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Abstract

The aim of this thesis is to find the expected total compensation cost the insurance
company (VTS) needs to pay due to car accidents. Information are based on postal
codes and the compensation cost is examined for each postal code in the country
using a Poisson model and a gamma model, respectively. One of the main goals
was to evaluate whether the residence of policyholders influence the result, by using
spatial factor, one for each postal code. Another goal was to see if the results are
improved by having temporal factor included in the model. Also, to improve the
spatial factor, postal codes were categorized into postal category matrix where each
category describes the type of region.

To examine the expected total compensation cost it is necessary to find the expected
frequency of claims per policy year and the expected total claim size per policy
year. These factors are examined per each postal code in the country. The expected
compensation cost is calculated from the combination of those two models.

Data for mandatory liability insurances for vehicles are divided into three main
categories, property loss, bodily injury and drivers accident insurance. In this study
only results for property loss are given for one risk category over 16 year period.

The main result is that the claim frequency per policy year depends on the residence
of policyholders. The number of claims are higher in the capital area than in the
countryside. The spatial factor is very effective but the temporal factor influences
much less. Nonetheless, it was decided to include the temporal factor in the model
since it did not make the model less qualified. Also, there is a possibility of years
with higher number of claims which would support the inclusion of the temporal
factor.

Results for the total claim size show that the expected claim sizes are independent
of the the residence of policyholders. The total claim size is similar no matter which
part of the country is examined. Originally the model included both temporal factor
and spatial factor but the spatial factor was taken out of the model since it did not
influence the results. Nonetheless there are always some spatial effects from the
postal category matrix. The temporal factor on the other hand has a substantial
influence on the total claim size even though the data has been brought to present
worth.



The expected total compensation cost the insurance company needs to pay is in
context to the earlier mentioned results. The cost is highest in Reykjavik and the
neighborhood of Reykjavik, gets lower when the countryside is examined but raises
a bit at and around large urban regions. According to these results, it is justified
that pricing of insurance would depend on the residence of policyholders.



Agrip

Markmio pessa verkefnis er a0 finna it vaentanlegan heildarkostnad sem trygginga-
félagid (VIS) parf ad greida i baetur vegna bilslysa. Upplysingar eru byggdar & post-
nimerum og er kostnadurinn skodadur fyrir hvert péstnimer landsins. Hugmyndin
er a0 meta hvort 16gheimili vatryggingartaka hafi dhrif & nidurstéouna med pvi ad
baeta landfraedilegum beetti i likanid. Einnig var skodad hvort baeta megi nidurstéour
med pvi ad hafa timapéatt i likaninu. Péstnimerin voru flokkud i steerri péstnimera-
flokka til ad auka gaedi landfraedilega pattarins.

Til a0 skoda vaentanlegan kostnad parf fyrst ad finna veentanlegan fjolda tjona & hvert
skirteinisar og vaentanlega heildarsteerod tjona a hvert skirteinisar. Pessir tveir paettir
eru skodadir fyrir hvert postnimer med pvi ad nota Poisson likan fyrir veentanlegan
fjolda og gamma likan fyrir heildarsteerd. Veentanlegur kostnadur er reiknadur ut
fra sameiningu & pessum tveim likonum.

Gognum fyrir 16gboonar abyrgdartryggingar vegna dkuteekja er skipt i prennt, muna-
tjon, likamstjon og slysatrygging ckumanns og eiganda. Adeins eru gefnar nidurstoour
fyrir munatjon i pessari ritgerd og fyrir einn ahaettuflokk en gognin na yfir 16 ara
timabil.

Helstu niourstéour eru a0 fjoldi tjona & hvert skirteinisar er hadur 16gheimili vatryggingar-
taka. Fjoldi tjona er meiri & hofuoborgarsvaedinu en & landsbyggoinni. Landfraedilegi
patturinn er dhrifamikill en timapatturinn hefur mun minni dhrif. Engu a0 siour

var akvedid a0 hafa timapéattinn i likaninu par sem pad skerti ekki gaedi likansins.
Einnig er moguleiki & tjonapyngri &rum sem stydur pad ad nota timapéattinn.

Nidurstoour fyrir heildarstaerd tjona eru ad logheimili vatryggingartaka hefur litil
ahrif 4 heildar staerd tjona. Postnimerapatturinn hefur litil ahrif, en engu ad siour
hafa postntumeraflokkarnir dhrif & nidurstoduna. Heildarstaerd tjona er svipud sama a
hvada landshluta er horft. I upphafi innihélt likanid baedi timapatt og landfraedilegan
patt en landfraedilegi patturinn var tekinn ut ur likaninu par sem hann hafdi mjog
litil ahrif. Timapatturinn hefur aftur & moéti mikil ahrif pratt fyrir a0 gognin hafi
verid nuvirt.



Vantanlegur heildarkostnadur sem tryggingafélagio parf ad greida i baetur er i sam-
raemi vio nidurstéour sem buiid er ad greina fra. Kostnadurinn er mestur i Reykjavik
og nagrenni, laekkar eftir pvi sem kemur ut 4 landsbyggdina en hackkar p6 adeins i og i
kringum steerri péttbyli. Kosnadurinn er minnstur i dreifbylum og minni péttbylum.
Samkvaemt pessum nidurstodum er réttletanlegt ad tryggingar séu verdlagoar eftir
l6gheimili vatryggingartaka.
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1. Introduction

The data set in this study comes from the Icelandic insurance company VIS or
Vatryggingafélag Islands hf.

Large part of cost for insurance companies are compensations because of traffic
accidents. Mandatory liability insurances for vehicles are divided into three main
categories,

i ) Property loss
ii ) Bodily injury

iii ) Drivers accident insurance

The risk premium charged to policyholders is determined on the basis of the claims
that the company expects during the period of policy. Therefore it is important
for the insurance company to have an estimate of the expected compensation for
all categories. To obtain this estimate is it is necessary to examine claim frequency
and claim size which are the quantities behind expected compensation cost. Interest
existed at the insurance company to examine this cost down to each postal code in
the country and see if there is a spatial trend in the claims. Today, the premiums
for motor third party liability insurances depend on the residence of policyholders
and the country is divided into a few zones. Therefore the main reason this study
started was to see if a division like that is out-of date by examining the expected
compensation cost for each postal code. And if it is not out-of-date, then see if it is
necessary to rearrange the postal codes in the zones.

The available data are examined over a period of 16 years. Data from one risk
category were analyzed. Also, only results for property loss are given in this thesis.

The first aim of this study is to estimate the expected compensation cost the in-
surance company needs to pay due to motor liability insurances (category i) and
ii), see before page) and drivers accident insurances (category iii)). To estimate
the risk premiums, Bayesian statistics are used and statistical models are built for



the expected claim frequencies and the expected total claim sizes which are used to
compute the expected compensation cost. One of the main advantages of using a
Bayesian statistics is that it is easy to obtain a certainity estimates for any function
of the unknown parameters, such as the expected compensation cost. A Poisson
model is used for the model for claim frequency and a gamma model is used for the
total claim sizes. For more information about Bayesian statistics and these models
see |1] and |9]. For parameter estimation Markov chain Monte Carlo (MCMC) is
used, see [14| where the MCMC samplers have been implemented in Matlab. In this
study the theory behind Gaussian Markov random fields (GMRF) is used to get
information from neighbors, see more in [6]. In this case two neighborhood struc-
tures are constructed, one for time and other for postal codes. The neighborhood
structures are described in Appendix A.

The second aim of this study is to include temporal and spatial factors and see if they
improve the models. Having these two factors in the models allow for the evaluation
of the time and postal codes effects. Also eight postal categories were selected
depending on type of regions to improve the regional factor. These categories are
similar to the zone separation the insurance company uses where the zones can be
changed according to the results of the expected compensation cost.

No similar study has been conducted before here in Iceland. In Germany and Norway
similar researches have been made, see [16] and [20] and this study is mainly based
on those two papers. There, it is also preferred to have separate analysis of claim
frequency and claim size. Similar to this study, a Poisson model is used for the
expected claim frequency and a gamma model for the expected total claim sizes,
and both models included spatial factors. Only spatial factor was used in those two
papers but both spatial and temporal factors in this study. In both [16] and |20]
claim sizes are examined per policyholder but in this study the data contains total
claim size per postal code. [16] extends [20] but the before mentioned allows for
dependencies between the number of claims and claim size.

1.1. Introduction to the thesis

The main references in this thesis are [16] and [20], that show similar researches
abroad. Also [1], |9] and |7| are mainly used for the theory behind the work.

An outline of the thesis is given in the following. Chapter 2 introduces the theory
behind the models used in this thesis. The basics of Bayesian inference and MCMC
simulation methods are briefly summarized together with a description of the Poisson
model and the gamma model. GMRF are introduced for the neighborhood structure,



the Compound collective risk model is briefly discussed and finally model comparison
is addressed. In Chapter 3, a presentation of the data used in the study is given. In
Chapter 4 the models used in the methods for study are expressed. They are:
e Model for claim frequency
— a Poisson model
e Model for total claim size
— a gamma model
e Expected compensation
— combination of Poisson and gamma models
Also prior distributions, the posterior distributions and conditional posterior distri-
butions for MCMC are shown. The main results are given in Chapter 5, that is,

results on expected claim frequency, expected total claim size and expected com-
pensation.






2. Theory

In this chapter the theory used in this thesis is explained. It starts by giving a short
introduction to the Poisson distribution and gamma distribution. Following there is
an introduction to Gaussian Markov random field and the Compound collective risk
model is described. Then Markov chain Monte Carlo (MCMC) simulation is briefly
summarized and finally a short description of a model criteria called DIC is given.

2.1. The Poisson Model

Poisson distribution is a discrete probability distribution that expresses the proba-
bility of a number of events occurring in a fixed interval of time (or space) if these
events occur with a known average rate and independently of the time since the last
event. If the expected number of occurrences in this interval is A, then the proba-
bility of exactly k£ occurrences is given by the formula for the Poisson probability
mass function

1
p(k|\) = Poisson(k|\) = E/\k exp(—=A), ke{0,1,..,00},
where A > 0. Here k denotes both the random variable & and a particular value
of k, which one is returned will be clear from the context. The random variable k
follows a Poisson distribution with parameter A, denoted by k& ~Poisson(\). In the
Poisson model the mean and the variance of k are

E(k[A) = X

and
Var(k|A) = A

[1] and [18] Figure 2.1 shows the probability mass function for the Poisson distribu-
tion for four different values of .
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Figure 2.1: Poisson probability mass function with X = 0.5, 1, 5 and 15. The
horizontal axis is k.



2.2. The gamma Model

The gamma distribution is a two-parameter family of continuous probability distri-
butions. It has a scale parameter [ and a shape parameter o, « > 0 and § > 0. [18]
According to [1| the gamma distribution is the conjugate prior distribution for the
inverse of the normal variance and for the mean parameter of the Poisson distribu-
tion. When a > 0 the gamma integral is finite and the density function is finite. As
a — 0 and 8 — 0 a noninformative distribution is obtained in the limit.

0 ~ gamma(q, 3)

denotes a random variable 6 that follows a gamma distribution with parameters o
and (.
p(0) = gamma(0|a, 5)

denotes the density function of the gamma distribution which is given by

B a1 —s0
p(d) = ——0“""e "0 >0
) (@)
In the gamma model the mean and variance are
o)
E(0) = 3 (2.1)
and
a
Var(6) = 7 (2.2)

Figure 2.2 shows the probability density function for four different values of a.



Gamma distribution
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Figure 2.2: Gamma probability density function with o = 0.5, 1, 2 and 5.

2.3. GMRF

Gaussian Markov random fields (GMRF), also referred to as conditionally specified
Gaussian models, can be useful for risk premium estimation because of the spatially
interacting variables as mentioned in [20]. GMRF provides a convenient way to
create a covariance matrices who describe the spatial and temporal correlation based
on defining neighbors.

Let Y = (Vi,...,Y,)T be an n vector of random variables which follows a Gaussian
distribution such that

Y ~ N(u, (I = €)' M)

where (I — C) is invertible and (I — C)~'M is symmetric and positive definite. C is
an n X n matrix whose (7, j)-th element is Cij, CijTjQ = CjiTZ?, cii = 0, M is a diagonal
matrix, M = diag(7Z, ..., 72) and p = (pi1, ..., jt,)* . Usually in models for areal data,
neighboring units ¢ and j are such that ¢;; # 0 while for parts & and [ that are far

apart ¢, = 0, [6].

In this thesis the MRF are specified in the following way. Let H be a matrix describ-
ing the spatial structure between n units, and all of its elements are nonnegative.
Let h;; denote the (i,7)-th element of H. Then let M be a diagonal matrix such



that

1
Mi,‘ = < 1 1= 1a ,
T Hiy
and in matrix form it will be
My O 0
M — 0 My
0
C' is such that o
Cij= =t
! Zj:l Hi;
and
C=M-H

The covariance matrix of Y is assumed to be
N =71 —-¢C)"'M

2

where 7° is a variance parameter.

The ordered eigenvalues of C, A(j), is such that A1) < Ap) < ... < A). Then the
determinant of (I — ¢C') can be written as

n

11— o6C| =[] - 0Ap)

j=1

where ¢ is unknown scalar parameter that quantifies spatial dependence.

2.4. The compound collective risk model

In the basic insurance risk model, according to [8], the number of claims and the
total claim produced by a portfolio in a given time period ¢t = 1, ..., T for some class
i is denoted by (Nj, Si) where

Ni
Sit = Z Wisk, if Ny >0, (2-3)
k=1



and zero otherwise, where W;;; is the amount of the kth claim at time ¢ for some
class 1.

This model is due to [12] and has the following assumptions:

e The number of claims in the interval (¢ — 1,¢), denoted by Ny, is a random
variable

e The claim size Wy, k = 1,2, ..., ny, is conditional on N = ny. Wiy is positive
independent and identically distributed random variables with finite mean
it = E[Wi] and variance o7 = Var(Wp;) < oo.

e The claim time occurs at random instants t1; < t9; < --- and the inter-
arrival times 7); = t;; — t;_1,; are assumed to be independent and identically
exponentially distributed random variables with finite mean E[T};] = \; .

If it is assumed that the sequences T; and W; are independent from each other and
the above conditions hold, then N;; is a homogeneous Poisson process with rate ;.
Then assuming that Wy, is gamma(kg, 0;) distributed and that the inter-arrival
times are exponentially distributed, the model is given by

Ny Nig, mie  ~  Poisson( Ny ), A >0,
Xit|ni, 0~ gamma(ky, 0;), 0; >0,

where ki = nj ki, ny is the observed number of claims at time ¢, for age class ¢, and
7 is the insured population at time ¢ for age class 7. This model is often referred
to as the Poisson - gamma model for compound collective risk. [8]

2.5. Computation using Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is an important technique used to simulate
samples from a given density, for example the density of the posterior distribution of
0. The samples come in chains where each of the simulated values of § depends on the
preceding value. The basic principle is that when this chain has run sufficiently long
enough it will represent the desired posterior distribution, p(f]y). This distribution
can be summarized by computing summary statistics from recorded values. The
term Markov chain stands for a sequence of random variables 6%, 62, ..., for which,
for any ¢, the distribution of 6 given all previous fts depends only on the most
recent value, #'~!. The first step of MCMC simulation is to select a starting value
6° and then for each t, 6 is drawn from a transition distribution, T;(0%|6"~1) that
depends on the last draw, 6'~!, where T;(0*|0"~1) must be constructed so that the
Markov chain converges to the posterior distribution, p(6|y), [9] and [1].
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The two basic and most widely used algorithms used in MCMC are the Gibbs sam-
pler and the Metropolis-Hastings algorithm. The Gibbs sampler was first introduced
by [15] in 1984 and in 1990 [2] then showed how the method could be applied to a
wide variety of Bayesian inference problems. The Metropolis-Hastings sampler was
developed by [11] in 1953 and [19] in 1970. These algorithms are described in the
following sections. For more informations see [17] and [1].

2.5.1. The Gibbs sampler

According to [9], the Gibbs sampler is a method to produce useful chain values. It
requires specific knowledge about the relationship between the variables of interest.
The basic idea is that if it is possible to express each of the parameters to be
estimated as conditioned on all of the others, then by going through these conditional
statements eventually the true joint distribution of interest is reached.

The Gibbs sampler, which is also called alternating conditional sampler, is defined
in terms of subvectors of 6. [1] Assume the parameter vector  has been devided into
d subvectors, 8 = (04, ...,60,), then the objective is to produce a Markov chain that
cycles through the subvectors of # moving toward and then around this distribution.
In each iteration ¢, a sample of each subvector is obtained by sampling from the
distribution of the subvector conditioned on the latest value of the other subvector.
Let

p(0;10%5"y)
be the conditional distribution of 6;, given the data and the other subvectors at
their current value, denoted by 9:-1 where

0 = (0., 00, 005 0,

() 3—17 J+1

The Gibbs sampler proceeds by selecting a starting value for 6 (6°) and then by
sampling from the d conditional distribution for each ¢ = 1...L, where L is the
number of iterations. The Gibbs sampler can therefore be presented as

07 p(0110,y)
05 p(65]65",y)

O (010", y).

Once convergence is reached, all simulation values are from the target posterior
distribution and a sufficient number should then be drawn so that all areas of the
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posterior are explored. During each iteration of the cycling through the 6 vector,
conditioning occurs on € values that have already been sampled for that cycle -
otherwise the  values are taken from the last cycle.

2.5.2. Metropolis-Hastings Sampler

According to [9], the full set of conditional distributions for the Gibbs sampler
are often quite easy to specify from the hierarchy of the model, since conditional
relationship are directly in such statements. However, the Gibbs sampler obviously
does not work when the complete conditionals for the § parameters do not have an
easily obtainable form. In these cases a chain can be produced for these parameters
using the Metropolis-Hasings algorithm.

In [1] it is shown that the Metropolis-Hastings algorithm for the j-th subvector of
parameters 0;, in the ¢-th iteration is as follows:

i ) Sample a proposal 67 from a proposal distribution with density Jj,t(9j|9§_1).

ii ) Calculate the ratio of the densities

I (1 i) IR
p(810%5 w5 65 16)

iii ) Set 0 = 0% with probability min(r, 1), otherwise set, 05 = %"

Usually it is easier to work with r on the logarithmic scale in terms of numerical
computation and for analytical results:

log(r) = log p(0716"5",y) — log J;+(6;10;7") — log p(6; |02, y) + log J;.(657"167).

—J

The Metropolis-Hastings step is an adaptation of a random walk, that uses an accep-
tance/rejection rule to converge to the specified target distribution. This acceptance
rate is recommended to be 44% when 6; is a scalar and 23% when 6, is of higher
dimension to ensure proper convergence and it is tuned by changing the variance of
the proposal distribution.

12



2.6. Model comparison

For complex hierarchical models the computation of Bayes factors, according to [13],
requires substantial efforts. Therefore it is helpful to consider model choice criteria
which can easily be computed using the available MCMC output. Natural way to
compare models is to use criterion based on trade-off between the fit of the data
to the model and the corresponding complexity of the model. Proposed by [3], a
Bayesian model comparison criterion based on this principle which will be described
in next subsection.

2.6.1. Deviance Information Criterion (DIC)

The deviance information criterion, suggested by [3], for a probability model p(y|)
with observed data y = (y1,...,¥,) and unknown parameters 6 is defined by

DIC := E[D(y,0|y)] + pp- (2.4)

which considers both model fit and model complexity where p(y, 8) = —2log(p(y|6).
The posterior mean of D(y,0), E[D(y,0)|y] can be estimated with

L

. 1

Davg(y) = z E D<y7 9)
=1

and pp is the effective number of parameters. The effective number of parameters,
pp measures the model complexity. pp is estimated with

Pp = Dang(y) = Dy(y)- (2.5)

The DIC criterion has been suggested as a criterion of model fit when the goal is to
find a model that will be best for prediction when taking into account uncertainty
due to sampling. As mentioned in [16], according to the DIC criterion the model
with the smallest DIC is to be preferred. Both DIC and pp can easily be computed
by taking the posterior mean of the deviance ﬁavg(y) and the plug-in estimate
of the deviance Dy(y) by using the available MCMC output. In this project the
standardizing term f(y) is zero.
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3. Data

The data set which is analyzed in this thesis, comes from the icelandic insurance
company Vatryggingafélag Islands hf. (VIS). The data sets contain the number of
claims and total claim size, categorized by year, postal code and risk category.

3.1. Data description

The data set contains information about car insurance premium and compensation
paid from the insurance company from 1993 to 2008. The number of policy days
(which is changed to policy years when using the data), e;, is known and not all
policyholders were insured during the whole year. There are three main categories:

i ) Property loss (i. munatjon)
- Only damage to properties, not people

ii ) Bodily injury (i. likamstjon)
- injury to people other than driver and owner of car

iii ) Drivers accident insurance (i. slysatrygging 6kumanns og eiganda)
- Only injury to owner and driver of the car

The data sets contain the following variables:

e Year when claim occurs

Risk category

Region (postal code)

Premiums for liability insurance

Premium for driver accident insurance

15



e Number of policy days

e And for three categories i), ii) and iii)
— Estimated total compensation
— Number of claims
— Estimated unpaid compensation

Iceland is divided into 151 regions, including post office box. For convenience post
office box were combined with appropriate postal codes, reducing the number of
regions used to 130. For each claim the year claim occurs, ¢, and region where
policyholder is residing, 7, is known. The original data set contains about 35.500
observations, but in this thesis only one risk category is analyzed. The data set for
this category contains about 2230 observations when regions are 151 but about 2000
when regions are 130. All data have been brought to present worth but they have
also been scaled for reasons of confidentiality.

In the model for claim frequency only observation with non-zero policy years are
taken into account. Of course, if the number of policy years is greater than zero
then account of zero for particular postal code and particular year is taken into
account. In case of the model for the claim size, observations with non-zero policy
years are taken into account for all occurred claims. There is a quite large amount of
observations with no claim, especially in the category for divers accident insurance,
see Tables 3.1, 3.2 and 3.3. They also show the maximum number of observed
claims, which is most in the category for property loss.

Table 3.1: Summary of the observed claim frequencies in the data of property loss.

Property loss
Number of claims | Percentage of observation
0 43.72
1 17.38
2 9.01
3 4.51
4 3.00
63 0.05
64 0.05

In Figure 3.1 a histogram of the observed positive average claim sizes is given and
in Table 3.4 is given the mean of total claim sizes per number of claims. The figure
shows the average claim size is just below 100000. From the mentioned table the total
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Table 3.2: Summary of the observed claim frequencies in the data of bodily injury.
Bodily injury

Number of claims

Percentage of observation

0

=W N =

14

77.82
9.71
5.11
2.65
1.65

0
0.05

Table 3.3: Summary of the observed claim frequencies in the data of drivers accident

msurance.

Drivers accident insurance

Number of claims

Percentage of observation

0

I O Ot = W N~

83.93
10.82
3.15
1.45
0.50
0.05
0.05
0.05
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Figure 3.1: Histogram of the observed positive total claim sizes per number of claims.

claim size per number of claims is 93044. The largest average claim size observation
per number of claim is 1451240 which is about 1.4% of the sum of all total claim
sizes per number of claims. Based on a simple statistical test no relationship was
found between number of claims and total claim sizes. Figure 3.1 and Table 3.4 are
therefore describing for the data.

Table 3.4: The mean of total claim sizes per number of claims taken over all obser-
vations and over observations with N =k, k=1,2,3,4,5,6,7,8,63, 64.

Number of observations | Mean

Al 93044
94220
93970
90564
96060
105416
95580
96583
89150

—

I
0| ~1| o] ot| kx| W ro|

z|\z| 2zl 2zl 2|z 22

76020
107956

Z| 'z
\
oo
Rt
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3.1.1. Neighborhood matrix

In Chapter 2.3 a model describing correlation between variables based on their
neighborhood structure was given. In this subsection, the matrix that describes the
neighborhood structure is defined. If postal codes are neighbors, 1 connects them,
otherwise there is 0. Postal code has to have at least one neighbor and is never
neighbor to it self. The neighborhood matrixes can be seen in Appendix A.

There are two kind of neighborhood structures, temporal and regional. In the neigh-
borhood structure for time, years before and after a certain year are neighbors so
each year has 2 neighbors except the first and last that only have one. The neigh-
borhood structure for regions is defined such that regions are neighbors if they:

e share borders
e share borders with neighbors when there is strong connection
— strong connection within the capital area

— strong connection if postal codes are within the same commune
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4. Models

Under the Poisson-gamma model for compound collective risk, see Section 2.4 the
number of claims follow a Poisson distribution and are independent of the claim sizes
which follow a gamma distribution. In this chapter these two models are described.
The main result is expected compensation which is simply the expected claim fre-
quency times the expected total claim size. Following there is an introduction to the
Bayesian inference where prior- and posterior distributions and MCMC algorithms
are described.

4.1. Model for claim frequency

For claim frequency, a Poisson model with spatial and temporal effects is chosen.
This model is easy to use for insurance data, e.g. based on [20] and [16]. The
structure of the data requires spatial and temporal effects which are easy to include
to the proposed model. Considering only observations with non-zero policy years,
altogether 1974 observations are obtained. The index ¢ denotes the year claim occurs
and the index ¢ denotes the region where policyholder is residing. N;; is the number
of claims in region ¢ at year ¢. The number of policy years for policyholders in region
1 and at year ¢ is denoted by e;. The average number of claims per a single policy
year in region ¢ at year ¢ is denoted by 6;;. The proposed model for number of claims
is given by

Nt | 0 ~ Poisson(e;; * ;) (4.1)
or with 87, = log 0

Nt | 07, ~ Poisson(e;; % exp(67,))

where

05, = x] B+ ars + az; + €u,

a1 and ag; are temporal- and spatial factors respectively. The temporal factor is
used to see if time influences the results and the spatial factor is to see if residence
of policyholders influencees the results. x; is a vector of covariates, (3 is a vector
of parameters and £;; is an error term which is independent over years and postal
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codes,
Eit ~ N(O,O'2 )

gt

where

1 1
o2 = log (5 toytt

4
re;t

with r denoting the average frequency per policy year. The calculations for o
which changes for each policy year, can be seen in Appendix B.

2
g1ty

*

To estimate the number of claims, 6}, eight potential postal categories were selected
and used as covariates to help explain the spatial patterns of the claims. The vector
of unknown regression parameters is 3 = (1, ..., 83)’. The vector of covariates for
the i-th observation is given by

Ty = ($1,i, ---,xs,i)/

and includes only 0 and 1. The main role of this matrix is to ensure that each
observation is connected to the correct postal category. When deciding the postal
categories, the postal codes were grouped in several ways where the groups depended
on sizes of urban regions, closeness to highway, etc. The model was tested under
different grouping of the postal codes. The best result was found with help of DIC.
The best result consisted of eight categories which can be seen in Table 4.1.

Table 4.1: Regression covariates.

Regression Covariates
Covariates (x) | Coefficients (3) | Postal categories
T B Reykjavik
To o) Reykjavik Urban Region
T3 B3 Large Urban Region
T4 (4 Small Urban Region
T5 Bs Rural near highway
Tg (s Rural area
7 (7 Banks and government
28 0 Other

4.1.1. Residual analysis

Evaluating the fit of the model to the data is an important step when building a
model. Graphical residual analysis is the primary statistical tool to evaluate the
fit of a model. Residuals are the difference between the measured output from the
validation data set and the predicted model output. Residuals therefore represent
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the portion of the validation data not explained by the model. [10] When random
errors in regression models are not normally distributed it can be useful to use
alternative formula to the usual residual formula, proposed by [4]. It is based on the
idea to produce quantities that are close to being normal distributed, and the formula
for the residuals depends on the assumed distribution. For Poisson distribution,
formula for the residual is given by

3 2/3 2/3
. % (4.2)

where y follows a Poisson distribution with mean . Modify for the overdispersed
Poisson model so that the expected value and the variance of N; are conditioned
on (3, a; and as (integrated over e;). The mean is

E(Nit|3,a1,a2) = ey exp(X] B+ a1y + az; + 0.502 ;) = by
and the variance is

Var<Nit|ﬂ7 at, (12) - ¢zt(exp< E’Lt) - 1) + ¢1t

To fit Equation (4.2) to the model for frequency of claims, according to Taylor
expansion the equation becomes

2/3 _ 1,2/3
e Y VT (4.3)

N

and by using Equations (4.2) and (4.3) together with using the transformation of

N;/ ® and Cramérs Theorem, |5] the residual formula for the claim frequency model,
where y is denoted by N;; is

2/3 2/3
N —explvu) 1 (4.4)

\/¢lt eXp azt - 1) + ¢lt g(wit)il/g

4.2. Model for claim size

The proposed model for claim size is a gamma model with temporal and spatial
effects and is similar to the model presented in [20] and [16]. The experience shows
this kind of model is easy to use for similar projects. The structure of the data re-
quires temporal and spatial effects. These effects are easy to include to the proposed
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model. In this model only observations with positive number of claims and non-zero
policy years are taken into account, altogether 1108 observations are obtained. S;;
is the total size of claims in region ¢ and year t. The average size of each claim is
denoted by u;; and o denotes the standard deviation of each claim.

The original idea for this model is similar to the model for claim frequency. The
log-mean parameter p* is similar to 8* and the factors d; and dy are similar to ay
and as, i.e. temporal and spatial effects respectively. The log-mean is modeled as
XTn+dy 4+ dy; but in the final analysis d was cut out from the model. Nonetheless
ds will be included in this chapter, but will be discussed further in Chapter 5.

The covariate vector is the same as for the model for claim frequency, z; = (x;, ..., Z;s)’,
only containing 0 and 1. The vector of unknown regression parameters is n =

(771, ooy 778)/-

Sit | Niy ~ gamma(Ny i, Nyyo?) (4.5)

where the gamma distribution is parameterized by its mean and variance, and

it = eXp(f;-r?? +diy+dyy)
0, = — where «a is an unknown parameter

Nit
Sit = Z Witk, Wit ~ gamma(fig, U?t)
k=1
where Wy is the cost for individual claim, which is unknown.
Like for claim frequency, model validation with graphical analyzation of the residuals

is made for the claim sizes. Also proposed by [4], a model for residuals in case of
gamma distribution with mean p

3(y'* — u'?)

e=—>". 4.6
2[1/1/3 ( )
The formula in 4.6 needs to be corrected by including the square root of a. That is
by letting
3 1/3 _ ,,1/3
2,u1/3
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the variance of e becomes approximately 1. In case of the model for S

o _ 3VaNu(Si” — N/ uil?)
9 N1/3 1/3
it Mt

(4.8)

with oy and [3;; are such that
i = - Ny,
Bit = a - exp(—p)
where «;; and (;; are the usual parameters of the gamma distribution and
Oy
Hit = E

4.3. Expected compensation

The main aim of the research in this thesis is to find out the expected total com-
pensation cost the insurance company has to pay. This cost will depend on models
for claim frequency and claim size, and is examined for each postal code where poli-
cyholder is residing. The expected value is the expected total cost (S;) per number
of policy years (e;;) and the final result is a combination of the two main models
mentioned earlier in this chapter. Despite of this combination, the uncertainty does
not increase since each part is calculated separately.

B(5) = LB(S)
= e_itE< kN;thk,it>

= LB E(Wia)|Ni)

= LE(N.E(W4)) (4.9)

= LE'(]\/vzt)Ej(w/vl,zt)

€it

= o E(E(Nu|03)) i

€it
= lE(eit‘g;‘kt) exp(z; n + diy+ da;)

€it

= exp(x! B+ ai; + az; + %052) exp(xln +dy; + da;)
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where exp(xfﬁ—i—al,t—i-ag’i—kéag) is the Poisson part of the model and exp(z?n+d;, t+
ds.;) is the gamma part of the model, see Equations (4.2) and (4.6), respectively.

4.4. Bayesian inference

4.4.1. Prior distributions

An important part of Bayesian inference is the selection of appropriate prior distri-
butions for the unknown parameters. For the model for claim frequency the prior
distributions for the parameters mentioned in Section 4.1 are assumed to be as
follows:

B~ N(ug, o3l)

ar ~ N((_),Tf(l— ¢101)_1M1)
(4.10)
Ao ~~ N(O, 7'12(I — ¢202)_2M2)

Eit ~~ N((_),O'z-])

£,it

where N(-,-) indicates the normal distribution. pg and oz are selection based pre-
analysis of data. [ is estimated with Maximum likelihood estimation in a model
with 6* = x;3. pg is the mean of 3 and Jf, is C' times the variance of 3, where C is
a multiplication factor for the variance decided with experiments on the model with
default value equal to 4 in the model for claim frequency and equal to 0.5 for the
model for claim size. This is done to get the estimation of 3 stable.

The hyperparameters are 02, 72, 75, ¢1 and ¢o. A non-informative prior distribution
- scaled inverse-x* is chosen for 02, 77 and 75. For ¢; and ¢, beta distribution is
chosen to ensure strong correlation.
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Iny — x*(vz, S2)
Inv — x?*(vy1, 5%)
Inv — x*(vr2, S2)
beta(os, B1)

beta(cys, Bya)

g1

Qg2

1079,
1079,
1079,
100,

100,

82

€

S

T

2
ST2

B
B2

Similar for claim size, the prior distributions are as follows:

n oo~
dy ~
dy ~
a o~

N (py, 021

n

N(0, k(I — ¢ Cy) ™' My)
N((_), /fg(] — ggog)i

gamma(ao, ﬁo)

1M2)

0.5

0.5

(4.11)

(4.12)

where N (-, -) indicates the normal distribution. The parameters in the gamma model
are estimated similar to the parameters in the model for claim frequency. pu, and o,
are selection based pre-analysis of data. 7 is estimated with Maximum likelihood
estimation in a model z;n. p, is the mean of 7). For a gamma distribution is chosen

with parameters g = 1 and 3y = 1. The hyperparameters are o

’ii I{g? Cl and <2-

A non-informative prior distribution - scaled inverse-x? is chosen for o2, k? and r2.
For ¢; and (5 beta distribution is chosen to ensure strong correlation.

G
G2

Inv — x*(vr, S7)
Inv — x*(Ve1, S2))
Inv — X*(Ve2, Siy)
beta(oet, Ber)

beta(aca, Be2)

V2

07!

Oé(g

1079,
1079,
1079,
100,

100,

5«2

T

S
o
B

Bea

0.5

0.5

(4.13)
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4.4.2. Posterior distributions

The posterior distributions of the parameters, given the observed claim numbers
and claim sizes, describe the statistical uncertainty and is the tool for inference
in a Bayesian analysis. Analytically, the posterior density is the product of the
prior density and the likelihood. The posterior distribution for the model of claim
frequency is

p(ejtva17a276703,it77_1277_227¢17¢2|Nit) o< p(Nit|63)

xp(0;lai, a1, B, Ug,z‘t)
xplar|t, ¢1) x plaz|7s, da)
xp(B)p(a2,)p(7)p(73)p(d1)p(¢2)

x szl Hthl Poisson(N;|e;05;)
x T Ty N(O* |27 B + ars + as;, 02,)
xN(a1|0, 72(I — ¢1C1) "t M)
XN(a2]0, 73 (I — ¢p2Co) "' M)
xN(B|ug, o3I )Inv-x>(0?|ve, S2)
Inv-x?(7¢ V1, S7)Inv-x? (73 |vr2, S7,)

xbeta(¢1|ag1, Bp1)beta(dz|age, Bp2)
(4.14)
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The posterior distribution for the claim sizes is

p(dlad%n?%%a/{%7(17<27a|5it) X p(Sit’nadlad%aaNit)
Xp(dllﬁigl) X p(d2|"£%7<—2)
xp(n)p(a)p(Ci)p(C2)

x Hj:l Hthl gamima [Sithit exp(Ay), Nit exp(2)\it)]

[0}

XN(d1|0, k2(I — ¢,Cy) " My)

XN(do|0, k3(1 — (C) ™' Ms)

XN (1|, 021) x gamma(ay, Bo)
XInv-x2(k2|v,e1, S2))Inv-x2(K3|Vi2, S2)

xbeta((i|act, Ber)beta(Calace, Bez)
(4.15)

When finding the posterior distribution for the model for claim sizes first it is good
to parameterize the model with the mean and variance. In Chapter 2 are the basic
equations for the gamma model expressed, see Equations (2.1), (2.1) and (2.2). The
usual parametrization is as follows:

This gives

S (4.16)
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Then the parametrization for this model is

it = SUiT77+d1,t+d2,i,
Mt = Ny eXp(Ait),

o5 = TNiexp(2\y), (4.17)

N2 exp(2);1)
ay = TH——= = al\;
i L Nit exp(2Xit) i

Niz exp(A;
This parametrization is used in the calculations for the conditional distributions of
the claim size model in Subsection 4.4.3.

4.4.3. MCMC

As mentioned in Section 2.5, Gibbs sampler is one kind of MCMC simulations.
Gibbs sampler is used to simulate samples from the posterior distributions. It is
sufficient to have 4 chains. Starting values are determined with experiments and
then the MCMC algorithms are run for 15000 iterations. A burn-in of 4500-5000
iterations is found to be sufficient after experiments on the MCMC trace plots.

Sampling from the posterior distribution by using the Gibbs sampler gives the con-

ditional distribution for all parameters. In Appendix C, conditional distributions
for all parameters are expressed.
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5. Results

In this chapter the main results of an analysis based on the derived methods are
given. First, results on the expected claim frequency per policy year, expected total
claim size per policy year and the expected compensation cost per policy year, both
for the postal categories and for each postal code. Following, there are results from
the claim frequency model and results from the claim size model. Finally, results on
the expected compensation cost, which is based on these two models, is introduced.
In Chapter 3, three categories for mandatory liability insurances for vehicles are
mentioned. Here, only results for one category, property loss, will be listed out,
both for claim frequency and claim size. Also, there are three postal codes that
have no neighbors. According to the postal categories they belong to banks and
government (postal codes 150 and 155) and other (postal code 999). These postal
codes are not included in figures in this chapter and grouped separately in the postal
categories.

5.1. Main results

In Chapter 4, eight different postal categories were introduced. Table 5.1 shows for
these postal categories their expected claim frequency per number of policy years,
their expected claim size per number of policy years and their expected compensation
per number of policy years. This table shows the number of claims is highest in
Reykjavik, urban regions around Reykjavik and Large urban regions but lowest
in the rural areas near highway and the same is for expected compensation. In
Appendix D, Tables D.1-D.3 are similar to Table 5.1, but these tables also give
upper and lower bounds for 95% posterior interval. For example for claim frequency
and category 1 the lower 95% interval is 0.061 which is larger than e.g. category 4
which has the upper 95% interval as 0.056 and therefore shows there is significant
difference between these categories. It is interesting that the cost is higher in rural
area than rural near highway. These two postal categories were examined further
in terms of what postal codes were included. Based on this examination there was
no reason to make changes. Claim size on the other hand is very similar between
postal categories.
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Table 5.1: Fxpected claim frequency, total claim size and compensation per policy
year for the eight postal categories.

Numeric Region Claim Claim Expected
code frequency | size | compensation
1 Reykjavik 0.0743 82290 6113
2 Reykjavik urban region 0.0663 82001 5440
3 Large urban region 0.0644 86078 9539
4 Small urban region 0.0513 88740 4551
5 Rural near highway 0.0460 86080 3956
6 Rural area 0.0505 86729 4377
7 Banks and government 0.1101 93742 10321
8 Other 0.0751 88912 6674

Table 5.2 is similar to Table 5.1. However, instead of postal categories all postal
codes are expressed. The results are in line with results in Table 5.1, with the
highest frequency and expected compensation in the capital area and lowest in the
countryside. Size of claims are very similar between postal categories and are the
same for postal codes within the same postal category. In Appendix D, Tables D.4
- D.6 are similar to Table 5.2 but these tables also give upper and lower bounds
for 95% posterior intervals. For claim frequency the average lower bound multipli-
cation factor is 0.6583 (about 34% is subtracted from the posterior mean) and the
upper bound multiplication factor is 1.4593 (about 46% is added to the posterior
mean). For claim sizes the lower bound multiplication factor is 0.8493 (about 15%
is subtracted from the posterior mean) and the upper bound multiplication factor
is 1.1899 (about 19% is added to the posterior mean). For expected value the lower
bound multiplication factor is 0.6341 (about 37% is subtracted from the posterior
mean) and upper bound multiplication factor is 1.5083 (about 51% is added to the
posterior mean).

For better explanation, the expected compensation cost is shown graphically for all
postal codes in Figure 5.1. There is a good overview for the numbers in the second
last column in Table 5.2. Since the expected claim frequency reflects the expected
compensation, and the expected total claim sizes are similar for all postal codes, it
was decided only to show the expected compensation graphically, like in Figure 5.1.
As can be seen, a few postal codes outside of the capital area have a large amount of
expected compensation, even though it is a small region (for example postal codes
233, 345 and 611). This is explained by unusual amount of occurred claims during
some years when compared to other years for that postal code (where the amount of
policyholders is still the same) and the frequency of claims in nearby postal codes.
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Figure 5.1: Ezpected compensation cost for each postal code. Green dot present ex-
pected compensation less than 4000, yellow dot present postal codes where expected
compensation are between 4000 and 5500. Red dot present expected compensation
between 5500 and 7000 and finally the blue one present expected compensation

higher than 7000.

Table 5.2: Table with posterior mean for expected claim frequency per policy year
(Poisson), expected total claim size per policy year (gamma) and expected com-

pensation cost per policy year.

Region Postal Claim Claim Expected Numeric
code | frequency | size | compensation code
Reykjavik 101 0.0761 82291 6265 1
Reykjavik 103 0.0713 82291 5871 1
Reykjavik 104 0.0771 82291 6345 1
Reykjavik 105 0.0696 82291 5725 1
Reykjavik 107 0.0681 82291 5606 1
Reykjavik 108 0.0702 82291 5776 1
Reykjavik 109 0.0711 82291 5848 1
Reykjavik 110 0.0718 82291 5912 1
Reykjavik 111 0.0821 82291 6753 1
Reykjavik 112 0.0622 82291 o117 1
Reykjavik 113 0.0678 82291 5583 1
Reykjavik 116 0.1040 82291 8558 1
Reykjavik 150 0.1146 93742 10743 7
Reykjavik 155 0.1056 93742 9898 7
Seltjarnarnes 170 0.0753 82001 6177 2

Continued on next page
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Table 5.2 — continued from previous page

Region Postal Claim Claim Expected Numeric
code | frequency | size | compensation code

Vogar 190 0.0593 88740 5261 4
Kopavogur 200 0.0652 82001 0344 2
Kopavogur 201 0.0607 82001 4976 2
Képavogur 203 0.0632 82001 5185 2
Gardabzer 210 0.0624 82001 5120 2
Hafnarfjorour 220 0.0716 82001 2870 2
Hafnarfjorour 221 0.0619 82001 5075 2
Alftanes 225 0.0716 82001 5868 2
Reykjanesbeer 230 0.0717 86079 6174 3
Reykjanesbaer 233 0.1185 86079 10204 3
Reykjanesbeer 235 0.0545 86079 4689 3
Grindavik 240 0.0569 88740 5049 4
Sandgerdi 245 0.0548 88740 4865 4
Gardur 250 0.0568 88740 5040 4
Reykjanesbaer 260 0.0625 86079 5376 3
Mostellsbaer 270 0.0652 82001 0346 2
Akranes 300 0.0641 86079 5521 3
Akranes 301 0.0556 86080 4789 5
Borgarnes 310 0.0489 86079 4212 3
Borgarnes 311 0.0454 86080 3912 5
Reykholt 320 0.0544 86729 4717 6
Stykkisholmur 340 0.0508 88740 4509 4
Flatey & Breidarfiroi 345 0.0728 86080 6261 6
Grundarfjorour 350 0.0459 88740 4072 4
Olafsvik 355 0.0553 88740 4903 4
Snaefellsbeer 356 0.0760 88740 6747 4
Hellissandur 360 0.0518 88740 4594 4
Budardalur 370 0.0459 88740 4071 4
Budardalur 371 0.0395 86729 3430 6
Reykholahreppur 380 0.0424 86729 3675 6
[safjorour 400 0.0423 88740 3758 4
I[safjérour 401 0.0527 86729 4567 6
Hnifsdalur 410 0.0442 86729 3834 6
Bolungarvik 415 0.0450 88740 3993 4
Suoavik 420 0.0539 88740 4780 4
Flateyri 425 0.0496 88740 4400 4
Sudureyri 430 0.0492 88740 4364 4
Patreksfjorour 450 0.0422 88740 3741 4

Continued on next page
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Table 5.2 — continued from previous page

Region Postal Claim Claim Expected Numeric
code | frequency | size | compensation code

Patreksfjorour 451 0.0476 86729 4126 6
Talknafjordur 460 0.0364 88740 3230 4
Bildudalur 465 0.0545 88740 4839 4
Pingeyri 470 0.0416 88740 3688 4
Pingeyri 471 0.0488 86729 4232 6
Staour 500 0.0499 86080 4292 5
Holmavik 510 0.0478 88740 4238 4
Hoélmavik 512 0.0708 86729 6139 6
Drangsnes 520 0.0666 88740 2911 4
522 0.0302 86729 2618 6
523 0.0636 86729 5519 6
Arneshreppur 524 0.0842 86729 7299 6
Hvammstangi 530 0.0534 88740 4739 4
Hvammstangi 531 0.0427 86080 3672 5
Blonduos 540 0.0455 88740 4035 4
Blonduos 541 0.0442 86080 3804 5
Skagastrond 545 0.0461 88740 4092 4
Sauodarkrokur 550 0.0540 88740 4794 4
Sauodarkrokur 551 0.0327 86080 2814 5
Varmahlid 560 0.0424 88740 3760 4
Hofsos 565 0.0487 88740 4325 4
Hofsos 566 0.0642 86080 5523 5
Fljot 570 0.0552 86729 4791 6
Siglufjorour 580 0.0367 86729 3183 4
Akureyri 600 0.0533 86079 4585 3
Akureyri 601 0.0454 86080 3908 5
Akureyri 603 0.0607 86079 5225 3
Grenivik 610 0.0644 88740 5715 4
Grimsey 611 0.1183 88740 10497 4
Dalvik 620 0.0368 88740 3264 4
Dalvik 621 0.0307 86080 2640 5
Olafsfjorour 625 0.0582 88740 5165 4
Hrisey 630 0.0630 88740 5591 4
Husavik 640 0.0517 88740 4587 4
Husavik 641 0.0488 86729 4230 6
Fossholl 645 0.0559 86080 4814 5
Laugar 650 0.0568 88740 5043 4
Myvatn 660 0.0433 88740 3843 4

Continued on next page
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Table 5.2 — continued from previous page

Region Postal Claim Claim Expected Numeric
code | frequency | size | compensation code

Kopasker 670 0.0465 88740 4131 4
Kopasker 671 0.0389 86729 3371 6
Raufarh6fn 675 0.0428 88740 3797 4
Porshofn 680 0.0400 88740 3551 4
Porshofn 681 0.0358 86729 3109 6
Bakkafjordur 685 0.0655 88740 5813 4
Vopnafjérour 690 0.0419 88740 3719 4
Egilsstaoir 700 0.0473 86079 4068 3
Egilsstaoir 701 0.0288 86080 2479 5
Seyoisfjorour 710 0.0395 88740 3503 4
Mjoafjorour 715 0.0642 86729 5569 6
Borgarfjorour eystri 720 0.0442 88740 3920 4
Reyoarfjorour 730 0.0429 88740 3803 4
Eskifjorour 735 0.0464 88740 4120 4
Neskaupsstadur 740 0.0418 88740 3712 4
Faskradsfjorour 750 0.0378 88740 3356 4
Stoovarfjorour 755 0.0398 88740 3530 4
Breiddalsvik 760 0.0564 88740 5008 4
Djapivogur 765 0.0397 88740 3519 4
Hofn 780 0.0502 88740 4453 4
Hofn 781 0.0323 86080 2784 5
Orzefi 785 0.0377 86080 3249 5
Selfoss 800 0.0635 86079 5469 3
Selfoss 801 0.0483 86080 4161 5
Hverageroi 810 0.0629 86079 5416 3
Porlakshofn 815 0.0515 88740 4572 4
Eyrarbakki 820 0.0638 88740 5664 4
Stokkseyri 825 0.0579 88740 5134 4
Laugarvatn 840 0.0528 86080 4542 5
Fluoir 845 0.0509 88740 4517 4
Hella 850 0.0489 88740 4339 4
Hella 851 0.0395 86080 3397 5
Hvolsvollur 860 0.0471 88740 4184 4
Hvolsvollur 861 0.0395 86080 3399 5
Vik 870 0.0647 88740 5737 4
Vik 871 0.0548 86080 4716 5
Kirkjubaejarklaustur 880 0.0516 88740 4583 4
Vestmannaeyjar 900 0.0491 88740 4354 4

Continued on next page
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Table 5.2 — continued from previous page

Region Postal Claim Claim Expected Numeric
code | frequency | size | compensation code
999 0.0751 88912 6674 8

5.2. Claim frequency

The analysis of claim frequency is based on the Bayesian approach and MCMC.
Statistical results are found by using simulated samples to compute the posterior
mean, standard deviation and percentiles for all parameters. MCMC trace plots for
all parameters are examined and residuals are analyzed. Then model comparison
was made with DIC calculations, introduced in Chapter 2. The model was tested
with different coefficient C', different postal category matrix and finally models with
and without spatial and temporal factors were compared, and the best model chosen.
The trace plots for all model parameters are presented in Figures 5.2 - 5.5. There
are 16 different a; parameters depending on each year. Similarly, there are 130
different postal codes and therefore 130 different a, parameters, 8 different regression
parameters 3 according to postal categories and 1974 6* parameters depending on
the whole data for claim frequency with some number of policy years. For each
of ay, as, B and 6%, one element is picked randomly to show its trace plot. These
plots are used to see if all parameters are stable, and Figures 5.2 - 5.5 show stable
parameters. It is not necessary to have equal axis for all parameters since there is
no need to compare the plots between parameters.

Residual plots based on residual analysis is shown in Figure 5.6. Formula for the
residuals is presented in Chapter 4, see Equation (4.2). The figure shows that
the residuals for claim frequency behave as expected with the exception that the
variance appears to be a little bit higher when expected value is between zero and
five constant as opposed to being constant. The average is around zero as expected.

Next step is to compare the for-mentioned model for claim frequency using DIC,
the lower DIC value and effective parameters (pp) give, the better results can be
obtained. First, the model was run with different multiplication factor C' (introduced
in Chapter 4).

Table 5.3 shows, from C' = 4, the value on effective parameter increases with lower

value on C. It also increases when C' = 5. The model gives good results when
C = 4 in terms of pp and DIC is low. Based on these results, a decision is made
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Figure 5.2: MCMC trace plots for parameters ays and as 7o for 15000 iterations,
burn-in of 4500 and 4 chains.
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Figure 5.3: MCMC trace plots for parameters By and 0745 for 15000 iterations,
burn-in of 4500 and 4 chains.

to set the value of C equal to 4. The next step is to test the model with different
postal category matrices, see results in Table 5.4. First there is only 1 category
where all postal codes are in one and the same category. Next there are 6 categories
which is similar to the categories introduced in Table 4.1, except postal codes in
Reykjavik and Reykjavik urban region are combined and rural areas and rural areas
near highway were combined. Then the postal category matrix with eight categories
is tried out. Finally the postal categories are 9, which is similar to the 8-th category
matrix but there are two categories with small urban region, one close to the highway
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Figure 5.4: MCMC trace plots for parameters 2 and 73 for 15000 iterations, burn-in
of 4500 and / chains.
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Figure 5.5: MCMC trace plots for parameters ¢, and ¢ for 15000 iterations, burn-in
of 4500 and 4 chains.

and the other one not.

Table 5.4 shows the lowest value of both DIC and effective number of parameters
is when there are 8 postal categories, which is used in the following calculations.
Finally the model is tested with and without the temporal effects and the spatial
effects. First, only a; is taken out of the model and as is included. Next it is the
opposite, a; in and as out. Following both parameters are taken out of the model
and finally both are included in the model (which should give the same results as
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Table 5.3: DIC calculations for Poisson model with different coefficient C. pp is the
effective number of parameters.

DIC calculations

Coefficient | DIC PD

C =0.5 |5387.7| 589.59

Cc=1 5381.0 | 587.48

C =15 |5378.1 | 586.77
5377.5 | 586.58
5376.1 | 586.08
5375.4 | 585.78
5375.6 | 586.14
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Table 5.4: DIC calculations for Poisson model with different postal category matriz.
pp s the effective number of parameters.

DIC calculations

Postal category matrix | DIC Pp
X:1 5401.3 | 599.43
X:6 5377.6 | 588.42
X:8 5375.4 | 585.78
X:9 5376.9 | 586.04
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Figure 5.6: Residual plot with residuals of the Poisson model on the y-azxis versus

exp(p + 0.5 % 02) where p = X3+ a1 + ag; + log(ey) on the z-amis.

Table 5.4 with 8 postal categories.

Table 5.5: DIC calculations for Poisson model with and without spatial and temporal
effects. pp is the effective number of parameters.

DIC calculations

Factors DIC PD
a; out 5379.0 | 585.17
as out 5403.1 | 579.32

a; and ag out 5410.7 | 579.23
a; and as included | 5375.6 | 585.72

Table 5.5 shows the model is better when a, is included. DIC is lower when a; and
as are both included, but for effective parameters the value is a little bit lower when
ap is out. According to Figure 5.7 the time factor, exp(a1), could be insignificant
since the medium line (around 1) does not cut the confidence interval. But Table 5.5
shows the inclusion of a; at least dose not make the fit worse. There is a possibility
of years with more claims and from Figure 5.7 can be seen that one year, in 1999,
number of claims are notably topping, even though the data have been brought to
present worth. Also, the lower confidence interval is very close to the medium line so
it has been decided for the claim frequency model to include both a; and as. Then
the final model has multiplication factor C' = 4, 8 postal categories and both a; and
as included in the model. According to the insurance company, one of a possible
reasons why years 1999 and 2000 were heavy in claims is that this was a time of
economic growth in the society, which leads to increasing number of cars and more
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stressful traffic. After the year 2000 the claim frequency gets lower again which can
be because of regression after the growth, discussions about traffic accidents along
with consequences of higher premiums, which raised a lot around the year 2000.
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Figure 5.7: The temporal factor ay as a function of time. This figure shows the
exponential value of the factor, i.e. exp(ay).

Following, the results from the Poisson model are analyzed graphically where postal
codes are on the x axis and frequency is on the y axis.

Poisson model
T

ik by B | W

Postal code

Figure 5.8: Expected claim frequency based on the Poisson model and raw frequency
estimates for all postal codes along with 95% posterior interval. The postal codes
are on the z-axis and the claim frequency are on the y-axis.

Figure 5.8 shows there is areal trend in the data. It shows the frequency of claims
depends on where policyholder is residing. Figures E.1-E.10 in Appendix E give
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more accurate results where only a part of the postal codes are on each figure. The
frequency of claims is highest in the capital area, mostly postal codes that belong
to the postal categories Reykjavik and Reykjavik urban region. A few postal codes
belonging to the postal category large urban region have similar claim frequency
or between 0.06 and 0.08 claims per policy year. Most postal codes in the postal
categories small urban regions and rural areas have claim frequency between 0.04
and 0.06 claims per policy year. As can be seen in Figure 5.8, the posterior interval
for some postal codes is large. These postal codes are mainly 233, 345 and 611. The
reason for this is the same as explained for Figure 5.1, i.e. these postal codes have
small amount of claims. During some years, unusual amount of claims occurred
when compared to other years for that postal code (the amount of policyholders is
still similar) and the frequency of claims in nearby postal codes.

5.3. Claim size

The model for claim size was handled and applied similar by the model for claim
frequency. Mean, standard deviation and percentiles were calculated for all param-
eters. MCMC trace- and residual plots analyzed and model comparison with DIC
calculations. Trace plots are shown in Figures 5.9 - 5.11. These plots are used to
see if model parameters are stable, and from the figures can be seen all parameters
are stable. Like for a; and as, there are 16 different d; parameters and 130 different
parameters for dy. Also 8 different regression parameters 7 exist according to postal
categories. For each of the parameter vectors dy, dy and 7, one element is picked
randomly to show on the trace plot.

Following, residual plots based on residual analysis are examined. Calculations for
the residuals are according to Equation (4.8) introduced in Chapter 4.

Figure 5.12 show that the residuals for the claim size behave like expected. The
average is around zero, points equally distributed for different values of the expected
claim size which is on the x-axis and no trend in the plot. The variance appears
to be constant as a function of expected claim size. Continuing, model comparison
was done for changes in the model. Like before, the lower value DIC and effective
parameters give, the better results are obtained. Similar to claim frequency, the
model is run for different coefficient C, changed postal category matrix and with
and without d; and ds.

According to Table 5.6, the value for DIC is very similar independent of coefficient
C. But it is obvious the number of effective parameters decreases with lower value
on C. Since different values of C' only moderately influence the number of effective
parameter, pp in the model, the best result is obtained with C' = 0.5, which is used
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Figure 5.9: MCMC trace plots for parameters dy 11 and daqo for 15000 iterations,
burn-in of 5000 and 4 chains.

Figure 5.10: MCMZC trace plots for parameters o and ns for 15000 iterations, burn-
in of 5000 and 4 chains.

in the following calculations. Next step is to compare the model with different postal
category matrix. The matrix was changed like the model for claim frequency was
tested, using 6, 8 and 9 categories, see Subsection 5.2.

The value of DIC and effective number of parameters is very similar independent
of size of postal category matrix. The lowest DIC is obtained when there are 9
categories but then the highest number of pp follows. The lowest pp is when there are
6 categories but then the highest value of DIC occurs. When there are 8 categories
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Table 5.6: DIC calculations for gamma model with different coefficient C'. pp is the
effective number of parameters.

DIC calculations
Coefficient | DIC PD
C =05 31650 | 15.55

C=1 31651 | 16.39
C =15 | 31651 | 16.85
C=2 31651 | 17.45
Cc=3 31651 | 17.52
C=14 31651 | 17.73

Table 5.7: DIC calculations for the gamma model with different postal category
matrixz. pp is the effective number of parameters.

DIC calculations

Postal category matrix | DIC PD
X:6 31651 | 14.50
X:8 31650 | 15.63
X:9 31649 | 16.13
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Figure 5.11: MCMC trace plots for parameters k% and r3 for 15000 iterations, burn-
i of 5000 and 4 chains.
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Figure 5.12: Residual plot with residuals of the gamma model on the y-azxis versus
Nipexp(p*) where p* = Xn + dy 4.

it is in the middle. Since these different categories give very similar results, the
model with 8 postal categories is chosen for convenience, because it is the same
postal category matrix as used for the claim frequency model and is this result used
in following calculations. Finally the model is compared with and without spatial
factors.

Table 5.8 shows the model is better when d; is included in the model. Results are
similar with only d; in the model and both d; and do, whether DIC or the effective
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Table 5.8: DIC calculations for gamma model with and without spatial and temporal
effects. pp is the effective number of parameters.

DIC
Factors DIC [25)
d; out 31677 | 34.14
dy out 31650 | 15.63
d; and dy out 31685 | 6.41
dy and d, included | 31644 | 34.16

number of parameters are examined. DIC is though a little bit lower when both
factors are included, but after looking more thoroughly at the regional factor ds, see
Figure 5.14, it shows this factor has small influences on the results so it was taken
out of the model. But there is always some regional effect because of the postal
categories, i.e. dy has almost no effect but Xn has a small effect. According to both
Table 5.8 and Figure 5.13 temporal factor has great influences on the results. The
figure shows that in 1999 more claims occurs which is in context with information
from VIS that say 1999 was very high in claims. Similar to the claim frequency,
the total claim size increases in 1999 and 2000, among others because of economic
growth in the society. In times like that, more expensive cars are on the streets and
repair cost also raises which leads to higher claims for the insurance company to pay.
Also, in 1999 the laws of Tort Damages Act were changed which increased the size
of claims, especially for bodily injury, but it also influences the loss of properties.
Figure 5.13 shows that the medium line (around 1) is above and below the confidence
intervals. It shows even though all data have been brought to present worth, time
still has great effects so the present worth does not cover the time effects. So the
final model for claim sizes has multiplication factor C' = 0.5, 8 postal categories and
only d; included in the model.

Like for the model for claim frequency, spatial trend in the claim sizes will be
examined by analyzing the results from the gamma model graphically, see Figure
5.14. This figure shows that the residence of policyholders has a small effect on
the total claim sizes. The total claim sizes are between 80000 and 90000. This
corresponds to the result in Table 5.8 which shows the spatial factor has almost no
effect. But like before the postal category matrix, n has small effect. More accurate
pictures will not be shown for this model since Figure 5.14 shows results accurate
enough.
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Figure 5.13: The temporal factor dy as a function of time. This figure shows the
exponential value of the factor, i.e. exp(dy).
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Figure 5.1/: Expected total claim size for all postal codes with 95% posterior interval.
The postal codes are on the z-axis and the claim size are on the y-axis.

5.4. Expected compensation

Expected compensation cost, introduced in Chapter 4, is based on the combination
of results from the Poisson and the gamma models. The expected compensation is
the amount the insurance company has to pay per policy year for each postal code
in the country.

Like Figure 5.15 shows, the expected compensation is in context with claim fre-
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Figure 5.15: Ezpected compensation cost for all postal codes along with 95% posterior
interval.

i

Postal code

0 900

quency and claim sizes. The total compensation cost depends on residence of poli-
cyholder. The highest value is in the capital area and gets lower when you get to the
countryside. Figures E.11-E.20 in Appendix E show more accurate results. Figure
E.11 and E.12 show the expected cost is around 6000, but in Figure E.13 it starts
to get lower and in Figure E.15 the expected cost is stable around 4000. It stays
stable except in few cases where the cost raises a bit in postal codes belonging to
the postal category Large urban regions and becomes closer to 6000. As mentioned
in Section 5.2 there are a few postal codes that have large posterior interval. Those
postal codes usually have small amount of claims, but during some years the number
of claims rises (but still amount of policyholders similar) and is higher compared to
other years and nearby postal codes.
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6. Discussion

The aim of this study is to find the expected compensation cost the insurance com-
pany needs to pay because of property loss due to car accidents. The information
given are based on postal codes and the expected compensation cost is estimated
for each postal code in the country. The main goal is to evaluate if the residence of
policyholders influence the result, by using a regional factor. Also it was examined
whether a temporal factor would improve the model. To improve the regional fac-
tor, postal codes were grouped into eight categories depending on type and results
examined for each category. In this thesis two kind of neighbor structures are used
in the proposed models, one for time and other for postal codes.

Today the insurance company divides the postal codes in the country into a few risk
zones. The insurance premium depends, among other factors, on these zones. The
matrix describing the neighbor structure is such that it is easy to change if needed.
The same holds true for the postal category matrix. The postal category matrix
allows both changes on the number of categories and changes of postal codes within
each category. Therefore it is easy for the insurance company to change the zones
and postal codes within each zone if needed.

The expected compensation cost is based on models for the expected claim frequency
and expected total claim size. Results from these two models are combined to get
the expected compensation cost. The results from the research can be summarized
as follows
e (Claim frequency
— Dependence between claim frequency and the residence of policyholders.

— Highest number at the capital area and lowest in the country side.

— Includes both a temporal factor and a regional factor where the regional
factor has a great influence but the temporal factor has a small influence.

— In accordance to DIC comparison the temporal factor is included in case

of years with high claim frequency. It does not make the model less
qualified.

o1



e Claim size

Claim size depends only on postal category but not on individual postal
codes.

— Claim size is similar for the postal categories.
— Includes a temporal factor.

— In accordance to DIC comparison the spatial factor (after taking postal
categories into account) has little influence and was removed from the
model. The temporal factor has great influence despite all data have
been brought to present worth.

e Expected compensation
— In context with the results of claim frequency and claim size.
— Highest cost in the capital area, lower in the countryside.

Results from the eight postal categories are in context with the results from the
models. The expected compensation cost is highest for category 1 which are postal
codes in Reykjavik. The cost is a bit lower for category 2 and 3 or Reykjavik urban
regions and large urban regions. It gets lower and in small urban regions and rural
areas the expected compensation is about 50% lower than in Reykjavik. What makes
interest is that the expected compensation cost is a bit higher in rural areas than
rural near highway but that is mainly due to higher claim size. For the expected
compensation cost the average lower bound multiplication factor is 0.6341 and the
average upper bound multiplication factor is 1.5083 which gives an idea about the
precision of the expected compensation cost.

According to these results there is a spatial trend in the expected compensation
cost so it can be justified to price car insurances according to the residence of the
policyholder. The results of this study show the zone separation like the insurance
company is using today is not out-of-date but the postal codes can be rearranged in
the zones according to the results.
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7. Future studies

When working on this thesis, ideas on future projects came up. The main ideas are:

e Further development of the postal categories based on results for each postal
code.

e Use a Poisson model without overdispersion.
e Use zero-inflated Poisson model.

e Investigate overdispersed Poisson model where exp(e;;) follows a gamma dis-
tribution.

e For more accurate data it would be interesting to analyze data on individual
basis and take into account variables such as

— Type of car

Gender of policyholder

Age of policyholder

— Age of car

— Accident history of policyholder
to name a few.

e Analysis data for risk categories with few policyholders.
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A. Neighborhood structures

A.1. Temporal neighborhood structure
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A.2. Regional neighborhood structure

The matrix for regional neighborhood is NV X N matrix, where N is the total number
of postal codes. Because of its size only a matrix which shows the neighbors to each
postal code will be expressed to describe the neighbors. Instead of 0 and 1 that
connects neighbors, the actual postal codes are shown, see Table A.2. Nonetheless
the original regional neighborhood matrix is similar to the temporal neighborhood
matrix in Table A.1.
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B. Calculations for agt

. . 2
Approximation for o7,
Ny ~ Poisson(e;; - 1),

where 1 is the average frequency per policy year, r = exp(C;) and C; = log(#).

Zi Zt Nit
D i D Cit

where Cy = log(#) and Cy = exp(—C}).

P =

p=X"B+a;+ay+loge;
XT3~ Cy, a; ~ 0 and ay ~ 0, which gives
exp(p) = e;r exp(Ch)
exp(p) exp(207;) — exp(p) exp(o};) + exp(a7,/2) = (1 +6)
exp(207) — exp(07;) + exp(07,/2 — p) = (1 + 6) exp) (1)
exp(207,) — exp(07;) = (14 0 — exp(07,/2)) exp(—p)

or
1
exp(207) — exp(oy;) = exp(—p) = — exp(—Ch)
it
which gives the second order equation
Co
exp(202) — exp(03) — = 0.
it

Then
1+ /11 4Cs/e;
exp(o}) = VAT A o

and

1 1 1 1
7 = log (5 + 2 1 +4C2/eit) = log (5 + 5\/1 +4/(r+ 6it>>
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C. Conditional distributions

Conditional distributions for parameters in model for claim frequency:

0y, i=1i..Jand t =1,..,T

p(05|rest) o p(Nit|9;Kt)Xp(ejt‘a17a2767052,it)

oc  Poisson[Ny|es exp(65,)] X N (05| pit, 02,1

o el exp(Niy) expl—eiv exp(85)] exp |~ 53—(0) — pa)’]

where
i = x?ﬁ + Zlal + Z2a2
SO
* % * 1 *
log p(05|rest) = Cy + Ny log(eir) + Nitbr, + log(eir) — exp(67,) — F(eit — pit)?
gt

and the proposal variance is

1

Var(6;;) prop o Na T 1/0%,

Conditional distribution of 3
p([|rest) < p(0*|ar,as, 5,%:) x p(B)
< N(0*|y, 2.0) x N(ﬁ|ug,0%1)
x exp [=5(0" = )T (0" )] exp [~ (5 — no)?]

logp(B|rest) = Co— % [ﬁTXTZ;lXﬁ — 26T X1 (0" — Zyay — Zgag)} — %(ﬁ — uﬁ)TZEI(ﬁ — 1g)

where
v =XB+ Ziay + Zyas
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since
p(Blrest) = N(B|ug, 05)

the covariance matrix is
Y= (XTS'X +o3D)7!

and the mean is

ps = Ya(XTEHO* — Z1al — Z2a2) + 05’ 1)

The conditional distribution of a;
p(a1|reSt) X p(9*|a17a2aﬁ725) Xp(a'1’¢177_12)
o N(0*|y,2T) x N(a1]0, 78 (1 — ¢, Ch) "' My)

o exp [—5(0" —9)TE1(0" — 7))

logp(arfrest) = Cy— 3lal Z{ S Ziay — 20 ZESH0F — X B — Zsas))
—gzai (M = oM Ch)ay

where
v=XB+ Ziay + Zsas

And since
plai|rest) = N(a1|par, Xa1)

the covariance matrix is
Sa =215 20+ 7 (M7 — ¢ MOy

and the mean is
far = S ZES7H0F — X B — Zyay).

Then a; is adjusted so that X;a; ; =0 and Q' = 341 so
ap = a1 — QT AT(AQTIAT) TN (Aay - 0),

where A is a vector of ones.
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And similar, the conditional distribution of as is
p(ag|rest) x  p(0*lai, az, 5, %X:) % p(a2|<;§2,722)
o N(O*]y, BT) x N(az]0, 73 (I — ¢2Co) ' M)

o exp [—3(0" —)TSHO" — )]

logp(aslrest) = Cy — 3[al 235 Zoay — 203 Z3 510" — X B — Z1ay)]
—5rz 3 (My " — $a My ' Ca)as

where
Y= Xﬁ“— Zlal + Zgag

And since
plaz|rest) = N(as|tta2, Xa2)

the covariance matrix is
Sar = 23 57 Zo 4+ 15 (Mg — oMy ' Co)] 7!

and the mean is
oz = YapZy B0 — XB — Z1ay)

Then a, is adjusted so that ¥;as; = 0 and Q' =Y, s0
ay =ay; — QAT (AQTAT) " (Aay — 0),
where A is a vector of ones.
The conditional distribution of 77:
p(rilrest) o pai|dr, 77) x p(r7)

o< N[a|0, 77 (I = $1C1) "' M) x Inv-x*(vr1, 57,)

o ()2 exp |~ shal (M7 = g1 M Cr)ay | (7)0n/240 exp (2551 )

27'12
(7)Mol exp { by funst, + af (M7 = 61 M7 Cr)a]}

52
1

o Inv-x*{ny + vr1, (N + ve) " Hrms?, +al (M7 — ¢ MICL)ay]}
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The conditional distribution of ¢;:
p(¢rrest) o plai|gr, 77) x p(d1)

o« Nla|0, (I — $1C1) "1 M x beta(dr|ag, Bp1)
1= Gl exp |~ shal (M = oM Cr)an | x 6747 (1 = 1))

Let Ai¢j) be the ordered eigenvalue of C, then

ni

|l — 1Ch| = H(1 — 1 \1(5))

J=1

ni
log p(¢1|rest) = Co+ 0.5 Z log(1 — @1 A1(5)) + 0.5¢17 2al (M;*Ch)ay

=1
+(g1 — 1) log(¢1) + (Bs1 — 1) log(1 — ¢1)

The conditional distribution of 73:

p(r3leest) o plaalen,73) % p(r3)

o< N(ag|0, 75 (I — $oC) ™" Ma) x Inv-x*(vra, 52,)

2

o (13) ™/ exp [—%ag(Mfl — ¢ My ' Co)ag| x (75)~m2/* D exp (——msT2

2
275

o< (73)[atrr2)/24 1 exp {—%[%233 +ad (My " — ¢2M2_102)a2]}

275

o Inv-x*{ny + vyo, (Ng + vrg) " vres2y + ak (Myt — ¢ My Co)as]}

The conditional distribution of ¢o:

p(dalrest) o plas|gz, 73) x p(¢2)
X N(OQ’O,T%(I — (bng)_lMg) X beta(¢2]a¢2,ﬁ¢2)

o [T — ¢aCs|?exp [_%%T(Mz_l - ¢2Mz_102)a2] X 93 T (1 — ghg)Per!

Let Ay(j) be the ordered eigenvalue of Cy, then

n2

[T — $2Cs| = H(l — PaAa(y))

j=1
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n2
log p(ga|rest) = Co + 0.5 Y log(1 — ¢ada(s)) + 0.5¢07; *ag (My ' Cy)as

=1

+(ag2 — 1) log(¢2) + (B2 — 1) log(1 — ¢2)

Following, conditional distributions for all parameters in the claim size model:

The conditional distribution of n
Pnlrest)  oc p(S|dy, da,n, a, N) X p(n)

o [I., II., gamma [Sit| Nt exp(Nie), 22t exp(2Xi)] x N(n] ey, Sy 1)
oc T, T [evexp(—Ai)]*Net expl—avexp(—Aig) Sie] x exp [FH(n — ) 7S, (0 — py)]
log(nlrest) = -7, o {(aNy) loglaexp(—Ai)] — aexp(—Xi) S} — 3(0 — ) "S5 (0 — p)

where
it = xin+ dy ¢+ day

And the proposal variance is
1

1
+
«Q Z;;Izl Zthl Nipx; 0721

Var(n)prop o
Conditional distribution of dy, t =1,...,T
P(dl,t|reSt) X p(S|d1ad2an7aaN) Xp(d1|’%%’<-1)

x []i=1Jgamma [Sit\Nit exp (i), it exp(2)\it)]

[0}

T
xN <d1,t| Zk:m;&t Chkdi g, Ml,tt“%)

o []i=1Jaexp(—Ni)*VNit exp[—a exp(—Ni) Si]
—1 T 2
X €Xp 2M1 11K3 (dlvt - Zkzl,kyét Cl,tkdl,k)
x J[i=1Jexp(—aNyAy) exp[—aSi exp(—Ait)]

2
-1 T
X exp [QMLMg (dl,t = Dkt et Cl,tkdl,k) }

2
10gp(d17t|rest) = Z;']:l[_oéNit exp()\l-t) — OéSit eXp(—)\it)] — m <d1’t — Zgzl,k¢t Ol,tkdl,k>
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where
Nit = 2] 1+ dy+ + do

And the proposal variance is
1
JON, e 1
«Q ZiZ]. it + Ml,tt"f%

Var(dy ¢)prop

Conditional distribution of dy;, 1 =1,...,J

P(d2,i|re8t) 08 p(S|d1,d2,7],OZ,N) Xp(d2"‘f§>C2)

x [[t=1Tgamma [Sit|Nit exp(Ait), ]\gt exp(ZAit)}

xN (dZ,i‘ Zzzl,k# CQ,ide,Im Mz,iil‘i%)

o« [t = 1Taexp(—N\y) Vit exp[—a exp(—Ni)Si]

2
-1 T
X exp l—zMg,Mg (dz,i = D hlkti Cz,z‘kdz,k> }

oc [[t = 1T exp(—aNijAi) exp[—aSi exp(—Ai)]
~1 T 2
X CXP | o3, in2 <d2,i — D ket ket C2,ikd2,i>

2
log P(d27i|rest) = ZZ:J‘OZNit eXp(/\it) — S GXP(—/\z‘t)] - QM;—I,iz <d2,z‘ - Z;}F:Lk# C2,z‘kd2,k)

2

where
it =, 0+ dig+ doy

And the proposal variance is
1
T 1
a ZtZI Nit + MQJ»L’K/%

Var(dg,i)pmp XX
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Conditional distribution of %7
P(rflrest) o p(di|Gi, k7)) x p(K7)

o< N[d1]0, £{(I — GC1) ™' Mi] x Inv-x* (¥, SZ)

o (k) exp [ shdf (M = QM G| x (13) /2 exp (— 255 )

-1
2K7 i

nM1Vkl

(1) exp {%[VMSEJ +df (M — Clelcl)dl]}

o< Inv-x*{n1 + Vi1, (n + V1) v SH 4 dT (M1 — (M Cr)dq ]}

Conditional distribution of (;
P(Glrest) oc p(dilGi, k1) x p(Cr)
o N[d1]0, s3(I — (:Cy) "' My] % beta(Cilacr, Ber)
o | =G| exp [%d{(Mfl - Cle101)d1] X G (1= ¢yt

Let A;(j) be the ordered eigenvalue of C, then

ni

11— =] =GMg)
j=1
and
log P t—(]lml 1= idTM—lccl 11 —1) log(1—
g P(Girest) = 0+QZ og(1-G 1(J)>+2K% 1 (M7 Cr)di+ (agi—1) log Gi+(Bci—1) log(1—C1)
j=1

Conditional distribution of 3
P(rjlrest) o p(da|Ca, £3) X p(k3)

X N[dg‘(), /ﬂ?%([ — CQCQ)_IMQ] X IHV—X2<I/,£2, S,%Z)

AT (MY — My Cy)dy | (k2)~2/2+D) exp <_s>

(k) e/ exp |

=1
2%%
o (13 ) exp { S oS, + A (M — M Co)ds] |

XX InV—Xz{ng + Vg2, (ng + VKQ)_I[VKQSEQ + d;(M;l — C2M2_102)d2]}
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Conditional distribution of (»
P(Glrest) oc p(da|Ca, k3) % p(C2)

X N[d2|6, R%(I — CQCQ)ilMQ] X beta((ﬂ@cg,ﬁ@)
|1 — (0ol exp [%dg(Mil — QM5 Cy)dy| x 5T (1 = ()P

Let Ay(j) be the ordered eigenvalue of C, then

n2

|1 — (0| = H(l — (o))

j=1
and

G2

@dg(Milcz)d2+(a<2—1) log Ga+(f¢2—1) log(1—¢2)
2

1 &
log p((s|rest) = C’o—|—§ Z log(1—CoAaj))+

j=1
And finally, the conditional distribution of «
P(alrest) o< p(S|dy,da,n, a, N) x p(a|ag, Bo)

o H;.Izl Hthl gamma [Sit|N,;t exp (i), it exp(2)\it)} x gamma(ayg, Bo)

[0

oc T, T sl (=) ]2 S0 ™ excpl—avexp(— i) S
@0
X %ao‘o_l exp(— o)
log(alrest) = 2%]=1 ZL{— log gamma(aNy) + (aNy) log[aexp(—Ait)]
+(aNit — ].) 10g Sit — exp(—/\it)Sit}

+(ap — 1) logae — Boar

where
it = x; 0+ dig+ doy
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D. Posterior mean with upper and
lower multiplication factors

D.1. Postal categories

Table D.1: Claim frequency for the postal categories with posterior mean, upper and
lower multiplication factors and 95% posterior interval for the categories.

Claim frequency

Nr. code Region Mean | L.b.m.f | Ub.m.f | 95% lower | 95% upper
1 Reykjavik 0,0743 | 0,8258 | 1,1868 0,0613 0,0882
2 Reykjavik Urban Region | 0.0663 | 0.8435 | 1.1635 0.0560 0.0772
3 Large Urban Region 0.0644 | 0.8770 | 1.1205 0.0564 0.0721
4 Small Urban Region 0.0513 | 0.9156 | 1.0829 0.0470 0.0555
5 Rural near highway 0.0460 | 0.8658 | 1.1424 0.0398 0.0525
6 Rural area 0,0505 | 0.8019 | 1.2289 0.0405 0.0620
7 Banks and government | 0.1101 | 0.6460 | 1.4450 0.0711 0.1591
8 Garbage 0.0751 | 0.6898 | 1.3778 0.0518 0.1034
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Table D.2: Total claim size for the postal categories with posterior mean, upper and
lower multiplication factors and 95% posterior interval for the categories.

Total claim size

Nr. code Region Mean | L.b.m.f | U.b.m.f | 95% lower | 95% upper
1 Reykjavik 82291 | 0,9579 | 1,0460 78824 86074
2 Reykjavik Urban Region | 82001 | 0.9426 | 1.0617 77297 87062
3 Large Urban Region 86079 | 0.9329 | 1.0719 80306 92264
4 Small Urban Region 88740 | 0.9662 | 1.0359 85740 91925
5 Rural near highway 86080 | 0.9500 | 1.0549 81778 90803
6 Rural area 86729 | 0.9401 | 1.0636 81532 92244
7 Banks and government | 93742 | 0.9152 | 1.0937 85795 102525
8 Other 88912 | 0.9147 | 1.0951 81325 97367

Table D.3: Expected compensation for the postal categories with posterior mean, up-
per and lower multiplication factors and 95% posterior interval for the categories.

Expected compensation

Nr. code Region Mean | L.b.m.f | U.b.m.f | 95% lower | 95% upper
1 Reykjavik 6113 | 0,7910 | 1,2414 4835 7589
2 Reykjavik Urban Region | 5440 | 0.7951 | 1,2353 4325 6720
3 Large Urban Region 0540 | 0.8182 | 1,2010 4533 6654
4 Small Urban Region 4551 | 0.8846 | 1,1218 4026 5105
5 Rural near highway 3956 | 0.8225 | 1,2051 3253 4767
6 Rural area 4377 | 0,7538 | 1.3071 3299 5721
7 Banks and government | 10321 | 0.5912 | 1,5803 6102 16310
8 Other 6674 | 0,6309 | 1.5089 4211 10071
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D.2. Claim frequency

Table D.4: Table for expected claim frequency per number of policy years (Poisson)
with posterior mean and upper and lower multiplication factor for 95% posterior
interval. It also contains the numeric code which corresponds to the postal cate-

gories.
Claim frequency
Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Reykjavik 101 0.0761 0.7260 1.3402 1
Reykjavik 103 0.0713 0.6781 1.4167 1
Reykjavik 104 0.0771 0.7232 1.3470 1
Reykjavik 105 0.0696 0.7279 1.3321 1
Reykjavik 107 0.0681 0.7109 1.3594 1
Reykjavik 108 0.0702 0.7288 1.3342 1
Reykjavik 109 0.0711 0.7262 1.3412 1
Reykjavik 110 0.0718 0.7247 1.3425 1
Reykjavik 111 0.0821 0.7227 1.3516 1
Reykjavik 112 0.0622 0.7258 1.3321 1
Reykjavik 113 0.0678 0.7023 1.3742 1
Reykjavik 116 0.1040 0.6347 1.5086 1
Reykjavik 150 0.1146 0.6357 1.4654 7
Reykjavik 155 0.1056 0.6357 1.4654 7
Seltjarnarnes 170 0.0753 0.6972 1.3888 2
Vogar 190 0.0593 0.7041 1.3923 4
Kopavogur 200 0.0652 0.7537 1.3017 2
Kopavogur 201 0.0607 0.7399 1.3174 2
Kopavogur 203 0.0632 0.7169 1.3559 2
Gardabaer 210 0.0624 0.7414 1.3220 2
Hafnarfjorour 220 0.0716 0.7530 1.3026 2
Hafnarfjorour 221 0.0619 0.7372 1.3209 2
Alftanes 225 0.0716 0.6886 1.4019 2
Reykjanesbeer 230 0.0717 0.7689 1.2812 3
Reykjanesbaer 233 0.1185 0.6647 1.4646 3
Reykjanesbaer 235 0.0545 0.6977 1.3645 3
Grindavik 240 0.0569 0.7243 1.3589 4
Sandgerdi 245 0.0548 0.7201 1.3568 4
Garour 250 0.0568 0.6995 1.3938 4
Reykjanesbaer 260 0.0625 0.7550 1.2991 3
Mostellsbaer 270 0.0652 0.7391 1.3207 2

Continued on next page
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Table D.4 — continued from previous page

Claim frequency

Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Akranes 300 0.0641 0.7625 1.2913 3
Akranes 301 0.0556 0.6615 1.4721 5
Borgarnes 310 0.0489 0.7202 1.3411 3
Borgarnes 311 0.0454 0.7306 1.3596 5
Reykholt 320 0.0544 0.6468 1.5038 6
Stykkisholmur 340 0.0508 0.7000 1.3986 4
Flatey & Breidarfiroi 345 0.0728 0.2879 2.5275 6
Grundarfjorour 350 0.0459 0.6657 1.4274 4
Olafsvik 355 0.0553 0.6708 1.4531 4
Snaefellsbaer 356 0.0760 0.5611 1.5988 4
Hellissandur 360 0.0518 0.6077 1.5297 4
Buoardalur 370 0.0459 0.6416 1.4340 4
Budardalur 371 0.0395 0.6259 1.4873 6
Reykholahreppur 380 0.0424 0.6224 1.5148 6
[safjorour 400 0.0423 0.7651 1.2946 4
[safjorour 401 0.0527 0.6712 1.4453 6
Hnifsdalur 410 0.0442 0.6688 1.4311 6
Bolungarvik 415 0.0450 0.6881 1.4102 4
Sudavik 420 0.0539 0.6903 1.3886 4
Flateyri 425 0.0496 0.6956 1.3699 4
Sudureyri 430 0.0492 0.6999 1.3639 4
Patreksfjorour 450 0.0422 0.7188 1.3580 4
Patreksfjorour 451 0.0476 0.6372 1.4619 6
Talknafjorour 460 0.0364 0.4965 1.6817 4
Bildudalur 465 0.0545 0.6743 1.4028 4
Pingeyri 470 0.0416 0.6992 1.3626 4
Pingeyri 471 0.0488 0.6623 1.4482 6
Stadur 500 0.0499 0.6081 1.5253 5
Holmavik 510 0.0478 0.6599 1.4613 4
Holmavik 512 0.0708 0.5508 1.6742 6
Drangsnes 520 0.0666 0.5770 1.6381 4
522 0.0302 0.6422 1.4867 6
523 0.0636 0.6301 1.4958 6
Arneshreppur 524 0.0842 0.6214 1.5233 6
Hvammstangi 530 0.0534 0.6848 1.4307 4
Hvammstangi 531 0.0427 0.6462 1.4628 5t
Blénduos 540 0.0455 0.6618 1.4497 4

Continued on next page
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Table D.4 — continued from previous page

Claim frequency

Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Blonduos 541 0.0442 0.6081 1.5468 5
Skagastrond 545 0.0461 0.5134 1.7170 4
Sauodarkrokur 550 0.0540 0.7191 1.3692 4
Sauoarkrokur 251 0.0327 0.6349 1.4518 )
Varmahlio 560 0.0424 0.6569 1.4447 4
Hofsos 565 0.0487 0.5813 1.5557 4
Hofsos 566 0.0642 0.5631 1.6279 5
Fljot 570 0.0552 0.5647 1.6126 6
Siglufjordur 580 0.0367 0.6190 1.5262 6
Akureyri 600 0.0533 0.7862 1.2580 3
Akureyri 601 0.0454 0.7350 1.3397 5
Akureyri 603 0.0607 0.7709 1.2764 3
Grenivik 610 0.0644 0.6103 1.5506 4
Grimsey 611 0.1183 0.3828 2.1529 4
Dalvik 620 0.0368 0.6948 1.3796 4
Dalvik 621 0.0307 0.5837 1.5229 5
Olafsfjorour 625 0.0582 0.6686 1.4554 4
Hrisey 630 0.0630 0.3539 2.1087 4
Husavik 640 0.0517 0.7322 1.3504 4
Husavik 641 0.0488 0.6399 1.4953 6
Fossholl 645 0.0559 0.6180 1.5301 5
Laugar 650 0.0568 0.5575 1.5766 4
Myvatn 660 0.0433 0.5912 1.5311 4
Kopasker 670 0.0465 0.5601 1.5794 4
Kopasker 671 0.0389 0.5497 1.6201 6
Raufarho6fn 675 0.0428 0.5685 1.5675 4
Porshofn 680 0.0400 0.5998 1.5232 4
Porshofn 681 0.0358 0.5540 1.6215 6
Bakkafjorour 685 0.0655 0.4834 1.8024 4
Vopnafjorour 690 0.0419 0.6751 1.4370 4
Egilsstaoir 700 0.0473 0.7494 1.3086 3
Egilsstadir 701 0.0288 0.7030 1.3597 5
Seydisfjorour 710 0.0395 0.6883 1.3938 4
Mjoafjorour 715 0.0642 0.6418 1.4811 6
Borgarfjorour eystri 720 0.0442 0.5327 1.6329 4
Reyoarfjorour 730 0.0429 0.7127 1.3813 4
Eskifjorour 735 0.0464 0.7147 1.3910 4

Continued on next page
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Table D.4 — continued from previous page

Claim frequency

Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Neskaupsstadur 740 0.0418 0.7078 1.3776 4
Faskradsfjorour 750 0.0378 0.6816 1.3938 4
Stodvarfjorour 755 0.0398 0.6593 1.4109 4
Breiodalsvik 760 0.0564 0.6786 1.4326 4
Djapivogur 765 0.0397 0.7017 1.3670 4
Hofn 780 0.0502 0.7157 1.3667 4
Hofn 781 0.0323 0.5776 1.5598 5
Orzefi 785 0.0377 0.5147 1.6389 5
Selfoss 800 0.0635 0.7552 1.3014 3
Selfoss 801 0.0483 0.7269 1.3654 5
Hveragerdi 810 0.0629 0.7133 1.3665 3
Porlakshofn 815 0.0515 0.7028 1.3854 4
Eyrarbakki 820 0.0638 0.6805 1.4378 4
Stokkseyri 825 0.0579 0.6832 1.4317 4
Laugarvatn 840 0.0528 0.4670 1.8157 5
Flaoir 845 0.0509 0.6120 1.5343 4
Hella 850 0.0489 0.7008 1.3710 4
Hella 851 0.0395 0.6839 1.3921 5
Hvolsvollur 860 0.0471 0.6859 1.4090 4
Hvolsvollur 861 0.0395 0.6690 1.4309 5
Vik 870 0.0647 0.6149 1.5255 4
Vik 871 0.0548 0.6153 1.5479 5
Kirkjubaejarklaustur 880 0.0516 0.6814 1.4243 4
Vestmannaeyjar 900 0.0491 0.6958 1.3839 4
999 0.0751 0.6760 1.3970 8

D.3. Total claim size
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Table D.5: Table for expected claim size per number of policy years (gamma) with
posterior mean and upper and lower multiplication factor for 95% posterior inter-
val. It also contains the numeric code which corresponds to the postal categories.

Claim size

Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Reykjavik 101 82291 0.8507 1.1898 1
Reykjavik 103 82291 0.8507 1.1898 1
Reykjavik 104 82291 0.8507 1.1898 1
Reykjavik 105 82291 0.8507 1.1898 1
Reykjavik 107 82291 0.8507 1.1898 1
Reykjavik 108 82291 0.8507 1.1898 1
Reykjavik 109 82291 0.8507 1.1898 1
Reykjavik 110 82291 0.8507 1.1898 1
Reykjavik 111 82291 0.8507 1.1898 1
Reykjavik 112 82291 0.8507 1.1898 1
Reykjavik 113 82291 0.8507 1.1898 1
Reykjavik 116 82291 0.8507 1.1898 1
Reykjavik 150 93742 0.8337 1.2026 7
Reykjavik 155 93742 0.8337 1.2026 7
Seltjarnarnes 170 82001 0.8468 1.1944 2
Vogar 190 88740 0.8531 1.1847 4
Koépavogur 200 82001 0.8468 1.1944 2
Kopavogur 201 82001 0.8468 1.1944 2
Koépavogur 203 82001 0.8468 1.1944 2
Garodabaer 210 82001 0.8468 1.1944 2
Hafnarfjorour 220 82001 0.8468 1.1944 2
Hafnarfjorour 221 82001 0.8468 1.1944 2
Alftanes 225 82001 0.8468 1.1944 2
Reykjanesbaer 230 86079 0.8407 1.2004 3
Reykjanesbaer 233 86079 0.8407 1.2004 3
Reykjanesbaer 235 86079 0.8407 1.2004 3
Grindavik 240 88740 0.8531 1.1847 4
Sandgerdi 245 88740 0.8531 1.1847 4
Gardur 250 88740 0.8531 1.1847 4
Reykjanesbaer 260 86079 0.8407 1.2004 3
Mosfellsbaer 270 82001 0.8468 1.1944 2
Akranes 300 86079 0.8407 1.2004 3
Akranes 301 86080 0.8484 1.1912 5
Borgarnes 310 86079 0.8407 1.2004 3
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Claim size

Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Borgarnes 311 86080 0.8484 1.1912 D
Reykholt 320 86729 0.8457 1.1950 6
Stykkisholmur 340 88740 0.8531 1.1847 4
Flatey & Breidarfiroi 345 86080 0.8484 1.1912 6
Grundarfjorour 350 88740 0.8531 1.1847 4
Olafsvik 355 88740 0.8531 1.1847 4
Snaefellsbeer 356 88740 0.8531 1.1847 4
Hellissandur 360 88740 0.8531 1.1847 4
Buaoardalur 370 88740 0.8531 1.1847 4
Budardalur 371 86729 0.8457 1.1950 6
Reykholahreppur 380 86729 0.8457 1.1950 6
Isafjorour 400 88740 0.8531 1.1847 4
I[safjérour 401 86729 0.8457 1.1950 6
Hnifsdalur 410 86729 0.8457 1.1950 6
Bolungarvik 415 88740 0.8531 1.1847 4
Sudavik 420 88740 0.8531 1.1847 4
Flateyri 425 88740 0.8531 1.1847 4
Sudureyri 430 88740 0.8531 1.1847 4
Patreksfjorour 450 88740 0.8531 1.1847 4
Patreksfjorour 451 86729 0.8457 1.1950 6
Talknafjorour 460 88740 0.8531 1.1847 4
Bildudalur 465 88740 0.8531 1.1847 4
Pingeyri 470 88740 0.8531 1.1847 4
Pingeyri 471 86729 0.8457 1.1950 6
Stadur 500 86080 0.8484 1.1912 5
Holmavik 510 88740 0.8531 1.1847 4
Holmavik 512 86729 0.8457 1.1950 6
Drangsnes 520 88740 0.8531 1.1847 4
522 86729 0.8457 1.1950 6
523 86729 0.8457 1.1950 6
Arneshreppur 524 86729 0.8457 1.1950 6
Hvammstangi 530 88740 0.8531 1.1847 4
Hvammstangi 031 86080 0.8484 1.1912 D
Blénduos 540 88740 0.8531 1.1847 4
Blénduos 541 86080 0.8484 1.1912 5
Skagastrond 545 88740 0.8531 1.1847 4
Saudarkrokur 550 88740 0.8531 1.1847 4
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Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Saudarkrokur 551 86080 0.8484 1.1912 5
Varmahlio 560 88740 0.8531 1.1847 4
Hofsos 565 88740 0.8531 1.1847 4
Hofsos 566 86080 0.8484 1.1912 5
Fljot 570 86729 0.8457 1.1950 6
Siglufjorour 580 86729 0.8457 1.1950 6
Akureyri 600 86079 0.8407 1.2004 3
Akureyri 601 86080 0.8484 1.1912 5
Akureyri 603 86079 0.8407 1.2004 3
Grenivik 610 88740 0.8531 1.1847 4
Grimsey 611 88740 0.8531 1.1847 4
Dalvik 620 88740 0.8531 1.1847 4
Dalvik 621 86080 0.8484 1.1912 5
Olafsfjorour 625 88740 0.8531 1.1847 4
Hrisey 630 88740 0.8531 1.1847 4
Husavik 640 88740 0.8531 1.1847 4
Husavik 641 86729 0.8457 1.1950 6
Fossholl 645 86080 0.8484 1.1912 5
Laugar 650 88740 0.8531 1.1847 4
Myvatn 660 88740 0.8531 1.1847 4
Kopasker 670 88740 0.8531 1.1847 4
Kopasker 671 86729 0.8457 1.1950 6
Raufarhofn 675 88740 0.8531 1.1847 4
bPoérshofn 680 88740 0.8531 1.1847 4
boérshofn 681 86729 0.8457 1.1950 6
Bakkafjorour 685 88740 0.8531 1.1847 4
Vopnafjérour 690 88740 0.8531 1.1847 4
Egilsstaoir 700 86079 0.8407 1.2004 3
Egilsstaoir 701 86080 0.8484 1.1912 5
Sey0isfjorour 710 88740 0.8531 1.1847 4
Mjoafjorour 715 86729 0.8457 1.1950 6
Borgarfjorour eystri 720 88740 0.8531 1.1847 4
Reyodarfjorour 730 88740 0.8531 1.1847 4
Eskifjorour 735 88740 0.8531 1.1847 4
Neskaupsstadur 740 88740 0.8531 1.1847 4
Faskruosfjorour 750 88740 0.8531 1.1847 4
Stoovarfjorour 755 88740 0.8531 1.1847 4
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Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Breiodalsvik 760 88740 0.8531 1.1847 4
Djapivogur 765 88740 0.8531 1.1847 4
Hofn 780 88740 0.8531 1.1847 4
Hofn 781 86080 0.8484 1.1912 5
Oreefi 785 | 86080 0.8484 1.1912 5
Selfoss 800 86079 0.8407 1.2004 3
Selfoss 801 86080 0.8484 1.1912 5
Hverageroi 810 86079 0.8407 1.2004 3
Porlakshofn 815 88740 0.8531 1.1847 4
Eyrarbakki 820 88740 0.8531 1.1847 4
Stokkseyri 825 88740 0.8531 1.1847 4
Laugarvatn 840 86080 0.8484 1.1912 5)
Fluoir 845 88740 0.8531 1.1847 4
Hella 850 88740 0.8531 1.1847 4
Hella 851 86080 0.8484 1.1912 5
Hvolsvollur 860 88740 0.8531 1.1847 4
Hvolsvollur 861 86080 0.8484 1.1912 5
Vik 870 88740 0.8531 1.1847 4
Vik 871 86080 0.8484 1.1912 5
Kirkjubaejarklaustur 880 88740 0.8531 1.1847 4
Vestmannaeyjar 900 88740 0.8531 1.1847 4
999 88912 0.8340 1.2054 8

D.4. Expected compensation

Table D.6: Table for expected value per number of policy years with posterior mean
and upper and lower multiplication factor for 95% posterior interval. It also con-
tains the numeric code which corresponds to the postal categories.

Expected value

Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code
Reykjavik 101 6265 0.6965 1.3980 1
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Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Reykjavik 103 | 5871 0.6534 1.4641 1
Reykjavik 104 6345 0.6942 1.4029 1
Reykjavik 105 5725 0.6996 1.3951 1
Reykjavik 107 | 5606 0.6840 14177 1
Reykjavik 108 5776 0.6983 1.3932 1
Reykjavik 109 5848 0.6975 1.3986 1
Reykjavik 110 | 5912 0.6975 1.4018 1
Reykjavik 111 | 6753 0.6918 1.4092 1
Reykjavik 112 | 5117 0.6991 1.3915 1
Reykjavik 113 5583 0.6770 1.4289 1
Reykjavik 116 8558 0.6114 1.5495 1
Reykjavik 150 10743 0.6115 1.5180 7
Reykjavik 155 9898 0.6115 1.5180 7
Seltjarnarnes 170 6177 0.6711 1.4458 2
Vogar 190 5261 0.6775 1.4417 4
Kopavogur 200 0344 0.7170 1.3720 2
Kopavogur 201 4976 0.7069 1.3829 2
Koépavogur 203 5185 0.6862 1.4174 2
Gardabzer 210 5120 0.7071 1.3876 2
Hafnarfjorour 220 5870 0.7174 1.3726 2
Hafnarfjorour 221 5075 0.7047 1.3869 2
Alftanes 225 5868 0.6610 1.4563 2
Reykjanesbaer 230 6174 0.7249 1.3519 3
Reykjanesbeer 233 10204 0.6396 1.5151 3
Reykjanesbzer 235 4689 0.6683 1.4250 3
Grindavik 240 5049 0.6949 1.4120 4
Sandgerdi 245 4865 0.6929 1.4092 4
Gardur 250 5040 0.6750 1.4390 4
Reykjanesbaer 260 5376 0.7169 1.3662 3
Mosfellsbeer 270 5346 0.7054 1.3845 2
Akranes 300 5521 0.7198 1.3586 3
Akranes 301 4789 0.6366 1.5170 5
Borgarnes 310 4212 0.6871 1.4020 3
Borgarnes 311 3912 0.6972 1.4122 )
Reykholt 320 4717 0.6220 1.5421 6
Stykkisholmur 340 4509 0.6732 1.4492 4
Flatey & Breidarfiroi 345 6261 0.2817 2.5489 6
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Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Grundarfjérour 350 4072 0.6446 1.4695 4
Olafsvik 355 4903 0.6478 1.4919 4
Snaefellsbaer 356 6747 0.5470 1.6377 4
Hellissandur 360 4594 0.5894 1.5702 4
Budardalur 370 4071 0.6211 1.4802 4
Budardalur 371 3430 0.6054 1.5333 6
Reykholahreppur 380 3675 0.6034 1.5618 6
[safjorour 400 3758 0.7286 1.3583 4
[safjorour 401 4567 0.6479 1.4931 6
Hnifsdalur 410 3834 0.6442 1.4791 6
Bolungarvik 415 3993 0.6644 1.4580 4
Sudavik 420 4780 0.6654 1.4388 4
Flateyri 425 4400 0.6715 1.4223 4
Sudureyri 430 4364 0.6765 1.4147 4
Patrekstjorour 450 3741 0.6890 1.4083 4
Patreksfjorour 451 4126 0.6151 1.5084 6
Talknafjorour 460 3230 0.4872 1.7250 4
Bildudalur 465 4839 0.6503 1.4478 4
Pingeyri 470 3688 0.6753 1.4164 4
Pingeyri 471 4232 0.6376 1.5000 6
Stadur 500 4292 0.5880 1.5627 5
Holmavik 510 4238 0.6357 1.5028 4
Holmavik 512 6139 0.5379 1.7158 6
Drangsnes 520 0911 0.5607 1.6655 4
522 2618 0.6184 1.5307 6
523 5519 0.6095 1.5426 6
Arneshreppur 024 7299 0.6005 1.5673 6
Hvammstangi 530 4739 0.6583 1.4730 4
Hvammstangi 531 3672 0.6218 1.5102 5
Blénduos 540 4035 0.6402 1.4975 4
Blénduos 541 3804 0.5895 1.5918 5
Skagastrond 545 4092 0.5021 1.7501 4
Sauodarkrokur 550 4794 0.6900 1.4224 4
Sauodarkrokur 551 2814 0.6121 1.5042 5
Varmahlio 560 3760 0.6357 1.4934 4
Hofsos 565 4325 0.5652 1.5960 4
Hofsos 566 5523 0.5497 1.6655 5
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Expected value

Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Fljot 570 4791 0.5479 1.6547 6
Siglufjorour 580 3183 0.5989 1.5714 6
Akureyri 600 4585 0.7408 1.3297 3
Akureyri 601 3908 0.6995 1.3963 5
Akureyri 603 5225 0.7283 1.3452 3
Grenivik 610 5715 0.5933 1.5864 4
Grimsey 611 10497 0.3754 2.1759 4
Dalvik 620 3264 0.6712 1.4256 4
Dalvik 621 2640 0.5674 1.5730 5
Olafsfjorour 625 5165 0.6431 1.5023 4
Hrisey 630 5591 0.3487 2.1378 4
Husavik 640 4587 0.7015 1.4031 4
Husavik 641 4230 0.6201 1.5440 6
Fossholl 645 4814 0.6010 1.5681 5
Laugar 650 5043 0.5446 1.6146 4
Myvatn 660 3843 0.5763 1.5665 4
Ko6pasker 670 4131 0.5453 1.6206 4
Kopasker 671 3371 0.5341 1.6593 6
Raufarhofn 675 3797 0.5524 1.6094 4
Porshofn 680 3551 0.5820 1.5724 4
Poérshofn 681 3109 0.5366 1.6647 6
Bakkafjorour 685 5813 0.4724 1.8329 4
Vopnafjorour 690 3719 0.6498 1.4844 4
Egilsstaoir 700 4068 0.7112 1.3732 3
Egilsstaodir 701 2479 0.6750 1.4179 5
Seyoisfjorour 710 3503 0.6659 1.4435 4
Mjoafjorour 715 5569 0.6181 1.5222 6
Borgarfjorour eystri 720 3920 0.5201 1.6651 4
Reyoarfjorour 730 3803 0.6864 1.4316 4
Eskifjorour 735 4120 0.6875 1.4353 4
Neskaupsstaour 740 3712 0.6819 1.4257 4
Faskradsfjorour 750 3356 0.6583 1.4489 4
Stodvarfjorour 755 3530 0.6375 1.4596 4
Breiddalsvik 760 5008 0.6567 1.4775 4
Djupivogur 765 3519 0.6764 1.4142 4
Hofn 780 4453 0.6872 1.4184 4
Hofn 781 2784 0.5612 1.6010 5
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Region Postal | Mean | L.b. multipli- | U.b. multipli- | Numeric
code cation factor | cation factor code

Orzefi 785 3249 0.5029 1.6814 5
Selfoss 800 5469 0.7160 1.3673 3
Selfoss 801 4161 0.6941 1.4147 5
Hverageroi 810 5416 0.6813 1.4274 3
Porlakshofn 815 4572 0.6762 1.4303 4
Eyrarbakki 820 5664 0.6553 1.4879 4
Stokkseyri 825 5134 0.6573 1.4734 4
Laugarvatn 840 4542 0.4569 1.8458 5
Flaodir 845 4517 0.5932 1.5760 4
Hella 850 4339 0.6772 1.4176 4
Hella 851 3397 0.6595 1.4483 5
Hvolsvollur 860 4184 0.6615 1.4503 4
Hvolsvollur 861 3399 0.6442 1.4829 5
Vik 870 5737 0.5977 1.5686 4
Vik 871 4716 0.5973 1.5904 5
Kirkjubaejarklaustur 880 4583 0.6562 1.4721 4
Vestmannaeyjar 900 4354 0.6701 1.4302 4
999 6674 0.6488 1.4547 8
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E. Figures for claim frequency and

expected compensation

E.1. Claim frequency

Poisson model, postal codes 101-116
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Figure E.1: Average claim frequency with 95% posterior interval for postal codes

101-116.
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Poisson model, postal codes 170-225
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Figure E.2: Average claim frequency with 95% posterior interval for postal codes
170-225.

Poisson model, postal codes 230-270
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Figure E.3: Average claim frequency with 95% posterior interval for postal codes
230-270.
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Figure E.j: Average
300-380.
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Figure E.5: Average
400-471.

Poisson model, postal codes 300-380
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claim frequency with 95% posterior interval for postal codes

Poisson model, postal codes 400-471
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claim frequency with 95% posterior interval for postal codes
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Poisson model, postal codes 500-566
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Figure E.6: Average claim frequency with 95% posterior interval for postal codes
500-566.

Poisson model, postal codes 570-630
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Figure E.7: Average claim frequency with 95% posterior interval for postal codes
570-630.

94



Poisson model, postal codes 640-690
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Figure E.8: Average claim frequency with 95% posterior interval for postal codes

640-690.

Poisson model, postal codes 700-785
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Figure E.9: Average claim frequency with 95% posterior interval for postal codes

700-785.

95



Poisson model, postal codes 800-900
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Figure E.10: Average claim frequency with 95% posterior interval for postal codes
800-900.
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E.2. Expected compensation

x 10" Poisson * gamma, postal codes 101-116
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Figure E.11: Expected compensation with 95% posterior interval for postal codes

101-116.

x 10* Poisson * gamma, postal codes 170-225
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Figure E.12: Expected compensation with 95% posterior interval for postal codes

170-225.
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x 10* Poisson * gamma, postal codes 230-270
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Figure E.13: Expected compensation with 95% posterior interval for postal codes
230-270.

x 10" Poisson * gamma, postal codes 300-380
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Figure E.1J: Expected compensation with 95% posterior interval for postal codes
300-380.
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x 10* Poisson * gamma, postal codes 400-471
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Figure E.15: Expected compensation with 95% posterior interval for postal codes

400-471.

x 10* Poisson * gamma, postal codes 500-566
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Figure E.16: Expected compensation with 95% posterior interval for postal codes

500-566.
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x 10* Poisson * gamma, postal codes 570-630
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Figure E.17: Expected compensation with 95% posterior interval for postal codes
570-630.

x 10" Poisson * gamma, postal codes 640-690
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Figure E.18: Expected compensation with 95% posterior interval for postal codes
640-690.

100



x 10* Poisson * gamma, postal codes 700-785
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Figure E.19: Expected compensation with 95% posterior interval for postal codes
700-785.

x 10* Poisson * gamma, postal codes 800-900
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Figure E.20: Expected compensation with 95% posterior interval for postal codes
800-900.
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