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Abstract

A method to optimize the zero locations for a PID controller for SISO systems
to achive optimized tracking of a reference system has already been derived. In
this thesis this method is expanded to work for MIMO systems. This is done
by minimizing the difference between the impulse or the step response of the
controlled system and the chosen reference system. The optimized zero locations
can be found for the controller and the best tracking possible is a achived.
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Chapter 1

Introduction

PID (Proportional, Integral, Differential) controllers for single input single out-
puts (SISO) systems are the most common controllers in industry today. They
are also a very interesting and popular research topic. Muliple input multiple
output (MIMO) PID controllers are also very interesting and challenging but
not as common in industry. When using MIMO PID controllers the number
of coefficients that have to be determined grows fast with the number of in-
puts and outputs (I/O), and along with it the complexity and time needed to
calculate them. Instead of calculating the coefficients from some mathematical
model it is possible to tune the coefficients experimentally. Many tuning meth-
ods have been established for SISO PID controllers as well as a few methods
for MIMO PID controllers, see e.g. [1]. Automatic tuning methods have also
been developed to find MIMO PID controllers, see [2], [3] and [4]. MIMO PID
controllers have furthermore been used to stabilize MIMO systems, see [5], [6]
and [7]. Decoupling of MIMO systems has always been of great interest for in-
dustry and research, see [8], [9], [10] and [11]. Most decoupling methods provide
decoupling, but no control of the system, in the sense of reference input tracking
and disturbance rejection. Therefore, an outer loop is necessary to control the
system with those methods, in fact similar to state feedback controllers.

Research on transfer function responses at the University of Iceland [12], [13],
[14] and [15] for both continuous and discrete time, has lead to several research
topics. The general problem on how to optimize zero locations, to get a system
to track a reference system, is reported in [16], [17] and [18]. Optimized zeros
locations are then applied in model reduction, see [19], [20] and [21]. That lead
to an optimized PID controller to be derived, tracking a given open loop ref-
erence system resulting in a closed loop controlled system. The zeros locations
of the PID controllers or generalized PID controllers with more than two zeros
are optimized to get the best tracking of a reference system essentially contain-
ing the design requirements, see [22], [23], [24], [25], [26], [27] and [28]. The
research has also led to a series of papers on Gramians, Lyapunov and Sylvester
equations, see [29], [30] and [31].

In this thesis the optimized PID controller for a SISO system is expanded to an
optimized MIMO PID controller. The relationship between inputs and outputs
of a MIMO system is represented by a transfer function matrix (TFM) with



many transfer functions contributing to one output. This makes the optimized
MIMO PID controller more complex to find than the optimized PID controller
for a SISO system. For a SISO system the optimization is done by choosing a
reference system and minimizing the squared difference between the open loop
impulse or step response of the system we want to control and the reference open
loop system. For the MIMO system a reference system is chosen on a TFM form
and the squared difference between the open loop impulse or step response of the
element transfer functions in the system’s TFM and the corresponding transfer
functions in the reference system’s TFM is again minimized.

It is shown in Chapter 2 how to find the optimized MIMO PID controller for
a system that has the same number of control inputs and outputs, starting in
Section 2.1 with a system with 3 control inputs and 3 outputs. The method
from Section 2.1 is generalized in Section 2.2 for systems with p control inputs
and p outputs. Then, in Chapter 3, it is shown how to find the optimized MIMO
PID controller if the system does not have the same number of control inputs
and outputs, beginning with a system having 4 control inputs and 3 outputs in
Section 3.1. This method is then generalized for a systems with r control inputs
and p outputs in Section 3.2. Finally, three examples in Chapter 4 show how
effective the optimized MIMO PID controller is.

The MIMO PID controller in Chapters 2 and 3 can be optimized with respect
to the impulse or the step response. A central task in finding an optimized
PID controller for a SISO system is to find a controllability Gramian padded
by system zeros on both sides. One approach to this is to derive a Lyapunov
equation which includes this Gramian in its solution, which can then e.g be
solved by using the Matlab’s function lyap. The same turns out to be the
case for a MIMO-system, and indeed one can make use of most of the basic
results that have already been developed for SISO systems, even if the procedure
becomes more complex.



Chapter 2

Square MIMO systems

We start by taking a look at the system in Figure 2.1, which we want to behave
like the reference system in Figure 2.2, a multiple input multiple output (MIMO)
system, assumed to have the same numbers of control inputs as outputs. Then
the transfer function matrices (TFM) C(s) and G(s) are square matrices.
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Figure 2.1: A closed loop MIMO system with a MIMO PID controller
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Figure 2.2: A MIMO reference system

2.1 MIMO systems with three inputs and three
outputs

If the system G(s) in Figure 2.1 has three inputs and three outputs (I/0), then
it has the following transfer function matrix (TFM),

GH(S) G12(5) G13(S)
G(s) = | Gai(s) Gaz(s) Gas(s) (2.1)
G31(S) G32(5) G33(3)



2.1. MIMO SYSTEMS WITH THREE INPUTS AND THREE OUTPUTS

The system G(s) is assumed to be minimal, i.e. controllable and observable.
The transfer functions G;;(s) in the TFM can be written as

bij (s) _ bmijyijsmij + bmijfl,ijsmijil 4+t bl,ijs —+ bo,z‘j (2 2)
a(s) "+ ap_18" 1+ +ap ’ '

Gij(s) =
fori=1,2,3 and j = 1,2,3. These transfer functions must satisfy m;; +2 < n,
since the MIMO PID controller will add two zeros to each element transfer
function and the TFM for the open loop controlled system must be causal.

The TFM for the reference system G, (s) in Figure 2.2 is taken to be of the
diagonal form

G,«l(s) 0 0
G,(s) = 0 Gra(s) 0 , (2.3)
0 0 Grg(s)

with the aim of making the controlled system as decoupled as possible. Choosing
the open loop reference system on a nondiagonal form causes problems since the
closed loop system is given by GSL(s) = (sI + G..(s)) "G, (s) and it will then
in general not be on a diagonal from. The transfer functions for the reference
system are given by

GT’L(S) — b”(s) — bmri,rismﬂ + bmrifl,rismriil + -+ bl,ris + bO,M'.

ari(s) § 4 Ay 1,8 A a0,

(2.4)

Since we assume the transfer functions for the reference systems to be causal
they have to satisfy m,; = n,;—1, if m,; < n,;—1 the appropriate b,; coefficients
must be set to zero. For example selecting G;(s) as the simple first order system
of relative degree one

2
Wri
S 2.5
$ + 2Griwri ( )
the closed loop reference systems will all have transfer functions in the standard
second order form

G”'(S)

2
Wri (2.6)

GSE(s) = :
i (3) 52+2<eris+w$i

The PID (Proportional, Integral, Differential) MIMO controller £C(s) in Figure
2.1 has the transfer function matrix

1 1 c11(8) c12(s) cs(s)
;C’(s) =3 c21(8)  caa(s) cas(s) (2.7)
cs1(s) cs2(s)  cas(s)

where
cij(s) = Kpijs® + Kpijs + Krij. (2.8)

We intend to derive the optimized MIMO PID controller first by minimizing the
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integral of the squared impulse response deviation between the system and the
reference system. Then by minimizing the integral of the squared step response
deviation between the system and the reference system. The impulse method
does not take the DC gain into consideration unlike the step response method.
The zeros in the impulse optimized PID controller are optimal but the PID
controller does not have the correct DC gain. In the step response method, the
optimized MIMO PID controller has both the zeros and the resulting open loop
DC gain optimized. Since the step response method is based on the impulse
response method, it is, however, useful to begin with a thorough coverage of
impulse response optimization.

2.1.1 Impulse response
It is shown in [28] that the impulse response for C(s)G(s) = C(ZZSS) is given by
b
i) = 27 { LTI T (29)

where C is a vector with the PID coefficients, C" = [ K; Kp Kp |and Bis
a convolution matrix with coefficients from b(s), and Y3 (¢) is the vector

W0 =[wo wo W0 ] .10

1

T ——, L.e.
s"tan_18""1+ao”’

where y,(t) is the basic impulse response for ﬁ =

) - 2 (]
the same denominator a(s) in the TFM, so the basic impulse response y,(¢) is
the same for all transfer functions, and the vector Y;(¢) is also the same for all
elements in the TFM. For the three input/output (I/O) system we have nine
C;; vectors defined as

. For a minimal MIMO system, all transfer functions have

Cl=[ Kr; Kpij Kpij . (2.11)

For a transfer function G;;(s) with m;; + 3 = n, the convolution matrix B;;
becomes

boﬂ'j 0 0
b1,s; bo,sj 0
b1,ij bo,i;
Bij = ! Y (2.12)
bmij,ij bl,ij
0 bmijvij
L 0 0 bmyij s

Bij is always of size n x 3 even if m;; +3 < n. If m;; +3 < n then the cor-
responding b coefficients must be set to zero to fill in the matrix. All transfer
functions G;;(s) have to be strictly stable, i.e. all eigenvalues strictly in the
LHP. Thus in particular ag # 0.

We are interested in the impulse response for every transfer function in the
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TFM G(s)C(s), where yr;;(t) denotes the impulse response for the element
transfer function 4j in the TFM G(s)C(s). Using Equation (2.9) and the linear
properties of the Laplace transform, all impulse responses can be found. Before
writing the impulse response, we introduce the 9 x 1 vector

Cus
C,=| Co (2.13)
Csi
and the n x 9 matrix
Bj.=| Bix Bj2 Bjs | (2.14)

Using this notation it is possible to write the 1 x n vector (B;.C.;)" = C1B] as

CiB] =cCiB], +C3Bl; + C3,B (2.15)

Then, the impulse responses for all transfer functions of the open loop system
are given by

c11(9)
ym(t) = £ L[1711(8) bia(s) bis(s) || cai(s)
a(s) c1(s)
—1 [ bua(s)ern(s) + bia(s)eai(s) + bis(s)esi(s)
- 2y ) }
= [CiB] + C3\ B, + C3, B3] Yi(t) = CIBIY, (¢)
yna(t) = CLBLY; (1)
yns(t) = CLBLY(t)
yrn(t) = CLBIY(t)
yra(t) = CLBLY (1) (2.16)
yras(t) = CHBLY;(t)
yrai(t) = CLBIY(t)
yrs2(t) = CHLB3Y(t)
yrss(t) = CLBLY(t).

For a SISO system the impulse response for the reference system is written
as y,1(t) = BIY,(t). Here B, is a vector with the b coefficients, and Y (t)
is a vector with the basic impulse response for the reference system and its
derivatives. For our MIMO system the reference system’s impulse response is
written by

ylrl(t) = B£H7T1(t)
yrra(t) = BlyYyra(t) (2.17)
yres(t) = BlYsrs(t).



CHAPTER 2. SQUARE MIMO SYSTEMS

We assume there can be three different basic impulse responses y;(t) for the
reference system and thus three different Y; ,;(¢) vectors. The basic impulse
responses can all be different, as we might not want the outputs all to behave in
the same way. We can then have three different transfer functions in the TFM
G (s). The vectors Y; ,;(t) are defined as

, T
Y;),'rl(t) = |: yb,rl(t) yb,rl(t) yl:l,;;llil(t) }
Yia) = [wa®) v - w'o] @)
Yiool) = [ s v - 0 ]

The B!, vectors are then defined as

BrT1 = [ bO,rl bnﬂ—l,m }
BZQ = [ bO,'PQ tt bnﬂ—l,r2 } (219)
By = [bors -+ bng-1rs |-

2.1.2 TImpulse response cost function

The desired MIMO PID controller is the controller that gives us practically the
same impulse response for the controlled system and the reference system. The
MIMO PID controller can be found by minimizing the difference of the impulse
response for the controlled system G(s)C(s) and the reference system G, (s). We
do not need to include the integral (1) since we assume it is in both systems.
This is done by setting up a cost function for the integral of the squared differ-
ence of the impulse response for all transfer functions in the transfer function
matrix G(s)C(s) and the corresponding transfer function G;(s) in the reference
system. Then the cost function is minimized. The cost function is given by

Tr =[5 (1 = yrm)? + wi2(ynz — 0)? + wis(yns — 0)?
wo1(yra1 — 0)2 + (yre2 — ylr2)2 + wa3(yres — 0 2 (2.20)
w31 (yra1 — 0)2 +wsa(yrs2 — 0)% + (yrss — yrrs)?)dt.

The constants w;; are the decoupling weight coefficients. By increasing the value
of w;j, the closed loop system is made more decoupled. No method existes to
determine the value for the decoupling weight coefficients, other then practise
and experience. We define a few matrices to simplify the notation:

Aun = [ Va0V (0t 21)
0
B}
Gioxo) = B%Tg A[ Bu B Bis | =Bl AB., (2.22)
3
Hz‘(nmn):/ Yy (1) Yy (t)dt, (2.23)
0
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Djox1) = B HiByi, (2.24)
oo
Avsnriensy = [ VoV )t (2.25)
0
and
Miax1y = BlAwiByi. (2.26)

Then [;*(yr11 — yr,r1)%dt can be written as

it 2 i T 2T 2 T 12T T T 2
/0 (yr11 —yrr1)7dt /0 ((C.1B1.Yb(t)) — 20 BL.Yy(8)Yy o1 (0)Br1 + (Brlyb,r1> )dt

€hGiC1 — 2Dy + My (2.27)

and the rest of the cost function can similarly be written as

/ wi2(yri2 — O)th w12C5G1C.o

/ wiz(yriz — 0)%dt = w13C5GiC3

OOO

/ wor(yra1 — 0)%dt = wynCLGyCy

0 o0

/ (yr22 — yrr2)?dt = C5GoC.o — 2C5Dy + My (2.28)
0

/ woz(yraz — 0)2dt = wy3ChGaCoy
0
/ wa1(yra1 — 0)%dt = w31CHG3C
0
/ w32 (Yrs2 — )2dt = w3ChGsC.
0

/ (y13s — yrr3)?dt = CLG3C3 —2CEDs + Ms.
0

Note that we are still using the vectors CZ and BI to simplify the notation.

2.1.3 Impulse response minimization

In order to minimize the impulse cost function J; all partial derivatives with
respect to C.;, ¢ = 1,2, 3 are set equal to zero, i.e

oJr
oc.;

=0, i=1,2,3 (2.29)
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Writing them out gives

0

% = 2G1C1 — 2D1 + 2w21G2C1 + 2w31G3C.1 = 0
1

oJr

a9C. 2w12G1C.2 + 2G2C.0 — 2Dy + 2w32G3C.0 = 0 (2.30)
2

0

WJI = 2w13G1C3 + 2w23G2C.3 + 2G35C.3 — 2D3 = 0
3

which we can rewrite as

(G1 + w2102 +w31G3)Ch = Dy
(w1201 + G2 +w32G3)Ca = Dy (2.31)
(w1361 + w23Ga + G3)C.5 = Ds.

These three 9 x 9 linear systems determine the 9-vectors C.;, i = 1,2,3, and
note that the systems will be close to decoupled, which follows from our choice
of the reference system.

2.1.4 Calculating the 4 matrix

The A matrix can be calculated in different ways. Here we present two methods.
The first method makes use of the plaid structure of the matrix and the elements
are calculated seperately. In the second method the matrix is obtained as a
solution of a Lyapunov system. In the numerical examples in this thesis we
shall always make use of method 2, as it makes the code very simple by making
use of Matlab’s 1lyap function.

Method 1
In [26], [32], [27], [29] and [30] it is shown that A has the following plaid structure

Mo 0 = 0 Yo -]

0 NI 0 - 0
-V 0 Vo 0 .
A= 0 0w . (2.32)
Vs, 0 0

0 ynfl

For stable systems ); is given by

o0

Vi = /OOO ((ygi)(t)))th — (JiH)T/O E()EH (1) dt TR, (2.33)

where J is a block diagonal Jordan matrix
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Ji 0 0
g=|0 % (2.34)
0
0 0 J,
and the diagonal blocks are given by
Tx 1 - oo 0]
0 N 1 :
Ji=1l o0 0o A 1 : (2.35)
: R |
o --- 0 0 N

L Hd;xd;

Here ); is a root of multiplicity d; of the polynomial a(s) and & is the vector of

the partial fraction expansion coefficients of ﬁ given by

1" (2.36)

K/:[Iill K1d, ’ilul Iil/du

We know from [33] that these partial fraction expansion coefficients are given
by the recursive formula

v 1 s .
{ Hq:1,q¢1 i—Arg)%a  ? Jj=d;
Rij = .

ﬁ Z;li:E](—l)qﬂi(j+q) X Z;:Lp#i (/\i‘_iﬁ , J=di—1,...,1.
(2.37)
The matrix £(¢) is given by
&1(t)
E(t) = : (2.38)
&)
where &;(t) is
e)\,;t
tetit
Eit) = : . (2.39)
RN
e

It is shown in [34] how the matrix fooo E(t)EM (t)dt can be calculated, for stable
systems. The (p,o)-th element of the (k, j)-th subblock, p = 1,2,...dx, o =
1,2,...d;, k,j=1,2...v,is given by

oo p+o—2
[/ Ek(t)gf(t)dt] =1 ( el ) . =M — )\ #0. (2.40)
P,o

o A — A )ptotl

10
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where —\,, — \; # 0 is known as the Gantmacher condition, see [35]. Note that
if n >m = "}" (m;) zeros will be padded in the B;; matrices from the bottom
in Equation (2.12). Then we in fact only need to know the (m + 3) x (m + 3)
principal submatrix of A. We denote this submatrix with A. As an example
A for n = 6 and the principal submatrix A for m = 1 becomes this bracketed

submatrix

Vo 0 - 0 Vo 0
0 V1 0 -V, 0 Vs
. - 0 Vo 0 -V 0
A= 0 W 0V 0~V (2.41)
y2 0 _y3 0 Ji4 0
0 V3 0 -V 0 s

It is shown in [36], [37], [27] and [21] that for a stable system we can alternatively
express

A=K" /OO EMEMTatK, (2.42)
0

where I is

K=[r Jx - J"'s]. (2.43)

Note that K is computed most effectivly by first calculating x and then the next
column J - k, and so on recursively, J™1x = J(J'k), i=1,2,...,n—2.

Also note, that if it is only necessary to compute fl, it is easily done by trimming
the columns of L down to m + 3, reducing the computation.

Finally note, that due to the structure of fl, it is infact sufficent to calculate
the first and the last column of A, i.e. KT [(* £(t)E(t) dtr and

KT [ E@)E@) T dtTn k.

Method 2

It is shown in [30], [21] and [31] how it is possible to find A (for stable systems)
by solving a Lyapunov equation. Consider F the n X n companion matrix for a
state space system in the controller companion form

0 1 0 0
0 0 1 0
f: . '.‘ '.. '.‘ - . (2.44)
0 0 0 1
—ap —a; —ag —as —Qp

With A defined in Equation (2.32), Y;(t) is given by
! (n—1) T tF
Yy(t) = [ w(t) y@) - V) | =P un (2.45)

11
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where u,, is an n-column unit vector with the n-th element as 1. Then the
Gramian A is given by

A= / Y, (t)Y,T (t)dt = / eFupule” " dt. (2.46)
0 0

It is the solution to the Lyapunov equation

FA+AFT +u,ul =o0. (2.47)

Note that Lyapunov’s stability theorem states that A is positive definite if and
only if the system F is strictly stable. It is possible to solve the Lyapunov
equation by using the Matlab’s function lyap. Matlab solves the equation by
transforming A to a complex Schur form, solves the resulting triangular system
and then transforms the solution back. Note that with this approach we have to
solve for the full matrix A4 even if we only need to use the elements of a principal
submatrix A in the subsequent calculations.

It was shown in [37], [30], [31] and [21] that it is possible to solve for the V;’s
simultaneously from the linear system,

ap az 0 Vo 0

0 ai as 0 -1 0

0 ap a2 0 Vo 0

0 0 a1 0 -Vs 0

) , x . = . (2.48)
1 0

. . QAp—2 . _1\yn—1

0 0 - - ap-3 Gp-1 (=)™ 'Vn1 ) 1/2

The transformation of this system of equations to upper triangular form can be
shown to be analogous to the calculation of the Routh table for the polynonial

a(s).

Note that Equation (2.48) can be derived from the last line of the Lyapunov
Equation (2.47), see [30], [31] and [21]. Further, the plaid structure in Equation
(2.32) follows from the first (n — 1) lines of the Lyapunov equation [38].

Methods linked to Method 1 and 2, for solving Lyapunov and Sylvester equations
may also be found in [25], [26] and [27].

2.1.5 Calculating The H; matrix

It is shown in [21] and [28] for a SISO system that #H has an alternating Hankel
structure. In MIMO systems the matrix H; is equivalent to the H matrix in
SISO systems. H is defined as H = fooo Y4 ()Y, (t)Tdt, which is similar to how
H; is defined, see Equation (2.23). H; will have the same alternating Hankel
structure as H. The H; matrix is given as

12
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2y —Z1 Zo - (71)"’1Zn7,i,1
2 =2 Zz o (FD)"Zn 1
H; = 22 —2Z3 Z4 T (*1 nilZn7-i71+2 (2‘49)
Zn-1 =2n Zpp1 o (*1)n712n7-i*1+n71 nX Mg
with
oo, (p) _
_ v’ (W) yp,ri(8)dt, p=0,1...,n—1
Zp = { (0—1)15]-00@ ygn—l)(t)yl(?f?.i(t)dt p=n—14+k k=1,2,...,nm—1 (2.50)

We may only need to know a principal submatrix of H;, denoted by H; of
dimension (Zn + 3) X n,, in the same way as we may only need the principal
submatrix A of A, see for example for n = 6, n,; = 5 and m = 1, we have

2y =21 2o —23 24

Zl 722 Zj 724 ZS

o Zy —Z3 24 —2Z5 Zs
H;, = Z, -2, Z. 25 2 (2.51)

Z, -2 Zs —Z. Za

Zs —2Z¢ 2Zv —23 Zy

Closed form formulae for the elements of this matrix can be derived, similar to
those derived for the elements of the .4 matrix above. Alternatively, H; can be
shown to be the solution to the Sylvester equation,

FHi+ HiFl +upu) =0 (2.52)

where F,. is the controller or companion form matrix for the reference system.
The Matlab function lyap can be used to solve the Sylvester equation.

It is shown in [37] how easily D = BTHB, can be calculated for a reference
system with only one pole and no zero. This method can be used to calculate
D, = BIH;B,, for our optimized MIMO PID controller. First the reference

bo, ., . .
%% on the diagonal line.
2T

system is chosen on a diagonal form with G, (s) = ;2

G, (s) has the impulse response,

Yr,r, = boe0mit, (2.53)
Using the impulse response it is possible to write
D; = Bl /OO Yy (t)e0mitdtby ., (2.54)
0
using Y3(t) from Equation (2.10)

13
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s (1)

/

0 Yy (t)
D; = BY / ' et dth.,, (2.55)
) :

?

u V()

a(ls) and noting the relation to the

We denote the basic response with Fy(s) =
Laplace transform, then D; becomes

Fy(s)
sFy(s)
D; =Bt _ bo.r: (2.56)
s"LRy(s)
with s = ag,. Thus we get that
1
aO,Ti
D; =B %r | Fyaonr,)bor (2.57)
4
ag?n )

It is further shown in [37] how this method can be used to solve for a more
general reference system with more than one pole.

2.1.6 Step response

In many cases it is beneficial to minimize the step response rather than the
impulse response. Then the DC gain of the controlled system and the reference
system are taken into consideration. We define the step response for the transfer
function ij in the open loop TFM G(s)C(s) as

t
ys.ij(t) = /yzw( du—CTBT/ Yy (u (2.58)
0

Now we have to consider separately the transient part of this function denoted
by Js,:;(t) and the stationary part denoted by ¥g ;;(?)

Ys,ij(t) = Us,ij(t) + s, (t)- (2.59)
Introduce the notation
(-1) ! 1
y, () = / yo(u)du — — (2.60)
0 aop
and .
—1 — ’ _
V0= v 00w wo - W0 ] (2.61)
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We then have that

§s,i;(t) = CEBIY, "V (t)

and
_ T by
Tsu®=CEBL ([ 0 0],,) =25k,
where by ;. and K7 .; are defined according to
Kii=[ K Krai Krsi }T
and
boi. = [ boi1 bosz boss |.
Similarly for the reference system we have
ys,ri(t) = ?)S,'r‘i(t) + yS,’!‘ia
gsrit) = BLY, P (@),
T
_ 1
yS,'r'i = BZ; ({ ao,ri UNRES 0 :|1><n”) )
(-1) ' 1
Yp ri (t) :/ Yo,ri(u)du — K
0 ag,ri
and
(-1 (-1) / (nri=2) 17
VPO = a0 m®) v o w0 ]
Further we can define A1, GV MY and #Y as
—1 e —1 —1
A= [ e e
B
-1 Y _ _
gi((Qx)Q) = BijTg AD [ Ba Bix Bis | =BrACYB,;
i3

2D ):/ Y@ )T dr,
0

i(nXnr; b,ri

Dl = BV,

15
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(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)
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A e = [ RGOV @) @7
and
M( 11><)1 *BTTiAv(ni_l)BM- (2.76)

2.1.7 Step response cost function

When setting up the cost function using the step response instead of the impulse
response, we want to minimize the difference in the step response for all transfer
functions in the open loop system G(s)C(s) and the corresponding transfer
function in the reference system. We separate the cost function into a transient
part and a stationary part. The transient part of the cost function is,

Js = Jo7 ((s11 — isr1)? + wiz(s12 — 0)% + wis(gs13 — 0)?
wo1 (21 — 0)% + (§s22 — Ysr2)? + wos(Ps23 — 0)? (2.77)
w1 (Ps31 — 0)% + ws2(Js32 — 0)% + (G533 — Gsrz)?)dt.

Now we have to treat the transient part Js and the stationary part separately.
Similar to the cost function for the impulse we have for the transient part

o0
/ (11— Gsr1)2dt = CTGVe, —20TD) 4 p(

/000 wi2(fs12 — 0)2dt = wlgc£g§‘1)c.2
/000 wis(fs1s — 0)2dt = wi3C5G V¢
/OOO w1 (fis21 — 0)°dt = w21C?£g§_1)C.1
/O T is02 — Gsra)?dt = CHGSVCo —20TDEY 4 MEY (2.78)

wo3(Yse3 — 0)2dt = w2sc.73:g§71)c~3

waz(Ps32 — 0)2dt = wsaCh g Ve,

|
o0
/ wa1(9s31 — 0)2dt = w31C.T1g§71)C-1
0
|

/ (533 — Gsva)’dt = CTGLVCy — 20D 4 MY
0

In order for the cost function to remain finite, the stationary part has to be the
same for the controlled system and the reference system. This implies

16
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bo.r b b b bo.1.
ot = Mg 22K+ 2B K = iK!,l
ao,r1 Qo ap ao ap
bo.1.
0 — iK{.Q
ao
bo.1.
0 = 2K,
aop
bo. 2.
0 = 22K,
ao
bo.r bo 2.
20z 202 e (2.79)
ag,r2 ag
bo 2.
0 = 202 Kis
ao
bo 3.
0 = 22K,
ao
bo.3.
0 — ﬁK;.g
ao
bors  _ bO’B'Km
ao,r3

It is possible to include these constraints by augmenting Js with a Lagrangian
multiplier which can be expressed in a simple way as

- b0,1- b0, r1 0,1
Tsa=Js + Al ( Krq— —— |+ X2
ag . ag

ag,r1
b0,r2 bo,2
+ 21 ( Kr 1) + 22 [ —— + A23 Kr.3
ag,r2 ag
bg 3. bg.3. b0 3. b0.r3
+ 231 ( : KI-l) + 32 ( L Kpo |+ Ags | ——Kpg - —— . (2.80)
ag ag ag ag,r3

Here \;; are the Lagrange multipliers.

2.1.8 Step response minimization

In order to minimize the cost function Jg ) we find the partial derivatives with
respect to Cj; and A;; and set them equal to zero

0Tsx

e =0 (2.81)
and

0Tsx

e =0 (2.82)

17
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Writing these out gives

1s]
Jsx = 295 Ve, — D( 2 +2w21gg Ve +2w31gg
dC1
1 T T T .
+a_o bo,.1ui +bo,-2uy +bo,3u7 | A1 =0
1s] _ _ _ _
a\ZZS’A = 20.)1295 I)CQ + 295 I)C,g — QDé D + 20J32g§ l)C 2
2
1 T T T .
+a_o bo,.1ui +bo,-2uy +bo,3u7 | A2=0
a _
a{;; = 2w13G 0y + 2wasG Vs + 268V s — 2DV (2.83)
1 T T T .
—|—a—0 bo’.1u1 + bo,.QU4 + bo,.3U,7 A3=0
[ bor1 ]
1 ao,r
05 = (bo 1u1 + bo, 2u4 + bo,.3u7 ) Ci1— 0() ' =0
8/\‘1 ao
L 0 -
o7 1 0]
SA T T T b0.r2 _
e @ (b0,<1u1 + bo,.2uy + bo,.3u7 ) Co— aos | = 0
L O -
0T 1 0]
52 = (bo 1u1 + bo 2U4 + bo .3U7 ) Cs3— 0 =0.
O3 ao bo,r3
L @03 |

Here uy is a column vector of size 9 with element k as 1. Let us take a closer

look at how 66‘765’* is found:
1

0 _
9Tsn _ 2g{ Ye 2D +2w2192 )C1+2w31gg
aCa

9]

a(f 1
= 2917 C-1 — 27)571) + 2w21gé71)c-1 + 2w31Q§71)C 1
[ A11bo,11 4+ A21bo,21 + Asibo,z1 ]
0
0
A11bo,12 + A21b0,22 + Az1b0,32
+— 0 (2.84)
ao 0
A11b0,13 + A21b0,23 + A31b0,33
0
0

= 260 V¢ — 2D 4 2wy, 65 Ve + 20-)3193(,_1)(7 1

( (A11bo,1. + A21bo,2. +)\31b03)KI,-1)

1
+— (wibgara+ u4b§,.2x1 +urbfsA1)
0
= 260Y¢ — 2D 4 205,650 + 20-)3193

1
+a— (bo,ﬂh + bo,<2u4 + bo,<3u7) A
0

18
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.. 0J.
Similarly, -3+ becomes
0T5 ) bo,1- bo,r1 bo,2. bo,3.
—_— = (*11 ( Kra — 77> + 21 Krq+ 231 K1»1>
AN AN ag ag,rl ag ag

b0.r2 502
arQ aqQ

b0, 3. T
Kr.g —ap K11 ]

bo,1.
- [ 0L sy —

b
bo,11  bo,12  b0,13 K11 aOO*—Ti
= — | bo21 bo,22  b0,23 Kro1 | — i

-

@0 | bo,31 bo,32 0,33 K131 0
r Krin
;(Pll
D11 b
1 bp,11 0 O bg12 O 0 bg13 O O Kro1 ao()’%
= — | bo21 O O bg22 O 0 bgaz3 O O Kpoay | — i
@0 | bp31 O 0 bp32 O O bo3zz3 O O f;(Dm 0
131
Kp31
L Kp31
bo,r1 ]
L T T | Su ao,rt
=  — [vo,.1u] +b0,2u] +b0,.3uF || Ca1 | - ) (2.85)
0 C31 0

The rest of Equation (2.83) is then found in similar manner. The derivatives
can then be set up in a very compact matrix form that can be easily solved
using computer programs like Matlab, i.e.

(=1) (—=1) (1) 1 T T T
[91 + w2165 ) + w3195 oxo @0 [bo,1.uf +bo,2.uf +b0’3,u7}9><3
[C.algx1
0o o0 o [[A.l]gxl
1 T T T
= [bo,1.uT +bo,2.u] +b0’3Au7]3X9 [ 8 8 8
3x3

[,

_ b0,r1
ag,r1
0
0 3x1

—1 —1 -1 T
w12g§ ) 4 Qé ) 4 wszgé ) % [50,1-U1T +b0,2.uf + b0,3-uﬂ [c.g}
% [to.1.uT +b0,2.u] +b0,3.uf] 0
C(—1)7

Dy
0
= | bo,r2 (2.86)
ag,r2

0

—1 —1 —1 T
01360 4 wpelD 4 g~V 2L [po,1.uT +v0,2.0T + bo 5. w7 ] [0_3}
% [boyl_uf +bg,2.ul + boyg_u;‘} 0

C (—1)7
p{ V)
0
= 0
0,73
L @0,r3 ]

The second and the third matrices in Equation (2.86) have the same dimensions
as the first matrix. Equation (2.86) can be written in more detail as
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T T T
By, L Ba1 L B3y L
87, ACDB11B13813] + wa1 8%, AGD By Bag Bag] + w31 8%, A=V B3 835833
BT. BL. BL.

13 23 33

T T T
bg,21u] +bo 22uy +bo 23u7

T
bo,1147 +bo, 1243 +bo,13uf
ag

b0,31u7 +b0,32u] +b0,33u

bo,11u7 +b0,12u] +b0,13u 11 BT
T T T -1
ag | P0,2141 tbo,22us +bo,23u7 Ca1 BT, Hg )B,.l
T T T
bo.31u1 +b0,32u4 +b0.33u7 _ | 8%
50,71
0 0 o 0 ;1
0 0 o ot s
0 0 o 0

31
ng} A=V (B31B32B33]

T
Bag

21
B, } ACD By By Bas] + wao

11
w12 [55} ACD (811815813 +
T
Bas

T
Bi3

bo,21u7 +bo,22u] +bo 23uf

T T T
bp,31u] +bo 32uy +bo 33u7

T T 71T
bp,11u] +bo,12uy +bo 13u7
ag

bo,21 41 +b0,22u3 +b0,23uf
T T T
b0,3147 +bo,32u4 +b0,33u7

0 0 0
0 0 0
0

bo,nﬂ?“o,lzuz“o,lsu?
ag

(2.87)

0 0

T T T
By, L By L B3, L

wiz | BY, AV By B3 B3] + was 8L, A By BygBag] + BE, A=V (B3 B3y Byg)
T T T
Big Bag B3

T

bo,1147 +bo, 1243 +bo,13uf

T T T
bo,21uj +bo,22uy +bo 23u7

ag
b0,31u7 +b0,32u] +b0,33u
bo,11u] +bo,12u] +bo,13uF C1s BT,
T T T -1
ag | 0,211 +bo,22ug +bo,23u7 Ca3 BL, Hg B3
T T T
bo,31uj +bo,32u] +bo,33u7 _ | L8l
50,73
o o0 o0 a_oﬂ-_s
o 0 o X Y
0o 0 o 33 0

2.1.9 Calculating the A" matrix

We have two methods to find A~ which are similar to the methods used to
find A.

Method 1

The almost plaid structure for the matrix A~ and how it can be derived is
shown in [21] and [28]. The almost plaid structure for A(~1) is given by
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- W 0o - 0

2a0
- 0 W 0 ..
ACD = ) . (2.88)
0 - 0 Vo -
B% 0 0
L : 0 yn—Q h
For a stable system the )); are given by
oo . 2 X (e o] _
v, — / (@) dt = ()" / E()ET (1)dtTTR, (2.89)
0 0

The matrix J; and the vectors x and £(t) are defind the same way as in Section
2.1.4, see Equations (2.34) - (2.40).

The same applies here as in Section 2.1.4, that if n > m = "}5" (m;;), resulting
in some zeros to be padded in the B;;, then we only need to know the (m+ 3) x
(m + 3) principal submatrix of A which we denote, similary as before by

ACED

Alternatively we can express
ACD = (g7)" / EWE@Hdt (J7IK) (2.90)
0

where J 71K is given by

JK=[J" % Kk Jk - Ik (2.91)

Note again here that if it is only necessary to compute fl(fl), then it is easily
done by trimming the columns of J~1X down to m + 3, reducing the computa-
tion. Further, columns 2,3,...,n can be computed recursively as before. The
first column is calculated most effectively by solving the system Jz = x by back
substitution Finally, all the elements in A( D can be found in its first and last

column, ( fo ()" dtJ 'k and ( fo (t)HdtJn—2k, re-
spectlvely

Method 2

Similarly as before it can be shown that A(~1 is the solution of the following
Lyapunov equation

1
FACY 4 ACGDFT 4 p —uiuf =0, (2.92)
0

where F is defined as before and Y})(fl)(t) is given by
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v ) = /Yb(t)dt:/etfundt

= T Flu, =€ (_aio) Uy (2.93)
or
V0= [0 we 0 | = (o) 2o

The Lyapunov equation can e.g. be solved by using the Matlab’s function lyap.

It is easily shown from the last row in Equation (2.92) that the elements of
AD can be found by solving the linear system of equations

do a2 0 Vo .
0 a1 as 0 “ Y —
0 aop az O 311 _a_lo
0 0 al 0 Y, - 2.a0
0 an .1 (1)
Lo 0 10 v e | LEDT Vo |
(2.95)

using the plaid structure of A~Y see [38].

2.1.10 Calculating the H! " matrix

To find the ”Hg*l) = Yb(fl) (t)(Yb(;ll) (t))T dt matrices the same methods that
are used in [21] and [28] for SISO systems can be used. Only a principal sub-

martix of this matrix may be needed 7:15_1), similar to A1 and A, 7-[1(_1)
has the alternating sign (almost) Hermitian structure

—Z_5 Za =2y e ()" 'Zn,-3
2= g 2o —Zi o ()" Zman
HY = 2o =2 2> o (F)"T 2, a2
—Zn_s Zn_o —Zn1 ( 1)”*1Znnfg+n71 g
(2.96)
with
oo
Z, = /O V(s ()t
oo
zZ, = / us ) (i (1)t (2.97)
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Z; for i =1,2,... are found in the same way as for the impulse case. Hgfl) can
be found by solving the Sylvester equation

FHID 4 HVFD + [ut)r [01], 4, =0 (2.98)

apGr,0

using e.g. the lyap function in Matlab.

2.2 General case: p control inputs and p outputs

We now generalize our results and assume that the system in Figure (2.1) has
p numbers of inputs and p numbers of outputs, i.e., a general square MIMO
system. The TFM for the open loop system G(s), the TFM for the reference
system G, (s) and the TFM for the PID controller C(s) are generalized to

gu(s) gu(s) T glp(s)
Gls) = 21:(5) 22:(5) 21?(5) ’ (2.99)
Gpi(s) Gpa(s) - Gppl(s)
Gri(s) 0 0
G.(s) = (_) Gra(s) _ (2.100)
0 0 0 Gus)
and
ci(s) ca(s) oo c1p(s)
Lo - L] o) et o eml (2.101)
() () o cppls)

Here, Gi;(s), Gri(s) and Cj;(s) are all defined in the same way as before, i.e.

G(S) _ bij(s) _ bmij,ijsmij + bmij*l,ijsmijil 4+ bl,ijS + bO,ij (2 102)
" a(s) S" A+ ap_ 18" 4+ ag '

G (S) = bmyris™ A+ bmm—l,rism”_l + o A biris 4 bori (2.103)
T S 4 Gy 1 ST g .

Again the most convenient transfer function for the reference system is

w2,
Gri=——F7—. 2.104
" s+ 2<riwri ( )
and the controller elements are
cij(s) = Kp,ijs> + Kpjs + Krij. (2.105)
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2.2.1 Impulse response

For the three I/O systems the impulse response for all transfer functions in the
TFM G(s)C(s) where found using Equation (2.9) and the linear properties of
the Laplace transform. The same method is used for a p I/O system. The only
difference is the size of the vectors C.; and B;., they are now given by

Cri
Cai
Ci=| . (2.106)
Cpi 3px1
and
Bi=[Bjy B - Bjp ], - (2.107)
It is then possible to write
CiB] =ClBj, +C3Bjy + -+ CLBj,. (2.108)

Using Equation (2.108), the impulse response can be written in the same way
as before

011(8)
1 ca1(s)
y = £ @[bu(s) bia(s) -+ bip(s) | :
cp1(s)
_ g1 bi1(s)c11(s) + bia(s)eai(s) + -+ - + bipepa (s)
B a(s)
= [CliBl, +CoiBly + -+ CpBY,| Yi(t) = CIBLY, (t)
yrie = CLBLY (1)
yrnp = CoLBLY(t)
yrn = ChBLY(t) (2.109)
Yr2p = Cngn(t)
Yip1r = CjiBgH(t)

Yy (t) is defined in the same way as before as a vector including the basic impulse
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response and its derivatives. The impulse responses for the reference systems
are again defined in the same way as before as

Yrri = BZ1Yb,r1(t)
yrra = BLYp.a(t)
: (2.110)
Yrrp = Bl Yorp(t)
where B,; is given by
BTT1 - [ bort -0 bl ]
Bly = [borz -+ bmpns2 | (2.111)
Ber = [bosp * by |

2.2.2 TImpulse response cost function

For the p I/O system as for the three I/O system we want to minimize the
difference between the impulse response for all transfer functions in the TFM
G(s)C(s) and the reference system’s TFM. The matrices Cijsx1), Bri(n,.x1)s
Anscns Hitnxnra)s Ari(nyixn,.) and M1y are all defined precisely in the same
way as before, see Equations (2.11), (2.19), (2.21), (2.23), (2.25) and (2.26).
The matrices B;.(,x3p)s Gi(apxap) and Dj(3px1) are all expanded for the general
case but basically defined in the same way as for the three I/O system,

Bitnxsp) = | Bir Bz -+ Bip |, (2.112)
Gispxap) = Bl AB:., (2.113)
D; = B HiByi. (2.114)

The cost function for the p I/O system now becomes

J = /Om[(ynl(t) —yrr1(t)? + wiz(yna(t) — 0)* + - + wip(yrip(t) — 0)?
+  wor(yra1(t) — 0)2 + (yro2(t) — ylr2(t))2 + - 4 wop(Yrep(t) — 0)2

: (2.115)
+ wpt(Yrpi (t) — 0)2 + wp2(Yrp2(t) — 0)2 et (Yrpp(t) — yIrp(t))Q]dt-

with fooo(yhii(t) —y1.:(t))? given by

/ (yIii(t) — y[»,«i(t))2dt = C{glCl — 20,7,;291' + ./\/ll (2.116)
0
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and fooo wijyr,ij(t)* when i # j given by
/ wij (yrij(t) — 0)%dt = w;;CLG,C, (2.117)
0

2.2.3 Impulse response minimization

Minimizing the impulse response cost function J for the p I/O system, we find
the partial derivatives for all C.; and set them equal to zero,

o0Jr
oC.;

=0. (2.118)

The derivatives are then written out in the same way as before

5]
Wjj = 2G1C1 4 2w21G2C1 + -+ 2wp1GpCy —2D; =0
N/
Wi = 2w12G1C.0 + 2GoCog + - -+ + 2wp2G,C0 — 2Dy = 0
: (2.119)
15)
W‘y.; = 2W1pglc.p + 2w2pQQC.p + -4 2Q,,C.p — 2Dp =0
which we rewrite as
(Gi+wanGa+ - +wmGp)Cai = Dy
Qwi2G1 +Ga+ -+ wp2Gp)Ca = Do
: (2.120)
(Wlpgl + Wngg + -+ gp) C~p = Dp-

2.2.4 Step response

For the general case the step response for the element transfer function 75 in the
open loop TFM G(s)C(s) is defined in the same way as for the 2 I/O system
previously,

t
Ysij(t) = /Z/I,z'j(u)du
0

t
= C?;BZ/ Yy (u)dt (2.121)
0

Us,ij(t) +Yg.4(t).

The same goes for the transient and stationary parts of the step response

Js.i;(t) = CLBIY, V), (2.122)
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T by,
— 1 0,2
Tsy W =CIBE([ & 0 - 0] ) = K. (2.123)
Now bg ;. and K7 .; are defined as
T
Kri=[ Kni K - K| (2.124)
and
bO,z’- = [ b07i1 b07i2 b07ip } . (2125)
The matrices Aﬁlxl,z, Afn(?” W) ’Hi nlx)n and /\/l 1><1) are all defined in the
same way as before see Equations (2. 71) (2 75), (2. 73) and (2.76). The matrices
D((3p><1 and g 3p>< 3p) Are expanded for the general case.
(=1) Ta/(—
Diapn1y = BEH VB, (2.126)
(=1) _ BT g(-1
Giiapksp = BLATVB: (2.127)

2.2.5 Step response cost function

When finding the cost function for the step response, the same applies for the
p I/O system as for the 3 I/O system. We want to minimize the difference
between every transfer function in the transfer function matrix G(s)C(s) and
the reference system transfer function matrix. We separate the transient and
stationary parts of the cost function, the transient part becomes

I = /om“@s“(” —dsr1(0)% + w12 (Fs12(8) = 02 + - + wip (Fs1p(t) — 0)2
+ W21(Q321(t) - 0)2 + (QSQQ(t) — ’937.2(t))2 + e+ w2p('QS2p(t) _ 0)2
’ (2.128)
+ wp1(@sp1(t) = 0)* + wpa(Psp2(t) = 0)* + - + (Fspp(t) — Dsrp(t)) ],
with fooo@su — §5.r4)?dt given by
/ (Fsi: — s.ri)’dt = €5G{7VC; —2¢EDITY + MY (2.129)
0
and [ wij(9si;(t) — 0)%dt given by
> .
0

The stationary parts of the controlled system and the reference system have to
be the same for the cost function to remain finite. These constraints are given
by
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2.2. GENERAL CASE: P CONTROL INPUTS AND P OUTPUTS

bo . bo ri
VR, = 2T

agp b ag,ri

bo.i.

2’1 Kij = 0, i#j. (2.131)
0

These constraints are then included by augmenting Js with a Lagrangian func-

tion,

Tsa=Js

+

b0,1- b0,1-
KI.2)+"'+>\1p< Kr.p
a0 ag

b0,2- bo,2. bo,r2 b0,2-
: K1«1)+)\22 LK - — = | 44 Agp —Kjr.p
ag ag ag,r2 ag

(2.132)

by p- b[),p- bO,Tp
K1»2>+“‘+*pp Kpp— .
ag ag ag,rp

2.2.6 Step response minimization

The next step in finding the PID coefficients is minimizing the Lagrangian step
response cost function Jg . That is done by finding all partial derivatives of
Js,» with respect to all C.; and all A.;. Then we set them all to zero

and

0Tsn
o =0 (2.133)
0Tsx
=0 (2.134)
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CHAPTER 2. SQUARE MIMO SYSTEMS

Writing them out gives,

0Js A
0Cq

0Js
0C.o

0Js A
ac.,

0Js A
5001

0Js A
O\

0Js A
Or,p

260, — 2D 4 20516 C 4+ 20, Gl C
1 T T T T

+a—0 (bO,~1U1 + b, .ouy + -+ bO,~pU3p_2) Ap=0

2w12g§71)0.2 + 2%*1)@.2 — 22)5*1) NI QMPQQI()—QCQ

1 T
+— (bo,1ui + bo.2uy + -+ +bopus, o) Az =0
0

201G\ C.p + 202Gy C, + -+ 2607 VC,, — 2D (2.135)

1 T
+— (bo.1u1 +bo,2ug + -+ bo,piz,—z) Ap=0
0

r bo,r1 7
1 ao,r1
— (bO,.lu? + bo,.2u4T + -+ boy.pugp_Q) Cq— 0 =0
an 0
r bo,r2 7
1 ao,r2
— (bo,.ﬂL? + bO,-QUZ +-+ b0,~hugp_2) Ca— 0 =0
an 0
— bO,'f'p -
1 ao,rp
a— (b()’.l’llg1 + bo,.2u4T + -+ boy.pung_Q) C~p — 0 =0.
0
L 0

As in the three I/O system, the partial derivatives in Equation (2.135) can be
written in the very compact matrix form as

29



2.2. GENERAL CASE: P CONTROL INPUTS AND P OUTPUTS

(=1) (-1 (*1)] 1 T T T T
g w219 +twp1 G — |b. uy +b.g guy +---+b. uz,
[ 1 1¥2 pLEP 3pX3p “0[ 1.0%1 0%e P,0%3p 2]3p><p [[C.1]3p><1
[)\«1] 1
1 T T pX
o [b.1,0u] +b.2,0u] +...+b_p70u3p72}p><3p (0] px p
7]
3px1
bo,r1
ag,r1
= 0
o pX1
(—1)
Dy
NG
-1 -1 -1 T .
w120 404D 10D %[b,1,0u?+b2’0uf+,+b,p’0u3p,2] [0‘2} B L?(;vf .
Xao] T ) :
%[b.1You,{+b.270uz+-+b_p70u3p,2] 0 2 0
0
(—1)
Dpo
-1 -1 —1 T
w1pGi ™Y fug, gl gl & [v0uT +v2,0ul++bp0usp 2] [c.p] B
Aopl =
a5 [p-rouf bz 0uf ++bp0uzp_2 ] 0 » :
%0,rp
ag,r3

These matrices can be used to find a MIMO PID controller for a linear MIMO
system with a square TFM and results in a close to a decoupled system. See
the Appendix for the Matlab code use to set up these matrices and to solve the

resulting linear system of equations.
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Chapter 3

Non square systems

In Chapter 2 a MIMO controller was designed for a system with p I/O. We
now assume that the system does not have equal numbers of control inputs and
outputs, rather that it has r control inputs and p outputs. We want to design an
optimized MIMO PID controller that makes the controlled closed loop system
in Figure (3.1) behave like the closed loop reference system in Figure (3.2).

v(t)@\e(t) 1 o(s) u(t) G(S)} y(t%

Figure 3.1: A controlled closed loop MIMO system with r control inputs and p
outputs.

Figure 3.2: A MIMO reference system.

3.1 Systems with three control inputs and two
outputs

We begin by looking at a system with three control inputs (r = 3) and two
outputs (p = 2), which has the following TFM

GH(S) G12(5) G13(S)

- Ggl(s) GQQ(S) G23(S) (31)

G(s)

31



3.1. SYSTEMS WITH THREE CONTROL INPUTS AND TWO OUTPUTS

The controller C(s) is then chosen as

611(5) 012(8)
C(s) = | ca(s) caa(s) | . (3.2)
631(8) 032(5)

With this controller the open loop system G(s)C(s) is a square system with a
2 x 2 TFM given by

G(s)C(s) =

[ G11(s)e11(s) + Gi2(s)e21(s) + G13(s)ez1(s)  Gri1(s)ci2(s) + Gr2(s)c22(s) + G13(s)c32(s) } )

Ga1(s)e11(s) + Gaz(s)ea1(s) + Gag(s)ezi(s)  Gap(s)cra(s) + Gaa(s)eaa(s) + Gag(s)esa(s) 3-3)

Since G(s)C(s) has a square TFM the closed loop system will have the same
numbers of reference inputs and outputs. In this case the closed loop controlled
system will be a 2 I/O system. The open loop reference system has to have a
TFM of the same size as the open loop system G(s)C(s). Since we have a 2 x 2
TFM for G(s)C(s) the reference system will also be a 2 x 2 TFM

(3.4)

The TFM for the reference system is chosen to be on a diagonal form since we
want reference input 1 only to effect output 1 and reference input 2 only to
effect output 2. The transfer functions G;;(s), Gri(s) and ¢;;(s) are all defined
in the same way as before as

. 1
_ bi(8) _ bmayig™ by —1,658™9 T + -+ buigs + boyg

Gii(s) = , 3.5
=" PO S, (3:5)
bm,.i,rismﬂ + bm,.iflyrism"iil +--+ bl,ris + bo’m'

Gris) = _ S 4 . (36)

S 4= Ay, —1,pi 8T A A0,

bri(s) w2,
Gri = = . 3.7
" a(3) T st 2w (8.7)
and

cij(s) = Kpijs® + Kpijs + Krij. (3.8)

The same applies to the nonsquare systems and to the square systems, the
transfer functions G;;(s) have to satisfy m;; + 2 < n and G,, have to satisfy
My, = Ny — L.

i
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CHAPTER 3. NON SQUARE SYSTEMS

3.1.1 Impulse response

The impulse responses for the TFM G(s)C(s) are found in the same way as
before. The vectors C.; and B;. can be written as

Cis
C;= Co; (39)
Cs;

3rx1

Bj. = [ le ng ng } (310)

nx3r’

where Cj; is a vector with the PID coefficients and B;; is the convolution matrix
both defined as before. Then we can write

CIB] =ClB], + 3B}, + C3,B; (3.11)

The impulse response is

1 011(8)
ynn = L7 ) [ bii(s) Dia(s) bis(s) | 021(3)
031 S
! bi1(s)c11(s) + bia(s)ea1(s) + bigesi(s
B a(s)
Yriz = CEB{Yb()
yro1 = CLiBLY(t) (3.12)
yre2 = CHB3Yy(t)

The impulse response for the reference system is given by

yrn(t) = BhYy.(t)
ylr2(t) = BrQnﬂ“Q(t)a (313)

where Yy,1 (t) and Yy,2(t) are defined as

’

Yorr(t) = [ gori(t) wp () - ypri ') ]
Yro®) = [ ypralt) ypol®) - i) ]" (3.14)

3.1.2 TImpulse response cost function

With the impulse response known for both the closed loop system and the
reference system it is possible to set up the cost function as
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3.1. SYSTEMS WITH THREE CONTROL INPUTS AND TWO OUTPUTS

Tr = J5 s —yrm)?  + wiz(ynz —0)? (3.15)
Fwar(yr21 —0)2 4+ (yr22 — yir2)?]dt '

where the w;; constants are weight coefficients controlling the decoupling as
before. Further, the following matrices do not change

Apsen = / Yi(6) ¥ (), (3.16)
0
B}
Gioxo) = | Bl | A[ Ba Bia Bis | =Bl AB;, (3.17)
2
Hiwens = | OV ()t (3.18)
0
Di(ox1) = Bi HibBri, (3.19)
Ariurinsy = || YOV (01, (3.20)
0
and
Miaxr) = BLAB, (3.21)

Parts of the cost function can be written as

/ (yr11(t) — yrr1 (£))? dt ctgic, —2¢iDy + M,y
0

w12/ (yri2(t) —0)>dt = w12C5G1Co2
0
w21 / (yr21(t) —0)2dt = wmcﬁggc.l (3.22)
0
/ (Yr22(t) —yrr2()?dt = C5G2Co — 2C5Ds + My
0

3.1.3 Impulse response minimization

The minimization is done by finding the partial derivatives of the cost function
with respect to the PID controller coefficients and setting them equal to zero,

oJr

9Jr _ 2
T (3.23)

Writing them out gives

0

9 = 2Gi1C1 —2D; + 2w21G2C.1 =0,

0C.q

0

W‘YI = 2G3C.9 — 2D + 2w12G1C.9 = 0, (324)
2

resulting in the following linear equations
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CHAPTER 3. NON SQUARE SYSTEMS

(G1 +w21G2)Ca = Dy
(w1261 +G2)C2 = Do (3.25)

This determines all six PID controller coefficients.

3.1.4 Step response

We define the step response for the transfer function 45 in the open loop TFM
G(s)C(s) as

t
Ysij = /yl,ij(u)du
0

t
= CLBl | Yi(u)du 3.26
7%
0

Us,ij (t) + g5 (1),
with gs;(t) and gg ,;(t) denoting the transient and stationary parts, respec-

tively. They are defined in the same way as before as

9s,i;(t) = CEBIY, "D (t) (3.27)

and
boﬂ'.

ag

- T 2T 1 T
ysdj(t):c_jsi,([% 0 .. 0]1Xn) = Dl (3.28)

where by ;. and K7 .; are defined as

Kri=[ K Kra Krsi ]3TX1 (3.29)
and
boi = [ boir Dos2 Doz |, 4- (3.30)

y(fl)(t), Yb(fl)(t), Us.ri(t), y(ﬂ)(t) and Yb(;il)(t) are all defined as before in

b,ri

Equations (2.60), (2.61), (2.67), (2.69) and (2.70). Finally we define A1),
Qi(fl), /\/ll(-fl) and ’Hgfl) as

[ee]
-1 -1 -1
AGY = /O Y,y Y )T dt (3.31)
T
71
Giore) = BgT; AV By B B | =BrACYB,. (3.32)
i3
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3.1. SYSTEMS WITH THREE CONTROL INPUTS AND TWO OUTPUTS

[ee]

MMy = [ V0N 0 (339

(1)  _ pTq(-1)
Djox1) = BiHi " Bri, (3.34)

(=1) - (=1) (=1)

A’"i((nn—l)x(nn—l)):/o Yb,ri (t)Yb,m' (t)Tdt, (3.35)

and ) 1
M§621) =BLA VB, (3.36)

3.1.5 Step response cost function

The cost function is split up into the transient and stationary part in the same
way as for square systems. The transient part is

Js = IS @s11 — Gsr1)? + wiz(s12 — 0)?

+wa1(fs21 — 0)2 +  (Js22 — Gsr2)?]dt (3:37)
where the parts of the cost function are given by
/Ow (Gs11(t) — gsm()?dt = cLgiVe, -2t DY 4 MY
wiz /Om (gs12(t) —0)2dt = wincLGVe.,
wa1 /Ooo (gs21(t) —0)2dt = wnchoi Ve, (3.38)
[T a0 = gsa)?ar = €50{TVC — 20D + MY

In order for this cost function to be finite the stationary part has to be the same
for the controlled system and the reference system. This means we have the
following constraints

bo,r1 bo,11 bo,12 bo,13 bo,1.
—= = =K+ —Kp + K3 = K1
aop,r1 aop ap ap ao
bo 1.
0 = LK[.Q
ag
bO 2.
0 = 22p,, (3.39)
ap
b bo 9.
or2  _ boo g
ag,r2 ag

These constaints are included in the same way as before by augmenting Jg with
a Lagrangian function,

R bo.1. b bo.1.
TJsx=Js + Au ( S L) + Az ( 2’1 KI-2>
0 0

bo.2. bo 2. bo
+ Az ( 2 KI-1> + A2z (—2’2 Kpo— 22 2) . (3.40)
0

ao,r2

36



CHAPTER 3. NON SQUARE SYSTEMS

3.1.6 Step response minimization

Minimizing the cost function Jg, is done in the same way as before by finding
all partial derivatives and setting them equal to zero

0Tsn

oC.; =0

0Tsx

=0 (3.41)

These derivatives can be written as

N/ _ _ _
SA 29£ 1)C.1 — 2D§ b + 2w21g§ I)C.l
0C.1
1
+a—0 (bo,.wlT + bo,.2uj + bo,.3ug) A1=0
0 _ _ _
TSN 921Gy 1+ 2681 — 25
0C.o
1
+a—0 (boy.lu? + bo,.2u4T + bO,.3u$) Ao =0 (342)
NER 1 et
W = a_o (bo’.lu{ + b07.2u4T -+ b0,.3u?) Ci1— a"(v)” =0
0 1 0
T = — (boﬁ.lulT + b07.2u4T + b0,.3u?) Co—| b | =0.
6)\.2 an m

Here uy is a unit column vector of size 9 with the k-th element as 1. Equation
(3.42) can then be rewritten in a compact matrix form as

1 1 T
[ +emaof V) s o oT 40T + 0030715,
x [[0-1]9><1
A1la
1 T T T 0o o X1
ag [b[),l-ul + bo,2.uy +b0’3'“'7]2><9 [ 0 0 }2><2
(71)]
D
[ b 9x1
= b0,r1
ag,r1
0 2x1
—1 —1 T
wmgg )+g§ ) % [bo,1.uT + b0,2.u] +bo,3.uf] [0,2}
% [bgvl,u’{‘ +bg,2.ul + bgyg,u;—‘} 0 A2
Dé’l)
_ 0 (3.43)
0,72
ag,r2

3.2 General case: r control inputs and p outputs

We now look at the general case with r control inputs and p outputs where the
TFM G(s) is given by

G11(8) G12(S) cee Gh«(s)
G(s) = : : (3.44)
Gp1(s) Gpa(s) - Gpe(s)
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3.2. GENERAL CASE: R CONTROL INPUTS AND P OUTPUTS

The TFM for the controller is a r X p matrix

1 cii(s) cz(s) -+ cip(s)
~C(s) = - : i (3.45)

cri(s) cra(s) -+ cppls)

Then G(s)C(s) will be a TFM of size p X p, and the reference system will be a
TFM of size p X p

Gyals) 0 - 0
0 Gpals) -~ 0

G, (s) = : (3.46)
0 0 Gy

3.2.1 Impulse response

Before writing out the impulse response, we need to define C.; and B;. as

Cli
Co;
C,= . (3.47)
CM 3rx1
Bi=[Byn Bp - Byl ... (3.48)

where C;; is a vector with the PID coefficients and B;; is a convolution matrix
defined as before. Now it is possible to write

CiB] =C|B], +CyBJy + -+ CLB],. (3.49)

with y ,; and Y ,4(¢) defined in the same way as before.
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CHAPTER 3. NON SQUARE SYSTEMS

011(5)
1 c21(s)
yu = L7 @[511(5) biz(s) -+ bi(s) |
cr1(s)
_ g1 bi1(s)c11(s) + bia(s)ca1(s) + - - - + bircri(s)
- a(s)
= [cBl +CBl+ -+ ChB ] Yi(t) = ChBLY, (1)
yrie = CLBLY(1)
yrnp = CoLBLY(t)
yrn = CLB3Y(t) (3.50)
Yrzp = CngY},(t)
Yip1r = CjiBgH(t)

Both y;(t) and Y3 (¢) are defined in the same way as before. The impulse response
for the reference system is given by

Yir1r = Bglyb,rl(t)
Yrr2 = BZQYE),TQ(t)
. (3.51)
Yrrp = Bl Yorp(t)
and
BrT1 = [bO,rl bn,.lfl,rl}
By = [bora -+ b1y ] (3.52)
BY = [bosw byt |-
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3.2. GENERAL CASE: R CONTROL INPUTS AND P OUTPUTS

3.2.2 Impulse response cost function

Consider the cost function
J = /Ooo[(ynl(t) —yrr(8))? +wiz(yriz(t) — 0)2 + - + wip(yrip(t) — 0)?
+  war(yra1 (t) — 0)% + (yraa(t) — yrro(t)? + -+ + wap(yrap(t) — 0)?

: (3.53)
+ wp1Wrp1 () — 0)% 4+ wp2(Wrp2 () — 002 + -+ + (Wrpp () — yrrp(t))*]dt

where the w;; constants are weight coefficients controlling the decoupling as
before. Again, to simplify the notation, the following matrices are intoduced

Anxn:/ Y, (1) Y,E (t)dt, (3.54)
0
B},
5 :
Gisrxsr) = | . A[ Ba B -+ By | =Bl AB;., (3.55)
BT
Hiwse (1)) = /0 Yy(6)¥;T, (t)dt, (3.56)
Dj3rx1) = Bt HiBri, (3.57)
Arinitxtnri-y = [ VOV 0)a (3.58)
and
Miaxr) = BLAByi. (3.59)

Parts of the cost function can be written as

/ (yr4i(t) —yr(1)?dt = CLG,Ci —2CTD; + M,
0

| s -0t = wctac, (3.60)

3.2.3 Impulse response minimization

To minimize the impulse response all partial derivatives of the cost function
with respect to the PID controller coefficents are set to zero

oJr
oC.;

=0. (3.61)

The derivatives are then written out as
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0
WJI = 2G1C1+2w2G2Cy + -+ 2wp1G,C1 — 2D =0
1
0Jr
E = 2w12G1C2 +2G2Co + -+ + 2wp2GpC.a — 2Dy =0 (3.62)
) :
WJI = 2w1pGiCp + 2w2pGaCop + -+ - + 2G,C.p — 2D, = 0,
P

resulting in the following linear system of equations

(G +wanGa+ - +wnGp)Cai = Dy
(w12G1 + G2 + -+ +wpGp)Ca = Dy (3.63)
(wlpgl + w2pg2 +--- 4+ gp) C~p - Dp

that determines the PID controllers coefficents, for all the r - p PID controller
in the MIMO PID controllers.

3.2.4 Step response

The step response for the elements transfer functions in the TFM G(s)C(s) is
defined in the same way as before as

t
Ysij = / yr,ij(u)du
0

t
= ciB] / Yy (u)du (3.64)
0

Us.ij(t) +Ysg 45 (t),

again with 7s;(¢) and g ;;(t) as the transient and stationary parts, respec-
tively. They are given by

9s,i;(t) = CEBIY, "V (t) (3.65)

and

T by
Tsi®) =CIBI([ & 0 - 0], ) ="K, (366)

with by ;. and Ky .; given by

Kri=[ K Krai - Krgpil (3.67)

s
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3.2. GENERAL CASE: R CONTROL INPUTS AND P OUTPUTS

and
boi- = [ boin Doz - bour | (3.68)
H (=1) A(=1) (—1) (=1) (~1)
The matrices Ay s Giarxar)r Hitnx (s —1)) Picarxtys Arigng—1)x (npe—1)) 304
Mz(.aIX)I) are defined as
1 Rl _1 _1
A= [ e e (3.60)
B
B
gi((;nl“)x?rr) = : A [ Ba Bia -+ B | = BLACYB,  (3.70)
BT
(1) F YDy DT
Hitnx i1y = /0 Y, ()Y, () dt, (3.71)
1 _1
A(_l) — - Y(_l) t Y(_l) t Tdt 3 73
ri((nyi—1) X (np—1)) — o b,ri () b,ri () ) ( . )
and
M) = BLAG VB, (3.74)

3.2.5 Step response cost function

Like before we begin by looking at the transient part of the cost function

Is = /()m[(ﬁsu(t) = 9sr1(1)% + wi2(Fs12(8) — 0)% + -+ + wip(Fs1p(t) — 0)°

+ war(Fs21(t) — 0)% + (Fs22(t) — Gsr2(£)® + - - - + wap(Gis2p(t) — 0)°

: (3.75)
+ wp1@sp1(t) — 0 + wpa(Fsp2(t) — 0)° + -+ + (Fspp(t) — Fsrp(t))?]dE,
with fooo(gjgii — §is.ri)?dt given by
/O (st — fs.00)?dt = €TGVC, — 206TDEY 4 MY (3.76)
and [ wij(9sij(t) — 0)%dt given by
/O " oy sy (1) — 02t = wiyCG0C, (3.77)
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Again for the cost function to be finite the stationary part has to be the same for
the controlled system and the reference system. This results in the constraints

0 0,ri
bo.i.

OV Ky = 0, i#j. (3.78)
ao

Like for all the previous cost functions for step responses, we augment it with a
Lagrangian function to include these constraints

N bo.1. bo.r1 bo.1. bo.1.
Isa=Js + 211 LK - — | 4+ A1z = Kpo )+ 4+ A1 —Kp.p
ag ag,r1 ag ag
,2- - 0,72 bo, 2.
+ )\21( KI-1)+)\22(—KI. >+"'+)\2p( KIp)
ag,r2 ag

(3.79)

b0, p- b0, p- b0, p- bo
+ Apl( P KI-1)+*p2( 2P KI-2)+"'+*:DP . KI-p*J .
ag ag aQ @0,rp

3.2.6 Step response minimization

Now we minimize the step response cost function by finding all the partial
derivatives and setting them equal to zero

0Tsx
ac., 0
0Tsx
o =0 (3.80)

Writing them out gives

0T _ _ _ _
ZIEA — ag{ Ve —2p{™Y yowg6lT Ve 4 42005 Ve
ac.,
1 T T T T
+— (bo,.1uT +b0,.0u] + -+ b0, pud, o) A1 =0
ag
0T _ _ _ _
% = 20126 Ve +20i Pen —2pf 4 1 2wpel Ve, (3.81)
2
1 T
+— (bo,.1u] +b0,.2u] + -+ b0, pud,_o) Az =0
ag
% _ _ _ _
?s,x = 201,00 Yy +2ws,el Ve + - 4 20( Ve, — 2
‘P

1
T T T T
+— (bo’Alul +bo,.ouj + -+ boy,pugpiz) Ap=0
ag
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3.2. GENERAL CASE: R CONTROL INPUTS AND P OUTPUTS

and for the \;;

bo,r1
ag,r1
9T, 1 T T T 0
— = — (bo,.1u] +bg,.2uy +---+bg .pu3z,_o)C.q1 — =0
EYW a0<, 1 24 ,p%3p 2) :
0
0
0,72
ag,r2
9T5,x 1 T T T 6
— 2% = (bg .quj +bg .ouy + - +by.puz,_o)Co2— 0 =0 (3.82)
g ao< ;- 1u ,-2uy 0,-h¥3p 2) .
0
0
LSRN 1 T T T
—= = — (bO,»lul +bo,.2uy +”’+b0,*pu3p—2) Cp — : =0.
ox.p ag 0
by
0,rp
L a0,rp

Now uy, is a column vector of size 3r with the k-th element as 1. It is worth men-
tioning that the derivatives above are the same as for the square system G(s),
because the open loop system G(s)C(s) is a square system. These derivatives
can be rewritten in a compact matrix form as

(=1) (=1) (=1) 1 T T T T
g +w219 +twp1 @ —L|b.q gui +b.g guy +-+b.p gus,__
[1 2 PP 3rx 37 “0[ 0%1 0t p.0%3p 2]3"“’ [[C-llsrxl
Nalpxt
1 T T P
s [b.1,0uT +b.2,0u] +‘+b«p,0u3p—2:|p><3r Olpxp
[»i7"]
1 3rx1
bo,r1
ag,r1
= 0
o pX1
(—1)
Dy
T bo
—1 —1 —1 2
w120{ D 40f b tupaofm o] tba0uf Htbp0usp 2] [0,2}* Gors (3.83)
Xao] 0 .
& [br0uf +bo2,0uf +4b.p0usp 2] 0 2 0
0
Dg’l)
—1 1 —1 T 0
w1pg( )+W2pgé )+---+QZ(, ) %[b,1,0uT+bA2,0uZ+‘+b,p,ou3p72} [c,p]
Ap| =
%[b-l,0u?+b-2,0uz+'+b-p,0u3p72] 0 P .
b0.rp
ao,r3

3.2.7 More outputs than control inputs

It is only possible to find an optimized MIMO PID controller if the number of
control inputs is higher or equal to the number of outputs, » > p. This is due
to the fact that it is impossible to solve Equation (3.83) unless the matrix

1
p, [baou] +boous + -+ b~p,0“3p—2]px3r
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has rank p or higher. The matrix only has rank p or higher if r > p since the
matrix can only have rank as high as r. This is because the matrix has p row
vectors and each row vector has 3r elements but only r elements are nonzero,
and they are in the same positions for all the rows. The same elements are
always nonzero for all the row vectors. For example if p = 3 and r = 2 then

pX3r =

8 8 8
o O O
o O O

0 0
1
— [b.LOU;,{ + b.Q,OuZ + -+ b.p,ougp_g] 0o 0|, (384)
o 0 0

8 8 8

where z is a nonzero element. In this example, the matrix can never have a
rank higher than two when r = 2. Another way to show this would be to look
at how the inverse of a block matrix is found, see [39].

x zr |t X' o x"1zT(zx"1zT)y 1zt xY —xTlz(-zx"1zT)!
zZ 0 = (zx—1zT)y~"tzTx ! (—zx~tzT)~? (3.85)

This well known equation is only valid if X ! and (—=ZX ~1Z7)~1 exist. If Z is
a p x 3r matrix and if X is a 3r X 3r matrix, then (=ZX~1Z7) will be a p x p
matrix. This p X p matrix is only invertible if it has rank p. It will only have
rank p if Z has rank p or higher. These are also necessary conditions for the
overall matrix to be invertable.
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Chapter 4

Examples

4.1 A system with 2 control inputs and 2 outputs

We begin by finding the optimized MIMO PID controller for an arbitrarily

chosen 2 I/O system given by

1 s24+3s+2 s2+10s+9
G(s) = —
a(s) s+ 10 -5
B 1 (s+2)(s+1) (s+9)(s+1)
o a(s) s+ 10 -5
where
1 1
a(s) 85+ 15s% + 8583 + 22552 + 2745 + 120
1

(s+1)(s+2)(s+3)(s+4)(s+5)

A reference system that meets our design requirements is chosen

which results in the closed loop reference system

0.7230 0
_ | $®¥1.535+0.723
Gra = [ s°F OSJr 0.5 }
s24+1s5+0.5

The B;; matrices for the system are

47
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4.1. A SYSTEM WITH 2 CONTROL INPUTS AND 2 OUTPUTS

Impulse Response

From: In(1) From: In(2)
0.06

0.04
0.02

AN

-0.02
0.06

To: Out(1)

Amplitude

0.04
0.02
’ \/_/—'—
-0.02
0 2 4 6 8 0 2 4 6 8
Time (sec)

To: Out(2)

Figure 4.1: Tmpulse response for the open loop system G(s).

2 0 0 9 0 O
3 2 0 10 9 O
Bi=|1 3 2 By = 1 10 9
0 1 3 0 1 10
0 0 1 0 0 1
(4.5)
10 0 O -5 0 0
1 10 0 0O -5 0
Boy = 0 1 10 Boo = 0 0 -5
0o 0 1 0 0 0
0 0 O 0 0 0

4.1.1 Impulse optimization

We begin by optimizing using the impulse response. The impulse response for
the system G(s) is shown in Figure 4.1, we want it to look more like the impulse
response for the open loop reference system shown in Figure 4.2. Lets begin
the optimization by using the Matlab function lyap to find the matrix A

0.000019290123457 0 —0.000013778659612
0 0.000013778659612 0
A = —0.000013778659612 0 0.000052358906526
0 —0.000052358906526 0
0.000052358906526 0 —0.000675154320988
0 0.000052358906526
—0.000052358906526 0
0 —0.000675154320988 (4.6)
0.000675154320988 0

0 0.043041776895944

We have two D; matrices
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From: In(1)

Impulse Response

From: In(2)

0.5

To: Out(1)
o

-0.5

Amplitude

0.5

To: Out(2)

-0.5

\¥—

6 0
Time (sec)

Figure 4.2: Impulse response for the open loop reference system.

0.0044
0.0068
0.0103
0.0132
0.0202
0.0309

D1

With w;; = 10 this gives us the following two matrix equations

0.0196 0 —0.0153
0 0.0153 0
—0.0153  0.0000 0.1057
—0.0090  0.0002 0.0050
—0.0002 —0.0050 —0.0025
0.0050 0.0025 0.0306

0.0076
0.0076
0.0076
and Dy =1 4035 |- (4.7)
—0.0035
—0.0035
—0.0090 —0.0002 0.0050 K
0.0002 —0.0050 0.0025 Kp11
0.0050 —0.0025 0.0306 Kpi1
0.0076 —0.0095 Ko
—0.0000 0.0095 0 Kpoi
—0.0095 0.1157 Kpar
0.0044
0.0068
0.0103
0.0132 (4'8)
0.0202
0.0309
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4.1. A SYSTEM WITH 2 CONTROL INPUTS AND 2 OUTPUTS

Impulse Response

From: In(1) From: In(2)

0.4
0.3
0.2
0.1

0

-0.1
0.8

To: Out(1)

Amplitude

0.6

0.4

To: Out(2)

0.2

o

-0.2
0 2 4 6 8 0 2 4 6 8

Time (sec)

Figure 4.3: Impulse response for the open loop system with the controller in
Equation 4.10.

and
0.0039 0 —0.0114  0.0056 0.0046 —0.0185 K2
0 0.0114 0 —0.0046  0.0185 0.0507 Kpia
—0.0114 —0.0000 0.4722 —0.0185 —0.0507 0.5655 Kpi2
0.0056 —0.0046 —0.0185 0.0279 0 —0.0612 Kioo
0.0046 0.0185 —0.0507 0 0.0612 0 Kpaa
—0.0185 0.0507 0.5655 —0.0612 0 1.0278 Kpao
0.0076
0.0076
0.0076
—0.0035 (4.9)
—0.0035
—0.0035
This results in the following optimized MIMO PID controller
}c( 5 = 11 0.1489s2 + 1.1957s 4+ 2.8177  0.6580s2 + 5.3578s + 4.0103 (4.10)
S T 5| 0.5450s2 4+ 2.8461s + 5.6402  —0.6153s2 — 1.4299s — 0.9731 ’
L[ 0.1489(s + 4.0142 + 1.67484)(s + 4.0142 — 1.67481) 0.6580(s + 7.3090) (s + 0.8339)
- { 0.5450(s + 2.6109 + 1.8792i)(s + 2.6109 — 1.8792i)  —0.6153(s + 1.1619 + 0.4810i)(s + 1.1619 — 0.48104)

The impulse response for the system with this controller in open loop can be
seen in Figure 4.3. The impulse response with the controller looks more like the
impulse response for the reference system then it did without the controller.

Figure 4.4 shows shows how the closed loop system with the optimzed MIMO
PID controller response to a unit step signal on reference inputs 1 and 2 at
t = 0s and t = 20s respectively. The solid line are the controlled system
outputs and the broken line is output for the reference system. The outputs for
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System and reference systems outputs

—vy,®
— Y,
- = y,0
- = =Y,

10 20 30 40 50
Time [s]
Control signals
20 T T

u
u,(t)

0 10 20 30 40 50
Time [s]

Figure 4.4: Step response for the closed loop system with the controller in
Equation 4.10.

the controlled system follow the outputs for the reference system very closely
and little coupling is noticable. The figure also shows the control signals and
how they both respond at the same time to compensate for the coupling in the
system.

A zero pole plot for each tranfer function element in G(s)1C(s) is shown in
Figure 4.5.

4.1.2 Step optimization

For the step optimization lets begin by looking at the step response for the open
loop system G(s), see Figure 4.6. It shows the step response for a unit step on
input 1 at t; = Os and a unit step on input 2 at ¢t = 20s. There is an obvious
coupling noticable, at time t = 0s and ¢t = 20s both outputs react. The outputs
also never reach the desired output value. Figure 4.7 shows the step response
for the closed loop reference system with steps at the inputs at the same times
as in Figure 4.6. From these figures we can see that G.;(s) has no overshoot
and a risetime of T,, = 3.4s, and G, (s) has a 4% overshoot and a risetime of
T,, = 3.1s. For the system G(s) we have same four B;; matrices as in (4.5)

The Matlab function lyap is used to find the matrix A"

0.0001137  —0.0000347  —0.0000193 0 0.0000138
—0.0000347  0.0000193 -0 —0.0000138 0
ACD = | —0.0000193 0 0.0000138 0 —0.0000524 | . (4.11)
0 —0.0000138 0 0.0000524 0
0.0000138 0 —0.0000524 0 0.0006752

The Hgfl) matrices are also found using Matlab’s lyap function, and with ”Hgfl)
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Pole-Zero Map Pole-Zero Map
4 4
) 2
< 2 o 3 2 o
ol =
© ©
£ 0 O - XX £ 0 MXOONXEXO
@ ©
E E
) O 2 o
—4 -4
-20 -15 -10 -5 0 5 -20 -15 -10 -5 0 5
Real Axis Real Axis
Pole-Zero Map Pole-Zero Map
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@ ©
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Figure 4.5: Zero pole plot for each transfer function element in G(s)2C(s).

Uncontrolled open loop
0.1 T T T

0]

0.09¢ —— —y,0]

0.08} .
0.07F
0.06f
0.05f
0.04}
0.03} |

0.02}

0.011 1

0 i i i i i i i
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Time [s]

Figure 4.6: Uncontrolled step response for the system in Equation (4.1).
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reference system closed loop reference responce
1.4 T T T

— = y,0

12 — Y,

15

20
Time [s]

25 30 35

40

Figure 4.7: Step response for the closed loop reference system.

and all B;; known, ng) can be found to be

0.0033 0.0340

~0.0029 ~0.0076

1 | —0.0044 -1 | —0.0076

Dy 0.0175 and Dy "= | 4174
—0.0086 0.0035

—0.0132 0.0035

(4.12)

With A1) and Dgil) known we set up the matrix equation in Equation (2.136).
All w;; coefficients are chosen as w;; = 10. For this example we have the two

linear systems of equations

0.1071 —0.0349 —0.0196 —0.0543

0.0160 0.00960 0.0167 0.0833

—0.0349 0.0196 0 0.0175 —0.0090 —0.0002
—0.0196 0 0.0153 0.0090 0.0002 —0.0050 0 0
—0.0543 0.0175 0.0090 0.0330 —0.0115 —0.0076 0.0750 —0.0417
0.0160 —0.0090 0.0002 —0.0115 0.0076 0 0 0
0.0090 —0.0002 —0.0050 —0.0076 0 0.0095 0 0
0.0167 0 0 0.0750 0 0 0 0
0.0833 0 0 —0.0417 0 0 0 0

0.0033

—0.0029

—0.0044

0.0175

—0.0086

—0.0132

0.4725

0

53

Kri
Kpi1
Kpi1
Kr21
Kp21
Kpa21
A1l
A21

(4.13)
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and
0.0122 —0.0049 —0.0039 0.0024 —0.0023 —0.0056 0.0167 0.0833 KIll
—0.0049 0.0039 0 —0.0067 0.0056 0.0046 0 0 ICP12
—0.0039 0 0.0114 —0.0056 —0.0046 0.0185 0 Kpia
0.0024 —0.0067 —0.0056 0.0484 —0.0290 —0.0279 .075! —0.0417 Kroo _
—0.0023 0.0056 —0.0046 —0.0290 0.0279 0 0 0 Kpaoo -
—0.0056 0.0046 0.0185 —0.0279 0 0.0612 0 0 Kpao
0.0167 0 0 0.0750 0 0 0 0 Ao
0.0833 0 0 —0.0417 0 0 0 0 oo
0.0340
—0.0076
—0.0076
—0.0174
0.0035 (4.14)
0.0035
0
0.5000
It is now possible to find the C;; = [ Kri; Kpij Kbpij } vectors,
cT =] 28353 1.1439 0.1574 | cL, =[ 5.6706 2.8310 0.5557 |
(4.15)

cl =] 54000 12624 6.0961 | CZ, =[ —1.2000 —0.8283 —1.7045 ].

This gives us the controller

ic(s) [ 0.1574s2 + 1.1439s + 2.8353  0.5557s2 + 2.8310s + 5.6706
s

6.0961s2 + 1.2624s + 6.0961 —1.7045s2 — 0.8283s — 1.2

e ow |~

The step response and the control signals for the controlled closed loop sys-
tem with the controller above can be seen in Figure 4.8. The outputs of the
controlled system are almost identical to the outputs for the reference system.
There is a small coupling noticeable when the second step comes on input 2
which the controller compensates for and it disappears quickly.

The zero pole plot for each element transfer function in the open loop TFM
G(s)C(s) is shown in Figure 4.9. By zooming in on Figure 4.9, see Figure 4.10,
we can see where the zeros in the optimized open loop MIMO PID controller
and system are located. Note for example that the resulting zeros in element
(1,1) are generated by G11(s)c11(s) + Giz2(s)ca1(s) = 0.

The step responses for the controlled closed loop system are shown in Figures
4.11 and 4.12, where w;; = 1 and w;; = 100, respectively. For w;; = 1 the
controller becomes

ic(s) _ [ 0.1460s2 + 1.1441s 4 2.8353  0.5638s2 4 2.8277s + 5.6706
s

2.0667s2 + 6.0657s + 5.4000  —1.0837s2 — 1.5558s — 1.2

e ow |~

For w;; = 100 the controller is

ic(s) _ { 0.1428s2 + 1.1461s + 2.8353  0.5227s2 + 2.8381s + 5.6706
s

0.7129s2 + 6.1165s + 5.4 —0.646452 — 1.808s — 1.2

e ow |~

0.7129(s + 7.5809)(s + 0.9992) —0.6464(s + 1.7137)(s + 1.0833)

The closed loop outputs in Figures 4.8, 4.11 and 4.12 are all very similar. There
is however a small difference between the figures. The controlled system outputs
follow the reference system outputs a little bit closer with larger w;; values.

o4

(4.16)

0.1574(s — 3.6344 — 2.19264)(s — 3.6344 + 2.19264) 0.5557(s 4+ 2.5470 — 1.9278i)(s + 2.5470 4 1.92784)
6.0961(s + 3.6604)(s + 1.1686) —1.7045(s + 1.0289 — 0.62464)(s + 1.0289 + 0.62461)

(4.17)

0.1460(s + 3.9190 — 2.01614)(s + 3.9190 + 2.01614) 0.5638(s + 2.5077 — 1.941414)(s + 2.5077 + 1.94144)
2.0667(s — 1.4674 4+ 0.6778i)(s + 1.4674 — 0.67781i) —1.0837(s + 0.7178 + 0.7695i)(s + 0.7178 — 0.76951)

(4.18)

{ 0.1428(s + 4.0118 — 1.9377i)(s + 4.0118 + 1.93774) 0.5227(s + 2.7147 — 1.8650i)(s + 2.7147 + 1.86501)



CHAPTER 4. EXAMPLES

System and reference systems outputs
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Figure 4.8: Step response and the control signals for the controlled closed loop
system with w;; = 10.
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Figure 4.9: The zero pole plot for the element transfer functions in G(s)C(s)
for w;; = 10.
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Figure 4.10: Zoomed in on Figure 4.9.

System and reference systems outputs
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Figure 4.11: Step response and control signal for the controlled closed loop
system with w;; = 1.

56



CHAPTER 4. EXAMPLES

System and reference systems outputs
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Figure 4.12: Step response and control signal for the controlled closed loop
system with w;; = 100.

We use the system closed loop step response to compare the impulse optimiza-
tion and the step optimization. Then the step optimization is better, the con-
trolled closed loop system step response follow the closed loop reference system
step response better then in the impulse optimization. This is partly due to the
fact that step optimization ensures the correct open loop DC gain, therefore the
integrator has less work to do when following a reference step. In general, it is
best to use impulse minimization if the system is most often subject to impulse
type imputs and step minimization if the system is most often subject to step
type inputs.

4.2 A system with 4 control inputs and 3 outputs

We now look at a system that does not have the same number of control inputs
and outputs. We choose G(s) again arbitrarily as

1 s2+10s+9 s2+3s+2 s2+35+2 s2+10s+9
G(s) = — s+10 -5 s24+3s+2 s2+10s+9 (4.19)
a(s) | 245544 s+2 5 2 4+ 105 + 9
1 (5+9)(s+1) (s+2)(s+1) (s+2)(s+1) (s+9)(s+1)
= — s+ 10 -5 (s+2)(s+1) (s+9)(s+1)
a(s) | (s+4)(s +1) 542 s (s +9)(s + 1)
with - = L = 1 This sys-
a(s) $5+1554+85534-22552+2745+120 (s41)(s+2)(s+3)(s+4)(s+5)

tem has the open loop step response seen in Figure 4.13. The steps in Figure
4.13 come on at t; = 0s, to = 10s, t3 = 20s and t4 = 30s on control inputs u1,
ug, uz and ug, respectively. Since the TFM G(s) is a 3 x 4 matrix, the TFM for
the optimized MIMO PID controller will be a 4 x 3 TFM

o7



4.2. A SYSTEM WITH 4 CONTROL INPUTS AND 3 OUTPUTS

Uncontrolled open loop
0.2 T T
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Figure 4.13: G(s) in open loop without controller.

Cngsg 612583 CBES;
C(S) = ci(s) 622(5) cii(s) . (4-20)
C41 (S) C42 (S) C43 (S)

This controller results in the closed loop system having 3 reference inputs and
3 outputs. The reference system will then be chosen as a diagonal TFM of size
3 x 3. A reference system that states our design requirements is chosen

0.723
0 0
C B s+(1),53 s 0 .
(8)= St oqes | (421)
0 0 153
The closed loop reference systems are
0.723
524+1.53540.723 005 0
Gre(s) = 0 75105 0 : (4.22)
0 0 0.723

s2+1.5354+0.723

The step response for the closed loop reference system can be seen in Figure
4.14, the steps come on at t; = 0s, to = 10s and t3 = 20s on inputs u,1, U2 and
ur3, respectively. From Figure 4.14 we can see that G,1(s) and G,3(s) have no
overshoot and a risetime T;.1 = 3.4s, G2(s) has a 4% overshoot and the risetime
T, = 3.1s. Our system G(s) has twelve B;; matrices, let us take a look at a
few of them
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Reference system closed loop step responce
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Figure 4.14: Step response for the closed loop reference system G, ¢(s).

2 0 0 9 0 0
320 10 9 0
Bi=|1 3 2 Bo=|1 10 9
01 3 0 1 10
00 1 0 0 1
(4.23)
10 0 0 -5 0 0
1 10 0 0 -5 0
Bun=|0 1 10| Byp=| 0 0 =5
0 0 1 0 0 0
0 0 0 0 0 0

The rest of the B;; matrices can be written in a similar way. Using the Matlab
function lyap we find the A~ matrix as before in (4.11)

0.1137 —0.0347 —0.0193 0 0.0138
—0.0347  0.0193 0 —0.0138 0
ACD =1073 | —0.0193 0 0.0138 0 —0.0524 | . (4.24)
0 —0.0138 0 0.0524 0
0.0138 0 —0.0524 0 0.6752

The ’H§_1) matrices are also found using the function lyap and with B;; and

7—[571) known, DZ(*D is easily found
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©0.0033 T ©0.0340 T r0.0073 T
—0.0029 —0.0076 —0.0045
—0.0044 —0.0076 —0.0069
0.0175 —0.0174 0.0044
—0.0086 0.0035 —0.0011
(-1 _ | —0.0132 (-1 _ | 0.0035 (-1 _ | —0.0017
Pr =1 0.0033 P2 = 0.0042 Py =1 _oous |- (4.25)
—0.0029 —0.0042 0.0016
—0.0044 —0.0042 0.0025
0.0175 0.0236 0.0175
—0.0086 —0.0139 —0.0086
| —0.0132 | —0.0139 | | —0.0132

With these matrices known it is possible to set up the matrix equations in
Equation (3.83) and to solve for all the C;; = | Kri; Kps; Kpaj | vectors.
With w;; = 10 the vectors become

¢y = [03176 1.5905 3.0727 ]
Cf, = [0.1074 —0.1904 —1.1585 ]
cl [ —0.2797 —0.2077 0.8362 |
Co [ 0.4749 2.9638 5.8063 |
C3 [ —0.5677 —1.9454 —4.9477 |
C33 [ 0.1534 —0.5765 0.4778 | (4.26)
Ciy [ 0.2330 2.8486 3.1725 |

Ci [ 0.4855 5.9556 4.6167 |

Ci; = [ —0.7781 —9.5541 —8.3398 |
ch [ —0.2618 —1.1513 —0.8934 |
Cia [ —0.0286 0.3644 4.1792 |
Cls = [0.8605 3.3830 1.1896 ].

Figure 4.15 shows how well the closed loop system outputs follow the reference
system with this controller, along with the closed loop system control signals.
We see that the system is almost decoupled, only small oscillations occur at the
outputs when a step comes on the other inputs.

4.3 Ferrosilicon Furnace

A model of a Ferrosilicon furnace was developed in [40]. The purpose of devel-
oping the model was to find a MIMO method of control for the furnace. In this
control problem the goal is to control and decouple currents in three electrodes
in the furnace. It is possible to increase or decrease the current in each elec-
trode by moving it down or up. The currents are heavily coupled and cyclically
coupled since it is really a three phase electrical system. Let us now see if it
is possible to control and decouple the system using the optimized MIMO PID
controller. After the model of the ferrosilicon furnace has been transformed into
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Controlled closed loop systems outputs and reference systems outputs
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Figure 4.15: Step response and control signals for the closed loop system.

a continuous time, the TFM becomes

—1.05552 — 0.2584s — 0.0009118  —0.818s% — 0.1937s — 0.0009118

G(s) = — 0.20352% + 0.0878s — 0.0007294 —1.05552 — 0.2584s — 0.0009118
as(s) —0.818s2? — 0.1937s — 0.0009118 0.20352% + 0.0878s — 0.0007294
0.203s2 + 0.0878s — 0.0007294
—0.818s2 — 0.1937s — 0.0009118 (4.27)

—1.05552 — 0.2584s — 0.0009118

afl(s) = =o3sEeooors- Lhe step response for the open loop ferrosilicon
furnace with no controller is shown in Figure 4.16. It can easily been seen that
the system is heavily coupled. For the ferrosilicon furnace, the reference system

is chosen as

o0
Ge(s)=| 0 5 0 |, (4.28)
0 0 si5
resulting in the closed loop reference system
1
PLE yanY 0 0
Gr.a(s) = 0 Py (1) (4.29)
0 TAEsTT

The step response for the reference system can be seen in Figure 4.17. This
reference system has no overshoot for any of the three outputs. It has the
risetime 7, = 13.6s for all three outputs. For this system m;; + 2 = 4 > n,
therefore a small trick is used. We add three dummy poles to the system for
the optimization, if the dummy poles have a unity DC gain and are in the left
half plane far away from the poles of the element transfer function, they will not
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Figure 4.16: Step response for the open loop ferrosilicon furnace with no con-
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Figure 4.17: Step response for the closed loop reference system for the ferrosil-

icon furnace.
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affect the system. For the ferrosilicon furnace three dummy poles are added to
each element transfer function at —36.3922, which is 100 times the fastest pole
in the system. Then n = 5 and it is possible to find the optimized MIMO PID
controller. Then the TFM looks like this

1 —5.085 - 10*s% — 1.245 - 10*s — 43.95 —3.943 - 10*s? — 93355 — 43.95
Ga(s) = 978452 + 4232s — 35.16 —5.085 - 10%s% — 1.245 - 10%s — 43.95
aa(s) —3.943 - 10*s2 — 93355 — 43.95 978452 + 4232s — 35.16

978452 + 4232s — 35.16
—3.943 - 10*s? — 93355 — 43.95
—5.085 - 10*s% — 1.245 - 10*s — 43.95

with adl(s) = 55+109‘5602s4+4015.0587s3+497122‘071752+18510‘3727s+342.7730' With this
new system the B;; matrices become
[ —0.0044 0 0
—1.2454 —0.0044 0
By = 10*| —5.0849 —1.2454 —0.0044
0 —5.0849 —1.2454
| 0 0 —5.0849
[ 0.0352 0 0
4.2318 —0.0352 0
Bis = 10°| 9.7841 4.2318 —0.0352 (4.31)
0 9.7841  4.2318
|0 0 9.7841
[ —0.0044 0 0
—0.9335 —0.0044 0
Bis = 10*| —3.9426 —0.9335 —0.0044
0 —3.9426 —0.9335
|0 0 —3.9426

Because of symmetry in the system the rest of the matrices are Bs; = Bis,
BQQ = BH, 823 = 812, B31 = 812, B32 = 813 and B33 = BH. Matlab is then
used to find A, DY and to solve for the C;;j vectors.

%

cli = [ —2.787 0.0472 —0.0797 |
cly = [50143 —0.0332 0.0584 |
Cly —2.7857 0.0351 —0.0570 |
€ = [ —2.7857 0.0351 —0.0570 |

[
[
[
[
Clp = [ —2.7857 0.0472 —0.0797 | (4.32)
Cl3 [ 5.0143 —0.0332 0.0584 |
Ch = [5.0143 —0.0332 0.0584 |
Ci = [ —2.787 0.0351 —0.0570 |
Cly = [ —2.7857 0.0472 —0.0797 |

Using these optimized MIMO PID controllers results in the step response for
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Contolled closed loop and reference system
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Figure 4.18: Step response and control signal for the closed loop ferrosilicon
furnace with the optimized MIMO PID controller.

the closed loop ferrosilicon furnace seen in Figure 4.18. Because of how heavily
the system is coupled, we don’t see as good result as in the previous examples.
The outputs are not able to follow the reference system as closely as we would
want. When a step comes on a reference input 1, a large reaction is seen on
outputs 2 and 3. Even though this is a larger reaction than we had hoped to
see, the controller is able to compensate for it and outputs 2 and 3, return to
the same value as reference inputs 2 and 3 respectively, very quickly. The same
happens when a step comes a reference inputs 2 or 3 for corresponding outputs.

Because of the large time scale in Figure 4.18 it is helpfull to zoom in, see Figure
4.19.
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Control signals ui(t)
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Figure 4.19: Zoomed in on Figure 4.18.
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Chapter 5

Concluding remarks

5.1 Final remarks

An optimized MIMO PID controller has been derived, where the controllers
track a chosen open loop reference system. It is not possible to fully decouple
a MIMO system using this optimized MIMO PID controller. The controlled
system can, however, come very close to being fully decoupled. The optimized
MIMO PID controller was derived first for a system with two inputs and two
outputs. It was then extended to the general case of p inputs and p outputs.
Then the optimized MIMO PID controller was derived for systems that do
not have the same number of inputs and outputs. Beginning with a system
with three inputs and two outputs, it was then extended to the general case
of r inputs and p outputs. It was further shown that the optimized MIMO
PID controller can not control systems with more outputs than control inputs.
In order to calculate the optimal MIMO PID controller it is possible to use
two different methods to find the Gramian matrices A and A1) used in the
optimization. Both methods were presented but only one of them was used in
the examples. At the end three examples were shown, demonstrating how well
the optimized MIMO PID controller works. The first example is a system with
2 control inputs and 2 outputs, the second example is a system with 4 control
inputs and 3 outputs. The final example is a real system, a ferrosilicon furnace,
with three control inputs and three outputs. In the first two examples almost no
coupling effect was noticed and the outputs follow the chosen reference system
very closely. When the model of the ferrosilicon furnace in the third example
is written in a state space form the D matrix is not zero. This direct effect on
the outputs along with the high cyclic coupling effect causes the decoupling and
control of the system to be harder to handle. Even though the coupling effects
are high in the controlled system, the optimized MIMO PID controller is able
to compensate for them quickly and the outputs all have the desired reference
value as a final value.

5.2 Future work

The next steps in research on the optimized MIMO PID controller could be to
figure out the structure in the matrices in Equations (2.136) and (3.83), and to
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find out the conditions under which the equation has a solution. The possible
use of the optimized MIMO PID controller to stabilize an unstable system as
well as to decouple it, is another exciting research topic, although this may
have to be done in an inner state feedback style loop. Closed loop stability is
very important for control systems and it would be interesting to know if the
optimized MIMO PID controller can always guarantee closed loop stability. It
would also be useful to derive the optimized MIMO PID controller for discrete
time systems, since digitalized system dominate the industry, both in system
identification as well as in controller setups. For the ferrosilicon furnace the next
steps would be to use the full model including the movement of the electrods,
time delay and the limits on the inputs signals, see [41] and [42], in the design
of the controller. Finally, minimization of the Matlab code is an important
practical issue.
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Appendix A

Matlab code

A.1 Square systems

A.1.1 Impulse optimization

The code used to find the optimized MIMO PID controller for a square system
using impulse optimization.

function [C Gc_dummy] = mimopidImp(Gc,Gr,W)

%C_ij = [K_Dij K_Pij K_TIij]

%Gc_dummy is the Gc system with the dummy poles if they where use
%if no dummy poles where use the it is just Gc

numGe = get(Gc,’num’);

denGec = get(Gc,’den’);
denGc = denGec{1,1};

numGr = get(Gr,’num’);
denGr = get(Gr,’den’);
[m mm] size (numGce) ;

[mr mmr] = size(Gr);

%Check if the size of Gc and Gr are the same
if (m ==mm) & (mr == mr) & (m == mr)

for i=1:m
for j =1:m
numGc{i,j} = lagavigur (numGc{i,j});
numGr{i,j} = lagavigur (numGr{i,j});
end
end

%check if dummy poles have to be added

dp = 0;
for i=1:m
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for j =1:m
if (length(denGc)-length(numGe{i,j}) < 3)
dp = 1; Jief dp set sem 1 pa parf ad bzta vid dummy pdl
end
end
end

if dp == 0
disp(’Dummy pole is not used’)

numGc;
denGc;

nota_numGc
nota_denGc

elseif dp ==
disp(’Dummy pole is used’)

polar = roots(denGc); %nz i pdla kerfisins
poltl = max(abs(polar)); %finn stzrsta pdlinn
DumPole = 100*poltl; Jnota 100 sinnum stersti pélinn sem dummy pdl

%Check how many dummy poles to use
for i = 1:m

for j=1:m

n(i,j) = 3-(length(denGc)-length(numGe{i,j}));

end
end
NrOfDumPole = max(max(n));
denGc_dummy = conv(denGe,poly(-ones(1,NrO0fDumPole)*DumPole)) ;
nota_denGC = denGc_dummy;

Jnum is scaled so the DC gain is correct
for i=1:m
for j=1:m
numGc_dummy{i, j} = numGc{i,j}.*denGc_dummy(end)/denGc (end) ;
end
end

nota_numGc = numGc_dummy;
nota_denGc = denGc_dummy;
end

%B marices created
for i=1:m
for j =1:m
B{i,j} = convmtx(nota_numGc{i,j}(end:-1:1),3).’;
[s{i,j} ss{i,j}] = size(B{i,j});
if s{i,j} < (length(nota_denGc)-1)
B{i,j}(length(nota_denGec)-1,:) = [0 0 0];
end
end
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end

%Br and Hr matrices created
for i=1:m
Br{i} = numGr{i,i}(end:-1:1).7;
H{i} = H_nytt(roots(nota_denGc) ,roots(denGr{i,i}));

% A martrix found
Alyap = Aimp(nota_denGc);

%BBdalk{i} = Bi.
%BBlina{i} = B.i
for i = 1:m
BBdalk{i} = B{i,1}.’;
BBlinu{i} = B{i,1};
for z = 2:m
BBdalk{i} = [BBdalk{i}; B{i,z}.’];
BBlinu{i} = [BBlinu{i}, B{i,z}];
end
end
for j = 1:m
G{j} = 0;

for i = 1:m
G{j} = G{j} + W(i,j)+*BBdalk{i}*Alyap*BBlinu{i};
end
end

%D matrices created
for i = 1:m
D{i} = BBdalk{il}*H{il}*Br{i};

end
for i = 1:m

C{i} = G{i}\D{i};
end

else
%Gc and Gr do not have the same size, stop runing
disp(’Gc and Gr are not of the same size’)
C =0;
Gc_dummy = Gc;
return
end
%Gc_dummy is also return
Gc_dummy = tf (nota_numGc,nota_denGce);
end
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A.1.2 Step optimization

The code used to find the optimized MIMO PID controller for a square systems
using step optimization.

function [C Gc_dummy] = mimopid(Gc,Gr,W)

%C_ij = [K_Dij K_Pij K_Iij]

%Gc_dummy is the Gc system with the dummy poles if they where use
%if no dummy poles where use the it is just Gc

h

numGc = get(Gc,’num’);
denGc = get(Gc,’den’);
denGec = denGe{1,1};

numGr = get(Gr,’num’);
denGr = get(Gr,’den’);

[p pp] = size(numGe);
[pr ppr] = size(Gr);

%checking if the size of the system and the
hreference system are the same
if (p == pp) & (pr == pr) & (p == pr)

for i=1:p
for j =1:p
numGc{i,j} = lagavigur (numGc{i,j});
numGr{i,j} = lagavigur (numGr{i,j});
end
end

%check if dummy poles have to be added

dp = 0O;
for i=1:p
for j =1:p
if (length(denGc)-length(numGe{i,j}) < 3)
dp = 1;
end
end
end

if dp == 0 % no dummy pole have to be added
disp(’parf ekki ad bzta vid dummy pdl’)

nota_numGc = numGc;
nota_denGc denGc;

elseif dp ==
disp(’parf ad bata vid dummy pdl’)

polar = roots(denGc);
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poltl = max(abs(polar));
DumPole = 100*poltl;

%check how many dummy poles to add
for i = 1:p

for j=1:p

n(i,j) = 3-(length(denGc)-length(numGe{i,j}));

end
end
NrOfDumPole = max(max(n));
denGc_dummy = conv(denGc,poly(-ones(1,Nr0fDumPole)*DumPole)) ;
nota_denGC = denGc_dummy;

%correcting the numenator so the dc-value is the same as before

for i=1:p
for j=1:p
numGc_dummy{i,j} = numGc{i,j}.*denGc_dummy(end)/denGc(end) ;
end
end

nota_numGc = numGc_dummy;
nota_denGc = denGc_dummy;

end

%B matrix created
for i=1:p
for j =1:p
B{i,j} = convmtx(nota_numGc{i,j}(end:-1:1),3).7;
[e{i,j} ee{i,j}] = size(B{i,ji});
if e{i,j} < (length(nota_denGc)-1)
B{i,j}(length(nota_denGc)-1,:) = [0 0 0];
end
end
end

%Br and Hr matrices are created
for i=1:p

Br{i} = numGr{i,i}(end:-1:1).7;

Hr{i} = Hrfylki(denGr{i,i},nota_denGc);
end

% A matrix is found
Alyap = Afylki(nota_denGc);

%BBdalk{i} = Bi.
%BBlina{i} B.i
for i = 1:p

BBdalk{i} = B{i,1}.’;
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BBlinu{i} = B{i,1};

for z = 2:p
BBdalk{i} = [BBdalk{i}; B{i,z}.’];
BBlinu{i} = [BBlinu{il}, B{i,z}1;
end

end

%G{j} are all the omega_ij*G matrices added together
for j = 1:p
G{j} = 0;
for i = 1:p
G{j} = G{j} + W(i,j)*BBdalk{i}*Alyap*BBlinu{i};
end
end

%D matrix created
for i = 1:p

D{i} = BBdalk{i}*Hr{i}*Br{i};
end

%u_k vectors
t = zeros(3*p,1);

i=1;
while 1<3x*p
u{i} = t;
u{i}(i) = 1;
i = i+3;
end
for z = 1:p
j=1
r{z} = 0;
for i = 1:p
r{z} = r{z} + nota_numGc{z,i}(end)*u{j};
3= 3%3
end
end

DC_vector = r{1};
for i = 2:p
DC_vector = [DC_vector,r{il}];
end
DC_vector = 1/nota_denGc(end)*DC_vector;

for i =1:p
F{i} = [G{i} DC_vector; DC_vector.’ zeros(p) 1;

end
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m = zeros(p,1);

for i = 1:p
v{i} = m;

v{i} (i)

I
-
e

end

£
-~
He oo
-
Il

[D{i}; (numGr{i,i}(end)/denGr{i,i}(end))x*v{il}]1;
end
%calculate the PID coefficents
for i = 1:p
CC{i} =F{i}\E{i};

end

else
%Gc og Gr are not of the same size, stop
disp(’Gc and Gr are not of the same size’)
C =0;
Gc_dummy = Gc;
return

end

»atby C fylki, sem er skilad
Jprepare the C matrix to be returned
for i = 1:p
w=1;
for j = 1:p
C{i,j} = CcC{i}(u+2:-1:w);
w = w+3;
end
end

Gc_dummy = tf (nota_numGc,nota_denGce);
end

A.2 Nonsquare system

The code used to find the optimized PID controller for a system with a nonsquare
TFM using step optimization.

function [C Gc_dummy D G] = mimopid_nonsquare(Gc,Gr,W)
%C_ij = [K_Dij K_Pij K_TIij]

%Gc_dummy is the Gc system with the

%dummy poles if they where use if no

%dummy poles where use the it is just Gc

%Gc is a rxp TFM so Gr has to be a pxp TFM

numGe = get(Gc,’num’);
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denGec = get(Gc,’den’);
denGc = denGe{1,1};

numGr = get(Gr,’num’);
denGr = get(Gr,’den’);

[p r] = size(numGc);
[Pref Rref] = size(Gr);

%checking if Gr is a pxp TFM
if (p == Pref) & (Rref == Pref)
for i=1:p
for j =1:r
numGe{i,j} = lagavigur (numGe{i,j});
end
end

for i=1:Pref

for j =1:Pref
numGr{i,j} = lagavigur (numGr{i,j});
end

end

%checking if dummy poles have to be added

dp = 0;

for i=1:p

for j =1:r
if (length(denGc)-length(numGe{i,j}) < 3)
%if dp = 1, then dummy poles have to be added
dp = 1;

end
end
end

% if dp = O then no dummy pole have to be added
if dp ==
disp(’parf ekki ad bzta vid dummy pdl’)
nota_numGc = numGc;
nota_denGc = denGc;

elseif dp == 1 %dummy pole added
disp(’parf ad bata vid dummy pdl’)
polar = roots(denGc);
poltl = max(abs(polar));
%use 100 times the fastest pole of the system
DumPole = 100*poltl;

%checking how many dummy poles to add
for i = 1:p
for j=1:r
n(i,j) = 3-(length(denGc)-length(numGe{i,j}));
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end
end

NrOfDumPole = max(max(n));
denGc_dummy = conv(denGc,poly(-ones(1,Nr0fDumPole)*DumPole)) ;
nota_denGC = denGc_dummy;

%correcting the numerator so the dc-gain is correct
for i=1:p
for j=1:r
numGc_dummy{i,j} = numGc{i, j}.*denGc_dummy (end)/denGc(end) ;
end
end

nota_numGc = numGc_dummy;
nota_denGc
end

denGc_dummy;

for i=1:p
for j =1:r
B{i,j} = convmtx(nota_numGc{i,j}(end:-1:1),3).7;
[e{i,j} ee{i,j}] = size(B{i,j});
%zeros added to the B matrix if needit
if e{i,j} < (length(nota_denGc)-1)
B{i,j}(length(nota_denGec)-1,:) = [0 O 0];
end
end
end

%Br and Hr matrix created
for i=1:Pref

Br{i} = numGr{i,i}(end:-1:1).7;

Hr{i} = Hrfylki(denGr{i,i},nota_denGc);
end

% A matrix created
Alyap = Afylki(nota_denGc);

%BBdalk{i} = Bi.
%BBlina{i} = B.i

for i = 1:p
BBdalk{i} = B{i,1}.’;
BBlinu{i} = B{i,1};
for z = 2:r
BBdalk{i} = [BBdalk{i}; B{i,z}.’];
BBlinu{i} = [BBlinu{i}, B{i,z}];
end

end
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%G{j} are all the omega_ij*G marices added togeter

for j = 1:p
G{j} = 0;
for i = 1:p

G{j} = G{j} + W(i,j)*BBdalk{i}*Alyap*BBlinu{i};
end
end

%D matrix created
for i = 1:p

D{i} = BBdalk{il}*Ar{i}*Br{i};
end

%u_k vectors created
t zeros (3*r,1);
i=1;
while i<3x*r
u{i} = t;
u{i}(i) = 1;
i = 1i+3;
end

for z = 1:p
i=1
Q{z} = 0;
for i = 1:r
Q{z} = Q{z} + nota_numGc{z,i}(end)*u{j};
j =33
end
end

W = Q{1};
for i = 2:p
w = [H,Q{i}];

end

W = 1/nota_denGc(end) *W;
for i =1:p

F{i} = [G{i} W; W.’> zeros(p) 1;
end

null_dalkur = zeros(p,1);

for i = 1:p
v{i} = null_dalkur;
v{i}(i) = 1;

end

for i = 1:p

E{i} = [D{i}; (numGr{i,i}(end)/denGr{i,i}(end))x*v{il}];
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end

%calculate the PID coefficient
for i = 1:p
CC{i} =F{i}\E{i};

end

%create the C matrix, that is returned

for i =1:p
q =1;
for j =1:r
C{j,i} = CC{i}(g+2:-1:q9);
q = qt+3;
end
end

Gc_dummy = tf (nota_numGc,nota_denGce);

else
disp(’Gr ekki af réttri stzrd’)
CcC=1;
Gc_dummy = 1;
return
end

A.3 Code to find the matrices A and # "

Matlab’s lyap function was use to find the matrix A1),

function A = Afylki(a)

%a is the coefficient form a(s)

C = [zeros(1,length(a)-2)’ eye(length(a)-2); -a(end:-1:2) ];
U = zeros(size(C));

U(1,1) = 1/a(end)"~2;

A = lyap(C,U);

end

The function 1yap is also use to find the matrices 7{§_”.

function Ar = Arfylki(ar,a)

%a are the coefficient form a(s)

%ar are the coefficient form a_r(s)

C = [zeros(1,length(a)-2)’ eye(length(a)-2); -a(end:-1:2) ] ;

Cr = [zeros(1l,length(ar)-2)’ eye(length(ar)-2); -ar(end:-1:2) ];
Ur = zeros(size(C,1),size(Cr,1));

Ur(1,1) = 1/(a(end)*ar(end));

Urr = zeros(size(Cr));

Ar = lyap(C,Cr’,Ur);

end
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A.4 Code to find the matrices A and H;

Matlab’s 1yap function was use to find the matrix A.

function A = Aimp(a)

%a is the coefficient form a(s)

F = [zeros(l,length(a)-2)’ eye(length(a)-2); -a(end:-1:2) 1;
U = zeros(size(F));

U(end,end) = 1;

A = lyap(F,U);

end

The Matlab code to find the #; matrices

function H = H_nytt(polar,polar_ref)

n = length(polar);

tol = 0.01;

[L d] = classifyRoots(polar,tol);

nr = length(polar_ref);

%flokka pdla ref kerfisins

[Lr dr] = classifyRoots(polar_ref,tol);

[EE EEr] = constrEEandEErmatr(L,d,Lr,dr,n,nr);
[X,J] = cHmatrix_temp(n,L,d);

H = K.’*EEr;
end
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