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Abstract

The aim of this thesis is to �nd the expected total compensation cost the insurance
company (VÍS) needs to pay due to car accidents. Information are based on postal
codes and the compensation cost is examined for each postal code in the country
using a Poisson model and a gamma model, respectively. One of the main goals
was to evaluate whether the residence of policyholders in�uence the result, by using
spatial factor, one for each postal code. Another goal was to see if the results are
improved by having temporal factor included in the model. Also, to improve the
spatial factor, postal codes were categorized into postal category matrix where each
category describes the type of region.

To examine the expected total compensation cost it is necessary to �nd the expected
frequency of claims per policy year and the expected total claim size per policy
year. These factors are examined per each postal code in the country. The expected
compensation cost is calculated from the combination of those two models.

Data for mandatory liability insurances for vehicles are divided into three main
categories, property loss, bodily injury and drivers accident insurance. In this study
only results for property loss are given for one risk category over 16 year period.

The main result is that the claim frequency per policy year depends on the residence
of policyholders. The number of claims are higher in the capital area than in the
countryside. The spatial factor is very e�ective but the temporal factor in�uences
much less. Nonetheless, it was decided to include the temporal factor in the model
since it did not make the model less quali�ed. Also, there is a possibility of years
with higher number of claims which would support the inclusion of the temporal
factor.

Results for the total claim size show that the expected claim sizes are independent
of the the residence of policyholders. The total claim size is similar no matter which
part of the country is examined. Originally the model included both temporal factor
and spatial factor but the spatial factor was taken out of the model since it did not
in�uence the results. Nonetheless there are always some spatial e�ects from the
postal category matrix. The temporal factor on the other hand has a substantial
in�uence on the total claim size even though the data has been brought to present
worth.



The expected total compensation cost the insurance company needs to pay is in
context to the earlier mentioned results. The cost is highest in Reykjavík and the
neighborhood of Reykjavík, gets lower when the countryside is examined but raises
a bit at and around large urban regions. According to these results, it is justi�ed
that pricing of insurance would depend on the residence of policyholders.



Ágrip

Markmið þessa verkefnis er að �nna út væntanlegan heildarkostnað sem trygginga-
félagið (VÍS) þarf að greiða í bætur vegna bílslysa. Upplýsingar eru byggðar á póst-
númerum og er kostnaðurinn skoðaður fyrir hvert póstnúmer landsins. Hugmyndin
er að meta hvort lögheimili vátryggingartaka ha� áhrif á niðurstöðuna með því að
bæta landfræðilegum þætti í líkanið. Einnig var skoðað hvort bæta megi niðurstöður
með því að hafa tímaþátt í líkaninu. Póstnúmerin voru �okkuð í stærri póstnúmera-
�okka til að auka gæði landfræðilega þáttarins.

Til að skoða væntanlegan kostnað þarf fyrst að �nna væntanlegan fjölda tjóna á hvert
skírteinisár og væntanlega heildarstærð tjóna á hvert skírteinisár. Þessir tveir þættir
eru skoðaðir fyrir hvert póstnúmer með því að nota Poisson líkan fyrir væntanlegan
fjölda og gamma líkan fyrir heildarstærð. Væntanlegur kostnaður er reiknaður út
frá sameiningu á þessum tveim líkönum.

Gögnum fyrir lögboðnar ábyrgðartryggingar vegna ökutækja er skipt í þrennt, muna-
tjón, líkamstjón og slysatrygging ökumanns og eiganda. Aðeins eru gefnar niðurstöður
fyrir munatjón í þessari ritgerð og fyrir einn áhættu�okk en gögnin ná y�r 16 ára
tímabil.

Helstu niðurstöður eru að fjöldi tjóna á hvert skírteinisár er háður lögheimili vátryggingar-
taka. Fjöldi tjóna er meiri á höfuðborgarsvæðinu en á landsbyggðinni. Landfræðilegi
þátturinn er áhrifamikill en tímaþátturinn hefur mun minni áhrif. Engu að síður
var ákveðið að hafa tímaþáttinn í líkaninu þar sem það skerti ekki gæði líkansins.
Einnig er möguleiki á tjónaþyngri árum sem styður það að nota tímaþáttinn.

Niðurstöður fyrir heildarstærð tjóna eru að lögheimili vátryggingartaka hefur lítil
áhrif á heildar stærð tjóna. Póstnúmeraþátturinn hefur lítil áhrif, en engu að síður
hafa póstnúmera�okkarnir áhrif á niðurstöðuna. Heildarstærð tjóna er svipuð sama á
hvaða landshluta er horft. Í uppha� innihélt líkanið bæði tímaþátt og landfræðilegan
þátt en landfræðilegi þátturinn var tekinn út úr líkaninu þar sem hann hafði mjög
lítil áhrif. Tímaþátturinn hefur aftur á móti mikil áhrif þrátt fyrir að gögnin ha�
verið núvirt.



Væntanlegur heildarkostnaður sem tryggingafélagið þarf að greiða í bætur er í sam-
ræmi við niðurstöður sem búið er að greina frá. Kostnaðurinn er mestur í Reykjavík
og nágrenni, lækkar eftir því sem kemur út á landsbyggðina en hækkar þó aðeins í og í
kringum stærri þéttbýli. Kosnaðurinn er minnstur í dreifbýlum og minni þéttbýlum.
Samkvæmt þessum niðurstöðum er réttlætanlegt að tryggingar séu verðlagðar eftir
lögheimili vátryggingartaka.
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1. Introduction

The data set in this study comes from the Icelandic insurance company VÍS or
Vátryggingafélag Íslands hf.
Large part of cost for insurance companies are compensations because of tra�c
accidents. Mandatory liability insurances for vehicles are divided into three main
categories,

i ) Property loss

ii ) Bodily injury

iii ) Drivers accident insurance

The risk premium charged to policyholders is determined on the basis of the claims
that the company expects during the period of policy. Therefore it is important
for the insurance company to have an estimate of the expected compensation for
all categories. To obtain this estimate is it is necessary to examine claim frequency
and claim size which are the quantities behind expected compensation cost. Interest
existed at the insurance company to examine this cost down to each postal code in
the country and see if there is a spatial trend in the claims. Today, the premiums
for motor third party liability insurances depend on the residence of policyholders
and the country is divided into a few zones. Therefore the main reason this study
started was to see if a division like that is out-of date by examining the expected
compensation cost for each postal code. And if it is not out-of-date, then see if it is
necessary to rearrange the postal codes in the zones.

The available data are examined over a period of 16 years. Data from one risk
category were analyzed. Also, only results for property loss are given in this thesis.

The �rst aim of this study is to estimate the expected compensation cost the in-
surance company needs to pay due to motor liability insurances (category i) and
ii), see before page) and drivers accident insurances (category iii)). To estimate
the risk premiums, Bayesian statistics are used and statistical models are built for
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the expected claim frequencies and the expected total claim sizes which are used to
compute the expected compensation cost. One of the main advantages of using a
Bayesian statistics is that it is easy to obtain a certainity estimates for any function
of the unknown parameters, such as the expected compensation cost. A Poisson
model is used for the model for claim frequency and a gamma model is used for the
total claim sizes. For more information about Bayesian statistics and these models
see [1] and [9]. For parameter estimation Markov chain Monte Carlo (MCMC) is
used, see [14] where the MCMC samplers have been implemented in Matlab. In this
study the theory behind Gaussian Markov random �elds (GMRF) is used to get
information from neighbors, see more in [6]. In this case two neighborhood struc-
tures are constructed, one for time and other for postal codes. The neighborhood
structures are described in Appendix A.

The second aim of this study is to include temporal and spatial factors and see if they
improve the models. Having these two factors in the models allow for the evaluation
of the time and postal codes e�ects. Also eight postal categories were selected
depending on type of regions to improve the regional factor. These categories are
similar to the zone separation the insurance company uses where the zones can be
changed according to the results of the expected compensation cost.

No similar study has been conducted before here in Iceland. In Germany and Norway
similar researches have been made, see [16] and [20] and this study is mainly based
on those two papers. There, it is also preferred to have separate analysis of claim
frequency and claim size. Similar to this study, a Poisson model is used for the
expected claim frequency and a gamma model for the expected total claim sizes,
and both models included spatial factors. Only spatial factor was used in those two
papers but both spatial and temporal factors in this study. In both [16] and [20]
claim sizes are examined per policyholder but in this study the data contains total
claim size per postal code. [16] extends [20] but the before mentioned allows for
dependencies between the number of claims and claim size.

1.1. Introduction to the thesis

The main references in this thesis are [16] and [20], that show similar researches
abroad. Also [1], [9] and [7] are mainly used for the theory behind the work.

An outline of the thesis is given in the following. Chapter 2 introduces the theory
behind the models used in this thesis. The basics of Bayesian inference and MCMC
simulation methods are brie�y summarized together with a description of the Poisson
model and the gamma model. GMRF are introduced for the neighborhood structure,

2



the Compound collective risk model is brie�y discussed and �nally model comparison
is addressed. In Chapter 3, a presentation of the data used in the study is given. In
Chapter 4 the models used in the methods for study are expressed. They are:

• Model for claim frequency

� a Poisson model

• Model for total claim size

� a gamma model

• Expected compensation

� combination of Poisson and gamma models

Also prior distributions, the posterior distributions and conditional posterior distri-
butions for MCMC are shown. The main results are given in Chapter 5, that is,
results on expected claim frequency, expected total claim size and expected com-
pensation.
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2. Theory

In this chapter the theory used in this thesis is explained. It starts by giving a short
introduction to the Poisson distribution and gamma distribution. Following there is
an introduction to Gaussian Markov random �eld and the Compound collective risk
model is described. Then Markov chain Monte Carlo (MCMC) simulation is brie�y
summarized and �nally a short description of a model criteria called DIC is given.

2.1. The Poisson Model

Poisson distribution is a discrete probability distribution that expresses the proba-
bility of a number of events occurring in a �xed interval of time (or space) if these
events occur with a known average rate and independently of the time since the last
event. If the expected number of occurrences in this interval is λ, then the proba-
bility of exactly k occurrences is given by the formula for the Poisson probability
mass function

p(k|λ) = Poisson(k|λ) =
1

k!
λk exp(−λ), k ∈ {0, 1, ...,∞},

where λ > 0. Here k denotes both the random variable k and a particular value
of k, which one is returned will be clear from the context. The random variable k
follows a Poisson distribution with parameter λ, denoted by k ∼Poisson(λ). In the
Poisson model the mean and the variance of k are

E(k|λ) = λ

and
Var(k|λ) = λ.

[1] and [18] Figure 2.1 shows the probability mass function for the Poisson distribu-
tion for four di�erent values of λ.
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Figure 2.1: Poisson probability mass function with λ = 0.5, 1, 5 and 15. The
horizontal axis is k.
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2.2. The gamma Model

The gamma distribution is a two-parameter family of continuous probability distri-
butions. It has a scale parameter β and a shape parameter α, α > 0 and β > 0. [18]
According to [1] the gamma distribution is the conjugate prior distribution for the
inverse of the normal variance and for the mean parameter of the Poisson distribu-
tion. When α > 0 the gamma integral is �nite and the density function is �nite. As
α → 0 and β → 0 a noninformative distribution is obtained in the limit.

θ ∼ gamma(α, β)

denotes a random variable θ that follows a gamma distribution with parameters α
and β.

p(θ) = gamma(θ|α, β)

denotes the density function of the gamma distribution which is given by

p(θ) =
βα

γ(α)
θα−1e−βθ, θ > 0

In the gamma model the mean and variance are

E(θ) =
α

β
(2.1)

and
Var(θ) =

α

β2
(2.2)

Figure 2.2 shows the probability density function for four di�erent values of α.
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Figure 2.2: Gamma probability density function with α = 0.5, 1, 2 and 5.

2.3. GMRF

Gaussian Markov random �elds (GMRF), also referred to as conditionally speci�ed
Gaussian models, can be useful for risk premium estimation because of the spatially
interacting variables as mentioned in [20]. GMRF provides a convenient way to
create a covariance matrices who describe the spatial and temporal correlation based
on de�ning neighbors.
Let Y = (Y1, ..., Yn)T be an n vector of random variables which follows a Gaussian
distribution such that

Y ∼ N(µ, (I − C)−1M)

where (I −C) is invertible and (I −C)−1M is symmetric and positive de�nite. C is
an n× n matrix whose (i, j)-th element is cij, cijτ

2
j = cjiτ

2
i , cii = 0, M is a diagonal

matrix, M = diag(τ 2
1 , ..., τ 2

n) and µ = (µ1, ..., µn)T . Usually in models for areal data,
neighboring units i and j are such that cij 6= 0 while for parts k and l that are far
apart ckl = 0, [6].

In this thesis the MRF are speci�ed in the following way. Let H be a matrix describ-
ing the spatial structure between n units, and all of its elements are nonnegative.
Let hij denote the (i, j)-th element of H. Then let M be a diagonal matrix such
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that

Mi,j =
1∑n

i=1 Hi,j

, i = 1, ..., n

and in matrix form it will be

M =




M11 0 · · · 0

0 M22
...

... . . . 0
0 · · · 0 Mnn




C is such that
Ci,j =

Hi,j∑n
j=1 Hi,j

and
C = M ·H

The covariance matrix of Y is assumed to be

Σ = τ 2(I − φC)−1M

where τ 2 is a variance parameter.

The ordered eigenvalues of C, λ(j), is such that λ(1) ≤ λ(2) ≤ ... ≤ λ(n). Then the
determinant of (I − φC) can be written as

|I − φC| =
n∏

j=1

(1− φλ(j))

where φ is unknown scalar parameter that quanti�es spatial dependence.

2.4. The compound collective risk model

In the basic insurance risk model, according to [8], the number of claims and the
total claim produced by a portfolio in a given time period t = 1, ..., T for some class
i is denoted by (Nit, Sit) where

Sit =

Nit∑

k=1

Witk, if Nit > 0, (2.3)
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and zero otherwise, where Witk is the amount of the kth claim at time t for some
class i.

This model is due to [12] and has the following assumptions:

• The number of claims in the interval (t − 1, t), denoted by Nit, is a random
variable

• The claim size Witk, k = 1, 2, ..., nit, is conditional on Nit = nit. Witk is positive
independent and identically distributed random variables with �nite mean
µit = E[Witk] and variance σ2

it = Var(Wki) < ∞.

• The claim time occurs at random instants t1i ≤ t2i ≤ · · · and the inter-
arrival times Tji = tji − tj−1,i are assumed to be independent and identically
exponentially distributed random variables with �nite mean E[Tji] = λ−1

i .

If it is assumed that the sequences Tj and Wj are independent from each other and
the above conditions hold, then Nit is a homogeneous Poisson process with rate λit.
Then assuming that Witk is gamma(κit, θit) distributed and that the inter-arrival
times are exponentially distributed, the model is given by

Nit|λit, πit ∼ Poisson(λitπit), λi > 0,
Xit|nit, θit ∼ gamma(κit, θit), θi > 0,

where κit = nitκi, nit is the observed number of claims at time t, for age class i, and
πit is the insured population at time t for age class i. This model is often referred
to as the Poisson - gamma model for compound collective risk. [8]

2.5. Computation using Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is an important technique used to simulate
samples from a given density, for example the density of the posterior distribution of
θ. The samples come in chains where each of the simulated values of θ depends on the
preceding value. The basic principle is that when this chain has run su�ciently long
enough it will represent the desired posterior distribution, p(θ|y). This distribution
can be summarized by computing summary statistics from recorded values. The
term Markov chain stands for a sequence of random variables θ1, θ2, ..., for which,
for any t, the distribution of θt given all previous θ´s depends only on the most
recent value, θt−1. The �rst step of MCMC simulation is to select a starting value
θ0 and then for each t, θt is drawn from a transition distribution, Tt(θ

t|θt−1) that
depends on the last draw, θt−1, where Tt(θ

t|θt−1) must be constructed so that the
Markov chain converges to the posterior distribution, p(θ|y), [9] and [1].
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The two basic and most widely used algorithms used in MCMC are the Gibbs sam-
pler and the Metropolis-Hastings algorithm. The Gibbs sampler was �rst introduced
by [15] in 1984 and in 1990 [2] then showed how the method could be applied to a
wide variety of Bayesian inference problems. The Metropolis-Hastings sampler was
developed by [11] in 1953 and [19] in 1970. These algorithms are described in the
following sections. For more informations see [17] and [1].

2.5.1. The Gibbs sampler

According to [9], the Gibbs sampler is a method to produce useful chain values. It
requires speci�c knowledge about the relationship between the variables of interest.
The basic idea is that if it is possible to express each of the parameters to be
estimated as conditioned on all of the others, then by going through these conditional
statements eventually the true joint distribution of interest is reached.

The Gibbs sampler, which is also called alternating conditional sampler, is de�ned
in terms of subvectors of θ. [1] Assume the parameter vector θ has been devided into
d subvectors, θ = (θ1, ..., θd), then the objective is to produce a Markov chain that
cycles through the subvectors of θ moving toward and then around this distribution.
In each iteration t, a sample of each subvector is obtained by sampling from the
distribution of the subvector conditioned on the latest value of the other subvector.
Let

p(θj|θt−1
−j , y)

be the conditional distribution of θj, given the data and the other subvectors at
their current value, denoted by θt−1

−j where

θt−1
−j = (θt

1, ..., θ
t
j−1, θ

t−1
j+1, ..., θ

t−1
d ).

The Gibbs sampler proceeds by selecting a starting value for θ (θ0) and then by
sampling from the d conditional distribution for each t = 1...L, where L is the
number of iterations. The Gibbs sampler can therefore be presented as

θt
1 p(θt

1|θt−1
−1 , y)

θt
2 p(θt

2|θt−1
−2 , y)

...
θt

K p(θt
K |θt−1

−K , y).

Once convergence is reached, all simulation values are from the target posterior
distribution and a su�cient number should then be drawn so that all areas of the
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posterior are explored. During each iteration of the cycling through the θ vector,
conditioning occurs on θ values that have already been sampled for that cycle -
otherwise the θ values are taken from the last cycle.

2.5.2. Metropolis-Hastings Sampler

According to [9], the full set of conditional distributions for the Gibbs sampler
are often quite easy to specify from the hierarchy of the model, since conditional
relationship are directly in such statements. However, the Gibbs sampler obviously
does not work when the complete conditionals for the θ parameters do not have an
easily obtainable form. In these cases a chain can be produced for these parameters
using the Metropolis-Hasings algorithm.

In [1] it is shown that the Metropolis-Hastings algorithm for the j-th subvector of
parameters θj, in the t-th iteration is as follows:

i ) Sample a proposal θ∗j from a proposal distribution with density Jj,t(θ
∗
j |θt−1

j ).

ii ) Calculate the ratio of the densities

r =
p(θ∗j |θt−1

−j , y)/Jj,t(θ
∗
j |θt−1

j )

p(θt−1
j |θt−1

−j , y)/Jj,t(θ
t−1
j |θ∗j )

iii ) Set θt
j = θ∗j with probability min(r, 1), otherwise set θt

j = θt−1
j .

Usually it is easier to work with r on the logarithmic scale in terms of numerical
computation and for analytical results:

log(r) = log p(θ∗j |θt−1
−j , y)− log Jj,t(θ

∗
j |θt−1

j )− log p(θt−1
j |θt−1

−j , y) + log Jj,t(θ
t−1
j |θ∗j ).

The Metropolis-Hastings step is an adaptation of a random walk, that uses an accep-
tance/rejection rule to converge to the speci�ed target distribution. This acceptance
rate is recommended to be 44% when θj is a scalar and 23% when θj is of higher
dimension to ensure proper convergence and it is tuned by changing the variance of
the proposal distribution.
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2.6. Model comparison

For complex hierarchical models the computation of Bayes factors, according to [13],
requires substantial e�orts. Therefore it is helpful to consider model choice criteria
which can easily be computed using the available MCMC output. Natural way to
compare models is to use criterion based on trade-o� between the �t of the data
to the model and the corresponding complexity of the model. Proposed by [3], a
Bayesian model comparison criterion based on this principle which will be described
in next subsection.

2.6.1. Deviance Information Criterion (DIC)

The deviance information criterion, suggested by [3], for a probability model p(y|θ)
with observed data y = (y1, . . . , yn) and unknown parameters θ is de�ned by

DIC := E[D(y, θ|y)] + pD. (2.4)

which considers both model �t and model complexity where p(y, θ) = −2 log(p(y|θ).
The posterior mean of D(y, θ), E[D(y, θ)|y] can be estimated with

D̂avg(y) =
1

L

L∑

l=1

D(y, θ)

and pD is the e�ective number of parameters. The e�ective number of parameters,
pD measures the model complexity. pD is estimated with

pD := D̂avg(y)−Dθ̂(y). (2.5)

The DIC criterion has been suggested as a criterion of model �t when the goal is to
�nd a model that will be best for prediction when taking into account uncertainty
due to sampling. As mentioned in [16], according to the DIC criterion the model
with the smallest DIC is to be preferred. Both DIC and pD can easily be computed
by taking the posterior mean of the deviance D̂avg(y) and the plug-in estimate
of the deviance Dθ̂(y) by using the available MCMC output. In this project the
standardizing term f(y) is zero.

13





3. Data

The data set which is analyzed in this thesis, comes from the icelandic insurance
company Vátryggingafélag Íslands hf. (VÍS). The data sets contain the number of
claims and total claim size, categorized by year, postal code and risk category.

3.1. Data description

The data set contains information about car insurance premium and compensation
paid from the insurance company from 1993 to 2008. The number of policy days
(which is changed to policy years when using the data), eit, is known and not all
policyholders were insured during the whole year. There are three main categories:

i ) Property loss (i. munatjón)
- Only damage to properties, not people

ii ) Bodily injury (i. líkamstjón)
- injury to people other than driver and owner of car

iii ) Drivers accident insurance (i. slysatrygging ökumanns og eiganda)
- Only injury to owner and driver of the car

The data sets contain the following variables:

• Year when claim occurs

• Risk category

• Region (postal code)

• Premiums for liability insurance

• Premium for driver accident insurance
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• Number of policy days

• And for three categories i), ii) and iii)

� Estimated total compensation

� Number of claims

� Estimated unpaid compensation

Iceland is divided into 151 regions, including post o�ce box. For convenience post
o�ce box were combined with appropriate postal codes, reducing the number of
regions used to 130. For each claim the year claim occurs, t, and region where
policyholder is residing, i, is known. The original data set contains about 35.500
observations, but in this thesis only one risk category is analyzed. The data set for
this category contains about 2230 observations when regions are 151 but about 2000
when regions are 130. All data have been brought to present worth but they have
also been scaled for reasons of con�dentiality.
In the model for claim frequency only observation with non-zero policy years are
taken into account. Of course, if the number of policy years is greater than zero
then account of zero for particular postal code and particular year is taken into
account. In case of the model for the claim size, observations with non-zero policy
years are taken into account for all occurred claims. There is a quite large amount of
observations with no claim, especially in the category for divers accident insurance,
see Tables 3.1, 3.2 and 3.3. They also show the maximum number of observed
claims, which is most in the category for property loss.

Table 3.1: Summary of the observed claim frequencies in the data of property loss.
Property loss

Number of claims Percentage of observation
0 43.72
1 17.38
2 9.01
3 4.51
4 3.00
... ...
63 0.05
64 0.05

In Figure 3.1 a histogram of the observed positive average claim sizes is given and
in Table 3.4 is given the mean of total claim sizes per number of claims. The �gure
shows the average claim size is just below 100000. From the mentioned table the total
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Table 3.2: Summary of the observed claim frequencies in the data of bodily injury.
Bodily injury

Number of claims Percentage of observation
0 77.82
1 9.71
2 5.11
3 2.65
4 1.65
... ...
13 0
14 0.05

Table 3.3: Summary of the observed claim frequencies in the data of drivers accident
insurance.

Drivers accident insurance
Number of claims Percentage of observation

0 83.93
1 10.82
2 3.15
3 1.45
4 0.50
5 0.05
6 0.05
7 0.05
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Figure 3.1: Histogram of the observed positive total claim sizes per number of claims.

claim size per number of claims is 93044. The largest average claim size observation
per number of claim is 1451240 which is about 1.4% of the sum of all total claim
sizes per number of claims. Based on a simple statistical test no relationship was
found between number of claims and total claim sizes. Figure 3.1 and Table 3.4 are
therefore describing for the data.

Table 3.4: The mean of total claim sizes per number of claims taken over all obser-
vations and over observations with N = k, k = 1, 2, 3, 4, 5, 6, 7, 8, 63, 64.

Number of observations Mean
All 93044

N = 1 94220
N = 2 93970
N = 3 90564
N = 4 96060
N = 5 105416
N = 6 95580
N = 7 96583
N = 8 89150

... ...
N = 63 76020
N = 64 107956
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3.1.1. Neighborhood matrix

In Chapter 2.3 a model describing correlation between variables based on their
neighborhood structure was given. In this subsection, the matrix that describes the
neighborhood structure is de�ned. If postal codes are neighbors, 1 connects them,
otherwise there is 0. Postal code has to have at least one neighbor and is never
neighbor to it self. The neighborhood matrixes can be seen in Appendix A.
There are two kind of neighborhood structures, temporal and regional. In the neigh-
borhood structure for time, years before and after a certain year are neighbors so
each year has 2 neighbors except the �rst and last that only have one. The neigh-
borhood structure for regions is de�ned such that regions are neighbors if they:

• share borders

• share borders with neighbors when there is strong connection

� strong connection within the capital area

� strong connection if postal codes are within the same commune
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4. Models

Under the Poisson-gamma model for compound collective risk, see Section 2.4 the
number of claims follow a Poisson distribution and are independent of the claim sizes
which follow a gamma distribution. In this chapter these two models are described.
The main result is expected compensation which is simply the expected claim fre-
quency times the expected total claim size. Following there is an introduction to the
Bayesian inference where prior- and posterior distributions and MCMC algorithms
are described.

4.1. Model for claim frequency

For claim frequency, a Poisson model with spatial and temporal e�ects is chosen.
This model is easy to use for insurance data, e.g. based on [20] and [16]. The
structure of the data requires spatial and temporal e�ects which are easy to include
to the proposed model. Considering only observations with non-zero policy years,
altogether 1974 observations are obtained. The index t denotes the year claim occurs
and the index i denotes the region where policyholder is residing. Nit is the number
of claims in region i at year t. The number of policy years for policyholders in region
i and at year t is denoted by eit. The average number of claims per a single policy
year in region i at year t is denoted by θit. The proposed model for number of claims
is given by

Nit | θit ∼ Poisson(eit ∗ θit) (4.1)
or with θ∗it = log θit

Nit | θ∗it ∼ Poisson(eit ∗ exp(θ∗it))

where
θ∗it = xT

i β + a1,t + a2,i + εit,

a1,t and a2,i are temporal- and spatial factors respectively. The temporal factor is
used to see if time in�uences the results and the spatial factor is to see if residence
of policyholders in�uencees the results. xi is a vector of covariates, β is a vector
of parameters and εit is an error term which is independent over years and postal
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codes,
εit ∼ N(0, σ2

ε,it)

where
σ2

ε,it = log

(
1

2
+

1

2

√
1 +

4

reit

)

with r denoting the average frequency per policy year. The calculations for σ2
ε,it,

which changes for each policy year, can be seen in Appendix B.

To estimate the number of claims, θ∗it, eight potential postal categories were selected
and used as covariates to help explain the spatial patterns of the claims. The vector
of unknown regression parameters is β = (β1, ..., β8)

′. The vector of covariates for
the i-th observation is given by

xi = (x1,i, ..., x8,i)
′

and includes only 0 and 1. The main role of this matrix is to ensure that each
observation is connected to the correct postal category. When deciding the postal
categories, the postal codes were grouped in several ways where the groups depended
on sizes of urban regions, closeness to highway, etc. The model was tested under
di�erent grouping of the postal codes. The best result was found with help of DIC.
The best result consisted of eight categories which can be seen in Table 4.1.

Table 4.1: Regression covariates.
Regression Covariates

Covariates (x) Coe�cients (β) Postal categories
x1 β1 Reykjavík
x2 β2 Reykjavík Urban Region
x3 β3 Large Urban Region
x4 β4 Small Urban Region
x5 β5 Rural near highway
x6 β6 Rural area
x7 β7 Banks and government
x8 β8 Other

4.1.1. Residual analysis

Evaluating the �t of the model to the data is an important step when building a
model. Graphical residual analysis is the primary statistical tool to evaluate the
�t of a model. Residuals are the di�erence between the measured output from the
validation data set and the predicted model output. Residuals therefore represent
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the portion of the validation data not explained by the model. [10] When random
errors in regression models are not normally distributed it can be useful to use
alternative formula to the usual residual formula, proposed by [4]. It is based on the
idea to produce quantities that are close to being normal distributed, and the formula
for the residuals depends on the assumed distribution. For Poisson distribution,
formula for the residual is given by

e =
3
2
(y2/3 − ψ2/3)

ψ1/6
(4.2)

where y follows a Poisson distribution with mean ψ. Modify for the overdispersed
Poisson model so that the expected value and the variance of Nit are conditioned
on β, a1 and a2 (integrated over eit). The mean is

E(Nit|β, a1, a2) = eit exp(XT
i β + a1,t + a2,i + 0.5σ2

ε,it) = ψit

and the variance is

Var(Nit|β, a1, a2) = ψ2
it(exp(σ2

ε,it)− 1) + ψ2
it.

To �t Equation (4.2) to the model for frequency of claims, according to Taylor
expansion the equation becomes

e =
y2/3 − ψ2/3

√
σ2

Y
4
9
ψ−2/3

(4.3)

and by using Equations (4.2) and (4.3) together with using the transformation of
N

2/3
it and Cramérs Theorem, [5] the residual formula for the claim frequency model,

where y is denoted by Nit is

e =
N

2/3
it − exp(ψ

2/3
it )√

ψ2
it(exp(σ2

ε,it)− 1) + ψit

∗ 1
2
3
(ψit)−1/3

. (4.4)

4.2. Model for claim size

The proposed model for claim size is a gamma model with temporal and spatial
e�ects and is similar to the model presented in [20] and [16]. The experience shows
this kind of model is easy to use for similar projects. The structure of the data re-
quires temporal and spatial e�ects. These e�ects are easy to include to the proposed
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model. In this model only observations with positive number of claims and non-zero
policy years are taken into account, altogether 1108 observations are obtained. Sit

is the total size of claims in region i and year t. The average size of each claim is
denoted by µit and σit denotes the standard deviation of each claim.
The original idea for this model is similar to the model for claim frequency. The
log-mean parameter µ∗ is similar to θ∗ and the factors d1 and d2 are similar to a1

and a2, i.e. temporal and spatial e�ects respectively. The log-mean is modeled as
XT

i η+d1,t +d2,i but in the �nal analysis d2 was cut out from the model. Nonetheless
d2 will be included in this chapter, but will be discussed further in Chapter 5.

The covariate vector is the same as for the model for claim frequency, xi = (xi1, ..., xi8)
′,

only containing 0 and 1. The vector of unknown regression parameters is η =
(η1, ..., η8)

′.

Sit | Nit ∼ gamma(Nitµit, Nitσ
2
it) (4.5)

where the gamma distribution is parameterized by its mean and variance, and

µit = exp(xT
i η + d1,t + d2,i)

σ2
it =

µ2
it

α
where α is an unknown parameter

Sit =

Nit∑

k=1

Witk, Wk,it ∼ gamma(µit, σ
2
it)

where Witk is the cost for individual claim, which is unknown.

Like for claim frequency, model validation with graphical analyzation of the residuals
is made for the claim sizes. Also proposed by [4], a model for residuals in case of
gamma distribution with mean µ

e =
3(y1/3 − µ1/3)

2µ1/3
. (4.6)

The formula in 4.6 needs to be corrected by including the square root of α. That is
by letting

e =
3
√

α(y1/3 − µ1/3)

2µ1/3
, (4.7)
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the variance of e becomes approximately 1. In case of the model for Sit

e =
3
√

αNit(S
1/3
it −N

1/3
it µ

1/3
it )

2N
1/3
it µ

1/3
it

(4.8)

with αit and βit are such that
αit = α ·Nit,

βit = α · exp(−µ)

where αit and βit are the usual parameters of the gamma distribution and

µit =
αit

βit

.

4.3. Expected compensation

The main aim of the research in this thesis is to �nd out the expected total com-
pensation cost the insurance company has to pay. This cost will depend on models
for claim frequency and claim size, and is examined for each postal code where poli-
cyholder is residing. The expected value is the expected total cost (Sit) per number
of policy years (eit) and the �nal result is a combination of the two main models
mentioned earlier in this chapter. Despite of this combination, the uncertainty does
not increase since each part is calculated separately.

E
(

Sit

eit

)
= 1

eit
E(Sit)

= 1
eit

E
(∑Nit

k=1 Wk,it

)

= 1
eit

E(E(
∑Nit

k=1 Wk,it|Nit))

= 1
eit

E(
∑Nit

k=1 E(Wk,it)|Nit)

= 1
eit

E(NitE(W1,it))

= 1
eit

E(Nit)E(W1,it)

= 1
eit

E(E(Nit|θ∗it))µit

= 1
eit

E(eitθ
∗
it) exp(xT

i η + d1,t + d2,i)

= exp(xT
i β + a1,t + a2,i + 1

2
σ2

ε) exp(xT
i η + d1,t + d2,i)

(4.9)
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where exp(xT
i β+a1,t+a2,i+

1
2
σ2

ε) is the Poisson part of the model and exp(xT
i η+d1, t+

d2,i) is the gamma part of the model, see Equations (4.2) and (4.6), respectively.

4.4. Bayesian inference

4.4.1. Prior distributions

An important part of Bayesian inference is the selection of appropriate prior distri-
butions for the unknown parameters. For the model for claim frequency the prior
distributions for the parameters mentioned in Section 4.1 are assumed to be as
follows:

β ∼ N(µβ, σ2
βI)

a1 ∼ N(0̄, τ 2
1 (I − φ1C1)

−1M1)

a2 ∼ N(0̄, τ 2
1 (I − φ2C2)

−2M2)

εit ∼ N(0̄, σ2
ε,itI)

(4.10)

where N(·, ·) indicates the normal distribution. µβ and σβ are selection based pre-
analysis of data. β is estimated with Maximum likelihood estimation in a model
with θ∗ = xiβ. µβ is the mean of β̂ and σ2

β is C times the variance of β̂, where C is
a multiplication factor for the variance decided with experiments on the model with
default value equal to 4 in the model for claim frequency and equal to 0.5 for the
model for claim size. This is done to get the estimation of β stable.

The hyperparameters are σ2
ε , τ

2
1 , τ 2

2 , φ1 and φ2. A non-informative prior distribution
- scaled inverse-χ2 is chosen for σ2

ε,it, τ
2
1 and τ 2

2 . For φ1 and φ2 beta distribution is
chosen to ensure strong correlation.
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σ2
ε ∼ Inv− χ2(νε, S

2
ε ) νε = 10−6, S2

ε = 1

τ 2
1 ∼ Inv− χ2(ντ1, S

2
τ1) ντ1 = 10−6, S2

τ1 = 1

τ 2
2 ∼ Inv− χ2(ντ2, S

2
τ2) ντ2 = 10−6, S2

τ2 = 1

φ1 ∼ beta(αφ1, βφ1) αφ1 = 100, βφ1 = 0.5

φ2 ∼ beta(αφ2, βφ2) αφ2 = 100, βφ2 = 0.5

(4.11)

Similar for claim size, the prior distributions are as follows:

η ∼ N(µη, σ
2
ηI)

d1 ∼ N(0̄, κ2
1(I − ζ1C1)

−1M1)

d2 ∼ N(0̄, κ2
2(I − ζ2C2)

−1M2)

α ∼ gamma(α0, β0)

(4.12)

where N(·, ·) indicates the normal distribution. The parameters in the gamma model
are estimated similar to the parameters in the model for claim frequency. µη and ση

are selection based pre-analysis of data. η is estimated with Maximum likelihood
estimation in a model xiη. µη is the mean of η̂. For α gamma distribution is chosen
with parameters α0 = 1 and β0 = 1. The hyperparameters are σ2

r , κ
2
1, κ

2
2, ζ1 and ζ2.

A non-informative prior distribution - scaled inverse-χ2 is chosen for σ2
r , κ

2
1 and κ2

2.
For ζ1 and ζ2 beta distribution is chosen to ensure strong correlation.

σ2
r ∼ Inv − χ2(νr, S

2
r ) νr = 10−6, S2

r = 1

κ2
1 ∼ Inv − χ2(νκ1, S

2
κ1) νκ1 = 10−6, S2

κ1 = 1

κ2
2 ∼ Inv − χ2(νκ2, S

2
κ2) νκ2 = 10−6, S2

κ2 = 1

ζ1 ∼ beta(αζ1, βζ1) αζ1 = 100, βζ1 = 0.5

ζ2 ∼ beta(αζ2, βζ2) αζ2 = 100, βζ2 = 0.5

(4.13)
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4.4.2. Posterior distributions

The posterior distributions of the parameters, given the observed claim numbers
and claim sizes, describe the statistical uncertainty and is the tool for inference
in a Bayesian analysis. Analytically, the posterior density is the product of the
prior density and the likelihood. The posterior distribution for the model of claim
frequency is

p(θ∗it, a1, a2, β, σ2
ε,it, τ

2
1 , τ 2

2 , φ1, φ2|Nit) ∝ p(Nit|θ∗it)

×p(θ∗it|a1, a1, β, σ2
ε,it)

×p(a1|τ 2
1 , φ1)× p(a2|τ 2

2 , φ2)

×p(β)p(σ2
ε,it)p(τ 2

1 )p(τ 2
2 )p(φ1)p(φ2)

∝ ∏J
i=1

∏T
t=1 Poisson(Nit|eitθ

∗
it)

×∏J
i=1

∏T
t=1 N(θ∗|xT

i β + a1,t + a2,i, σ
2
ε,it)

×N(a1|0, τ 2
1 (I − φ1C1)

−1M1)

×N(a2|0, τ 2
2 (I − φ2C2)

−1M2)

×N(β|µβ, σ2
βI)Inv-χ2(σ2

ε |νε, S
2
ε )

Inv-χ2(τ 2
1 |ντ1, S

2
τ1)Inv-χ2(τ 2

2 |ντ2, S
2
τ2)

×beta(φ1|αφ1, βφ1)beta(φ2|αφ2, βφ2)
(4.14)
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The posterior distribution for the claim sizes is

p(d1, d2, η, κ2
1, κ

2
2, ζ1, ζ2, α|Sit) ∝ p(Sit|η, d1, d2, α,Nit)

×p(d1|κ2
1, ζ1)× p(d2|κ2

2, ζ2)

×p(η)p(α)p(ζ1)p(ζ2)

∝ ∏J
i=1

∏T
t=1 gamma

[
Sit|Nit exp(λit),

Nit

α
exp(2λit)

]

×N(d1|0, κ2
1(I − ζ1C1)

−1M1)

×N(d2|0, κ2
2(I − ζ2C2)

−1M2)

×N(η|µη, σ
2
ηI)× gamma(α0, β0)

×Inv-χ2(κ2
1|νκ1, S

2
κ1)Inv-χ2(κ2

2|νκ2, S
2
κ2)

×beta(ζ1|αζ1, βζ1)beta(ζ2|αζ2, βζ2)
(4.15)

When �nding the posterior distribution for the model for claim sizes �rst it is good
to parameterize the model with the mean and variance. In Chapter 2 are the basic
equations for the gamma model expressed, see Equations (2.1), (2.1) and (2.2). The
usual parametrization is as follows:

α

β
= µ,

α

β2
= σ2 =

1

α

α2

β2
=

1

α
µ2.

This gives

α =
µ2

σ2

and

β =
α

µ
=

1

µ

µ2

σ2
=

µ

σ2
. (4.16)
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Then the parametrization for this model is

λit = xT
i η + d1,t + d2,i,

µit = Nit exp(λit),

σ2
it = 1

α
Nit exp(2λit),

αit =
N2

it exp(2λit)
1
α

Nit exp(2λit)
= αNit,

βit = Nit exp(λit)
1
α

Nit exp(2λit)
= α exp(−λit).

(4.17)

This parametrization is used in the calculations for the conditional distributions of
the claim size model in Subsection 4.4.3.

4.4.3. MCMC

As mentioned in Section 2.5, Gibbs sampler is one kind of MCMC simulations.
Gibbs sampler is used to simulate samples from the posterior distributions. It is
su�cient to have 4 chains. Starting values are determined with experiments and
then the MCMC algorithms are run for 15000 iterations. A burn-in of 4500-5000
iterations is found to be su�cient after experiments on the MCMC trace plots.

Sampling from the posterior distribution by using the Gibbs sampler gives the con-
ditional distribution for all parameters. In Appendix C, conditional distributions
for all parameters are expressed.
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5. Results

In this chapter the main results of an analysis based on the derived methods are
given. First, results on the expected claim frequency per policy year, expected total
claim size per policy year and the expected compensation cost per policy year, both
for the postal categories and for each postal code. Following, there are results from
the claim frequency model and results from the claim size model. Finally, results on
the expected compensation cost, which is based on these two models, is introduced.
In Chapter 3, three categories for mandatory liability insurances for vehicles are
mentioned. Here, only results for one category, property loss, will be listed out,
both for claim frequency and claim size. Also, there are three postal codes that
have no neighbors. According to the postal categories they belong to banks and
government (postal codes 150 and 155) and other (postal code 999). These postal
codes are not included in �gures in this chapter and grouped separately in the postal
categories.

5.1. Main results

In Chapter 4, eight di�erent postal categories were introduced. Table 5.1 shows for
these postal categories their expected claim frequency per number of policy years,
their expected claim size per number of policy years and their expected compensation
per number of policy years. This table shows the number of claims is highest in
Reykjavík, urban regions around Reykjavík and Large urban regions but lowest
in the rural areas near highway and the same is for expected compensation. In
Appendix D, Tables D.1-D.3 are similar to Table 5.1, but these tables also give
upper and lower bounds for 95% posterior interval. For example for claim frequency
and category 1 the lower 95% interval is 0.061 which is larger than e.g. category 4
which has the upper 95% interval as 0.056 and therefore shows there is signi�cant
di�erence between these categories. It is interesting that the cost is higher in rural
area than rural near highway. These two postal categories were examined further
in terms of what postal codes were included. Based on this examination there was
no reason to make changes. Claim size on the other hand is very similar between
postal categories.
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Table 5.1: Expected claim frequency, total claim size and compensation per policy
year for the eight postal categories.

Numeric Region Claim Claim Expected
code frequency size compensation
1 Reykjavík 0.0743 82290 6113
2 Reykjavík urban region 0.0663 82001 5440
3 Large urban region 0.0644 86078 5539
4 Small urban region 0.0513 88740 4551
5 Rural near highway 0.0460 86080 3956
6 Rural area 0.0505 86729 4377
7 Banks and government 0.1101 93742 10321
8 Other 0.0751 88912 6674

Table 5.2 is similar to Table 5.1. However, instead of postal categories all postal
codes are expressed. The results are in line with results in Table 5.1, with the
highest frequency and expected compensation in the capital area and lowest in the
countryside. Size of claims are very similar between postal categories and are the
same for postal codes within the same postal category. In Appendix D, Tables D.4
- D.6 are similar to Table 5.2 but these tables also give upper and lower bounds
for 95% posterior intervals. For claim frequency the average lower bound multipli-
cation factor is 0.6583 (about 34% is subtracted from the posterior mean) and the
upper bound multiplication factor is 1.4593 (about 46% is added to the posterior
mean). For claim sizes the lower bound multiplication factor is 0.8493 (about 15%
is subtracted from the posterior mean) and the upper bound multiplication factor
is 1.1899 (about 19% is added to the posterior mean). For expected value the lower
bound multiplication factor is 0.6341 (about 37% is subtracted from the posterior
mean) and upper bound multiplication factor is 1.5083 (about 51% is added to the
posterior mean).

For better explanation, the expected compensation cost is shown graphically for all
postal codes in Figure 5.1. There is a good overview for the numbers in the second
last column in Table 5.2. Since the expected claim frequency re�ects the expected
compensation, and the expected total claim sizes are similar for all postal codes, it
was decided only to show the expected compensation graphically, like in Figure 5.1.
As can be seen, a few postal codes outside of the capital area have a large amount of
expected compensation, even though it is a small region (for example postal codes
233, 345 and 611). This is explained by unusual amount of occurred claims during
some years when compared to other years for that postal code (where the amount of
policyholders is still the same) and the frequency of claims in nearby postal codes.
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Figure 5.1: Expected compensation cost for each postal code. Green dot present ex-
pected compensation less than 4000, yellow dot present postal codes where expected
compensation are between 4000 and 5500. Red dot present expected compensation
between 5500 and 7000 and �nally the blue one present expected compensation
higher than 7000.

Table 5.2: Table with posterior mean for expected claim frequency per policy year
(Poisson), expected total claim size per policy year (gamma) and expected com-
pensation cost per policy year.

Region Postal Claim Claim Expected Numeric
code frequency size compensation code

Reykjavík 101 0.0761 82291 6265 1
Reykjavík 103 0.0713 82291 5871 1
Reykjavík 104 0.0771 82291 6345 1
Reykjavík 105 0.0696 82291 5725 1
Reykjavík 107 0.0681 82291 5606 1
Reykjavík 108 0.0702 82291 5776 1
Reykjavík 109 0.0711 82291 5848 1
Reykjavík 110 0.0718 82291 5912 1
Reykjavík 111 0.0821 82291 6753 1
Reykjavík 112 0.0622 82291 5117 1
Reykjavík 113 0.0678 82291 5583 1
Reykjavík 116 0.1040 82291 8558 1
Reykjavík 150 0.1146 93742 10743 7
Reykjavík 155 0.1056 93742 9898 7

Seltjarnarnes 170 0.0753 82001 6177 2
Continued on next page
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Table 5.2 � continued from previous page
Region Postal Claim Claim Expected Numeric

code frequency size compensation code
Vogar 190 0.0593 88740 5261 4

Kópavogur 200 0.0652 82001 5344 2
Kópavogur 201 0.0607 82001 4976 2
Kópavogur 203 0.0632 82001 5185 2
Garðabær 210 0.0624 82001 5120 2

Hafnarfjörður 220 0.0716 82001 5870 2
Hafnarfjörður 221 0.0619 82001 5075 2

Álftanes 225 0.0716 82001 5868 2
Reykjanesbær 230 0.0717 86079 6174 3
Reykjanesbær 233 0.1185 86079 10204 3
Reykjanesbær 235 0.0545 86079 4689 3
Grindavík 240 0.0569 88740 5049 4
Sandgerði 245 0.0548 88740 4865 4
Garður 250 0.0568 88740 5040 4

Reykjanesbær 260 0.0625 86079 5376 3
Mosfellsbær 270 0.0652 82001 5346 2
Akranes 300 0.0641 86079 5521 3
Akranes 301 0.0556 86080 4789 5
Borgarnes 310 0.0489 86079 4212 3
Borgarnes 311 0.0454 86080 3912 5
Reykholt 320 0.0544 86729 4717 6

Stykkishólmur 340 0.0508 88740 4509 4
Flatey á Breiðar�rði 345 0.0728 86080 6261 6

Grundarfjörður 350 0.0459 88740 4072 4
Ólafsvík 355 0.0553 88740 4903 4

Snæfellsbær 356 0.0760 88740 6747 4
Hellissandur 360 0.0518 88740 4594 4
Búðardalur 370 0.0459 88740 4071 4
Búðardalur 371 0.0395 86729 3430 6

Reykhólahreppur 380 0.0424 86729 3675 6
Ísafjörður 400 0.0423 88740 3758 4
Ísafjörður 401 0.0527 86729 4567 6
Hnífsdalur 410 0.0442 86729 3834 6
Bolungarvík 415 0.0450 88740 3993 4
Súðavík 420 0.0539 88740 4780 4
Flateyri 425 0.0496 88740 4400 4
Suðureyri 430 0.0492 88740 4364 4

Patreksfjörður 450 0.0422 88740 3741 4
Continued on next page
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Table 5.2 � continued from previous page
Region Postal Claim Claim Expected Numeric

code frequency size compensation code
Patreksfjörður 451 0.0476 86729 4126 6
Tálknafjörður 460 0.0364 88740 3230 4
Bíldudalur 465 0.0545 88740 4839 4
Þingeyri 470 0.0416 88740 3688 4
Þingeyri 471 0.0488 86729 4232 6
Staður 500 0.0499 86080 4292 5

Hólmavík 510 0.0478 88740 4238 4
Hólmavík 512 0.0708 86729 6139 6
Drangsnes 520 0.0666 88740 5911 4

522 0.0302 86729 2618 6
523 0.0636 86729 5519 6

Árneshreppur 524 0.0842 86729 7299 6
Hvammstangi 530 0.0534 88740 4739 4
Hvammstangi 531 0.0427 86080 3672 5
Blönduós 540 0.0455 88740 4035 4
Blönduós 541 0.0442 86080 3804 5

Skagaströnd 545 0.0461 88740 4092 4
Sauðárkrókur 550 0.0540 88740 4794 4
Sauðárkrókur 551 0.0327 86080 2814 5
Varmahlíð 560 0.0424 88740 3760 4
Hofsós 565 0.0487 88740 4325 4
Hofsós 566 0.0642 86080 5523 5
Fljót 570 0.0552 86729 4791 6

Siglufjörður 580 0.0367 86729 3183 4
Akureyri 600 0.0533 86079 4585 3
Akureyri 601 0.0454 86080 3908 5
Akureyri 603 0.0607 86079 5225 3
Grenivík 610 0.0644 88740 5715 4
Grímsey 611 0.1183 88740 10497 4
Dalvík 620 0.0368 88740 3264 4
Dalvík 621 0.0307 86080 2640 5

Ólafsfjörður 625 0.0582 88740 5165 4
Hrísey 630 0.0630 88740 5591 4
Húsavík 640 0.0517 88740 4587 4
Húsavík 641 0.0488 86729 4230 6
Fosshóll 645 0.0559 86080 4814 5
Laugar 650 0.0568 88740 5043 4
Mývatn 660 0.0433 88740 3843 4

Continued on next page
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Table 5.2 � continued from previous page
Region Postal Claim Claim Expected Numeric

code frequency size compensation code
Kópasker 670 0.0465 88740 4131 4
Kópasker 671 0.0389 86729 3371 6
Raufarhöfn 675 0.0428 88740 3797 4
Þórshöfn 680 0.0400 88740 3551 4
Þórshöfn 681 0.0358 86729 3109 6

Bakkafjörður 685 0.0655 88740 5813 4
Vopnafjörður 690 0.0419 88740 3719 4
Egilsstaðir 700 0.0473 86079 4068 3
Egilsstaðir 701 0.0288 86080 2479 5

Seyðisfjörður 710 0.0395 88740 3503 4
Mjóafjörður 715 0.0642 86729 5569 6

Borgarfjörður eystri 720 0.0442 88740 3920 4
Reyðarfjörður 730 0.0429 88740 3803 4
Eskifjörður 735 0.0464 88740 4120 4

Neskaupsstaður 740 0.0418 88740 3712 4
Fáskrúðsfjörður 750 0.0378 88740 3356 4
Stöðvarfjörður 755 0.0398 88740 3530 4
Breiðdalsvík 760 0.0564 88740 5008 4
Djúpivogur 765 0.0397 88740 3519 4

Höfn 780 0.0502 88740 4453 4
Höfn 781 0.0323 86080 2784 5
Öræ� 785 0.0377 86080 3249 5
Selfoss 800 0.0635 86079 5469 3
Selfoss 801 0.0483 86080 4161 5

Hveragerði 810 0.0629 86079 5416 3
Þorlákshöfn 815 0.0515 88740 4572 4
Eyrarbakki 820 0.0638 88740 5664 4
Stokkseyri 825 0.0579 88740 5134 4
Laugarvatn 840 0.0528 86080 4542 5

Flúðir 845 0.0509 88740 4517 4
Hella 850 0.0489 88740 4339 4
Hella 851 0.0395 86080 3397 5

Hvolsvöllur 860 0.0471 88740 4184 4
Hvolsvöllur 861 0.0395 86080 3399 5

Vík 870 0.0647 88740 5737 4
Vík 871 0.0548 86080 4716 5

Kirkjubæjarklaustur 880 0.0516 88740 4583 4
Vestmannaeyjar 900 0.0491 88740 4354 4

Continued on next page
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Table 5.2 � continued from previous page
Region Postal Claim Claim Expected Numeric

code frequency size compensation code
999 0.0751 88912 6674 8

5.2. Claim frequency

The analysis of claim frequency is based on the Bayesian approach and MCMC.
Statistical results are found by using simulated samples to compute the posterior
mean, standard deviation and percentiles for all parameters. MCMC trace plots for
all parameters are examined and residuals are analyzed. Then model comparison
was made with DIC calculations, introduced in Chapter 2. The model was tested
with di�erent coe�cient C, di�erent postal category matrix and �nally models with
and without spatial and temporal factors were compared, and the best model chosen.
The trace plots for all model parameters are presented in Figures 5.2 - 5.5. There
are 16 di�erent a1 parameters depending on each year. Similarly, there are 130
di�erent postal codes and therefore 130 di�erent a2 parameters, 8 di�erent regression
parameters β according to postal categories and 1974 θ∗ parameters depending on
the whole data for claim frequency with some number of policy years. For each
of a1, a2, β and θ∗, one element is picked randomly to show its trace plot. These
plots are used to see if all parameters are stable, and Figures 5.2 - 5.5 show stable
parameters. It is not necessary to have equal axis for all parameters since there is
no need to compare the plots between parameters.

Residual plots based on residual analysis is shown in Figure 5.6. Formula for the
residuals is presented in Chapter 4, see Equation (4.2). The �gure shows that
the residuals for claim frequency behave as expected with the exception that the
variance appears to be a little bit higher when expected value is between zero and
�ve constant as opposed to being constant. The average is around zero as expected.

Next step is to compare the for-mentioned model for claim frequency using DIC,
the lower DIC value and e�ective parameters (pD) give, the better results can be
obtained. First, the model was run with di�erent multiplication factor C (introduced
in Chapter 4).

Table 5.3 shows, from C = 4, the value on e�ective parameter increases with lower
value on C. It also increases when C = 5. The model gives good results when
C = 4 in terms of pD and DIC is low. Based on these results, a decision is made
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Figure 5.2: MCMC trace plots for parameters a1,5 and a2,72 for 15000 iterations,
burn-in of 4500 and 4 chains.
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Figure 5.3: MCMC trace plots for parameters β4 and θ∗135 for 15000 iterations,
burn-in of 4500 and 4 chains.

to set the value of C equal to 4. The next step is to test the model with di�erent
postal category matrices, see results in Table 5.4. First there is only 1 category
where all postal codes are in one and the same category. Next there are 6 categories
which is similar to the categories introduced in Table 4.1, except postal codes in
Reykjavík and Reykjavík urban region are combined and rural areas and rural areas
near highway were combined. Then the postal category matrix with eight categories
is tried out. Finally the postal categories are 9, which is similar to the 8-th category
matrix but there are two categories with small urban region, one close to the highway
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Figure 5.4: MCMC trace plots for parameters τ 2
1 and τ 2

2 for 15000 iterations, burn-in
of 4500 and 4 chains.
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Figure 5.5: MCMC trace plots for parameters φ1 and φ2 for 15000 iterations, burn-in
of 4500 and 4 chains.

and the other one not.

Table 5.4 shows the lowest value of both DIC and e�ective number of parameters
is when there are 8 postal categories, which is used in the following calculations.
Finally the model is tested with and without the temporal e�ects and the spatial
e�ects. First, only a1 is taken out of the model and a2 is included. Next it is the
opposite, a1 in and a2 out. Following both parameters are taken out of the model
and �nally both are included in the model (which should give the same results as
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Table 5.3: DIC calculations for Poisson model with di�erent coe�cient C. pD is the
e�ective number of parameters.

DIC calculations
Coe�cient DIC pD

C = 0.5 5387.7 589.59
C = 1 5381.0 587.48

C = 1.5 5378.1 586.77
C = 2 5377.5 586.58
C = 3 5376.1 586.08
C = 4 5375.4 585.78
C = 5 5375.6 586.14

Table 5.4: DIC calculations for Poisson model with di�erent postal category matrix.
pD is the e�ective number of parameters.

DIC calculations
Postal category matrix DIC pD

X:1 5401.3 599.43
X:6 5377.6 588.42
X:8 5375.4 585.78
X:9 5376.9 586.04
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Figure 5.6: Residual plot with residuals of the Poisson model on the y-axis versus
exp(µ + 0.5 ∗ σ2

it) where µ = Xβ + a1,t + a2,i + log(eit) on the x-axis.

Table 5.4 with 8 postal categories.

Table 5.5: DIC calculations for Poisson model with and without spatial and temporal
e�ects. pD is the e�ective number of parameters.

DIC calculations
Factors DIC pD

a1 out 5379.0 585.17
a2 out 5403.1 579.32

a1 and a2 out 5410.7 579.23
a1 and a2 included 5375.6 585.72

Table 5.5 shows the model is better when a2 is included. DIC is lower when a1 and
a2 are both included, but for e�ective parameters the value is a little bit lower when
a1 is out. According to Figure 5.7 the time factor, exp(a1), could be insigni�cant
since the medium line (around 1) does not cut the con�dence interval. But Table 5.5
shows the inclusion of a1 at least dose not make the �t worse. There is a possibility
of years with more claims and from Figure 5.7 can be seen that one year, in 1999,
number of claims are notably topping, even though the data have been brought to
present worth. Also, the lower con�dence interval is very close to the medium line so
it has been decided for the claim frequency model to include both a1 and a2. Then
the �nal model has multiplication factor C = 4, 8 postal categories and both a1 and
a2 included in the model. According to the insurance company, one of a possible
reasons why years 1999 and 2000 were heavy in claims is that this was a time of
economic growth in the society, which leads to increasing number of cars and more
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stressful tra�c. After the year 2000 the claim frequency gets lower again which can
be because of regression after the growth, discussions about tra�c accidents along
with consequences of higher premiums, which raised a lot around the year 2000.
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Figure 5.7: The temporal factor a1 as a function of time. This �gure shows the
exponential value of the factor, i.e. exp(a1).

Following, the results from the Poisson model are analyzed graphically where postal
codes are on the x axis and frequency is on the y axis.
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Figure 5.8: Expected claim frequency based on the Poisson model and raw frequency
estimates for all postal codes along with 95% posterior interval. The postal codes
are on the x-axis and the claim frequency are on the y-axis.

Figure 5.8 shows there is areal trend in the data. It shows the frequency of claims
depends on where policyholder is residing. Figures E.1-E.10 in Appendix E give
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more accurate results where only a part of the postal codes are on each �gure. The
frequency of claims is highest in the capital area, mostly postal codes that belong
to the postal categories Reykjavík and Reykjavík urban region. A few postal codes
belonging to the postal category large urban region have similar claim frequency
or between 0.06 and 0.08 claims per policy year. Most postal codes in the postal
categories small urban regions and rural areas have claim frequency between 0.04
and 0.06 claims per policy year. As can be seen in Figure 5.8, the posterior interval
for some postal codes is large. These postal codes are mainly 233, 345 and 611. The
reason for this is the same as explained for Figure 5.1, i.e. these postal codes have
small amount of claims. During some years, unusual amount of claims occurred
when compared to other years for that postal code (the amount of policyholders is
still similar) and the frequency of claims in nearby postal codes.

5.3. Claim size

The model for claim size was handled and applied similar by the model for claim
frequency. Mean, standard deviation and percentiles were calculated for all param-
eters. MCMC trace- and residual plots analyzed and model comparison with DIC
calculations. Trace plots are shown in Figures 5.9 - 5.11. These plots are used to
see if model parameters are stable, and from the �gures can be seen all parameters
are stable. Like for a1 and a2, there are 16 di�erent d1 parameters and 130 di�erent
parameters for d2. Also 8 di�erent regression parameters η exist according to postal
categories. For each of the parameter vectors d1, d2 and η, one element is picked
randomly to show on the trace plot.

Following, residual plots based on residual analysis are examined. Calculations for
the residuals are according to Equation (4.8) introduced in Chapter 4.

Figure 5.12 show that the residuals for the claim size behave like expected. The
average is around zero, points equally distributed for di�erent values of the expected
claim size which is on the x-axis and no trend in the plot. The variance appears
to be constant as a function of expected claim size. Continuing, model comparison
was done for changes in the model. Like before, the lower value DIC and e�ective
parameters give, the better results are obtained. Similar to claim frequency, the
model is run for di�erent coe�cient C, changed postal category matrix and with
and without d1 and d2.

According to Table 5.6, the value for DIC is very similar independent of coe�cient
C. But it is obvious the number of e�ective parameters decreases with lower value
on C. Since di�erent values of C only moderately in�uence the number of e�ective
parameter, pD in the model, the best result is obtained with C = 0.5, which is used
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Figure 5.9: MCMC trace plots for parameters d1,11 and d2,72 for 15000 iterations,
burn-in of 5000 and 4 chains.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

11.5

12

12.5

13

13.5

14
η

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.7

0.8

0.9

1

1.1

1.2

1.3
α

Figure 5.10: MCMC trace plots for parameters α and η3 for 15000 iterations, burn-
in of 5000 and 4 chains.

in the following calculations. Next step is to compare the model with di�erent postal
category matrix. The matrix was changed like the model for claim frequency was
tested, using 6, 8 and 9 categories, see Subsection 5.2.

The value of DIC and e�ective number of parameters is very similar independent
of size of postal category matrix. The lowest DIC is obtained when there are 9
categories but then the highest number of pD follows. The lowest pD is when there are
6 categories but then the highest value of DIC occurs. When there are 8 categories
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Table 5.6: DIC calculations for gamma model with di�erent coe�cient C. pD is the
e�ective number of parameters.

DIC calculations
Coe�cient DIC pD

C = 0.5 31650 15.55
C = 1 31651 16.39

C = 1.5 31651 16.85
C = 2 31651 17.45
C = 3 31651 17.52
C = 4 31651 17.73

Table 5.7: DIC calculations for the gamma model with di�erent postal category
matrix. pD is the e�ective number of parameters.

DIC calculations
Postal category matrix DIC pD

X:6 31651 14.50
X:8 31650 15.63
X:9 31649 16.13
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Figure 5.11: MCMC trace plots for parameters κ2
1 and κ2

2 for 15000 iterations, burn-
in of 5000 and 4 chains.

0 5 10 15

x 10
6

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

R
es

id
ua

ls

Figure 5.12: Residual plot with residuals of the gamma model on the y-axis versus
Nit exp(µ∗) where µ∗ = Xη + d1,t.

it is in the middle. Since these di�erent categories give very similar results, the
model with 8 postal categories is chosen for convenience, because it is the same
postal category matrix as used for the claim frequency model and is this result used
in following calculations. Finally the model is compared with and without spatial
factors.

Table 5.8 shows the model is better when d1 is included in the model. Results are
similar with only d1 in the model and both d1 and d2, whether DIC or the e�ective
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Table 5.8: DIC calculations for gamma model with and without spatial and temporal
e�ects. pD is the e�ective number of parameters.

DIC
Factors DIC pD

d1 out 31677 34.14
d2 out 31650 15.63

d1 and d2 out 31685 6.41
d1 and d2 included 31644 34.16

number of parameters are examined. DIC is though a little bit lower when both
factors are included, but after looking more thoroughly at the regional factor d2, see
Figure 5.14, it shows this factor has small in�uences on the results so it was taken
out of the model. But there is always some regional e�ect because of the postal
categories, i.e. d2 has almost no e�ect but Xη has a small e�ect. According to both
Table 5.8 and Figure 5.13 temporal factor has great in�uences on the results. The
�gure shows that in 1999 more claims occurs which is in context with information
from VÍS that say 1999 was very high in claims. Similar to the claim frequency,
the total claim size increases in 1999 and 2000, among others because of economic
growth in the society. In times like that, more expensive cars are on the streets and
repair cost also raises which leads to higher claims for the insurance company to pay.
Also, in 1999 the laws of Tort Damages Act were changed which increased the size
of claims, especially for bodily injury, but it also in�uences the loss of properties.
Figure 5.13 shows that the medium line (around 1) is above and below the con�dence
intervals. It shows even though all data have been brought to present worth, time
still has great e�ects so the present worth does not cover the time e�ects. So the
�nal model for claim sizes has multiplication factor C = 0.5, 8 postal categories and
only d1 included in the model.

Like for the model for claim frequency, spatial trend in the claim sizes will be
examined by analyzing the results from the gamma model graphically, see Figure
5.14. This �gure shows that the residence of policyholders has a small e�ect on
the total claim sizes. The total claim sizes are between 80000 and 90000. This
corresponds to the result in Table 5.8 which shows the spatial factor has almost no
e�ect. But like before the postal category matrix, η has small e�ect. More accurate
pictures will not be shown for this model since Figure 5.14 shows results accurate
enough.
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Figure 5.13: The temporal factor d1 as a function of time. This �gure shows the
exponential value of the factor, i.e. exp(d1).
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Figure 5.14: Expected total claim size for all postal codes with 95% posterior interval.
The postal codes are on the x-axis and the claim size are on the y-axis.

5.4. Expected compensation

Expected compensation cost, introduced in Chapter 4, is based on the combination
of results from the Poisson and the gamma models. The expected compensation is
the amount the insurance company has to pay per policy year for each postal code
in the country.

Like Figure 5.15 shows, the expected compensation is in context with claim fre-
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Figure 5.15: Expected compensation cost for all postal codes along with 95% posterior
interval.

quency and claim sizes. The total compensation cost depends on residence of poli-
cyholder. The highest value is in the capital area and gets lower when you get to the
countryside. Figures E.11-E.20 in Appendix E show more accurate results. Figure
E.11 and E.12 show the expected cost is around 6000, but in Figure E.13 it starts
to get lower and in Figure E.15 the expected cost is stable around 4000. It stays
stable except in few cases where the cost raises a bit in postal codes belonging to
the postal category Large urban regions and becomes closer to 6000. As mentioned
in Section 5.2 there are a few postal codes that have large posterior interval. Those
postal codes usually have small amount of claims, but during some years the number
of claims rises (but still amount of policyholders similar) and is higher compared to
other years and nearby postal codes.
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6. Discussion

The aim of this study is to �nd the expected compensation cost the insurance com-
pany needs to pay because of property loss due to car accidents. The information
given are based on postal codes and the expected compensation cost is estimated
for each postal code in the country. The main goal is to evaluate if the residence of
policyholders in�uence the result, by using a regional factor. Also it was examined
whether a temporal factor would improve the model. To improve the regional fac-
tor, postal codes were grouped into eight categories depending on type and results
examined for each category. In this thesis two kind of neighbor structures are used
in the proposed models, one for time and other for postal codes.

Today the insurance company divides the postal codes in the country into a few risk
zones. The insurance premium depends, among other factors, on these zones. The
matrix describing the neighbor structure is such that it is easy to change if needed.
The same holds true for the postal category matrix. The postal category matrix
allows both changes on the number of categories and changes of postal codes within
each category. Therefore it is easy for the insurance company to change the zones
and postal codes within each zone if needed.

The expected compensation cost is based on models for the expected claim frequency
and expected total claim size. Results from these two models are combined to get
the expected compensation cost. The results from the research can be summarized
as follows

• Claim frequency

� Dependence between claim frequency and the residence of policyholders.

� Highest number at the capital area and lowest in the country side.

� Includes both a temporal factor and a regional factor where the regional
factor has a great in�uence but the temporal factor has a small in�uence.

� In accordance to DIC comparison the temporal factor is included in case
of years with high claim frequency. It does not make the model less
quali�ed.
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• Claim size

� Claim size depends only on postal category but not on individual postal
codes.

� Claim size is similar for the postal categories.

� Includes a temporal factor.

� In accordance to DIC comparison the spatial factor (after taking postal
categories into account) has little in�uence and was removed from the
model. The temporal factor has great in�uence despite all data have
been brought to present worth.

• Expected compensation

� In context with the results of claim frequency and claim size.

� Highest cost in the capital area, lower in the countryside.

Results from the eight postal categories are in context with the results from the
models. The expected compensation cost is highest for category 1 which are postal
codes in Reykjavík. The cost is a bit lower for category 2 and 3 or Reykjavík urban
regions and large urban regions. It gets lower and in small urban regions and rural
areas the expected compensation is about 50% lower than in Reykjavík. What makes
interest is that the expected compensation cost is a bit higher in rural areas than
rural near highway but that is mainly due to higher claim size. For the expected
compensation cost the average lower bound multiplication factor is 0.6341 and the
average upper bound multiplication factor is 1.5083 which gives an idea about the
precision of the expected compensation cost.

According to these results there is a spatial trend in the expected compensation
cost so it can be justi�ed to price car insurances according to the residence of the
policyholder. The results of this study show the zone separation like the insurance
company is using today is not out-of-date but the postal codes can be rearranged in
the zones according to the results.
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7. Future studies

When working on this thesis, ideas on future projects came up. The main ideas are:

• Further development of the postal categories based on results for each postal
code.

• Use a Poisson model without overdispersion.

• Use zero-in�ated Poisson model.

• Investigate overdispersed Poisson model where exp(εit) follows a gamma dis-
tribution.

• For more accurate data it would be interesting to analyze data on individual
basis and take into account variables such as

� Type of car

� Gender of policyholder

� Age of policyholder

� Age of car

� Accident history of policyholder

to name a few.

• Analysis data for risk categories with few policyholders.
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A. Neighborhood structures

A.1. Temporal neighborhood structure
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A.2. Regional neighborhood structure

The matrix for regional neighborhood is N×N matrix, where N is the total number
of postal codes. Because of its size only a matrix which shows the neighbors to each
postal code will be expressed to describe the neighbors. Instead of 0 and 1 that
connects neighbors, the actual postal codes are shown, see Table A.2. Nonetheless
the original regional neighborhood matrix is similar to the temporal neighborhood
matrix in Table A.1.
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B. Calculations for σ2
it

Approximation for σ2
it

Nit ∼ Poisson(eit · r),
where r is the average frequency per policy year, r = exp(C1) and C1 = log(θ).

r̂ =

∑
i

∑
t Nit∑

i

∑
t eit

where Ĉ1 = log(r̂) and Ĉ2 = exp(−Ĉ1).

µ = XT β + a1 + a2 + log eit

XT β ' C1, a1 ' 0 and a2 ' 0, which gives

exp(µ) ' eit exp(C1)

exp(µ) exp(2σ2
it)− exp(µ) exp(σ2

it) + exp(σ2
it/2) = (1 + δ)

exp(2σ2
it)− exp(σ2

it) + exp(σ2
it/2− µ) = (1 + δ) exp)(µ)

exp(2σ2
it)− exp(σ2

it) = (1 + δ − exp(σ2
it/2)) exp(−µ)

or
exp(2σ2

it)− exp(σ2
it) ' exp(−µ) =

1

eit

exp(−C1)

which gives the second order equation

exp(2σ2
it)− exp(σ2

it)−
C2

eit

= 0.

Then
exp(σ2

it) =
1 +

√
1 + 4C2/eit

2

and
σ2

it = log

(
1

2
+

1

2

√
1 + 4C2/eit

)
= log

(
1

2
+

1

2

√
1 + 4/(r + eit)

)
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C. Conditional distributions

Conditional distributions for parameters in model for claim frequency:

θ∗it, i = i,...,J and t = 1,...,T

p(θ∗it|rest) ∝ p(Nit|θ∗it)× p(θ∗it|a1, a2, β, σ2
ε,it)

∝ Poisson[Nit|eit exp(θ∗it)]× N(θ∗it|µit, σ
2
ε,it)

∝ eNit
it exp(Nitθ

∗
it) exp[−eit exp(θ∗it)] exp

[
− 1

2σ2
ε,it

(θ∗it − µit)
2
]

where
µit = xT

i β + Z1a1 + Z2a2

so

log p(θ∗it|rest) = C0 + Nit log(eit) + Nitθ
∗
it + log(eit)− exp(θ∗it)−

1

2σ2
ε,it

(θ∗it − µit)
2

and the proposal variance is

Var(θ∗it)prop ∝ 1

Nit + 1/σ2
ε,it

Conditional distribution of β

p(β|rest) ∝ p(θ∗|a1, a2, β, Σε)× p(β)

∝ N(θ∗|γ, ΣεI)× N(β|µβ, σ2
βI)

∝ exp
[−1

2
(θ∗ − γ)T Σ−1

ε (θ∗ − γ)
]
exp

[
− 1

2σ2
β
(β − µβ)2

]

log p(β|rest) = C0 − 1
2

[
βT XT Σ−1

ε Xβ − 2βT XT (θ∗ − Z1a1 − Z2a2)
]− 1

2
(β − µβ)T Σ−1

β (β − µβ)

where
γ = Xβ + Z1a1 + Z2a2
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since
p(β|rest) = N(β|µβ, σβ)

the covariance matrix is
Σβ = (XT Σ−1

ε X + σ2
βI)−1

and the mean is

µβ = Σβ(XT Σ−1
ε (θ∗ − Z1a1− Z2a2) + σ−2

β µβ)

The conditional distribution of a1

p(a1|rest) ∝ p(θ∗|a1, a2, β, Σε)× p(a1|φ1, τ
2
1 )

∝ N(θ∗|γ, ΣεI)× N(a1|0̄, τ 2
1 (I − φ1C1)

−1M1)

∝ exp
[−1

2
(θ∗ − γ)T Σ−1

ε (θ∗ − γ)
]

× exp
[
− 1

2τ2
1
aT

1 (M−1
1 − φ1M

−1
1 C1)a1

]

log p(a1|rest) = C0 − 1
2
[aT

1 ZT
1 Σ−1

ε Z1a1 − 2aT
1 ZT

1 Σ−1
ε (θ∗ −Xβ − Z2a2)]

− 1
2τ2

1
aT

1 (M−1
1 − φ1M

−1
1 C1)a1

where
γ = Xβ + Z1a1 + Z2a2

And since
p(a1|rest) = N(a1|µa1, Σa1)

the covariance matrix is

Σa1 = [ZT
1 Σ−1

ε Z1 + τ 2
1 (M−1

1 − φ1M
−1
1 C1)]

−1

and the mean is
µa1 = Σa1Z

T
1 Σ−1

ε (θ∗ −Xβ − Z2a2).

Then a1 is adjusted so that Σja1,j = 0 and Q−1 = Σa1 so

a∗1 = a1 −Q−1AT (AQ−1AT )−1(Aa1 − 0),

where A is a vector of ones.
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And similar, the conditional distribution of a2 is

p(a2|rest) ∝ p(θ∗|a1, a2, β, Σε)× p(a2|φ2, τ
2
2 )

∝ N(θ∗|γ, ΣεI)× N(a2|0̄, τ 2
2 (I − φ2C2)

−1M2)

∝ exp
[−1

2
(θ∗ − γ)T Σ−1

ε (θ∗ − γ)
]

× exp
[
− 1

2τ2
2
aT

2 (M−1
2 − φ2M

−1
2 C2)a2

]

log p(a2|rest) = C0 − 1
2
[aT

2 ZT
2 Σ−1

ε Z2a2 − 2aT
2 ZT

2 Σ−1
ε (θ∗ −Xβ − Z1a1)]

− 1
2τ2

1
aT

2 (M−1
2 − φ2M

−1
2 C2)a2

where
γ = Xβ + Z1a1 + Z2a2

And since
p(a2|rest) = N(a2|µa2, Σa2)

the covariance matrix is

Σa2 = [ZT
2 Σ−1

ε Z2 + τ 2
2 (M−1

2 − φ2M
−1
2 C2)]

−1

and the mean is
µa2 = Σa2Z

T
2 Σ−1

ε (θ∗ −Xβ − Z1a1)

Then a2 is adjusted so that Σja2,j = 0 and Q−1 = Σa2 so

a∗2 = a2 −Q−1AT (AQ−1AT )−1(Aa2 − 0),

where A is a vector of ones.

The conditional distribution of τ 2
1 :

p(τ 2
1 |rest) ∝ p(a1|φ1, τ

2
1 )× p(τ 2

1 )

∝ N[a1|0̄, τ 2
1 (I − φ1C1)

−1M1]× Inv-χ2(ντ1, s
2
τ1)

∝ (τ 2
1 )−n1/2 exp

[
− 1

2τ2
1
aT

1 (M−1
1 − φ1M

−1
1 C1)a1

]
(τ 2

1 )−(ντ1/2+1) exp
(
−ντ1s2

τ1

2τ2
1

)

∝ (τ 2
1 )−[(n1+ντ1)/2+1] exp

{
− 1

2τ2
1
[ντ1s

2
τ1 + aT

1 (M−1
1 − φ1M

−1
1 C1)a1]

}

∝ Inv-χ2{n1 + ντ1, (n1 + ντ1)
−1[ντ1s

2
τ1 + aT

1 (M−1
1 − φ1M

−1
1 C1)a1]}
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The conditional distribution of φ1:

p(φ1|rest) ∝ p(a1|φ1, τ
2
1 )× p(φ1)

∝ N[a1|0̄, τ 2
1 (I − φ1C1)

−1M1]× beta(φ1|αφ1, βφ1)

∝ |I − φ1C1|1/2 exp
[
− 1

2τ2
1
aT

1 (M−1
1 − φ1M

−1
1 C1)a1

]
× φ

αφ1−1
1 (1− φ1)

βφ1−1

Let λ1(j) be the ordered eigenvalue of C1, then

|I − φ1C1| =
n1∏

j=1

(1− φ1λ1(j))

log p(φ1|rest) = C0 + 0.5

n1∑
j=1

log(1− φ1λ1(j)) + 0.5φ1τ
−2
1 aT

1 (M−1
1 C1)a1

+(αφ1 − 1) log(φ1) + (βφ1 − 1) log(1− φ1)

The conditional distribution of τ 2
2 :

p(τ 2
2 |rest) ∝ p(a2|φ2, τ

2
2 )× p(τ 2

2 )

∝ N(a2|0̄, τ 2
2 (I − φ2C2)

−1M2)× Inv-χ2(ντ2, s
2
τ2)

∝ (τ 2
2 )−n2/2 exp

[
− 1

2τ2
2
aT

2 (M−1
2 − φ2M

−1
2 C2)a2

]
× (τ 2

2 )−(ντ2/2+1) exp
(
−ντ2s2

τ2

2τ2
2

)

∝ (τ 2
2 )−[(n2+ντ2)/2+1] exp

{
− 1

2τ2
2
[ντ2s

2
v + aT

2 (M−1
2 − φ2M

−1
2 C2)a2]

}

∝ Inv-χ2{n2 + ντ2, (n2 + ντ2)
−1[ντ2s

2
τ2 + aT

2 (M−1
2 − φ2M

−1
2 C2)a2]}

The conditional distribution of φ2:

p(φ2|rest) ∝ p(a2|φ2, τ
2
2 )× p(φ2)

∝ N(a2|0̄, τ 2
2 (I − φ2C2)

−1M2)× beta(φ2|αφ2, βφ2)

∝ |I − φ2C2|1/2 exp
[
− 1

2τ2
2
aT

2 (M−1
2 − φ2M

−1
2 C2)a2

]
× φ

αφ2−1
2 (1− φ2)

βφ2−1

Let λ2(j) be the ordered eigenvalue of C2, then

|I − φ2C2| =
n2∏

j=1

(1− φ2λ2(j))
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log p(φ2|rest) = C0 + 0.5

n2∑
j=1

log(1− φ2λ2(j)) + 0.5φ2τ
−2
2 aT

2 (M−1
2 C2)a2

+(αφ2 − 1) log(φ2) + (βφ2 − 1) log(1− φ2)

Following, conditional distributions for all parameters in the claim size model:

The conditional distribution of η

P (η|rest) ∝ p(S|d1, d2, η, α,N)× p(η)

∝ ∏J
i=1

∏T
t=1 gamma

[
Sit|Nit exp(λit),

Nit

α
exp(2λit)

]× N(η|µη, ΣηI)

∝ ∏J
i=1

∏T
t=1[α exp(−λit)]

αNit exp[−α exp(−λit)Sit]× exp
[−1

2
(η − µη)

T Σ−1
η (η − µη)

]

log(η|rest) =
∑J

i=1

∑T
t=1{(αNit) log[α exp(−λit)]− α exp(−λit)Sit} − 1

2
(η − µη)

T Σ−1
η (η − µη)

where
λit = xT

i η + d1,t + d2,i

And the proposal variance is

Var(η)prop ∝ 1

α
∑J

i=1

∑T
t=1 Nitxi

+
1

σ2
η

Conditional distribution of d1,t, t = 1, ..., T

P (d1,t|rest) ∝ p(S|d1, d2, η, α, N)× p(d1|κ2
1, ζ1)

∝ ∏
i = 1Jgamma

[
Sit|Nit exp(λit),

Nit

α
exp(2λit)

]

×N
(
d1,t|

∑T
k=1,k 6=t C1,tkd1,k,M1,ttκ

2
1

)

∝ ∏
i = 1Jα exp(−λit)

αNit exp[−α exp(−λit)Sit]

× exp

[
−1

2M1,ttκ2
1

(
d1,t −

∑T
k=1,k 6=t C1,tkd1,k

)2
]

∝ ∏
i = 1J exp(−αNitλit) exp[−αSit exp(−λit)]

× exp

[
−1

2M1,ttκ2
1

(
d1,t −

∑T
k=1,k 6=t C1,tkd1,k

)2
]

log p(d1,t|rest) =
∑J

i=1[−αNit exp(λit)− αSit exp(−λit)]− −1
2M1,ttκ2

1

(
d1,t −

∑T
k=1,k 6=t C1,tkd1,k

)2
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where
λit = xT

i η + d1,t + d2,i

And the proposal variance is

Var(d1,t)prop ∝ 1

α
∑J

i=1 Nit + 1
M1,ttκ2

1

Conditional distribution of d2,i, i = 1, ..., J

P (d2,i|rest) ∝ p(S|d1, d2, η, α, N)× p(d2|κ2
2, ζ2)

∝ ∏
t = 1Tgamma

[
Sit|Nit exp(λit),

Nit

α
exp(2λit)

]

×N
(
d2,i|

∑T
k=1,k 6=i C2,ikd2,k,M2,iiκ

2
2

)

∝ ∏
t = 1Tα exp(−λit)

αNit exp[−α exp(−λit)Sit]

× exp

[
−1

2M2,iiκ2
2

(
d2,i −

∑T
k=1,k 6=i C2,ikd2,k

)2
]

∝ ∏
t = 1T exp(−αNitλit) exp[−αSit exp(−λit)]

× exp

[
−1

2M2,iiκ2
2

(
d2,i −

∑T
k=1,k 6=i C2,ikd2,i

)2
]

log P (d2,i|rest) =
∑T

t=1[−αNit exp(λit)− αSit exp(−λit)]− −1
2M2,iiκ2

2

(
d2,i −

∑T
k=1,k 6=i C2,ikd2,k

)2

where
λit = xT

i η + d1,t + d2,i

And the proposal variance is

Var(d2,i)prop ∝ 1

α
∑T

t=1 Nit + 1
M2,iiκ2

1
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Conditional distribution of κ2
1

P (κ2
1|rest) ∝ p(d1|ζ1, κ

2
1)× p(κ2

1)

∝ N[d1|0̄, κ2
1(I − ζ1C1)

−1M1]× Inv-χ2(νκ1, S
2
κ1)

∝ (κ2
1)
−n1/2 exp

[
−1
2κ2

1
dT

1 (M−1
1 − ζ1M

−1
1 C1)d1

]
× (κ2

1)
−(νκ1/2+1) exp

(
−νκ1S2

κ1

2κ2
1

)

∝ (κ2
1)
−(n1νκ1

2
+1) exp

{
−1
2κ2

1
[νκ1S

2
κ1 + dT

1 (M−1
1 − ζ1M

−1
1 C1)d1]

}

∝ Inv-χ2{n1 + νκ1, (n1 + νκ1)
−1[νκ1S

2
κ1 + dT

1 (M−1
1 − ζ1M

−1
1 C1)d1]}

Conditional distribution of ζ1

P (ζ1|rest) ∝ p(d1|ζ1, κ
2
1)× p(ζ1)

∝ N[d1|0̄, κ2
1(I − ζ1C1)

−1M1]× beta(ζ1|αζ1, βζ1)

∝ |I − ζ1C1|1/2 exp
[
−1
2κ2

1
dT

1 (M−1
1 − ζ1M

−1
1 C1)d1

]
× ζ

αζ1−1
1 (1− ζ1)

βζ1−1

Let λ1(j) be the ordered eigenvalue of C1, then

|I − ζ1C1| =
n1∏

j=1

(1− ζ1λ1(j))

and

log P (ζ1|rest) = C0+
1

2

n1∑
j=1

log(1−ζ1λ1(j))+
ζ1

2κ2
1

dT
1 (M−1

1 C1)d1+(αζ1−1) log ζ1+(βζ1−1) log(1−ζ1)

Conditional distribution of κ2
2

P (κ2
2|rest) ∝ p(d2|ζ2, κ

2
2)× p(κ2

2)

∝ N[d2|0̄, κ2
2(I − ζ2C2)

−1M2]× Inv-χ2(νκ2, S
2
κ2)

∝ (κ2
2)
−n2/2 exp

[
−1
2κ2

2
dT

2 (M−1
2 − ζ2M

−1
2 C2)d2

]
(κ2

2)
−(νκ2/2+1) exp

(
−νκ2S2

κ2

2κ2
2

)

∝ (κ2
2)
−(n2νκ2

2
+1) exp

{
−1
2κ2

2
[νκ2S

2
κ2 + dT

2 (M−1
2 − ζ2M

−1
2 C2)d2]

}

∝ Inv-χ2{n2 + νκ2, (n2 + νκ2)
−1[νκ2S

2
κ2 + dT

2 (M−1
2 − ζ2M

−1
2 C2)d2]}
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Conditional distribution of ζ2

P (ζ2|rest) ∝ p(d2|ζ2, κ
2
2)× p(ζ2)

∝ N[d2|0̄, κ2
2(I − ζ2C2)

−1M2]× beta(ζ2|αζ2, βζ2)

∝ |I − ζ2C2|1/2 exp
[
−1
2κ2

2
dT

2 (M−1
2 − ζ2M

−1
2 C2)d2

]
× ζ

αζ2−1
2 (1− ζ2)

βζ2−1

Let λ2(j) be the ordered eigenvalue of C2, then

|I − ζ2C2| =
n2∏

j=1

(1− ζ2λ2(j))

and

log p(ζ2|rest) = C0+
1

2

n2∑
j=1

log(1−ζ2λ2(j))+
ζ2

2κ2
2

dT
2 (M−1

2 C2)d2+(αζ2−1) log ζ2+(βζ2−1) log(1−ζ2)

And �nally, the conditional distribution of α

P (α|rest) ∝ p(S|d1, d2, η, α, N)× p(α|α0, β0)

∝ ∏J
i=1

∏T
t=1 gamma

[
Sit|Nit exp(λit),

Nit

α
exp(2λit)

]× gamma(α0, β0)

∝ ∏J
i=1

∏T
t=1

1
γ(αNit)

[α exp(−λit)]
αNitS

(αNit)−1
it exp[−α exp(−λit)Sit]

×β
α0
0

α0
αα0−1 exp(−β0α)

log(α|rest) =
∑J

i=1

∑T
t=1{− log gamma(αNit) + (αNit) log[α exp(−λit)]

+(αNit − 1) log Sit − α exp(−λit)Sit}

+(α0 − 1) log α− β0α

where
λit = xT

i η + d1,t + d2,i
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D. Posterior mean with upper and
lower multiplication factors

D.1. Postal categories

Table D.1: Claim frequency for the postal categories with posterior mean, upper and
lower multiplication factors and 95% posterior interval for the categories.

Claim frequency
Nr. code Region Mean L.b.m.f U.b.m.f 95% lower 95% upper

1 Reykjavík 0,0743 0,8258 1,1868 0,0613 0,0882
2 Reykjavík Urban Region 0.0663 0.8435 1.1635 0.0560 0.0772
3 Large Urban Region 0.0644 0.8770 1.1205 0.0564 0.0721
4 Small Urban Region 0.0513 0.9156 1.0829 0.0470 0.0555
5 Rural near highway 0.0460 0.8658 1.1424 0.0398 0.0525
6 Rural area 0,0505 0.8019 1.2289 0.0405 0.0620
7 Banks and government 0.1101 0.6460 1.4450 0.0711 0.1591
8 Garbage 0.0751 0.6898 1.3778 0.0518 0.1034
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Table D.2: Total claim size for the postal categories with posterior mean, upper and
lower multiplication factors and 95% posterior interval for the categories.

Total claim size
Nr. code Region Mean L.b.m.f U.b.m.f 95% lower 95% upper

1 Reykjavík 82291 0,9579 1,0460 78824 86074
2 Reykjavík Urban Region 82001 0.9426 1.0617 77297 87062
3 Large Urban Region 86079 0.9329 1.0719 80306 92264
4 Small Urban Region 88740 0.9662 1.0359 85740 91925
5 Rural near highway 86080 0.9500 1.0549 81778 90803
6 Rural area 86729 0.9401 1.0636 81532 92244
7 Banks and government 93742 0.9152 1.0937 85795 102525
8 Other 88912 0.9147 1.0951 81325 97367

Table D.3: Expected compensation for the postal categories with posterior mean, up-
per and lower multiplication factors and 95% posterior interval for the categories.

Expected compensation
Nr. code Region Mean L.b.m.f U.b.m.f 95% lower 95% upper

1 Reykjavík 6113 0,7910 1,2414 4835 7589
2 Reykjavík Urban Region 5440 0.7951 1,2353 4325 6720
3 Large Urban Region 5540 0.8182 1,2010 4533 6654
4 Small Urban Region 4551 0.8846 1,1218 4026 5105
5 Rural near highway 3956 0.8225 1,2051 3253 4767
6 Rural area 4377 0,7538 1.3071 3299 5721
7 Banks and government 10321 0.5912 1,5803 6102 16310
8 Other 6674 0,6309 1.5089 4211 10071
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D.2. Claim frequency

Table D.4: Table for expected claim frequency per number of policy years (Poisson)
with posterior mean and upper and lower multiplication factor for 95% posterior
interval. It also contains the numeric code which corresponds to the postal cate-
gories.

Claim frequency
Region Postal Mean L.b. multipli- U.b. multipli- Numeric

code cation factor cation factor code
Reykjavík 101 0.0761 0.7260 1.3402 1
Reykjavík 103 0.0713 0.6781 1.4167 1
Reykjavík 104 0.0771 0.7232 1.3470 1
Reykjavík 105 0.0696 0.7279 1.3321 1
Reykjavík 107 0.0681 0.7109 1.3594 1
Reykjavík 108 0.0702 0.7288 1.3342 1
Reykjavík 109 0.0711 0.7262 1.3412 1
Reykjavík 110 0.0718 0.7247 1.3425 1
Reykjavík 111 0.0821 0.7227 1.3516 1
Reykjavík 112 0.0622 0.7258 1.3321 1
Reykjavík 113 0.0678 0.7023 1.3742 1
Reykjavík 116 0.1040 0.6347 1.5086 1
Reykjavík 150 0.1146 0.6357 1.4654 7
Reykjavík 155 0.1056 0.6357 1.4654 7

Seltjarnarnes 170 0.0753 0.6972 1.3888 2
Vogar 190 0.0593 0.7041 1.3923 4

Kópavogur 200 0.0652 0.7537 1.3017 2
Kópavogur 201 0.0607 0.7399 1.3174 2
Kópavogur 203 0.0632 0.7169 1.3559 2
Garðabær 210 0.0624 0.7414 1.3220 2

Hafnarfjörður 220 0.0716 0.7530 1.3026 2
Hafnarfjörður 221 0.0619 0.7372 1.3209 2

Álftanes 225 0.0716 0.6886 1.4019 2
Reykjanesbær 230 0.0717 0.7689 1.2812 3
Reykjanesbær 233 0.1185 0.6647 1.4646 3
Reykjanesbær 235 0.0545 0.6977 1.3645 3
Grindavík 240 0.0569 0.7243 1.3589 4
Sandgerði 245 0.0548 0.7201 1.3568 4
Garður 250 0.0568 0.6995 1.3938 4

Reykjanesbær 260 0.0625 0.7550 1.2991 3
Mosfellsbær 270 0.0652 0.7391 1.3207 2

Continued on next page
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Table D.4 � continued from previous page
Claim frequency

Region Postal Mean L.b. multipli- U.b. multipli- Numeric
code cation factor cation factor code

Akranes 300 0.0641 0.7625 1.2913 3
Akranes 301 0.0556 0.6615 1.4721 5
Borgarnes 310 0.0489 0.7202 1.3411 3
Borgarnes 311 0.0454 0.7306 1.3596 5
Reykholt 320 0.0544 0.6468 1.5038 6

Stykkishólmur 340 0.0508 0.7000 1.3986 4
Flatey á Breiðar�rði 345 0.0728 0.2879 2.5275 6

Grundarfjörður 350 0.0459 0.6657 1.4274 4
Ólafsvík 355 0.0553 0.6708 1.4531 4

Snæfellsbær 356 0.0760 0.5611 1.5988 4
Hellissandur 360 0.0518 0.6077 1.5297 4
Búðardalur 370 0.0459 0.6416 1.4340 4
Búðardalur 371 0.0395 0.6259 1.4873 6

Reykhólahreppur 380 0.0424 0.6224 1.5148 6
Ísafjörður 400 0.0423 0.7651 1.2946 4
Ísafjörður 401 0.0527 0.6712 1.4453 6
Hnífsdalur 410 0.0442 0.6688 1.4311 6
Bolungarvík 415 0.0450 0.6881 1.4102 4
Súðavík 420 0.0539 0.6903 1.3886 4
Flateyri 425 0.0496 0.6956 1.3699 4
Suðureyri 430 0.0492 0.6999 1.3639 4

Patreksfjörður 450 0.0422 0.7188 1.3580 4
Patreksfjörður 451 0.0476 0.6372 1.4619 6
Tálknafjörður 460 0.0364 0.4965 1.6817 4
Bíldudalur 465 0.0545 0.6743 1.4028 4
Þingeyri 470 0.0416 0.6992 1.3626 4
Þingeyri 471 0.0488 0.6623 1.4482 6
Staður 500 0.0499 0.6081 1.5253 5

Hólmavík 510 0.0478 0.6599 1.4613 4
Hólmavík 512 0.0708 0.5508 1.6742 6
Drangsnes 520 0.0666 0.5770 1.6381 4

522 0.0302 0.6422 1.4867 6
523 0.0636 0.6301 1.4958 6

Árneshreppur 524 0.0842 0.6214 1.5233 6
Hvammstangi 530 0.0534 0.6848 1.4307 4
Hvammstangi 531 0.0427 0.6462 1.4628 5
Blönduós 540 0.0455 0.6618 1.4497 4
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Claim frequency

Region Postal Mean L.b. multipli- U.b. multipli- Numeric
code cation factor cation factor code

Blönduós 541 0.0442 0.6081 1.5468 5
Skagaströnd 545 0.0461 0.5134 1.7170 4
Sauðárkrókur 550 0.0540 0.7191 1.3692 4
Sauðárkrókur 551 0.0327 0.6349 1.4518 5
Varmahlíð 560 0.0424 0.6569 1.4447 4
Hofsós 565 0.0487 0.5813 1.5557 4
Hofsós 566 0.0642 0.5631 1.6279 5
Fljót 570 0.0552 0.5647 1.6126 6

Siglufjörður 580 0.0367 0.6190 1.5262 6
Akureyri 600 0.0533 0.7862 1.2580 3
Akureyri 601 0.0454 0.7350 1.3397 5
Akureyri 603 0.0607 0.7709 1.2764 3
Grenivík 610 0.0644 0.6103 1.5506 4
Grímsey 611 0.1183 0.3828 2.1529 4
Dalvík 620 0.0368 0.6948 1.3796 4
Dalvík 621 0.0307 0.5837 1.5229 5

Ólafsfjörður 625 0.0582 0.6686 1.4554 4
Hrísey 630 0.0630 0.3539 2.1087 4
Húsavík 640 0.0517 0.7322 1.3504 4
Húsavík 641 0.0488 0.6399 1.4953 6
Fosshóll 645 0.0559 0.6180 1.5301 5
Laugar 650 0.0568 0.5575 1.5766 4
Mývatn 660 0.0433 0.5912 1.5311 4
Kópasker 670 0.0465 0.5601 1.5794 4
Kópasker 671 0.0389 0.5497 1.6201 6
Raufarhöfn 675 0.0428 0.5685 1.5675 4
Þórshöfn 680 0.0400 0.5998 1.5232 4
Þórshöfn 681 0.0358 0.5540 1.6215 6

Bakkafjörður 685 0.0655 0.4834 1.8024 4
Vopnafjörður 690 0.0419 0.6751 1.4370 4
Egilsstaðir 700 0.0473 0.7494 1.3086 3
Egilsstaðir 701 0.0288 0.7030 1.3597 5

Seyðisfjörður 710 0.0395 0.6883 1.3938 4
Mjóafjörður 715 0.0642 0.6418 1.4811 6

Borgarfjörður eystri 720 0.0442 0.5327 1.6329 4
Reyðarfjörður 730 0.0429 0.7127 1.3813 4
Eskifjörður 735 0.0464 0.7147 1.3910 4
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Region Postal Mean L.b. multipli- U.b. multipli- Numeric
code cation factor cation factor code

Neskaupsstaður 740 0.0418 0.7078 1.3776 4
Fáskrúðsfjörður 750 0.0378 0.6816 1.3938 4
Stöðvarfjörður 755 0.0398 0.6593 1.4109 4
Breiðdalsvík 760 0.0564 0.6786 1.4326 4
Djúpivogur 765 0.0397 0.7017 1.3670 4

Höfn 780 0.0502 0.7157 1.3667 4
Höfn 781 0.0323 0.5776 1.5598 5
Öræ� 785 0.0377 0.5147 1.6389 5
Selfoss 800 0.0635 0.7552 1.3014 3
Selfoss 801 0.0483 0.7269 1.3654 5

Hveragerði 810 0.0629 0.7133 1.3665 3
Þorlákshöfn 815 0.0515 0.7028 1.3854 4
Eyrarbakki 820 0.0638 0.6805 1.4378 4
Stokkseyri 825 0.0579 0.6832 1.4317 4
Laugarvatn 840 0.0528 0.4670 1.8157 5

Flúðir 845 0.0509 0.6120 1.5343 4
Hella 850 0.0489 0.7008 1.3710 4
Hella 851 0.0395 0.6839 1.3921 5

Hvolsvöllur 860 0.0471 0.6859 1.4090 4
Hvolsvöllur 861 0.0395 0.6690 1.4309 5

Vík 870 0.0647 0.6149 1.5255 4
Vík 871 0.0548 0.6153 1.5479 5

Kirkjubæjarklaustur 880 0.0516 0.6814 1.4243 4
Vestmannaeyjar 900 0.0491 0.6958 1.3839 4

999 0.0751 0.6760 1.3970 8

D.3. Total claim size
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Table D.5: Table for expected claim size per number of policy years (gamma) with
posterior mean and upper and lower multiplication factor for 95% posterior inter-
val. It also contains the numeric code which corresponds to the postal categories.

Claim size
Region Postal Mean L.b. multipli- U.b. multipli- Numeric

code cation factor cation factor code
Reykjavík 101 82291 0.8507 1.1898 1
Reykjavík 103 82291 0.8507 1.1898 1
Reykjavík 104 82291 0.8507 1.1898 1
Reykjavík 105 82291 0.8507 1.1898 1
Reykjavík 107 82291 0.8507 1.1898 1
Reykjavík 108 82291 0.8507 1.1898 1
Reykjavík 109 82291 0.8507 1.1898 1
Reykjavík 110 82291 0.8507 1.1898 1
Reykjavík 111 82291 0.8507 1.1898 1
Reykjavík 112 82291 0.8507 1.1898 1
Reykjavík 113 82291 0.8507 1.1898 1
Reykjavík 116 82291 0.8507 1.1898 1
Reykjavík 150 93742 0.8337 1.2026 7
Reykjavík 155 93742 0.8337 1.2026 7

Seltjarnarnes 170 82001 0.8468 1.1944 2
Vogar 190 88740 0.8531 1.1847 4

Kópavogur 200 82001 0.8468 1.1944 2
Kópavogur 201 82001 0.8468 1.1944 2
Kópavogur 203 82001 0.8468 1.1944 2
Garðabær 210 82001 0.8468 1.1944 2

Hafnarfjörður 220 82001 0.8468 1.1944 2
Hafnarfjörður 221 82001 0.8468 1.1944 2

Álftanes 225 82001 0.8468 1.1944 2
Reykjanesbær 230 86079 0.8407 1.2004 3
Reykjanesbær 233 86079 0.8407 1.2004 3
Reykjanesbær 235 86079 0.8407 1.2004 3
Grindavík 240 88740 0.8531 1.1847 4
Sandgerði 245 88740 0.8531 1.1847 4
Garður 250 88740 0.8531 1.1847 4

Reykjanesbær 260 86079 0.8407 1.2004 3
Mosfellsbær 270 82001 0.8468 1.1944 2
Akranes 300 86079 0.8407 1.2004 3
Akranes 301 86080 0.8484 1.1912 5
Borgarnes 310 86079 0.8407 1.2004 3

Continued on next page
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Claim size

Region Postal Mean L.b. multipli- U.b. multipli- Numeric
code cation factor cation factor code

Borgarnes 311 86080 0.8484 1.1912 5
Reykholt 320 86729 0.8457 1.1950 6

Stykkishólmur 340 88740 0.8531 1.1847 4
Flatey á Breiðar�rði 345 86080 0.8484 1.1912 6

Grundarfjörður 350 88740 0.8531 1.1847 4
Ólafsvík 355 88740 0.8531 1.1847 4

Snæfellsbær 356 88740 0.8531 1.1847 4
Hellissandur 360 88740 0.8531 1.1847 4
Búðardalur 370 88740 0.8531 1.1847 4
Búðardalur 371 86729 0.8457 1.1950 6

Reykhólahreppur 380 86729 0.8457 1.1950 6
Ísafjörður 400 88740 0.8531 1.1847 4
Ísafjörður 401 86729 0.8457 1.1950 6
Hnífsdalur 410 86729 0.8457 1.1950 6
Bolungarvík 415 88740 0.8531 1.1847 4
Súðavík 420 88740 0.8531 1.1847 4
Flateyri 425 88740 0.8531 1.1847 4
Suðureyri 430 88740 0.8531 1.1847 4

Patreksfjörður 450 88740 0.8531 1.1847 4
Patreksfjörður 451 86729 0.8457 1.1950 6
Tálknafjörður 460 88740 0.8531 1.1847 4
Bíldudalur 465 88740 0.8531 1.1847 4
Þingeyri 470 88740 0.8531 1.1847 4
Þingeyri 471 86729 0.8457 1.1950 6
Staður 500 86080 0.8484 1.1912 5

Hólmavík 510 88740 0.8531 1.1847 4
Hólmavík 512 86729 0.8457 1.1950 6
Drangsnes 520 88740 0.8531 1.1847 4

522 86729 0.8457 1.1950 6
523 86729 0.8457 1.1950 6

Árneshreppur 524 86729 0.8457 1.1950 6
Hvammstangi 530 88740 0.8531 1.1847 4
Hvammstangi 531 86080 0.8484 1.1912 5
Blönduós 540 88740 0.8531 1.1847 4
Blönduós 541 86080 0.8484 1.1912 5

Skagaströnd 545 88740 0.8531 1.1847 4
Sauðárkrókur 550 88740 0.8531 1.1847 4

Continued on next page

84



Table D.5 � continued from previous page
Claim size

Region Postal Mean L.b. multipli- U.b. multipli- Numeric
code cation factor cation factor code

Sauðárkrókur 551 86080 0.8484 1.1912 5
Varmahlíð 560 88740 0.8531 1.1847 4
Hofsós 565 88740 0.8531 1.1847 4
Hofsós 566 86080 0.8484 1.1912 5
Fljót 570 86729 0.8457 1.1950 6

Siglufjörður 580 86729 0.8457 1.1950 6
Akureyri 600 86079 0.8407 1.2004 3
Akureyri 601 86080 0.8484 1.1912 5
Akureyri 603 86079 0.8407 1.2004 3
Grenivík 610 88740 0.8531 1.1847 4
Grímsey 611 88740 0.8531 1.1847 4
Dalvík 620 88740 0.8531 1.1847 4
Dalvík 621 86080 0.8484 1.1912 5

Ólafsfjörður 625 88740 0.8531 1.1847 4
Hrísey 630 88740 0.8531 1.1847 4
Húsavík 640 88740 0.8531 1.1847 4
Húsavík 641 86729 0.8457 1.1950 6
Fosshóll 645 86080 0.8484 1.1912 5
Laugar 650 88740 0.8531 1.1847 4
Mývatn 660 88740 0.8531 1.1847 4
Kópasker 670 88740 0.8531 1.1847 4
Kópasker 671 86729 0.8457 1.1950 6
Raufarhöfn 675 88740 0.8531 1.1847 4
Þórshöfn 680 88740 0.8531 1.1847 4
Þórshöfn 681 86729 0.8457 1.1950 6

Bakkafjörður 685 88740 0.8531 1.1847 4
Vopnafjörður 690 88740 0.8531 1.1847 4
Egilsstaðir 700 86079 0.8407 1.2004 3
Egilsstaðir 701 86080 0.8484 1.1912 5

Seyðisfjörður 710 88740 0.8531 1.1847 4
Mjóafjörður 715 86729 0.8457 1.1950 6

Borgarfjörður eystri 720 88740 0.8531 1.1847 4
Reyðarfjörður 730 88740 0.8531 1.1847 4
Eskifjörður 735 88740 0.8531 1.1847 4

Neskaupsstaður 740 88740 0.8531 1.1847 4
Fáskrúðsfjörður 750 88740 0.8531 1.1847 4
Stöðvarfjörður 755 88740 0.8531 1.1847 4
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Region Postal Mean L.b. multipli- U.b. multipli- Numeric
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Breiðdalsvík 760 88740 0.8531 1.1847 4
Djúpivogur 765 88740 0.8531 1.1847 4

Höfn 780 88740 0.8531 1.1847 4
Höfn 781 86080 0.8484 1.1912 5
Öræ� 785 86080 0.8484 1.1912 5
Selfoss 800 86079 0.8407 1.2004 3
Selfoss 801 86080 0.8484 1.1912 5

Hveragerði 810 86079 0.8407 1.2004 3
Þorlákshöfn 815 88740 0.8531 1.1847 4
Eyrarbakki 820 88740 0.8531 1.1847 4
Stokkseyri 825 88740 0.8531 1.1847 4
Laugarvatn 840 86080 0.8484 1.1912 5

Flúðir 845 88740 0.8531 1.1847 4
Hella 850 88740 0.8531 1.1847 4
Hella 851 86080 0.8484 1.1912 5

Hvolsvöllur 860 88740 0.8531 1.1847 4
Hvolsvöllur 861 86080 0.8484 1.1912 5

Vík 870 88740 0.8531 1.1847 4
Vík 871 86080 0.8484 1.1912 5

Kirkjubæjarklaustur 880 88740 0.8531 1.1847 4
Vestmannaeyjar 900 88740 0.8531 1.1847 4

999 88912 0.8340 1.2054 8

D.4. Expected compensation

Table D.6: Table for expected value per number of policy years with posterior mean
and upper and lower multiplication factor for 95% posterior interval. It also con-
tains the numeric code which corresponds to the postal categories.

Expected value
Region Postal Mean L.b. multipli- U.b. multipli- Numeric

code cation factor cation factor code
Reykjavík 101 6265 0.6965 1.3980 1

Continued on next page
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Region Postal Mean L.b. multipli- U.b. multipli- Numeric
code cation factor cation factor code

Reykjavík 103 5871 0.6534 1.4641 1
Reykjavík 104 6345 0.6942 1.4029 1
Reykjavík 105 5725 0.6996 1.3951 1
Reykjavík 107 5606 0.6840 1.4177 1
Reykjavík 108 5776 0.6983 1.3932 1
Reykjavík 109 5848 0.6975 1.3986 1
Reykjavík 110 5912 0.6975 1.4018 1
Reykjavík 111 6753 0.6918 1.4092 1
Reykjavík 112 5117 0.6991 1.3915 1
Reykjavík 113 5583 0.6770 1.4289 1
Reykjavík 116 8558 0.6114 1.5495 1
Reykjavík 150 10743 0.6115 1.5180 7
Reykjavík 155 9898 0.6115 1.5180 7

Seltjarnarnes 170 6177 0.6711 1.4458 2
Vogar 190 5261 0.6775 1.4417 4

Kópavogur 200 5344 0.7170 1.3720 2
Kópavogur 201 4976 0.7069 1.3829 2
Kópavogur 203 5185 0.6862 1.4174 2
Garðabær 210 5120 0.7071 1.3876 2

Hafnarfjörður 220 5870 0.7174 1.3726 2
Hafnarfjörður 221 5075 0.7047 1.3869 2

Álftanes 225 5868 0.6610 1.4563 2
Reykjanesbær 230 6174 0.7249 1.3519 3
Reykjanesbær 233 10204 0.6396 1.5151 3
Reykjanesbær 235 4689 0.6683 1.4250 3
Grindavík 240 5049 0.6949 1.4120 4
Sandgerði 245 4865 0.6929 1.4092 4
Garður 250 5040 0.6750 1.4390 4

Reykjanesbær 260 5376 0.7169 1.3662 3
Mosfellsbær 270 5346 0.7054 1.3845 2
Akranes 300 5521 0.7198 1.3586 3
Akranes 301 4789 0.6366 1.5170 5
Borgarnes 310 4212 0.6871 1.4020 3
Borgarnes 311 3912 0.6972 1.4122 5
Reykholt 320 4717 0.6220 1.5421 6

Stykkishólmur 340 4509 0.6732 1.4492 4
Flatey á Breiðar�rði 345 6261 0.2817 2.5489 6

Continued on next page
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Region Postal Mean L.b. multipli- U.b. multipli- Numeric
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Grundarfjörður 350 4072 0.6446 1.4695 4
Ólafsvík 355 4903 0.6478 1.4919 4

Snæfellsbær 356 6747 0.5470 1.6377 4
Hellissandur 360 4594 0.5894 1.5702 4
Búðardalur 370 4071 0.6211 1.4802 4
Búðardalur 371 3430 0.6054 1.5333 6

Reykhólahreppur 380 3675 0.6034 1.5618 6
Ísafjörður 400 3758 0.7286 1.3583 4
Ísafjörður 401 4567 0.6479 1.4931 6
Hnífsdalur 410 3834 0.6442 1.4791 6
Bolungarvík 415 3993 0.6644 1.4580 4
Súðavík 420 4780 0.6654 1.4388 4
Flateyri 425 4400 0.6715 1.4223 4
Suðureyri 430 4364 0.6765 1.4147 4

Patreksfjörður 450 3741 0.6890 1.4083 4
Patreksfjörður 451 4126 0.6151 1.5084 6
Tálknafjörður 460 3230 0.4872 1.7250 4
Bíldudalur 465 4839 0.6503 1.4478 4
Þingeyri 470 3688 0.6753 1.4164 4
Þingeyri 471 4232 0.6376 1.5000 6
Staður 500 4292 0.5880 1.5627 5

Hólmavík 510 4238 0.6357 1.5028 4
Hólmavík 512 6139 0.5379 1.7158 6
Drangsnes 520 5911 0.5607 1.6655 4

522 2618 0.6184 1.5307 6
523 5519 0.6095 1.5426 6

Árneshreppur 524 7299 0.6005 1.5673 6
Hvammstangi 530 4739 0.6583 1.4730 4
Hvammstangi 531 3672 0.6218 1.5102 5
Blönduós 540 4035 0.6402 1.4975 4
Blönduós 541 3804 0.5895 1.5918 5

Skagaströnd 545 4092 0.5021 1.7501 4
Sauðárkrókur 550 4794 0.6900 1.4224 4
Sauðárkrókur 551 2814 0.6121 1.5042 5
Varmahlíð 560 3760 0.6357 1.4934 4
Hofsós 565 4325 0.5652 1.5960 4
Hofsós 566 5523 0.5497 1.6655 5
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Region Postal Mean L.b. multipli- U.b. multipli- Numeric
code cation factor cation factor code

Fljót 570 4791 0.5479 1.6547 6
Siglufjörður 580 3183 0.5989 1.5714 6
Akureyri 600 4585 0.7408 1.3297 3
Akureyri 601 3908 0.6995 1.3963 5
Akureyri 603 5225 0.7283 1.3452 3
Grenivík 610 5715 0.5933 1.5864 4
Grímsey 611 10497 0.3754 2.1759 4
Dalvík 620 3264 0.6712 1.4256 4
Dalvík 621 2640 0.5674 1.5730 5

Ólafsfjörður 625 5165 0.6431 1.5023 4
Hrísey 630 5591 0.3487 2.1378 4
Húsavík 640 4587 0.7015 1.4031 4
Húsavík 641 4230 0.6201 1.5440 6
Fosshóll 645 4814 0.6010 1.5681 5
Laugar 650 5043 0.5446 1.6146 4
Mývatn 660 3843 0.5763 1.5665 4
Kópasker 670 4131 0.5453 1.6206 4
Kópasker 671 3371 0.5341 1.6593 6
Raufarhöfn 675 3797 0.5524 1.6094 4
Þórshöfn 680 3551 0.5820 1.5724 4
Þórshöfn 681 3109 0.5366 1.6647 6

Bakkafjörður 685 5813 0.4724 1.8329 4
Vopnafjörður 690 3719 0.6498 1.4844 4
Egilsstaðir 700 4068 0.7112 1.3732 3
Egilsstaðir 701 2479 0.6750 1.4179 5

Seyðisfjörður 710 3503 0.6659 1.4435 4
Mjóafjörður 715 5569 0.6181 1.5222 6

Borgarfjörður eystri 720 3920 0.5201 1.6651 4
Reyðarfjörður 730 3803 0.6864 1.4316 4
Eskifjörður 735 4120 0.6875 1.4353 4

Neskaupsstaður 740 3712 0.6819 1.4257 4
Fáskrúðsfjörður 750 3356 0.6583 1.4489 4
Stöðvarfjörður 755 3530 0.6375 1.4596 4
Breiðdalsvík 760 5008 0.6567 1.4775 4
Djúpivogur 765 3519 0.6764 1.4142 4

Höfn 780 4453 0.6872 1.4184 4
Höfn 781 2784 0.5612 1.6010 5
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Region Postal Mean L.b. multipli- U.b. multipli- Numeric
code cation factor cation factor code

Öræ� 785 3249 0.5029 1.6814 5
Selfoss 800 5469 0.7160 1.3673 3
Selfoss 801 4161 0.6941 1.4147 5

Hveragerði 810 5416 0.6813 1.4274 3
Þorlákshöfn 815 4572 0.6762 1.4303 4
Eyrarbakki 820 5664 0.6553 1.4879 4
Stokkseyri 825 5134 0.6573 1.4734 4
Laugarvatn 840 4542 0.4569 1.8458 5

Flúðir 845 4517 0.5932 1.5760 4
Hella 850 4339 0.6772 1.4176 4
Hella 851 3397 0.6595 1.4483 5

Hvolsvöllur 860 4184 0.6615 1.4503 4
Hvolsvöllur 861 3399 0.6442 1.4829 5

Vík 870 5737 0.5977 1.5686 4
Vík 871 4716 0.5973 1.5904 5

Kirkjubæjarklaustur 880 4583 0.6562 1.4721 4
Vestmannaeyjar 900 4354 0.6701 1.4302 4

999 6674 0.6488 1.4547 8
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E. Figures for claim frequency and
expected compensation

E.1. Claim frequency
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Figure E.1: Average claim frequency with 95% posterior interval for postal codes
101-116.
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Figure E.2: Average claim frequency with 95% posterior interval for postal codes
170-225.
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Figure E.3: Average claim frequency with 95% posterior interval for postal codes
230-270.
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Figure E.4: Average claim frequency with 95% posterior interval for postal codes
300-380.
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Figure E.5: Average claim frequency with 95% posterior interval for postal codes
400-471.
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Figure E.6: Average claim frequency with 95% posterior interval for postal codes
500-566.
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Figure E.7: Average claim frequency with 95% posterior interval for postal codes
570-630.
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Figure E.8: Average claim frequency with 95% posterior interval for postal codes
640-690.
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Figure E.9: Average claim frequency with 95% posterior interval for postal codes
700-785.
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Figure E.10: Average claim frequency with 95% posterior interval for postal codes
800-900.
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E.2. Expected compensation
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Figure E.11: Expected compensation with 95% posterior interval for postal codes
101-116.
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Figure E.12: Expected compensation with 95% posterior interval for postal codes
170-225.
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Figure E.13: Expected compensation with 95% posterior interval for postal codes
230-270.
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Figure E.14: Expected compensation with 95% posterior interval for postal codes
300-380.
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Figure E.15: Expected compensation with 95% posterior interval for postal codes
400-471.
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Figure E.16: Expected compensation with 95% posterior interval for postal codes
500-566.
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Figure E.17: Expected compensation with 95% posterior interval for postal codes
570-630.
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Figure E.18: Expected compensation with 95% posterior interval for postal codes
640-690.
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Figure E.19: Expected compensation with 95% posterior interval for postal codes
700-785.
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Figure E.20: Expected compensation with 95% posterior interval for postal codes
800-900.
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