into consideration all degrees of freedom and instead
of having one maximum tunneling path for each energy one could think of summing
over all possible paths between cross-over points. Obviously paths far away from
the tunneling path will give very low tunneling probability and wont need to be
considered. All paths in some speci�c area around the maximum tunneling path
should be included.

The attempt is to �nd a correction to the semi-classical one dimensional WKB
tunneling probability which is calculated using only the MEP.

P (E) = κ(E)PMEP (E) (5.1)

The prefactor κ can be thought of as a correction factor and should therefore
somehow include the other degrees of freedom. Since the change in vibrational
frequency normal to the path has not been considered in PMEP, a control potential
was constructed in such a way that this vibrational frequency, or equally, the second
derivative normal to the path, does not not change along the path, it is taken to be
constant as in the initial state. The harmonic expansion around the initial state is
kept constant along the path but the one dimensional potential barrier shape is kept
the same. The control potential function can be written as an expansion around
each point RMEP on the MEP.

V (0)(R) = V (RMEP) + |RMEP −R|2 µω
2
0

2
(5.2)

ω0 is the normal vibrational frequency in the initial state and RMEP is the point on
the MEP nearest to R. For each path the probability P(E) is calculated with the
correct potential function and P(0)(E) is calculated for the same path but with the
control potential function. The correction factor κ is then written as

κ(E) = lim
M→∞

M∑
i=1

Pi(E)

M∑
i=1

P 0
i (E)

(5.3)

Where M is the number of paths. We have chosen to consider only the paths with
considerably high P so an extension of paths is made around the maximum tunneling
path. This is done by dividing the maximum tunneling path into intervals with n
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5 WKB rate constant calculations

lines perpendicular to the path and calculating P (E) and P 0(E) for all paths made
of connection between m points on each line. A illustration of this is shown in �gure
5.3.
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Figure 5.3: A maximum tunneling path for crossover energy Ec=0.15eV in the
Eckart+HO potential energy function. Nine lines are drawn perpendicular to the
path and few of the possible paths connecting the lines drawn as an example to illus-
trate the extension method.

In all the test models presented in chapter 4 the WKB rate constant was over
estimated in comparison with exact or HQTST method, in some cases only slightly
but on other cases extremely. The extension of the WKB method described here may
yield a lower rate constant than WKB using MEP or maximum tunneling paths if the
normal vibrational frequency increases along the path and the potential valley gets
more restricted than in the initial state. If not, P0(E) will always be lower than P(E)
and κ>1, yielding higher rate constant. Two of the test models have the appropriate
behavior to yield improvement of the rate constant with extension calculations, the
Eckart+HO potential and the wire with two Gaussian peaks. Results of extension
calculations are shown in �gure 5.4.

Although the rate constant was lowered with the extension method the improvement
was not major. The design of the control potential function may be lacking some
important features since the correction factor does not include e�ects of curvature
of the path itself, only potential curvature. A modi�cation of the path sampling
might also be useful.
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5.1 Multi dimensional WKB
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Figure 5.4: Reactive �ux for the Eckart+HO potential energy function on left and
the potential of a wire with two asymmetric Gaussian impurities on right. WKB
MEP stands for calculations of WKB rate constant using the minimum energy path,
WKB MTP stands for calculations of WKB rate constant using maximum tunneling
paths and WKB ext. stands for calculations using the extension method described in
this section.

Implementation of other multi-dimensional WKB methods was not considered thor-
oughly in this project but remains a subject of further work. On the other hand,
since the maximum tunneling paths can be used instead of instantons in HQTST a
lot is gained and until a more accurate formulation of the tunneling probability is
achieved, possibly by implementing multi-dimensional WKB, it might be the way
to proceed.
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6 Instantons based on maximum

tunneling paths

At �rst sight, the resemblance between the instanton and tunneling paths is not
obvious. The instanton is a classical periodic orbit for the inverted potential corre-
sponding to a speci�c temperature where the Euclidean action is minimized. The
maximum tunneling paths are also periodic orbits for the inverted potential but
correspond to a speci�c energy. It is therefore interesting to compare the instan-
tons and the maximum tunneling paths and get a relationship between temperature
dependent paths and energy dependent paths. This was �rst done by checking sim-
ilarities between an instanton for a given temperature T and a maximum tunneling
path with cross over energy Ec equal to the energy at the end points of the instanton
so that both paths initiate from the same origin. An example of this is shown in
�gure 6.1.

The comparison revealed great similarities for all temperatures and all test model
potentials, again con�rming that the classical periodic orbits for the inverted poten-
tial have been found. As might be seen from �gure 6.1, or more obviously from �gure
6.5, the system replicas in the instanton, or the images, are not evenly distributed
as the images in the maximum tunneling path. This is one of the advantages the
maximum tunneling path search has over the instanton search because at low tem-
perature the temperature dependent spring constant gets weaker and the images in
the instanton tend to cluster together at the lower energy ends of the path. Calcu-
lations therefore require the addition of more and more images, as the temperature
gets lower for acceptable convergence. When the images are evenly distributed as
in the maximum tunneling paths this problem is avoided and the total number of
images needed for convergence should be smaller at low temperatures than in the
instanton method.

If the instantons search is to be replaced by �nding the maximum tunneling paths
one would �rst of all want to be able to �nd their corresponding temperature. The
rate constant is temperature dependent but the tunneling probability in WKB is
only energy dependent, see �gure 6.2a for an example of the transmission probability.
When calculating the rate constant according to equation 2.29 an integration is per-
formed over the function P (E) · e−βE and temperature is introduced in β = 1/kBT .
This integrand has the form of a single peak with Gaussian distribution around it,
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6 Instantons based on maximum tunneling paths
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Figure 6.1: Resemblance of an instanton for a speci�c temperature and a maximum
tunneling path for a speci�c energy, four di�erent potential functions are shown.
The maximum tunneling paths are shown in red and the instantons are shown in
yellow.

similar to the function shown in �gure 6.2b. Finding the energy corresponding to the
maximum of the integrand function for each temperature, when P (E) is calculated
using the maximum tunneling paths according to equation 2.25, gives a relationship
between temperature and energy. Comparing this energy to the end-point energy of
the instantons also reveals some similarity as shown in �gure 6.3.

The instantons tend to diverge at high temperature which could be cause of devi-
ation between the two curves on the graphs in �gure 6.3. The results show some
relationship between instanton theory and WKB theory but the temperature could
only be connected to the position of the peak maximum, not the shape of it or the
value it self. It is obvious from the WKB rate constant results shown in chapter 5
that the integration over this peak is over estimated, in some cases severely. Again
it is con�rmed that the question of how to accurately approximate P(E) remains,
and we redirect the focus of rate constant calculation from the exact equation 2.29
to HQTST.
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Figure 6.2: (a) An example of a transmission probability for a barrier with maximum
height Vmax as a function of energy. (b) An example of the integrand function
P (E) · e−βE used to calculate the quantum mechanical rate constant. Here, P(E) is
calculated with WKB using maximum tunneling paths and the temperature is 40K.
The energy corresponding to the peak maximum is also the energy of end points in
an instanton for this temperature.

6.1 Finding instanton temperature and distribution

The graphs shown in �gure 6.3 only gives some numerical indication of the rela-
tionship of temperature and energy. An analytical relationship would be preferable.
This is possible by classically calculating the time τ of the periodic orbit on the
inverted potential. Since

τ = β~ =
~

kBT
⇒ T =

~
kBτ

(6.1)

the temperature can be found from the time of the period. The classical dynamics
using the Verlet algorithm on the inverted potential is a very sensitive method as
described previously in this thesis. The initial point has to be know in great accuracy
to be able to get the appropriate trajectory. Running classical dynamics calculations
using the force of the inverted potential but the coordinates of the tunneling path
could give a way to estimate the time and retrieve the temperature. Since the path
of the classical orbit is known, although not with the extreme accuracy needed to
run Verlet, we don't need the information of position from the Verlet algorithm
as we would if the path was unknown. Therefore it is possible to use Newton's
equation F=ma to evaluate the velocity between each pair of points on the path
and calculate the time it takes for the system to travel one orbit. The algorithm is
based on projecting out the force causing the system to take curves and using only
the force causing the system to travel along the path to calculate the time it takes
to move a total of one period, see appendix C for detailed description. In this way
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Figure 6.3: Energy of instanton end points and energy corresponding to maxima in
PMTP (E)·e−βE versus temperature. Vmax is the potential barrier height and Tc is the
crossover temperature. (a) corresponds to Eckart+HO potential, (b) is LEPS+HO
potential, (c) is constant MEP curvature potential and (d) is the potential of a
nanowire with two asymmetric Gaussian peak impurities.

the task of time evaluation has been formulated into a one dimensional trajectory,
regardless of the dimension of the potential function.

Using this simple algorithm to �nd the classical period time and using equation
6.1 to get the temperature does not require any new calculation of the potential
or it's derivatives because the force of each image is already known after �nding
the path. The path could even be found with relatively few evenly distributed
images and interpolation of the path and the force would give better accuracy of
the temperature. This method of �nding the temperature was tested on the models
from chapter 4 and an example of the agreement is shown in �gure 6.4.

Temperature values calculated from the classical dynamics time evaluations were
compared to the correct temperature of the instantons for all the test models and
showed only 0.1-1% error when the number of images was relatively low (<50). The
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calculated with classical dynamics on the inverted potential is denoted with rings.
The values are from the Eckart+HO two dimensional potential function.

number of images needed in the Eckart+HO model to get the excellent agreement
of under 1% error in �gure 6.4 was found to be around 20.

Although we have at this point found the path of the instanton and the temperature,
the distribution of images is also important to be able to calculate the rate constant
according to equation 2.22. This is because the eigenvalues needed for the prefactor
calculation are found from estimating the Hessian matrix of each image. The distri-
bution can also be found from the classical dynamic of the inverted potential as the
time step is de�ned as ∆τ = τ/P where P is the number of images in a full chain.
The position at each timestep can be found by interpolating the path and hence the
distribution is found. The di�erence in image distribution is shown in �gure 6.5.

Rate constant calculations using HQTST with and without using maximum tunnel-
ing paths to �nd the instantons were performed on the test models in chapter 4 and
showed excellent agreement, with typical deviation under 1% in loge(QRk) values.
Results for the Eckart+HO model are shown as an example in �gure 6.6.

Now it has been shown that the maximum tunneling paths can replace the instantons
and computational e�ort of the rate constant calculation can be lowered. Two things
will especially contribute to this enhancement, lowered number of images, at least for
low temperatures, and the search for an accurate saddle point will not be necessary.
All of this resulting in fewer force calls which is highly bene�cial when using �rst
principle forces for example for density functional theory (DFT) as is most often the
case when handling large systems with many degrees of freedom. Further lowering
of computational e�ort might even be possible by calculating the Hessian matrix in
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6 Instantons based on maximum tunneling paths

Figure 6.5: With classical dynamics run on a maximum tunneling path using inverted
potential, the temperature of an instanton and its distribution of images can be found.
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Figure 6.6: (a) Reactive �ux calculated with HQTST method for the Eckart+HO
two dimensional test model. The black solid line refers to full quantum mechanical
wave function calculations for the rate constant, the circles represent former used
HQTST method where instantons are found using the minimum mode method and
the dashed gray line represents HQTST calculations were the instantons were based
on maximum tunneling paths. (b) % Error with respect to exact results.

relatively few images, evenly distributed, and interpolating the second derivatives
along the path and in that way increasing the number of images without new force
calls.
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7 Conclusions

The aim of this thesis was to develop a method for �nding maximum tunneling
paths that could be implemented in system of many degrees of freedom, with hope
to give an insight in quantum rate constant calculations. Previous calculations of
quantum rate constants have in many cases relied on the development of analytical
potential energy surfaces. Such an approach is limited to systems with only very
few degrees of freedom but density functional theory (DFT) calculations can o�er
atomic forces from �rst principles method for systems with hundreds of degrees of
freedom. As a by-product of this project a general path optimization method was
proposed for minimizing a functional dependent on a function of many variables. The
path optimization method was showed to succeed for two di�erent functionals, one
simple test case and the functional representing the action of a system on a potential
surface. The paths with lowest action gives highest tunneling probability. It was
shown with various checks that the paths found actually yield the lowest value of
the action as intended. The method was tested on various analytical test examples,
both two- and three-dimensional potential energy functions and succeeded.

The paths of least action for a given system are classical periodic orbits for the
inverted potential of the system. It was shown by running classical trajectories that
the resulting paths from the optimization are in fact such periodic orbits but classical
dynamics such as Verlet algorithm require in general extremely high accuracy of an
initial coordinate to �nd these orbits.

The most widely used method for calculating quantum mechanical rate constants is
the instanton theory, based on Feynman path integrals, which relies up on �nding
a quantum mechanical analog to the classical minimum energy path of a potential
surface and a corresponding saddle point, called the instanton. The instantons
are temperature dependent chains of system replicas and correspond to minimum
Euclidean action, it is shown in this thesis that the maximum tunneling paths found
using the optimization procedure presented are in fact the paths of the instantons,
but they are de�ned to correspond to the cross-over energy of the classical turning
points. A suggestion is made how the instanton can be replaced by the maximum
tunneling paths as to avoid computational e�ort. The temperature dependence and
image distribution can be found by running simple classical dynamics on the inverted
potential, using the coordinates of the paths.
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7 Conclusions

There are two important advantages of the maximum tunneling path method over
the previously used instanton search, one is the free choice of distribution of images
in the tunneling path which makes faster convergence at lower temperatures possible.
At low temperatures the spring constant between system replicas in the instanton
get weaker and the instantons tend to slip into the potential minima and cluster
together. The images in the maximum tunneling path can be distributed in any
way wanted, it was described in this thesis how the use of springs as in NEB can
evenly distribute them and then the number of images needed for convergence is
not increased signi�cantly at low temperatures since these spring constants are not
temperature dependent as the ones of the instantons. The other advantage is that
there is no need for search of an accurate classical saddle point. This search is
extremely important when �nding the instanton using the minimum mode method
[31] as the classical saddle point is the starting point of the construction of the
quantum mechanical saddle point, the instanton. No requirement of speci�c features
of the initial guess of a maximum tunneling path is made.

The one dimensional WKB approximation for the transmission probability P(E) was
tested using both the contribution of just the MEP on one hand, and a maximum
tunneling path for each energy on the other. Results showed that the probability was
over estimated using this method in all the test examples considered, some showed
only slight deviation from exact method and instanton method but other showed
extreme deviation. It is therefore clear that if the quantum rate constant is to be
evaluated by integrating over the transmission probability the question of how to
accurately approximate P(E) still remains. This procedure of two integrations, one
over the action and one over the transmission probability, is in many ways preferable
over other more computationally complicated methods with many evaluations of
second derivatives. Possible further work is the procedure of �nding maximum
tunneling paths in to the SCT method as the e�ect of curvature of the path would
then be included in the e�ective mass. Considering successive multi dimensional
WKB methods might also give insight to this topic.

As a further project, the full replacement of instanton search by the maximum
tunneling path method proposed here will be continued. Improvement of the method
by interpolation of second derivatives will be tested in hope to lower computational
e�ort even further. Implementation to commonly used DFT codes for rate constant
calculations is also a future aim.
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Appendix A: Derivation of action

functional

Consider a particle of mass m moving in one dimension, under in�uence of a potential
V (x). We can describe the classical motion of the particle either via a Hamiltonian
or a Lagrangian.

H(x, p) =
p2

2m
+ V (x) , L(x, ẋ) =

1

2
mẋ2 − V (x) (A.1)

The equations of motion are respectively the Hamilton equations or the Euler-
Lagrange equations

ẋ =
∂H

∂p
ṗ = −∂H

∂x
,

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 (A.2)

The Hamiltonian and Lagrangian are related via a Legendre transformation:

H(x, p) = pẋ− L(x, ẋ) , p =
∂L

∂ẋ
(A.3)

L(x, ẋ) = pẋ−H(x, p) , ẋ =
∂H

∂p
(A.4)

Consider a path x(t) that starts at position x0 at time t0 and ends at position xn at
time tn. The action functional S is de�ned as the integral over time of the Lagrangian
L(x, ẋ)

S(x, t) =

∫
L(x, ẋ)dt (A.5)

Evaluating the action functional for the classical trajectory x(t) of energy E, we put
A.4 in to A.5 and get

S =

∫
(p
dx

dt
Classical path

(x0,t0)→(xn,tn)

−H)dt =

xn∫
x0

p(x)dx− E(tn − t0) (A.6)
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For a classical trajectory with energy E, the momentum p can be solved as a function
of position x via

H(x, p) = E → p(x) =
√

2m(E − V (x)) (A.7)

The classical trajectory is related to a tunneling trajectory because for quantum
tunneling we have E < V and the Schrödinger equation allows for solutions in
which p(x) takes an imaginary values. This is equal to motion during an imaginary
time interval, or replacing t by it which has the same e�ect as �ipping the sign of
the potential V (x) in the Euler-Lagrange equations. The imaginary action integral
is then de�ned as

S(E) =

xn∫
x0

√
2m(E − V (x))dx (A.8)
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Appendix B: Exact method for

rate constant calculations

The rate constant method referred to as exact involves full quantum mechanical wave
function calculations for the rate constant with �ux-�ux autocorrelation function
formalism[32]. The equation for the exact rate constant is

QRk =

∞∫
0

Cf (t)dt (B.1)

where QR is the partition function for the reactant state and Cf (t) is the �ux-�ux
correlation function. A discrete system Hamiltonian is constructed on a uniform
grid of nx points along the x-coordinate and ny along the y-coordinate. The cor-
responding matrix representation is diagonalized to produce the eigenfunctions and
eigenvalues (φi(x, y) and εi respectively with i = 1, ..., nxnz). In this representation
the correlation function becomes

Cf (t) =

nxny∑
i,j

exp

(
−εi + εj

2kBT

)
cos

(
εi − εj

~
t

)(
~

2m

)2 ∫
|ψ′iψj − ψiψ′j|2 (B.2)

where in the last integral, the wave functions are evaluated at the classical transition
state and their derivatives estimated along the reaction coordinate. The integration
extends over all other degrees of freedom, except the reaction coordinate. By in-
tegrating the correlation function according to equation B.1, the rate expression
becomes

QRk = lim
t→∞

nxny∑
i,j

exp

(
−εi + εj

2kBT

)
sin((εi + εj)t/~)

εi − εj

(
~

2m

)2 ∫
|ψ′iψj − ψiψ′j|2 (B.3)
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Appendix C: Algorithm for �nding

the travelling time along a given

path

Starting with the fact that a system with mass m will travel along a given path
de�ned as a collection of coordinate vectors R = {R1,R2, ...,Rn}. Assuming that
the force acting on the system, F, is known at all points on the path, the component
of F parallel to the path in point Ri is

F
‖
i = |(Fi · τ̂ i)τ̂ i| (C.1)

where τ̂ i is the unit tangent vector. This is the force causing the system to move
along the path, the perpendicular component would cause the system to curve. The
distance from point Ri+1 to the next point on the path is

di = |Ri+1 −Ri| (C.2)

and the task is converted in to solving the motion of a mass m along a straight line.
The acceleration is found by Newton's equation

ai =
F
‖
i

m
(C.3)

and knowing the initial velocity, v0, the travel time ti between each pair of points
Ri and Ri+1 is found by solving

di = viti +
ait

2
i

2
(C.4)

which gives

ti =
±√v2

i + 2aidi − vi
ai

(C.5)

where the positive square root gives the physical solution of increasing time. Now,
the velocity in the next point Ri+1 is calculated by

vi+1 = aiti + vi (C.6)

and the total traveling time along the path is the sum of the time between all points:

ttot =
n∑
i=1

ti (C.7)
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