

Viðskipta- og raunvísindasvið

School of Business and Science

Automated triage

Final Year Project

2010

Unnar Freyr Hlynsson

Automated Triage

Final Report

Unnar Freyr Hlynsson

 Supervisor: Andrew Brooks

Computer Science Division

Faculty of Natural Resource Science

School of Business and Science

University of Akureyri

Submitted April 2010, in partial fulfilment of

the conditions of the award of the degree BSc.

I hereby declare that this final report is all my own work,

except as indicated in the text:

Signature ______________________

Date _____/_____/_____

Automated triage Interim Report

Page 2

Table of Contents
Table of figures .. 4

Table of tables ... 5

Introduction ... 6

History of triage ... 6

Modern day triage ... 6

Motivation ... 7

Suggested solution .. 7

Related Work ... 9

Description on current triage systems .. 9

Emergency Severity Index ... 9

Computer systems ... 12

Emergency Centre Organization and automated triage system ... 12

An Integrated Computerized Triage System in the Emergency Department 15

Benefits of Computer Assisted triage .. 17

The Effects of Computerized Triage on Nurse Work Behaviour ... 17

Emergency Triage: Comparing a Novel Computer Triage Program with Standard Triage 18

Requirement Analysis and Design ... 20

Introduction ... 20

Purpose .. 20

Scope ... 20

Tools .. 20

Overview .. 21

General Description ... 21

Product Perspective .. 21

Product Requirements .. 21

User Characteristics ... 22

Requirements .. 24

Use Case Requirements ... 24

External Interface Requirement .. 31

Implementation ... 35

Technology platform ... 35

Automated triage Interim Report

Page 3

Description of key features ... 37

Architecture ... 37

Database design and access .. 38

Changes in design .. 38

Static analysis tools ... 39

Evaluation .. 40

Use case testing ... 40

Testing the use case: Triage a patient ... 40

Additional Observations .. 44

Code evaluation ... 44

HCI testing ... 44

Cognitive walkthrough .. 44

Conclusion ... 55

Personal reflections ... 55

Skills gained ... 55

Future work ... 56

References ... 57

Appendix A - Code listing... 58

NoListener ... 58

RadioButtonListener .. 59

ResourceConfirmationListener .. 60

TableSelectionListener .. 61

TriageController... 62

TriageInitiationListener ... 66

VitalsConfirmListener .. 67

ESITriage .. 69

Patient ... 75

TriageDialog ... 81

TriageFrame ... 90

Appendix B – Project plan (not updated) .. 114

Appendix C – ESI triage algorithm ... 115

Automated triage Interim Report

Page 4

Table of figures
Figure 1 - High level System overview (Golding et al., 2008, p. 2) ... 12

Figure 2 - Fitness function used in genetic algorithm (Golding et al., 2008, p. 4) 13

Figure 3 - Presented screenshots of the GUI. a) is the nurse view and b) is the doctor’s (Golding et al.,

2008, p. 5) .. 14

Figure 4 – Main triage screen(Aronsky et al., 2008, p. 17) ... 16

Figure 5 - Triage Nurse Work and Communication Activity (Aronsky et al., 2006, p. 1) 17

Figure 6 - Comparing paper-based and computer-based triage to expert panel (Adapted from

original) (Blitz et al., 2004, p. 5) .. 19

Figure 7 – Main system components ... 21

Figure 8 – Use case diagram ... 22

Figure 9 – Main Frame looking at table of waiting patients... 31

Figure 10 – Main Frame viewing triaged patients .. 32

Figure 11 – step d in triage process .. 33

Figure 12 – sted d, confirming triage score .. 34

Figure 13- project package diagram, implementing MVC architecture ... 37

Figure 14 - Competence cases loaded into triage software ... 40

Figure 15 - ESI triage dialog - short labels .. 44

Figure 16 – ESI triage algorithm (Gilboy et al., 2005, p. B-3).. 115

Automated triage Interim Report

Page 5

Table of tables
Table 1 - patient_record table schema ... 38

Table 2 - Checkstyle problems in original classes .. 39

Table 3 - Comparing answers from triage exercises from chapter 9 .. 41

Table 4 - Comparing answers from triage competency cases from chapter 10 43

Automated triage Interim Report

Page 6

Introduction
In general term, the word triage refers to the act of prioritizing resource allocation when said

resources cannot be used all at once. This is often applied in the field of medical treatment when

medical resources, such as doctors and medical facilities, are not sufficient enough to treat every

patient needing medical care at the same time.

History of triage
The term “triage” is derived from the word “trier” in French which mean “to sort”. It was originally

used to describe the act of sorting agricultural products. In contemporary times, the word “triage”

almost exclusively refers to the act in its medical context. The term first acquired widespread use

during World War 1.

The concept of medical triage has in most of its history been tied in military medicine, used on sick

and wounded soldiers to indicate if they could be treated back to a fighting state or not. The earliest

documentation of this is from the 18th century, in which Western military surgeons were starting to

develop protocols in sorting wounded soldiers. The French military surgeon Baron Dominique-Jean

Larrey is generally credited for the first formal battlefield triage system.

Before triage was formulated and when it was not used, soldiers were generally treated on a “first

come first served” basis, and not necessarily before a battle was over. Larrey, on the other hand,

reasoned that the most dangerously wounded soldiers, despite of rank, should have greater priority

of treatment than others.

There have been different views on the prioritisation in triage since then, noticeably in World War 1.

One strategy from that era focuses the priority of a patient based on the complexity of treatment,

that time should not be spent on patient whose wounds would take too long to treat when there

were others with less time-consuming treatments. Other strategy from same era purely focuses on

priority of wounded soldiers that would be easier to get into fighting shape, placing little or no

prioritisation on those that are more difficult to treat.

While application of triage in a military context is well documented, relatively little is documented

about civilian triage, such as used in disasters and in emergency departments. It is likely that it was

simply adapted from military triage. It is not until 1964 that Weinerman et al releases the first

published systematic specification of civilian triage. The further development and refinements of

such triage systems were done by individual institutions, local and regional emergency medical

systems and federal agencies.

Modern day triage
The most common categories of triage in use are Emergency department (ED) triage, military

(battlefield) triage and disaster (mass casualty) triage. The focus of this project will be on ED triage.

Modern ED triage is mostly performed by nurses in the ED which utilise it to prioritize and sort all

patients that present there for treatment. Of all environments of medical treatment, EDs usually

have the highest resource-to-patient ratio. In daily ED triage there are usually enough resources

available to treat every patient that arrives, so that the focus lies on identifying which patients must

be treated immediately and who can be allowed to wait.

Automated triage Interim Report

Page 7

Many different types of ED triage exist that can also have different number of priority categories

associated with them. However, 5-level systems, with 5 priority categories, seem to be proving

themselves as being the most reliable today. Example of widely accepted ED triage systems are,

amongst others, the American Emergency Severity Index (ESI), the English Manchester Triage Scale,

the Canadian Triage and Acuity System (CTAS) and the Australasian Triage Scale (Iserson & Moskop

2007).

In later years, research and effort have gone into computerising the triage process within the

different triage categories, ED triage included. Triage is often a complex process, in which the person

conducting it is often faced with difficult on the spot decisions. There are arguable benefits in

incorporating a computer based triage system, and that doing so can further improve this critical

process. The aid of computerized triage has been demonstrated with studies to assist in the decision

process

Motivation
A study made to research the effect of the effects of using computerised triage assistance supported

that while computer triage did not necessarily shorten the triage time, it did significantly cut down

interruption time and task jumping when triaging (Aronsky et al., 2006).

Another, Canadian, study which compared a computer triage system with a standard paper based

one in a real working environment, further supports the benefit of computerisation. The study

revealed that triage scoring of same cases differed greatly between nurses that used a paper based

system. In contrast, nurses that used computer assisted triage had more consistency in their scoring

as well as with the scoring made by an expert review panel (Blitz et al., 2004).

Suggested solution
The goal of this project will be to create ED triage decision support software. It will be assumed that

it is being developed for a newly built hospital in Reykjavík. This software should be able to

categorise patients when they first arrive to the ED. A patient is categorised into a priority class

based on a triage nurse’s input, through an implementation of an already established triage system.

The triage system that the software implements is the American Emergency Severity Index. The

software is only meant to serve as assistance, it should never take control from the user, as he/she

should be able to override the software actions through his/her own professional judgement.

The system will be programmed in the Java programming language. The version of java will be Java

Standard Edition 6. One reason is the experience I have with the language, which makes it more

feasible to finish the implementation in time. Additionally, the system is considered to being

developed for a newly developed hospital, in which the operating systems for the computer

terminals have not been decided. This would make it less risky to base the system in Java, as it can

easily run on many different operating systems.

One of Java’s shortcomings is how slow it can be to develop user interfaces. Therefore the user

interface of the system will be developed with Jigloo GUI Builder version 4.5.3. I did not manage to

spend time working around with the different user interface builders, but, Jigloo seems to be getting

favourable user-reviews.

Automated triage Interim Report

Page 8

The triage system is planned to be integrated into the fictional hospital‘s information system.

It should be able to aquire patient medical history to aid the triage process. To simulate this, I

will develop a small medical database using mySQL. SQL is one of the most popular type of

databases and it would be a likely candidate.

Automated triage Interim Report

Page 9

Related Work

Description on current triage systems

Emergency Severity Index

The Emergency Severity Index is a five-level ED triage scale. It was developed by ED physicians

Richard Wuerz and David Eitel in the United States. The ESI was developed around a new conceptual

model of ED triage. It not only considers what patient should be treated first, but also what resources

are necessary to get the patient through an ED disposition. An image representation of the algorithm

can be found in appendix B (Gilboy et al., 2005).

Decision point A: Is the patient dying (requires immediate life saving intervention)?

In its most simplified implementation, the triage nurse asks if the patient is dying. If the answer is

yes, then the algorithm is complete and the patient is given ESI level 1. If the answer is no, the nurse

proceeds to decision point B in the ESI algorithm.

According to the handbook, research supports that triage nurses can accurately predict the need for

life-saving interventions. Life-saving interventions are intended to support circulation, securing an

airway or maintaining breathing in a patient.

In order for the nurse to decide if a patient fulfils the level 1 criteria, there are some questions that

are useful to consider:

 Does the patient require an immediate airway, medication, or other hemodynamic

intervention?

 Does the patient meet any of the following criteria: already intubated, apneic, pulseless,

severe respiratory distress, SpO2 < 90 percent, acute mental status changes, or

unresponsive?

 Does this patient have a patent airway?

 Is the patient breathing?

 Does the patient have a pulse?

 Is the nurse concerned about the pulse rate, rhythm, and quality?

 Was this patient intubated pre-hospital because of concerns about the patient's ability to

maintain a patent airway, spontaneously breathe, or maintain oxygen saturation?

 Is the nurse concerned about this patient's ability to deliver adequate oxygen to the tissues?

Decision point B: Should the patient wait?

The triage nurse moves to decision point B once it has been determined the patient does not meet

the criteria for ESI level 1.

At point B the nurse asks if the patient can afford to wait. If the answer is no then the algorithm is

complete and the patient is assigned ESI level 2. If the answer is yes the nurse moves to point C in the

algorithm.

To determine the answer, the problem can be split up into three broad questions that should be

considered in orderly fashion:

Automated triage Interim Report

Page 10

1. Is this a high risk situation?

2. Is the patient confused, lethargic or disoriented?

3. Is the patient in severe pain or distress?

Is this a high risk situation?

The first question in the step is if the patient is in a high risk situation. A patient is at high risk if

his/her condition could easily deteriorate or a patient who presents with symptoms suggestive of a

condition that need time-sensitive treatment. This includes great risk of death or organ loss. A hih

risk patient does not need all vital signs measured in all cases to be identified.

Is the patient confused, lethargic or disoriented?

This is the second question to be asked to determine if the patient meets level-2 criteria. This is

meant to detect if the patient has displayed a serious change in level of consciousness. If so, it can

indicate that the patient’s brain may be structurally or chemically compromised.

 Confused: Inappropriate response to stimuli, decrease in attention span and memory.

 Lethargic: Drowsy, sleeping more than usual, responds appropriately when stimulated.

 Disoriented: The patient is unable to answer questions correctly about time, place or person.

Is the patient in severe pain or distress?

The third and final question the triage nurse needs to consider in step B is if the patient is in pain or

distress. If the answer is no, then the nurse can immediately go to step C. If the answer is yes, the

patient’s pain and/or distress needs to be evaluated.

A nurse rates a patient’s pain level on a scale from 0 to 10. A patient scoring 7 or higher is qualified to

be assigned ESI level 2, but it is not required.

The measuring of severe distress is more qualitative. Examples of severe distress can be found in

patients that are:

 Distraught after experiencing a sexual assault.

 Exhibiting behavioral outbursts at triage.

 Combative.

 Victims of domestic violence.

 Experiencing an acute grief reaction.

Decision point C: Resource needs

If step C is reached in the algorithm, the triage nurse needs to ask “How many different resources

this patient is going to consume in order for the physician to reach a disposition decision?”

Resources can be, for example, hospital services, tests, procedures, consults or even simple

interventions such as applying a bandage.

The nurse is required to draw on past experiences in handling similar cases. The nurse needs to

consider what is usually done for patients arriving at the ED with similar complaints. The nurse needs

to be familiar with the ED’s standards of care .

If a patient is considered to need no medical resources, the algorithm is complete and the patient is

assigned the ESI level 5. If a patient is considered to need one resource, the algorithm is also

Automated triage Interim Report

Page 11

complete and the patient is assigned the ESI level 4. If more medical resources are considered to be

needed, the nurse proceeds to step D in the algorithm.

Decision point D: The patient’s vital signs

At step D in the algorithm, the nurse needs to consider a selection of the patient’s vital sign. If none

of the patient’s vital signs are in a critical condition the algorithm is complete and the patient is

assigned ESI level 3. If some of the vital signs are in a critical state, the nurse can consider upgrading

the ESI level to 2 instead.

The vital signs that need to b considered in this step are:

 Heart rate (HR)

 Respiratory rate (RR)

 Oxygen saturation (Sp02)

 Body temperature

The critical range of the vital signs, with the exclusion of oxygen saturation, is affected by the

patient’s age. While blood pressure (BP) is an important vital sign, it is not required for this step in

the ESI algorithm. Pain has already been considered in step B. Body temperature needs to be

measured for patients younger than three years, but is not necessary for older patients (Gilboy et al.,

2005).

Automated triage Interim Report

Page 12

Computer systems

Emergency Centre Organization and automated triage system

This paper was made by Dan Golding, Linda Wilson and Tshilidzi Marwala at the School of Electrical &

Information Engineering department at the University of the Witwatersrand, Johannesburg South

Africa. It describes their design and implementation suggestions of a computerized triage system

meant to triage and schedule patients as they arrive to the ED, declaring the order in which patients

receive treatments (Golding et al., 2008).

The specific solution that is produced is made with the ED of the Johannesburg General Hospital in

South Africa in mind and implements the Cape Triage System. The problem is that the country does

not have any national standards in triaging and patient queue lengths in ED departments are

dangerously high, far exceeding the number of doctors and resources available. Triage documents

from the hospital also showed that triaging was riddled with inconsistencies. Despite being designed

around the particular problems of the hospital, it should be possible to adapt the system design to

different hospital situations (Golding et al., 2008).

Figure 1 - High level System overview (Golding et al., 2008, p. 2)

The goal of the proposed system is the automation and optimization of the triaging and queuing

processes and provides easy access to the system by a separated GUI, one for the triage nurse and

another for the doctor receiving the triaged patients. This triage tool implements a fuzzy inference

system to aid with the triage procedure as well as in estimating the time a patient might spend

occupying the doctor. The result of both components are used to create an optimized patient queue

in which high priority patients are treated as soon as possible while patients with middle to low

priority still do not have to wait too long (Golding et al., 2008).

Automated triage Interim Report

Page 13

The purpose of the Fuzzy inference system is to simulate human medical expert reasoning. After

contacting with the heads of triage in the Johannesburg General Hospital and going over the Cape

Triage System, the researchers decided that using a Fuzzy Inference System was the best solution. It

uses a rule base but is more precise than the Cape Triage System. They further support this by stating

that some input used in the triage, such as pain, are already quite fuzzy and are a natural fit into a

Fuzzy Inference System. They also say that Fuzzy Inference Systems have low computational

complexity and are relatively easy to understand and implement (Golding et al., 2008).

A patient schedule can be represented as a sequence of patients, and the goal would be to generate

the optimal sequence of patients at a given time. Genetic algorithm was chosen to be responsible for

the creation of a close to optimal sequence. The reasons given are its simplicity and widely available

programming toolboxes.

In order to make the optimal sequence the factors that need to be considered for each patient are

their urgency and waiting times. Those two factors can be used together to define the optimal

sequence through implementation in a fitness function.

When activated, the genetic algorithm generates a population of possible patient sequences,

representing each sequence as a single value. A mapping function is responsible for mapping a value

put out by the genetic algorithm to a sequence of a given number of patients. The sequence that is

found is then evaluated by the fitness function, seen in figure 2.

Figure 2 - Fitness function used in genetic algorithm (Golding et al., 2008, p. 4)

All the potential sequences produced by the Genetic Algorithm are measured in this same way. The

best scoring sequence can then be used to generate a new generation of potential sequences until a

satisfactory number of generations have passed and a locally optimal sequence of patients is

proposed (Golding et al., 2008).

The drawback of using a genetic algorithm is that it is relatively slow. For a queue of 100 patients it

can take about 30 seconds to find the best result. The researchers claim that this should not be too

much of a hindrance within the particular context. It would take a patient longer time than that to

leave the doctor’s office and it is therefore acceptable (Golding et al., 2008).

Along with the system solution the researchers also present a simple GUI. It is to be used by the

triage nurses and the doctors and is split into separate screens for each user. The interface’s main

goal is to be user friendly and easily understood as it is vital that it does not hinder the triage nurse in

any way.

Automated triage Interim Report

Page 14

The nurse interface attempts to minimize the number of times its user enters input through the

keyboard, relying more on mouse type input. This includes using sliders and increment/decrement

buttons for inputting values for vital signs. The researchers claim that this is easier to use than free

typing through the key board.

To input pain measurement, the nurse clicks the ragdoll image to specify the body location of the

pain felt. Repeated clicks on the same body part increase the level of pain intensity on it, represented

visually through a colour scheme from yellow to red.

The doctor gets his own form that provides him with information on his next patient, such as name

and vital signs. It also provides an area for the doctor’s comments. A button can be pressed to

proceed to the next patient, uploading the doctor’s comments and triggering the triage system to

create a new patient queue (Golding et al., 2008).

Figure 3 - Presented screenshots of the GUI. a) is the nurse view and b) is the doctor’s (Golding et al., 2008, p. 5)

Automated triage Interim Report

Page 15

An Integrated Computerized Triage System in the Emergency Department

This triage application was designed, developed and implemented as a collaborative effort between

ED and biomedical informatics, nursing staff, directors of the adult and pediatric ED, registration

staff, trauma team members, a biomedical informaticist and software engineers. The system is still

being supported and improved upon (Aronsky et al., 2008).

This triage application provides the triage nurse using it with decision support, which include the

calculation of a patient’s ESI category as well as providing reminders about his medical history and

pre-existing conditions. The system is reported to have supported the triage documentation of at

least 290.000 paediatric and adult patients (Aronsky et al., 2008).

The triage system is used in both paediatric and regular ED. It is accessed through clinical work

stations that are installed throughout the ED’s. The system is accessed through the ED patient

tracking system and requires user identification and password (Aronsky et al., 2008).

What is special about this particular system is that it is integrated with pre-existing medical systems

used in the institution. This is done in attempt to reduce the number of redundant data entries in the

triage application as well as in the systems that use data from triage assessments. The triage

application exchanges patient data with the many different institutional information systems already

in place. The information systems it communicates with include the ED patient tracking board, the

longitudinal electronic medical record, the computerized provider order entry, and the medication

reconciliation application used in the institution (Aronsky et al., 2008).

This triage application also uses age based triaging, adjusting required input on whether the user

needs paediatric or adult care. As an example of paediatric data elements are head circumference

and a field telling whether the child was crying both of which can impact vital signs, age-driven ESI

criteria, the inclusion of paediatric comorbidities and age-driven alerts for critical vital signs (Aronsky

et al., 2008).

After logging in the user is presented by the main triage assessment screen, which is split up into a

number of different sections. This is the screen where the user doing the triage enters quantitative

patient data such as heart rate and respiratory rate and also qualitative entries such as pain

assessment and cultural need assessment.

Automated triage Interim Report

Page 16

Figure 4 – Main triage screen(Aronsky et al., 2008, p. 17)

"... The main triage screen is partitioned into a) patient demographic information, b) arrival
information, c) initial assessment including vital signs, history of present illness (HPI), past medical
history, chief complaint, Emergency Severity Index (ESI) and nurse objective, d) medication
information, and e) allergy, health maintenance information, screening questions, interventions at
triage, and treatment prior to arrival.”(Aronsky et al., 2008, p. 17).
From the main page, several secondary pages can be accessed. Those pages show patients past

history, the chief complaint, and both treatment and ESI assessment before patient’s arrival to the

ED (Aronsky et al., 2008).

On the ESI assessment page the user can see rules for vital signs and helps the user in following the

ESI algorithm and how it chooses the correct acuity level. The acuity levels can be manually

overridden, although the user is required to input his reasons for it (Aronsky et al., 2008).

Much of the data entries are mandatory in order to continue through the process, to maintain data

quality, completeness and compliance. Also, notably, when an entered patient attribute is abnormal,

a critical value alert shows up, highlighting the attribute in question (Aronsky et al., 2008).

Once the triage nurse decides to end the triage assessment, the application does a check to see if all

the mandatory fields have been filled correctly after which it produces a summary page of the triage

evaluation along with the time that was used.

Automated triage Interim Report

Page 17

Benefits of Computer Assisted triage

The Effects of Computerized Triage on Nurse Work Behaviour

This research was made by Scott Levin, Daniel France, R. Scott Mayberry, Shannon Stonemetz, Ian

Jones and Dominik Aronsky at the Vanderbilt University in USA.

The goal of this research was to measure and examine the efficiency of ED triage process before and

after the implementation of a computerized triage system. This was conducted in June 2005, when

an undisclosed, level 1 trauma centre was switching over from a paper-based triage system to a

computerized system.

To measure nurse work and communication efficiency during the triage process, two trained

observers conducted fourteen time-and-motion primary task analyses of each triage.

Results of the measurement can be seen in figure 5. The number of triage cases observed, for both

pre- and post-implementation of the computer triage system, (n) is seven. The differences between

the two samples were tested for significance using the Student’s t-test. The results are presented as

mean of measurements ± 95% confidence interval. They are based on aggregate information

gathered within each of the observation sessions.

Figure 5 - Triage Nurse Work and Communication Activity (Aronsky et al., 2006, p. 1)

The researchers state that, according to the data, the change to computerized triaging did not alter

the duration of the triage process in a significant way. Triage nurse experience did not have any

effect on triage times. Additionally, a patient’s chief complaint, age and acuity score did not affect

the triage times.

The computer system did, however, reduce significantly the average time duration of interruptions. It

also significantly reduced the number of tasks performed by each triage nurse during triaging. It did

also increase the length of triage processes that were interrupted (Aronsky et al., 2006).

There are a couple of things debatable about this research. The number of triage cases measured

pre- and post- the computerised implementation is only 7. Usually for a statistical measurement to

be valid, it requires at least around 15 measured cases. Additionally, they do not define what they

mean by a task, so it is difficult to imagine what the number of tasks actually mean.

Automated triage Interim Report

Page 18

Emergency Triage: Comparing a Novel Computer Triage Program with Standard Triage

This study was made by Sandy L. Dong, Michael J. Bullard, David P. Meurer, Ian Colman, Sandra Blitz,

Brian R. Holroyd and Brian H. Rowe in the University of Alberta. The objective of the study was to

find out the agreement between a computerized triage application and memory-based triage.

The study compares a traditional, paper-based application of the five-level Canadian Triage and

Acuity Scale with a computerized implementation based on the same triage system. The

computerized triage tool in the study is eTriage. It is a Web-based triage decision support tool that

assists the user in assigning an appropriate triage score to a patient.

The study was a prospective observational study conducted in real time in a working ED

environment. It was conducted in a large Canadian urban tertiary care teaching hospital which had

about 67000 ED visits annually. Experienced emergency triage nurses volunteered to take part in the

study, all of which were familiar with the memory based methods of triaging. Two out of 37 nurses

used in the study were required to use the eTriage application for triaging while the others used

traditional methods. Patients’ triage scores from both categories of nurses were recorded. For each

category the triage score interrater reliability was calculated using kappa statistics. The nurse’s triage

scoring was compared to the triage scoring from an assembled expert panel reviewing a sample of 97

patients from the same triage cases.

The study showed a significant discrepancy among nurses using the memory-based triage process.

The researchers state several things as possible reasons for this. One reason is triage drift, which is

when triage nurses subjectively down- or up-stratify patient’s triage score, mostly based on the

current situation of the ED environment. This has important implications to patient safety, as

physician evaluation may be delayed for high-risk patients as a result.

The researchers also discuss that while the original documentation for the Canadian Triage and

Acuity Scale is comprehensive its application is reliant on memory and experience. Due to the often

busy and frenetic working environment, a nurse cannot be expected to constantly refer to the paper

version during triage. This in turn can lead to subjectivity and inconsistency within the triage process.

They also state however, that this should not mean that clinical judgment should be discarded for

total dependence on clinical tools. The tools should not take the control from its user but rather

encourage its user to override it when his/her clinical impressions require it. The override instance

and the reasons for the override should be recorded to be possibly used to adjust the tool. Electronic

triage tools, such as decision support tools, could be applied as memory enhancements. They are

able to display the key elements for each complaint in such a manner to identify a patient’s triage

score (Blitz et al., 2004).

It is also interesting to note, that when compared with the triage scoring from the expert review

panel, the software assisted scoring showed a generally better agreement to the panel than the

memory-based scoring. This further supports the benefits of computerised triage tools, as the expert

panel most likely has the most success in triage scoring. This can be observed in figure 6.

Automated triage Interim Report

Page 19

Figure 6 - Comparing paper-based and computer-based triage to expert panel (Adapted from original) (Blitz et al., 2004,
p. 5)

Automated triage Interim Report

Page 20

Requirement Analysis and Design

Introduction

Purpose

What will be described in this part of the report are the software requirements for ED triage decision

support software. This will be done by written description of requirements and supported by UML

design diagrams. It is mainly intended for aiding development within the final year project university

course as well as to be evaluated for course grade. It could also be used by any developer that might

want to continue or add to the project after its original development.

Scope

For the purpose of the final year project, The ED triage decision support software is designed to be

used within a theoretical, new Icelandic hospital in a densely populated zone, such as Reykjavík. It

would be used within the accident- and emergency department by triage nurses through computer

terminals in different rooms within the department. This includes specialized triage rooms equipped

with computers having a dedicated access to the software.

The software implements the ESI triage scale and is used to guide nurses through the triage process

and to give an appropriate triage score to a patient. It will allow quick access to patient data relevant

to the ESI process, such as medical history and medication. The software allows patients triage score

to be quickly re-evaluated if the nurse decides to. The software is only meant as a support tool and

will allow for the overriding of triage score by the nurse if his/her expert opinion deems it necessary.

The software will be integrated into the theoretical, established system in the hospital. Patient data

will be fetched from a medical database within the institution and triage data saved in a dedicated

triage database.

Tools

The system will be programmed in the Java programming language. The version of java will be Java

Standard Edition 6. One reason is the experience I have with the language, which makes it more

feasible to finish the implementation in time. Additionally, the system is considered to being

developed for a newly developed hospital, in which the operating systems for the computer

terminals have not been decided. This would make it less risky to base the system in Java, as it can

easily run on many different operating systems.

One of Java’s shortcomings is how slow it can be to develop user interfaces. Therefore the user

interface of the system will be developed with Jigloo GUI Builder version 4.5.3. I did not manage to

spend time working around with the different user interface builders, but, Jigloo seems to be getting

favourable user-reviews.

The triage system is planned to be integrated into the fictional hospital‘s information system.

It should be able to aquire patient medical history to aid the triage process. To simulate this, I

will develop a small medical database using mySQL.. SQL is one of the most popular type of

databases and it would be a likely candidate.

Automated triage Interim Report

Page 21

Overview

General Description

Product Perspective

Major System Components

Figure 7 – Main system components

Product Requirements

These use case requirements are described in section 3.3 Requirements. They will be described in the

terms of the Unified Modelling Language (UML)

Automated triage Interim Report

Page 22

Figure 8 – Use case diagram

1. View non-triaged patients

2. View triaged patients

3. View removed patients

4. Mark patient for treatment

5. Input reason for overriding

6. Remove patient from triage process

7. Triage a patient

8. View patient medical history

9. Conduct first ESI step: “Is the patient dying?”

10. Conduct second ESI step: “Is the patient at high risk?”

11. Conduct third ESI step: “How many resources are needed?”

12. Conduct fourth ESI step: “Danger zone vitals?”,

13. Decide triage score

14. Override triage score

15. Accept triage score

User Characteristics

The software will be used by triage nurses of the hospital’s accident- and emergency department. It

can be used by on-duty triage nurses but it could also be used by nurses studying and exercising the

ESI triage system.

The on-duty triage nurses are expected to be well learned in the ESI process as well as having studied

how to use this decision support tool. They should be familiar with working on software within a

graphical windowed environment such as the MS Windows OS incorporates.

Automated triage Interim Report

Page 23

The nurses studying the ESI system might obviously not have as much experience in the ESI system,

but otherwise share the same characteristics as the on-duty nurses.

Automated triage Interim Report

Page 24

Requirements

Use Case Requirements

Use case: 1 View non-triaged patients
--
CHARACTERISTIC INFORMATION
Goal in Context: A triage nurse will need to be able to quickly view what patients have entered the accident and

emergency department and have not been triaged.
Scope: System
Level: Primary task

Preconditions: system displays list of waiting, non-triaged patients
Success End Condition: system displays the table of waiting, non-triaged patiets
Failed End Condition: nothing happens
Primary Actor: Triage nurse
Trigger: A triage nurse is not in the process of triaging and wants to see what patients are waiting to be triaged.
--
MAIN SUCCESS SCENARIO

0. Triage nurse clicks the “waiting patients” tab
1. System displays the table of waiting patients.

EXTENSIONS
none

SUB-VARIATIONS
none

RELATED INFORMATION
Priority: Core functionality that must be implemented
Performance Target: none
Frequency: Very frequent. Repeated after any patient has been triaged.
Superordinate Use Case: none

 Subordinate Use Cases: none
Channel to primary actor: interactive
Secondary Actors: none
Channel to Secondary Actors: none

OPEN ISSUES
none

SCHEDULE
Due Date: 15/2/2010

Automated triage Interim Report

Page 25

Use case: 2 View triaged patients
--
CHARACTERISTIC INFORMATION
Goal in Context: Due to how a patient’s condition can change with time, a nurse might want to find a recently

triaged patient to reassess his triage score.
Scope: System
Level: Primary task

Preconditions: nurse want to see triaged patients
Success End Condition: system displays table of triaged patients
Failed End Condition: nothing happens
Primary Actor: Triage nurse
Trigger: The triage nurse is not conducting a triage. A doctor is available and she wants to find out
which triaged patient should receive the doctor’s attention first. The nurse might also want to
reassess the triage score of a triaged patient.
--
MAIN SUCCESS SCENARIO

0. Triage nurse clicks the “triaged patients” tab
1. System displays the table of triaged patients.

EXTENSIONS
none

SUB-VARIATIONS
none

RELATED INFORMATION
Priority: Core use case that must be implemented
Performance Target: none
Frequency: Often. Patient condition frequently fluctuate.
Superordinate Use Case: none
Subordinate Use Cases: none
Channel to primary actor: interactive
Secondary Actors: none
Channel to Secondary Actors: none

OPEN ISSUES
none

SCHEDULE
Due Date: 15/2/2010

Automated triage Interim Report

Page 26

Use case: 3 View removed patients
--
CHARACTERISTIC INFORMATION
Goal in Context: Nurses might want to reconsider patients that they have removed from other patient lists. This

is to provide some reversibility in case they had removed a patient by mistake.
Scope: System
Level: Primary task

Preconditions: Triage nurse might have chosen to remove or treat a patient by accident
Success End Condition: system displays the table of removed patients.
Failed End Condition: nothing happens
Primary Actor: Triage nurse
Trigger: The triage nurse is not conducting triage. She thinks she has removed a patient from the triage process

by mistake and wants to reconsider bringing him/her back into the triage process.
--
MAIN SUCCESS SCENARIO

0. Triage nurse clicks the “removed patients” tab
1. System displays the table of removed patients.

EXTENSIONS
none

SUB-VARIATIONS
none

RELATED INFORMATION
Priority: Should be implemented to improve usability.
Performance Target: none
Frequency: Estimated to be occasional. User mistakes can always happen.
Superordinate Use Case: none
Subordinate Use Cases: none
Channel to primary actor: interactive
Secondary Actors: none
Channel to Secondary Actors: none

OPEN ISSUES
none

SCHEDULE
Due Date: 15/2/2010

Automated triage Interim Report

Page 27

Use case: 7 Triage a patient

--
CHARACTERISTIC INFORMATION
Goal in Context: The main use of the system is to assist triaging of patients. The triage nurse will want to either

triage a new waiting patient or reassess a previously triaged patient.
Scope: System
Level: Summary

Preconditions: The triage nurse has finished triaging a patient or needs to reassess previous triage of a patient

due to changes in his condition.
Success End Condition: The system exits the dialog and moves the patient from the list of waiting patients to

the list of triaged patients.
Failed End Condition: The triage nurse cancels the triaging of the patient, exiting the triage dialog.
Primary Actor: Triage nurse
Trigger: Triage nurse has gone through a list of patients and decided which one to triage next.
--
MAIN SUCCESS SCENARIO (Based on practice triage case 21, page 64 in ESI handbook)

2. Triage nurse looks at the table displaying the un-triaged patients queue on the main triage
screen of the GUI.

3. Triage nurse sees no patient described being in a potential life threatening state. The first
patient in the queue is a 68-year old female with her complaint being: “Right arm in a sling.
Possibly fractured bone.”

4. Triage nurse selects the patient by clicking on him on the waiting patient list.
5. The system highlights the patient. The system activates the “triage” button.
6. The nurse clicks the triage button.
7. The system launches the triage dialog for the patient.
8. The triage nurse navigates the triage dialog.
9. The System assigns an ESI level of 3 to the patient. The system exits the dialog and moves the

patient from the list of waiting patients to the list of triaged patients.

EXTENSIONS
None

SUB-VARIATIONS

3. The system highlights the patient. The system activates the “triage” button. A new patient
with an apparent critical condition is added to the waiting patient list.

4. The nurse decides to triage the new patient instead of the current patient. The nurse clicks
on the new patient in the patient list

RELATED INFORMATION
Priority: The central performance of the software. This must be implemented.
Performance Target: the process must take at maximum 5 minutes.
Frequency: Very often. At least once for every patient that does not leave the ED by themselves.
Superordinate Use Case: none
Subordinate Use Cases: 9 Conduct first ESI step: “Is the patient dying?”, 10 Conduct second ESI step:
“Is the patient at high risk?”, 11 Conduct third ESI step: “How many resources are needed?”, 12
Conduct fourth ESI step: “Danger zone vitals?”, 13 Decide triage score
Channel to primary actor: interactive
Secondary Actors: none
Channel to Secondary Actors: none

Automated triage Interim Report

Page 28

OPEN ISSUES
none

SCHEDULE
Due Date: 15/2/2010

Automated triage Interim Report

Page 29

Use case: 12 Conduct fourth ESI step: “Danger zone vitals?”

--
CHARACTERISTIC INFORMATION
Goal in Context: The fourth step of the algorithm requires the nurse to consider particular vital signs of the

patient. The goal is to find out whether or not any of those vitals are in a critical state, which relies on the patients
age. The nurse inputs the values of the vital signs to let the software quickly identify which ones are in a critical
state.
Scope: System
Level: Subfunction

Preconditions: In step C of the triage, the nurse had estimated more than one resource.
Success End Condition: Patient is assigned ESI level 2 or 3 and the system asks the nurse for confirmation.
Failed End Condition: Exit the triage dialog.
Primary Actor: Triage nurse.
Trigger: When asked to confirm the choice of more than one resource, the triage nurse clicks confirm button.

--
MAIN SUCCESS SCENARIO

0. The system displays the step D panel on the triage dialog screen. The system prompts for
heart rate, respiratory rate and oxygen saturation values to be entered.

1. Triage nurse enters heart rate value of 96.
2. The system prompts for respiratory rate and oxygen saturation values to be entered.
3. Triage nurse enters respiratory rate of 15.
4. The system prompts for oxygen saturation value to be entered.
5. Triage nurse enters oxygen saturation ratio of 98%.
6. The system states that no vital signs are in a critical state. The system asks the nurse for

confirmation.
7. The triage nurse clicks the confirmation button.
8. The system states the assignment of ESI level 3 to the patient and asks the nurse for

confirmation.

EXTENSIONS
none

SUB-VARIATIONS

5. Triage nurse enters oxygen saturation ration of 85%
6. The system marks the entered oxygen saturation. The system states that there is a vital sign

in a critical state. The system states that the nurse should consider raising the ESI level of
patient to 2.

7. After evaluating patient history, the nurse clicks the “raise ESI to 2” button.
8. The system states the assignment of ESI level 2 to the patient and asks the nurse for

confirmation.

RELATED INFORMATION
Priority: Must be implemented. Part of the core functionality.
Performance Target: None defined.
Frequency: Estimated to be somewhat frequent.
Superordinate Use Case: 7 Triage a patient
Subordinate Use Cases: none
Channel to primary actor: interactive
Secondary Actors: none

Automated triage Interim Report

Page 30

Channel to Secondary Actors: none

OPEN ISSUES

SCHEDULE
Due Date: 15/2/2010

Automated triage Interim Report

Page 31

External Interface Requirement

User interfaces

Figure 9 – Main Frame looking at table of waiting patients

Automated triage Interim Report

Page 32

Figure 10 – Main Frame viewing triaged patients

Automated triage Interim Report

Page 33

Figure 11 – step d in triage process

Automated triage Interim Report

Page 34

Figure 12 – sted d, confirming triage score

Automated triage Interim Report

Page 35

Implementation

Technology platform
The project was developed on a single machine, a Packard Bell EasyNote laptop running on the

Windows Vista operating system.

 For the implementation of the project I chose Java Standard Edition 6, which is used to implement

the system logic and the GUI. I chose Java because of how relatively easy it is to develop network

connected applications on it, which the triage software was originally intended to be.

The Java code was implemented and compiled in the Eclipse development environment. The GUI was

created with Jigloo GUI editor plugin for Eclipse.

The programming code was compiled into java bytecode by javac 1.6

To implement an incoming patient database, I used a local MySQL database server, edited with

MySQL Workbench database design tool.

Technology platform overview:

 Machine

 Packard Bell EasyNote_MT85-T-149NC laptop

 Operating System

 Windows Vista™ Home Premium

 Java development Environment

 Java Eclipse

 Jigloo GUI editor plugin - Jigloo version 3.9.0

 Static analysis tools

 Checkstyle (Eclipse plugin)

 FindBugs (Eclipse plugin)

 GUI/System programming language

 Java SE 6

 Javac compiler1.6.0_18

 UML

 StarUML 5.02.1570

 Database system

Automated triage Interim Report

Page 36

 MySQL Server 5.1

 MySQL Workbench 5.2 OSS

Automated triage Interim Report

Page 37

Description of key features

Architecture

The system implements the model view controller architecture.

triagemodel

The model is the component representing the core of the architecture, the part that implements the

logic and data of the application domain. This is implemented by the triagemodel package in the ESI

software code. The model is supposed to contain the classes that support and model the base

problems, being able to stand as long as the problem itself.

In this project, the triagemodel contains the classes that access the patient database, keeps a list of

all the patients loaded from the database and the execution of the ESI triage process in the software

(Bennet et al., 2006).

triageview

The view components in MVC give a user some representative view of the model’s current state. In

this project it is implemented by the triageview packet. This is where the GUI classes are

implemented, as is the case in this project (Bennet et al., 2006).

triagecontroller

The controller component handles the input made in the view, used to manipulate the view and the

state of the model. In this project it is implemented through the triagecontroller package. This

package contains all of the classes that handle events generated by the view component (Bennet et

al., 2006).

Figure 13- project package diagram, implementing MVC architecture

Automated triage Interim Report

Page 38

Database design and access
The database implemented for this project is rather simple, and was meant to be a simple

prototypical representation of the incoming patient data that would potentially be accessable from a

real-life hospital database. Each tuple in the database represents an incoming patient in to the

emergency department, waiting for triage.

To uniquely identify patients, kennitala is used as a key attribute. The name attribute is useful for

addressing the patient. There are also attributes of the patient’s age, known medical history, known

medication as well as his medical complaint. These are all important attributes for a triage nurse to

consider during different phases during the ESI triage (Gilboy, N. et al., 2005).

The age category attribute was implemented later on in the implementation process. Not a required

part of the original ESI algorithm, it is a makeshift addition to indicate in which of five age ranges that

are considered by the algorithm a patient is in. The age group a patient is in alters the limit of critical

vital sign range considered in the fourth ESI phase.

patient_record Kennitala Name Age Complaint Medical history Medication Age category

Table 1 - patient_record table schema

The prototype database was populated by using the MySQL Workbench tool. During development

and testing it was run locally on the development machine.

In order to establish a MySQL database connection, I needed to download and import the mysql-

connector-java version 5.1.12, a Java database connection (JDBC) driver into the project. To query

the database and generate a data structure that could be displayed in the GUI, I imported two classes

from online, ResultSetTableModelFactory and ResultSetTableModel. The author of these classes is

David Flanagan.

ResultSetTableModelFactory works by encapsulating a JDBC database connection, takes a SQL query

string as input and in return outputs a ResultSetTableModel object that can be displayed in a JTable

GUI component (Flangan D., 2000).

Changes in design
Not all of the use cases specified in the requirement section (see figure 8) could be implemented

before the project deadline. The use cases that were implemented are:

1. View non-triaged patients

7. Triage a patient

8. View patient medical history

5. Conduct first ESI step: “Is the patient dying?”

6. Conduct second ESI step: “Is the patient at high risk?”

7. Conduct third ESI step: “How many resources are needed?”

Automated triage Interim Report

Page 39

8. Conduct fourth ESI step: “Danger zone vitals?”

9. Accept triage score

These cases are representative of the core functionality of the triage software and were therefore

prioritised above others. They exist as a proof of concept for the software, and their implementation

gives a protypical demonstration on how a final version of the software could implement the ESI

triage process. Additional benefits of having implemented these use cases is that the implementation

of triage process is on a form that can be tested and evaluated, as will be done in the evaluation

chapter of this document.

Static analysis tools
In order to enforce coding conventions, the static analysis tool Checkstyle which is a plug-in for the

Eclipse IDE. The coding convention used was Sun Checks (Eclipse), which is a slightly altered version

of Sun Checks coding conventions.

The Sun Checks (Eclipse) coding convention was enforced on all classes in the triagecontroller and

the triagemodel packages. They were not enforced on the triageview package, which contains the

GUI code. This is because the GUI code was generated by the Jigloo GUI creator, which automatically

generates Java code via a graphical development environment. Changing the GUI code can often

disrupt the editing tool.

Additionally, the classes that I acquired online for database access, ResultSetTableModel and

ResultSetTableModelFactory have not been altered by enforcing of checkstyle.

Table 2 displays the checkstyle problems that are still unresolved in all of the original classes.

ESI triage CheckStyle problems
 Description Resource Path Location Type

Missing package documentation file. triageview /EsiTriage/src line 0
Checkstyle
Problem

Missing package documentation file. triagemodel /EsiTriage/src line 0
Checkstyle
Problem

Missing package documentation file. triagecontroller /EsiTriage/src line 0
Checkstyle
Problem

Table 2 - Checkstyle problems in original classes

Automated triage Interim Report

Page 40

Evaluation

Use case testing

Testing the use case: Triage a patient

The central use case that needs to be carried out by the triage software is to triage a patient. It

critical that the ESI category that the software suggests is correctly generated based on the ESI v4

triage.

The official handbook for the ESI triage algorithm contains 60 examples of patients coming into a

hospital‘s emergency department. Those include 30 triage nurse exercises in chapter 9 and 30 triage

cases for testing a triage nurse‘s competency in the use of the algorithm in chapter 10. Both set of

triage cases expect the nurse conducting them to apply the ESI triage algorithm in order to assign to

each case an appropriate ESI triage category, 1-5. Both the exercises and the competence cases are

followed by what the authors consider to be the correct ESI triage scores for each case, along with a

detailed justification (Gilboy, N. et al., 2005).

To test whether or not the ESI triage software would assign correct ESI triage category, given that the

triage nurse using doing the triage has expert knowledge in doing ESI triage, I did all of the 60 cases

using the triage software as aid. To simulate triage nurse’s expert knowledge I used the descriptive

justification for the correct answer in each case as a guide through the algorithm. This includes

judging patient’s symptoms and deciding on the number of resources needed for patient treatment

during appropriate triage phases. Note that for cases where a vital sign was missing from a case

description and vital signs need to be considered in ESI phase 4, I assume that the vital sign is within

regular range.

Figure 14 - Competence cases loaded into triage software

Automated triage Interim Report

Page 41

For both cases I uploaded all of the cases from both chapters into the locally hosted prototype

database patient_record from which they could be loaded into the triage software on launch.

For each case I would diligently follow the ESI triage algorithm within the software and write down

the ESI triage category suggested by the software for that case. Finally I would compare the ESI

category suggested by the software to the category given in the answer for that case, checking if they

are the same or not.

Table 3 shows the result from conducting the 30 triage exercises from chapter 9 of the ESI v4

handbook using the ESI triage software.

Comparison of practise case answers and ESI software result

Practise case index Correct ESI category Triage software answer Equal?

1 1 1 TRUE

2 2 2 TRUE

3 3 3 TRUE

4 2 2 TRUE

5 4 4 TRUE

6 2 2 TRUE

7 4 4 TRUE

8 2 2 TRUE

9 2 2 TRUE

10 5 5 TRUE

11 3 3 TRUE

12 1 1 TRUE

13 2 2 TRUE

14 4 4 TRUE

15 5 5 TRUE

16 5 5 TRUE

17 5 5 TRUE

18 5 5 TRUE

19 1 1 TRUE

20 1 1 TRUE

21 3 3 TRUE

22 5 5 TRUE

23 2 2 TRUE

24 1 1 TRUE

25 1 1 TRUE

26 2 2 TRUE

27 4 4 TRUE

28 3 3 TRUE

29 3 3 TRUE

30 3 3 TRUE
Table 3 - Comparing answers from triage exercises from chapter 9

Automated triage Interim Report

Page 42

The first column from the left refers to index of the triage case from chapter 9. The second column is

the correct ESI category for each case given by the handbook. The third column is the ESI category

given by the software. The fourth and final column indicates if the answer from the book is the same

as the answer from the software.

The table demonstrates that for each exercise case, the ESI triage software was able to produce

answers matching those given by the handbook. All of the 30 exercises resulted in a correct triage

score. Given that all the right decisions are made for each ESI phase in the software, as instructed by

the handbook, the software appears to give the correct ESI category when the nurse makes the right

decisions.

Automated triage Interim Report

Page 43

Comparison of competency case answers and ESI softare result

Competency case index Correct ESI category Triage software answer Equal?

1 1 1 TRUE

2 3 3 TRUE

3 4 4 TRUE

4 5 5 TRUE

5 5 5 TRUE

6 1 1 TRUE

7 2 2 TRUE

8 4 4 TRUE

9 3 3 TRUE

10 2 No result FALSE

11 4 4 TRUE

12 1 1 TRUE

13 5 5 TRUE

14 1 1 TRUE

15 2 No result FALSE

16 3 3 TRUE

17 2 No result FALSE

18 4 4 TRUE

19 2 2 TRUE

20 4 4 TRUE

21 5 5 TRUE

22 1 1 TRUE

23 3 3 TRUE

24 2 2 TRUE

25 3 3 TRUE

26 3 3 TRUE

27 4 4 TRUE

28 3 3 TRUE

29 5 5 TRUE

30 1 1 TRUE
Table 4 - Comparing answers from triage competency cases from chapter 10

In table 4 the result from going through the 30 competency cases from chapter 10 with the ESI triage

software. The first column from the left refers to index of the triage competency case from chapter

10. Again, the second column is the correct ESI category for each case given by the handbook. The

third column is the result ESI category from the ESI software. The fourth column tells if the answer

from the book matches the answer from the software.

Except for cases 10, 15 and 17, the resulting ESI triage categories are the same as the ESI categories

given by the handbook. Out of 30 competence cases 27 gave correct result. This demonstrates that in

most competency cases the ESI triage software could lead the nurse to a correct conclusion.

Automated triage Interim Report

Page 44

However, cases 10, 15 and 17 reveal a flaw in the triage software. In these cases, the patient’s age is

not given. All the cases have that in common that they are critical emergency cases, in which the

patient require immediate attention when he arrives at the emergency department. A likely

explanation of the lack of age would be that there was simply not enough time to register all of the

patient’s information when he arrived. When the age data was omitted, the software crashed as it

loaded the prototype patient database, due to an unhandled exception. This should, of course, be

amended during any future development.

Additional Observations

Figure 15 - ESI triage dialog - short labels

I noticed during the test that during the ESI triage dialog, the labels conveying information on the

patient being triaged are faulty. This can be seen in figure 14. When complaints, medical history or

medication information becomes sufficiently long, the labels used to display those runs out of

character space. Since this is often crucial information for the triage it should be a priority to fix the

patient medical information panel during future iterations.

Code evaluation

HCI testing

Cognitive walkthrough

Cognitive walkthroughs are a useful way of finding HCI related flaws within a software’s user

interface. This chapter gives an analysis of the task necessary to complete an ESI triage process in the

system at its current state and the cognitive walkthrough conducted by myself in order to detect the

flaws in the current user interface. Some recommended changes are then presented to improve the

interface given the faults that were captured.

Automated triage Interim Report

Page 45

The tasks

Main triage frame

The following are the tasks associated with the main triage frame, the central part of the GUI where

the nurse decides which patient to triage.

(1.1)View untriaged patients

To decide which patient should be triaged, the nurse will want to view the list of all currently

incoming, untriaged patients. On the main triage frame, there is already a table displaying the

previously mentioned patients along with specific attribute related with them.

(1.2) Select a patient

If the nurse has decided what patient to triage next or he/she wants to put a focus on a particular

patient on the table (a visual aid for reading the patient attributes) she can highlight a single patient

on the untriaged patient table.

(1.3) Start triage

If a patient on the untriaged patient table has been highlighted, the nurse can then initiate the triage

process by pressing the triage button located on the interface. This opens up the triage dialog screen

and starts the ESI triage process for that patient.

(1.4) Terminate the software

At any given point when the triage program is running, the nurse can terminate the program by

pressing the default windows close button on the main triage frame.

ESI triage dialog

The following tasks are associated with the ESI dialog screen, where the nurse will be guided through

the ESI V4 triage process in triaging a particular patient.

(1.5) Conduct triage

Once the ESI triage process has been initiated, the nurse will answer a series of questions that are a

part of the triage algorithm until it assigns a triage category 1 to 5 to the patient (1 being higest

priority, 5 the least). In order to answer these questions the nurse will rely on her skills and

knowledge of identifying patient status, both from actual patient feedback as well as the patient

information displayed on the triage dialog screen.

(1.5.1) View patient detail

As a part of the decision process associated with the questions asked by the ESI, the nurse will likely

have to make a quick study of the patient’s medical history, his current/past medication and the

patient’s stated complaint when he arrived at the patient registration. These can always be seen at

the bottom left side of the triage dialog screen. The nurse can also view reminders of the patient’s

age, gender, kennitala and name as well at the top left of the triage dialog screen.

(1.5.1.1) View patient medical history

In order to evaluate the patients current condition, the nurse often wants to check on the

patient’s previously recorded medical conditions. The nurse can view this information by

looking at the patient medical information panel on the bottom left side of the triage dialog

window. It is always visible while the dialog is open.

Automated triage Interim Report

Page 46

(1.5.1.2) View patient medication

In order to evaluate the patient’s current condition, the nurse wants to check on the

patient’s medication, both past and present. The nurse can view this information by looking

at the patient medical information panel on the bottom left side of the triage dialog window.

It is always visible while the dialog is open.

(1.5.1.3) View patient complaint

When a patient enters the hospital’s accident- and emergency department, the patient’s

reason for arriving is recorded. This can be done for example by a secretary in the

department ‘s lobby or recorded by a nurse when paramedics bring in a patient from a

medical transport. This is valuable information that the nurse can view on the bottom left

side of the triage dialog screen in the patient medical information panel. It is always visible

while the dialog is open.

(1.5.2) Answer triage questions

(1.5.2.1) ESI phase 1

In the first panel of the ESI wizard, representing the first phase of the ESI triage process, the

nurse is asked: “Does the patient require immediate life-saving intervention?” Using the

information presented, the nurse answers either yes or no. This is done by pressing either a

“yes” button or a “no” button respectively. If the nurse answers no, the dialog will display ESI

phase 2.

(1.5.2.2) ESI phase 2

In the second panel of the ESI wizard, representing the second phase of the ESI triage

process, the nurse is asked: “Is the patient in a high-risk situation? Is he

confused/lethargic/disoriented? Is he in severe pain or distress?” Using the information

presented, the nurse answers with either a single yes or a single no to all of the questions.

This is done by pressing either a “yes” button or a “no” button respectively. If the nurse

answers no, the dialog will display ESI phase 3.

(1.5.2.3) ESI phase 3

 In the third panel of the ESI wizard, representing the third phase of the ESI triage process, the

nurse is asked: “How many resources are needed?” Using the information presented, and

drawing on experience and knowledge of medical cases, the nurse makes a judgement on

how many different medical resources will be needed to treat the patient or make further

diagnosis. If the nurse answers “two or more resources”, the dialog will display ESI phase 4.

 (1.5.2.3.1) Enter resource count

The nurse is presented with a set of radio buttons through which the nurse can input

how many different resources the patient will need for further diagnosis or

treatment. The choices are: “No resource”, “one resource” and “two or more

resources”. The nurse presses the appropriate radio button.

(1.5.2.3.2) Confirm resource count

After choosing the expected number of resources, the nurse presses the confirm

button to confirm his/her choice to the triage process.

Automated triage Interim Report

Page 47

(1.5.2.4) ESI phase 4

 In the fourth panel of the ESI wizard, representing the fourth phase of the ESI triage process,

the nurse is asked: “Are there any danger zone vital signs?” In most cases, the triage nurse

measures the patient’s vital signs and inputs them to a standard medical paper form. The

vital signs that are significant to this particular ESI phase are heart rate, respiration rate,

blood oxygen saturation and body temperature. Body temperature, however, is only

required for patient three years or younger. Whether or not a vital sign has a critical value is

different depending on the age group of the patient. After confirmation, if no vital sign was

detected as critical, the patient is assigned ESI category 3. If any of the signs are critical, the

nurse must consider moving the patient to ESI category 2.

(1.5.2.4.1) Input vital signs

The nurse inputs each of the patient’s requested vital sign into that vital signs

designated input field. The requested vital signs can be input in any order.

(1.5.2.4.2) Confirm vital signs

After the nurse considers that the vital sign input is correct, he/she presses the

confirm button to confirm the values to the ESI process.

(1.5.2.4.2) Consider uptriaging

After confirmation, if at least one vital sign has been detected as critical, the nurse is

asked to judge weather or not the patient should stay at ESI category 3, or if the

patient’s case is severe enough for him to be moved up to ESI category 2. An input

dialog will pop up, stating this question to the nurse and requesting answer. The

nurse can press a button for ESI category 3 or ESI category 2. She can also cancel the

confirmation by pressing the default close button of the dialog.

(1.5.3) Accept ESI triage score

At the end of each ESI phase, depending of the input of the nurse, the system might assign the

patient an ESI category of 1-5 and present the this choice in the form of a information dialog. The

nurse then acknowledges this by pressing the OK button which closes the ESI dialog screen, returning

to the main triage frame.

(1.5.4) Cancel ESI triage

At any given point when the ESI triage dialog is open for a given patient, the nurse can cancel the ESI

triage process by pressing the default windows close button on the dialog screen. This should be

possible no matter what phase of the triage is active.

Cognitive Walkthrough

The Questions

For each action required to finish each task, the following four questions are asked in the following

order:

Action 1 View incoming patient table

1. Will users be trying to produce whatever effect the action has?

Automated triage Interim Report

Page 48

2. Will users see the control (button, menu, switch, etc.) for the action?

3. Once users find the control, will they recognize that it produces the effect they want?

4. After the action is taken, will users understand the feedback they get, so they can go on to the
next action with confidence?

The answers are given in either yes or no. Every “no” answer is followed by an explanation.

Main triage frame

 (1.1)View untriaged patients

Action 1 View incoming patient table

1. Yes

2. Yes

3. Yes

4. Yes

 (1.2) Select a patient

Action 1 Click on patient

1. Yes

2. Yes

3. Yes

4. Yes

 (1.3) Start triage

Action 1 Click on patient on untriaged patient table

1. Yes

2. Yes

3. Yes

4. Yes

Action 2 Click on triage button

1. Yes

2. Yes

3. No, the title of the button is a bit ambiguous. It is always enabled even though no patient is
selected.

Automated triage Interim Report

Page 49

4. No. The button is always enabled even if no patient is selected. No feedback occurs if the user
clicks the button with no patient selected.

(1.4) Terminate the software

Action 1 Click on default windows close button

1. Yes

2. Yes

3. Yes

4. Yes, the program terminates

ESI triage dialog

 (1.5) Conduct triage

 (1.5.1) View patient detail

 (1.5.1.1) View patient medical history

Action 1 look at patient medical history label

1. No. Experienced users will, but new users might potentially forget that this information is
important.

2. Yes

3. Yes

4. Yes

 (1.5.1.2) View patient medication

Action 1 look at patient medication label

1. No. Experienced users will, but new users might potentially forget that this information is
important.

2. Yes

3. Yes

4. Yes

 (1.5.1.3) View patient complaint

Action 1 look at patient complaint label

1. No. Experienced users will, but new users might potentially forget that this information is
important.

2. Yes

3. Yes

4. Yes

Automated triage Interim Report

Page 50

 (1.5.2) Answer triage questions

(1.5.2.1) ESI phase 1

Action 1 click on “Yes” button

1. Yes

2. Yes

3. Yes

4. No. The feedback message is unclear. The dialog that pops up only states the message “ESI – 1”
but does not state to whom that applies to. Can be potentially confuse new users.

Action 2 click on “No” button

1. Yes

2. Yes

3. Yes

4. Yes

 (1.5.2.2) ESI phase 2

Action 1 click on “Yes” button

1. Yes

2. Yes

3. Yes

4. No. The feedback message is unclear. The dialog that pops up only states the message “ESI – 2”
but does not state to whom that applies to. Can be potentially confuse new users.

Action 2 click on “No” button

1. Yes

2. Yes

3. Yes

4. Yes

 (1.5.2.3) ESI phase 3

 (1.5.2.3.1) Enter resource count

Action 1 click resource count radio button

1. Yes

2. Yes

Automated triage Interim Report

Page 51

3. Yes

4. Yes

(1.5.2.3.2) Confirm resource count

Action 1 click on confirm button

1. Yes

2. Yes

3. No. The button is always enabled so its purpose can potentially be confusing.

4. No. A bug has been found. If no resource count has been selected and the confirmation button is
pressed, then ESI category 5 is assigned to the patient. For the cases when an ESI category is
assigned, the feedback message is unclear. The dialog that pops up only states the message “ESI
– 5” or “ESI – 4” but does not state to whom that applies to. Can potentially confuse new users.

 (1.5.2.4) ESI phase 4

(1.5.2.4.1) Input vital signs

Action 1 click on a vital sign spinner text field

1. No. Experienced users will, but there is no message stating that you really have to input the vital
signs into the GUI. There is also no explanation for when the temperature spinner is disabled, the
result of the patient being older than three.

2. Yes

3. Yes

4. Yes

Action 2 type vital sign value into spinner text field

1. No. Experienced users will, but there is no message stating that you really have to input the vital
signs into the GUI.

2. Yes

3. Yes

4. Yes

Action 3 click on increment button of a vital sign spinner

1. No. Experienced users will, but there is no message stating that you really have to input the vital
signs into the GUI.

2. Yes

3. Yes

4. Yes

Automated triage Interim Report

Page 52

Action 4 click on decrement button of a vital sign spinner

1. No. Experienced users will, but there is no message stating that you really have to input the vital
signs into the GUI.

2. Yes

3. Yes

4. Yes

 (1.5.2.4.2) Confirm vital signs

Action 1 click on the confirm button

1. No. Experienced users will, but there is no message stating that you really have to input the vital
signs into the GUI.

2. Yes

3. No. The button is always enabled so its purpose can potentially be confusing.

4. No. The GUI does not prevent the user from continuing if he has not edited at least one of the
vital signs. This can lead to confusion of why the feedback will be the way it will be.

 (1.5.2.4.2) Consider uptriaging

Action 1 click on “Uprade to ESI-2” button

1. Yes (However, it would be better if the dialog states which vital sign(s) are in a danger zone.

2. Yes

3. Yes

4. No. The feedback message is unclear. The dialog that pops up only states the message “ESI – 2”
but does not state to whom that applies to. Can potentially confuse new users.

Action 2 click on “Keep at ESI-3” button

5. Yes (However, it would be better if the dialog states which vital sign(s) are in a danger zone.

6. Yes

7. Yes

8. No. The feedback message is unclear. The dialog that pops up only states the message “ESI – 3”
but does not state to whom that applies to. Can potentially confuse new users.

Action 3 click on default close button

1. Yes.

2. Yes

Automated triage Interim Report

Page 53

3. No. It is not stated that clicking the button will cancel the confirmation of the vital signs.

4. No. There is no feedback that states that the confirmation has been aborted and that the user
can readjust the vital sign values.

 (1.5.3) Accept ESI triage score

Action 1 click on “OK” button

1. Yes

2. Yes

3. Yes

4. No. Currently the message can be considered to be not completely clear. It does not
unambiguously state that the ESI score has been assigned to the patient. Also, the removal of
the patient from the untriaged patient table has not been implemented.

Action 1 click on default close button

1. Yes

2. Yes

3. No. There is no clue that it will have exactly the same results as clicking the OK button.

4. No. The user might potentially think that he has cancelled the assignation of the ESI triage score,
since there is no feedback stating otherwise.

 (1.5.4) Cancel ESI triage

Action 1 click on default windows close button

5. Yes.

6. Yes

7. No. The user might want to terminate the program and not just the ESI dialog window.

8. No. There is no feedback that tells the user that the ESI triaging has been aborted, and it has to
be started from scratch. There is also no confirmation dialog for confirming if the user really
intends to cancel the triage process.

Automated triage Interim Report

Page 54

Recommendations

To clarify the purpose of the triage button, change the button text from “triage” to “triage selected
patient”. The button should also be disabled at all times except when a patient has been selected on
the untriaged patient table.

(1.5.1.1) View patient medical information

In order to highlight the importance of the information found on the patient info panel, let the

border of the panel flash red for a brief time.

(1.5.3) Accept ESI triage score

The current message on the information dialog should be changed from “ESI – X” to “The patient has

been assigned category ESI – X”, where X is the appropriate ESI category. There should also be a

cancel button in order to backtrack in case input confirmation was made by mistake. If either this

cancel button or the default windows button is pressed, then there should be a clear message that

the assignment of ESI triage category has been cancelled and the user is free to alter the input.

 (1.5.2.3.2) Confirm resource count

The confirm button for the confirmation of the medical resource count should be disabled at all

times except when a resource count has been selected.

(1.5.2.4.2) Confirm vital signs

On the fourth ESI phase there should be message clearly stating that it is necessary to input all

requested vital signs into their appropriate spinners to continue. The message should also state

which vital signs are needed.

On the same panel, the confirm button should always be disabled unless all of the input spinners

have had their values altered. There should be clear labelling of which vital signs inputs have not

been edited.

(1.5.2.4.2) Consider uptriaging

In the dialog asking the user for uptriaging, it should be clearly stated what vital signs where in a
danger zone when the input was confirmed.

In the same dialog, there should be a cancel button, which should have the same functionality as
pressing the default exit windows exit button. If a user decides to cancel the input confirmation this
way, there should be a clear message on the panel stating that the input has been cancelled.

 (1.5.4) Cancel ESI triage

To make it clear that the user can cancel the triage process, a button named “Cancel this triage”

should be added to the ESI triage dialog screen. Whenever this button or the default windows close

button is pressed a confirmation dialog should pop up asking the user if he/she really meant to

cancel the triage process.

Automated triage Interim Report

Page 55

Conclusion

Personal reflections
Several reasons why I chose this project originally. First of all it seemed like an interesting problem of

organization that could be solved by some kind of a sorting algorithm. I originally wanted to see if I

could apply my studies of algorithms, from a previous university course, to this particular problem.

It was also very appealing to be developing a solution to something that could have direct benefits to

other people. In medical emergencies, every second counts. Any methods applied to slice seconds off

the time from when a patient enters an emergency department and gets treatment could save lives.

It gave the project the warm glow of a higher purpose to the study of computer science, which felt

rather motivating.

While I was not successful in implementing everything that I had originally intended, I did

nonetheless manage to create a working prototype of a triage assisting software with functional core

functionality. The software is capable of aiding nurses through ESI triage of patients and assign ESI

categories to them. Use case evaluation was also very promising. Discounting cases when some

input information was missing from the test cases, the software produced correct categories rather

consistently.

There were regardless some failures in this project. I did manage to follow the implementation

schedule rigorously, resulting in the implementation phase of the development to become bloated.

This had detrimental effect on the rest of the development process, shortening the time I had for

evaluation of the software.

It would have been better if I had been able to spend larger portion of my development time on the

software evaluation. More time spent to get usability feedback from the target users, ED nurses or

nurse students would have been invaluable information for improving the software. Some rigorous

unit testing would also have been necessary for each class developed in this project, this being a

safety critical software.

In hindsight, it might have been better to develop the GUI of the software in Java. Even if Jigloo

provides a rather easy to use graphical development environment for developing a Java GUI,

adjustments of the code generated by the tool sometimes resulted in bugging the Jigloo

development environment. These bugs tended to be hard to locate. If I would be to go through

another development cycle with this project, I would want to develop the GUI in a programming

language known to be better suited for such tasks, for example Visual Basic.

I consider that I have gained valuable insight and appreciation of the process of emergency medical

treatment. I have had the fortune of not yet having to experience the emergency department of a

hospital first hand,

I gained more insight into the workings of another profession. It is necessary for software developers

to be able to work with people of other professions, such as nurses, in order to solve problems within

the profession’s domain.

Skills gained

Automated triage Interim Report

Page 56

I was already rather familiar with the Java programming language, which I chose to use to implement

this software, from previous courses taken at the university. Nevertheless, up until this project I had

only used it in the context of soling relatively small, isolated projects. Through the development of

this project I consider that I at least trained myself in applying my knowledge of the Java language to

a real-life project, on that exists in an actual profession domain.

As an extension of that, this was the first time I was using Java to connect with another technology

platform, in this case a MySQL database. Implementing the Java to MySQL connection was very

problematic at first, but worked out in the end, giving me practical insight and concrete idea of how

such connectivity works.

As for non-technical skills, many of them are related with doing the research and requirements

capture and analysis phases of the project. Emergency medicine was an unfamiliar field of study to

me, requiring me to research a domain pretty much from scratch. This is as I understand it, not very

uncommon in real-life software development, as the trade often requires you to work in problem

domains you might be unfamiliar with.

Future work
The ESI triage system current version could be considered a prototype, as it has not implemented all

of the originally planned use cases. It would be useful as a starting ground for a new iteration, one

that could implement the rest of the use cases. The next development cycle could use the evaluation

information gained from this project to enhance usability, security and effectiveness of the software.

However, It would be interesting to integrate the triage software with an actual hospital database.

Interacting with the institution’s system, patient data could be retrieved from stored patient medical

and medication records. The result from the triage could in return be stored within a special triage

database.

Additionally, the triage software could be developed further into the direction of being a training tool

for nurses studying the ESI triage algorithm. It could implement tutorials, a help system and tooltip

assistance for them to use.

Automated triage Interim Report

Page 57

References
Aronsky, D. et al., (2008). An Integrated Computerized Triage System in the Emergency Department.

[Internet] AMIA. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656061/ . [Accessed 6

Desember 2009].

Bennet, S. McRobb, S. Farmer, R. (2006). Object-Oriented Systems Analysis and Design. The

Architecture of the Presentation Layer. 464-465. McGraw-Hill Education. Maidenhead Berkshire.

Dong, S. L. et al., (2008). Emergency Triage: Comparing a Novel Computer Triage Program with

Standard Triage. [Online] Society for Academic Emergency Medicine. Available at:

http://www3.interscience.wiley.com/cgi-bin/fulltext/119821459/PDFSTART. [Accessed 6 Desember

2009].

Flangan, David. (2000). Making SQL Queries with JDBC and Displaying Results with Swing. Available

at: http://www.oreillynet.com/pub/a/oreilly/java/news/javaex_1000.html. Last accessed 15 April

2010.

Gilboy, N. et al., (2005) Emergency Severity Index, Version 4: Implementation Handbook. Rockville

MD: AHRQ Publication.

Golding, D. Wilson, L. & Marwala, T., (2008). Emergency Centre Organization and Automated Triage

System. [Online] Available at: http://arxiv.org/ftp/arxiv/papers/0810/0810.3671.pdf. [Accessed 7

Desember, 2009].

Iserson, K. V. & Moskop, J. C., (2007). Triage in Medicine, Part I: Concept, History, and Types. [Online]

Mosby, Inc. Available at: http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB0-

4KCGHM7-

2&_user=5914913&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_rerunOrigin=sc

holar.google&_acct=C000068840&_version=1&_urlVersion=0&_userid=5914913&md5=6de9ba578e

c4a71a15d93d0bafd4e5e8. [Accessed 6 Desember 2009].

Levin, S. et al., (2006). The Effects of Computerized Triage on Nurse Work Behavior. [Internet]

Amia. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839482/. [Accessed 6 Desember

2009].

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB0-4KCGHM7-2&_user=5914913&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_rerunOrigin=scholar.google&_acct=C000068840&_version=1&_urlVersion=0&_userid=5914913&md5=6de9ba578ec4a71a15d93d0bafd4e5e8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB0-4KCGHM7-2&_user=5914913&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_rerunOrigin=scholar.google&_acct=C000068840&_version=1&_urlVersion=0&_userid=5914913&md5=6de9ba578ec4a71a15d93d0bafd4e5e8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB0-4KCGHM7-2&_user=5914913&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_rerunOrigin=scholar.google&_acct=C000068840&_version=1&_urlVersion=0&_userid=5914913&md5=6de9ba578ec4a71a15d93d0bafd4e5e8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB0-4KCGHM7-2&_user=5914913&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_rerunOrigin=scholar.google&_acct=C000068840&_version=1&_urlVersion=0&_userid=5914913&md5=6de9ba578ec4a71a15d93d0bafd4e5e8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB0-4KCGHM7-2&_user=5914913&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_rerunOrigin=scholar.google&_acct=C000068840&_version=1&_urlVersion=0&_userid=5914913&md5=6de9ba578ec4a71a15d93d0bafd4e5e8

Automated triage Interim Report

Page 58

Appendix A - Code listing

NoListener
package triagecontroller;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

/**

 * The listener interface for receiving no events.

 * The class that is interested in processing a no

 * event implements this interface, and the object created

 * with that class is registered with a component using the

 * component's <code>addNoListener</code> method. When

 * the no event occurs, that object's appropriate

 * method is invoked.

 *

 * @see NoEvent

 */

public class NoListener implements ActionListener {

 /** The access controller to this actionlistener. */

 private TriageController controllerInterface;

 /**

 * Instantiates a new no listener.

 *

 * @param controllerInterfaceIn the controller interface

 */

 public NoListener(final TriageController controllerInterfaceIn) {

 this.controllerInterface = controllerInterfaceIn;

 }

 /** {@inheritDoc} */

 public final void actionPerformed(final ActionEvent e) {

 this.controllerInterface.getTriage().recieveAnswerNo();

 }

Automated triage Interim Report

Page 59

RadioButtonListener
package triagecontroller;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

/**

 * The listener interface for receiving radioButton events.

 * The class that is interested in processing a radioButton

 * event implements this interface, and the object created

 * with that class is registered with a component using the

 * component's <code>addRadioButtonListener</code> method. When

 * the radioButton event occurs, that object's appropriate

 * method is invoked.

 *

 * @see RadioButtonEvent

 */

public class RadioButtonListener implements ActionListener {

 /** The access controller to this actionlistener. */

 private TriageController controllerInterface;

 /** The resource number. */

 private int resourceNumber;

 /**

 * Instantiates a new radio button listener.

 *

 * @param controllerInterfaceIn the controller interface

 */

 public RadioButtonListener(final TriageController

controllerInterfaceIn) {

 this.controllerInterface = controllerInterfaceIn;

 this.resourceNumber = 0;

 }

 /** {@inheritDoc} */

 public final void actionPerformed(final ActionEvent e) {

 // medical resource count

 resourceNumber = Integer.parseInt(e.getActionCommand());

 System.out.println("resources: " + resourceNumber);

 }

 /**

 * Gets the resource number.

 *

 * @return the resource number

 */

 public final int getResourceNumber() {

 return resourceNumber;

 }

}}

Automated triage Interim Report

Page 60

ResourceConfirmationListener
package triagecontroller;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

/**

 * The listener interface for receiving resourceConfirmation events.

 * The class that is interested in processing a resourceConfirmation

 * event implements this interface, and the object created

 * with that class is registered with a component using the

 * component's <code>addResourceConfirmationListener</code> method. When

 * the resourceConfirmation event occurs, that object's appropriate

 * method is invoked.

 *

 * @see ResourceConfirmationEvent

 */

public class ResourceConfirmationListener implements ActionListener {

 /** The access controller to this actionlistener. */

 private TriageController controllerInterface; //

 /**

 * Instantiates a new resource confirmation listener.

 *

 * @param controllerInterfaceIn the controller interface

 */

 public ResourceConfirmationListener(final TriageController

 controllerInterfaceIn) {

 this.controllerInterface = controllerInterfaceIn;

 }

 /** {@inheritDoc} */

 public final void actionPerformed(final ActionEvent e) {

 int resourceCount = this.controllerInterface

 .getRadioButtonListener().getResourceNumber();

 this.controllerInterface.getTriage()

 .recieveResourceCount(resourceCount);

 }

}

Automated triage Interim Report

Page 61

TableSelectionListener
package triagecontroller;

import javax.swing.ListSelectionModel;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event.ListSelectionListener;

import triagemodel.ESITriage;

/**

 * The listener interface for receiving tableSelection events.

 * The class that is interested in processing a tableSelection

 * event implements this interface, and the object created

 * with that class is registered with a component using the

 * component's <code>addTableSelectionListener</code> method. When

 * the tableSelection event occurs, that object's appropriate

 * method is invoked.

 *

 * @see TableSelectionEvent

 */

public class TableSelectionListener implements ListSelectionListener {

 /** The triage. */

 private ESITriage triage;

 /** The access controller to this actionlistener. */

 private TriageController controllerInterface; //

 /**

 * Instantiates a new table selection listener.

 *

 * @param controllerInterfaceIn the controller interface in

 */

 public TableSelectionListener(final TriageController

 controllerInterfaceIn)

{

 this.controllerInterface = controllerInterfaceIn;

 }

 /** {@inheritDoc} */

 public final void valueChanged(final ListSelectionEvent e) {

 System.out.println("event caught!");

 ListSelectionModel lsm = (ListSelectionModel) e.getSource();

 int selectedIndex = lsm.getMinSelectionIndex();

 this.controllerInterface.getTriage()

 .setPatIndex(selectedIndex);

 }

}

Automated triage Interim Report

Page 62

TriageController
package triagecontroller;

import triagemodel.ESITriage;

import triageview.TriageFrame;

/**

 * The Class TriageController.

 */

public class TriageController {

 /** listens for "yes" answers from gui. */

 private YesListener yesListener;

 /** listens for "no" answers from gui. */

 private NoListener noListener;

 /** listens for table selection from gui. */

 private TableSelectionListener selectionListener;

 /** listen for triage initiation action from gui. */

 private TriageInitiationListener triageInitListener;

 /** listen for confirmation of number of resources. */

 private ResourceConfirmationListener resourceListener;

 /** listens for radio buttons clicked in gui. */

 private RadioButtonListener radioButtonListener;

 /** listens for confirmation of vital signs. */

 private VitalsConfirmListener confirmListener;

 /** the triage view (gui). */

 private TriageFrame triageFrame;

 /** the triage logic (model). */

 private ESITriage triage;

 /**

 * Instantiates a new triage controller.

 *

 * @param triageFrameIn the triage frame in

 * @param triageIn the triage in

 */

 public TriageController(final TriageFrame triageFrameIn,

 final ESITriage triageIn) {

 this.triageFrame = triageFrameIn;

 this.triage = triageIn;

 initiateListeners();

 }

 /**

 * Initiate listeners.

 */

 public final void initiateListeners() {

 selectionListener = new TableSelectionListener(this);

 yesListener = new YesListener(this);

 noListener = new NoListener(this);

 triageInitListener = new TriageInitiationListener(this);

Automated triage Interim Report

Page 63

 resourceListener = new ResourceConfirmationListener(this);

 radioButtonListener = new RadioButtonListener(this);

 confirmListener = new VitalsConfirmListener(this);

 }

 /**

 * Gets the triage.

 *

 * @return the triage

 */

 public final ESITriage getTriage() {

 return this.triage;

 }

 /**

 * Gets the yes listener.

 *

 * @return the yes listener

 */

 public final YesListener getYesListener() {

 return yesListener;

 }

 /**

 * Sets the yes listener.

 *

 * @param yesListenerIn the new yes listener

 */

 public final void setYesListener(final YesListener yesListenerIn) {

 this.yesListener = yesListenerIn;

 }

 /**

 * Gets the selection listener.

 *

 * @return the selection listener

 */

 public final TableSelectionListener getSelectionListener() {

 return selectionListener;

 }

 /**

 * Sets the selection listener.

 *

 * @param selectionListenerIn the new selection listener

 */

 public final void setSelectionListener(final TableSelectionListener

 selectionListenerIn) {

 this.selectionListener = selectionListenerIn;

 }

 /**

 * Gets the no listener.

 *

 * @return the no listener

 */

 public final NoListener getNoListener() {

 return noListener;

 }

Automated triage Interim Report

Page 64

 /**

 * Sets the no listener.

 *

 * @param noListenerIn the new no listener

 */

 public final void setNoListener(final NoListener noListenerIn) {

 this.noListener = noListenerIn;

 }

 /**

 * Gets the triage init listener.

 *

 * @return the triage init listener

 */

 public final TriageInitiationListener getTriageInitListener() {

 return triageInitListener;

 }

 /**

 * Sets the triage init listener.

 *

 * @param triageInitListenerIn the new triage init listener

 */

 public final void setTriageInitListener(final

TriageInitiationListener

 triageInitListenerIn) {

 this.triageInitListener = triageInitListenerIn;

 }

 /**

 * Gets the triage frame.

 *

 * @return the triage frame

 */

 public final TriageFrame getTriageFrame() {

 return triageFrame;

 }

 /**

 * Sets the triage frame.

 *

 * @param triageFrameIn the new triage frame

 */

 public final void setTriageFrame(final TriageFrame triageFrameIn) {

 this.triageFrame = triageFrameIn;

 }

 /**

 * Terminates the current triage process.

 */

 public final void endCurrentTriage() {

 }

 /**

 * Gets the resource listener.

 *

 * @return the resource listener

 */

 public final ResourceConfirmationListener getResourceListener() {

Automated triage Interim Report

Page 65

 return resourceListener;

 }

 /**

 * Sets the resource listener.

 *

 * @param resourceListenerIn the new resource listener

 */

 public final void setResourceListener(final

ResourceConfirmationListener

 resourceListenerIn) {

 this.resourceListener = resourceListenerIn;

 }

 /**

 * Gets the radio button listener.

 *

 * @return the radio button listener

 */

 public final RadioButtonListener getRadioButtonListener() {

 return radioButtonListener;

 }

 /**

 * Sets the radio button listener.

 *

 * @param radioButtonListenerIn the new radio button listener

 */

 public final void setRadioButtonListener(final RadioButtonListener

 radioButtonListenerIn) {

 this.radioButtonListener = radioButtonListenerIn;

 }

 /**

 * Gets the confirm listener.

 *

 * @return the confirm listener

 */

 public final VitalsConfirmListener getConfirmListener() {

 return confirmListener;

 }

 /**

 * Sets the confirm listener.

 *

 * @param confirmListenerIn the new confirm listener

 */

 public final void setConfirmListener(final VitalsConfirmListener

 confirmListenerIn) {

 this.confirmListener = confirmListenerIn;

 }

}

Automated triage Interim Report

Page 66

TriageInitiationListener
package triagecontroller;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

/**

 * The listener interface for receiving triageInitiation events.

 * The class that is interested in processing a triageInitiation

 * event implements this interface, and the object created

 * with that class is registered with a component using the

 * component's <code>addTriageInitiationListener</code> method. When

 * the triageInitiation event occurs, that object's appropriate

 * method is invoked.

 *

 * @see TriageInitiationEvent

 */

public class TriageInitiationListener implements ActionListener {

 /** The access controller to this actionlistener. */

 private TriageController controllerInterface;

 /**

 * Instantiates a new triage initiation listener.

 *

 * @param controllerInterfaceIn the controller interface

 */

 public TriageInitiationListener(final TriageController

 controllerInterfaceIn)

{

 this.controllerInterface = controllerInterfaceIn;

 }

 /** {@inheritDoc} */

 public final void actionPerformed(final ActionEvent e) {

 if (this.controllerInterface.getTriage().getPatIndex() >= 0) {

 // only initiate dialog if a patient has been selected

 this.controllerInterface.getTriageFrame().resetTriageInputs();

 this.controllerInterface.getTriageFrame().displayTriageDialog();

 this.controllerInterface.getTriage().triagePatient();

 }

 }

}

Automated triage Interim Report

Page 67

VitalsConfirmListener
package triagecontroller;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

/**

 * The listener interface for receiving vitalsConfirm events.

 * The class that is interested in processing a vitalsConfirm

 * event implements this interface, and the object created

 * with that class is registered with a component using the

 * component's <code>addVitalsConfirmListener</code> method. When

 * the vitalsConfirm event occurs, that object's appropriate

 * method is invoked.

 *

 * @see VitalsConfirmEvent

 */

public class VitalsConfirmListener implements ActionListener {

 /** The access controller to this actionlistener. */

 private TriageController controllerInterface;

 /**

 * Instantiates a new vitals confirm listener.

 *

 * @param controllerInterfaceIn the controller interface

 */

 public VitalsConfirmListener(final TriageController

controllerInterfaceIn) {

 this.controllerInterface = controllerInterfaceIn;

 }

 /** {@inheritDoc} */

 public final void actionPerformed(final ActionEvent e) {

 // retrieve vital signs from GUI

 double[] vitals = this.controllerInterface

 .getTriageFrame().retrieveVitals();

 this.controllerInterface.getTriage().recieveVitals(vitals);

 this.controllerInterface.getTriage().processVitals();

 }

}

package triagecontroller;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

/**

 * The listener interface for receiving yes events.

 * The class that is interested in processing a yes

 * event implements this interface, and the object created

 * with that class is registered with a component using the

 * component's <code>addYesListener</code> method. When

 * the yes event occurs, that object's appropriate

 * method is invoked.

 *

 * @see YesEvent

 */

public class YesListener implements ActionListener {

Automated triage Interim Report

Page 68

 /** The access controller to this actionlistener. */

 private TriageController controllerInterface;

 /**

 * Instantiates a new yes listener.

 *

 * @param controllerInterfaceIn the controller interface

 */

 public YesListener(final TriageController controllerInterfaceIn) {

 this.controllerInterface = controllerInterfaceIn;

 }

 /** {@inheritDoc} */

 public final void actionPerformed(final ActionEvent e) {

 this.controllerInterface.getTriage().recieveAnswerYes();

 }

}

Automated triage Interim Report

Page 69

ESITriage
package triagemodel;

import java.util.ArrayList;

import java.util.Observable;

/**

 * The Class ESITriage. An interface class for the triagemodel

 * component to the view and controller.

 * Implements Observable interface, propogating updates of the

 * model to any classes registered as its observers.

 */

public class ESITriage extends Observable {

 /** The Constant KENNITALA_INDEX. */

 public static final int KENNITALA_INDEX = 0;

 /** The Constant NAME_INDEX. */

 public static final int NAME_INDEX = 1;

 /** The Constant AGE_INDEX. */

 public static final int AGE_INDEX = 2;

 /** The Constant COMPLAINTS_INDEX. */

 public static final int COMPLAINTS_INDEX = 3;

 /** The Constant MEDICAL_HISTORY_INDEX. */

 public static final int MEDICAL_HISTORY_INDEX = 4;

 /** The Constant MEDICATION_INDEX. */

 public static final int MEDICATION_INDEX = 5;

 /** The Constant AGEGROUP_INDEX. */

 public static final int AGEGROUP_INDEX = 6;

 /** The number of patient's recorded characteristics. */

 public static final int PATIENT_ATTRIBUTE_COUNT = 8;

 /** The number of patient's triage necessary vital signs. */

 public static final int VITAL_COUNT = 4;

 /** The untriaged patients. */

 private ArrayList<Patient> untriagedPatients;

 /** The pat index. */

 private int patIndex;

 /** The triage dialog. */

 private TriageDialog triageDialog;

 /**

 * Instantiates a new eSI triage.

 */

 public ESITriage() {

 initialize();

 }

 /**

 * Initialize.

 */

Automated triage Interim Report

Page 70

 final void initialize() {

 // no patient is selected initially

 patIndex = -1;

 untriagedPatients = new ArrayList<Patient>();

 triageDialog = null;

 // load patient data into the program

 updatePatients();

 }

 /**

 * Update patients.

 */

 void updatePatients() {

 // has not been implemented

 }

 /**

 * Populate.

 *

 * @param patientModel the patient model

 */

 public final void populate(final ResultSetTableModel patientModel) {

 // the number of untriaged patients

 int numberOfPatients = patientModel.getRowCount();

 if (numberOfPatients > 0) {

 Patient patient;

 String kennitala = "";

 String name = "";

 int age = 0;

 String complaints = "";

 String medicalHistory = "";

 String medication = "";

 String ageGroup = "";

 int index = 0; // the column index

 for (int i = 0; i < numberOfPatients; i++) {

 // acquire patient information

 kennitala = (String) (patientModel

 .getValueAt(i,

KENNITALA_INDEX));

 name = (String) (patientModel.getValueAt(i,

NAME_INDEX));

 // parsing the string to int

 age = Integer.parseInt((String)

 (patientModel

 .getValueAt(i,

AGE_INDEX)));

 complaints = (String) (patientModel

 .getValueAt(i,

COMPLAINTS_INDEX));

 medicalHistory = (String)

 (patientModel

 .getValueAt(i,

MEDICAL_HISTORY_INDEX));

 medication = (String)

 (patientModel

 .getValueAt(i,

MEDICATION_INDEX));

 ageGroup = (String)

 (patientModel

Automated triage Interim Report

Page 71

 .getValueAt(i,

AGEGROUP_INDEX));

 // create and store a patient

 patient = new Patient(kennitala, name, age,

 complaints,

medicalHistory,

 medication,

ageGroup);

 untriagedPatients.add(patient);

 }

 }

 }

 /**

 * Triage patient.

 */

 public final void triagePatient() {

 if (patIndex >= 0) {

 // only start the dialog if a patient is selected

 Patient selectedPatient =

untriagedPatients.get(patIndex);

 triageDialog = new TriageDialog(selectedPatient, this);

 this.broadCastUpdate();

 } else {

 // do nothing

 System.out.println("No patient selected!");

 }

 }

 // pass an answer to the currently active dialog

 /**

 * Recieve answer yes.

 */

 public final void recieveAnswerYes() {

 if (triageDialog != null) {

 // only recieve answer if a dialog has been initiated

 triageDialog.recieveAnswerYes();

 }

 }

 /**

 * Recieve answer no.

 */

 public final void recieveAnswerNo() {

 if (triageDialog != null) {

 // only recieve answer if a dialog has been initiated

 triageDialog.recieveAnswerNo();

 }

 }

 /**

 * Retrieve all vital sign states. Tells if any vitals are critical.

 *

 * @return the boolean[]

 */

 public final boolean[] retrieveVitalStates() {

 // fetch vital sign data from

 boolean[] vitalStates = new boolean[VITAL_COUNT];

 if (this.triageDialog != null) {

Automated triage Interim Report

Page 72

 vitalStates = this.triageDialog.retrieveVitalStates();

 }

 return vitalStates;

 }

 /**

 * Process vitals.

 */

 public final void processVitals() {

 if (this.triageDialog != null) {

 this.triageDialog.processVitals();

 }

 }

 /**

 * Recieve resource count.

 *

 * @param resourceCount the resource count

 */

 public final void recieveResourceCount(final int resourceCount) {

 triageDialog.processResourceCount(resourceCount);

 }

 /**

 * Recieve vitals.

 *

 * @param vitals the vitals

 */

 public final void recieveVitals(final double[] vitals) {

 this.triageDialog.recieveVitals(vitals);

 }

 /**

 * Broad cast update.

 */

 public final void broadCastUpdate() {

 this.setChanged();

 this.notifyObservers();

 }

 /**

 * Retrieve proposed score.

 *

 * @return the int

 */

 public final int retrieveProposedScore() {

 if (triageDialog != null) {

 int proposedScore =

triageDialog.getProposedTriageScore();

 return proposedScore;

 } else {

 return -1;

 }

 }

 /**

 * Retrieve selectet patient info.

 *

 * @return the string[]

 */

Automated triage Interim Report

Page 73

 public final String[] retrieveSelectetPatientInfo() {

 // fetch the currently selected patient

 if (patIndex >= 0) {

 // only fetch info if a patient has been selected

 Patient selectedPatient =

this.untriagedPatients.get(this.patIndex);

 String[] output = new String[PATIENT_ATTRIBUTE_COUNT];

 int attributeIndex = 0;

 output[attributeIndex++] = selectedPatient.getName();

 output[attributeIndex++] =

selectedPatient.getKennitala();

 output[attributeIndex++] = selectedPatient.getName();

 // integer converted into string

 output[attributeIndex++] = "" + selectedPatient.getAge();

 output[attributeIndex++] =

selectedPatient.getComplaints();

 output[attributeIndex++] =

selectedPatient.getMedicalHistory();

 output[attributeIndex++] =

selectedPatient.getMedication();

 output[attributeIndex++] = selectedPatient.getAgeGroup();

 return output;

 } else {

 // no patient has been selected

 String[] output = new String[PATIENT_ATTRIBUTE_COUNT];

 for (int i = 0; i < PATIENT_ATTRIBUTE_COUNT; i++) {

 // set output as undefined

 output[i] = "undefined";

 }

 return output;

 }

 }

 /**

 * Retrieve current phase.

 *

 * @return the int

 */

 public final int retrieveCurrentPhase() {

 if (triageDialog != null) {

 int phase = triageDialog.getCurrentPhase();

 return phase;

 } else {

 return -1;

 }

 }

 /**

 * Gets the pat index.

 *

 * @return the pat index

 */

 public final int getPatIndex() {

 return patIndex;

 }

 /**

 * Sets the pat index.

 *

 * @param patIndexIn the new pat index

Automated triage Interim Report

Page 74

 */

 public final void setPatIndex(final int patIndexIn) {

 this.patIndex = patIndexIn;

 System.out.println(untriagedPatients.get(patIndexIn));

 }

}

Automated triage Interim Report

Page 75

Patient
package triagemodel;

/**

 * The Class Patient. Reptresent a patient waiting in

 * ED to be triaged.

 */

public class Patient {

 /** a patient's ID. */

 private String kennitala;

 /** patient's full name. */

 private String name;

 /** patient's aquired. */

 private int age;

 /** patient's description of his ailment. */

 private String complaints;

 /** patient's previously registered medical occurrences. */

 private String medicalHistory;

 /** patient's current medication. */

 private String medication;

 /** patient's last measured heart rate. */

 private double heartRate;

 /** patient's last measured respiration rate. */

 private double respiratoryRate;

 /** patient's last measured oxygen saturation. */

 private double oxySat;

 /** patient's last measured body temperature. */

 private double temp;

 /** age group of the patient. */

 private String ageGroup;

 /**

 * Instantiates a new patient.

 *

 * @param kennitalaIn the kennitala input

 * @param nameIn the name input

 * @param ageIn the age input

 * @param complaintsIn the complaints input

 * @param medicalHistoryIn the medical history input

 * @param medicationIn the medication input

 * @param ageGroupIn the age group input

 */

 public Patient(final String kennitalaIn, final String nameIn,

 final int ageIn, final String complaintsIn,

 final String medicalHistoryIn, final String

medicationIn,

 final String ageGroupIn) {

 this.kennitala = kennitalaIn;

Automated triage Interim Report

Page 76

 this.name = nameIn;

 this.age = ageIn;

 this.complaints = complaintsIn;

 this.medicalHistory = medicalHistoryIn;

 this.medication = medicationIn;

 this.ageGroup = ageGroupIn;

 }

 /** {@inheritDoc} */

 public final String toString() {

 return "Patient [age=" + age + ", complaints=" + complaints

 + ", kennitala=" + kennitala + ", medicalHistory="

 + medicalHistory + ", medication=" + medication +

", name="

 + name + "]";

 }

 /** {@inheritDoc} */

 public final int hashCode() {

 final int prime = 31;

 int result = 1;

 result = prime * result;

 // check if a kennitala has been assigned

 if (kennitala == null) {

 result = result + 0;

 } else {

 result = result + kennitala.hashCode();

 }

 return result;

 }

 /** {@inheritDoc} */

 public final boolean equals(final Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 if (getClass() != obj.getClass()) {

 return false;

 }

 Patient other = (Patient) obj;

 if (kennitala == null) {

 if (other.kennitala != null) {

 return false;

 }

 } else if (!kennitala.equals(other.kennitala)) {

 return false;

 }

 return true;

 }

 /**

 * Gets the kennitala.

 *

 * @return the kennitala

 */

 public final String getKennitala() {

 return kennitala;

 }

Automated triage Interim Report

Page 77

 /**

 * Sets the kennitala.

 *

 * @param kennitalaIn the new kennitala

 */

 public final void setKennitala(final String kennitalaIn) {

 this.kennitala = kennitalaIn;

 }

 /**

 * Gets the name.

 *

 * @return the name

 */

 public final String getName() {

 return name;

 }

 /**

 * Sets the name.

 *

 * @param nameIn the new name

 */

 public final void setName(final String nameIn) {

 this.name = nameIn;

 }

 /**

 * Gets the age.

 *

 * @return the age

 */

 public final int getAge() {

 return age;

 }

 /**

 * Sets the age.

 *

 * @param ageIn the new age

 */

 public final void setAge(final int ageIn) {

 this.age = ageIn;

 }

 /**

 * Gets the complaints.

 *

 * @return the complaints

 */

 public final String getComplaints() {

 return complaints;

 }

 /**

 * Sets the complaints.

 *

 * @param complaintsIn the new complaints

 */

 public final void setComplaints(final String complaintsIn) {

Automated triage Interim Report

Page 78

 this.complaints = complaintsIn;

 }

 /**

 * Gets the medical history.

 *

 * @return the medical history

 */

 public final String getMedicalHistory() {

 return medicalHistory;

 }

 /**

 * Sets the medical history.

 *

 * @param medicalHistoryIn the new medical history

 */

 public final void setMedicalHistory(final String medicalHistoryIn) {

 this.medicalHistory = medicalHistoryIn;

 }

 /**

 * Gets the medication.

 *

 * @return the medication

 */

 public final String getMedication() {

 return medication;

 }

 /**

 * Sets the medication.

 *

 * @param medicationIn the new medication

 */

 public final void setMedication(final String medicationIn) {

 this.medication = medicationIn;

 }

 /**

 * Gets the heart rate.

 *

 * @return the heart rate

 */

 public final double getHeartRate() {

 return heartRate;

 }

 /**

 * Sets the heart rate.

 *

 * @param vitals the new heart rate

 */

 public final void setHeartRate(final double vitals) {

 this.heartRate = vitals;

 }

 /**

 * Gets the respiratory rate.

 *

 * @return the respiratory rate

Automated triage Interim Report

Page 79

 */

 public final double getRespiratoryRate() {

 return respiratoryRate;

 }

 /**

 * Sets the respiratory rate.

 *

 * @param vitals the new respiratory rate

 */

 public final void setRespiratoryRate(final double vitals) {

 this.respiratoryRate = vitals;

 }

 /**

 * Gets the oxy sat.

 *

 * @return the oxy sat

 */

 public final double getOxySat() {

 return oxySat;

 }

 /**

 * Sets the oxy sat.

 *

 * @param vitals the new oxy sat

 */

 public final void setOxySat(final double vitals) {

 this.oxySat = vitals;

 }

 /**

 * Gets the temp.

 *

 * @return the temp

 */

 public final double getTemp() {

 return temp;

 }

 /**

 * Sets the temp.

 *

 * @param vitals the new temp

 */

 public final void setTemp(final double vitals) {

 this.temp = vitals;

 }

 /**

 * Gets the age group.

 *

 * @return the age group

 */

 public final String getAgeGroup() {

 return ageGroup;

 }

 /**

 * Sets the age group.

Automated triage Interim Report

Page 80

 *

 * @param ageGroupIn the new age group

 */

 public final void setAgeGroup(final String ageGroupIn) {

 this.ageGroup = ageGroupIn;

 }

}

Automated triage Interim Report

Page 81

TriageDialog
package triagemodel;

/**

 * The Class TriageDialog. This is the implementation

 * of the Emergency Severity Index version 4 triage.

 */

public class TriageDialog {

 /** The number of considered vital signs in ESI. */

 public static final int VITAL_SIGN_COUNT = 4;

 /** The Constant OXY_SATURATION_LIMIT. */

 public static final double OXY_SATURATION_LIMIT = 0.92d;

 /** The Constant UNLIMITED_TEMPERATURE. */

 public static final double UNLIMITED_TEMPERATURE = Double.MAX_VALUE;

 /** The Constant HR_LIMIT_A. */

 public static final double HR_LIMIT_A = 180.0d;

 /** The Constant RR_LIMIT_A. */

 public static final double RR_LIMIT_A = 50.0d;

 /** The Constant TEMP_LIMIT_A. */

 public static final double TEMP_LIMIT_A = 38.0d;

 /** The Constant HR_LIMIT_B. */

 public static final double HR_LIMIT_B = 180.0d;

 /** The Constant RR_LIMIT_B. */

 public static final double RR_LIMIT_B = 50.0d;

 /** The Constant TEMP_LIMIT_B. */

 public static final double TEMP_LIMIT_B = 38.0d;

 /** The Constant HR_LIMIT_C. */

 public static final double HR_LIMIT_C = 160.0d;

 /** The Constant RR_LIMIT_C. */

 public static final double RR_LIMIT_C = 40.0d;

 /** The Constant TEMP_LIMIT_C. */

 public static final double TEMP_LIMIT_C = 39.0d;

 /** The Constant HR_LIMIT_D. */

 public static final double HR_LIMIT_D = 140.0d;

 /** The Constant RR_LIMIT_D. */

 public static final double RR_LIMIT_D = 30.0d;

 /** The Constant TEMP_LIMIT_D. */

 public static final double TEMP_LIMIT_D = Double.MAX_VALUE;

 /** The Constant HR_LIMIT_E. */

 public static final double HR_LIMIT_E = 100.0d;

 /** The Constant RR_LIMIT_E. */

 public static final double RR_LIMIT_E = 20.0d;

Automated triage Interim Report

Page 82

 /** The Constant TEMP_LIMIT_E. */

 public static final double TEMP_LIMIT_E = Double.MAX_VALUE;

 /** ESI category 1 - highest priority. */

 public static final int ESI_CATEGORY_1 = 1;

 /** ESI category 2. */

 public static final int ESI_CATEGORY_2 = 2;

 /** ESI category 3. */

 public static final int ESI_CATEGORY_3 = 3;

 /** ESI category 4. */

 public static final int ESI_CATEGORY_4 = 4;

 /** ESI category 5 - lowest priority. */

 public static final int ESI_CATEGORY_5 = 5;

 /** ESI phase A - is patient dying. */

 public static final int ESI_PHASE_A = 1;

 /** ESI phase B - is patient in high risk. */

 public static final int ESI_PHASE_B = 2;

 /** ESI phase C - how many resources. */

 public static final int ESI_PHASE_C = 3;

 /** ESI phase D - any critical vitals. */

 public static final int ESI_PHASE_D = 4;

 /** the patient being triaged. */

 private Patient patient = null;

 /** current phase of the triage algorithm. */

 private int currentPhase = 1;

 /** the triage management class. */

 private ESITriage triageModel = null;

 /** triage score proposed by the ESI algorithm. */

 private int proposedTriageScore = -1;

 /** allocated triage score. */

 private int triageScore = -1;

 /** number of resources needed for treatment. */

 private int resourceCount = -1;

 /** heart rate danger zone limit. */

 private double heartRateLimit;

 /** respiration rate danger zone limit. */

 private double respiratoryRateLimit;

 /** oxygen saturation danger zone limit. */

 private double oxySatLimit;

 /** body temperature danger zone limit. */

 private double tempLimit;

 /** The heart rate critical value. */

Automated triage Interim Report

Page 83

 private boolean heartRateCritical = false;

 /** The respiratory rate critical value. */

 private boolean respiratoryRateCritical = false;

 /** The oxy sat critical value. */

 private boolean oxySatCritical = false;

 /** The temp critical value. */

 private boolean tempCritical = false;

 /**

 * Instantiates a new triage dialog.

 *

 * @param patientIn the patient

 * @param triageModelIn the triage model

 */

 public TriageDialog(final Patient patientIn,

 final ESITriage triageModelIn) {

 this.patient = patientIn;

 this.triageModel = triageModelIn;

 this.initVitalsignLimits();

 }

 /**

 * Aquires input from the gui that is relevant to the current phase.

 *

 * @return true, if successful

 */

 final boolean fetchInput() {

 boolean success = false;

 return success;

 }

 /**

 * Execute phase1, is the patient dying?.

 */

 final void executePhase1() {

 if (this.currentPhase == 1) {

 // set the proposed score as the highest triage level

 proposedTriageScore = 1;

 triageModel.broadCastUpdate();

 }

 }

 /**

 * Initiates the critical vital sign limits.

 */

 private void initVitalsignLimits() {

 // age group of the patient

 String ageGroup = this.patient.getAgeGroup();

 if (ageGroup.equalsIgnoreCase("A")) {

 //patient is 0 - 28 days old

 /*

 * heart rate danger zone limit

 * respiration rate danger zone limit

 * oxygen saturation danger zone limit

 * body temperature danger zone limit

 */

Automated triage Interim Report

Page 84

 heartRateLimit = HR_LIMIT_A;

 respiratoryRateLimit = RR_LIMIT_A;

 oxySatLimit = OXY_SATURATION_LIMIT;

 tempLimit = TEMP_LIMIT_A;

 } else if (ageGroup.equalsIgnoreCase("B")) {

 // patient is 1 - 3 months old

 /*

 * heart rate danger zone limit

 * respiration rate danger zone limit

 * oxygen saturation danger zone limit

 * body temperature danger zone limit

 */

 heartRateLimit = HR_LIMIT_B;

 respiratoryRateLimit = RR_LIMIT_B;

 oxySatLimit = OXY_SATURATION_LIMIT;

 tempLimit = TEMP_LIMIT_B;

 } else if (ageGroup.equalsIgnoreCase("C")) {

 // patient is 3 months - 3 years old

 /*

 * heart rate danger zone limit

 * respiration rate danger zone limit

 * oxygen saturation danger zone limit

 * body temperature danger zone limit

 */

 heartRateLimit = HR_LIMIT_C;

 respiratoryRateLimit = RR_LIMIT_C;

 oxySatLimit = OXY_SATURATION_LIMIT;

 tempLimit = TEMP_LIMIT_C;

 } else if (ageGroup.equalsIgnoreCase("D")) {

 // patient is 3-8 years old

 /*

 * heart rate danger zone limit

 * respiration rate danger zone limit

 * oxygen saturation danger zone limit

 * body temperature not a concern in this age group

 */

 heartRateLimit = HR_LIMIT_D;

 respiratoryRateLimit = RR_LIMIT_D;

 oxySatLimit = OXY_SATURATION_LIMIT;

 tempLimit = TEMP_LIMIT_D;

 } else if (ageGroup.equalsIgnoreCase("E")) {

 // patient is older than 8 years old

 /*

 * heart rate danger zone limit

 * respiration rate danger zone limit

 * oxygen saturation danger zone limit

 * body temperature not a concern in this age group

 */

 heartRateLimit = HR_LIMIT_E;

 respiratoryRateLimit = RR_LIMIT_E;

 oxySatLimit = OXY_SATURATION_LIMIT;

 tempLimit = TEMP_LIMIT_E;

 }

 }

 /**

 * Recieve answer yes.

Automated triage Interim Report

Page 85

 */

 final void recieveAnswerYes() {

 if (currentPhase == 1) {

 // the patient needs an immediate life saving intervention

 proposedTriageScore = 1;

 this.triageModel.broadCastUpdate();

 } else if (currentPhase == 2) {

 // the patient is in a high risk situation

 proposedTriageScore = 2;

 this.triageModel.broadCastUpdate();

 }

 }

 /**

 * Recieve answer no.

 */

 public final void recieveAnswerNo() {

 if (currentPhase == ESI_PHASE_A) {

 // the patient does not need immediate life saving

intervention

 currentPhase = ESI_PHASE_B;

 this.triageModel.broadCastUpdate();

 } else if (currentPhase == ESI_PHASE_B) {

 // the patient is not in a high risk situation

 currentPhase = ESI_PHASE_C;

 this.triageModel.broadCastUpdate();

 }

 }

 /**

 * Process resource count.

 *

 * @param resourceCountIn the resource count

 */

 public final void processResourceCount(final int resourceCountIn) {

 this.resourceCount = resourceCountIn;

 if (this.currentPhase == ESI_PHASE_C) {

 // we are, correctly, in the third phase

 if (this.resourceCount == 0) {

 this.proposedTriageScore = ESI_CATEGORY_5;

 this.triageModel.broadCastUpdate();

 } else if (this.resourceCount == 1) {

 this.proposedTriageScore = ESI_CATEGORY_4;

 this.triageModel.broadCastUpdate();

 } else if (this.resourceCount >= 2) {

 this.currentPhase = ESI_PHASE_D;

 this.triageModel.broadCastUpdate();

 }

 }

 }

 /**

 * Recieve vitals.

 *

 * @param vitals the vitals

 */

 public final void recieveVitals(final double[] vitals) {

 int vitalIndex = 0; // index iterating through the input

vital columns

 // assign vital signs to patient

 this.patient.setHeartRate(vitals[vitalIndex++]);

Automated triage Interim Report

Page 86

 this.patient.setRespiratoryRate(vitals[vitalIndex++]);

 this.patient.setOxySat(vitals[vitalIndex++]);

 this.patient.setTemp(vitals[vitalIndex++]);

 this.verifyVitals();

 this.triageModel.broadCastUpdate();

 }

 /**

 * Retrieve vital states.

 *

 * @return the boolean[]

 */

 public final boolean[] retrieveVitalStates() {

 int vitalIndex = 0; // index iterating through the input

vital columns

 boolean[] vitalStates = new boolean[VITAL_SIGN_COUNT];

 vitalStates[vitalIndex++] = this.heartRateCritical;

 vitalStates[vitalIndex++] = this.respiratoryRateCritical;

 vitalStates[vitalIndex++] = this.oxySatCritical;

 vitalStates[vitalIndex++] = this.tempCritical;

 return vitalStates;

 }

 /**

 * Process vitals.

 */

 public final void processVitals() {

 boolean isCritical = false;

 if (this.currentPhase == ESI_PHASE_D) {

 // it is the phase conserning the vital signs (phase 4)

 this.verifyVitals();

 System.out.println("hr: " + patient.getHeartRate());

 System.out.println("rr: " +

patient.getRespiratoryRate());

 System.out.println("oxysat: " + patient.getOxySat());

 System.out.println("temp: " + patient.getTemp());

 // are there any critical vital signs?

 isCritical = (this.heartRateCritical ||

this.respiratoryRateCritical

 || this.oxySatCritical ||

this.tempCritical);

 if (isCritical) {

 // a critical vital sign - nurse should consider

uptriage

 this.proposedTriageScore = ESI_CATEGORY_2;

 } else {

 // no vitals critical

 this.proposedTriageScore = ESI_CATEGORY_3;

 }

 this.triageModel.broadCastUpdate();

 }

 }

 /**

 * Verify vitals.

 */

 public final void verifyVitals() {

Automated triage Interim Report

Page 87

 double patientHeartRate = this.patient.getHeartRate();

 double patentRespiratoryRate =

this.patient.getRespiratoryRate();

 double patientOxySat = this.patient.getOxySat();

 double patientTemp = this.patient.getTemp();

 // test if any vitals are lower than critical limit

 heartRateCritical = (patientHeartRate >= this.heartRateLimit);

 respiratoryRateCritical = (patentRespiratoryRate

 >=

this.respiratoryRateLimit);

 oxySatCritical = (patientOxySat < this.oxySatLimit);

 tempCritical = (patientTemp >= this.tempLimit);

 }

 /**

 * Send warning.

 */

 void sendWarning() {

 }

 /**

 * Send vital sign warning.

 */

 void sendVitalSignWarning() {

 }

 /**

 * Gets the proposed triage score.

 *

 * @return the proposed triage score

 */

 public final int getProposedTriageScore() {

 return proposedTriageScore;

 }

 /**

 * Sets the proposed triage score.

 *

 * @param proposedTriageScoreIn the new proposed triage score

 */

 public final void setProposedTriageScore(final int

proposedTriageScoreIn) {

 this.proposedTriageScore = proposedTriageScoreIn;

 }

 /**

 * Gets the triage score.

 *

 * @return the triage score

 */

 public final int getTriageScore() {

 return triageScore;

 }

 /**

 * Sets the triage score.

 *

 * @param triageScoreIn the new triage score

Automated triage Interim Report

Page 88

 */

 public final void setTriageScore(final int triageScoreIn) {

 this.triageScore = triageScoreIn;

 }

 /**

 * Gets the current phase.

 *

 * @return the current phase

 */

 public final int getCurrentPhase() {

 return currentPhase;

 }

 /**

 * Sets the current phase.

 *

 * @param currentPhaseIn the new current phase

 */

 public final void setCurrentPhase(final int currentPhaseIn) {

 this.currentPhase = currentPhaseIn;

 }

}

Automated triage Interim Report

Page 89

package triageview;

import java.awt.BorderLayout;

import java.awt.CardLayout;

import java.awt.Component;

import java.awt.FlowLayout;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

import java.awt.GridLayout;

import java.awt.Insets;

import java.awt.event.ActionEvent;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.Observable;

import java.util.Observer;

import javax.swing.AbstractAction;

import javax.swing.BorderFactory;

import javax.swing.ButtonGroup;

import javax.swing.GroupLayout;

import javax.swing.JButton;

import javax.swing.JComponent;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JRadioButton;

import javax.swing.JScrollBar;

import javax.swing.JScrollPane;

import javax.swing.JSpinner;

import javax.swing.JTabbedPane;

import javax.swing.JTable;

import javax.swing.JTextArea;

import javax.swing.JTextPane;

import javax.swing.JToggleButton;

import javax.swing.JToolBar;

import javax.swing.LayoutStyle;

import javax.swing.ListSelectionModel;

import javax.swing.SpinnerListModel;

import javax.swing.SpinnerNumberModel;

import javax.swing.SwingConstants;

import javax.swing.WindowConstants;

import javax.swing.border.BevelBorder;

import javax.swing.border.LineBorder;

import javax.swing.border.SoftBevelBorder;

import javax.swing.table.DefaultTableModel;

import javax.swing.table.TableModel;

import javax.swing.SwingUtilities;

import triagecontroller.TableSelectionListener;

import triagecontroller.TriageController;

import triagemodel.ESITriage;

import triagemodel.ResultSetTableModel;

import triagemodel.ResultSetTableModelFactory;

Automated triage Interim Report

Page 90

TriageFrame

/**

* This code was edited or generated using CloudGarden's Jigloo

* SWT/Swing GUI Builder, which is free for non-commercial

* use. If Jigloo is being used commercially (ie, by a corporation,

* company or business for any purpose whatever) then you

* should purchase a license for each developer using Jigloo.

* Please visit www.cloudgarden.com for details.

* Use of Jigloo implies acceptance of these licensing terms.

* A COMMERCIAL LICENSE HAS NOT BEEN PURCHASED FOR

* THIS MACHINE, SO JIGLOO OR THIS CODE CANNOT BE USED

* LEGALLY FOR ANY CORPORATE OR COMMERCIAL PURPOSE.

*/

public class TriageFrame extends javax.swing.JFrame implements Observer{

 {

 //Set Look & Feel

 try {

 javax.swing.UIManager.setLookAndFeel("com.jgoodies.looks.plastic.Plas

tic3DLookAndFeel");

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

 private JScrollPane jScrollPane1;

 private JButton triageButton;

 private JScrollPane jScrollPane2;

 private JPanel medicalStatePane;

 private JPanel patientInfoPane;

 private JLabel jLabel3;

 private JLabel jLabel2;

 private JLabel jLabel1;

 private JLabel warningHR;

 private JSpinner temSpinner;

 private JSpinner HRSpinner;

 private JSpinner RRSpinner;

 private JSpinner OSSpinner;

 private JLabel medHistoryLabel;

 private JLabel complaintLabel;

 private JLabel ageLabel;

 private JLabel ktLabel;

 private JLabel nameLabel;

 private JPanel messagePane;

 private JButton jButton4;

 private JButton treatButton;

 private JButton jButton2;

 private JToolBar jToolBar1;

 private JTable jTable1;

 private JPanel jPanel2;

 private JToolBar triageToolBar;

 private JTabbedPane jTabbedPane1;

 private JPanel jPanel1;

 private JTable patientTable;

 // the DB attributes

 private static final String driver = "org.gjt.mm.mysql.Driver";

Automated triage Interim Report

Page 91

 private static final String url =

"jdbc:mysql://localhost/medical_prototype";

 private static final String username = "root";

 private static final String password = "localhost1";

 private static Connection con;

 private JLabel medicationLabel;

 private JDialog jDialog1;

 private JLabel vitalSignLabel;

 private JLabel HRLabel;

 private JLabel RRLabel;

 private JLabel OSLabel;

 private JLabel tempLabel;

 private JTextArea jTextArea3;

 private JTextArea jTextArea2;

 private JTextArea jTextArea1;

 private JTextArea phase1Explanation;

 private JButton vitalSignConfirmButton;

 private JButton confirmResourcesButton;

 private JRadioButton twoPlusRadioButton;

 private JRadioButton oneRadioButton;

 private JRadioButton noneRadioButton;

 private ButtonGroup resourceButtonGroup;

 private JButton jButton9;

 private JButton jButton8;

 private JLabel phase4Title;

 private JPanel phase4Panel;

 private JLabel phase3Title;

 private JPanel phase3Panel;

 private JLabel phase2Title;

 private JPanel phase2Panel;

 private JLabel phase1Title;

 private JPanel phase1Panel;

 private JDialog esiTriageDialogWindow;

 private JButton jButton3;

 private JButton jButton1;

 private static Statement st;

 private static ResultSet result;

 private static ResultSetMetaData metadata; // Additional

information about the results

 private static ResultSetTableModelFactory factory;

 private static String query = "select * from patient_record";

 private ESITriage triage;

 private TriageController triageController;

 private static String PHASE_1_DIALOG = "phase1Dialog";

 private static String PHASE_2_DIALOG = "phase2Dialog";

 private static String PHASE_3_DIALOG = "phase3Dialog";

 private static String PHASE_4_DIALOG = "phase4Dialog";

 /**

 * Auto-generated main method to display this JFrame

 */

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 ESITriage triage = new ESITriage();

 TriageFrame inst = new TriageFrame(triage);

 TriageController controller = new

TriageController(inst, triage);

 inst.setController(controller);

Automated triage Interim Report

Page 92

 try{

 factory = new ResultSetTableModelFactory(

 driver, url, username, password);

 }

 catch(Exception e){

 System.out.println(e);

 }

 try {

 // This is the crux of it all. Use the

factory object

 // to obtain a TableModel object for the query

results

 // and display that model in the JTable

component.

 triage.addObserver(inst);

 ResultSetTableModel model =

factory.getResultSetTableModel(query);

 inst.jTable1.setModel(model);

 ListSelectionModel listSelectionModel =

inst.jTable1.getSelectionModel();

 listSelectionModel.addListSelectionListener(controller.getSelectionLi

stener());

 triage.populate(model);

 // We're done, so clear the feedback message

 }

 catch (SQLException e) {

 System.out.println(e);

 }

 inst.setLocationRelativeTo(null);

 inst.setVisible(true);

 }

 });

 }

 public TriageFrame(ESITriage triage) {

 super();

 this.triage = triage;

 esiTriageDialogWindow = this.getJDialog1();

 jDialog1.setTitle("ESI triage");

 jDialog1.setTitle("ESI Triage");

 initGUI();

 }

 private void initGUI() {

 try {

 GroupLayout thisLayout = new

GroupLayout((JComponent)getContentPane());

 getContentPane().setLayout(thisLayout);

 setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

 this.setTitle("Automated ESI triage");

 {

 jTabbedPane1 = new JTabbedPane();

 {

 jPanel2 = new JPanel();

 jTabbedPane1.addTab("Untriaged", null,

jPanel2, null);

Automated triage Interim Report

Page 93

 GroupLayout jPanel2Layout = new

GroupLayout((JComponent)jPanel2);

 jPanel2.setPreferredSize(new

java.awt.Dimension(740, 340));

 jPanel2.setLayout(jPanel2Layout);

 {

 jScrollPane2 = new JScrollPane();

 {

 TableModel jTable1Model =

 new DefaultTableModel(

 new String[][] {

{ "One", "Two" }, { "Three", "Four" } },

 new String[] {

"Column 1", "Column 2" });

 jTable1 = new JTable();

 jScrollPane2.setViewportView(jTable1);

 jTable1.setModel(jTable1Model);

 }

 }

 {

 jToolBar1 = new JToolBar();

 {

 jButton2 = new JButton();

 jToolBar1.add(jButton2);

 jButton2.setText("Triage");

 }

 {

 jButton4 = new JButton();

 jToolBar1.add(jButton4);

 jButton4.setText("Remove");

 }

 }

 jPanel2Layout.setVerticalGroup(jPanel2Layout.createSequentialGroup()

 .addContainerGap()

 .addComponent(jToolBar1,

GroupLayout.PREFERRED_SIZE, 25, GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.UNRELATED)

 .addComponent(jScrollPane2, 0, 267,

Short.MAX_VALUE)

 .addContainerGap());

 jPanel2Layout.setHorizontalGroup(jPanel2Layout.createSequentialGroup(

)

 .addContainerGap()

 .addGroup(jPanel2Layout.createParallelGroup()

 .addComponent(jScrollPane2,

GroupLayout.Alignment.LEADING, 0, 621, Short.MAX_VALUE)

 .addComponent(jToolBar1,

GroupLayout.Alignment.LEADING, 0, 621, Short.MAX_VALUE))

 .addContainerGap());

 }

 {

 jPanel1 = new JPanel();

 jTabbedPane1.addTab("Triaged", null, jPanel1,

null);

Automated triage Interim Report

Page 94

 GroupLayout jPanel1Layout = new

GroupLayout((JComponent)jPanel1);

 jPanel1.setLayout(jPanel1Layout);

 jPanel1.setPreferredSize(new

java.awt.Dimension(645, 147));

 {

 jScrollPane1 = new JScrollPane();

 jScrollPane1.setRequestFocusEnabled(false);

 {

 TableModel patientTableModel =

 new DefaultTableModel(

 new String[][] {

{ "One", "Two" }, { "Three", "Four" } },

 new String[] {

"Column 1", "Column 2" });

 patientTable = new JTable();

 patientTable.setLayout(null);

 jScrollPane1.setViewportView(patientTable);

 patientTable.setModel(patientTableModel);

 patientTable.setPreferredSize(new

java.awt.Dimension(618, 32));

 patientTable.getTableHeader().setBounds(0, 0, 618, 20);

 }

 }

 {

 triageToolBar = new JToolBar();

 {

 triageButton = new JButton();

 triageToolBar.add(triageButton);

 triageButton.setText("Retriage");

 }

 {

 treatButton = new JButton();

 triageToolBar.add(treatButton);

 treatButton.setText("Remove");

 }

 }

 jPanel1Layout.setHorizontalGroup(jPanel1Layout.createSequentialGroup(

)

 .addContainerGap()

 .addGroup(jPanel1Layout.createParallelGroup()

 .addComponent(jScrollPane1, GroupLayout.Alignment.LEADING, 0, 621,

Short.MAX_VALUE)

 .addComponent(triageToolBar, GroupLayout.Alignment.LEADING, 0, 621,

Short.MAX_VALUE))

 .addContainerGap());

 jPanel1Layout.setVerticalGroup(jPanel1Layout.createSequentialGroup()

 .addContainerGap()

 .addComponent(triageToolBar,

GroupLayout.PREFERRED_SIZE, 25, GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.UNRELATED)

Automated triage Interim Report

Page 95

 .addComponent(jScrollPane1, 0,

279, Short.MAX_VALUE)

 .addContainerGap());

 }

 }

 thisLayout.setVerticalGroup(thisLayout.createSequentialGroup()

 .addComponent(jTabbedPane1, 0, 462,

Short.MAX_VALUE)

 .addContainerGap());

 thisLayout.setHorizontalGroup(thisLayout.createSequentialGroup()

 .addContainerGap()

 .addComponent(jTabbedPane1, 0, 753,

Short.MAX_VALUE)

 .addContainerGap());

 pack();

 pack();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 private JPanel getMedicalStatePane() {

 if(medicalStatePane == null) {

 medicalStatePane = new JPanel();

 GroupLayout medicalStatePaneLayout = new

GroupLayout((JComponent)medicalStatePane);

 medicalStatePane.setLayout(medicalStatePaneLayout);

 medicalStatePane.setBorder(BorderFactory.createTitledBorder("Patient

Medical Information"));

 medicalStatePaneLayout.setHorizontalGroup(medicalStatePaneLayout.crea

teSequentialGroup()

 .addGap(7)

 .addGroup(medicalStatePaneLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

medicalStatePaneLayout.createSequentialGroup()

 .addComponent(getMedicationLabel(), 0, 363,

Short.MAX_VALUE)

 .addGap(13))

 .addComponent(getMedHistoryLabel(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 376,

GroupLayout.PREFERRED_SIZE)

 .addComponent(getComplaintLabel(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 376,

GroupLayout.PREFERRED_SIZE)));

 medicalStatePaneLayout.linkSize(SwingConstants.HORIZONTAL, new

Component[] {getMedHistoryLabel(), getComplaintLabel()});

 medicalStatePaneLayout.setVerticalGroup(medicalStatePaneLayout.create

SequentialGroup()

 .addContainerGap()

 .addComponent(getComplaintLabel(),

GroupLayout.PREFERRED_SIZE, 26, GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

Automated triage Interim Report

Page 96

 .addComponent(getMedHistoryLabel(),

GroupLayout.PREFERRED_SIZE, 22, GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getMedicationLabel(),

GroupLayout.PREFERRED_SIZE, 31, GroupLayout.PREFERRED_SIZE)

 .addContainerGap(81, Short.MAX_VALUE));

 }

 return medicalStatePane;

 }

 private JPanel getMessagePane() {

 if(messagePane == null) {

 messagePane = new JPanel();

 CardLayout messagePaneLayout = new CardLayout();

 messagePane.setLayout(messagePaneLayout);

 messagePane.setBorder(BorderFactory.createTitledBorder("ESI Triage

Algorithm"));

 messagePane.setVerifyInputWhenFocusTarget(false);

 messagePane.add(getPhase1Panel(), PHASE_1_DIALOG);

 messagePane.add(getPhase2Panel(), PHASE_2_DIALOG);

 messagePane.add(getPhase3Panel(), PHASE_3_DIALOG);

 messagePane.add(getPhase4Panel(), PHASE_4_DIALOG);

 }

 return messagePane;

 }

 private JLabel getNameLabel() {

 if(nameLabel == null) {

 nameLabel = new JLabel();

 nameLabel.setText("Nafn:");

 }

 return nameLabel;

 }

 private JLabel getKtLabel() {

 if(ktLabel == null) {

 ktLabel = new JLabel();

 ktLabel.setText("Kennitala:");

 }

 return ktLabel;

 }

 private JLabel getAgeLabel() {

 if(ageLabel == null) {

 ageLabel = new JLabel();

 ageLabel.setText("Age");

 }

 return ageLabel;

 }

 private JLabel getComplaintLabel() {

 if(complaintLabel == null) {

 complaintLabel = new JLabel();

 complaintLabel.setText("Patient complaint:");

 }

 return complaintLabel;

 }

Automated triage Interim Report

Page 97

 private JLabel getMedHistoryLabel() {

 if(medHistoryLabel == null) {

 medHistoryLabel = new JLabel();

 medHistoryLabel.setText("Medical history:");

 }

 return medHistoryLabel;

 }

 private JSpinner getOSSpinner() {

 if(OSSpinner == null) {

 SpinnerNumberModel osMdel = new SpinnerNumberModel(0.0d,

0.0d, 100.0d, 0.1d);

 OSSpinner = new JSpinner();

 OSSpinner.setModel(osMdel);

 }

 return OSSpinner;

 }

 private JSpinner getRRSpinner() {

 if(RRSpinner == null) {

 SpinnerNumberModel rrMdel = new SpinnerNumberModel(0.0d,

0.0d, 100.0d, 1.0d);

 RRSpinner = new JSpinner();

 RRSpinner.setModel(rrMdel);

 }

 return RRSpinner;

 }

 private JSpinner getHRSpinner() {

 if(HRSpinner == null) {

 SpinnerNumberModel hrMdel = new SpinnerNumberModel(0.0d,

0.0d, 200.0d, 1.0d);

 HRSpinner = new JSpinner();

 HRSpinner.setModel(hrMdel);

 }

 return HRSpinner;

 }

 private JSpinner getTemSpinner() {

 if(temSpinner == null) {

 SpinnerNumberModel tempMdel = new

SpinnerNumberModel(0.0d, 0.0d, 100.0d, 0.1d);

 temSpinner = new JSpinner();

 temSpinner.setModel(tempMdel);

 temSpinner.setEnabled(false);

 }

 return temSpinner;

 }

 private JLabel getWarningHR() {

 if(warningHR == null) {

 warningHR = new JLabel();

 warningHR.setBorder(BorderFactory.createBevelBorder(BevelBorder.LOWER

ED));

 }

 return warningHR;

 }

 private JLabel getJLabel1() {

Automated triage Interim Report

Page 98

 if(jLabel1 == null) {

 jLabel1 = new JLabel();

 jLabel1.setBorder(BorderFactory.createBevelBorder(BevelBorder.LOWERED

));

 }

 return jLabel1;

 }

 private JLabel getJLabel2() {

 if(jLabel2 == null) {

 jLabel2 = new JLabel();

 jLabel2.setBorder(BorderFactory.createBevelBorder(BevelBorder.LOWERED

));

 }

 return jLabel2;

 }

 private JLabel getJLabel3() {

 if(jLabel3 == null) {

 jLabel3 = new JLabel();

 jLabel3.setBorder(BorderFactory.createBevelBorder(BevelBorder.LOWERED

));

 }

 return jLabel3;

 }

 private JButton getJButton1() {

 if(jButton1 == null) {

 jButton1 = new JButton();

 jButton1.setText("Yes");

 }

 return jButton1;

 }

 private JButton getJButton3() {

 if(jButton3 == null) {

 jButton3 = new JButton();

 jButton3.setText("No");

 }

 return jButton3;

 }

 public void setController(TriageController controller){

 this.triageController = controller;

 this.jButton2.addActionListener(controller.getTriageInitListener());

 this.getJButton1().addActionListener(controller.getYesListener());

 this.getJButton3().addActionListener(controller.getNoListener());

 this.getJButton8().addActionListener(controller.getYesListener());

 this.getJButton9().addActionListener(controller.getNoListener());

Automated triage Interim Report

Page 99

 this.getConfirmResourcesButton().addActionListener(controller.getReso

urceListener());

 this.getNoneRadioButton().addActionListener(controller.getRadioButton

Listener());

 this.getOneRadioButton().addActionListener(controller.getRadioButtonL

istener());

 this.getTwoPlusRadioButton().addActionListener(controller.getRadioBut

tonListener());

 this.getVitalSignConfirmButton().addActionListener(controller.getConf

irmListener());

 }

 public double[] retrieveVitals(){

 double[] vitals = new double[4]; // the patient vital sign

user input

 SpinnerNumberModel numberModel; // value model of the

spinner gui components

 double hrValue = 0.0d;

 double rrValue = 0.0d;

 double oxSatValue = 0.0d;

 double tempValue = 0.0d;

 // retrieve heart rate value from user input

 numberModel =

(SpinnerNumberModel)(this.getHRSpinner().getModel());

 hrValue = ((Double)(numberModel.getValue())).doubleValue();

 vitals[0] = hrValue;

 // retrieve respiration rate value from user input

 numberModel =

(SpinnerNumberModel)(this.getRRSpinner().getModel());

 rrValue = ((Double)(numberModel.getValue())).doubleValue();

 vitals[1] = rrValue;

 // retrieve oxygen saturation ratio from user input

 numberModel =

(SpinnerNumberModel)(this.getOSSpinner().getModel());

 oxSatValue = ((Double)(numberModel.getValue())).doubleValue();

 vitals[2] = oxSatValue;

 // retrieve temperature value from user input

 numberModel =

(SpinnerNumberModel)(this.getTemSpinner().getModel());

 tempValue = ((Double)(numberModel.getValue())).doubleValue();

 vitals[3] = tempValue;

 return vitals;

 }

 public void displayTriageDialog() {

 displayPatientInformation();

 this.esiTriageDialogWindow.pack();

 this.esiTriageDialogWindow.setVisible(true);

 }

 private void displayPatientInformation(){

Automated triage Interim Report

Page 100

 String[] currentPatientInfo =

this.triage.retrieveSelectetPatientInfo();

 nameLabel.setText("Name: " + currentPatientInfo[0]);

 ktLabel.setText("Kennitala: " + currentPatientInfo[1]);

 //genderLabel.setText("Gender: " + currentPatientInfo[2]);

 ageLabel.setText("Age: " + currentPatientInfo[3]);

 complaintLabel.setText("Complaint: " + currentPatientInfo[4]);

 medHistoryLabel.setText("Medical History: " +

currentPatientInfo[5]);

 medicationLabel.setText("Medication: " +

currentPatientInfo[6]);

 }

 public void update(Observable o, Object arg) {

 int proposedScore = triage.retrieveProposedScore();

 int esiPhase = triage.retrieveCurrentPhase();

 System.out.println("proposed score: " + proposedScore);

 displayPatientInformation();

 if(proposedScore == -1){

 System.out.println("esi phase: " + esiPhase);

 // display appropriate gui components for a given phase

 CardLayout layout =

(CardLayout)(this.messagePane.getLayout());

 switch (esiPhase) {

 case 1:

 layout.show(this.messagePane, PHASE_1_DIALOG);

 break;

 case 2:

 layout.show(this.messagePane, PHASE_2_DIALOG);

 break;

 case 3:

 layout.show(this.messagePane, PHASE_3_DIALOG);

 break;

 case 4:

 layout.show(this.messagePane, PHASE_4_DIALOG);

 temperatureCheck(); // enable/disable

temperature input

 break;

 default:

 // invalid phase value

 break;

 }

 }

 else {

 int triageScore = this.triage.retrieveProposedScore();

 switch(triageScore){

 case 1:

 JOptionPane.showMessageDialog(this, "ESI-1");

 this.esiTriageDialogWindow.setVisible(false);

 break;

 case 2:

 if(esiPhase == 4){

 Object[] options = {"Upgrade to ESI-2",

 "Keep at ESI-3"};

 int selected =

JOptionPane.showOptionDialog(this,

 "One or more vital sign is

critical!",

 "Critical vital sign",

 JOptionPane.YES_NO_OPTION,

 JOptionPane.QUESTION_MESSAGE,

Automated triage Interim Report

Page 101

 null, //do not use a

custom Icon

 options, //the titles of

buttons

 options[0]); //default button

title

 if(selected == 0){

 // chose to upgradet the triage

level

 JOptionPane.showMessageDialog(this, "ESI-2");

 this.esiTriageDialogWindow.setVisible(false);

 }

 else if(selected == 1){

 // chose to keep current triage

level

 JOptionPane.showMessageDialog(this, "ESI-3");

 this.esiTriageDialogWindow.setVisible(false);

 }

 }

 else{

 JOptionPane.showMessageDialog(this,

"ESI-2");

 this.esiTriageDialogWindow.setVisible(false);

 }

 break;

 case 3:

 JOptionPane.showMessageDialog(this, "ESI-3");

 this.esiTriageDialogWindow.setVisible(false);

 break;

 case 4:

 JOptionPane.showMessageDialog(this, "ESI-4");

 this.esiTriageDialogWindow.setVisible(false);

 break;

 case 5:

 JOptionPane.showMessageDialog(this, "ESI-5");

 this.esiTriageDialogWindow.setVisible(false);

 break;

 }

 // ask for confirmation of the triage score

 // then pass the answer to the model

 }

 }

 public void resetTriageInputs(){

 // resetting vital sign input components

 this.getHRSpinner().setValue(0.0d);

 this.getRRSpinner().setValue(0.0d);

 this.getOSSpinner().setValue(0.0d);

 this.getTemSpinner().setValue(0.0d);

 // resetting resource count input components

 this.getResourceButtonGroup().clearSelection();

 }

Automated triage Interim Report

Page 102

 private void temperatureCheck(){

 // enaple temperature spinner based on the patient category

 String ageCategory =

this.triage.retrieveSelectetPatientInfo()[7];

 boolean tempMatters = (ageCategory.equalsIgnoreCase("A") ||

 ageCategory.equalsIgnoreCase("B") ||

 ageCategory.equalsIgnoreCase("C"));

 if(tempMatters){

 // enable temperatuer input

 this.getTemSpinner().setEnabled(true);

 this.getTempLabel().setEnabled(true);

 }

 else{

 // disable temperatuer input

 this.getTemSpinner().setEnabled(false);

 this.getTempLabel().setEnabled(false);

 }

 }

 private JPanel getPatientInfoPane() {

 if(patientInfoPane == null) {

 patientInfoPane = new JPanel();

 GroupLayout patientInfoPaneLayout = new

GroupLayout((JComponent)patientInfoPane);

 patientInfoPane.setLayout(patientInfoPaneLayout);

 patientInfoPane.setBorder(BorderFactory.createTitledBorder("Patient

Information"));

 patientInfoPaneLayout.setVerticalGroup(patientInfoPaneLayout.createSe

quentialGroup()

 .addComponent(getNameLabel(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getKtLabel(),

GroupLayout.PREFERRED_SIZE, 22, GroupLayout.PREFERRED_SIZE)

 .addComponent(getAgeLabel(),

GroupLayout.PREFERRED_SIZE, 22, GroupLayout.PREFERRED_SIZE)

 .addContainerGap(31, Short.MAX_VALUE));

 patientInfoPaneLayout.setHorizontalGroup(patientInfoPaneLayout.create

SequentialGroup()

 .addContainerGap()

 .addGroup(patientInfoPaneLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

patientInfoPaneLayout.createSequentialGroup()

 .addComponent(getNameLabel(),

GroupLayout.PREFERRED_SIZE, 261, GroupLayout.PREFERRED_SIZE)

.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED, 18,

Short.MAX_VALUE))

 .addGroup(GroupLayout.Alignment.LEADING,

patientInfoPaneLayout.createSequentialGroup()

 .addComponent(getKtLabel(), 0, 325,

Short.MAX_VALUE)

Automated triage Interim Report

Page 103

 .addGap(33))

 .addGroup(GroupLayout.Alignment.LEADING,

patientInfoPaneLayout.createSequentialGroup()

 .addComponent(getAgeLabel(),

GroupLayout.PREFERRED_SIZE, 285, GroupLayout.PREFERRED_SIZE)

 .addGap(0, 73, Short.MAX_VALUE)))

 .addContainerGap());

 }

 return patientInfoPane;

 }

 private JPanel getPhase1Panel() {

 if(phase1Panel == null) {

 phase1Panel = new JPanel();

 GroupLayout phase1PanelLayout = new

GroupLayout((JComponent)phase1Panel);

 phase1Panel.setLayout(phase1PanelLayout);

 phase1PanelLayout.setHorizontalGroup(phase1PanelLayout.createSequenti

alGroup()

 .addContainerGap()

 .addGroup(phase1PanelLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

phase1PanelLayout.createSequentialGroup()

.addGroup(phase1PanelLayout.createParallelGroup()

 .addComponent(getJButton1(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 52,

GroupLayout.PREFERRED_SIZE)

.addGroup(GroupLayout.Alignment.LEADING,

phase1PanelLayout.createSequentialGroup()

 .addComponent(getPhase1Title(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(12)))

.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getJButton3(),

GroupLayout.PREFERRED_SIZE, 57, GroupLayout.PREFERRED_SIZE)

 .addGap(0, 131, Short.MAX_VALUE))

 .addComponent(getPhase1Explanation(),

GroupLayout.Alignment.LEADING, 0, 245, Short.MAX_VALUE)));

 phase1PanelLayout.setVerticalGroup(phase1PanelLayout.createSequential

Group()

 .addContainerGap()

 .addComponent(getPhase1Title(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.UNRELATED)

 .addComponent(getPhase1Explanation(),

GroupLayout.PREFERRED_SIZE, 63, GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addGroup(phase1PanelLayout.createParallelGroup(GroupLayout.Alignment

.BASELINE)

Automated triage Interim Report

Page 104

 .addComponent(getJButton1(),

GroupLayout.Alignment.BASELINE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addComponent(getJButton3(),

GroupLayout.Alignment.BASELINE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE))

 .addContainerGap(212, 212));

 }

 return phase1Panel;

 }

 private JLabel getPhase1Title() {

 if(phase1Title == null) {

 phase1Title = new JLabel();

 phase1Title.setText("Phase 1");

 }

 return phase1Title;

 }

 private JPanel getPhase2Panel() {

 if(phase2Panel == null) {

 phase2Panel = new JPanel();

 GroupLayout phase2PanelLayout = new

GroupLayout((JComponent)phase2Panel);

 phase2Panel.setLayout(phase2PanelLayout);

 phase2PanelLayout.setHorizontalGroup(phase2PanelLayout.createSequenti

alGroup()

 .addContainerGap()

 .addGroup(phase2PanelLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

phase2PanelLayout.createSequentialGroup()

.addGroup(phase2PanelLayout.createParallelGroup()

 .addComponent(getJButton8(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 52,

GroupLayout.PREFERRED_SIZE)

.addGroup(GroupLayout.Alignment.LEADING,

phase2PanelLayout.createSequentialGroup()

 .addComponent(getPhase2Title(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(12)))

.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getJButton9(),

GroupLayout.PREFERRED_SIZE, 59, GroupLayout.PREFERRED_SIZE)

 .addGap(0, 129, Short.MAX_VALUE))

.addGroup(phase2PanelLayout.createSequentialGroup()

 .addComponent(getJTextArea1(),

GroupLayout.PREFERRED_SIZE, 245, GroupLayout.PREFERRED_SIZE)

 .addGap(0, 0, Short.MAX_VALUE)))

 .addContainerGap(122, 122));

 phase2PanelLayout.setVerticalGroup(phase2PanelLayout.createSequential

Group()

 .addContainerGap()

Automated triage Interim Report

Page 105

 .addComponent(getPhase2Title(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.UNRELATED)

 .addComponent(getJTextArea1(),

GroupLayout.PREFERRED_SIZE, 92, GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.UNRELATED)

 .addGroup(phase2PanelLayout.createParallelGroup(GroupLayout.Alignment

.BASELINE)

 .addComponent(getJButton8(),

GroupLayout.Alignment.BASELINE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addComponent(getJButton9(),

GroupLayout.Alignment.BASELINE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE))

 .addContainerGap(147, 147));

 }

 return phase2Panel;

 }

 private JLabel getPhase2Title() {

 if(phase2Title == null) {

 phase2Title = new JLabel();

 phase2Title.setText("Phase 2");

 }

 return phase2Title;

 }

 private JPanel getPhase3Panel() {

 if(phase3Panel == null) {

 phase3Panel = new JPanel();

 GroupLayout phase3PanelLayout = new

GroupLayout((JComponent)phase3Panel);

 phase3Panel.setLayout(phase3PanelLayout);

 resourceButtonGroup = getResourceButtonGroup();

 resourceButtonGroup.add(getNoneRadioButton());

 resourceButtonGroup.add(getOneRadioButton());

 resourceButtonGroup.add(getTwoPlusRadioButton());

 phase3PanelLayout.setHorizontalGroup(phase3PanelLayout.createSequenti

alGroup()

 .addContainerGap()

 .addGroup(phase3PanelLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

phase3PanelLayout.createSequentialGroup()

.addGroup(phase3PanelLayout.createParallelGroup()

 .addComponent(getTwoPlusRadioButton(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

.addGroup(GroupLayout.Alignment.LEADING,

phase3PanelLayout.createSequentialGroup()

 .addComponent(getPhase3Title(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(46))

Automated triage Interim Report

Page 106

.addGroup(GroupLayout.Alignment.LEADING,

phase3PanelLayout.createSequentialGroup()

 .addComponent(getNoneRadioButton(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(39))

.addGroup(GroupLayout.Alignment.LEADING,

phase3PanelLayout.createSequentialGroup()

 .addComponent(getOneRadioButton(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(46)))

 .addComponent(getConfirmResourcesButton(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(0, 101, Short.MAX_VALUE))

 .addComponent(getJTextArea2(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 245,

GroupLayout.PREFERRED_SIZE)));

 phase3PanelLayout.setVerticalGroup(phase3PanelLayout.createSequential

Group()

 .addContainerGap()

 .addComponent(getPhase3Title(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.UNRELATED)

 .addComponent(getJTextArea2(),

GroupLayout.PREFERRED_SIZE, 63, GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getNoneRadioButton(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getOneRadioButton(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getTwoPlusRadioButton(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getConfirmResourcesButton(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addContainerGap(153, Short.MAX_VALUE));

 }

 return phase3Panel;

 }

 private JLabel getPhase3Title() {

 if(phase3Title == null) {

 phase3Title = new JLabel();

 phase3Title.setText("Phase 3");

Automated triage Interim Report

Page 107

 }

 return phase3Title;

 }

 private JPanel getPhase4Panel() {

 if(phase4Panel == null) {

 phase4Panel = new JPanel();

 GroupLayout phase4PanelLayout = new

GroupLayout((JComponent)phase4Panel);

 phase4Panel.setLayout(phase4PanelLayout);

 phase4Panel.setPreferredSize(new java.awt.Dimension(399,

343));

 phase4PanelLayout.setHorizontalGroup(phase4PanelLayout.createSequenti

alGroup()

 .addContainerGap()

 .addGroup(phase4PanelLayout.createParallelGroup()

.addGroup(phase4PanelLayout.createSequentialGroup()

.addGroup(phase4PanelLayout.createParallelGroup()

 .addComponent(getTempLabel(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 146,

GroupLayout.PREFERRED_SIZE)

.addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getVitalSignLabel(),

GroupLayout.PREFERRED_SIZE, 105, GroupLayout.PREFERRED_SIZE)

 .addGap(41))

.addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

.addComponent(getVitalSignConfirmButton(), GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addGap(62))

.addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getPhase4Title(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(106))

 .addComponent(getOSLabel(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 146,

GroupLayout.PREFERRED_SIZE)

 .addComponent(getRRLabel(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 146,

GroupLayout.PREFERRED_SIZE)

 .addComponent(getHRLabel(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 146,

GroupLayout.PREFERRED_SIZE))

.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

.addGroup(phase4PanelLayout.createParallelGroup()

 .addComponent(getHRSpinner(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

Automated triage Interim Report

Page 108

 .addComponent(getRRSpinner(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addComponent(getOSSpinner(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addComponent(getTemSpinner(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE))

.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

.addGroup(phase4PanelLayout.createParallelGroup()

 .addComponent(getJLabel2(),

GroupLayout.Alignment.LEADING, 0, 104, Short.MAX_VALUE)

 .addComponent(getJLabel3(),

GroupLayout.Alignment.LEADING, 0, 104, Short.MAX_VALUE)

 .addComponent(getJLabel1(),

GroupLayout.Alignment.LEADING, 0, 104, Short.MAX_VALUE)

 .addComponent(getWarningHR(),

GroupLayout.Alignment.LEADING, 0, 104, Short.MAX_VALUE))

 .addGap(43))

 .addComponent(getJTextArea3(),

GroupLayout.Alignment.LEADING, 0, 373, Short.MAX_VALUE)));

 phase4PanelLayout.setVerticalGroup(phase4PanelLayout.createSequential

Group()

 .addContainerGap()

 .addComponent(getPhase4Title(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.UNRELATED)

 .addComponent(getJTextArea3(),

GroupLayout.PREFERRED_SIZE, 63, GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getVitalSignLabel(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addGroup(phase4PanelLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getWarningHR(),

GroupLayout.PREFERRED_SIZE, 16, GroupLayout.PREFERRED_SIZE)

 .addGap(6))

 .addComponent(getHRSpinner(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getHRLabel(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(6)))

 .addGroup(phase4PanelLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

Automated triage Interim Report

Page 109

 .addComponent(getJLabel1(),

GroupLayout.PREFERRED_SIZE, 16, GroupLayout.PREFERRED_SIZE)

 .addGap(6))

 .addComponent(getRRSpinner(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getRRLabel(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(6)))

 .addGroup(phase4PanelLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getJLabel2(),

GroupLayout.PREFERRED_SIZE, 16, GroupLayout.PREFERRED_SIZE)

 .addGap(6))

 .addComponent(getOSSpinner(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getOSLabel(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(6)))

 .addGroup(phase4PanelLayout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getJLabel3(),

GroupLayout.PREFERRED_SIZE, 16, GroupLayout.PREFERRED_SIZE)

 .addGap(6))

 .addComponent(getTemSpinner(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE)

 .addGroup(GroupLayout.Alignment.LEADING,

phase4PanelLayout.createSequentialGroup()

 .addComponent(getTempLabel(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addGap(6)))

 .addGap(16)

 .addComponent(getVitalSignConfirmButton(),

GroupLayout.PREFERRED_SIZE, GroupLayout.PREFERRED_SIZE,

GroupLayout.PREFERRED_SIZE)

 .addContainerGap(78, Short.MAX_VALUE));

 }

 return phase4Panel;

 }

 private JLabel getPhase4Title() {

 if(phase4Title == null) {

 phase4Title = new JLabel();

 phase4Title.setText("Phase 4");

 }

 return phase4Title;

 }

 private JButton getJButton8() {

 if(jButton8 == null) {

Automated triage Interim Report

Page 110

 jButton8 = new JButton();

 jButton8.setText("Yes");

 }

 return jButton8;

 }

 private JButton getJButton9() {

 if(jButton9 == null) {

 jButton9 = new JButton();

 jButton9.setText("No");

 }

 return jButton9;

 }

 public ButtonGroup getResourceButtonGroup() {

 if(resourceButtonGroup == null) {

 resourceButtonGroup = new ButtonGroup();

 }

 return resourceButtonGroup;

 }

 public JRadioButton getNoneRadioButton() {

 if(noneRadioButton == null) {

 noneRadioButton = new JRadioButton();

 noneRadioButton.setText("None");

 noneRadioButton.setActionCommand("0");

 }

 return noneRadioButton;

 }

 private JRadioButton getOneRadioButton() {

 if(oneRadioButton == null) {

 oneRadioButton = new JRadioButton();

 oneRadioButton.setText("One");

 oneRadioButton.setActionCommand("1");

 }

 return oneRadioButton;

 }

 private JRadioButton getTwoPlusRadioButton() {

 if(twoPlusRadioButton == null) {

 twoPlusRadioButton = new JRadioButton();

 twoPlusRadioButton.setText("Two or more");

 twoPlusRadioButton.setActionCommand("2");

 }

 return twoPlusRadioButton;

 }

 private JButton getConfirmResourcesButton() {

 if(confirmResourcesButton == null) {

 confirmResourcesButton = new JButton();

 confirmResourcesButton.setText("Confirm");

 }

 return confirmResourcesButton;

 }

 private JButton getVitalSignConfirmButton() {

 if(vitalSignConfirmButton == null) {

 vitalSignConfirmButton = new JButton();

 vitalSignConfirmButton.setText("Confirm vitals");

 }

Automated triage Interim Report

Page 111

 return vitalSignConfirmButton;

 }

 private JTextArea getPhase1Explanation() {

 if(phase1Explanation == null) {

 phase1Explanation = new JTextArea();

 phase1Explanation.setText("Does the patient require

\nimmediate life-saving intervention?");

 phase1Explanation.setEditable(false);

 phase1Explanation.setLocale(new java.util.Locale("en",

"GB"));

 }

 return phase1Explanation;

 }

 private JTextArea getJTextArea1() {

 if(jTextArea1 == null) {

 jTextArea1 = new JTextArea();

 jTextArea1.setText("Is the patient in a high risk

situation? \n"

 + "- Or - \n"

 +

"Confused\\lethargic\\disoriented?\n"

 + "- Or - \n"

 + "In Severe pain\\distress?");

 jTextArea1.setEditable(false);

 jTextArea1.setLocale(new java.util.Locale("en","GB"));

 }

 return jTextArea1;

 }

 private JTextArea getJTextArea2() {

 if(jTextArea2 == null) {

 jTextArea2 = new JTextArea();

 jTextArea2.setText("How many resources are needed \nfor

treatment?");

 jTextArea2.setEditable(false);

 jTextArea2.setLocale(new java.util.Locale("en","GB"));

 }

 return jTextArea2;

 }

 private JTextArea getJTextArea3() {

 if(jTextArea3 == null) {

 jTextArea3 = new JTextArea();

 jTextArea3.setText("Are any vital signs \nin a danger

zone?");

 jTextArea3.setEditable(false);

 jTextArea3.setLocale(new java.util.Locale("en","GB"));

 }

 return jTextArea3;

 }

 private JLabel getTempLabel() {

 if(tempLabel == null) {

 tempLabel = new JLabel();

 tempLabel.setText("Body Temperature (°F)");

 tempLabel.setEnabled(false);

 }

 return tempLabel;

 }

 private JLabel getOSLabel() {

Automated triage Interim Report

Page 112

 if(OSLabel == null) {

 OSLabel = new JLabel();

 OSLabel.setText("Oxygen Saturation (SaO2)");

 }

 return OSLabel;

 }

 private JLabel getRRLabel() {

 if(RRLabel == null) {

 RRLabel = new JLabel();

 RRLabel.setText("Respiration Rate (RR)");

 }

 return RRLabel;

 }

 private JLabel getHRLabel() {

 if(HRLabel == null) {

 HRLabel = new JLabel();

 HRLabel.setText("Heart Rate (HR)");

 }

 return HRLabel;

 }

 private JLabel getVitalSignLabel() {

 if(vitalSignLabel == null) {

 vitalSignLabel = new JLabel();

 vitalSignLabel.setText("Lífsmörk");

 vitalSignLabel.setFont(new java.awt.Font("Segoe

UI",1,12));

 }

 return vitalSignLabel;

 }

 private JDialog getJDialog1() {

 if(jDialog1 == null) {

 jDialog1 = new JDialog(this);

 GroupLayout jDialog1Layout = new

GroupLayout((JComponent)jDialog1.getContentPane());

 jDialog1.getContentPane().setLayout(jDialog1Layout);

 jDialog1Layout.setHorizontalGroup(jDialog1Layout.createSequentialGrou

p()

 .addContainerGap()

 .addGroup(jDialog1Layout.createParallelGroup()

 .addComponent(getPatientInfoPane(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 392,

GroupLayout.PREFERRED_SIZE)

 .addComponent(getMedicalStatePane(),

GroupLayout.Alignment.LEADING, GroupLayout.PREFERRED_SIZE, 392,

GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getMessagePane(), 0, 389,

Short.MAX_VALUE)

 .addContainerGap());

 jDialog1Layout.setVerticalGroup(jDialog1Layout.createSequentialGroup(

)

 .addContainerGap()

 .addGroup(jDialog1Layout.createParallelGroup()

 .addGroup(GroupLayout.Alignment.LEADING,

jDialog1Layout.createSequentialGroup()

 .addComponent(getPatientInfoPane(),

GroupLayout.PREFERRED_SIZE, 123, GroupLayout.PREFERRED_SIZE)

Automated triage Interim Report

Page 113

.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(getMedicalStatePane(), 0,

210, Short.MAX_VALUE))

 .addComponent(getMessagePane(),

GroupLayout.Alignment.LEADING, 0, 339, Short.MAX_VALUE))

 .addContainerGap());

 }

 return jDialog1;

 }

 private JLabel getMedicationLabel() {

 if(medicationLabel == null) {

 medicationLabel = new JLabel();

 medicationLabel.setText("Medication:");

 }

 return medicationLabel;

 }

}

Automated triage Interim Report

Page 114

Appendix B – Project plan (not updated)

Automated triage Interim Report

Page 115

Appendix C – ESI triage algorithm

Figure 16 – ESI triage algorithm (Gilboy et al., 2005, p. B-3).

