
Viðskipta- og raunvísindadeild
Faculty of Business and Science

A comparison of game engines and languages

Final Year Project
2010

Rósa Dögg Jónsdóttir

 A comparison of game engines and languages

Final Report

Rósa Dögg Jónsdóttir

 Supervisor: Andy Brooks

Computer Science Division
Department of Natural Resource Science

Faculty of Business and Science
University of Akureyri

Submitted April 2010, in partial fulfilment of
the conditions of the award of the degree BSc.

I hereby declare that this final report is all my own work,
except as indicated in the text:

Signature ______________________

Date _____/_____/_____

Rósa Dögg Jónsdóttir A Comparison of Game Engines and Languages

Abstract
This project compares three different game engines; Microsoft's XNA, Panda3D and Adobe Flash.

The same game is created in all three engines and the programing experience and results compared.

The strength and weaknesses of the integrated development environments (IDEs), length of code,

run time information, and available support of each engine are among the variables compared.

1

Rósa Dögg Jónsdóttir A Comparison of Game Engines and Languages

Table of Contents
Abstract...1
1 Introduction...6

1.1 Game engine..6
1.2 The game..7
1.3 Comparison..8

1.3.1 Engine..10
1.3.2 Programming language..10

2 Research...11
2.1 Game Engine..11
2.2 The game..12

2.2.1 Origin...12
2.2.2 Design..14

2.3 Comparison..16
3 Requirements Analysis and Design...18

3.1 Software requirements...18
3.2 Interface...21
3.3 Storyline...23

4 Implementation..27
4.1 Technology Platform..27
4.2 Changes from Analysis and Design...27

4.2.1 XNA...27
4.2.2 Panda3D...29
4.2.3 Flash...31

4.3 Key Features..32
4.3.1 Game Loop...32
4.3.2 Visible and Hidden Objects..33

4.4 Coding Convensions..33
4.4.1 XNA...34
4.4.2 Panda3D...35
4.4.3 Flash...35

4.5 Static Analysis and Refactoring...35
4.5.1 XNA...35
4.5.2 Panda3D...37
4.5.3 Flash...37

5 Evaluation..38
5.1 HCI Evaluation..38

5.1.1 Beginning of Implementation..38
5.1.2 XNA...38
5.1.3 Panda3D...39
5.1.4 Flash...39

5.2 Software Testing..39
5.2.1 XNA...39
5.2.2 Panda3D...40
5.2.3 Flash...40

5.3 Game Engine Comparison...40
5.3.1 Programing experience..40

2

Rósa Dögg Jónsdóttir A Comparison of Game Engines and Languages

5.3.2 Support...41
5.3.3 Time consumed..42
5.3.4 Runtime resources..43
5.3.5 Code Metrics..43

6 Conclusion...44
7 References...46
Appendixes...49

3

Rósa Dögg Jónsdóttir A Comparison of Game Engines and Languages

Illustration Index
Illustration 1: Java game - Screenshot..13
Illustration 2: BASIC game - Screenshot...13
Illustration 3: MDA (Hunicke et al 2004)..14
Illustration 4: Java game - Overview..18
Illustration 5: New game - Overview...19
Illustration 6: New game - Overview II...20
Illustration 7: Player Sprite...21
Illustration 8: Muggy..21
Illustration 9: Interface...21
Illustration 10: Menu overview..22
Illustration 11: Load game alternative..22
Illustration 12: Java game - Game flow...23
Illustration 13: Sequence I - Initialize chapter..23
Illustration 14: Sequence II - Player Idle..24
Illustration 15: Sequence IIIa - MouseClick I..24
Illustration 16: Sequence IIIb - Mouseclick II...25
Illustration 17: Storyboard - Chapter I...26
Illustration 18: Screenshot - XNA version...28
Illustration 19: Screenshot - Panda3D Coordinates..29
Illustration 20: Screenshot - Panda3D version...30
Illustration 21: Screenshot - Flash version...31
Illustration 22: XNA: styleCop - First Run..34
Illustration 23: XNA - Visual C# 2008 Express Refactor:Rename..35
Illustration 24: XNA: FxCop - Warnings...36
Illustration 25: XNA: SourceMonitor – Final Run...36
Illustration 26: Panda3D: PyDev - False Errors and Warnings..37
Illustration 27: Panda3D: PyDev - Code Coverage, Random Click..37
Illustration 28: Panda3D - Code Coverage...40

Index of Tables
Table 1: Comparison - Programing Experience...41
Table 2: Comparison - Support...41
Table 3: Comparison - Time consumed..42
Table 4: Comparison - Runtime resources...43
Table 5: Comparison - Code metrics..43

4

Rósa Dögg Jónsdóttir A Comparison of Game Engines and Languages

Appendix A – Code
A1 – Prototype
A2 – Text versions

A2a – XNA (C#) - This was the prototype, see Appendix A1.
A2b – Panda3D (Python)
A2c – Flash (Action Script 3.0)

A3 – Graphic versions
A3a – XNA (C#)
A3b – Panda3D (Python)
A3c – Flash (Action Script 3.0)

Appendix B – Project Plan
Appendix C – Project Suggestion
Appendix D – Brainstorming
Appendix E – Software Requirement Specification
Appendix F – Use Cases - Reworked

5

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

1 Introduction
Computer games are an increasingly popular past time and creating such a game can be a

challenging and fun experience. There are a lot of choices of tools to create games available, both

free and commercial (DevMaster.net 2009). Normally, choosing the tools is not the first thing a

game creator does. First a game is designed, from basic idea to fully outlined storyboards. How

ever, for this project the goal is to compare the game engines chosen, not decide the quality of the

game. The main effort will therefor be put into the evaluation of game engines. A preexisting game

is selected to expand on, rather than create an entirely new one. The same game will be

implemented in all the engines to use as a comparison between the engines.

1.1 Game engine
A set of software tools to create a game is generally referred to as a game engine (Ward, 2008). The

tools can be anything from an integrated development environment (IDE) for a programming

language, with some basic code for starting and ending a program, to a highly developed software

package with complete physics, rendering, network and artificial intelligence. The types of engines

can be categorized according to difficulty in using them, platforms the game is for or by what type

of games can be produced through them. Ward (2008) sorts game engines into three categories:

Roll-your-own game engines (lowest level), Mostly-ready game engines (mid level), and Point-and-

click engines (highest level). The lowest level depend the most on knowledge of the developers and

the highest requires little to no expert knowledge.

This project assumes the creator has some basic programming knowledge and little to no money or

professional experience. It also assumes the creator wants to practice programming and design

skills. This eliminates any commercial product that does not offer a trial long enough to create a

game in (for this project, that time is one month of implementation), any purely point and click tool

where no programming is involved and tools that require expert knowledge to use. The limited

available resources dictate that the game platform needs to be a platform previously accessible to

the creator, so a desktop computer is the obvious choice.

The final choice were Panda3D, Microsoft's XNA and Macromedia's Flash. The engines were

chosen because of different languages and availability. The engines for this project can all be

categorized as 'Roll-your-own'. Panda 3D is a python game engine that can use either OpenGL or

DirectX as a graphic engine. It is open source and has several available IDE's. XNA game studio

6

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

can use either C# or C++ (and can convert one into the other). It was created by Microsoft and the

recommended IDE for it is Microsoft Visual studio. C# was chosen because it is many ways simpler

than C++. Flash is a popular web application format, it is written with ActionScript. Flash requires

software from Macromedia that is not free but is available for 1 month trial. This way Panda 3D

represents the general open source choice, XNA represents the free but corporate choice and Flash

represents the costly corporate choice. Among other choices that were examined were SCALA,

Slag, Java, JavaScript and Wild Pockets. Java was not chosen because the game had already been

programmed in Java and Java is known to have huge memory consumption, a disadvantage against

the other languages (Prechelt 2000a). Scala, Slag and JavaScript were not chosen because of their

similarity with Java and C# in code and Panda3D in availability. Wild Pockets is a mostly point-

and-click engine, though it is interesting because it offers 3D in web browser. The choices and

evaluation of game engines is discussed further in section 2.1

1.2 The game
It could be interesting to design a game just for this project completely from start, but the time is

limited and the goal is to compare engines not to create a whole new story. To have more time to

focus on the comparison an existing game, old text game called Mugwumps, is chosen. Mugwumps

is part of a series of games originally written in BASIC (Ahl, 1978) and was released in a bundle of

Java games on KIDware (Java games, 2009). This game was chosen because it involves both

chance and choices for the player, giving many possibilities for expanding the game play. The name

also has a 'cute' factor. The other games in the Java games from KIDware had either complete

randomness or little to no, leaving Mugwump as the game that balanced the two best.

The original text game is simple; Player is given a hint to how far the Mugwumps are from him and

then guesses the Mugwumps location. To make the game more interesting for testing the engines it

will be re-designed for graphics and the game play enhanced with a non-player character (NPC) and

different difficulty of puzzles. The same game designs will be used for all game engines so that the

comparison is as homogeneous as possible. Another more complicated game could have been

chosen over Mugwumps. The design phase would then go into reverse engineering and there is no

guarantee that would take any less time than designing a different game play for Mugwumps.

To have a clear idea of what path the game should take a target audience was chosen. It was decided

to target young children, but that it might be enjoyable for older audience. Further discussion on the

choice of game and game play is in section 2.2 and 3.

7

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

1.3 Comparison
There is a considerable amount of comparison made between programming languages, tools and

game engines. Most of it is in opinion pieces and professional articles. Not many are empirical.

Most of those that are empirical compare a limited amount of languages based on a relatively

simple program. This can be attributed to the amount of effort involved in creating a complex

program in multiple languages for the purpose of comparison. There are comparisons that use

complex programs but they use different programs for different languages. Prechelt (2000a) points

out how this provides an inaccurate sense of comparison. This project is not unlike those that have a

limited amount of languages and a relatively simple program. It will give a perspective in what each

engine can and cannot do but will not be a finite declaration of what is best. It is still relevant for

someone who is considering what sort of engine to choose and the difference between these

engines.

To compare the three engines a few factors will be looked into and evaluated. The comparison will

be in part based on numbers and in part based on nominal attributes which will be assigned by the

writer's experience.

• Code readability (nominal)

◦ Readability is important if the program is to be extended, maintained or otherwise read

after the creation.

◦ It will be highly dependent on the programmer's skill but should be measurable between

engines because the same programmer, and there for the same skill level, is applied on

all.

• Lines of Code (numerical)

◦ How long it takes to program a software is linked to how long the code is, but an engine

is supposed to make the amount of programmer written code needed less. It will be

interesting to see if the total lines of codes are significantly more than the programmer's

written code.

• Implementation time (numerical)

◦ How much time goes into implementing the game is important when considering what

engine to use. A shorter amount of time would be better than longer.

8

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

• Functionality (nominal, list)

◦ The functionality offered by the engines is interesting. It should make implementation

time shorter the more functionality it offers. It can also make learning to use the engine

more difficult if there are a lot of extra functionality

• IDE qualities (nominal, list)

◦ The good points of each engines IDE.

• IDE weaknesses (nominal, list)

◦ The bad points of each engines IDE.

• Official support (nominal)

◦ How good the official support is, what support is available and how is it accessed.

• Community support (nominal)

◦ How good the community support is, what support is available and how is it accessed.

• File size (numerical)

◦ How large is the final product in KB. Has impact on accessibility of the final program.

• Run time memory consumption (numerical)

◦ How much memory does the program consume on average. Has impact on usability.

• Load time (numerical)

◦ How long does the program take to load. Has impact on enjoyment of play.

• Run time errors and glitches (nominal, list)

◦ Amount of errors are arguably connected to the programmer's skill but because the same

programmer (and there for the same skill level) is applied then the difference in error

count and glitches (such as hesitation during play due to loading) should be dependent

on the game engine.

Part of the choice of engines was to make sure it would run on specific platforms (a desktop) so

compatibility will not be a measurement.

9

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

1.3.1 Engine
A game engine will provide a set of commands to make creating a game easier, this will be in

addition what a 'clean' batch of code will have. What, if anything, is supplied by one engine and not

another will there for be one step of the comparison. The game engines have different IDE's which

will offer different usability (error checking, syntax checking) and access to documentation. This

will be the second step to compare the engines. The third step will be to compare the apparent

online community help, how easy or difficult it is to find solution or pre-made packages for

common components. A distinction between help available for general coding in the programming

language and specific for the engine will be made based on where this help is found.

1.3.2 Programming language
Chen et al (2005) divided programming language's factors into two categories; intrinsic and

extrinsic. Intrinsic were traditional factors such as generality, reliability and efficiency and extrinsic

were support of different groups. Prechelt (2000a) compared seven languages based on what would

then be intrinsic factors such as; program length, readability, memory consumption and robustness.

For this project the most interesting metrics would be memory consumption, how large the game

files are, program length, loading time and readability. Memory consumption and file size are

interesting for the distribution and use of the game while program length and readability are

important to know how long it would take to develop and maintain a game. Further discussion on

comparison is in chapter 2.3.

10

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

2 Research
The main scope of this project, and there for the research behind it, can be divided in three parts; the

engine, the game and the comparison. Relating to the engine is programming languages and to the

game is design.

2.1 Game Engine
There are over 3.000 programming languages in existence today (Kosar et al. 2008). Many are of

the same dialect (Zilbert, 2001) and only 150 are considered popular enough to keep track of their

use (TIOBE 2009). Any programming language can technically be used to create a game. For the

purpose of this project, there needs to be an already existing game engine for the language. This

engine may not require expert knowledge so it needs to have some fundamental rules for a game

such as graphics management and game loop. The language to choose has to be fairly popular and

easy to learn and use. This is so the creator can reasonably learn enough to create a game in a short

amount of time. Chen et al. (2005) predicted that Java would be the most popular language in 2008

and according to TIOBE (2009) it shares the top seat with C in November 2009. Despite that,

neither Java nor C will be chosen. The game has already been implemented in a text based version

in Java and C variants, C++ and C#, are easier to learn than C and are relatively popular. C# with

it's memory abstraction shortens the development time since the programmer does not need to

worry about memory allocation (Carlson 2005).

The first engine chosen will use a C variant. Microsoft's XNA offers the use of either C++ or C#.

XNA is a fairly new engine, released in 2007 and boasts a wide variety of online content for

creators. XNA is used to create games for Windows personal computers, Xbox or Sune. C# will be

chosen over C++ mainly because of C# memory abstraction. Engines that are similar to Microsoft's

XNA would be SCALA and Slag for their language's similarity to C and Java (SCALA 2009, Slag

2009).

The C family of languages is often referred to as 'conventional programming language' (Prechelt

2000b). Conventional programming languages are distinguished from so called 'scripting'

languages. Scripting languages are interpreted, rather than compiled, and are 'weak typed' (Prechelt

2000b, Carlson 2005). Scripting languages are heavier on memory than traditional because they are

interpreted but quicker to write in because the code is usually shorter (Prechelt 2000a, Carlson

2005). Therefor a game engine that uses a scripting language offers a good contrast to the more

11

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

conventional XNA.

Panda3D is an open source game engine that uses the Python programming language. Python is

usually classified as scripting language, though it has some qualities of a traditional language

(Carlson 2005). Panda3D runs equally on Linux, Mac-OS and Windows. IDE for Panda3D are

many, from simple notepad to Eclipse. This is another distinct difference between the two engines.

Similar options to Panda3D include Ruby and JavaScript (Ruby 2009, Wikipedia 2009). Neither

Ruby nor JavaScript are nearly as popular as Python (TIOBE 2009). Ruby is new and shiny so

might not have had the time to build up a knowledge base which would put it at a disadvantage to

C#. JavaScript is much older but tied in with web browsers rather than stand on it's own.

Flash is the last choice. A popular way of creating games for the internet. It does not come free,

unlike the other two. Adobe Flash CS4 Professional(c) costs 699$ in December 2009 (Adobe 2009).

It does offer a 30 day trial which will be used, putting an extra time constrain on the implementation

process. Why choose an expensive way instead of choosing something free? Because Flash is

extremely popular as a web application and because it offers a comparison to the free choices. Are

you paying for a better work environment or just for the technology. Flash can also be used to

created games for other platforms such as smart phones. Flash uses ActionScript, it's own scripting

language. Another option for a web.2 application would be Microsoft's Silverlight. Since there is

already one engine from Microsoft, Silverlight is not chosen. It should be noted that Silverlight has

the advantage over Adobe's Flash in that it is free.

For a large software project it is not unusual to use more than one language to develop in. Scripting

language are then used to 'glue' together components (Ousterhout 1998). There are several game

engines available that use more than one language, but in the interest of keeping this project simple

they will not be considered.

2.2 The game

2.2.1 Origin
In the Java games bundle from KIDware, in addition to Mugwumps, there were: Acey-Deucy, a

card game; Even Wins, a game where the user and computer take turns removing markers; Lunar

lander, where the user lands a spaceship using considerable amount of math to succeed; Frown, a

random dice game; and Jot, a word guessing game. These games either rely heavily on chance or

knowledge of the user.

12

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

None of them struck as a game that would be 'fun' to develop further with the creation of NPCs and

variability in puzzles. Mostly it felt as if they lacked 'story' (except Lunar lander). Looking for

Mugwumps sounded like it had a story behind it that wasn't being told. The word Mugwumps is

derived from an Algonquian dialect of Native Americans and means 'war leader'. The word has

since changed meanings several times in use in English, from meaning 'turn coat' to representing a

wizard's title in a popular children book series (Quinion, 2007).

The original game and the Java game are not completely the same (see Illustration 1 and 2).

Mugwumps is a simple 'hide and seek' game. The mugwumps are hidden in a grid and the player is

given hints to where they are. The player has to try to find the mugwumps in as few guesses as he

can. The original version of Mugwumps is a text based game with no graphical representation of the

grid the mugwumps are hidden in, it states how far the Mugwumps are from the player's location

and how many tries the player has left. In the original BASIC game the player had limited tries but

in the Java version the player has unlimited tries and the grid is represented using | and _ with

marks for where the player has guessed and failed and where the Mugwumps that have been found

are. Such small changes make the game considerably easier.

13

Illustration 1: Java game - Screenshot

Illustration 2: BASIC game -
Screenshot

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

2.2.2 Design
Blow (2004) claims 'Making a game today is a very different experience than it was even in 1994.'

This is because a game has gone from being in 2D with basic I/O streaming and some simulation

into containing 3D rendering, AI, various scripting, physics and more complex worlds and story

lines. That is true in part, yes there are more complicated games available now but it can be argued

that the variability in complication is wider rather than all games are more complicated. Game

design will have more sub stages for more complicated games but it could be said that the basic

steps are timeless. Crawford (1997) describes the stages to be: Choose a goal and a topic, research

and prepare, design (starting with the game, ending with program), programming, play testing, and

finally postmortem. Ab.Rahman & Prakash (2007) wrote, on creating a game in XNA, that '[...] the

most important matter that should be highlighted is the content team members’ perspectives. '. This

is similar to Crawford's emphases on choosing a goal and topic first, having a clear idea what the

game should be before going into programming.

Hunicke et al. (2004) suggest that: 'MDA [Mechanics, Dynamics, and Aesthetics] is a formal

approach to understanding games, one which attempts to bridge the gap between game design and

development, game criticism, and technical game research. ' Using the MDA model a designer can

tune game mechanics to meet player's expectations of aesthetics. This is done by mapping aesthetics

(game play component such as sensation, discovery or narrative) to specific dynamics (systems

such as time) and specific dynamics to certain mechanics (rules such as spawn points and available

items). See Illustration 3.

Knowing who the player is is a step in knowing how to approach the player. There are several

different ways to classify a target audience for a game. Broadly they are marketed for 'boys', 'girls'

or 'gamers'. Games for 'boys' involve some variation of sports or fighting enemies. Games for 'girls'

involve 'cute' puzzles, dressing up or anything pink. Gamers are a large and diverse audience but the

games are advertised for one or more of: a type of action, storyline, graphics – depending on what

type of game it is. Most target a male audience. There is a growing group of audience, so called

casual gamers which mostly consists of women over 40 – according to an AOL study the biggest

14

Illustration 3: MDA (Hunicke et al 2004)

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

online gaming group (CNN 2004). This group is thought to be mostly into online Flash or Java

games but is little researched. Mugwumps is a puzzle game so the appropriate group would either

be children (or specifically girls) or casual gamers. Because the casual gamer is a very ambiguous

audience children will be the targeted.

Games are an important factor in children lives and some consider them a part of teaching them

social skills (Eggerstdóttir & Petrova 2008). Computer games have often been classified as less

prosocial than other games. Children's exposure to violent video games result in increase in

aggression and decrease in helping others (Gentile & Walsh 2001). There are numerous articles

about violence and video games for children, almost as many about teaching through video games

(math games, spelling games and such) but very few about positive effect of video games on

children through play. Gentile et al. (2009) looks into the effects of prosocial games on children and

finds that ' in the shortterm players’ behaviors were predicted by the pro social and violent content

of the games they played. In the long-term, players with high pro social game exposure had higher

prosocial traits and behaviors.'. This means studies have shown that video games are not all bad, it

depends on their content. Mugwumps as a hide and seek puzzle game should there for be relatively

safe for children and maybe even helpful for reading skills.

Laurel (1998) talks of her experience in developing a series of games for girls. She mentions how

she did an in-depth research into what girls would want to play – asking what they liked rather than

'of what we have already, what do you like best'. This project doesn't have time to do such a

research so will rely on existing material but it is an interesting point.

Games for children usually have simple forms and colours. The graphics are figurative rather than

realistic and physics are unreal – except when the game teaches physics. Good teaching games for

children give the player a lot of compliments when a correct action is performed (Sigurðardóttir

2007). Wight (2003), creator of SIMs, talks about how to make games interesting by making

failures interesting – not just successes. He also talks about the importance of human and computer

interaction and that each player might experience the game in a different way. He is referring to

more complex games than what Mugwump will be but it is still something to keep in mind. That if a

player does something unexpected it might be an idea to not punish it or display an error but instead

do something surprising.

15

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

2.3 Comparison
Prechelt (2000a) did an empirical comparison of seven programming languages. Languages were

divided into two groups; scripting (Perl, Tcl, Python and Rexx) and conventional (C, C++ and Java)

programming languages. One set of requirements was used to be implemented in all languages,

conventional by students and scripting by members of online communities. Each language had

several different programmers. Program length, effort, run time efficiency, memory consumption

and reliability among other things were measured, the data collected into box plots and compared.

Because there were different programmers, with different skill set and experience, for each

language the measurements were spread but there were a few statistics that were significantly

different between languages. Namely that scripting took half as long writing as conventional

languages (due to shorter code), consumed twice the memory (except Java, which was significantly

more memory hungry than any other language) and took longer executing (though again Java was

slower than C and C++ and sometimes slower than scripting). Prechelt points out that this is only

valid for this specific problem and that different programs would potentially give different results.

He 'observed no clear differences in program reliability among the language groups'. Prechelt

maintains that 'The scripting languages, however, offer reasonable alternatives to C and C++, even

for tasks that must handle fair amounts of computation and data.'. This project is in many ways

similar to Prechelt's comparison although the scope is much smaller. It will be interesting to see if

the program length, effort and memory consumption is similar to Prechelt's results. The program

run will be different from Prechelt's, his resolves a sorting problem, and there for there might be

differences.

Chen et al. (2005) did a study on programming language trends. They used 17 third-generation

general-purpose languages, excluding other generations and scripting languages. They surveyed

general design criteria and support of different programming languages in 1993, 1998 and 2003.

Then used this data to predict how much the same languages will be used in 2008. The general

design criteria were factors such as generality, reliability, simplicity and implement-ability. Each

language was given a grade for each factor by the researchers. The support was divided into

institutional, industrial, governmental, organizational, grassroots and technology. Each support

factor was measured either with surveys or data mining. They 'found that the most important

intrinsic factors are generality, reliability, machine independence, and extensibility.' This research

did not assume one language affecting another popularity nor did it predict new languages and their

influence. This makes the measurements and predictions slightly skewed. The study completely

16

Rósa Dögg Jónsdóttir Research A Comparison of Game Engines and Languages

ignored scripting languages.

Carlson (2005) discusses other comparisons, essays and evaluations. Looks specifically at scripting

languages and the lack of research into them. Looks into what defines scripting (interpreted)

languages. Discusses the difference between scripting and non-scripting languages. Mentions

macros. Touches on industry focus on conventional languages and discusses advantages in using

scripting rather than conventional programming. He advices developers to look into what language

to use with balance in mind between memory consumption and cost of development. He mentions

'pretty' as a valid comparison due to being linked to readability. His advice is arguable in that he

does not account for cost in maintaining the program after release, readability might have influence

in that cost but so would extendability. The cost of correcting errors in old or new code should also

be taken into account. The immediate cost of development might appear smaller at the cost higher

maintain cost.

Another form of comparison would be to compare the actual code, word for word, such as Chandra

(2005) comparison of Java and C# and Miller & Ranum comparison of Python and Java. These are

interesting from a purely typing in code perspective and learning one language if the other is

already familiar. Those are relevant in predicting how easy or difficult it is to learn a language and

help a programmer migrate from one to the other. It is not relevant to the comparison of the game

engines.

17

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

3 Requirements Analysis and Design
Designing a graphic computer game requires not only traditional software specifications in UML

and use cases but also storyboards and concept art. This part of the report discuses basic software

requirements and design decisions for the storyline, interface and graphics.

Software requirements with use cases are listed in more detail in appendix C – Software

Requirement Specification document. It lists all decisions and requirements for the game for all

three implementations.

A prototype in XNA was created for the text based game, the main code from that and screen shot is

in appendix E. It is mostly code adapted from the Java version of the game with some code to make

it work with graphics. ScreenManager is a set of classes provided from the XNA creators club and

is not provided in the appendix (XNA Creators Club Online 2007).

Testing and comparison design will be left for the evaluation period of the project.

3.1 Software requirements

Mugwumps is a simple 'hide and seek' game. Objects are hidden in a grid and the player is given

hints to where they are. The player has to try to find the objects in as few guesses as he can. The

original version of Mugwumps is a text based game with no graphical representation of the grid the

18

Illustration 4: Java game - Overview

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

mugwumps are hidden in, it states how far the Mugwumps are from the player's location and how

many tries the player has left. See Illustration 4.

The goal and idea behind the game is to expand the previous versions of Mugwumps with graphics

and additional playability. There needs to be a guideline into what direction that is designed. To

have a clearer idea of where the design should be headed the target audience 'children' is decided, as

discussed in 2.2.2 Design. 'Children' is a broad range so a decision was made to limit it to ages 6 –

10. Children younger than 6 will probably not have the reading knowledge to accept hints in a text.

Children 10 and up will possibly consider a simple game too 'childish'. While the game will focus 6

– 10 there is nothing that prohibits a person of any age to use it.

The game will be divided into three levels (called chapters); one training, one moderate difficulty

and one hard. For future development of the game more chapters can be added, but for this project

three is enough because they will be implemented three times. Having more chapters would be too

much work in the short time available. The user will use a mouse to point and click to where he

thinks the hidden object is and will be given graphical hints to in what direction the object is hidden

and how far he is away from it. Graphics will show the possible locations where things can be

hidden and where the player has already searched. See Illustration 5.

19

Illustration 5: New game - Overview

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

Creating a UML class diagram would be the logical next step for a software but because the game

will be created in three different languages, C# only one of those that uses classes, a high level

diagram of system components will do until implementation to give an idea of what each method or

class will do. See Illustration 6.

20

Illustration 6: New game - Overview II

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

3.2 Interface
The game has to be cheerful, colourful and simple. Graphics will be in 2D on a

3D plane like paper dolls. Sounds will be unrecognizable squeels of joy or gasp

to separate the game from a specific language. Text will be at a beginning reading

level.

The figure of the Mugwumps will have a big head, ears and eyes like a puppy or

a kitten because that is usually considered cute (see Illustration 8). The figure

(sprite) of the player will be a really simple blob-person (see Illustration 7). For

future development of the game the figure could have attachable accessories for the player to

distinguish it from other players sprites.

The main game window will have the game board, Muggy's hints and the magic stone. Quit (X) and

Help(?) need to be accessible there as well. The Magic Stone will display a coloured dot in the

direction of where the hidden object(s) is. The colour will be brighter the closer the player is to the

hidden object. Part of the game is to keep score. The number of guesses a player has done in the

chapter will be displayed in the top of the screen. See Illustration 9.

21

Illustration 7:
Player Sprite

Illustration 8: Muggy

Illustration 9: Interface

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

Once score is kept the player might feel a need to do better. The computer has to keep track of the

player's score so that he can see if he's doing better. So that more than one player can play using the

same installation without interfering with the others score the computer needs to keep separate track

of player information. This means that before the player starts playing the game he needs to be able

to choose either to create a new game or load an existing one. See illustration 10 for Menu

overview.

An alternative to the Game Menu → New Game | Load Game would be to have one window for

load game and new game (Illustration 11). This is not as clear as having two separate windows and

might create confusion in new players.

22

Illustration 10: Menu overview

Illustration 11: Load game alternative

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

3.3 Storyline
The game starts with a creature (Muggy) finding the player (known as 'PC') and telling PC about

'games' the Mugwumps want to play. Muggy gives a magic stone that shows in what direction the

hidden objects are. The story is three chapters, each a different level of the game. The first is a

practice chapter, where the player needs to find Muggy in a field. The second a part of 'the games'

where he needs to find three Mugwumps in a tent camp. The third chapter is a treasure hunt and

more difficult than the others. Muggy is with the player to help and give hints.

In the original version the game flow was fairly simple (Illustration 12) – the player would receive

hints and guess the location of Mugwumps until all Mugwumps were found.

The basics of the flow will remain the same for the expanded game but with more 'actors'.

When the player selects a chapter to play the computer will initialize the game components. It will

check for the hints available for Muggy, it will check for the visible and hidden objects and place

them on the board. Finally it will display the game window complete with both interface and board.

See Illustration 13.

23

Illustration 12: Java game - Game flow

Illustration 13: Sequence I - Initialize chapter

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

At the beginning, when the player is idle, and any time he returns to idle state for more than 30

seconds, the magic stone displays a visible hint to where the hidden objects are and Muggy updates

his hint to urge the player to find the hidden objects. See Illustration 14.

When the player clicks the mouse, the computer will check where he clicked and the game will

react in different ways. See Illustration 15.

24

Illustration 14: Sequence II - Player Idle

Illustration 15: Sequence IIIa - MouseClick I

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

If he clicked an empty spot Muggy will remind him to click an object. If he clicks Muggy or the

Magic stone they will animate then remind him where the hidden objects are. See Illustration 16.

If the player clicked an object a series of checks are performed behind the scenes. If the object has

been clicked before Muggy reminds the player and urges to look elsewhere. If the object has not

been clicked and contains a hidden object, the hidden object becomes visible and Muggy

congratulates the player. If this was the last object the game should end but if it was not then Muggy

will urge the player to find the remaining object(s). If the visible object does not contain a hidden

object then Muggy will urge the player to try something else.

25

Illustration 16: Sequence IIIb - Mouseclick II

Rósa Dögg Jónsdóttir Analysis & Design A Comparison of Game Engines and Languages

The storyboard for chapter 1, the practice chapter where Muggy hides in a field and the player has

to find him, is fairly simple (Illustration 17). Chapter 2 would be similar except that there are more

objects. The stone then shows more than one dot and Muggy would say things like 'oh we're really

close to one, try going right'. In chapter 3 there are no objects to hide behind, the field is clear. Then

the player can click any area of the board and know if it is hiding the treasure chest. When an area

has been clicked a hole should be displayed to represent the player digging for a treasure chest.

26

Illustration 17: Storyboard - Chapter I

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

4 Implementation

4.1 Technology Platform
All the work was done on a Dell Inspiron 6400 laptop with Windows XP, Service Pack 3 operating

system. Open Office 3.2.0 and Notepad++ v.5.6.6 were used for notes and report making. MS paint

and Gimp 2.6.8 were used to create simple 2D graphic and starUML used in making the use cases

and flow charts. This could all be exchanged for a workstation and tools of the user's choice.

The important part is the game engines. For Microsoft's XNA, Microsoft Visual C# 2008 Express

Edition was used. An alternative to that would be to buy Microsoft XNA Game Studio. XNA

uses .Net and DivX, version 3.5 SP1 was used of .Net and version 9 of DivX For Panda3D, Eclipse

SDK 3.5.1 with PyDev. Panda3D does not have an official IDE, instead they recommend a variety

of IDE's on the Panda3D webpage. DivX was used for the graphic engine, but OpenGL can be used

as well. Finally for Adobe Flash, Adobe Flash C4 Proffessional 30 day trial was used. There are free

alternatives for Flash, some with graphic IDE and others purely text. To run the flash version Adobe

Flash Player 10 is used.

For static analysis of XNA three extra programs were used. StyleCop and FxCop from Microsoft

and SourceMonitor from Campwood Software.

4.2 Changes from Analysis and Design
There is some difference between the design and the final version of the game in each version.

Mostly less functionality or features. The core functionality of the game was implemented in each

engine and graphics and other features added as time allowed. There is a difference in the final

versions between the game engines because of the different amount of time it takes to implement

features in the engines. The XNA version is furthest along although it used up roughly the same

amount of time as Panda3D. Panda3D graphics used up more time than expected. Flash version is

close to Panda3D but the least time was given to that. Each game engine is addressed in the

following sections, in what is different from the design and final version.

4.2.1 XNA
As mentioned, the XNA version is closest to the planned game of the three. It is the most object-

oriented code, with special classes to handle object states and functions. The main difference

between planned game and XNA version are as follows.

27

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

Less functionality

• Main Menu only accepts keyboard. Only displays Play Game, Options and Exit.

• No Save or Load game option

• No help menu

• Game Window accepts mouse clicks and ESC key. No Help. No Magic Stone.

• New game through ESC from game board.

• No magic stone to visualize the hint.

• No sounds.

The XNA version did look very close to the storyboard graphics (Illustration 18).

A screen manager was used from the XNA community to create the menus. Using code from others

saves allot of time. As the refactoring tools were run it showed that the code that is borrowed is not

always up to standards and it takes more time to correct someone elses code than ones own.

The decision to leave these out was made because it was time to focus on the next implementation

28

Illustration 18: Screenshot - XNA version

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

(in Panda3D). It should be fairly easy to add menu options and help to the game. Saving and

loading a game as well as sounds was not looked into in debth but the XNA engine should support

both. Adding a magic stone to visualize the hint can be done by adding a new class.

Leaving these things out means that the game is not ready for release, but it has sufficient

functionality to be a demo.

4.2.2 Panda3D
Graphics were a major issue in Panda3D. The final version of the game in Panda3D is in 3D while

Flash and XNA are in 2D. This is because of how Panda3D handles coordinates differently than

Flash and XNA. In all three engines, graphics can be in either 2D or 3D. Both 2D coordinations of

the game window and mouse possitionon the screen for XNA and Flash are on the same axis. In

Panda3D the mouse is a string from the nearest to furthest away camera angle, the game window

has it's own x and y coordinates and the scene (3 dimensional box the game enviroment inhabits)

has it's own x, y and z coordinates (Illustration 19).

Trying to place all of these coordination in synchronization took a long time and turned out

unsuccesfull. Instead a chess tutorial provided with Panda3D was used as a game board and the

pawns used as bushes. The basic logic behind the game is still the same but the look and 'feel' is

different.

29

Illustration 19: Screenshot - Panda3D Coordinates

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

Less functionality

• The player sprite was not added due to running out of time.

• No help

• No main menu to select new game, no replay, no save or load

• No sound, no magic stone

Different gameplay

• 3D graphics

• No player sprite

Panda3D version looks different from the original storyboards, even though the layout is based on

the same ideas. (Illustration 20).

Creating a menu window to be able to select options should not be a big problem but was not

attempted due to time constraints. Neither was exploring how Panda3D handles saving and loading

of game data.

30

Illustration 20: Screenshot - Panda3D version

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

Because the graphics are pawns and the game does not look and feel like a hide and seek game this

version is not a demo. Instead it could be called a prototype. It is playable to get a feel of what the

game is about, but it does not demonstrate fully how a new player would experience a potential

final game.

4.2.3 Flash
The main disadvantage of Adobe Flash IDE was that it was only a trial that was active for 30 days,

limiting the amount of time to implement and test everything. It is also the most graphical of the

IDEs. Graphics are drawn, using mouse point and click, on the scene and then a script is attached

that handles the game logic. This makes working with Flash allot different than the text focused

IDEs of Panda3D and XNA.

Less functionality

• The player sprite was not added due to running out of time.

• No help

• No main menu to select new game, no replay, no save or load

• No sound, no magic stone

31

Illustration 21: Screenshot - Flash version

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

Different gameplay

• Bushes are text

• No player sprite

Bushes were drawn as text for this version because there was an issue with importing graphics and

creating instances of them using scripting (Illustration 21). This is solvable given time and effort.

Neither menues nor save and loading of game data was explored.

The version of flash contains a bug so that locations of visible bushes and hidden Mugwumps do

not match. This can be fixed, but the trial expired before the solution could be found so the current

version it is only a working prototype.

4.3 Key Features
The game is simple. There are a number of visible objects (bushes) placed in random locations on a

map. Mugwumps (hidden objects) are then placed inside a bush. The player guesses the location of

the Mugwumps by using the mouse to click on a bush. Random number generators from the game

engines were used to choose where the objects landed. Each game engine handles the basic game

loop (updating graphics, updating objects and such) in a different way. Objects (or items) were

handled slightly differently between engines. The rest of the game logic is nearly the same between

engines.

4.3.1 Game Loop
In XNA there are five basic methods for handling the game loop. Initialize() is run at the start,

checking for any requirements and loading non-graphic components. LoadGraphics() and

UnloadGraphics() handle loading and unloading graphic components. Update() handles the game

logic, updating the game as needed, and finally Draw() draws the frame. Update() is called

repeatedly in a loop untill the game ends. Event handlers, such as mouse clicks, are separately

handled by HandleInput(). For the Mugwump game Update() calls for changes in the game status

based on variables, such as updating the status of the player sprite depending on it's location.

HandleInput() waits for a mouse click or a keyboard press to respond to.

In Panda3D the game logic is run once and then stops with the screen open and refreshes the

graphics on a frame rate. Unless the player sets up a loop or adds an event handler, the screen does

not appear to change at all. The game screen is redrawn at a set frame rate but does not update the

32

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

graphics unless specifically told to. For the Mugwumps game an event handler for the mouse waits

for it to be clicked to push the game forward and an event handler for the keyboard waits for ESC to

exit the game. Flash is similar to Panda3D. The game is pushed forward by events. It is possible to

have timed events as well as mouse and keyboard events.

For Mugwumps in Panda3D and Flash, the main event handler for pushing the game forward is 'on

mouse click'. When a user presses the mouse button it is checked where it happened and what to do

based on that, similar to XNA, and then the graphics and Muggy hints are updated as needed.

4.3.2 Visible and Hidden Objects
In XNA the objects, or bushes, have a specific class named Items. It keeps track of the status of the

object (if it has a hidden object or not, if it has been searched or not) using an integer. Another way

would have been to use booleans for that. The class also handles graphics and keeps track of the

location of the object on the map. The game chapter creates an array of items equal in size to how

many are visible and places them randomly on the map using a random number generator. Then

hidden objects, Mugwumps, are placed within n-number of visible objects using a random number

generator and the status of those objects changed to containing hidden.

In Panda this is similar, a specific class for items keeps track of their location and graphic and the

game creates an array of items. Flash on the other hand is more similar to the Java version of the

game. It uses only an array for the map and marks the status of the map square, wether it is

occupied and with what. It would be possible to create a separate class in flash to handle items

given more time and knowledge of action script.

4.4 Coding Convensions
All code was written with the same basic ideas at first then fixed to the coding conventions of each

language. Normally the coding conventions for a specific language should be used from the start of

programming but this reverse order was done to see the difference between them clearer.

The basic rules followed.

• Methods begin with upper case first letter, variables lower case first letter.

• Names are descriptive, e.g. muggySays for a string containing what Muggy says.

• Comments for each method and group of variables at the minimum. Comment if – else

statements.

33

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

4.4.1 XNA
For XNA a specific addon was installed to Microsoft Visual C# Express. The addon is called

styleCop and is a free Microsoft product. StyleCop prints out warnings for any break from coding

conventions. It ranges from recommending changing from Hungarian notations (e.g. iNumber for

an integer variable) to keeping track of if documentation is adequit (e.g. Specific wording of

constructor summary).

Code was fixed according to StyleCop.

• Hungarian notations removed, pPlayer renamed to player for example.

• /// <summary> description </summary> added above all methods and classes instead of

// description

• Spaces and linebreaks fixed. e.g. Linebreak before a single line comment, linebreak after

closing an else statement.

• Order of methods and variables. Public before private.

Before fixing the code StyleCop reported 1452 warnings. After fixing Style Cop reports 810

warnings, only 120 of those directly from the Mugwumps game.

34

Illustration 22: XNA: styleCop - First Run

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

Warnings that were ignored were

• Warnings related to the XNA package (spaces and linebreaks) and Screen Manager.

• Warnings related to documentation requirement (too few words). This is mostly done due to

lack of time, though it would be prefered to complete the documentation properly.

4.4.2 Panda3D
For Panda3D, PEP 8 – Style Guide for Python Code (python.org 2010) was used. It is a short and

simple list of rules. The python code for Mugwumps is short as well so it was corrected manualy

according to the guide. It took one third of the time it took to correct the C# code with StyleCop

because the changes needed to be done were fewer and the original code closer to the style guide.

4.4.3 Flash
For Flash a whitepaper from Adobe on action script was used (Adobe 2010). It contains the do's and

don't's on action script standards. Code was corrected manually since the list is simple and code

short.

4.5 Static Analysis and Refactoring
All three engines have static analysis and refactoring tools available, though not all IDE's chosen

have them to start with. Both XNA and Panda3D IDEs had refactor and rename built in.

4.5.1 XNA
For C# a basic rename and extract method is in Visual Express (Illustration 23). The professional

edition of this IDE has more tools for static analysis. For this project, another free Microsoft

35

Illustration 23: XNA - Visual C# 2008 Express Refactor:Rename

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

product was used named FxCop. FxCop checks for protection of methods and variables and other

possible runtime issues.

Running FixCop after using StyleCop gives 58 warnings. Several errors are related to XNA and

Screen Manager so ignored. Errors from the Mugwumps are unused methods, the getters and setters

specifically. Since the game is supposed to be expanded these will be left (Illustration 24).

SourceMonitor is a free product from Campwood Software. It counts, among other things, lines of

codes and comment density in C# (Illustration 25). It can be used for other languages as well,

though unfortunately neither Python nor Action Script.

Comment and documentation density in Mugwumps XNA version is from 19.5% up to 42.2%

which would be acceptable. Most of the classes are between 1 and 3 in complexity but Muggy.cs

which handles what Muggy says is 12.00. It would be advisable to find a better way to handle what

Muggy says, if possible.

36

Illustration 24: XNA: FxCop - Warnings

Illustration 25: XNA: SourceMonitor – Final Run

Rósa Dögg Jónsdóttir Implementation A Comparison of Game Engines and Languages

4.5.2 Panda3D
PyDev has syntax analysis, refactoring, debugging and code completion built in. There is a known

problem with the code completion and analysis with Panda3D, it does not seem to recognize all

Panda3D library components. Final version of the Mugwump code includes 37 errors and 6 warning

that are false, they relate to Panda3D libraries (Illustration 26).

A good feature of PyDev is the To-do list. If a comment begins with TODO it will be moved to a

specific list that the programmer can use to keep track of what is left.

Code Coverage is a feature of PyDev wich is extremely helpfull in testing code. It measures how

much of the code was covered in a run test and notes the lines of code that were not covered. See

Illustration 27 for the result of a random click run.

4.5.3 Flash
No static analysis was done on the Flash version because the trial had run out. There are available

for purchase various programs and tools to perform analysis with.

37

Illustration 26: Panda3D: PyDev - False Errors and Warnings

Illustration 27: Panda3D: PyDev - Code Coverage, Random Click

Rósa Dögg Jónsdóttir Evaluation A Comparison of Game Engines and Languages

5 Evaluation

5.1 HCI Evaluation
Informal think-aloud sessions were performed at the beginning and at the end of the implementation

phase for the XNA version of Mugwumps. This was to test the user interface and game experience

and adjust. One session was done for each of the Panda3D and Flash versions once they were nearly

complete. The reason for the extra session for XNA at the beginning of the phase was to get rid of

the most obvious faults in the design before much coding was done. The think aloud sessions were

done with four different people, Fjóla María (FM), Ólöf Hörn (ÓH), Hlynur (H) and Örvar (Ö). FM

and ÓH were together in the session at the start of implementation for XNA and end of

implementation for each version. H and Ö were together for a session after implementation in XNA.

5.1.1 Beginning of Implementation
At the beginning of implentation only a rough version of the game was used. A grid with coloured

boxes representing bushes were visible as well as Muggy's hints.

It was clear from the session that an avatar (sprite) was needed for the player to feel connected to

what was happening on the screen and to see where the last mouse click was. Muggy's hints were

misleading, 'Listen to..' was used, prompting the player to ask if the sound was on. Muggy also said

'Go search..' rather than specificly guide the player to 'Search the bushes.' leading to confusion on

how to play the game. These issues were noted down and fixed in the XNA version and kept in

mind for the Panda3D and Flash.

5.1.2 XNA
XNA session at the end of implementation was more succesfull. The game was found to be

simplistic but easy to follow if the hints were read. It was unclear what to do if the player did not

read the hints, but since that is part of the game – to read and learn to follow hints – this is

acceptable. It is possible to complete the game by clicking randomly but the game score will usually

be poor.

A bug with the player sprite came up, it did not always go all the way to where the user clicked with

the mouse. Attempts to fix this were unsuccsesfull.

38

Rósa Dögg Jónsdóttir Evaluation A Comparison of Game Engines and Languages

5.1.3 Panda3D
Playing a game with pawns instead of bushes and coloured squares instead of the pawns changing

colour turned out to be confusing. Lacking the player sprite and a picture of Muggy to emphatise

with made the game play less fun. It would be possible to change the colour of the pawns instead of

the squares but that would only be a minor improvement so was not done.

The game used the mouse location in relation to the squares of the chessboard instead of the pawns

wich led to what appears as a bug: if the top of a pawn's head is clicked, the game reads it as the

square above the pawn (if there is one) or nothing. It would be better to link the mouse click with

what pawn was clicked rather than square.

5.1.4 Flash
No HCI evaluation was done on Flash.

5.2 Software Testing
While the game was being programmed, after each new implementation it was run and tested. The

testing covered basic operations, such as when adding the event handler for a mouse click the user

clicked randomly on the screen and observed feed back in text where the click was. This is not an

organized way of testing and can not be relied on to find the most errors. After each version was

done, the original use cases were used to test and then new were made based on the functionality of

the version. Unit testing was planned but not performed.

5.2.1 XNA
The XNA version was tested using use cases and new were created (included in Appendix F). The

version was also tested by the programmer using different tactics to complete the game (random

clicking, organized left to right clicking all squares and finally carefully following hints). There is

an issue with the player sprite not moving to the mouse click at all times but that was the only

visible bug. The version was not tested on other computers or with other configurations.

The testing coverage is not enough. More should be done in terms of software compatability testing

as well as unit testing. Unit testing is not available in Visual C# Express edition, but it is available

in the professional edition as well as there are third party software available.

39

Rósa Dögg Jónsdóttir Evaluation A Comparison of Game Engines and Languages

5.2.2 Panda3D
Panda3D version was tested using use cases and new were created (included in Appendix F).

PyDev's code coverage was enabled while doing the use case testing and showed 98,7 % test

coverage.

The code missing from the test are two different methods. One gives a value on the z-axis where an

object should be if it followed the mouse pointer. The other changes the colour of the pawns. Both

are from the chess tutorial and are kept in, incase they can be used later on.

The 98,7% code coverage gives hope that errors occurring is less likely but it does not cover

different software enviroments. Unit testing is available in PyDev and would be advicable to test

different inputs but was not done due to lack of time. The Panda3D version of the game was also

tested using different tactics to complete the game (random clicking, organized left to right clicking

all squares and finally carefully following hints) and no errors were encountered.

5.2.3 Flash
No organized testing was performed. Random testing of playing the game revealed that the visible

bushes and where the Mugwumps are hidden does not match. While fixing that the trial ran out so

that the flash file was not recompiled with the fixes. The action script file does contain an attempt to

fix this issue but has not been complied into a flash file.

5.3 Game Engine Comparison
To compare the three engines a few factors were looked into and evaluated. The comparison is in

part based on numbers and in part based on nominal attributes which will be assigned by the writer's

experience. This comparison is not complete but does give an idea of the qualities and weaknesses

of each engine.

5.3.1 Programing experience
XNA turned out to be easy to use, the IDE pops up with suggestions for words and error checks as

the code is typed. The PyDev in Eclipse IDE is alright, but lacks the word completion and as-you-

type error checking that XNA has (PyDev due to an error with the Panda3D package). Adobe flash's

40

Illustration 28: Panda3D - Code Coverage

Rósa Dögg Jónsdóttir Evaluation A Comparison of Game Engines and Languages

IDE is big and heavy. It takes much longer to get used to it and it lacks access to refactoring and

word completion that the others have. You can get addons for that though.

The code in all three languages is easily readable. The use of spaces instead of brackets, {}, in

python does provide some confusion and it is easier to make a mistake by forgetting to add the

fourth space rather than forgetting to add a bracket since the space is 'invisible'.

All in all both XNA and Panda3D are flexible and easy to start with engines that accomodate a

programmer well but Flash IDE is more suited for a graphic point and click development.

XNA Panda3D Flash

Code readability (nominal) Good. Good, but using spaces
instead of {} can confuse.

Good.

Functionality (nominal, list) Support for 2D and 3D
Basic physics

Support for 2D and 3D
Basic physics

Support for 2D and 3D

IDE qualities (nominal, list) Simple
Code completion
Error checking while typing
Basic refactoring

Simple
Basic refactoring
Code testing coverage
Unit testing

IDE weaknesses (nominal,
list)

No unit testing
Memory heavy

Bug in code completion and
error checking

Big and heavy

Table 1: Comparison - Programing Experience

5.3.2 Support
The official help documentation is decent for all three engines. On the official webpages of each is a

basic introduction to the engine, detailed information on functions and tutorials. Panda3D has an

extensive library of tutorial with the instal folder, where the programmer can view the well

commented code behind mini programs.

XNA Panda3D Flash

Official support (nominal) Very good Very good Very good

Community support
(nominal)

Extremely good Extremely good Confusing

Table 2: Comparison - Support
The XNA has an official community page, XNA Creators Club, that is organized and it seems to be

easy to find solutions or help to solve problems there. Panda3D has a large selection of solutions

provided by the community on forums hosted on Panda3D's official site. Users can ask for aid on

these forums as well and they seem fairly active. The user generated help for Flash – various

tutorials and how to's – are so many and unfocused that it takes a while to find something useful.

41

Rósa Dögg Jónsdóttir Evaluation A Comparison of Game Engines and Languages

There is no one community site for Flash like the other two, instead a developer has to rely on skills

in searching the internet for various forums and tutorial hubs. Much of the flash tutorials are

available for payment only.

The easily available help for XNA and Flash shows that it makes a difference wether the software

developer provides grounds for the software users to communicate or not.

5.3.3 Time consumed
The implementation time is the time it took to create a basic version of the game and adding

graphics. Before the implementation, time was used to familiarize with the engines and code by

going through a 'hello world' tutorial provided by the official sites and then creating a text version

of the Mugwumps game. Creating the text version could be counted in as implementation time since

most of the game logic was written there, but it can also fall under familiarizing with a new

scripting language. The text version was almost a dirrect recreation of a Java version of

Mugwumps.

The actual time to program a basic graphic game is similar in XNA and Panda3D but trying to make

the graphics 2D in Panda3D swallowed up a considerable time. In the end a 3D chess tutorial was

used for graphics in Panda3D, but making a 2D game is not impossible. Figuring out how to create

labels and such in Flash took a while, but the basic coding took noticably shorter. This can be

attributed to the similarity between C# and Action Script 3.0, making the writing of code for Flash

nearly a dirrect write-up of the XNA version.

Time in hours XNA Panda3D Flash

Tutorials 2,5 8,5 7,5

Simple Text version 7 5,5 2,5

Basic version 10 8,5 2,5

Graphics 3,5 10 7

Refactoring 13 5 1

Table 3: Comparison - Time consumed
Developing a game in Panda3D would likely take less time than in XNA, provided that the use of

3D graphics takes the same amount in both. For a 2D game XNA is a better choice because it is

easy to work with but for a full 3D game Panda3D's shorter code and eager community help should

be considered.

42

Rósa Dögg Jónsdóttir Evaluation A Comparison of Game Engines and Languages

5.3.4 Runtime resources
File size for the different programs varies. It should be noted that the XNA version does have a little

more functionality and that such a small program does not give an idea of how the file size scales

with a larger program.

XNA Panda3D Flash

File size (numerical) 8 MB 1.9 MB 138 KB

Run time memory
consumption (numerical)

27 MB 61 MB

Load time (numerical) 9 sec. 2 sec.

Run time errors and glitches
(nominal, list)

Player sprite does not go all
the way to mouse click at
times.

Not able to click pawns to
guess location.

Bushes and hidden
Mugwumps do not match in
location.

Table 4: Comparison - Runtime resources

5.3.5 Code Metrics
Finding and using a code metrics measurement for Panda3D and Flash proved unsuccesfull. It is

obvious from reading the code that comment density in XNA is greater than in the other two and

that the requirements for documentation is greater from the official style guides. This and having

more features could explain some of the difference between Panda3D and XNA. Flash is noticably

shorter but the code there does not deal with the graphics, unlike the other two.

To test the difference between the Panda3D and XNA versions better, the complete Panda3D

version and the classes GameplayScreen and Chapter from the XNA version were stripped of all

comments and measured. The reason for choosing these two classes only is because they contain

most of the basic functionality and least of the additional functions. The XNA code proved still to

be much longer than the Panda3D one, which is in line with previous comparisons of programming

languages that showed that C code is longer than Python. Those researches showed that a longer

code takes longer to create and because of this a Panda3D game should take shorter than an XNA

game of the same type to create.

XNA Panda3D Flash

Lines of Code (numerical) 1676* 492 287

Lines of Code – stripped
down

570 306

* XNA Lines of Code does not include the screen manager.

Table 5: Comparison - Code metrics

43

Rósa Dögg Jónsdóttir Conclusion A Comparison of Game Engines and Languages

6 Conclusion
The purpose of this project was to create a game in three different game engines and compare the

programing process and results. The reason why this is interesting is because the choices of a

starting game creator are overwhelming and difficult to know what tools are best to start with. A

comparison might help with this choice. This project tackled the choice from the point of view of

someone who wants to practice programming skills as well as development skills. It looked at the

pro's and con's of many different languages and platforms and selects three to build a game in. Then

an old BASIC game called Mugwumps was created in each engine.

During this I learned the basics in programming in C#, Python and Action Script 3.0. I learned to

use the debugging mechanisms of PyDev and refactoring of Visual C# Express edition as well as

StyleCop to correct C# coding style. I got a taste of how 3D graphics are programmed in a game,

though I did not succesfully manipulate them. I became familiar with the three game engines; XNA,

Panda3D and Adobe Flash. I also got practice in managing my time, making schedules and try to

stick with them.

The time table was not followed well enough. The work became two weeks behind after being sick

so that the time to create Panda3D and Flash was reduced. Most of the lost time on Panda3D was

worked up but Flash was not worked on hard enough so that the trial expired before it was

completed. I learned that for a project like this it is not wise to use a trial of a software. Even if the

version had been completed on time, it would have been difficult to return to the code or tools to

check on other things or display the work afterwards.

Having three engines to compare gives some dynamic to the comparison but it is very difficult to do

within the time frame given. It would have been more efficient to focus on only two, such as

Panda3D and XNA because they are similar, giving more time to programing and analysing to each.

Flash also turned out to be a difficult engine to compare to the other two because of it's IDE

graphical nature.

Future work with this project could lead to two things. One would be to complete the game and

publish it. If it is to be a 2D game it would be easiest to complete it in XNA since that is furthest

along. If it is to be 3D, such as paperdolls in a 3D field, then Panda3D would be interesting to look

at because of the open source nature of the engine, wide support and (in theory) shorter programing

time in Python. Flash is less interesting though it would be possible to find a free flash editor to

44

Rósa Dögg Jónsdóttir Conclusion A Comparison of Game Engines and Languages

create the game in.

The other possibility of future work is to do more research into the difference of game engines and

their languages. This could be done with different game engines, with more programmers tackling

the same program and/or taking a closer look at the difference of nature between XNA and

Panda3D. It would be interesting to compare the C++ version of Panda3D with the C++ version of

XNA to see the difference between engines only, rather than both engine and language effecting the

difference.

This was a very interesting project to take on. More time could have been devoted to it and

decisions at the start to take three rather than two engines could have been different but it does

provide a basic comparison between three different engines and a demo of a playable video game.

45

Rósa Dögg Jónsdóttir A comparison of game engines and languages

Appendix E - Prototype

#region File Description
//---
// GameplayScreen.cs
//
// Microsoft XNA Community Game Platform
// Copyright (C) Microsoft Corporation. All rights reserved.
//---
#endregion

#region Using Statements
using System;
using System.Threading;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
#endregion

namespace GameStateManagement
{
 /// <summary>
 /// This screen implements the actual game logic. It is just a
 /// placeholder to get the idea across: you'll probably want to
 /// put some more interesting gameplay in here!
 /// </summary>
 class MugwumpsStart : GameScreen
 {
 #region Fields

Appendix E – Prototype 1

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 ContentManager content;
 SpriteFont gameFont;
 SpriteFont courier;
 Color backColor = Color.CornflowerBlue;

 Vector2 playerPosition = new Vector2(100, 100);
 //Vector2 enemyPosition = new Vector2(100, 100);

 //Random random = new Random();

 #endregion

 #region Initialization

 // initialize for MugWump
 Random jRandom = new Random();
 int[,] p = new int[4,2];
 int[,] map = new int[10,10];
 int remaining = 4;
 int tries = 0;
 int m, n;
 Boolean found;

 /// <summary>
 /// Constructor.
 /// </summary>
 public MugwumpsStart()
 {
 TransitionOnTime = TimeSpan.FromSeconds(1.5);
 TransitionOffTime = TimeSpan.FromSeconds(0.5);
 }

 Texture2D odur;
 Texture2D dot;
 Vector2 spritePosition = Vector2.Zero;
 Vector2 dotPosition = Vector2.Zero;
 SpriteFont font;
 String mapString = "";
 String guessString = "";

 /// <summary>
 /// Load graphics content for the game.
 /// </summary>
 public override void LoadContent()
 {

 if (content == null)
 content = new ContentManager(ScreenManager.Game.Services, "Content");

 gameFont = content.Load<SpriteFont>("gamefont");
 courier = content.Load<SpriteFont>("courier");

 odur = content.Load<Texture2D>("odur");
 font = content.Load<SpriteFont>("SpriteFont1");
 dot = content.Load<Texture2D>("dot");

 // A real game would probably have more content than this sample, so
 // it would take longer to load. We simulate that by delaying for a

Appendix E – Prototype 2

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 // while, giving you a chance to admire the beautiful loading screen.
 //Thread.Sleep(1000);

 // hide mugwumps
 for (int i = 0; i < 10; i++)
 {
 for (int j = 0; j < 10; j++)
 {
 map[i,j] = 0;
 }
 }
 for (int i = 0; i < 4; i++)
 {
 do
 {
 for (int j = 0; j < 2; j++)
 {
 p[i,j] = jRandom.Next(10);
 }
 }
 while (map[p[i,0],p[i,1]] != 0);
 map[p[i,0],p[i,1]] = 1;
 }
 for (int i = 0; i < 4; i++)
 {
 map[p[i,0],p[i,1]] = 0;
 }

 // once the load has finished, we use ResetElapsedTime to tell the game's
 // timing mechanism that we have just finished a very long frame, and that
 // it should not try to catch up.
 ScreenManager.Game.ResetElapsedTime();
 }

 /// <summary>
 /// Unload graphics content used by the game.
 /// </summary>
 public override void UnloadContent()
 {
 content.Unload();
 }

 #endregion

 #region Update and Draw

 /// <summary>
 /// Updates the state of the game. This method checks the GameScreen.IsActive
 /// property, so the game will stop updating when the pause menu is active,
 /// or if you tab away to a different application.
 /// </summary>
 ///

 Boolean endIt = false;

Appendix E – Prototype 3

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 public override void Update(GameTime gameTime, bool otherScreenHasFocus,
 bool coveredByOtherScreen)
 {
 base.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen);

 if (IsActive)
 {
 PrintMap();
 UpdateMouse();

 if (remaining == 0)
 {
 EndHunt();
 endIt = true;
 }

 if (endIt)
 {
 ScreenManager.AddScreen(new EndMenuScreen(tries), ControllingPlayer);
 }
 }
 }

 String endString = "";

 protected void EndHunt()
 {
 endString = "You found all the Mugwumps with " + tries + " tries! \nGood job!";
 }

 protected void PrintMap()
 {
 // draw current game board grid
 mapString = " 0 1 2 3 4 5 6 7 8 9\n";
 for (int i = 0; i < 10; i++)
 {
 mapString = mapString + (i) +"|";
 for (int j = 0; j < 10; j++)
 {

switch (map[i,j])
 {
 case 0:
 mapString = mapString + " |";
 break;
 case 1:
 mapString = mapString + "O|";
 break;
 case 2:
 mapString = mapString + "X|";
 //map[i,j] = 1; get rid of x elsewhere
 break;
 case 3:
 mapString = mapString + "M|";
 break;
 }
 }
 mapString = mapString + "\n";
 }

Appendix E – Prototype 4

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 }

 Boolean pressMouse = false;

 protected void UpdateMouse()
 {
 MouseState current_mouse = Mouse.GetState();

 // The mouse x and y positions are returned relative to the
 // upper-left corner of the game window.
 int mouseX = current_mouse.X;
 int mouseY = current_mouse.Y;

 dotPosition.X = current_mouse.X;
 dotPosition.Y = current_mouse.Y;

 if (current_mouse.LeftButton == ButtonState.Released)
 pressMouse = false;
 // find mugwumps!
 if ((current_mouse.LeftButton == ButtonState.Pressed)&& (pressMouse == false))
 {
 pressMouse = true;
 // The mouse x and y positions are returned relative to the
 // upper-left corner of the game window.
 int nX = current_mouse.X;
 int mY = current_mouse.Y;

 guessMugwump(nX, mY);
 }

 // Change background color based on mouse position.
 //backColor = new Color((byte)(mouseX / 3), (byte)(mouseY / 2), 0);
 }

 /// <summary>
 /// Lets the game respond to player input. Unlike the Update method,
 /// this will only be called when the gameplay screen is active.
 /// </summary>
 public override void HandleInput(InputState input)
 {
 if (input == null)
 throw new ArgumentNullException("input");

 // Look up inputs for the active player profile.
 int playerIndex = (int)ControllingPlayer.Value;

 KeyboardState keyboardState = input.CurrentKeyboardStates[playerIndex];
 GamePadState gamePadState = input.CurrentGamePadStates[playerIndex];

 // The game pauses either if the user presses the pause button, or if
 // they unplug the active gamepad. This requires us to keep track of
 // whether a gamepad was ever plugged in, because we don't want to pause
 // on PC if they are playing with a keyboard and have no gamepad at all!
 bool gamePadDisconnected = !gamePadState.IsConnected &&
 input.GamePadWasConnected[playerIndex];

 if (input.IsPauseGame(ControllingPlayer) || gamePadDisconnected)
 {

Appendix E – Prototype 5

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 ScreenManager.AddScreen(new PauseMenuScreen(), ControllingPlayer);
 }
 else
 {
 // Otherwise move the player position.
 Vector2 movement = Vector2.Zero;

 if (keyboardState.IsKeyDown(Keys.Left))
 movement.X--;

 if (keyboardState.IsKeyDown(Keys.Right))
 movement.X++;

 if (keyboardState.IsKeyDown(Keys.Up))
 movement.Y--;

 if (keyboardState.IsKeyDown(Keys.Down))
 movement.Y++;

 Vector2 thumbstick = gamePadState.ThumbSticks.Left;

 movement.X += thumbstick.X;
 movement.Y -= thumbstick.Y;

 if (movement.Length() > 1)
 movement.Normalize();

 playerPosition += movement * 2;
 }
 }
 int oldM = 0;
 int oldN = 0;
 protected void guessMugwump(int nX, int mY)
 {
 n = (nX - 311) / 16;
 m = (mY - 68) / 16;

 guessString = "";

 if (m < 0 || m > 9 || n < 0 || n > 9)
 {
 guessString = "You must choose a place in the grid!";
 }
 else
 {
 // get rid of x
 if (map[oldM, oldN] == 2)
 map[oldM, oldN] = 1;
 oldM = m;
 oldN = n;
 switch (map[m, n])
 {
 case 1:
 guessString = "You already looked there!";
 break;
 case 2:
 guessString = "You already looked there!";
 break;

Appendix E – Prototype 6

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 case 3:
 guessString = "You already found this Mugwump!";
 break;
 case 0:
 tries++;
 found = false;
 for (int i = 0; i < 4; i++)
 {
 if (p[i, 0] != -1)
 {
 if (p[i, 0] != m || p[i, 1] != n)
 {
 map[m, n] = 2;
 double d = Math.Sqrt((p[i, 0] - m) * (p[i, 0] - m) + (p[i, 1] - n) * (p[i, 1] - n));
 guessString = guessString + "You are " + d.ToString("0.00") +
 " units from Mugwump " + (i + 1)+"\n";
 }
 else
 {
 found = true;
 p[i, 0] = -1;
 guessString = guessString + "You found Mugwump " + (i + 1) + "!\n";
 remaining--;
 }
 }
 if (found == true)
 {
 map[m, n] = 3;
 }
 }
 break;
 }
 }
 }

 /// <summary>
 /// Draws the gameplay screen.
 /// </summary>
 public override void Draw(GameTime gameTime)
 {
 // This game has a blue background. Why? Because!
 ScreenManager.GraphicsDevice.Clear(ClearOptions.Target,
 backColor, 0, 0);

 // Our player and enemy are both actually just text strings.
 SpriteBatch spriteBatch = ScreenManager.SpriteBatch;

 //spriteBatch.Begin();

 //spriteBatch.DrawString(gameFont, "// TODO", playerPosition, Color.Green);

 //spriteBatch.DrawString(gameFont, "Insert Gameplay Here",
 // enemyPosition, Color.DarkRed);

 spriteBatch.Begin(SpriteBlendMode.AlphaBlend);
 spriteBatch.DrawString(font, "Mugwumps", new Vector2(400, 325), Color.Bisque);
 spriteBatch.DrawString(font, "Find the four Mugwumps hidden on a 10 x 10 grid.\n" +

Appendix E – Prototype 7

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 "After each guess, you are told how far you are from \neach Mugwump.\n" +
 "\nO-Guess, X-Last Guess, M-Mugwump", new Vector2(300, 350), Color.Bisque);
 // draw cat
 spriteBatch.Draw(odur, spritePosition, backColor);
 spriteBatch.Draw(dot, dotPosition, backColor);

 spriteBatch.DrawString(courier,remaining +
 " Mugwumps are now in hiding. \nWhere do you think one is?", new Vector2(300,0), Color.White);
 // print Map
 spriteBatch.DrawString(courier, mapString, new Vector2(300, 50), Color.White);

 // press X - guess mugwump
 spriteBatch.DrawString(courier, "Last Guess:\nrow " + m + "\ncolumn " + n +
 "\ntries "+tries, new Vector2(700, 100), Color.Pink);

 spriteBatch.DrawString(courier, guessString, new Vector2(550, 175), Color.Yellow);

 spriteBatch.DrawString(courier, endString, new Vector2(500, 200), Color.Red);

 spriteBatch.End();

 // If the game is transitioning on or off, fade it out to black.
 if (TransitionPosition > 0)
 ScreenManager.FadeBackBufferToBlack(255 - TransitionAlpha);
 }

 #endregion
 }
}

Appendix E – Prototype 8

Rósa Dögg Jónsdóttir Appendix A2b A Comparison of Game Engines and Languages

'''
Created on 27.2.2010

@author: Rosa Dogg
'''

import random
import math

class Game:
 #init map
 # 0 - none
 # 1 - searched, no mugwump
 # 2 - mugwump in hiding
 # 3 - searched, mugwump found
 map = [[0 for j in range(10)] for i in range(10)]
 remaining = 4
 tries = 0

 def __init__(self):
 self.remaining = 4
 self.tries = 0
 #hide mugwumps
 for k in range(self.remaining):
 self.hideMugwump()

 self.playRound()

 def hideMugwump(self):
 x = random.randrange(0,9)
 y = random.randrange(0,9)
 m = self.map[x][y]
 if m != 0:
 self.hideMugwump()
 self.map[x][y] = 2

 def playRound(self):
 self.printMap()
 self.askForGuess()
 print "You have used "+str(self.tries)+" tries."
 print "There are " + str(self.remaining) + " remaining Mugwumps."
 if self.remaining > 0:
 print "....*...."
 self.playRound()
 print "Well done!"

 def printMap(self):
 print "Current grid (O-Guess and no Mugwump, M-Guess and found Mugwump):"
 print " 0 1 2 3 4 5 6 7 8 9"
 for y in range(10):
 mapString = str(y) + "|"
 for x in range(10):
 m = self.map[x][y]
 result = {
 0: lambda x: " |",
 1: lambda x: "O|",
 2: lambda x: " |", # dont show the mugwump
 3: lambda x: "M|"

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A2b A Comparison of Game Engines and Languages

 }[m](x)
 mapString += result
 print mapString

 def askForGuess(self):
 print str(self.remaining) + " Mugwumps are now in hiding. Where do you think one is?"
 x = self.askInput("What column? (0-9)")
 y = self.askInput("What row? (0-9)")
 print "...."
 self.checkResult(x,y)

 def askInput(self, s):
 y = int(raw_input(s))
 if y > 9 or y < 0:
 y = self.askInput(s)
 return y

 def checkResult(self,x,y):
 m = self.map[x][y]
 text = {
 0: lambda x: "There is no Mugwump here",
 1: lambda x: "You already looked there!",
 2: lambda x: "You found a Mugwump!",
 3: lambda x: "You already found this Mugwump!"
 }[m](x)
 if m == 0 or m == 2:
 self.map[x][y] = m+1
 self.tries = self.tries + 1
 if m == 2:
 self.remaining = self.remaining -1
 print text
 if self.remaining > 0:
 self.checkNearest(x,y)

 def checkNearest(self,x,y):
 nearestX = 10
 nearestY = 10
 nearest = self.calcDist(x,y,nearestX, nearestY)
 for nx in range(10):
 for ny in range(10):
 m = self.map[nx][ny]
 if m == 2:
 newDist = self.calcDist(x,y,nx,ny)
 if newDist < nearest:
 nearest = newDist
 nearestX = nx
 nearestY = ny
 print "The distance to nearest Mugwumps is "+str(nearest)

 def calcDist(self,x,y,nX,nY):
 distX = x - nX
 distY = y - nY
 return math.sqrt(distX*distX+distY*distY)

Run the game
g = Game()

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A2c A Comparison of Game Engines and Languages

package code
{

import flash.display.MovieClip;
import flash.text.*;

 import flash.events.*;

public class MugwumpsText extends MovieClip
{

var remaining:int = 4;
var mugwumpNr:int = 4;
var tries:int = 0;
// Create an array,
// 2 dimensions, x and y
var map:Array = new Array();

public function MugwumpsText()
{

trace("MugwumpsTest2");
text1.text = "Mugwumps Game";

fillMap();

for (var i:int = 0; i < remaining; i++) {
placeMugwumps();

}

labelInstructions.text = "Guess the coordinates of the nearest mugwump";

printMap();

//yCoord.addEventListener(TextEvent.TEXT_INPUT, inputEventCapture);
checkButton.addEventListener(MouseEvent.CLICK, inputEventCapture);

}

public function fillMap():void
{

// Fill the array of 0
for (var i:int = 0; i < 10; i++) {

map[i] = new Array();
for (var j:int = 0; j < 10; j++) {

map[i].push(0);
 }

}
}
public function placeMugwumps():void
{

var posX:int = randomNumber(0,9);
var posY:int = randomNumber(0,9);
if (map[posX][posY] == 0) {

// if empty, hide mugwump
map[posX][posY] = 2;

}
else

placeMugwumps();
}
public function printMap():void
{

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir Appendix A2c A Comparison of Game Engines and Languages

var val:int = 0;
// print the array
textMap.text = " | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \n";
for (var yi:int = 0; yi < map.length; yi++) {

textMap.text = textMap.text + yi;
for (var xi:int = 0; xi < map[yi].length; xi++) {

val = map[xi][yi];
if ((val == 0) || (val == 2))
{

textMap.text = textMap.text + " | ";
}
else if (val == 1)
{

textMap.text = textMap.text + " | o";
}
else if (val == 3)
{

textMap.text = textMap.text + " | x";
}
else
// something screwy going on

textMap.text = textMap.text + " | ?";

}
textMap.text = textMap.text + "\n";

}
}

public function inputEventCapture(event:MouseEvent):void
{

var posY:int = int(yCoord.text);
var posX:int = int(xCoord.text);
labelInstructions.text = "You guessed " + posX + " x " + posY +".";

if (map[posX][posY] == 2)
{

labelInstructions.text = labelInstructions.text + "\nYou found a Mugwump.";
map[posX][posY] = 3
remaining--;
tries++;

}
else if (map[posX][posY] == 0)
{

labelInstructions.text = labelInstructions.text + "\nThere was no Mugwump there.";
map[posX][posY] = 1;
tries++;

}
else
{

labelInstructions.text = labelInstructions.text + "\nYou have already guessed there";
}
if (remaining > 0)
{

checkNearest(posX,posY);
}
else

labelInstructions.text = labelInstructions.text + "\nYou have found all mugwumps.";
text1.text = "MUGWUMPS\nTries: " + tries + "\nFound: " + (mugwumpNr - remaining);

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir Appendix A2c A Comparison of Game Engines and Languages

printMap();
}

public function checkNearest(posX, posY):void
{

var nearest:int = 1000
var distX:int = 0;
var distY:int = 0;
var newNear:int = 0;
var northSouth:String = "";
var westEast:String = "";

for (var xi:int = 0; xi < map.length; xi++) {
for (var yi:int = 0; yi < map[xi].length; yi++) {

if ((map[xi][yi] == 2) && ((xi != posX) || (yi != posY)))
{

distX = xi - posX;
trace(distX);
distY = yi - posY;
trace(distY);
newNear = Math.sqrt(distX*distX + distY*distY);
if (newNear < nearest)
{

nearest = newNear;
if (distX < 0)
{

westEast = "West";
}
else if (distX > 0)
{

westEast = "East";
}
else

westEast = "";
if (distY < 0)
{

northSouth = "North";
}
else if (distY > 0)
{

northSouth = "South";
}
else

northSouth = "";

}
}
else

trace("ugg");
}

}
labelInstructions.text = labelInstructions.text + "\nNearest is " + nearest + " squares away to

the "
+ northSouth + westEast +".";

}

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir Appendix A2c A Comparison of Game Engines and Languages

/**
* Generate a random number
* @return Random Number
* @error throws Error if low or high is not provided
*/
function randomNumber(low:Number=NaN, high:Number=NaN):Number
{
 var low:Number = low;
 var high:Number = high;

 if(isNaN(low))
 {
 throw new Error("low must be defined");
 }
 if(isNaN(high))
 {
 throw new Error("high must be defined");
 }

 return Math.round(Math.random() * (high - low)) + low;
}

}
}

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

// <author>Rósa Dögg Jónsdóttir</author>
// <date>2010-16-04</date>
// <summary>Edited GamePlayScreen from Screen manager</summary>

namespace MugwumpsGameXNA
{
 #region Using Statements
 using System;
 using System.Threading;
 using Microsoft.Xna.Framework;
 using Microsoft.Xna.Framework.Content;
 using Microsoft.Xna.Framework.Graphics;
 using Microsoft.Xna.Framework.Input;
 #endregion

 /// <summary>
 /// This screen implements the actual game logic.
 /// </summary>
 class GameplayScreen : GameScreen
 {
 /// <summary>
 /// Variables for the game
 /// </summary>
 #region Fields
 /// <summary>
 /// Variables that are static for the game
 /// </summary>
 private static Vector2 foundTextLocation = new Vector2(20, 550);
 private static int mapEmpty = -1; // nothing there
 private static int mapVisible = 1; // visible object
 private static int mapVisibleHidden = 2; // visible object AND hidden object
 private static int mapVisibleSearched = 3; // searched, has no hidden
 private static int mapHiddenSearched = 4; // searched, has hidden

 /// <summary>
 /// Basic content
 /// Anything to declare for the basic game
 /// </summary>
 private static int screenWidth = 800;
 private static int screenHeight = 600;
 private static Rectangle fullscreen = new Rectangle(0, 0, screenWidth, screenHeight);
 private static int objectWidth = 50; // in pixels
 private static int objectHeight = 40; // in pixels
 private static int mapWidth = 16; // nr. of objects possible in a row
 private static int mapHeight = 10; // nr. of objects possible in a colum
 private static Rectangle mapGameScreenRect = new Rectangle(
 0, 0, objectWidth * mapWidth, objectHeight * mapHeight);

 private ContentManager content;
 private SpriteFont gameFont;
 private Texture2D gameBackground;
 private string gameBackgroundPic = "MugwumpItems\\base";
 private Vector2 basicPossition = new Vector2(0, 0);

 /// <summary>
 /// Mouse
 /// Anything to track mouse state
 /// Treat mouseclick as a box to measure for intersect.

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 /// </summary>
 private MouseState mousePreviousState;
 private MouseState mouseCurrentState;
 private Rectangle mouseClickRect = new Rectangle(0, 0, 1, 1);
 private Rectangle itemLocation = new Rectangle(0, 0, objectWidth, objectHeight);
 private int mouseClickGridX = -1;
 private int mouseClickGridY = -1;

 /// <summary>
 /// Chapters
 /// The game can have X nr of chapters
 /// TODO: initialize as array?
 /// </summary>
 private Chapter chapterOne;

 /// <summary>
 /// Player
 /// Anything to declare for player
 /// Texture for player is set in the player class
 /// TODO: The player class keeps track of this, not gameplayscreen
 /// TODO: multiple chapters have different top scores
 /// </summary>
 private Player player;
 ////private int nrBestTries = 0;

 /// <summary>
 /// Anything to do with Muggy the hint giver
 /// Text for muggy is set in the muggy class
 /// </summary>
 private Muggy muggy;
 private string muggySaysNow;
 private Vector2 muggyTextLocation = new Vector2(200, 460);
 private Rectangle muggyLocation = new Rectangle(20, 460, 150, 90);
 private Texture2D muggyTexture;
 private int hintDirrection = 0;

 #endregion

 /// <summary>
 /// initializing, basic
 /// </summary>
 #region Initialization

 /// <summary>
 /// Initializes a new instance of the GameplayScreen class.
 /// Constructor.
 /// From Game screen management
 /// </summary>
 public GameplayScreen()
 {
 TransitionOnTime = TimeSpan.FromSeconds(1.5);
 TransitionOffTime = TimeSpan.FromSeconds(0.5);
 }

 /// <summary>
 /// Load graphics content for the game.
 /// </summary>
 public override void LoadContent()

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 {
 if (this.content == null)
 {
 this.content = new ContentManager(ScreenManager.Game.Services, "Content");
 }

 this.gameFont = this.content.Load<SpriteFont>("GameMenuItems/gamefont");

 // Load what is needed for the Mugwump Game
 this.LoadMugwumpsGame();

 // once the load has finished, we use ResetElapsedTime to tell the game's
 // timing mechanism that we have just finished a very long frame, and that
 // it should not try to catch up.
 // From game screen manager
 ScreenManager.Game.ResetElapsedTime();
 }

 /// <summary>
 /// Unload graphics content used by the game.
 /// </summary>
 public override void UnloadContent()
 {
 this.content.Unload();
 }

 #endregion

 /// <summary>
 /// Update and drawmethods, basic
 /// </summary>
 #region Update and Draw

 /// <summary>
 /// Updates the state of the game. This method checks the GameScreen.IsActive
 /// property, so the game will stop updating when the pause menu is active,
 /// or if you tab away to a different application.
 /// From Game Screen Manager
 /// </summary>
 /// <param name="gameTime"></param>
 /// <param name="otherScreenHasFocus"></param>
 /// <param name="coveredByOtherScreen"></param>
 public override void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen)
 {
 base.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen);

 if (IsActive)
 {
 this.UpdateMugwumpsGame(gameTime);
 }
 }

 /// <summary>
 /// Lets the game respond to player input. Unlike the Update method,
 /// this will only be called when the gameplay screen is active.
 /// From Game Screen Manager + add some mouse functions
 /// RDJ: Edit to take out effecting player possition
 /// </summary>

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 /// <param name="input"></param>
 public override void HandleInput(InputState input)
 {
 if (input == null)
 {
 throw new ArgumentNullException("input");
 }

 // Look up inputs for the active player profile.
 int playerIndex = (int)ControllingPlayer.Value;

 KeyboardState keyboardState = input.CurrentKeyboardStates[playerIndex];
 GamePadState gamePadState = input.CurrentGamePadStates[playerIndex];

 // The game pauses either if the user presses the pause button, or if
 // they unplug the active gamepad. This requires us to keep track of
 // whether a gamepad was ever plugged in, because we don't want to pause
 // on PC if they are playing with a keyboard and have no gamepad at all!
 bool gamePadDisconnected = !gamePadState.IsConnected &&
 input.GamePadWasConnected[playerIndex];

 if (input.IsPauseGame(ControllingPlayer) || gamePadDisconnected)
 {
 ScreenManager.AddScreen(new PauseMenuScreen(), ControllingPlayer);
 }

 // MOUSE - added by RDJ

 // The old current state is now the previous state
 this.mousePreviousState = this.mouseCurrentState;

 // and the check state is now the current state
 this.mouseCurrentState = Mouse.GetState();

 // If the user has just clicked the Left mouse button, respond
 if ((this.mousePreviousState.LeftButton == ButtonState.Released)
 && (this.mouseCurrentState.LeftButton == ButtonState.Pressed))
 {
 this.MouseClicked();
 }
 }

 /// <summary>
 /// Draws the gameplay screen.
 /// </summary>
 /// <param name="gameTime"></param>
 public override void Draw(GameTime gameTime)
 {
 // Mugwumps game draw method
 this.DrawMugwumpsGame(gameTime);

 // If the game is transitioning on or off, fade it out to black.
 if (TransitionPosition > 0)
 {
 ScreenManager.FadeBackBufferToBlack(255 - TransitionAlpha);
 }
 }

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 #endregion

 /// <summary>
 /// This is the Mugwumps game code
 /// Rósa Dögg Jónsdóttir, 2010
 /// </summary>
 #region Mugwump Game Basic Methods
 /// <summary>
 /// Called once when loading the game,
 /// loads muggy, player and chapter
 /// </summary>
 private void LoadMugwumpsGame()
 {
 // Initialize the previous mouse state.
 // This stores the current state of the mouse
 this.mousePreviousState = Mouse.GetState();

 // make new Muggy
 this.muggy = new Muggy();
 this.muggyTexture = this.content.Load<Texture2D>("MugwumpItems\\muggy02");

 // Have muggy say starting lines
 this.muggySaysNow = this.muggy.MuggySays(0);

 // load new Player
 this.player = new Player();
 this.player.LoadContent(this.content);

 // Basic game base
 this.gameBackground = this.content.Load<Texture2D>(this.gameBackgroundPic);

 // New chapter at start of game
 // TODO: make it so that chapters are selected
 // and created one after another
 this.chapterOne = new Chapter();
 this.chapterOne.Initialize(mapWidth, mapHeight, objectWidth, objectHeight, mapEmpty, mapVisible,
mapVisibleHidden, mapVisibleSearched, mapHiddenSearched);

 // TODO: Decide if to initialize and load chapters all in one or later on in update.
 this.chapterOne.LoadContent(this.content);
 }

 /// <summary>
 /// Update method for Mugwumps game
 /// Updates chapter and player,
 /// checks if to update objects.
 /// </summary>
 /// <param name="gameTime"></param>
 private void UpdateMugwumpsGame(GameTime gameTime)
 {
 // TODO: update active chapter, instead of chapterOne
 this.chapterOne.Update(gameTime);
 this.player.Update(gameTime);

 // Check if player is at an object
 // after he was moving
 // TODO: consider moving UpdateObjects to Chapter?
 if (this.player.GetDestination() && this.player.GetMoving())

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 {
 this.UpdateObjects();
 this.player.SetMoving(false);
 }
 }

 /// <summary>
 /// Draw method for Mugwumps game
 /// </summary>
 /// <param name="gameTime"></param>
 private void DrawMugwumpsGame(GameTime gameTime)
 {
 // This game has a blue background colour
 // doesn't really show unless the background is missing for some reason
 ScreenManager.GraphicsDevice.Clear(
 ClearOptions.Target, Color.CornflowerBlue, 0, 0);
 SpriteBatch spriteBatch = ScreenManager.SpriteBatch;

 // This will draw the whole thing or call methods to draw
 spriteBatch.Begin();

 // base gameboard
 spriteBatch.Draw(this.gameBackground, fullscreen, Color.White);

 // Draw the chapter specific items
 // TODO: Draw active chapter
 this.chapterOne.Draw(spriteBatch, this.gameFont, foundTextLocation);

 // Muggy says
 spriteBatch.DrawString(this.gameFont, this.muggySaysNow, this.muggyTextLocation, Color.Purple);
 spriteBatch.Draw(this.muggyTexture, this.muggyLocation, Color.White);

 // Draw player sprite
 this.player.Draw(spriteBatch);

 spriteBatch.End();
 }

 #endregion

 /// <summary>
 /// This is where the game specific logic happens
 /// </summary>
 #region Mugwumps Game Specific Methods

 /// <summary>
 /// What happens when the mouse is clicked.
 /// </summary>
 private void MouseClicked()
 {
 // Check if the player is already moving
 // if he's not moving, accept the click
 if (this.player.GetMoving())
 {
 this.muggySaysNow = "We are on our way!";
 }
 else
 {

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 // take note where it was clicked
 this.mouseClickRect.X = this.mouseCurrentState.X;
 this.mouseClickRect.Y = this.mouseCurrentState.Y;

 // check where the mouseclick was in relation to the map.
 this.CheckSelection();
 }
 }

 /// <summary>
 /// Check where the mouse click was on the game board
 /// and call appropriate methods
 /// </summary>
 private void CheckSelection()
 {
 // Reset Muggy speach
 this.muggySaysNow = string.Empty;

 // TODO: active chapter, not specific
 // If found all that are hidden
 // otherwise check if it was within game board or outside
 if (this.chapterOne.GetFound() == this.chapterOne.GetHidden())
 {
 this.muggySaysNow = this.muggy.MuggySays(10);

 // TODO: offer replay or next
 }
 else if (this.mouseClickRect.Intersects(mapGameScreenRect))
 {
 // Send the player to there
 this.player.NewDestination(this.mouseClickRect.X, this.mouseClickRect.Y);

 // Assume nothing is there at start
 int locationO = mapEmpty;
 bool stop = false;
 this.mouseClickGridX = -1;

 // find the grid x and y instead of pixels
 // Loop through the map to see where we clicked.
 do
 {
 this.mouseClickGridY = -1;
 this.mouseClickGridX++;
 this.itemLocation.X = this.mouseClickGridX * objectWidth;
 do
 {
 this.mouseClickGridY++;
 this.itemLocation.Y = this.mouseClickGridY * objectHeight;

 // stop if found a match
 stop = this.itemLocation.Intersects(this.mouseClickRect);
 }
 while ((this.mouseClickGridY < mapHeight) && (!stop));
 }
 while ((this.mouseClickGridX < mapWidth) && (!stop));

 // Check if anything is there
 locationO = this.chapterOne.GetMapStatus(this.mouseClickGridX, this.mouseClickGridY);

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 // check if an object was clicked
 // Then Muggy will say he'll look, Player is already on his way there
 // If it wasn't an object that was clicked
 // Muggy will say there was nothing there
 if (locationO > mapEmpty)
 {
 this.muggySaysNow = this.muggy.MuggySays(6);
 }
 else
 {
 this.muggySaysNow = this.muggy.MuggySays(5);
 }
 }
 else
 {
 // if the selection is outside the game table
 // muggy reminds player to click on game table
 this.muggySaysNow = this.muggy.MuggySays(-1);

 // TODO: press Help, Exit etc?
 }
 }

 /// <summary>
 /// Update objects when Player arrives to it
 /// Or just update Muggy's hint if no object there
 /// </summary>
 private void UpdateObjects()
 {
 // Check if anything is there
 // TODO: active chapter
 int locationO = this.chapterOne.GetMapStatus(this.mouseClickGridX, this.mouseClickGridY);

 // check if an object is there
 // if there was, update hint and object
 // If it wasn't an object that was clicked
 // update hint
 if (locationO > mapEmpty)
 {
 int objectStatus = this.chapterOne.CheckNalterObjectStatus(this.mouseClickGridX, this.mouseClickGridY);
 this.muggySaysNow = this.muggy.MuggySays(objectStatus);
 double distance = this.chapterOne.FindDistance(this.mouseClickGridX, this.mouseClickGridY);
 this.hintDirrection = this.chapterOne.GetHintDirrection();
 this.muggySaysNow = this.muggySaysNow + this.muggy.MuggySays(distance, this.hintDirrection);
 }
 else
 {
 double distance = this.chapterOne.FindDistance(this.mouseClickGridX, this.mouseClickGridY);
 this.hintDirrection = this.chapterOne.GetHintDirrection();
 this.muggySaysNow = this.muggy.MuggySays(7) + this.muggy.MuggySays(distance, this.hintDirrection);
 }
 }

 #endregion
 }
}

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

// <author>Rósa Dögg Jónsdóttir</author>
// <date>2010-16-04</date>
// <summary>Chapter Class / Level of Mugwumps game</summary>

/*
 * All code is done by RDJ
 * Unless otherwise noted in the comment
 * by '-- CREATOR'
 */

namespace MugwumpsGameXNA
{
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;

 // add things for the objects
 // - XNAdev
 using Microsoft.Xna.Framework;
 using Microsoft.Xna.Framework.Content;
 using Microsoft.Xna.Framework.Graphics;
 using Microsoft.Xna.Framework.Input;

 /// <summary>
 /// Chapters are like levels of the game
 /// Are initiated by gameplayscreen
 /// </summary>
 class Chapter
 {
 /// <summary>
 /// GAME BOARD
 /// Anything to do with the game board of this chapter
 /// Last edited: RDJ 23.01.10
 /// </summary>
 #region Variables

 // Dirrections, for hint
 private static int north = 10;
 private static int south = 20;
 private static int west = 3;
 private static int east = 4;

 /* Graphics of GameBoard
 */
 private Texture2D gameBoardTexture;
 private Rectangle gameBoardPosition;
 private ContentManager content;

 /* Objects
 * an array for the objects on the field
 * This is all objects, both visible and
 * containing hidden.
 */
 private Items[] objectsInField;

 /* VARIABLES
 *

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 * Any variables to set in the beginning
 * Last edited: RDJ 23.01.10
 */

 // number of objects - change later
 private int numberOfObjects = 13;

 // hidden objects
 // remember to check for nrHidden =< nrObjects
 // and stop if it is false
 private int numberOfHidden = 3;

 // Map to keep track of objects
 private int[,] map;

 // random number generator
 private Random randomNumber = new Random();

 // Hint - dirrection
 private int hintDirrection = 0;

 /* VARIABLES FROM BASIC GAME
 *
 * Variables that are in the basic game
 * get with Initialize()
 */

 // width and height of the boxes in pixels
 private int objectWidth;
 private int objectHeight;

 // width and height of map in boxes
 private int mapWidth;
 private int mapHeight;

 // used for object status
 private int mapEmpty; // nothing there
 private int mapVisible; // visible object
 private int mapVisibleHidden; // visible object AND hidden object
 private int mapVisibleSearched; // searched, has no hidden
 private int mapHiddenSearched; // searched, has hidde

 /* GRAPHICS
 *
 * Strings with location of graphics
 * Green - visible object, unsearched
 * Blue - visible object with no hidden, searched
 * Yellow - visible object with hidden, found
 * Red - Player Sprite
 */
 private string spriteGreen = "MugwumpItems\\bush01";
 private string spriteBlue = "MugwumpItems\\rocks01";
 private string spriteYellow = "MugwumpItems\\bush05";
 private string spriteRed = "MugwumpItems\\player01";
 private string gameBoardPic = "MugwumpItems\\background";

 /* KEEP TRACK
 *

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 * Anything that needs keeping track of
 * Last edited: RDJ 23.01.10
 */

 // to keep trach of how many found
 private int numberFound = 0;
 private int numberTries = 0;
 private string spriteBatchText = string.Empty;

 #endregion

 #region Basic Methods

 /// <summary>
 /// Initialize the chapter, take in variables from the gameplayscreen
 /// </summary>
 /// <param name="mapWidth"></param>
 /// <param name="mapHeight"></param>
 /// <param name="objectWidth"></param>
 /// <param name="objectHeight"></param>
 /// <param name="mapEmpty"></param>
 /// <param name="mapVisible"></param>
 /// <param name="mapVisibleHidden"></param>
 /// <param name="mapVisibleSearched"></param>
 /// <param name="mapHiddenSearched"></param>
 public void Initialize(
 int mapWidth,
 int mapHeight,
 int objectWidth,
 int objectHeight,
 int mapEmpty,
 int mapVisible,
 int mapVisibleHidden,
 int mapVisibleSearched,
 int mapHiddenSearched)
 {
 this.mapWidth = mapWidth;
 this.mapHeight = mapHeight;
 this.objectWidth = objectWidth;
 this.objectHeight = objectHeight;
 this.mapEmpty = mapEmpty;
 this.mapVisible = mapVisible;
 this.mapVisibleHidden = mapVisibleHidden;
 this.mapVisibleSearched = mapVisibleSearched;
 this.mapHiddenSearched = mapHiddenSearched;

 // Initialize the chapter. Do all the basic starting things here.
 this.InitializeChapter();
 }

 /// <summary>
 /// Load the chapter
 /// Call method to load objects.
 /// </summary>
 /// <param name="content"></param>
 public void LoadContent(ContentManager content)
 {
 this.content = content;

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 this.gameBoardTexture = this.content.Load<Texture2D>(this.gameBoardPic);

 // load the "items" - Possition items
 foreach (Items item in this.objectsInField)
 {
 this.LoadObjects(item);
 }
 }

 /// <summary>
 /// Update the chapter
 /// TODO: Move from gameplayscreen.update?
 /// </summary>
 /// <param name="gameTime"></param>
 public void Update(GameTime gameTime)
 {
 // all update is currently in gameplayscreen.cs
 // TODO:Move to chapter
 }

 /// <summary>
 /// draw the chapter specific graphic
 /// </summary>
 /// <param name="theSpriteBatch"></param>
 /// <param name="gameFont"></param>
 /// <param name="foundTextLocation"></param>
 public void Draw(SpriteBatch theSpriteBatch, SpriteFont gameFont, Vector2 foundTextLocation)
 {
 // Draw the objects
 theSpriteBatch.Draw(this.gameBoardTexture, this.gameBoardPosition, Color.White);
 foreach (Items item in this.objectsInField)
 {
 item.Draw(theSpriteBatch);
 }

 // List found and hidden items
 this.spriteBatchText = "Found: " + this.GetFound() + "/ " + this.GetHidden() + "\nTries: " + this.GetTries();
 theSpriteBatch.DrawString(gameFont, this.spriteBatchText, foundTextLocation, Color.Black);
 }

 #endregion

 #region GETTERS AND SETTERS

 /// <summary>
 /// Return number of found Mugwumps
 /// </summary>
 /// <returns>numberFound</returns>
 public int GetFound()
 {
 return this.numberFound;
 }

 /// <summary>
 /// Set number of found Mugwumps
 /// </summary>
 /// <param name="numberFound"></param>

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 public void SetFount(int numberFound)
 {
 this.numberFound = numberFound;
 }

 /// <summary>
 /// Return number of hidden Mugwumps
 /// </summary>
 /// <returns>nrHidden</returns>
 public int GetHidden()
 {
 return this.numberOfHidden;
 }

 /// <summary>
 /// Set how often player has guessed
 /// </summary>
 /// <param name="numberTries"></param>
 public void SetTries(int numberTries)
 {
 this.numberTries = numberTries;
 }

 /// <summary>
 /// Return number of tries
 /// </summary>
 /// <returns>numberTries</returns>
 public int GetTries()
 {
 return this.numberTries;
 }

 /// <summary>
 /// Returns hint dirrection
 /// </summary>
 /// <returns>hintDirrection</returns>
 public int GetHintDirrection()
 {
 return this.hintDirrection;
 }

 /// <summary>
 /// Returns what is on the map at (X,Y)
 /// </summary>
 /// <param name="locationX"></param>
 /// <param name="locationY"></param>
 /// <returns>map[locationX,locationY]</returns>
 public int GetMapStatus(int locationX, int locationY)
 {
 return this.map[locationX, locationY];
 }

 #endregion

 #region Functions

 /// <summary>
 /// Check and alter object status based on (x,y) location

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 /// called by gameplayscreen
 /// </summary>
 /// <param name="locationX"></param>
 /// <param name="locationY"></param>
 /// <returns>map status at location</returns>
 public int CheckNalterObjectStatus(int locationX, int locationY)
 {
 // find out what object was clicked
 int locationO = this.GetMapStatus(locationX, locationY);
 int objectStatus = this.objectsInField[locationO].GetStatus();

 // not searched, has no hidden
 if (objectStatus == this.mapVisible)
 {
 this.objectsInField[locationO].LoadContent(this.content, this.spriteBlue);
 this.objectsInField[locationO].SetStatus(this.mapVisibleSearched);

 return this.mapVisible;
 }
 else if (objectStatus == this.mapVisibleHidden)
 {
 // not searched, has hidden)
 this.objectsInField[locationO].LoadContent(this.content, this.spriteYellow);
 this.objectsInField[locationO].SetStatus(this.mapHiddenSearched);

 // count found
 this.numberFound++;

 return this.mapVisibleHidden;
 }

 return objectStatus;
 }

 /// <summary>
 /// Find distance from location to nearest hidden Mugwump
 /// </summary>
 /// <param name="locationX">x-coordinate</param>
 /// <param name="locationY">y-coordinate</param>
 /// <returns>distance</returns>
 public double FindDistance(int locationX, int locationY)
 {
 // every time you check for distance, you 'try'
 this.numberTries++;

 double distanceNear = this.mapEmpty;
 double distanceNew = distanceNear;
 int distanceX = 0;
 int distanceY = 0;
 foreach (Items item in this.objectsInField)
 {
 if (item.GetStatus() == this.mapVisibleHidden)
 {
 distanceX = locationX - item.GetMapX();
 distanceY = locationY - item.GetMapY();

 // find out if it has hidden
 // if it has hidden check if it is nearer than the last one

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 // if it is nearer then mark as nearest
 distanceNew = Math.Sqrt((distanceX * distanceX) + (distanceY * distanceY));

 if ((distanceNear == this.mapEmpty) || (distanceNew < distanceNear))
 {
 distanceNear = distanceNew;
 this.hintDirrection = 0;

 // dirrection
 if (distanceY > 0)
 {
 this.hintDirrection = north;
 }
 else if (distanceY < 0)
 {
 this.hintDirrection = south;
 }

 if (distanceX < 0)
 {
 this.hintDirrection = this.hintDirrection + east;
 }
 else if (distanceX > 0)
 {
 this.hintDirrection = this.hintDirrection + west;
 }
 }
 }
 }

 return distanceNear;
 }

 #endregion

 #region Basic Chapter Initialization

 /// <summary>
 /// Initialize the chapter objects
 /// </summary>
 private void InitializeChapter()
 {
 this.map = new int[this.mapWidth, this.mapHeight];

 // the map starts 'empty'
 for (int index = 0; index < this.mapWidth; index++)
 {
 for (int index2 = 0; index2 < this.mapHeight; index2++)
 {
 this.map[index, index2] = this.mapEmpty;
 }
 }

 // array of the objects on the game board
 this.objectsInField = new Items[this.numberOfObjects];
 for (int index = 0; index < this.numberOfObjects; index++)
 {
 this.objectsInField[index] = new Items();

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 // Put the object on the map
 this.PlaceObject(this.objectsInField[index], index);
 }

 // hide the mugwumps / hidden objects
 this.HideMugwumps();

 // set the gameboard
 this.gameBoardPosition = new Rectangle(0, 0, this.mapWidth * this.objectWidth, this.mapHeight *
this.objectHeight);
 }

 /// <summary>
 /// find an empty spot on the map to place item
 /// </summary>
 /// <returns>return a free hiding spot</returns>
 private int[] FindSpot()
 {
 int[] spot = new int[2];
 int x = this.randomNumber.Next(this.mapWidth);
 int y = this.randomNumber.Next(this.mapHeight);

 // if the map spot is not empty
 // find a new spot
 if (this.map[x, y] > this.mapEmpty)
 {
 spot = this.FindSpot();
 }
 else
 {
 spot[0] = x;
 spot[1] = y;
 }

 return spot;
 }

 /// <summary>
 /// Put the object on the map
 /// </summary>
 /// <param name="item"></param>
 /// <param name="itemNR"></param>
 private void PlaceObject(Items item, int itemNR)
 {
 // find a spot to put the object
 int[] spot = new int[2]; // a spot needs an x and y coordinate
 spot = this.FindSpot();
 int x = spot[0];
 int y = spot[1];

 // possition on the map
 item.SetPosition(x, y, this.objectWidth, this.objectHeight);

 // mark the item as a visible item
 item.SetStatus(this.mapVisible);

 // Note the item's number on the map location

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 this.map[x, y] = itemNR;
 }

 /// <summary>
 /// Find a place to hide the mugwump
 /// Must not contain a mugwump already
 /// </summary>
 /// <returns>Return spot for hiding place</returns>
 private int FindHidingplace()
 {
 int spot = this.randomNumber.Next(this.numberOfObjects);

 // if the object has a hidden
 // find another object
 if (this.objectsInField[spot].GetStatus() > this.mapVisible)
 {
 spot = this.FindHidingplace();
 }

 return spot;
 }

 /// <summary>
 /// hide the mugwumps in an empty object
 /// </summary>
 private void HideMugwumps()
 {
 int spot = 0; // The nr of the object it will hide in
 for (int index = 0; index < this.numberOfHidden; index++)
 {
 spot = this.FindHidingplace();

 // Set the object as a visible with hidden
 this.objectsInField[spot].SetStatus(this.mapVisibleHidden);
 }
 }

 /// <summary>
 /// Loads sprites for objects
 /// Display spriteRed if something odd is going on
 /// TODO: change this method to generate 'random' looks
 /// </summary>
 /// <param name="item"></param>
 private void LoadObjects(Items item)
 {
 if (item.GetStatus() > this.mapEmpty)
 {
 item.LoadContent(this.content, this.spriteGreen);
 }
 else
 {
 item.LoadContent(this.content, this.spriteRed);
 }
 }
 #endregion
 }
}

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

// <copyright file="Player.cs" >
// Copyright (c) 2010 All Right Reserved
// </copyright>
// <author>Rósa Dögg Jónsdóttir</author>
// <date>2010-16-04</date>
// <summary>Player class for Mugwumps</summary>

namespace MugwumpsGameXNA
{
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;

 // add things for the objects
 // - XNAdev
 using Microsoft.Xna.Framework;
 using Microsoft.Xna.Framework.Content;
 using Microsoft.Xna.Framework.Graphics;

 /// <summary>
 /// player of mugwump
 /// TODO: keep track of best scores and other progress
 /// </summary>
 class Player
 {
 #region Variables

 // Size of the player sprite
 private static int objectWidth = 55;
 private static int objectHeight = 50;

 // Keep track of position to
 // have the sprite move a bit at a time
 // set the player outside the game board at start, but visible
 private Vector2 position = new Vector2(530, 530);
 private float distX = 0;
 private float distY = 0;
 private int dirrX = 0;
 private int dirrY = 0;
 private int theSpeed = 50;

 // destination possition of the sprite
 private Vector2 destPosition = new Vector2(50, 50);
 private bool arrivedDestination = false;
 private bool moving = false;

 // TODO : Animation using more textures
 private Texture2D mapSpriteTexture;
 private Rectangle playerBox = new Rectangle(0, 0, objectWidth, objectHeight);
 private string texturePlayer = "MugwumpItems\\player01";

 #endregion

 #region Basic Methods

 /// <summary>
 /// Load the texture for the sprite using the Content Pipeline

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 /// </summary>
 /// <param name="theContentManager"></param>
 public void LoadContent(ContentManager theContentManager)
 {
 this.mapSpriteTexture = theContentManager.Load<Texture2D>(this.texturePlayer);
 }

 /// <summary>
 /// calls MovePlayer to update player location
 /// </summary>
 /// <param name="gameTime"></param>
 public void Update(GameTime gameTime)
 {
 this.MovePlayer(gameTime);
 }

 /// <summary>
 /// Draw the sprite to the screen
 /// </summary>
 /// <param name="theSpriteBatch"></param>
 public void Draw(SpriteBatch theSpriteBatch)
 {
 this.playerBox.X = (int)this.position.X;
 this.playerBox.Y = (int)this.position.Y;
 theSpriteBatch.Draw(this.mapSpriteTexture, this.playerBox, Color.White);
 }
 #endregion

 #region GETTERS AND SETTERS

 /// <summary>
 /// return the player sprite texture
 /// </summary>
 /// <returns></returns>
 public string GetTexture()
 {
 return this.texturePlayer;
 }

 /// <summary>
 /// Set a new texture for the player sprite
 /// </summary>
 /// <param name="texturePlayer"></param>
 public void SetTexture(string texturePlayer)
 {
 this.texturePlayer = texturePlayer;
 }

 /// <summary>
 /// Return wether the player is at a destination or not.
 /// </summary>
 /// <returns></returns>
 public bool GetDestination()
 {
 return this.arrivedDestination;
 }

 /// <summary>

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 /// send the player to moving
 /// </summary>
 /// <param name="moving"></param>
 public void SetMoving(bool moving)
 {
 this.moving = moving;
 }

 /// <summary>
 /// check if the player is moving
 /// </summary>
 /// <returns></returns>
 public bool GetMoving()
 {
 return this.moving;
 }

 /// <summary>
 /// check the possition of the player sprite
 /// </summary>
 /// <returns></returns>
 public Vector2 GetPosition()
 {
 return this.position;
 }
 #endregion

 #region Functions
 /// <summary>
 /// set a new destination
 /// </summary>
 /// <param name="mouseX"></param>
 /// <param name="mouseY"></param>
 public void NewDestination(int mouseX, int mouseY)
 {
 // destination of center of the sprite
 // is to the mouseclick
 this.destPosition.X = mouseX - (objectWidth / 2);
 this.destPosition.Y = mouseY - (objectHeight / 2);
 this.arrivedDestination = false;
 this.moving = true;
 this.CalcDistance();
 }

 /// <summary>
 /// Move the player if he is not at his destination
 /// TODO: check this, seems to be some glitch happening sometimes
 /// with not moving the whole distance.
 /// </summary>
 /// <param name="gameTime"></param>
 private void MovePlayer(GameTime gameTime)
 {
 // if the X of destination and current position is not the same, move a bit closer
 if (this.distX > 0 && this.moving)
 {
 this.position.X += this.dirrX * this.theSpeed * (float)gameTime.ElapsedGameTime.TotalSeconds;
 this.distX--;
 }

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 // if the Y is no the same move a bit closer
 if ((this.distY > 0) && this.moving)
 {
 this.position.Y += this.dirrY * this.theSpeed * (float)gameTime.ElapsedGameTime.TotalSeconds;
 this.distY--;
 }

 if ((this.distY < 1) && (this.distX < 1) && this.moving)
 {
 this.arrivedDestination = true;
 }
 }

 /// <summary>
 /// Calculate the distance from current to new destination
 /// </summary>
 private void CalcDistance()
 {
 this.distX = Math.Abs(this.destPosition.X - this.position.X);
 this.distY = Math.Abs(this.destPosition.Y - this.position.Y);
 if (this.destPosition.X < this.position.X)
 {
 this.dirrX = -1;
 }
 else
 {
 this.dirrX = 1;
 }

 if (this.destPosition.Y < this.position.Y)
 {
 this.dirrY = -1;
 }
 else
 {
 this.dirrY = 1;
 }
 }

 #endregion
 }
}

// <copyright file="Muggy.cs" >
// Copyright (c) 2010 All Right Reserved
// </copyright>
// <author>Rósa Dögg Jónsdóttir</author>
// <date>2010-16-04</date>
// <summary>Muggy the hintgiver for Mugwumps</summary>

namespace MugwumpsGameXNA
{
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 // add things for the objects - XNAdev
 using Microsoft.Xna.Framework;
 using Microsoft.Xna.Framework.Content;
 using Microsoft.Xna.Framework.Graphics;

 /// <summary>
 /// Muggy the hint giver, his words
 /// </summary>
 class Muggy
 {
 #region Variables
 // random number generator
 Random randomNumber = new Random();
 #endregion

 #region Functions
 /// <summary>
 /// Returns what Muggy should say
 /// All strings of what Muggy can say are in this
 /// and muggySays(double distance)
 /// TODO: add randomness and intelligence?
 /// </summary>
 /// <param name="selection"></param>
 /// <returns></returns>
 public string MuggySays(int selection)
 {
 // if user clicked outside the map
 if (selection == -1)
 {
 return "You have to select a place on the map.";
 }

 // if user clicked an object that does not contain a mugwump
 if (selection == 1)
 {
 return "This bush is not hiding a Mugwump.\n";
 }

 // if user clicked an object that does contain a mugwump
 if (selection == 2)
 {
 return "You have found a Mugwump!\n";
 }

 // if already searched there
 if (selection == 3)
 {
 if (this.randomNumber.Next(20) == 0)
 {
 return "Hey! Try looking in one of the other bushes\n";
 }
 else
 {
 return "You have already searched there.\n";
 }
 }

 // if selection was a mugwump found

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 if (selection == 4)
 {
 if (this.randomNumber.Next(20) == 0)
 {
 return "He says it tickles!\n";
 }
 else
 {
 return "You have already found this Mugwump.\n";
 }
 }

 // if selection is not object
 if (selection == 5)
 {
 if (this.randomNumber.Next(20) == 0)
 {
 return "You should be trying to look in the bushes\n but lets go and look there...";
 }
 else
 {
 return "There is nothing there\n but let's try going there and looking...";
 }
 }

 // if selection is not searched object so heading there
 if (selection == 6)
 {
 return "Alright, lets search there!";
 }

 // when arriving at empty spot
 if (selection == 7)
 {
 return "Alright, lets see what the magic stone says!";
 }

 if (selection == 10)
 {
 if (this.randomNumber.Next(2) == 0)
 {
 return "All Mugwumps have been found,\nwell done!\n Press ESC to quit";
 }
 else
 {
 return "You have found all Mugwumps.";
 }
 }

 return "Help me find the hidden Mugwumps,\n they are hiding behind a green blob\n\nGuess by clicking on a
blob,\n\nI will give you hints!";
 }

 /// <summary>
 /// have muggy say where nearest mugwump is
 /// return distance and dirrection
 /// unless the distance is nonesense
 /// </summary>

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 /// <param name="distance"></param>
 /// <param name="hintDirrection"></param>
 /// <returns></returns>
 public string MuggySays(double distance, int hintDirrection)
 {
 // if the distance is real
 if (distance > -1)
 {
 return this.MuggySaysDirrection(distance, hintDirrection);
 }
 else
 {
 return this.MuggySays(10);
 }
 }

 /// <summary>
 /// In which dirrection the closest mugwump is
 /// and how close
 /// </summary>
 /// <param name="distance"></param>
 /// <param name="dirrection"></param>
 /// <returns></returns>
 private string MuggySaysDirrection(double distance, int dirrection)
 {
 string closeness = "somewhere away from";
 string final = string.Empty;
 if (distance < 2)
 {
 closeness = "very close to";
 }
 else if (distance < 3)
 {
 closeness = "close to";
 }
 else if (distance < 5)
 {
 closeness = "not far away from";
 }
 else if (distance < 105)
 {
 closeness = "far away from";
 }
 else
 {
 closeness = "very far away from";
 }

 final = "\nThe next mugwump is " + closeness + " \nyou, to ";

 if (dirrection == 10)
 {
 final = final + "the north";
 }
 else if (dirrection == 20)
 {
 final = final + "the south";
 }

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 else if (dirrection == 3)
 {
 final = final + "the west";
 }
 else if (dirrection == 4)
 {
 final = final + "the east";
 }
 else if (dirrection == 13)
 {
 final = final + "the north west";
 }
 else if (dirrection == 14)
 {
 final = final + "the north east";
 }
 else if (dirrection == 23)
 {
 final = final + "the south west";
 }
 else if (dirrection == 24)
 {
 final = final + "the south east";
 }
 else
 {
 final = final + "an unknown dirrection";
 }

 return final;
 }
 #endregion
 }
}

// <author>Rósa Dögg Jónsdóttir</author>
// <date>2010-16-04</date>
// <summary>Visible Objects for Mugwumps</summary>

namespace MugwumpsGameXNA
{
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;

 // add things for the objects
 // - XNAdev
 using Microsoft.Xna.Framework;
 using Microsoft.Xna.Framework.Content;
 using Microsoft.Xna.Framework.Graphics;

 /// <summary>
 /// Items that are visible
 /// </summary>
 class Items
 {

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 #region Variables

 // The current position of the Sprite
 // The texture object used when drawing the sprite
 private Texture2D mapSpriteTexture;
 private Rectangle objectBox;

 // possition in map
 private int mapX;
 private int mapY;

 // status:
 // 0 = unknown
 // 1 = not searched, has no hidden
 // 2 = not searched, has hidden
 // 3 = searched, has no hidden
 // 4 = searched, has hidden
 private int status;
 #endregion

 #region Basic Methods
 /// <summary>
 /// Load the texture for the sprite using the Content Pipeline
 /// </summary>
 /// <param name="theContentManager"></param>
 /// <param name="theAssetName"></param>
 public void LoadContent(ContentManager theContentManager, string theAssetName)
 {
 this.mapSpriteTexture = theContentManager.Load<Texture2D>(theAssetName);
 }

 /// <summary>
 /// Draw the sprite to the screen
 /// </summary>
 /// <param name="theSpriteBatch"></param>
 public void Draw(SpriteBatch theSpriteBatch)
 {
 theSpriteBatch.Draw(this.mapSpriteTexture, this.objectBox, Color.White);
 }

 #endregion

 #region GETTERS AND SETTERS

 /// <summary>
 /// set possition of object
 /// </summary>
 /// <param name="x"></param>
 /// <param name="y"></param>
 /// <param name="objectWidth"></param>
 /// <param name="objectHeight"></param>
 public void SetPosition(int x, int y, int objectWidth, int objectHeight)
 {
 this.mapX = x;
 this.mapY = y;
 this.objectBox = new Rectangle(x * objectWidth, y * objectHeight, objectWidth, objectHeight);
 }

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 /// <summary>
 /// return object possition
 /// </summary>
 /// <returns></returns>
 public Rectangle GetPosition()
 {
 return this.objectBox;
 }

 /// <summary>
 /// Set texture for sprite
 /// </summary>
 /// <param name="mapSpriteTexture"></param>
 public void SetTexture(Texture2D mapSpriteTexture)
 {
 this.mapSpriteTexture = mapSpriteTexture;
 }

 /// <summary>
 /// Return texture for sprite
 /// </summary>
 /// <returns></returns>
 public Texture2D GetTexture()
 {
 return this.mapSpriteTexture;
 }

 /// <summary>
 /// Set Map X-coordination
 /// </summary>
 /// <param name="mapX"></param>
 public void SetMapX(int mapX)
 {
 this.mapX = mapX;
 }

 /// <summary>
 /// Return X-coordination
 /// </summary>
 /// <returns></returns>
 public int GetMapX()
 {
 return this.mapX;
 }

 /// <summary>
 /// Set Y-coordination
 /// </summary>
 /// <param name="mapY"></param>
 public void SetMapY(int mapY)
 {
 this.mapY = mapY;
 }

 /// <summary>
 /// Return Y-coordination
 /// </summary>
 /// <returns></returns>

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3a A Comparison of Game Engines and Languages

 public int GetMapY()
 {
 return this.mapY;
 }

 /// <summary>
 /// Set status of object
 /// TODO: limit to legal value
 /// </summary>
 /// <param name="status"></param>
 public void SetStatus(int status)
 {
 this.status = status;
 }

 /// <summary>
 /// return status of object
 /// </summary>
 /// <returns></returns>
 public int GetStatus()
 {
 return this.status;
 }

 #endregion
 }
}

XNA (C#)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

"""

Mugwumps Graphic game

Uses chess tutorial from Panda3D as base

Rosa Dogg Jonsdottir

"""

Imports for basic game
import random
import math
import sys

Imports for Panda3D basic
import direct.directbase.DirectStart
from direct.gui.OnscreenText import OnscreenText
from pandac.PandaModules import PandaNode
from pandac.PandaModules import NodePath
from pandac.PandaModules import Camera
from pandac.PandaModules import TextNode
from direct.gui.DirectGui import *

Imports for the graphic chessboard
from panda3d.core import CollisionTraverser
from panda3d.core import CollisionNode
from panda3d.core import CollisionHandlerQueue
from panda3d.core import CollisionRay
from panda3d.core import AmbientLight
from panda3d.core import DirectionalLight
from panda3d.core import LightAttrib
from panda3d.core import Point3
from panda3d.core import Vec3
from panda3d.core import Vec4
from panda3d.core import BitMask32
from direct.showbase.DirectObject import DirectObject
from direct.task.Task import Task
import MugwumpsGraphic

Define some constants for the colors
BLACK = Vec4(0,0,0,1)
WHITE = Vec4(1,1,1,1)
GREEN = Vec4(0,1,0,1) #R,G,B,A - RDJ
YELLOW = Vec4(1,1,0,1)
HIGHLIGHT = Vec4(0,.5,0,1)
PIECEBLACK = Vec4(.15, .15, .15, 1)

#Constant for the grid - RDJ
MAPY = 8
MAPX = 8

#Helper functions for the map

def PointAtZ(z, point, vec):
 """

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

 This function, given a line (vector plus origin point) and a desired z value,
 will give us the point on the line where the desired z value is what we want.
 This is how we know where to position an object in 3D space based on a 2D mouse
 position. It also assumes that we are dragging in the XY plane.
 This is derived from the mathmatical of a plane, solved for a given point
 -- chess tutorial

 """
 return point + vec * ((z-point.getZ()) / vec.getZ())

def SquarePos(i):
 """

 A little function for getting the proper position for a given square
 -- chess tutorial

 """
 return Point3((i%MAPX) - 3.5, int(i/MAPY) - 3.5, 0)

def SquareColor(i):
 """

 Helper function for determining whether a square should be white or black
 The modulo operations (%) generate the every-other pattern of a chess-board
 -- chess tutorial

 """
 # RDJ: always green in mugwumps
 # TODO: place objects, make squares different color if has object?

 return GREEN

class Game(DirectObject):
 """

 The Mugwump game class
 Initiates the game.

 """
 # TODO: Initiates chapter, offers replay

 nrItems = 10 # The items Mugwumps can hide in
 mugwumpsTotal = 4 # How many Mugwumps
 remaining = mugwumpsTotal
 tries = 0 # Keep count of how many tries the player has used
 # initialize map, status:
 # 0 - none, starting status
 # 1 - searched, no mugwump
 # 2 - mugwump in hiding
 # 3 - searched, mugwump found
 # 5 - unsearched item
 map = [[0 for j in range(MAPY)] for i in range(MAPX)]
 # Squares form the map
 squares = [None for i in range(MAPY*MAPX)]

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

 mapLine = [-1 for i in range(MAPY*MAPX)]
 # Pieces are the visible objects
 items = [None for i in range(nrItems)]
 mugwumps = [None for i in range(remaining)]

 # Direction, initiate with 'some'
 # TODO: all mugwump comments should be in separate function?
 northSouth = "some"
 eastWest = "some"

 # We will attach all of the squares to their own root. This way we can do the
 # collision pass just on the squares and save the time of checking the rest
 # of the scene
 # -- chess tutorial
 squareRoot = render.attachNewNode("squareRoot")

 #TEXT
 titleText = OnscreenText(text="Panda3D: Mugwumps",
 style=1, fg=(1,1,1,1),
 pos=(0.8,-0.95), scale = .07)
 escapeText = OnscreenText(text="ESC: Quit",
 style=1, fg=(1,1,1,1), pos=(-1.3, 0.95),
 align=TextNode.ALeft, scale = .05)
 mugwumpText = OnscreenText(text="Left-click to quess the location of Mugwumps\n"
 + "You have used " + str(tries) + " tries",
 style=1, fg=(1,1,1,1), pos=(-1.3, 0.90),
 align=TextNode.ALeft, scale = .05)
 muggyText = OnscreenText(text="Hi there!",
 style=1, fg=(1,1,1,1), pos=(0, -.5),
 scale = .05)

 def __init__(self):
 """

 Initialize method from chess tutorial
 edited by RDJ

 """
 self.accept('escape', sys.exit) # Escape quits
 base.disableMouse() # Disble mouse camera control
 camera.setPosHpr(0, -13.75, 6, 0, -25, 0) # Set the camera
 self.setupLights()

 # Just to see the X and Y coordinates for testing
 for i in range(-10,10):
 OnscreenText(text = '.', pos = (0, i/float(10)), scale = 0, fg=(1,1,1,1))
 for i in range(-10,10):
 OnscreenText(text = '.', pos = (i/float(10), 0), scale = 0, fg=(1,1,1,1))

 # MOUSE
 # Since we are using collision detection to do picking, we set it up like
 # any other collision detection system with a traverser and a handler
 self.picker = CollisionTraverser() # Make a traverser
 self.pq = CollisionHandlerQueue() # Make a handler
 # Make a collision node for our picker ray
 self.pickerNode = CollisionNode('mouseRay')
 # Attach that node to the camera since the ray will need to be positioned
 # relative to it

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

 self.pickerNP = camera.attachNewNode(self.pickerNode)
 # Everything to be picked will use bit 1. This way if we were doing other
 # collision we could seperate it
 self.pickerNode.setFromCollideMask(BitMask32.bit(1))
 self.pickerRay = CollisionRay() # Make our ray
 self.pickerNode.addSolid(self.pickerRay) # Add it to the collision node
 # Register the ray as something that can cause collisions
 self.picker.addCollider(self.pickerNP, self.pq)
 #self.picker.showCollisions(render)

 # MAP
 self.drawSquares()

 # Place items
 for k in range(self.nrItems):
 squareNr = self.placeItems(k)
 self.mapLine[squareNr] = k
 self.items[k] = Item(squareNr, WHITE)

 # Hide mugwumps
 for k in range(self.mugwumpsTotal):
 x = self.hideMugwump(k)
 self.mugwumps[k] = Mugwump(False,x)
 self.items[x].mugwumpNr = k
 #self.items[x].setColor(PIECEBLACK) #for testing

 # Display starting text
 self.writeMuggyText("Try to find the Mugwumps!")

 # This will represent the index of the currently highlighted square
 self.hiSq = False
 # This is will represent where mousebutton was pressed
 self.dragging = False

 # Start the task that handles the picking
 self.mouseTask = taskMgr.add(self.mouseTask, 'mouseTask')
 self.accept("mouse1", self.mouse1Down) #left-click grabs a piece
 self.accept("mouse1-up", self.mouse1Up) #releasing places it

 # GAME PLAY
 # Takes place from mouse1Up

 # MOUSE
 def mouseTask(self, task):
 """

 Mouse task - listen to the mouse

 """

 # This task deals with the highlighting and dragging based on the mouse
 # First, clear the current highlight
 if self.hiSq is not False:
 self.hiSq = False

 # Check to see if we can access the mouse. We need it to do anything else
 if base.mouseWatcherNode.hasMouse():
 # get the mouse position

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

 mpos = base.mouseWatcherNode.getMouse()

 # Set the position of the ray based on the mouse position
 self.pickerRay.setFromLens(base.camNode, mpos.getX(), mpos.getY())

 # Do the actual collision pass (Do it only on the squares for
 # efficiency purposes)
 self.picker.traverse(self.squareRoot)
 if self.pq.getNumEntries() > 0:
 # if we have hit something, sort the hits so that the closest
 # is first, and highlight that node
 self.pq.sortEntries()
 i = int(self.pq.getEntry(0).getIntoNode().getTag('square'))
 # Set the highlight on the picked square
 # self.squares[i].setColor(HIGHLIGHT)
 self.hiSq = i

 return Task.cont

 def mouse1Down(self):
 """

 If mouse button is pressed down

 """

 # Note location when mousebutton pressed
 if (self.hiSq is not False and self.dragging is False):
 self.dragging = self.hiSq
 self.hiSq = False

 def mouse1Up(self):
 """

 When the mouse button is released

 """

 s = "Click on the map" # Default, remind the user to click on the map
 # If we were holding down the mouse button and are on the board
 if self.remaining == 0:
 # IF all are found just stop
 s = "You have found all Mugwumps"
 elif (self.hiSq is not False and self.dragging is not False):
 # Check if we are on the same square as before
 if self.hiSq == self.dragging:
 s = self.checkSelection()
 self.writeMuggyText(s)
 self.mugwumpText.setText("Left-click to quess the location of Mugwumps\n" +
 "You have used " + str(self.tries) + " tries")
 self.dragging = False

 # DRAW MAP
 def drawSquares(self):
 """

 Draw the map / squares

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

 """
 for i in range(MAPY * MAPX):
 # Load, parent, color, and position the model (a single square polygon)
 self.squares[i] = loader.loadModel("Textures/square")
 self.squares[i].reparentTo(self.squareRoot)
 self.squares[i].setPos(SquarePos(i))
 self.squares[i].setColor(SquareColor(i))

 # Set the model itself to be collide able with the ray. If this model was
 # any more complex than a single polygon, you should set up a collision
 # sphere around it instead. But for single polygons this works fine.
 self.squares[i].find("**/polygon").node().setIntoCollideMask(
 BitMask32.bit(1))
 # Set a tag on the square's node so we can look up what square this is
 # later during the collision pass
 self.squares[i].find("**/polygon").node().setTag('square', str(i))

 # MUGWUMP DEF
 def placeItems(self, itemNr):
 """

 Place visible objects on the map

 """
 x = random.randrange(0,MAPX - 1)
 y = random.randrange(0,MAPX - 1)
 squareNr = y * 8 + x
 m = self.mapLine[squareNr]
 if m != -1:
 # If the square is occupied, try again
 squareNr = self.placeItems(itemNr)
 return squareNr

 def hideMugwump(self, mugwumpNr):
 """

 Hide mugwumps inside visible objects

 """

 x = random.randrange(0,self.nrItems - 1)
 m = self.items[x].mugwumpNr
 if m != -1:
 # if the item has a mugwump already
 x = self.hideMugwump(mugwumpNr)
 return x

 def writeMuggyText(self, s):
 """

 have Muggy say s

 """
 self.muggyText.setText(s)

 def calcDistance(self, nearLoc, nearest):
 """

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

 Find the nearest hidden Mugwump

 """
 x = self.dragging % 8
 y = self.dragging / 8
 nX = nearLoc % 8
 nY = nearLoc / 8
 distX = x - nX
 distY = y - nY
 newDist = math.sqrt(distX*distX+distY*distY)
 if newDist < nearest:
 if distX > 0:
 self.eastWest = "West"
 elif distX < 0:
 self.eastWest = "East"
 else:
 self.eastWest = ""
 if distY > 0:
 # north and south is confused because of camera angle
 self.northSouth = "South"
 elif distY < 0:
 self.northSouth = "North"
 else:
 self.northSouth = ""
 return newDist
 else:
 return nearest

 def textDistance(self):
 """

 Say how far away the hidden mugwump is

 """
 s = "some"
 # Start somewhere far away
 nearest = MAPY * MAPX * 1000
 for i in range(self.mugwumpsTotal):
 m = self.mugwumps[i]
 if m.isFound is False:
 loc = self.items[m.location].location
 nearest = self.calcDistance(loc, nearest)

 if nearest < 2:
 s = "very close"
 elif nearest < 3:
 s = "close"
 elif nearest < 5:
 s = "not very far"
 else:
 s = "far"
 return "\nThe nearest Mugwump is " + s + " to the " + self.northSouth + self.eastWest

 def checkSelection(self):
 """

 When the player has selected a square check what is there.

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

 """
 s = "Guess!"
 if self.squares[self.dragging].getColor() != GREEN:
 # If already searched
 s = "You searched there already"
 elif self.mapLine[self.dragging] > -1:
 # If there is a piece on the square
 self.tries = self.tries + 1
 iNr = self.mapLine[self.dragging]
 if self.items[iNr].searched is not True:
 self.items[iNr].searched = True
 if self.items[iNr].mugwumpNr > -1:
 # if it has hidden
 mNr = self.items[iNr].mugwumpNr
 #if it has hidden, set found
 self.squares[self.dragging].setColor(HIGHLIGHT)
 self.remaining = self.remaining -1
 s = "Well done you have found a Mugwump!"
 self.mugwumps[mNr].isFound = True
 else:
 s = "There was no Mugwump there"
 self.squares[self.dragging].setColor(YELLOW)
 else:
 s = "There was no Mugwump there"
 self.squares[self.dragging].setColor(YELLOW)
 if self.remaining != 0:
 s = s + self.textDistance()
 else:
 s = s + "\nYou have found all Mugwumps"
 return s

 def setupLights(self):
 """

 This function sets up some default lighting
 -- Chess tutorial

 """
 ambientLight = AmbientLight("ambientLight")
 ambientLight.setColor(Vec4(.8, .8, .8, 1))
 directionalLight = DirectionalLight("directionalLight")
 directionalLight.setDirection(Vec3(0, 45, -45))
 directionalLight.setColor(Vec4(0.2, 0.2, 0.2, 1))
 render.setLight(render.attachNewNode(directionalLight))
 render.setLight(render.attachNewNode(ambientLight))

class Mugwump:
 """

 Mugwump class, the hidden mugwumps

 """
 def __init__(self,isFound, location):
 self.isFound = isFound
 self.location = location

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3b A Comparison of Game Engines and Languages

class Item:
 """

 Class for a piece. This just handles loading the model and setting initial
 position and color
 -- chess tutorial

 """

 def __init__(self, square, color):
 self.model = "Textures/pawn"
 self.obj = loader.loadModel(self.model)
 self.obj.reparentTo(render)
 self.obj.setColor(color)
 self.obj.setPos(SquarePos(square))
 self.color = color
 self.mugwumpNr = -1
 self.searched = False
 self.location = square

 def setColor(self, color):
 self.obj.setColor(color)
 self.color = color

Run the game
g = Game()
run()

Panda3D (Python)

Rósa Dögg Jónsdóttir Appendix A3c A Comparison of Game Engines and Languages

package code
{

import flash.display.MovieClip;
import flash.text.*;

 import flash.events.*;

public class MugwumpsGraph2 extends MovieClip
{

import fl.controls.Label;
import fl.controls.TextArea;

var remaining:int = 4;
var mugwumpNr:int = 4;
var bushNr:int = 15;
var tries:int = 0;
// Create an array,
// 2 dimensions, x and y
var sizeW:int = 80;
var sizeH:int = 50
var map:Array = new Array();
var mapX:int = 800/sizeW;
var mapY:int = 480/sizeH;

// location of visible objects/bushes
var bushes:Array = new Array();
var bushGraph:Array = new Array();

var titleLabel:Label = new Label();
var labelInstructions:Label = new Label();
var textMap:Label;

var mouseclicked:Label = new Label();

public function MugwumpsGraph2()
{

trace("Mugwumps running...");

// top text
titleLabel.text = "Mugwumps Game";
titleLabel.move(10,10);
titleLabel.autoSize = TextFieldAutoSize.LEFT;
addChild(titleLabel);

// mouse text
mouseclicked.text = "";
mouseclicked.move(10,560);
mouseclicked.autoSize = TextFieldAutoSize.LEFT;
addChild(mouseclicked);

// create 'empty' array
fillMap();

// place bushes on map
for (var j = 0; j < bushNr; j++) {

placeBushes(j);
}

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir Appendix A3c A Comparison of Game Engines and Languages

// place mugwumps in bushes
for (var i:int = 0; i < remaining; i++) {

trace("Placing Mugwump "+i);
placeMugwumps();

}

// Instruction text
labelInstructions.text = "Guess the coordinates of the nearest mugwump";
labelInstructions.move(210,480);
labelInstructions.autoSize = TextFieldAutoSize.LEFT;
addChild(labelInstructions);

// Text for map
textMap = new Label();
textMap.move(650,450);
textMap.autoSize = TextFieldAutoSize.LEFT;
printMap();
addChild(textMap);

stage.addEventListener(MouseEvent.CLICK, mouseClicked);
}

// fill the map array with arrays to do x,y coordinates
// then fill all with 0
public function fillMap():void
{

for (var i:int = 0; i < mapX; i++) {
trace("Map X"+i)
map[i] = new Array();
for (var j:int = 0; j < mapY; j++) {

trace("Map Y"+j)
map[i].push(0);

 }
}

}

// Place visible objects/bushes
public function placeBushes(j) {

// find a random location
var posX:int = randomNumber(0,mapX-1);
var posY:int = randomNumber(0,mapY-1);

if (map[posX][posY] == 0) {
// draw a bush using a label
// TODO: make this a new graphic image of a bush
bushes[j] = new Label();
bushes[j].move(posX*sizeW, posY*sizeH);
bushes[j].text =

"BUSHBUSHBUS\nBUSHBUSHBUS\nBUSHBUSHBUS\nBUSHBUSHBUS";
bushes[j].autoSize = TextFieldAutoSize.LEFT;
addChild(bushes[j]);
map[posX][posY] = 1;
bushGraph[j] = new Graph(posX*sizeW, posY*sizeH);

//addChild(bushGraph[j]);

}

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir Appendix A3c A Comparison of Game Engines and Languages

else
placeBushes(j);

}

public function placeMugwumps():void
{

var posX:int = randomNumber(0,mapX-1);
var posY:int = randomNumber(0,mapY-1);

if (map[posX][posY] == 1) {
// if empty, hide mugwump
map[posX][posY] = 2;
//bushes[j].text = "MUGWUMP";

}
else

placeMugwumps();
}
public function printMap():void
{

trace("Print Map...");
var val:int = 0;
// print the array
textMap.text = " ";
for (var i:int = 0; i < mapX; i++) {

textMap.text = textMap.text + " | " + i;
}
textMap.text = textMap.text + "\n";
for (var yi:int = 0; yi < mapY; yi++) {

textMap.text = textMap.text + yi;
for (var xi:int = 0; xi < mapX; xi++) {

val = map[xi][yi];
if ((val <= 2))
{

textMap.text = textMap.text + " | ";
}
else if (val == 3)
{

textMap.text = textMap.text + " | o";
}
else if (val == 4)
{

textMap.text = textMap.text + " | x";
}
else
// something screwy going on

textMap.text = textMap.text + " | ?";

}
textMap.text = textMap.text + "\n";

}
}

public function mouseClicked(event:MouseEvent):void {
var posY:int = Math.round(event.stageY)/80;
var posX:int = Math.round(event.stageX)/80;

if ((posX >= mapX) || (posY >= mapY))
{

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir Appendix A3c A Comparison of Game Engines and Languages

labelInstructions.text = "You need to click on the map to guess";
return;

}

labelInstructions.text = "You guessed " + posX + " x " + posY +".";

if (map[posX][posY] == 2)
{

labelInstructions.text = labelInstructions.text + "\nYou found a Mugwump.";
map[posX][posY] = 4
remaining--;
tries++;

}
else if (map[posX][posY] == 1)
{

labelInstructions.text = labelInstructions.text + "\nThere was no Mugwump
there,\ntry searching another bush.";

map[posX][posY] = 3;
tries++;

}
else if (map[posX][posY] < 1)
{

labelInstructions.text = labelInstructions.text + "\nThere was no Mugwump
there,\ntry looking in a bush.";

map[posX][posY] = 3;
tries++;

}
else
{

labelInstructions.text = labelInstructions.text + "\nYou have already guessed there";
}
if (remaining > 0)
{

checkNearest(posX,posY);
}
else

labelInstructions.text = labelInstructions.text + "\nYou have found all mugwumps.";
mouseclicked.text = "Tries: " + tries + "\nFound: " + (mugwumpNr - remaining);
printMap();

}

public function checkNearest(posX, posY):void
{

var nearest:int = 1000
var distX:int = 0;
var distY:int = 0;
var newNear:int = 0;
var northSouth:String = "";
var westEast:String = "";

for (var xi:int = 0; xi < map.length; xi++) {
for (var yi:int = 0; yi < map[xi].length; yi++) {

if ((map[xi][yi] == 2) && ((xi != posX) || (yi != posY)))
{

distX = xi - posX;
trace(distX);
distY = yi - posY;

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir Appendix A3c A Comparison of Game Engines and Languages

trace(distY);
newNear = Math.sqrt(distX*distX + distY*distY);
if (newNear < nearest)
{

nearest = newNear;
if (distX < 0)
{

westEast = "West";
}
else if (distX > 0)
{

westEast = "East";
}
else

westEast = "";
if (distY < 0)
{

northSouth = "North";
}
else if (distY > 0)
{

northSouth = "South";
}
else

northSouth = "";

}
}

}
}
labelInstructions.text = labelInstructions.text + "\nNearest is " + nearest + " squares away to

the "
+ northSouth + westEast +".";

}

/**
* Generate a random number
* @return Random Number
* @error throws Error if low or high is not provided
*/
function randomNumber(low:Number=NaN, high:Number=NaN):Number
{

 var low:Number = low;
 var high:Number = high;

 if(isNaN(low))
 {
 throw new Error("low must be defined");
 }
 if(isNaN(high))
 {
 throw new Error("high must be defined");
 }

 return Math.round(Math.random() * (high - low)) + low;
}

}
}

Flash (Action Script 3.0)

Rósa Dögg Jónsdóttir A comparison of game engines and languages

Appendix A - Project plan
First parts of the project, research and design, are completed. What follows is implementation,
testing and comparison. Implementation will have very strict time limits because there are three
different implementations to do. Testing will be cut shorter than would be ideal if the software were
to be released for use to give more time for implementaiton and comparison of engines.

Appendix A – Project Plan 1

Illustration 1: Timeline up to end of Autumn semester

Rósa Dögg Jónsdóttir A comparison of game engines and languages

Appendix A – Project Plan 2

Illustration 2: Timeline up to end of Spring semester

Rósa Dögg Jónsdóttir A comparison of game engines and languages

Appendix B – Project Suggestion

Title: Comparison of game engines and languages

Supervisor: Dr Andy Brooks

Development: XNA Game Studio, PANDA3D, Scala language, and possible others.

Description: The aim of this project is to re-implement one or more classic computer games (the

Java versions) using one or more game engines or emerging Web 2.0 languages. Comparisons will

be made of the facilities offered by the development environments and the code produced using a

variety of metrics. The facilities offered by the game engines and languages will be exploited to

create a richer game experience e.g. through the use of graphics or an NPC that the game player can

interact with.

References:

„ACEY-DEUCEY is a fun card game. EVEN WINS is one of those 'remove the markers' games.

MUGWUMP asks you to find the hidden monsters in a grid. LUNAR LANDER lets you land safely

on the moon. FROWN is a fun dice game you play against the computer. And, JOT is an addictive

word guessing game.“

http://www.kidwaresoftware.com/javagames.htm

http://creators.xna.com/en-US/downloads (XNA)

http://catpages.nwmissouri.edu/m/ferg/VideoGameDevelopment.htm (XNA)

http://www.xnatutorial.com/ (XNA)

http://xnaessentials.com/Default.aspx (XNA)

http://www.panda3d.org/features.php (PANDA3D)

http://www.scala-lang.org/ (Scala)

http://www.computerworld.com.au/company/13389182/scala/articles (Scala)

http://www.plasmaworks.com/slag (Slag)

Appendix B – Project Suggestion 1

Rósa Dögg Jónsdóttir A comparison of game engines and languages

Appendix D – Brainstorming
I want to create a game I and my sisters would have enjoyed when we were kids, and that we could
still enjoy as grown women. I don't want to just decide out of the blue but to find reasons why, from
those in industry or education. Mainly aimed as enjoyement for kids, where they might learn
something without it being stuffed down their throat.

I played the education games when I was a kid at school, I probably learned some math and spelling
from them but I did not like them. I felt that the grown-ups were forcing me to imagine something
as play when it wasn't. I had more fun playing 'school' with my sisters where we used old
schoolbooks to take turn to teach. Mostly because we did it because we wanted to when we wanted
to, not because it was now math class and the math teacher was somehow trying to trick us into
'playing with math'.

Because of the idea of creating a game that I would have enjoyed as a kid and would enjoy now, the
main target audience will be kids and keep in mind to not dumb it down.

The Mugwumps are the 'chosen ones'. Start with a creature (Muggy) finding the player (known as
'PC', choose between girl or boy at start of game) and telling PC that the Mugwumps need to be
found. Gives a magic stone that shows in what dirrection the Mugwumps are.

Each 'level' is a puzzle of some sort. First few are just to click different areas so that the sprite
moves there and sees if there might be mugwump there. Muggy is with the player to help and give
hints. Simulates the hit and miss of the original game. Other can be: showing the mugwumps
through a maze, remove sound/sight/stone/muggy to make it difficult, timer, find items, help build
town/home/something???.

Features I want:

• puzzles

• Find mugwump

• guide mugwumps

• find the password?

•

• Use item to get through?

• building

• collecting

• customizing

• cute

• slow action

Take stuff with from room? Find stuff instead of mugwumps? With mugwumps? Levels where stuff
is found? Buy stuff?

sound:

• use 'babble' instead of real words – no reliance on language

Appendix D – Brainstorming 1

Rósa Dögg Jónsdóttir A comparison of game engines and languages

• lots of squee and uhoh – think teletubbies

text:

• short description of what to do “oh no help mugwumps reach pink thing”

• have pictures in text? With text? [picture of mugwump] [arrow] [pink thing]

• large letters

• simple

• language file

pictures

• “large” - simple - cartoony

• colourful

• can color own?

• Not manga

Features I don't want

• obvious teaching elements such as: 'oh noes what is 2+2' or 'spell this to get past'

• too much text / talk

Appendix D – Brainstorming 2

A Comparison of Game Engines and Languages

Appendix C

Software Requirement Specification

Rósa Dögg Jónsdóttir
University of Akureyri

December 2009

Rósa Dögg Jónsdóttir A comparison of game engines and languages

Table of Contents
 1 INTRODUCTION..2

 1.1 PURPOSE...2
 1.2 THE GAME..2
 1.3 INTENDED AUDIENCE...2
 1.4 DEFINITIONS, ACRONYMS AND ABBREVIATIONS...2
 1.5 DOCUMENT OVERVIEW..2

 2 OVERALL DESCRIPTION...3
 2.1 PERSPECTIVE..3
 2.2 GAME FUNCTIONS...3
 2.3 CONSTRAINTS ..3
 2.4 ASSUMPTIONS AND DEPENDENCIES...3

 3 OVERVIEW...4
 3.1 EXTERNAL INTERFACE REQUIREMENTS...4

 3.1.1 User Interfaces ...4
 3.1.2 Hardware Interfaces..4
 3.1.3 Software Interfaces...4

 3.1.3.1 XNA..4
 3.1.3.2 Panda3D..4
 3.1.3.3 Flash..4

 3.2 FUNCTIONAL REQUIREMENTS...4
 3.2.1 Game menu...4
 3.2.2 Chapter menu..4
 3.2.3 All chapters...4
 3.2.4 Chapter 1...5
 3.2.5 Chapter 2...5
 3.2.6 Chapter 3...5
 3.2.7 Muggy...5

 3.3 PROGRAMMING SPECIFICATIONS..6
 3.3.1 Use Cases..6

 3.3.1.1 Start game software (use case 1)...6
 3.3.1.2 Game menu (use case 2)..6
 3.3.1.3 Help Menu (use case 3)...7
 3.3.1.4 Quit (use case 4)..7
 3.3.1.5 New Game (use case 5)...7
 3.3.1.6 Load Game (use case 6)..8
 3.3.1.7 Chapter menu (use case 7)...8
 3.3.1.8 Load chapter (use case 8) ...9
 3.3.1.9 Game loop (use case 9)...9
 3.3.1.10 End chapter (use case 10)..10

 3.4 PERFORMANCE REQUIREMENTS...11
 3.5 DESIGN CONSTRAINTS ..11

 3.5.1 Standards Compliance...11
 3.6 SOFTWARE SYSTEM ATTRIBUTES..11

 3.6.1 Reliability..11
 3.6.2 Availability..11
 3.6.3 Security and Privacy..11
 3.6.4 Maintainability..11

Appendix C – Software Requirement Specification 1

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 1 INTRODUCTION
 This specification establishes the functional, performance, and development requirements for a
game called Mugwumps. The game will be created in three different game engines: Microsoft's
XNA, Panda3D and Macromedia's Flash.

 1.1 PURPOSE
Developing the game is part of a final year project 2009, created by Rósa Dögg Jónsdóttir and
supervised by dr. Andy Brooks.

 1.2 THE GAME
The Mugwumps game is an interactive computer game with a graphic interface. In the game the
user solves a series of hide and seek puzzles, and collects rewards. The puzzles are of different
difficulty and can be replayed.

 1.3 INTENDED AUDIENCE
The game is for young children, ages 6-8. The user does not need any special knowledge or skill
aside from mouse control and basic reading skills. The game can be played by older users.

 1.4 DEFINITIONS, ACRONYMS AND ABBREVIATIONS
Mugwump – a small cartoony creature.
The player – the user of the game.
PC – player character.
NPC – non-player character.
The game – a computer game named Mugwumps.
Magic stone – a circular object in the game that gives hints to where the hidden objects are. Objects
are represented by colour. The colour grows stronger the closer the PC is to the object.
Muggy – a mugwump NPC that follows the PC through the game and gives hints.
Score – how often the player had to guess where the object was hiding.

 1.5 DOCUMENT OVERVIEW
Section 1 describes the purpose of the game and this document. It lists the definitions, acronyms
and reference documents. Section 2 descripes the game overall characteristics. Section 3 lists
specific requirements including use cases. This document is an appendix to the final year project
report.

Appendix C – Software Requirement Specification 2

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 2 OVERALL DESCRIPTION

 2.1 PERSPECTIVE
Back when computer games were text based, a game called Mugwumps was created in BASIC
programming language. In it the player would guess the location of hidden Mugwumps based on
hints on how far away they were. This project takes that game idea and transfers it into a graphical
game with 3 puzzles of varius difficulties. Muggy, a mugwump non-player character (NPC), will
follow the player character (PC) around to provide hints on what the PC should do. The PC will
have a visual hint from a magic stone.

 2.2 GAME FUNCTIONS
The player will create a PC, customizing the name. Muggy will join the PC at the start of the game
and stay with him to the end. Muggy will give the PC a magic stone at the start of the game. The
game will have three chapters, each one has a hide and seek puzzle for the PC to solve. Player will
use a mouse click to guess the location of hidden objects. When all chapters have been completed
the player can play any chapter again. The game keeps track of the best score for each chapter.

 2.3 CONSTRAINTS
There is limited time and resources to create the game. The game must be open for future
development, where the type of puzzles and rewards can be extended or replaced to give different
game variations.

 2.4 ASSUMPTIONS AND DEPENDENCIES
Different game engine versions of the game will require different software to run (see 3.1.3
Software Interfaces). It is assumed that the creator and supervisor will have access to that software.

Appendix C – Software Requirement Specification 3

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 3 OVERVIEW

 3.1 EXTERNAL INTERFACE REQUIREMENTS

 3.1.1 User Interfaces
The user recieves information from a screen, both graphic and text. The user uses a mouse to point
and click to give commands. The user will require the use of a keyboard at the start of the game to
type in his name.

 3.1.2 Hardware Interfaces
Keyboard, mouse and screen. Soundcard is optional.

 3.1.3 Software Interfaces
Each version of the game will require different software.

 3.1.3.1 XNA
Requires Microsoft windows XP, Vista or 7 and .NET framework 2.0 or higher

 3.1.3.2 Panda3D
Should run on any Unix or Windows based machine. Requires either directX or openGL.

 3.1.3.3 Flash
Runs through a web browser. Requires flash player.

 3.2 FUNCTIONAL REQUIREMENTS
The game will have different menus or game windows during different stages of the game. The
game will always listen for mouse input from the player. The game will at certain stages listen to
keyboard input from the player.

 3.2.1 Game menu
The game menu is displayed when the game is loaded and if a chapter is closed. It will provide
options to create a new game (with new name), load a game, display help or quit.

 3.2.2 Chapter menu
When a game is created or loaded the player will see a chapter menu. If a chapter has been
completed it can be selected as well as the next chapter in line. If no chapters have been completed
only chapter 1 is selectable. It provides option to quit to game menu and display help.

 3.2.3 All chapters
In each chapter the game will hide one or more objects (defined in each chapter) in random
locations (defined in each chapter). In each chapter the PC will use the mouse to click on a space on
the screen to guess the hidden object's location. In each chapter Muggy will provide hints of what
the PC must do. In each chapter the magic stone will display colours to give hints to the location of
objects. When the PC has found all hidden objects in a chapter, the PC can either play the same

Appendix C – Software Requirement Specification 4

Rósa Dögg Jónsdóttir A comparison of game engines and languages

chapter again or go to the next chapter. All chapter windows display a help and quit (to chapter
menu) options.

 3.2.4 Chapter 1
The first chapter is for practice. The scenery is a field. The player's goal is to find Muggy, using the
magic stone and hints that Muggy shouts out from his hiding place. Muggy will be hidden randomly
behind one of 4 different objects (a tent, a tree, a bush and a stone). The objects are arranged
randomly on a grid that covers the whole field. When the player guesses the location and is wrong
the object changes to show it has been searched.

 3.2.5 Chapter 2
The second chapter is intermediate difficulty. The scenery is a tent camp on a field. The player's
goal is to find three different Mugwumps that are all in hiding at the same time. The Mugwumps are
represented with three different colours in the magic stone. The Mugwumps are hidden randomly
behind one of 12 different objects (a well, a wagon, tents, boxes and barrels). The objects are
arranged randomly on a grid that covers the whole field. When the player guesses the location and
is wrong the object changes to show it has been searched. When each Mugwump is found he will
stay visible at the place where he was hiding. When all Mugwumps have been found the player
recieves a reward.

 3.2.6 Chapter 3
The third chapter is the most difficult. The scenery is a field. The player's goal is to find a hidden
treasurechest. The treasurechest is hidden in a random location on a grid that covers all of the field.
There are no visual hints to the hidden location except the magic stone and Muggy's text. When the
player guesses a location a hole appears, as if he had dug one. When the player has found the
treasurechest he recieves a reward.

 3.2.7 Muggy
Muggy the Mugwump gives the player hints and urges him onward in the game. At the start of each
chapter he tells the rules. After every 30 seconds of idle time from the player, Muggy displays a
random hint. For each chapter Muggy has a selection of hints, each hint has a frequency number.
Higher frequency number means that the hint is more likely to appear in the random selection.
When a hint has been shown the frequency number goes down. If the player clicks an object that
has been searched, Muggy warns that it has been and he should look elsewhere. Muggy translates
the information the magic stone shows into text.
Hints are of type:

• Which way the object is hiding.
• How close it is (next to it, very close, close, a bit far, far)
• Tell to click objects on the screen.
• Tell what is hiding.
• Remind what has been searched

Appendix C – Software Requirement Specification 5

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 3.3 PROGRAMMING SPECIFICATIONS
The game will be programmed in three different languages: C# (Microsoft's XNA engine), Python
(Panda3D) and ActionScript (Flash). There will be some difference between each programming
languages in class and method hierarchy. There are certain required functions for the game
regardless of programming language.

• Graphic management
• Menu management
• Game loop

• Manage visible and hidden objects
• Manage magic stone and Muggy hints
• Track player activities.

• Player information management
Use of these functions can be represented with use cases.

 3.3.1 Use Cases

 3.3.1.1 Start game software (use case 1)
 1 User: Selects to run software

 1.1 XNA: Run .exe
 1.2 Panda3D: Run start script
 1.3 Flash: Open web browser on game page.

 2 Computer: Checks for components required to run.
 3 Computer: Checks previous player information.
 4 Computer: Load in menu graphics
 5 Computer: Load in player information (if it exists)
 6 If any action fails

 6.1 Computer: Display error
 6.2 Computer: Close software
 6.3 User: Try again or Quit.

 7 If all actitons succeed
 7.1 Computer: Display game menu (use case 2).

 3.3.1.2 Game menu (use case 2)
 1 Computer: Display text options

 1.1 New : create a new game
 1.1.1 Use case 5

 1.2 Load : load a game
 1.2.1 Use case 6

 1.3 Help : go to help menu
 1.3.1 Use case 3

 1.4 Quit : close the game
 1.4.1 Use case 4

 2 Computer: Listen for Mouseclick.
 3 While player is idle

 3.1 Computer: Wait
 4 Player: Select option using mouse

 4.1 <Go to approrpiate use case>
 5 If any action fails

Appendix C – Software Requirement Specification 6

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 5.1 Computer: Display error
 5.2 Computer: Return to game menu

 5.2.1 If action fails
 5.2.1.1 Computer: Display error
 5.2.1.2 Computer: Close software

 5.3 Player: Try again or Quit

 3.3.1.3 Help Menu (use case 3)
 1 Computer: Lists help topics.
 2 Computer: Displays quit option.
 3 Computer: Listen for mouseclick
 4 While player is idle

 4.1 Computer: Wait
 5 Player: Select help topic

 5.1 Computer: Display text for help topic chosen
 6 Player: Select quit

 6.1 Computer: Return to previous screen
 7 If action fails

 7.1 Computer: Display error
 7.2 Computer: Quit to previous screen

 7.2.1 If action fails
 7.2.1.1 Computer: Display error
 7.2.1.2 Computer: Close software

 3.3.1.4 Quit (use case 4)
 1 Computer: Display confirmation box
 2 While player is idle

 2.1 Computer: Wait
 3 Player: Select cancel

 3.1 Computer: go back to previous screen
 4 Player: Select quit

 4.1 If new player information was generated
 4.1.1 Computer: save player information

 4.2 Computer: Quit to previous menu
 5 If action fails

 5.1 Computer: Display error
 5.2 Computer: Close software

 3.3.1.5 New Game (use case 5)
 1 Computer: Display text box for name
 2 Computer: Display help and cancel
 3 Computer: Listen to mouseclick and keyboardstroke
 4 While player is idle

 4.1 Computer: Wait
 5 Player: Type in name
 6 Player: Select continue

 6.1 Computer: Create new player information identified by name.
 6.2 Computer: Chapter menu (use case 7)

 7 Player: Select cancel

Appendix C – Software Requirement Specification 7

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 7.1 Computer: return to game menu
 8 If player selects continue without typing in name

 8.1 Computer: Display warning
 8.2 Computer: Return to New Game

 9 Player: Select help
 9.1 Use case 3

 10 If action fails
 10.1 Computer: Display error
 10.2 Computer: Return to game menu

 10.2.1 If action fails
 10.2.1.1 Computer: Display error
 10.2.1.2 Computer: Close software

 3.3.1.6 Load Game (use case 6)
 1 Computer: Display available game instances to load

 1.1 Based on player information
 2 Computer: Display quit and help
 3 Computer: Listen to mouseclick
 4 While player is idle

 4.1 Computer: Wait
 5 Player: Select game instance

 5.1 Computer: Display Chapter menu (use case 7)
 6 Player: Select help

 6.1 Use case 3
 7 Player: Select quit

 7.1 Use case 4
 8 If action fails

 8.1 Computer: Display error
 8.2 Computer: Return to game menu

 8.2.1 If action fails
 8.2.1.1 Computer: Display error
 8.2.1.2 Computer: Close software

 3.3.1.7 Chapter menu (use case 7)
 1 Computer: Display available chapters and top scores

 1.1 Display chapter 1 always
 1.2 Display chapter 2 if chapter 1 is completed
 1.3 Display chapter 3 if chapter 2 is completed

 2 Computer: Display quit and help
 3 Computer: Listen for mouseclick
 4 While player is idle

 4.1 Computer: Wait
 5 Player: Select chapter

 5.1 Computer: Load chapter (use case 8)
 6 Player: Select help

 6.1 Use case 3
 7 Player: Select quit

 7.1 Use case 4
 8 If action fails

Appendix C – Software Requirement Specification 8

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 8.1 Computer: Display error
 8.2 Computer: Return to load menu

 8.2.1 If action fails
 8.2.1.1 Computer: Display error
 8.2.1.2 Computer: Close software

 3.3.1.8 Load chapter (use case 8)
 1 Computer: Check for components required to run
 2 Computer: Determines location of visible objects
 3 Computer: Determines location of hidden object(s)
 4 Computer: Create new score instance
 5 Computer: Display graphics

 5.1 board, visible objects, magic stone, Muggy's text area, player sprite, help icon,
quit icon

 6 Muggy (Computer): Descripe chapter objectives
 7 Computer: Start game loop (use case 9)
 9 If action fails

 9.1 Computer: Display error
 9.2 Computer: Return to chapter menu

 9.2.1 If action fails
 9.2.1.1 Computer: Display error
 9.2.1.2 Computer: Close software

 3.3.1.9 Game loop (use case 9)
 1 Computer: Update graphics if required
 2 Magic stone (Computer): Display dirrection and distance of hidden object(s).
 3 While player is idle

 3.1 Computer: Wait
 3.2 Muggy (Computer): Every 30 seconds display new hint

 4 Player: Select visible object on board
 4.1 Computer: Move player sprite to object
 4.2 Computer: Check if object has been searched before

 4.2.1 If yes: Muggy (Computer) reminds that the object has been searched.
 4.2.2 If no: Continue

 4.3 Computer: Check if object has a hidden object
 4.3.1 If yes:

 4.3.1.1 Muggy (Computer): Congratulates player
 4.3.1.2 Computer: Changes status of visible object to 'searched'
 4.3.1.3 Computer: Changes status of hidden object to 'found'
 4.3.1.4 If this was the last object to be found:

 4.3.1.4.1 Computer: in 8 seconds end chapter (use case 10)
 4.3.1.5 If this was not the last object to be found:

 4.3.1.5.1 Muggy (Computer): in 8 seconds displays new hint
 4.3.2 If no:

 4.3.2.1 Muggy (Computer): Is sad but encourages player to keep looking.
 4.3.2.2 Computer: Changes status of visible object to 'searched'

 5 Player: Select empty area on board
 5.1 Muggy (Computer): Displays hint about clicking objects on the board

 6 Player: Select magic stone

Appendix C – Software Requirement Specification 9

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 6.1 Magic stone (Computer): Colours whirl
 6.2 Magic stone (Computer): Display dirrection and distance of hidden object(s)

 7 Player: Select Muggy
 7.1 Muggy (Computer): Giggles

 8 Player: Select other
 8.1 Nothing happens

 9 Player: Select help
 9.1 Use case 3

 10 Player: Select quit
 10.1 Use case 4

 11 If action fails
 11.1 Computer: Display error
 11.2 Computer: Return to play

 11.2.1 If action fails
 11.2.1.1 Computer: Display error
 11.2.1.2 Computer: Return to chapter menu

 11.2.1.2.1 If action fails
 11.2.1.2.1.1 Computer: Display error
 11.2.1.2.1.2 Computer: Close software

 3.3.1.10 End chapter (use case 10)
1. Muggy (Computer): Display congratulations
2. Computer: Display 'play again'.
3. If the chapter that was ending is not chapter 3

1. Computer: Display 'next chapter'.
4. Computer: Display 'quit' and 'help'
5. While player is idle

1. Computer: Wait
6. Player: Select 'play again'

1. Computer: Save player information
2. Use case 8, with same chapter

7. Player: Select 'next chapter'
1. Computer: Save player information
2. Use case 8, with next chapter

8. Player: Select 'quit'
1. Computer: Save player information
2. Use case 4

9. Player: Select 'help'
1. Use case 3

10. If action fails
1. Computer: Save player information
2. Computer: Display error
3. Computer: Return to chapter menu

1. If action fails
1. Computer: Display error
2. Computer: Close software

Appendix C – Software Requirement Specification 10

Rósa Dögg Jónsdóttir A comparison of game engines and languages

 3.4 PERFORMANCE REQUIREMENTS
The game needs to run smoothly, without visible hesitation in frame rate or logical processing.
Game should take no longer than 2 seconds to respond to player input.

 3.5 DESIGN CONSTRAINTS
The game needs to be appealing for young children. This means bright, basic colours, simple forms,
cheerful sounds and simple use of language. Colours need to be chosen to take into account
colourblindness. All text presented in the game for the user to see must be easy to edit to change
languages.

 3.5.1 Standards Compliance
Any code produced by the creator must follow basic standards of readability according to each
programming language.

 3.6 SOFTWARE SYSTEM ATTRIBUTES

 3.6.1 Reliability
The game should be playable from start to finish without errors. Score should be kept between
instances of the game.

 3.6.2 Availability
The game will be available with the final year project report.

 3.6.3 Security and Privacy
No special security or privacy will be applied.

 3.6.4 Maintainability
Code and any documentation will be available with the final year project report so that the game
can be expanded or changed.

Appendix C – Software Requirement Specification 11

Rósa Dögg Jónsdóttir Appendix F A Comparison of Game Engines and Languages

Appendix F - Use Cases Reworked

For XNA and Panda3D

 1 XNA

 1.1 Instal Game

 1.1.1 Run setup.exe

 1.1.2 When Application Warning pops up, select 'Install'.

 1.1.3 Game starts automatically.

 1.2 Start Game

 1.2.1 Navigate to Start menu – All Programs – MugwumpsGameXNA

 1.2.2 Click (run) MugwumpsGameXNA

 1.2.3 Main Menu displayed. Use arrow keys to select options, use enter key to

activate.

 1.2.3.1 Play game

 1.2.3.1.1 Start a new game instance

 1.2.3.2 Options

 1.2.3.2.1 Fake options screen

 1.2.3.3 Exit

 1.2.3.3.1 Closes the game

 1.3 Play game

 1.3.1 Muggy displays starting hints. Visible objects are bushes, computer has

hidden Mugwumps randomly in visible objects. Player sprite is besides Muggy's

hint.

 1.3.2 User can press ESC at any time to view Pause Menu

 1.3.3 User can use mouse click at any time to:

 1.3.3.1 Select visible object

 1.3.3.1.1 If the Player Sprite is on it's way to a previous location, Muggy warns

Use Cases - Reworked

Rósa Dögg Jónsdóttir Appendix F A Comparison of Game Engines and Languages

that they are on the way and do nothing.

 1.3.3.1.2 Else, if the Player Sprite was not moving, start moving the Player

Sprite to the location and Muggy says that they will search there.

 1.3.3.1.2.1 When Player Sprite is on location, Muggy will announce

hint.

 1.3.3.2 Select an empty area of the map

 1.3.3.2.1 If the Player Sprite is on it's way to a previous location, Muggy warns

that they are on the way and do nothing.

 1.3.3.2.2 Else, if the Player Sprite was not moving, start moving the Player

Sprite to the location and Muggy says that they will search there.

 1.3.3.2.2.1 When Player Sprite is on location, Muggy will announce

hint.

 1.3.3.3 Select outside of map

 1.3.3.3.1 Muggy reminds the user to select something on the map.

 1.4 Options

 1.4.1 A fake option menu. User can use keyboard arrows to select objects or press

ESC to go back.

 1.5 Pause Menu

 1.5.1 Resume game

 1.5.2 Quit game

 1.5.2.1 Displays confirmation dialog. Press enter to quit and return to Main

Menu. Press ESC to return to Pause Menu

 1.5.3 New game

 1.5.3.1 Loads a new instance of the game, destroying the other.

Use Cases - Reworked

Rósa Dögg Jónsdóttir Appendix F A Comparison of Game Engines and Languages

 2 Panda3D

 2.1 Instal Game

 2.1.1 Make sure python is installed on the computer.

 2.1.2 Copy MugwumpsGraphic folder to c:\

 2.1.2.1 Note: Can place at another location but then start.bat needs to be edited.

 2.2 Start Game

 2.2.1 Run start.bat located in the MugwumpsGraphic folder.

 2.2.2 Game starts.

 2.2.2.1 Note, a command window opens in the background. It is safe to ignore it.

 2.3 Play game

 2.3.1 Starting hint is displayed. Visible objects are pawns, computer has hidden

Mugwumps randomly in visible objects.

 2.3.2 User can press ESC at any time to quit

 2.3.3 User can use mouse click at any time to:

 2.3.3.1 Select visible object

 2.3.3.1.1 If there is a Mugwump hiding in it the game will announce that and

display a hint of the nearest Mugwump.

 2.3.3.1.2 If there is not a Mugwumpdisplay location of nearest Mugwump hint.

 2.3.3.2 Select an empty area of the map

 2.3.3.2.1.1 Game displays location of nearest Mugwump hint.

 2.3.3.3 Select outside of map

 2.3.3.3.1 Muggy reminds the user to select something on the map.

 2.3.4 When all Mugwumps have been found it is announced.

Use Cases - Reworked

file:///c:/

	1 final_cover
	2 final_title
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	Appendix_A1
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	A Comparison of Game Engines and Languages
	Appendix_B
	Appendix_C
	Appendix_D
	Appendix_Efront
	Appendix_Eg
	A Comparison of Game Engines and Languages

