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Abstract

The Black-Scholes model has been widely used in option pricing for roughly four

decades. However, there are two puzzles that have turned out to be difficult to

explain with the Black-Scholes model: the leptokurtic feature and the volatility

smile. In this study, the two puzzles will be investigated. An improved model –

a double exponential jump diffusion model (referred to as the Kou model) will be

introduced. The Monte Carlo method will be used to simulate the Black-Scholes

model and the double exponential jump diffusion model to price the IBM call option.

The call option prices estimated by both models will be compared to the market

call prices. The results show that the call option prices estimated by the double

exponential jump diffusion model fit the IBM market call option prices better than

the call option prices estimated by the Black-Scholes model do.

The volatility in both the Black-Scholes model and the double exponential jump

diffusion model is assumed to be a constant. However, it is stochastic in reality.

Two new models based on the Black-Scholes model and the double exponential

jump diffusion model with a stochastic volatility will be developed. The stochastic

volatility is determined by a GARCH(1,1) model. The advantage of GARCH model

is that GARCH model captures some features associated with financial time series,

such as, fat tails, volatility clustering, and leverage effects. First, the structure of

vii



both the new models will be presented. Then the Monte Carlo simulation will be

applied to the two new models to price the IBM call option. Finally, the call option

prices estimated by the four models will be compared to the market call option

prices. The performance of the four models will be evaluated by statistical methods

such as mean absolute error (MAE), mean square error (MSE), root mean square

error (RMSE), normalized root mean square error (NRMSE), and information ratio

(IR). The results show that the double exponential jump diffusion model performs

the best for the lower strike prices and the Kou & GARCH model has the best

performance for the higher strike prices. Theoretically, the Kou & GARCH model

is expected to be the best model among the four models. Some possible reasons and

suggestions will be given in the discussion.
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Nomenclature

α the GARCH error coefficient

β the GARCH lag coefficient

B a Bernoulli random variable

c call option price

d dividend rate

dq a Poisson counter

∆t time period

δ standard deviation of the logarithm of the jump size distribution

E the expectation value

ηu means of positive jump

ηd means of negative jump

J jump size
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κ a mean-reverting rate

λ jump intensity

µ drift, mean of daily log return, mean of normal distribution

ν mean of the logarithm of the jump size distribution

N(t) a Poisson process
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P physical probability

Q risk-neutral probability

ω a constant for GARCH(1,1)

φ normal distribution process

p put option price

p probability of upward jump

q probability of downward jump

ρ correlation coefficient

r daily log return

Rt daily simple return

rt daily log return

rf riskfree interest rate

S asset price, underlying price, stock price

S0 an initial stock price

S(t) asset price, underlying price, stock price in continuous time

St asset price, underlying price, stock price in discrete time

σ volatility, standard deviation of daily log return

T time to maturity

t time

τ time period

θ a log-term variance

ε a volatility of volatility

V the variance

V (t) the diffusion component of return variance

W (t) a standard Wiener process in continuous time

Wt a standard Wiener process in discrete time

xvi



W s(t) a standard Wiener process, used to describe S(t)

W v(t) a standard Wiener process, used to describe V (t)

W λ(t) a standard Wiener process, used to describe λ(t)

ξ+ an exponential random variable with probability p upward

ξ− an exponential random variable with probability q downward

Z a standard normal variable
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1 Introduction

1.1 Background

The Black-Scholes model (Black and Scholes, 1973), which is based on Brownian

motion and normal distribution, has been widely used to model the return of assets

and to price financial option for almost four decades. However, many empirical

evidences have recently shown two puzzles, namely the leptokurtic feature that the

return distribution of assets may have a higher peak and two asymmetric heavy

tails than those of normal distribution, as well as an abnormality, often referred to

as ’volatility smile’, that is observed in option pricing (Kou, 2002; Kou and Wang,

2003, 2004).

Before these empirical puzzles are explored, a few fundamental concepts and models

that this study is based on will be introduced.

1.1.1 Asset returns

Asset is an investment instrument that can be bought and sold. Let St be the price

of an asset at time t. Assume that the asset pays no dividends, then the one-period
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1 Introduction

simple gross return when holding an asset for one period from date t− 1 to date t

is given as (Tsay, 2005)

1 +Rt =
St

St−1

The corresponding one-period simple net return (often referred to as simple return)

is

Rt =
St

St−1

− 1 =
St − St−1

St−1

and the multiperiod simple gross return when holding the asset for k periods between

date t− k to date t is given as

1 +Rt[k] =
St

St−k

=
St

St−1

× St−1

St−2

× · · · × St−k+1

St−k

= (1 +Rt)(1 +Rt−1) · · · (1 +Rt−k+1)

=

k−1
∏

j=0

(1 +Rt−j)

The log return is the natural logarithm of the simple gross return of an asset. Thus

the one-period log return is

rt = log(1 +Rt) = log

(

St

St−1

)

= log (St) − log (St−1)

and the multiperiod log return is

rt[k] = log(1 +Rt[k]) = log [(1 +Rt)(1 +Rt−1) · · · (Rt−k+1)]

= log(1 +Rt) + log(1 +Rt−1) + · · ·+ log(1 +Rt−k+1)

= rt + rt−1 + · · ·+ rt−k+1

Most of the time, log return will be used in this study. The advantages of the log

return over the simple return are that the multiperiod log return is simply the sum

2



1.1 Background

of the one-period returns involved and the statistical properties of log returns are

more tractable.

1.1.2 Geometric Brownian motion

Geometric Browian motion (GBM) is the simplest and probably the most popular

specification in financial models. The Black-Scholes option pricing model assumes

that the underlying state variable follows GBM. GBM specifies that the instanta-

neous percentage change of the underlying asset has a constant drift µ and volatility

σ (Baz and Chacko, 2004; Craine et al., 2000; Merton, 1971). It can be described

by a stochastic differential equation

dS

S
= µdt+ σdWt (1.1)

where dWt is a Wiener process with a mean of zero and a variance equal to dt.

Equation (1.1) is known as the Black-Scholes equation (Derman and Kani, 1994a).

1.1.3 Black-Scholes option pricing model and return

Recall the Black-Scholes equation,

dS = µSdt+ σSdWt (1.2)

then applying Ito’s Lemma, the following equation is obtained (Baz and Chacko,

2004).

d[log S] =

[

µ− σ2

2

]

dt+ σdWt (1.3)

3



1 Introduction

Now, suppose that asset prices are observed at discrete times ti, i.e. S(ti) = Si, with

∆t = ti+1 − ti, then the following equation can be derived from equation (1.3).

log Si+1 − logSi = log

(

Si+1

Si

)

≅

[

µ− σ2

2

]

∆t+ σφ
√

∆t

(1.4)

where φ follows a standard normal distribution. Now, if ∆t is sufficient small, then

∆t is much smaller than
√

∆t, so that equation (1.4) can be approximated by

log

(

Si+1

Si

)

= log

(

Si+1 − Si + Si

Si

)

= log

(

1 +
Si+1 − Si

Si

)

≅ σφ
√

∆t

(1.5)

Lets define the return Ri in the period ti+1 − ti as

Ri =
Si+1 − Si

Si
(1.6)

then equation (1.5) becomes

log(1 +Ri) ≅ Ri = σφ
√

∆t (1.7)

Equation (1.7) shows that the return of asset S should be normally distributed

(Forsyth, 2008). This study is based on this conclusion.

4



1.2 Learning from the data

1.2 Learning from the data

S&P 500 index historical data from January 1950 to June 2010 and IBM histori-

cal stock prices from January 1962 to June 2010, as well as IBM option price on

June 10, 2010 are used in this study. The data is downloaded from Yahoo finance

(http://finance.yahoo.com).

The S&P 500 index daily log return from January 1950 to June 2010 is shown in

Figure 1.1. From this figure, it can be noted that the largest spikes occurred around

October 1987 due to the 1987 stock market crash. The biggest negative return

appeared on October 19, 1987. The range of the daily log return during this period

was from -21.155 to 7.997. The second largest spikes occurred in October 2008 at

the beginning of the global financial crisis. It can also be observed that significant

fluctuations occurred during the period 2000–2002, which are due to the internet

bubble burst and the September 11 attacks. From the data shown in Figure 1.1, it

is obvious that the stock market became significantly more volatile after 1985 than

it was the preceding 35 years. Therefore, the focus in further study will be on the

S&P 500 index value from 1985 to 2010.

The S&P 500 index from January 1985 to June 2010 on a linear scale and a log

scale are shown in Figures 1.2 (a) and (b), respectively. From both figures, it can

be noted that the tendency of the index value is upward before the year 2000, but

the index value has become more volatile during the past decade. The stock crash

in 1987 can also be observed, it appears to be a relatively small downward jump.

Why is it different from what are observed in Figure 1.1? The reason is that the

S&P index value is not so high in 1987 and it caused a huge negative return even

though the price did not fall as much as today.
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Figure 1.1: The S&P 500 index daily log return from January 1950 to June 2010.
The biggest negative spikes occurred on October 19, 1987 when the stock market
crashed. The second biggest spikes occurred due to the "Panic of 2008". The
spikes around 2000–2002 are due to the internet bubble burst and the September 11
attacks.
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Figure 1.2: The S&P 500 index value from January 1985 to June 2010. (a) on a
linear scale and (b) on a log scale. The tendency of index value is upward before
the year 2000, However, it has become very volatile in the past decade. The 1987
stock market crash can be clearly observed.
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Figure 1.3: The S&P 500 index value from January 2000 to June 2010 on a linear
scale. The stock market has been very volatile during this decade.

In order to explore further the increasingly volatile period of the past decade, the

S&P 500 index from January 2000 to June 2010 is shown in Figure 1.3. The value

has fluctuated around the index value of about 1200 in the recent ten years and

the upward tendency has disappeared. A big drop in the index value occurred after

September 11, 2001 and the index value plummeted again around the global financial

crisis in October 2008.

The distribution of the S&P 500 index daily log return is plotted in Figure 1.4. It

is not normally distributed. The peak is significantly higher and the tails are fatter

than a normal distribution would predict. This is the leptokurtic feature, which

will be discussed in section 2.1.1. In the next chapter, the S&P data from 1950 to

2010 will be divided into two data sets in order to investigate whether there exists

a difference in the distribution for different periods.
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Figure 1.4: Distribution of S&P 500 index daily log return from January 1950 to
June 2010. It is clear that the daily log return is not normally distributed. The
peak is higher and the tails are fatter than a normal distribution would predict.
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1.3 Structure of the thesis

This thesis is organized as follows: In this chapter, some basic concepts and models

and assumptions are introduced. In Chapter 2, the two puzzles of the Black-Scholes

model, which are not supported by the empirical phenomena, will be substantiated

by real data. In Chapter 3, some modifications to the Black-Scholes model will

be summarized; their advantages and disadvantages will be discussed, evaluated

and compared. In Chapter 4, the double exponential jump-diffusion model (also

referred to as the Kou model), will be discussed in more detail. In Chapter 5, the

implementation and the algorithms simulating the Black-Scholes model and the Kou

model will be given. Do they fit the real data? What are their errors? Which one

is the better model? In Chapter 6, a stochastic volatility model based on GARCH

will be developed. In Chapter 7, two new models based on the Black-Scholes model

and the Kou model, respectively, but with stochastic volatility, will be introduced.

These two new models are compared with the Black-Sholes model and the Kou

model visually and statistically. Finally, the conclusion, limitation and future work

is discussed in Chapter 8.
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2 Problem Description

In this chapter, the two puzzles (often referred to as the two phenomena) not sup-

ported by the Black-Scholes model in empirical studies will be demonstrated using

real market data. Furthermore, the reasons for the two puzzles will be analyzed.

2.1 The two puzzles

Many empirical studies show two phenomena, the asymmetric leptokurtic features

and the volatility smile, which are not accounted for by the Black-Sholes model

(Kou, 2002; Maekawa et al., 2008). The leptokurtic feature emerged in Section 1.2.

In the coming sections, the real market data and individual stock price data will be

applied to explore the existence of the two phenomena.

2.1.1 Leptokurtic distributions

The asymmetric leptokurtic features – the return distribution is skewed to the one

side (left side or right side) and has a higher peak and two heavier tails than those

of normal distribution – are commonly observed empirically.

11



2 Problem Description

The purpose of this section is to check whether the leptokurtic phenomena exists

on different data sets. First, the market data (S&P 500 index) is divided into two

parts, one data set is for the period from January 1950 to December 1984, and the

other data set is for the period from January 1985 to June 2010. The distribution

of S&P 500 daily log return from 1950 to 1985 is shown in Figure 2.1(a). This daily

log return does not follow a normal distribution because the peak is higher than a

normal distribution would predict. Figure 2.1(b) shows the distribution of the S&P

500 index daily log return from January 1985 to June 2010. The leptokurtic feature

can be noted in Figure 2.1(b). The peak is significantly higher than that of normal

distribution. The skewness can be estimated by (Kou, 2008; Thomas, 2005).

Ŝ =
1

(n− 1)σ̂3

n
∑

i=1

(Xi − X̄)3 (2.1)

and the kurtosis is given as

K̂ =
1

(n− 1)σ̂4

n
∑

i=1

(Xi − X̄)4 (2.2)

For the time period from 1950 to 1984, the kurtosis of S&P 500 is about 7.27, and

the skewness is about -0.08. For the time period from 1985 to 2010, the kurtosis of

S&P 500 is about 32.71, and the skewness is about -1.36. The negative skewness

means that the return has a heavier left tail than the right tail. Or, the distribution

is skewed to left side. So, the kurtosis is indeed significantly higher and the left tail

is heavier than right tail for the period from 1985 to 2010.

An individual stock is also taken as an example, the data set is IBM historical

stock price data from January 1962 to June 2010. The data set is split into two

parts, one is for the period from January 1962 to December 1984, the other is for

the period from January 1985 to June 2010. Their distributions of the daily log

12
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Figure 2.1: (a) Distribution of the S&P 500 index daily log return from January
2, 1950 to December 31, 1984. (b) Distribution of the S&P 500 index daily log
return from January 2, 1985 to June 10, 2010. Neither distributions is normally
distributed; rather they are skewed to left side and have a higher peak and fatter
tails compared to a normal distribution.
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2 Problem Description

return are shown on Figures 2.2 (a) and (b). It is noted that neither is normally

distributed but the IBM daily log return for the period from 1962 to 1984 fits a

normal distribution somewhat better than the IBM daily log return for the period

from 1985 to 2010. Both distributions have a high peak and two fatter tails than

those of normal distribution. But the distribution from 1985 to 2010 has a heavier

high peak. In other words, it is much more distributed around zero return. For the

time period from 1962 to 1984, the kurtosis of IBM is about 6.32, and the skewness

is about 0.24. For the time period from 1985 to 2010, the kurtosis of IBM is about

16.5, and the skewness is about -0.46. The kurtosis is significantly higher for the

latter period. Also the distribution is slightly skewed to right side for the earlier

period but to the left side for the later period.

As discussed in Section 1.1, the daily return distribution, according to the Black-

Scholes model, is expected to be a normal distribution (Hull, 2005). However, the

distribution of S&P 500 daily log return as seen in Figures 2.1 (a) and (b), and the

distribution of IBM stock daily log return as seen in Figures 2.2 (a) and (b) do not

follow a normal distribution. A normal distribution is also shown for comparison in

all these figures with µ and σ equal to the ML estimates. Note that the distribution

for real data has a higher peak and fatter tails than those of the normal distribution.

This means that there is a higher probability of zero return, and a large gain or loss

compared to a normal distribution. Furthermore, as ∆t → 0, Geometric Brownian

motion (Equation (1.1)) assumes that the probability of a large return also tends to

zero. The amplitude of the return is proportional to
√

∆t, so that the tails of the

distribution become unimportant. But, some large returns in small time increments

can be seen in Figures 2.2 (a) and (b). It therefore appears that the Block-Scholes

model is missing some important features.
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2.1 The two puzzles
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Figure 2.2: (a) Distribution of IBM daily log return from January 2, 1962 to De-
cember 31, 1984. (b) Distribution of IBM daily log return from January 2, 1985 to
June 10, 2010. Neither distributions is normally distributed; they have a high peak
and two fatter tails than those of normal distribution; but the high peak in (b) is
heavier.
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The leptokurtic features can also be proved by a quantile-quantile plot (Q-Q plot).

The same data sets are used. A Q-Q plot of the S&P 500 index for the period from

January 1985 to June 2010 is shown in Figure 2.3 (a), and a Q-Q plot of the IBM

stock price for the period January 1985 to June 2010 is shown in Figure 2.3 (b). For

a normal distribution, the plot should show a linear variation. However, as seen in

Figures 2.3 (a) and (b), there is clearly a deviation from linear behavior.

The third proof of the feature is achieved by applying the Kolmogorov-Smirnov test

(often referred to as KS-test) (Allen, 1978). By the Kolmogorov-Smirnov test, the

values in the data vector x are compared to a standard normal distribution.

The null hypothesis is H0 and the alternative hypothesis is H1, where















H0 : x has a standard normal distribution,

H1 : x does not have a standard normal distribution.

(2.3)

if the test statistic of the KS-test is greater than the corresponding critical value,

the null hypothesis, H0, is rejected at the 5% significance level; otherwise, the null

hypothesis, H0, is not rejected (Massey, 1951; Miller, 1956).

Lets define

x =
r − µ

σ
(2.4)

where r is daily log return, µ is the mean of daily log return, σ is a standard deviation

of daily log return.

Based on a KS-test on the S&P 500 daily log return and the IBM stock daily log

return, respectively, the null hypothesis is rejected in both cases. Therefore, it can

be concluded that neither the daily log return of S&P 500 nor the daily log return
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Figure 2.3: (a) A Q-Q plot of the S&P 500 daily log return from January 2, 1985 to
June 10, 2010. (b) A Q-Q plot of the IBM stock daily log return from January 2,
1985 to June 10, 2010. If the distribution of daily return is normal, the plot should
be close to linear. It is clear that neither plots is linear, therefore, they are not
normally distributed.
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of IBM stock are normally distributed.

2.1.2 The volatility smile

If the Black-Scholes model is correct, then the implied volatility should be constant.

That is, the observed implied volatility curve should look flat (Kou and Wang, 2004).

But, in reality, the implied volatility curve often looks like a smile or a smirk. A plot

of the implied volatility of an option versus its strike price is known as a volatility

smile when the plotted curve looks like a human smile (Derman, 2003; Hull, 2005).

Take the IBM call option as an example. For a 7-days maturity time, the IBM

call option price versus the strike price is shown in Figure 2.4(a); the IBM implied

volatility versus the strike price is shown in Figure 2.4(b), in which the "IBM volatil-

ity smile" is observed. For a 92-days maturity time, Figure 2.5(a) shows the IBM

call option price versus the strike price and Figure 2.5(b) shows the IBM implied

volatility versus the strike price, including the "IBM volatility smile". When the

IBM implied volatility versus the strike price is plotted for 162-days and 422-days,

the curve of the implied volatility looks more like a "volatility skew" than a "volatil-

ity smile", which are demonstrated in Appendix A.2 and A.3. That is, when the

maturity time increase, the implied volatility monotonically decreases as the strike

price increases (Hull, 2005).

The evolution of a "volatility smile" to a "volatility skew" with increasing maturity

time is explored further in Figure 2.6. The x-axis is the time to maturity, the

y-axis is the strike price, the z-axis is the implied volatility. A "volatility smile"

for a short time to maturity can clearly be observed; as the time to maturity is

increased the curve becomes more flat. For multiple maturities T and multiple strike
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Figure 2.4: (a) The call option price versus the strike price for IBM stock. (b) The
observed implied volatility curve. The implied volatility versus the strike price of
IBM just looks like a human smile; it is called the "IBM Volatility smile". The date
of the analysis is June 10, 2010; the expiration date is June 18, 2010; the time to
maturity T is 7 days; the initial IBM stock price, S0 is USD 123.9.
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Figure 2.5: (a) The call option price versus the strike price for IBM stock. The
observed implied volatility curve. The implied volatility versus the strike price of
IBM just looks like a human smile; it is called the "IBM Volatility smile". The date
of the analysis is June 10, 2010; the expiration date is October 15, 2010; the time
to maturity T is 92 days; the initial IBM stock price, S0 is USD 123.9.
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Figure 2.6: The observed 3-D IBM implied volatility with multiple maturities T and
multiple strike prices K. It can be noted that the implied volatility plane is not flat
and the implied volatility looks like a smile for shorter time to maturity T , but it
becomes monotonously decreasing with increasing strike prices for longer time to
maturity T .

prices K, when facing to the y-z plane (that is, the strike price - implied volatility

plane), one notices that the curve looks more like a ’smile’ as the maturity time is

shorter, but the curve is more like a ’smirk’ as the maturity time becomes longer.

This phenomena is also discussed by Hull (2005) and by Andersen and Andersen

(2000). One explanation for the smile in equity option concerns leverage. As a

company’s equity declines in value, the company’s leverage increases. This means

that the equity becomes more risky and its volatility increases. As a company’s

equity increase in value, leverage decreases. Then the equity becomes less risky and

its volatility decreases (Hull, 2005).
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2.2 What is the reason ?

From the observation of the two phenomena, it can be concluded that the Black-

Scholes model is not completely correct in describing neither the market behavior

such as S&P 500 nor the behavior of individual stock price such as IBM. What is

missing in the Black-Scholes model ?

The first problem is that the Black-Scholes model ignores the jump part in the

process of asset pricing caused by overreaction or underreaction due to good and/or

bad news coming from the market and/or from an individual company. In other

words, the Black-Scholes model is completely correct in an ideal situation without

outside world information. Thus, an extra jump part must be added to the Black-

Scholes model in order to give a response to the underreaction (attributed to the

high peak) and the overreaction (attributed to the heavy tails) to outside news (Kou,

2002, 2008).

The time series plots of market data (S&P 500 index) and individual stock data

(IBM) capture those jumps from good news or bad news, as seen in Figures 2.7 and

2.8. Figure 2.7 shows the temporal variation of the S&P 500 index from January 2005

to June 2010. There are indeed upward and downward jumps observed in the stock

market such as the S&P 500 index; a big downward jump occurred around the global

financial crisis in October 2008. Figure 2.8 shows the evolution of the IBM stock

price from January 2005 to June 2010. The similar upward and downward jumps

in the IBM stock price can be noticed, and the similar downward jump occurred

around the global financial crisis time in October 2008.

These upward or downward jumps are also reflected in the daily log return time series

plot, Figures 2.9 (a) and (b). Figure 2.9 (a) shows some upwards jumps (positive
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Figure 2.7: The time series of S&P 500 index value in January 2005 - June 2010.
It can be observed that there are some upward and downward jumps in the market
price during these years. In October 2008, there is a large downward jump indicating
the stock market crash due to the global financial crisis.
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Figure 2.8: The time series of IBM stock price in January 2005 - June 2010. It can
be observed that there are some upward and downward jumps in the IBM stock price
during these years. In October 2008, there is a large jump downwards indicating
that IBM stock was effected by the "Panic of 2008" due to the global financial crisis.
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return) and some downwards jumps (negative return) in S&P 500 index value from

1985 to 2010. The biggest negative return is reflected in a large downward jump in

the index value that is due to the stock market crash in October 1987. The spikes

around October 2008 are related to the global financial crisis. Those upward and

downward jumps were caused by the overreaction of investors. Figure 2.9 (b) shows

some upwards jumps (positive return) and some downwards jumps (negative return)

in IBM stock price from 1985 to 2010. The biggest spike is a huge downward jump

in IBM stock price caused by the stock market crash in October 1987. There are

a lot of spikes around 2000–2002; these spikes are upward and downward jumps in

stock price related to the internet bubble bursts and the September 11 attacks. The

same jumps are apparent in the IBM stock price as in the S&P 500 index value

around the global financial crisis in October 2008. Throughout the period there

are countless smaller spikes both upwards and downwards that are due to news

from market and/or from individual companies. These jumps are ignored by the

Black-Scholes model.

The second issue is that the volatility is assumed to be a constant in the Black-

Scholes model, but it is stochastic in real life (Andersen and Andersen, 2000; An-

dersen and Brotherton-Ratcliffe, 1998; Andersen et al., 2002; Derman and Kani,

1994a,b; Dupire, 1994; Heston, 1993; Stein and Stein, 1991). Figures 2.4 (b), 2.5 (b)

and 2.6 demonstrate how the implied volatility changes as the time to maturity and

the strike prices increases. Therefore, it is necessary to improve the Black-Scholes

model in order to capture the two empirical phenomena mentioned above (Kou,

2002; Maekawa et al., 2008, 2005).
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Figure 2.9: (a) The time series of the S&P 500 index daily log return. (b) The
time series of the IBM stock daily log return. The spike around October 1987
indicates a large negative return. This is the biggest stock market crash in history.
IBM stock is also affected by the crash. The spikes around 2001 are related to the
internet bubble burst and the September 11 attacks. There are many downwards
and upwards jumps around 2000 to 2002 according to bad news or good news. The
spikes around October 2008 are caused by the global financial crisis.
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Many studies have been conducted to modify the Black-Scholes model in order to

explain the two empirical phenomena discussed in Chapter 2. In this chapter, some

modifications to the Black-Scholes model will be summarized and their advantages

and disadvantages will be discussed.

3.1 Jump diffusion Processes

To obtain more realistic models, researchers have added jumps to the Black-Scholes

model. Merton (1976) suggested that asset price dynamics may be modeled as jump-

diffusion process and proposed that an asset’s returns process may be decomposed

into three components; a linear drift, a Brownian motion representing "normal"

price variations, and a compound Poisson process generating an "abnormal" change

(jump) in asset prices due to the "news". The jump magnitudes are determined by

sampling from an independent and identically distributed (i.i.d.) random variable.

For the purpose of pricing options, Merton assumed that the jumps are log-normally

distributed. This special case renders estimation and hypothesis testing tractable

and has become the most important representation of the jump-diffusion process
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(Rameszani and Zeng, 1998, 2006, 2007). Moreover, by adding discontinuous jumps

to the Black-Scholes model and choosing the appropriate parameters of the jump

process, the log normal jump models generate volatility smile or skew as described

in Section 2.1.2. In particular, by setting the mean of the jump process to be

negative, steep short-term skews are easily captured in this framework (Andersen

and Andersen, 2000).

However, it is difficult to study the first passage times for log normal jump diffusion

model when a jump diffusion crosses boundary level (that is, an overshoot). The

overshoot makes it impossible to simulate the jump unless the exact distribution of

the overshoot is obtained. Fortunately, the exponential distribution does not have

the overshoot problem because of its memoryless property (Kou, 2008; Kou and

Wang, 2004). This is one of the reasons why the double exponential jump diffusion

model is popular. In this section, various jump diffusion models will be discussed.

3.1.1 Log-normal jump diffusions

Merton (1976) added Poisson jumps to a standard GBM process to approximate the

movement of stock prices subject to occasional discontinuous breaks (Craine et al.,

2000; Feng and Linetsky, 2008; Sepp, 2003; Tankov and Voltchkova, 2009).

dS

S
= µdt+ σdWt + Jdq (3.1)

where dq is a Poisson counter with intensity λ, i.e. P(dq = 1) = λ dt, and J is a draw

from a normal distribution, lets y = log(J), the logarithm of jump size is normally

distributed:

g(y) =
1√
2πδ2

exp

(

−(y − ν)2

2δ2

)

(3.2)
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3.1 Jump diffusion Processes

where y is the logarithm of the jump size, ν is the mean of the logarithm of the

jump size distribution, δ is the standard deviation of the logarithm of the jump size

distribution.

Merton (1976) showed that it is possible for the jump diffusion to represent the price

of a vanilla call or put as a weighted average of the standard Black-Scholes prices:

F (S, σ, λ, τ) =
∞

∑

n=0

e−λ′τ (λ′τ)n

n!
FBS(S, σn, rn, τ) (3.3)

where λ′ = λ(1+m), σ2
n = σ2 + nδ2

τ
, rn = r−λm+ n log(1+m)

τ
, m = exp {ν + 1

2δ2}−1,

τ = T − t, F is call or put price in log-normal jump diffusion model, and FBS is call

or put price in Black-Scholes model.

3.1.2 Double exponential jump diffusion

In the double exponential jump diffusion model (Kou, 2002; Kou and Wang, 2004),

the jump size has an asymmetric double exponential distribution.

The double exponential jump diffusion model has one more parameter than the

log-normal jump diffusion, so it is able to produce more flexible smile shapes.

More details about the double exponential jump diffusion model will be given in

Chapter 4.
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3.1.3 Jump diffusion with a mixture of independent jumps

A jump diffusion with a mixture of independent price jumps with jump size J . Lets

y = log(J), the probability density function is defined by Sepp (2003).

g(y) =
n

∑

i=1

wigi(y) (3.4)

where wi is a weight function,
∑n

i=1wi = 1, and gi(y) is a probability density function

corresponding to the logarithm of an individual jump size.

3.2 Other models

The following models were introduced to reflect the empirical evidence that the

volatility of asset returns is not constant. A complete survey of these models is

provided by Ait-Sahalia (2002), Chernov et al. (2003), Eraker et al. (2003), Bakshi

et al. (1997), Sepp (2003), and Garcia et al. (2004).

3.2.1 Stochastic volatility models

Stochastic volatility models assume that volatility itself is volatile and fluctuates

towards a long-term mean. A number of models were proposed for the volatility

dynamics, see Bakshi et al. (1997); Doran and Ronn (2005); Heston (1993); Hull

and White (1987); Stein and Stein (1991). The most popular model among them
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was developed by Heston (1993) as follows.















dS(t) = (rf − d)S(t)dt+
√

V (t)S(t)dW s(t), S(0) = S;

dV (t) = κ(θ − V (t))dt+ ε
√

V (t)dW v(t), V (0) = V.

(3.5)

where rf is the riskfree interest rate, d is a dividend rate, S(t) is the asset (underlying)

price, V (t) is the diffusion component of return variance (conditional on no jump

occurring), κ is a mean-reverting rate, θ is a long-term variance, ε is a volatility of

volatility, W s(t) and W v(t) are correlated wiener processes with constant correlation

ρ. That is, Cov[dW s(t), dW v(t)] = ρ.

The advantage is that stochastic volatility models agreed with implied volatility

surfaces with long-term smiles well. The implied smiles of these models are quite

stable and unchanging over time (Broadie and Kaya, 2006). The disadvantage is

that stochastic volatility models can not handle short-term smiles properly and that

it is necessary to hedge stochastic volatility to replicate and price the option.

3.2.2 Jump diffusions with stochastic volatility

Bates (1996) added a jump part to these stochastic volatility models to make them

more realistic:















dS(t) = (rf − d)S(t)dt+
√

V (t)S(t)dW s(t) + (eJ − 1)S(t)dN(t), S(0) = S;

dV (t) = κ(θ − V (t))dt+ ε
√

V (t)dW v(t), V (0) = V.

(3.6)

where N(t) is a Poisson process with constant intensity λ, λ is the frequency of

jumps per year, J is jump amplitude (often referred to as jump size), m is the
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average jump amplitude. Jumps can be drawn from either normal distribution or

double exponential distribution.

These models combine the advantage and the disadvantage of both jumps and

stochastic volatility. Therefore, they propose the most realistic dynamics for the

smile. It has been also supported by numerous empirical studies, see e.g. Bates

(1996), Fang (2000), and Duffie et al. (2000).

3.2.3 Jump diffusions with stochastic volatility and jump

intensity

Based on the Bates model, Fang (2000) proposed a model with a stochastic jump

intensity rate:































dS(t) = (rf − d)S(t)dt+
√

V (t)S(t)dW s(t) + (eJ − 1)S(t)dN(t), S(0) = S;

dV (t) = κ(θ − V (t))dt+ ε
√

V (t)dW v(t), V (0) = V ;

dλ(t) = κλ(θλ − λ(t))dt+ ελ

√

V (t)dW λ(t), λ(0) = λ.

(3.7)

where κλ is a mean-reverting rate, θλ is a long-term intensity, ελ is volatility of jump

intensity, a Wiener process W λ(t) is independent of W s(t) and W v(t). This is a very

ambitious and complicated model, but it should be avoided in practice.
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3.2.4 Jump diffusions with deterministic volatility and jump

intensity

Jump diffusions with stochastic volatility result in two-dimensional pricing problem

and quite complicated hedging strategy. This can be avoided by introducing time-

dependent volatility and jump intensity:































dS(t) = (rf − d)S(t)dt+
√

V (t)S(t)dW s(t) + (eJ − 1)S(t)dN(t), S(0) = S;

dV (t) = κ(θ − V (t))dt, V (0) = V ;

dλ(t) = κλ(θλ − λ(t))dt, λ(0) = λ.

(3.8)

This model provides a good fit to the data (Maheu and McCurdy, 2004).

3.2.5 Jump diffusions with price and volatility jumps

A jump diffusion model with both price and volatility jumps (SVJ) is proposed by

Duffie et al. (2000).















dS(t) = (rf − d− λm)S(t)dt+
√

V (t)S(t)dW s(t) + (eJs − 1)S(t)dN s(t), S(0) = S;

dV (t) = κ(θ − V (t))dt+ ε
√

V (t)dW v(t) + JvdNv(t), V (0) = V.

(3.9)

The general SVJ model includes four types of jumps: (a) jumps in the asset price;

(b) jumps in the variance with exponentially distributed jump size; (c) double jumps

model with jumps in the asset price and independent jumps in the variance with

exponentially distributed jump size; (d) simultaneous jumps model with simultane-

ous correlated jumps in price and variance. This model provides a remarkable fit to
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observed volatility surfaces. It is supported by a number of studies, see e.g. Duffie

et al. (2000) and Eraker et al. (2003).

3.2.6 ARCH and GARCH model

The auto-regressive conditional heteroskedastic (ARCH) models were first intro-

duced by Engle (1982). It assumes that today’s conditional variance is a weighted

average of past squared unexpected returns (Alexander, 2001):















σ2
t = α0 + α1ε

2
t−1 + · · · + αpε

2
t−p

α0 > 0, α1, · · · , αp ≥ 0; εt|It ∼ N(0, σ2
t ).

(3.10)

If a major market movement occurred yesterday, the day before yesterday, or up to p

days ago, the effect is to increase today’s conditional variance because all parameters

are constrained to non-negative. It makes no difference whether the market moves

upwards or downwards.

The full GARCH(p, q) adds q autoregressive terms to the ARCH(p), and the con-

ditional variance equation takes the form (Alexander, 2001; Bollerslev, 1986).















σ2
t = α0 + α1ε

2
t−1 + · · ·+ αpε

2
t−p + β1σ

2
t−1 + · · · + βqσ

2
t−q

α0 > 0, α1, · · · , αp, β1, · · · , βq ≥ 0.

(3.11)

However, it is rarely necessary to use more than a GARCH(1,1) model, which has

just one lagged error square and one autoregressive term. The standard notation

for GARCH(1,1) contains a constant ω, the GARCH error coefficient α and the
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GARCH lag coefficient β, the GARCH(1,1) model is















σ2
t = ω + αε2

t−1 + βσ2
t−1

ω > 0, α, β ≥ 0.

(3.12)

More details about GARCH model will be presented in Chapter 6.

3.3 Summary

Various modifications to the Black-Scholes have been summarized. The main prob-

lem with most of these models is that it is difficult to obtain analytical solutions

for option prices. More precisely, they might give some analytical formula for the

standard European call and put options, but any analytical solutions for interest

rate derivatives and path-dependent options, such as perpetual American options,

barrier, and lookback options, are unlikely (Kou and Wang, 2004).

The double exponential jump diffusion model has desirable properties for both ex-

otic options and econometric estimation. Its leptokurtic distribution has gained its

popularity. Kou (2002), and Kou and Wang (2004) have shown that the model leads

to nearly analytical option pricing formula for exotic and path dependent options.

This is a significant advantage as most of the methods for pricing options under

jump diffusion models are restricted to plain vanilla European options. Hence, the

double exponential jump-diffusion model, is used in this study.
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4 Double Exponential Jump

Diffusion Model

Overview of the various models that have been developed to model the asset price

dynamics was given in Chapter 3. In this chapter, the double exponential jump-

diffusion model will be discussed in detail.

4.1 Model specification

Under the double exponential jump diffusion model, the dynamics of the asset price

S(t) are given by the stochastic differential equation (Kou, 2002; Kou and Wang,

2004)

dS(t)

S(t−)
= µdt+ σdW (t) + d





N(t)
∑

i=1

(Vi − 1)



 (4.1)

where W (t) is a standard Brownian motion, N(t) is a Poisson process with rate

λ, and {Vi} is a sequence of independent identically distributed (i.i.d.) nonnegative

random variables such that Y = log(V ) has an asymmetric double exponential
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distribution with density

fY (y) = pη1e
−η1y

1{y≥0} + qη2e
η2y

1{y<0} (4.2)

η1 > 1, η2 > 0,

where p, q ≥ 0, p + q = 1, represent the probabilities of upward and downward

jumps, respectively. In other words,

log(V ) = Y
d
=















ξ+ with probability p,

ξ− with probability q.

(4.3)

where ξ+ and ξ- are exponential random variables with mean 1/η1, 1/η2, respec-

tively, and the notation
d
= means equal in distribution. In the model, the stochastic

elements, N(t), W (t), and YS are assumed to be independent. For notational sim-

plicity and in order to get analytical solutions for various option-pricing problems,

the drift µ and volatility σ are assumed to be constants, and the Brownian mo-

tion and jumps are assumed to be one dimensional. The solution of the stochastic

differential equation (equation (4.1)) is

S(t) = S(0) exp

{(

µ− 1

2
σ2

)

t+ σW (t)

} N(t)
∏

i=1

Vi (4.4)

Note that

E[Y ] =
p

η1
− q

η2
, V[Y ] = pq

(

1

η1
+

1

η2

)2

+

(

p

η2
1

+
q

η2
2

)

, (4.5)

and

E[V ] = E[eY ] = q
η2

η2 + 1
+ p

η1

η1 − 1
, η1 > 1, η2 > 0. (4.6)
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4.2 Leptokurtic feature

Again η1>1 is required to ensure that E[V ] < ∞ and E[S(t)] < ∞; this means that

the average rate of upward jump can not exceed 100%.

4.2 Leptokurtic feature

The rate of return during the time interval ∆t is derived from equation (4.4) and is

given as (Kou and Wang, 2004)

∆S(t)

S(t)
=
S(t+ ∆t)

S(t)
− 1

= exp







(

µ− 1

2
σ2

)

∆t+ σ(W (t+ ∆t) −W (t)) +

N(t+∆t)
∑

i=N(t)+1

Yi







− 1

If the time interval ∆t is sufficiently small, the higher order items can be omitted

using the expansion

ex = 1 +
x

1!
+
x2

2!
+ · · · ≈ 1 + x+

x2

2

and the return can be approximated by

∆S(t)

S(t)
≈ µ∆t+ σZ

√
∆t+B · Y (4.7)

where Z is a standard normal random variable and B is a Bernoulli random variable,

with P(B = 1) = λ∆t, P(B = 0) = 1 − λ∆t and Y is given by equation (4.3).
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4 Double Exponential Jump Diffusion Model

4.3 Option pricing

The double exponential jump diffusion model yields a closed form solution for the

European call and put options, which can be obtained in terms of the Hh function.

In this section, the Hh function will be introduced, and then the option-pricing

formula will be derived.

4.3.1 Hh functions

For every n ≥ 0, the Hh function is a nonincreasing function defined by, (see Kou

(2002))

Hhn(x) =

∫ ∞

x

Hhn−1(y)dy =
1

n!

∫ ∞

x

(t− x)ne−t2/2dt ≥ 0, n = 0, 1, 2, ...

Hh−1(x) = e−x2/2 =
√

2πϕ(x),

Hh0(x) =
√

2πΦ(−x),

(4.8)

The Hh function can be viewed as a generalization of the cumulative normal distri-

bution function.

A three-term recursion is also available for the Hh function, (see Kou (2002)).

nHhn(x) = Hhn−2(x) − xHhn−1(x), n ≥ 1. (4.9)

Therefore, all Hhn(x), for n ≥ 1, can be computed by using the normal density

function and normal distribution.
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4.3 Option pricing

4.3.2 European call and put options

First the following notation is introduced. For any given probability P, lets define

Υ(µ, σ, λ, p, η1, η2; a, T ) = P{Z(T ) ≥ a},

where Z(t) = µt+ σW (t) +
∑N(t)

i=1 Yi, Y has a double exponential distribution with

density fY(y) = p �η1e
−η1y

1{y≥0}+q �η2e
η2y

1{y<0}, and N(t) is a Poisson process with

rate λ. The pricing formula of call option will be expressed in terms of Υ, which

can be derived as a sum of Hh functions (Kou, 2002).

Theorem 4.3.1 The European call price is given by (Kou, 2002)

ψc(0) = S(0)Υ

(

r +
1

2
σ2 − λξ, σ, λ̃, p̃, η̃1, η̃2; log(K/S(0)), T

)

−Ke−rT Υ

(

r − 1

2
σ2 − λξ, σ, λ, p, η1, η2; log(K/S(0)), T )

) (4.10)

where

p̃ =
p

1 + ξ
· η1

η1 − 1
, η̃1 = η1 − 1, η̃2 = η2 + 1,

λ̃ = λ(ξ + 1), ξ =
pη1

η1 − 1
+

qη2

η2 + 1
− 1.

The price of European put option, ψp(0), can be obtained by the put-call parity

(Bodie et al., 2008):

ψp(0) − ψc(0) = e−rT E∗((K − S(T ))+ − (S(T ) −K)+)

= e−rT E∗(K − S(T )) = Ke−rT − S(0).

Therefore, the following Theorem is obtained.
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4 Double Exponential Jump Diffusion Model

Theorem 4.3.2 The price of European put option is

ψp(0) = Ke−rT − S(0) + ψc(0)

= Ke−rT − S(0) + S(0)Υ

(

r +
1

2
σ2 − λξ, σ, λ̃, p̃, η̃1, η̃2; log(K/S(0)), T

)

−Ke−rT Υ

(

r − 1

2
σ2 − λξ, σ, λ, p, η1, η2; log(K/S(0)), T )

)

(4.11)

The surfaces of call prices estimated by the Black-Scholes model, and the Kou model

are shown in Figures 4.1 (a) and (b), respectively. For comparison the surface of the

market call price is shown in Figure 4.2. The surface of the call price estimated by

Kou model shows a closer appearance to that of the market call price. The difference

between the call prices estimated by the Kou model and the call prices estimated

by the Black-Scholes model is shown in Figure 4.3.

42



4.3 Option pricing

0

0.5

1

1.5

2

100

150

0

10

20

30

40

50

 

Strike price [USD]

(a)

Time to maturity
 

B
S

 c
a

ll 
p

ri
ce

5

10

15

20

25

30

35

0

0.5

1

1.5

2

100

150

0

10

20

30

40

50

 

Strike price [USD]

(b)

Time to maturity
 

K
o

u
 c

a
ll 

p
ri
ce

0

5

10

15

20

25

30

35

40

Figure 4.1: The surface of the IBM call prices, (a) estimated by the Black-Scholes
model (b) estimated by the Kou model. The time to maturity T is 0 ∼ 2 years; the
strike price K is USD 80 ∼ 160; the call price is USD 0 ∼ 50.
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Figure 4.2: The surface of the IBM market call prices. The time to maturity T is
0 ∼ 2 years; the strike price K is USD 80 ∼ 160; the call price is USD 0 ∼ 50.
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Figure 4.3: The difference of the call prices calculated by applying the Kou model
and the Black-Scholes model. The time to maturity T is 0 ∼ 2 years; the strike
price K is USD 80 ∼ 160; the call price is USD 0 ∼ 50.
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4.4 The advantages of the double exponential jump diffusion model

4.4 The advantages of the double exponential

jump diffusion model

The double exponential jump diffusion model has the following advantages (Kou,

2002):

• The model is simple enough to be amenable to computation. Like the Black-

Scholes model, the double exponential jump diffusion model not only yields

a closed-form solutions for standard European call and put options, but also

leads to a variety of closed-form solutions for path-dependent options, such as,

barrier options, lookback options, and perpetual American options, as well as

interest rate derivatives (swaptions, caps, floors, and bond options).

• The model captures the important empirical phenomena - the asymmetric

leptokurtic feature, and the volatility smile. The double exponential jump dif-

fusion model is able to reproduce the leptokurtic feature of the return distri-

bution and the "volatility smile" observed in option prices. In addition, some

empirical tests suggest that the double exponential jump diffusion model fits

stock data better than the normal jump diffusion model (Kou, 2008).

• The model can be embedded into a rational expectations equilibrium frame-

work (Kou and Wang, 2004).

• The model has some economical, physical, and psychological interpretations.

One motivation for the double exponential jump diffusion model comes from

behavioral finance. It has been suggested from extensive empirical studies that

markets tend to have both overreaction and underreaction to various good and

bad news. One may interpret the jump part of the model as the market re-

sponse to outside news. More precisely, in the absence of outside news the
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4 Double Exponential Jump Diffusion Model

asset price simply follows a geometric Brownian motion. Good and bad news

arrives according to a Poisson process, and the asset price changes in response

according to the jump size distribution. Because the double exponential distri-

bution has both a high peak and heavy tails, it can be used to model both the

overreaction (attributed to the heavy tails) and the underreaction (attributed

to the high peak) to outside news. Therefore, the double exponential jump dif-

fusion model can be interpreted as an attempt to build a simple model, within

the traditional random walk and efficient market framework, to incorporate

investors’ sentiment (Kou, 2002, 2008).
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5 Monte Carlo Simulation

Monte Carlo simulation is based on statistical sampling, and it may be visualized as

a black box in which a stream of pseudorandom numbers enters and an estimation

is obtained by analyzing the output. Typically, it is used to estimate an expected

value with respect to an underlying probability distribution; for instance, an option

price may be evaluated by computing the expected value of the payoff with respect

to a risk-neutral probability measure (Brandimarte, 2002). Monte Carlo simulation

is well suited to valuing path-dependent options and options where there are many

stochastic variables (Hull, 2005).

Compared to other numerical methods, Monte Carlo simulation has several advan-

tages. First, it is easy to implement and use. In most situations, if the sample paths

from stochastic process model can be simulated, then the value can be estimated.

Second, its rate of convergence typically does not depend on the dimensionality of

the problem. Therefore, it is often attractive to apply Monte Carlo simulation to

problems with high dimensions (Chen and Hong, 2007).

In order to estimate a financial value by Monte Carol simulation, there are typically

three steps: generating sample paths, evaluating the payoff along each path, and

calculating an average to obtain estimation (Chen and Hong, 2007; Glasserman,
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5 Monte Carlo Simulation

2003; McLeish, 2005).

In this chapter, the Monte Carol simulation will be applied to the Black-Scholes

model and the double exponential jump diffusion model. First, the implementation

and the algorithm to simulate both models will be discussed. Then their fitness and

pricing errors will be compared.

5.1 Monte Carlo simulation of the Black-Scholes

model

5.1.1 Implementation of the Black-Scholes model using

Monte Carlo simulation

The payoff of a derivative usually depends on the future prices of the underlying

asset. Consider an European call option, whose payoff is max{ST - K, 0 }, where

ST is the price of a stock at time T , and K is a prespecified amount called the strike

price. The option gives its owner the right to buy the stock at time T for the strike

price K: if ST > K, the owner will exercise this right, and if not, the option expires

worthless (Staum, 2002; Ugur, 2008).

If the future payoff of a derivative derives from the underlying asset, is there a way

to derive the present price of the derivative from the current value of the underlying

asset? A basic theorem of mathematical finance states that this price is the expecta-

tion of the derivative’s discounted payoff under a risk–neutral measure (Boyle et al.,

1997; Staum, 2002).
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Figure 5.1: Monte Carlo simulation of the IBM stock price paths by applying the
Black-Scholes model. The date of analysis is June 10, 2010; the expiration date is
June 18, 2010; the time to maturity, T = 7; the initial stock price, S0 = USD 123.9;
the historical volatility is 0.018; the simulation takes 5 random paths.
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The standard Monte Carlo approach to evaluate such expectations is to simulate a

state vector which depends on the underlying variables under risk–neutral measure,

then to evaluate the sample average of the derivative’s payoff over all trials. This is

an unbiased estimation of the derivative’s price, and when the number of trials n is

large, the Central Limit Theorem provides a confidence interval for the estimation,

based on the sample variance of the discounted payoff. The standard error is then

proportional to 1/
√
n (Brandimarte, 2006).

In a risk-neutral world, µ in equation (1.1) can be replaced by the riskfree interest

rate rf in order to make more economic sense (Baz and Chacko, 2004). The Black-

Scholes option pricing model then becomes (Forsyth, 2008; Luenberger, 1998; Staum,

2002),
dSt

St
= rfdt+ σdWt, (5.1)

where Wt is a Wiener process under the risk-neutral probability measure Q.

By applying Ito’s formula, the following equation is derived,

d logSt = (rf − σ2/2)dt+ σdWt (5.2)

or,

log St − log St−1 = (rf − σ2/2)dt+ σdWt (5.3)

and then,

St = St−1 exp((rf − σ2/2)∆t+ σ∆Wt) (5.4)

where Wt is normally distributed with mean 0 and variance t. Therefore, pricing

the European call/put option under the Black-Scholes model requires the generation

of one standard normal random variable for each path at each time period. The

generated process is shown in Figure 5.1.
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5.1 Monte Carlo simulation of the Black-Scholes model

The simulated value of ST on path i is

S
(i)
T = S0 exp ((rf − σ2/2)T + σ

√
TZ(i)) (5.5)

where Z(i) is a standard normal random variable.

The estimated European call option price is

c = e−rfT · 1

n

n
∑

i=1

max{S(i)
T −K, 0}+ (5.6)

and the estimated European put option price is

p = e−rfT · 1

n

n
∑

i=1

max{K − S
(i)
T , 0}+ (5.7)

5.1.2 Algorithm to simulate the Black-Scholes model

1. Set the number of paths, (e.g. paths = 1000);

2. Set the length of time interval, ∆t = 1;

3. Set the time to maturity, T , (e.g. T = 7);

4. Using Moving Average algorithm, calculate historical volatility, σ

5. Calculate the drift, µ = rf − 0.5 × σ2, where rf is the riskfree interest rate,

usually, it is the annual interest rate of the three months Treasury Bill;

6. Create paths ×m normal random variables, where m = T/∆t time periods,

here m = T ;

7. Calculate each path daily log return, the daily log return on the path i and at

time period t is

r
(i)
t = µ∆t+ σ

√
∆t · Z(i)

t ;
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Figure 5.2: Monte Carlo simulation of the IBM stock price paths by applying Black-
Scholes model. The date of analysis is June 10, 2010; the expiration date is June
18, 2010; the time to maturity, T = 7; the initial stock price, S0 = USD 123.9; the
historical volatility is 0.018; the simulation takes 1000 random paths.
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5.1 Monte Carlo simulation of the Black-Scholes model

8. Calculate each path stock prices, for example, the stock prices on path i are

Si
1, S

i
2, · · · , Si

T .

The daily return factor on path i at time period t is

DRF
(i)
t = exp

(

r
(i)
t

)

The stock price on path i at time period t is

S
(i)
t = S

(i)
t−1 × DRF

(i)
t

9. Calculate the payoff of each path, see Figure 5.2,

the call option payoff of path i is max{Si
T −K, 0},

the put option payoff of path i is max{K − Si
T , 0}.

10. The call price is the expectation of the payoff of these random paths,

c =
1

n

n
∑

i=1

e−rf T max{S(i)
T −K, 0}

The put price is the expectation of the payoff of these random paths,

p =
1

n

n
∑

i=1

e−rfT max{K − S
(i)
T , 0}

53



5 Monte Carlo Simulation

0 1 2 3 4 5 6 7
105

110

115

120

125

130

135

Time periods

S
to

ck
 p

ri
ce

 [
U

S
D

]

Figure 5.3: Monte Carlo simulation of the IBM stock price paths by applying the
double exponential jump model. The date of analysis is June 10, 2010; the expiration
date is June 18, 2010; the time to maturity, T = 7; the initial stock price, S0 = USD
123.9; the historical volatility is 0.018; the simulation takes 5 random paths.

5.2 Monte Carol simulation of the double

exponential jump diffusion model

5.2.1 Implementation of the double exponential jump

diffusion model using Monte Carlo simulation

Recall the double exponential jump model from equation (4.7), and rewrite the

equation as
dSt

St

= µdt+ σdWt +B · Y (5.8)
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5.2 Monte Carol simulation of the double exponential jump diffusion model

where Wt is normally distributed with mean 0 and variance t, B is a Bernoulli

random variable, with P(B = 1) = λ∆t, P(B = 0) = 1 − λ∆t, and Y is given by

equation (4.3). From Equation (5.8), the following equation can be derived,

log St − log St−1 = (rf − σ2/2)dt+ σdWt +B · Y (5.9)

or,

St = St−1 exp
(

(rf − σ2/2)∆t+ σZ
√

∆t+B · Y
)

(5.10)

where Z is a standard normal random variable. Therefore, pricing the European

call option under the double exponential jump model requires the generation of one

standard normal random variable for each path at each time period. The generated

process is shown in Figure 5.3. The simulated value of ST on the ith path is given

as

S
(i)
T = S0 exp ((rf − σ2/2)T + σ

√
TZ

(i)
t +B · Y ) (5.11)

the estimated call option price is

c =
1

n

n
∑

i=1

e−rf T max{S(i)
T −K, 0}+ (5.12)

and the estimated put option price is

p =
1

n

n
∑

i=1

e−rf T max{K − S
(i)
T , 0}+ (5.13)
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Figure 5.4: Monte Carlo simulation of the IBM stock price paths by applying the
double exponential jump model. The date of analysis is June 10, 2010; the expiration
date is June 18, 2010; the time to maturity, T = 7; the initial stock price, S0 = USD
123.9; the historical volatility is 0.018; the simulation takes 1000 random paths.
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5.2.2 Algorithm to simulate the double exponential jump

diffusion model

In the jump diffusion model, a jump part is added into the daily return factor, the

algorithm for the jump model is shown as follows:

Steps 1 ∼ 6 are the same as for the Black-Scholes model described in Section 5.1.2;

7. Create the Jump part, B · Y , where B is a Bernoulli random variable, and

Y is an asymmetric double exponential random variable with probability p

upwards and with probability 1 − p downwards, see equation (4.3);

(a) create a function with probability p upwards, and with probability 1 − p

downwards

(b) create the double exponential function

(c) create the function for a jump event, ’y = 1’ means ’a jump’, ’y = 0’ means

’no jump’

8. Calculate each path daily log return, the daily return on path i at time period

t is,

r
(i)
t = µ∆t+ σ

√
∆t · Z(i)

t + (B · Y )
(i)
t ;

9. Calculate each path stock prices, for example, the stock prices on path i are

Si
1, S

i
2, · · · , Si

T .

The daily return factor on path i at time period t is

DRF
(i)
t = exp

(

r
(i)
t

)
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The stock price on path i at time period t is

S
(i)
t = S

(i)
t−1 × DRF

(i)
t

10. Calculate the payoff of each path, see Figure 5.4,

the call option payoff of path i is max{Si
T −K, 0},

the put option payoff of path i is max{K − Si
T , 0}.

11. The call price is the expectation of the payoff of these random paths,

c =
1

n

n
∑

i=1

e−rf T max{S(i)
T −K, 0}

The put price is the expectation of the payoff of these random paths,

p =
1

n

n
∑

i=1

e−rf T max{K − S
(i)
T , 0}

5.3 The fitness of the option prices: the

Black-Scholes model versus the Kou model

In this simulation, the date of analysis is June 10, 2010; the expiration date is

October 15, 2010; the time to maturity is 92 trading days. The initial IBM stock

price S0 was USD 123.9. The strike prices versus the market call prices is shown in

Figure 2.5(a). The daily riskfree interest rate rf is 7.3016e-005; the daily historical

volatility σ is 0.018. 1000 random paths are used; the simulation processes of the

stock prices applying the Black-Scholes model and applying the Kou model are

shown in Figures 5.2 and 5.4, respectively.
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When the time to maturity is 92 days, the comparison of the call prices estimated

by the Black-Scholes model and the Kou model is shown in Figure 5.5. It can be

observed that the call price estimated by Kou model is closer to the market call

price. The comparison of the pricing errors between the call prices estimated by

Black-Scholes model and the market prices and the pricing errors between the call

prices estimated by Kou model and the market call prices is shown in Figures 5.6

(a) and (b). From these figures, it can be noted that the call price estimated by

the Kou model is slightly closer to the market price than the call price estimated

by the Black-Scholes model to the market price. In other words, the difference

between the call price estimated by the Kou model and the market price is less

than the difference between the call price estimated by the Black-Scholes model and

the market call price. In a more precise way, this will be confirmed by calculating

the residual sum of squares (RSS). For a 92-days maturity time, the RSS for the

Black-Scholes model is 10.07 and the RSS for the Kou model is 6.42.

For multiple time to maturity (T = 7, 27, 92, 162, 422 days) and multiple strike prices

(K = USD 90, 100, 110, 115, 120, 125, 130, 135, 140, 145, 150). the call prices esti-

mated by the Black-Scholes model and the call prices estimated by the Kou model

are shown in Figures 4.1(a) and 4.1(b), respectively. When comparing both figures

with the market prices, shown in Figure 4.2, the call option price estimated by the

Kou model is closer to the market price than the call option price estimated by the

Black-Scholes model to the market price.

Furthermore, the difference between the call price estimated by Black-Scholes model

and the market call price, and the difference between the call price estimated by

Kou model and the market call price with multiple strike price (K) and multiple

time to maturity (T ) are shown in Figures 5.7 (a) and (b), respectively.
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Figure 5.5: Comparison of the call option price estimated by the Black-Scholes
model (o) and the Kou model (+). The solid line shows the market call price. It
can be observed that the call option price estimated by Kou model is closer to the
market call price.
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Figure 5.6: Comparison of the pricing errors. The pricing errors between the call
price estimated by the Black-Scholes model and the market call price (o), the pricing
errors between the call price estimated by the Kou model and the market call price
(+). (a). The real values. (b). The absolute values.
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Figure 5.7: (a) Differences between call prices estimated by the Black-Scholes model
and the market call prices. (b) Differences between call prices estimated by the Kou
model and the market call prices. The time to maturity T is 0 ∼ 2 years; the strike
price K is USD 80 ∼ 160; the call prices is USD 0 ∼ 50.
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5.4 Comparing the errors from Black-Scholes

model and from Kou model

With multiple time to maturity T and multiple strike price K, the comparison of

the pricing errors from the estimation by the Black-Scholes model and the pricing

errors from the estimation by the Kou model is shown in Figure 5.8.

The residual sum of squares (RSS) is calculated by

RSS =
n

∑

i=1

ε̂2
i =

n
∑

i=1

(yi − ŷi)
2, (5.14)

When comparing the residual sum of squares (RSS) from the difference between the

call price estimated by the Black-Scholes and the market call price, and from the

difference between the call price estimated by the Kou model and the market call

price, the Kou model shows better performance than the Black-Scholes model when

comparing the RSS. This is substantiated by the results shown in Table 5.1. The

data shows that the RSS for the Kou model is significantly lower than the RSS for

the Black-Scholes model for all times to maturity. Therefore, the conclusion is that

the call price estimated by the Kou model is closer to the market call price than

the call price estimated by the Black-Scholes model. More comparison of the two

models will be presented in Section 7.4.

Table 5.1: RSS comparison for the Black-Scholes model and the Kou model

RSS T=7 T=27 T=92 T=162 T=422

Black-Scholes 1.07 17.76 10.07 111.08 169.02
Kou model 0.49 15.32 6.42 72.57 130.35
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Figure 5.8: The comparison of the absolute value of the pricing errors estimated
by the Kou model and the Black-Scholes model with multiple time to maturity and
multiple strike prices. The time to maturity T is 0 ∼ 2 years; the strike price K is
USD 80 ∼ 160; the call prices is USD 0 ∼ 50.
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6 GARCH

The ARCH and GARCH models have been briefly discussed in Section 3.2.6. In this

chapter, the GARCH model will be used to develop a stochastic volatility model.

6.1 What is GARCH ?

GARCH stands for Generalized Autoregressive Conditional Heteroscedasticity. Loosely

speaking, "heteroscedasticity" can be taken as a time-varying variance (or, volatil-

ity); "conditional" implies a dependence on the observations of the immediate past;

"autoregressive" describes a feedback mechanism that incorporates past observations

into the present. Thus, GARCH is a mechanism that includes past variances in the

explanation of future variance (Bollerslev, 1986; Bollerslev et al., 1992; McMillan,

2002; Zhuang and Chan, 2004).

More specifically, GARCH is a time-series technique that allows users to model the

serial dependence of volatility. Whenever a time series is said to have GARCH

effects, the series is heteroscedastic, i.e. its variances vary with time.
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6.2 Why use GARCH ?

GARCH models are designed to capture certain characteristics that are commonly

associated with financial time series (Bollerslev, 1986; Engle, 2001; Franses and van

Dijk, 2000; Zivot and Wang, 2005):

• Fat tails – the probability distribution for asset returns often exhibit fatter

tails than those of standard normal distribution, which were referred to as

leptokurtic feature and discussed in Section 2.1.1, and were demonstrated in

Figures 2.2 (a) and (b).

• Volatility clustering – large changes tend to follow large changes, and small

changes tend to follow small changes. In either case, the changes from one

period to the next are typically of unpredictable sign. Large disturbances,

positive or negative, become part of the information set used to construct

the variance forecast of the next period’s disturbance. This can be seen in

Figure 6.1 (a). Volatility clustering implies a strong autocorrelation in squared

returns, so this can be detected by the first-order autocorrection coefficient in

squared returns (Alexander, 2001). Also see Figure 6.2 (c).

• Leverage effects – asset returns are often observed to be negatively correlated

with volatility change. That is, the volatility tends to rise in response to bad

news and fall in response to good news (Xekalaki and Degiannakis, 2010).

This can be seen in Figure 6.1 (b). For example, as the bad news were coming

around the 2008 financial crisis, the volatility rose significantly at that time.
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Figure 6.1: (a) IBM daily log return time series. The ’volatility clustering’ can be
observed. (b) IBM daily volatility time series, using moving average method with
window size of 21 days. The leverage effects can be seen from (b).
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6.3 The GARCH model

A GARCH model, based on the IBM stock price data for the period from January

2005 to June 2010, will be developed for predicting the stochastic volatility.

6.3.1 Preestimate Analysis

The conditional mean model is ARMAX(R,M) and the conditional variance model

is GARCH(p, q). The conditional mean model ARMAX(R,M) is given by (Rachev

et al., 2007)

yt = C +

R
∑

i=1

φiyi−1 + εt +

M
∑

j=1

θjεt−j ; (6.1)

and the conditional variance model GARCH(p, q) is given by (Chatfield, 2003)

σ2
t = ω +

p
∑

i=1

αiε
2
t−i +

q
∑

j=1

βjσ
2
t−j . (6.2)

First, to check for the correlation in the IBM daily log return series for the period

from January 2005 to June 2010, the plots of the autocorrelation (ACF) and the

partial-autocorrelation (PACF) are shown in Figures 6.2 (a) and (b), respectively.

Figures 6.2 (a) and (b) indicate that the series correlations of IBM daily log return

are very small, if any. That is, it is unnecessary to use any correlation structure in

the conditional mean. Thus, Equation (6.1) can be simplified to become (Rachev

et al., 2007),

yt = C + εt (6.3)

Then, to check whether a correlation in the squared IBM daily log returns for the

period from January 2005 to June 2010 exists, the plot of the autocorrelation (ACF)
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6.3 The GARCH model

of the squared return is shown in Figure 6.2 (c). Figures 6.2 (c) shows that, although

the returns themselves are not correlated, the variance process exhibits significant

correlation. Thus, the simple GARCH(1, 1) model can be expressed as (Brooks,

1997; Zhuang and Chan, 2004)

σ2
t = ω + αε2

t−1 + βσ2
t−1 (6.4)

6.3.2 Parameter Estimation

Typically, the GARCH(1,1), GARCH(2,1), or GARCH(1,2) models are adequate

for modeling volatilities over long sample periods (Bollerslev et al., 1992). In this

estimation, GARCH(1,1) and GARCH(2,1) are used for comparison. Their param-

eters are estimated and displayed in Tables 6.1 and 6.2, respectively. In Table 6.2,

it can be seen that both the value of β2 and the T-statistic of β2 are zero, which

implies that the β2 parameter adds nothing to the model. Furthermore, since the

results for the GARCH(2,1) model are virtually identical to those obtained from the

GARCH(1,1) model, the results support acceptance of the simpler restricted model,

which is essentially just the GARCH(1,1) model. Thus, the GARCH(1,1) model is

written as

σ2
t = 7.4 × 10−6 + 0.83σ2

t−1 + 0.14ε2
t−1. (6.5)
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Figure 6.2: (a) Autocorrelation of IBM daily log return. (b) Partial-autocorrelation
of IBM daily log return. (c) Autocorrelation of squared IBM daily log return.
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6.3 The GARCH model

Table 6.1: Parameters from the GARCH(1,1) model

Parameter Value Standard error T Statistic

C 0.00064 0.00028 2.25
ω 7.4e-006 1.2e-006 6.21
α 0.14 0.014 9.50
β 0.83 0.016 51.55

Table 6.2: Parameters from the GARCH(2,1) model

Parameter Value Standard error T Statistic

C 0.00064 0.00028 2.24
ω 7.4e-006 1.89e-006 3.88
α 0.14 0.02 5.74
β1 0.83 0.19 4.22
β2 0 0.17 0.00
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6 GARCH

6.3.3 Postestimate Analysis

The residuals (also referred to as innovation), the conditional standard deviations

(also referred to as sigmas) and the returns are compared in Figure 6.3. This figure is

used to inspect the relationship between the residuals derived from the fitted model,

the corresponding conditional standard deviations and the observed returns. Notice

that both the residuals (top plot) and the returns (bottom plot) exhibit volatility

clustering. Also, notice that the sum,

α + β = 0.14 + 0.83 = 0.97,

which is close to 1. It indicates a overstated volatility persistence in the GARCH

model (Chou, 1988; Lamoureux and Lastrapes, 1990; Zhuang and Chan, 2004). This

may cause poor volatility forecasting performance.

The plot of the standard innovations (the residuals divided by their conditional

standard deviation) is shown in Figure 6.4 (a). It is clear that they are stable with

little clustering. The ACF of the squared standardized innovations is plotted in

Figure 6.4 (b). They show no correlation. Now compare the ACF of the squared

standardized innovations shown in Figure 6.4 (b) to the ACF of the squared return

shown in Figure 6.2 (c). The comparison shows that the model in Equation (6.5)

sufficiently explains the heteroscedasticity in the return.
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Figure 6.3: Comparison of the residuals, the conditional standard deviations, and
the return. Both the residuals (top plot) and the returns (bottom plot) exhibit
volatility clustering.
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Figure 6.4: (a) The plot of the standardized innovations (the residuals divided by
their conditional standard deviations). They appear stable with little clustering.
(b) The ACF of the standardized innovations. They show no correlation.
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6.4 GARCH limitations

6.4 GARCH limitations

GARCH models are parametric specifications that operate best under relatively sta-

ble market conditions (Gourieroux, 1997). Although GARCH is explicitly designed

to model time-varying conditional variances, GARCH models often fail to capture

highly irregular phenomena, including wild market fluctuations such as stock market

crashes and subsequent rebounds, and other highly unanticipated events that lead

to significant structural change (Duan, 1995; Gulisashvili and Stein, 2010). Fur-

thermore, GARCH model often fail to fully capture the fat tails observed in asset

return series. Heteroscedasticity explains some of the fat tail behavior, but does not

capture all of its features.
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7 Empirical Study

The simulations of the Black-Scholes model and the Kou model in Chapter 5 are

based on a constant volatility. However, in reality the volatility is stochastic. In

this chapter, two new models based on stochastic volatility will be developed. The

two new models will be built based on the Black-Scholes model and the Kou model,

respectively, along with the stochastic volatility model. The Monte Carlo method

will be used to simulate the two new models to price the IBM call option. Finally,

the results from the simulation of two new models will be compared with those of

the Black-Scholes model and the Kou model discussed in Chapter 5.

7.1 Black-Scholes & GARCH model

In this section, the Black-Scholes model and the GARCH model will be combined

into a new model, which is referred to as ’Black-Scholes & GARCH model’. The

Black-Scholes & GARCH model will be simulated by the Monte Carlo method to

estimate the IBM call option price. The results will be compared with those of the

Black-Scholes model.
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7.1.1 The Black-Scholes & GARCH model

The Black-Scholes & GARCH model is based on the Black-Scholes model, but the

volatility is a stochastic variable instead of a constant. Hence, the model can be

expressed by the following equations,















∆S
S

= µ∆t+ σt∆Wt;

σ2
t = ω + αε2

t−1 + βσ2
t−1

(7.1)

The stochastic volatility equation for predicting IBM volatility can be derived from

Equation (6.5),














σ2
t = 7.4 × 10−6 + 0.83σ2

t−1 + 0.14ε2
t−1

σ0 = 0.018

(7.2)

Note that the stochastic volatility equation is based on IBM historical volatility for

the period from January 2005 to June 2010 and is valid only for predicting the IBM

volatility.

7.1.2 Simulation of the Black-Scholes & GARCH model

The implementation of the Black-Scholes & GARCH model is similar to that of

the Black-Scholes model described in Section 5.1.1, but the volatility is a stochastic

variable instead of a constant.

The algorithm to simulate the Black-Scholes & GARCH model is the same as the

algorithm developed for the Black-Scholes model described in Section 5.1.2, except

the following modification:

step 4: use GARCH model to calculate the volatility σt;
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7.1 Black-Scholes & GARCH model

step 7: the volatility is stochastic, that is, a constant σ changes into a stochastic

variable σt.

7.1.3 Comparing the Black-Scholes model with the

Black-Scholes & GARCH model

The Black-Scholes & GARCH model is used to simulate the IBM stock prices. The

simulated stock prices at time T are used to determine the IBM call option price.

The comparison of the call prices estimated by the Black-Scholes model and the

Black-Scholes & GARCH model for a time to maturity of 92 days is shown in

Figure 7.1. It is obvious that the call price estimated by the Black-Scholes model

fits the market call price better than the call price estimated by the Black-Scholes

& GARCH model. In fact, for a lower strike price, the Black-Scholes & GARCH

model always underestimates the call price compared to the market price.

For the time to maturity, T = 92 days, the errors between the call option price

estimated by the Black-Scholes model or the Black-Scholes & GARCH model and

the market call option price are shown in Figures 7.2 (a) and (b). It is obvious that

the Black-Scholes model shows better performance in pricing the call option than

the Black-Scholes & GARCH model. The graphs that show the comparison of the

Black-Scholes model with the Black-Scholes & GARCH model for various times to

maturity from 7 to 422 days and the pricing errors between the call prices estimated

by the models and the market prices are given in Appendix B.
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Figure 7.1: The comparison of the call option price estimated by the Black-Scholes
model (o) and the Black-Scholes & GARCH model (*) for the time to maturity (T )
of 92 days. The solid line shows the market call price. It can be observed the call
price estimated by the Black-Scholes model is closer to the market call price than
the call price estimated by the Black-Scholes & GARCH model.
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(b) BS model
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Figure 7.2: The pricing errors between the call option price estimated by the Black-
Scholes model (o) or the Black-Scholes & GARCH model (*) and the market call
price. It is obvious that the Black-Scholes model has less pricing errors. Figure (a)
shows the real value. Figure (b) shows the absolute value. The time to maturity T
is 92 days.
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7.2 Kou & GARCH model

In this section, a new model which combines the Kou model with the GARCH model

will be introduced. In order to simplified the name, the new model is referred to

as ’Kou & GARCH model’. A Monte Carlo simulation will be applied to the Kou

& GARCH model to estimate IBM call option price. The results will be compared

with those of the Kou model.

7.2.1 The Kou & GARCH model

This model is based on the Kou model, but the constant volatility is replaced by a

stochastic variable. Therefore, the Kou & GARCH model can be written as















∆S
S

= µ∆t+ σt∆Wt + J∆q;

σ2
t = ω + αε2

t−1 + βσ2
t−1

(7.3)

where J is jump size. The IBM stochastic volatility is predicted by Equation (7.2).

7.2.2 Simulation of the Kou & GARCH model

The implementation of the Kou & GARCH model is similar to that of the Kou model

in Section 5.2.1, but the volatility is a stochastic variable instead of a constant.

The algorithm developed to simulate the Kou & GARCH model is the same as the

algorithm developed for the double exponential jump diffusion model described in

Section 5.2.2, except for the following modification:
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7.2 Kou & GARCH model

step 4: using Equation (7.2), calculate the volatility σt;

step 8: the volatility is stochastic, that is, constant σ change into stochastic σt.

7.2.3 Comparing the Kou model with the Kou & GARCH

model

The Monte Carlo method is applied to the Kou & GARCH model to estimate the

IBM call option. The comparison of the call prices estimated by the Kou model and

the Kou & GARCH model for time to maturity 92 days is shown in Figure 7.3. It

is clear that the call prices estimated by the Kou & GARCH model fits better the

market call prices than the call prices estimated by the Kou model.

For the time to maturity, T = 92 days, the errors between the call option price

estimated by the Kou model or the Kou & GARCH model and the market call

option price are shown in Figures 7.4 (a) and (b). It can be noted that the Kou &

GARCH model has less pricing errors than the Kou model in most cases. That is,

the Kou & GARCH model performed better than the Kou model in pricing error for

most of the strike prices. The graphs that show the comparison of the Kou model

with the Kou & GARCH model for various times to maturity from 7 to 422 days and

the pricing errors between the call prices estimated by the models and the market

prices are given in Appendix B.
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Figure 7.3: The comparison of the call option price estimated by the Kou model (o)
and the Kou & GARCH model (*) for the time to maturity T of 92 days. The solid
line shows the market call price. It can be observed the call price estimated by Kou
& GARCH model is closer to the market call price.
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(b) Kou model
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Figure 7.4: The pricing errors between the call option price estimated by the Kou
model (o) or the Kou & GARCH model (*) and the market call price. It is clear
that the Kou & GARCH model has less pricing errors. Figure (a) shows the real
value. Figure (b) shows the absolute value. The time to maturity T is 92 days.
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7.3 Comparing the four models

For the time to maturity T of 92 days, the errors between the call option price

estimated by any of the four models and the market call option price are shown

in Figures 7.6 (a) and (b). From Figures 7.6 (a) and (b), it can be observed that

the Kou & GARCH model has the lowest pricing error for most of the strike prices.

The Kou model has the second lowest pricing error. The Black-Scholes & GARCH

model shows the worst performance in pricing among the four models.

When the time to maturity T is 7 days, 27 days, 162 days, 422 days, the errors

between the call option price estimated by any of the four models and the market

call option price are shown in Figures B.6 (a) and (b), B.12 (a) and (b), B.18 (a)

and (b), B.24 (a) and (b) in Appendix B, respectively. For most of the cases, the

Kou & GARCH model shows better performance than the other models.
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Figure 7.5: The comparison of the call option price estimated by the four models.
The Black-Scholes model (o), the Black-Scholes & GARCH model (*), the Kou
model (+) and the Kou & GARCH model (x) for the time to maturity T of 92 days.
The solid line shows the market call price.
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Figure 7.6: The pricing errors between the call option price estimated by any of the
four models and the market call price. It can be observed that the Kou & GARCH
model has the lowest pricing error for most of the strike prices. Figure (a) shows
the real value. Figure (b) shows the absolute value. The time to maturity T is 92
days.
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7.4 Measuring the errors

In order to compare these four models precisely, it is necessary to measure the errors

based on the comparison of actual data with the values predicted by the models. In

this section, the model performance will be evaluated by statistical methods. The

following statistical methods will be used to measure the performance in this study

(Alexander, 2001; Dittmann and Maug, 2008).

1. Mean absolute error (MAE): the mean of the absolute values of the prediction

errors

MAE =
1

n

n
∑

i=1

|ei| (7.4)

The MAE measure for the four models is shown in Table 7.1. For most of the

times to maturity T , the Kou model shows the best performance, but the Kou

& GARCH model performs the best when the time to maturity T is 92 days.

2. Mean square error (MSE): the mean of the squares of the prediction errors

MSE =
1

n

n
∑

i=1

ei
2 (7.5)

The MSE measure for the four models is shown in Table 7.2. For all of the

times to maturity T , the Kou model performs the best among the four models.

3. Root mean square error (RMSE): the square root of the mean of the squared

prediction errors

RMSE =

√

√

√

√

1

n

n
∑

i=1

ei
2 (7.6)

The RMSE measure for the four models is shown in Table 7.3. For all of the

times to maturity T , the Kou model shows the best performance. Note that

the RMSE measure is different from the MAE measure in that the RMSE
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measure gives more weight to the large errors.

4. Normalized root mean square error (NRMSE): the RMSE divided by the es-

timated standard deviation of the prediction error

NRMSE =
RMSE

σ̂
=

√

√

√

√

1

nσ̂2

n
∑

i=1

ei
2 (7.7)

The NRMSE measure for the four models is shown in Table 7.4. For most of

the times to maturity T , the Kou model performs the best except for the time

to maturity T of 422 days.

5. Information ratio (IR): the mean prediction error divided by the standard

deviation of the prediction error

IR =
µ̂

σ̂
=

1

nσ̂

n
∑

i=1

ei (7.8)

The IR measure for the four models is shown in Table 7.5. For most of the

times to maturity T , the Kou model shows the best performance, except the

time to maturity T of 422 days.

From Tables 7.1, 7.2, 7.3, 7.4, and 7.5, it is clear that the Kou model shows the

lowest MAE, MSE, RMSE, NRMSE, and IR in most of cases among the four models.

Therefore, a conclusion can be drawn from the results shown in these tables, that

the Kou model is the best model explored in this study. However, it should be noted

that this can only be stated for modeling the IBM stock prices.
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Table 7.1: Comparing the MAE for the four models

MAE T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.18 0.52 0.55 1.24 2.19
Kou model 0.12∗ 0.49∗ 0.45 1.17∗ 2.16∗

BS+GARCH 0.25 0.57 1.08 1.77 2.53
Kou+GARCH 0.23 0.69 0.34∗ 1.32 2.87
∗ The star indicates the lowest absolute pricing error.

Table 7.2: Comparing the MSE for the four models

MSE T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.07 0.89 0.56 3.83 7.35
Kou model 0.03∗ 0.77∗ 0.36∗ 2.5∗ 5.67∗

BS+GARCH 0.27 0.93 2.02 5.61 8.8
Kou+GARCH 0.23 1.26 0.38 4.65 11.38
∗ The star indicates the lowest absolute pricing error.

Table 7.3: Comparing the RMSE for the four models

RMSE T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.27 0.94 0.75 1.96 2.71
Kou model 0.18∗ 0.88∗ 0.6∗ 1.58∗ 2.38∗

BS+GARCH 0.52 0.96 1.42 2.37 2.97
Kou+GARCH 0.48 1.12 0.62 2.16 3.37
∗ The star indicates the lowest absolute pricing error.
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Table 7.4: Comparing the NRMSE for the four models

NRMSE T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.96 1.07 0.98∗ 1 1.14∗

Kou model 0.95∗ 1.03∗ 0.98∗ 0.99∗ 1.44
BS+GARCH 0.95∗ 1.18 1.5 1.25 1.77
Kou+GARCH 0.99 1.23 0.99 1.12 1.28
∗ The star indicates the lowest absolute pricing error.

Table 7.5: Comparing the absolute value of IR for the four models

|IR| T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.18 0.44 0.13∗ 0.17 0.58∗

Kou model 0∗ 0.33∗ 0.13∗ 0.07∗ 1.06
BS+GARCH 0.17 0.66 1.14 0.77 1.47
Kou+GARCH 0.33 0.75 0.21 0.54 0.82
∗ The star indicates the lowest absolute pricing error.
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7.5 Results and discussion

In Section 7.4, there is a conflict in the results from the statistical methods and

what is observed by visual inspection. According to pricing errors, the statistical

study shows that the Kou model is the best model. However, Figures 7.6 (a) and

(b), B.6 (a) and (b), B.12 (a) and (b), and B.18 (a) and (b) shows that the Kou &

GARCH model is the best model for most of strike prices, in particularly, for the

higher part of strike prices.

Now, lets divided the dataset into two parts: one is that the strike prices are less

than $130; the other is that the strike prices are equal to or greater than $130.

Recalculate the mean absolute error (MAE) and root mean square error (RMSE)

for both parts. The results are listed in Tables 7.6, 7.7, 7.8, and 7.9. From Tables

7.6 and 7.8, it can be seen that the Kou model has the lowest pricing errors for all

the time to maturity. It means that the Kou model is the best pricing model among

the four models for the strike prices that are less than $130. From Tables 7.7 and

7.9, the Black-Scholes & GARCH model has the lowest pricing error for the time

to maturity 7 days; the Kou & GARCH model has the lowest pricing errors for the

time to maturity T of 27 days, 92 days, and 162 days; the Black-Scholes model has

the lowest pricing error for the time to maturity 422 days. That is, for the time to

maturity T of 27 days, 92 days, and 162 days, the Kou & GARCH model is the best

model for the higher strike prices, equal to or larger than $130.

The Kou & GARCH model is expected to be the best model among the four models

since it provides the solutions for both the jump part and the stochastic volatility.

Why are the above results not consistent with this statement ? One of the reasons

for this is that the volatility predicted by the GARCH model is different from the
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Table 7.6: Comparing the MAE for the four models (for K < $130)

MAE T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.25 0.91 0.84 1.91 2.06
Kou model 0.17∗ 0.8∗ 0.54∗ 1.69∗ 1.98∗

BS+GARCH 0.38 1.07 2.01 2.61 2.69
Kou+GARCH 0.34 1.37 0.76 2.37 3.38
∗ The star indicates the lowest absolute pricing error.

volatility used by market. The GARCH model predicts the volatility based on the

historical volatility. But the market uses implied volatility based on the future.

That is, the historical volatility used by the Kou & GARCH model is not the same

as the implied volatility used by the market. In other words, volatility forecasts

in GARCH model may lead to unsatisfactory performance (Canina and Figlewski,

1993; Figlewski, 1997; Poon and Granger, 2003).

The possible poor volatility forecasting performance was mentioned in Section 6.3.3.

Zhuang and Chan (2004) pointed out that this high persistence is due to the struc-

ture changes (e.g. shift of volatility levels) in the volatility processes, which GARCH

can not capture. To solve this problem, a GARCH model based on Hidden Markov

Models (HMMs) may be the solution. By using the concept of hidden states, HMMs

allow for periods with different volatility levels characterized by the hidden states.

Within each state, local GARCH models can be applied to model conditional volatil-

ity (Yin, 2007). This will be left for future work.
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Table 7.7: Comparing the MAE for the four models (for K ≥ $130)

MAE T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.04 0.19 0.36 0.52 2.31∗

Kou model 0.04 0.23 0.39 0.61 2.34
BS+GARCH 0.02∗ 0.16 0.49 0.88 2.39
Kou+GARCH 0.04 0.13∗ 0.08∗ 0.21∗ 2.41
∗ The star indicates the lowest absolute pricing error.

Table 7.8: Comparing the RMSE for the four models (for K < $130)

RMSE T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.34 1.35 1.05 2.64 2.93
Kou model 0.23∗ 1.23∗ 0.68∗ 2.08∗ 2.31∗

BS+GARCH 0.67 1.4 2.1 3.06 3.2
Kou+GARCH 0.61 1.65 0.99 2.98 3.96
∗ The star indicates the lowest absolute pricing error.

Table 7.9: Comparing the RMSE for the four models (for K ≥ $130)

RMSE T=7 T=27 T=92 T=162 T=422

Black-Scholes 0.06 0.34 0.46 0.67 2.49
Kou model 0.07 0.4 0.54 0.74 2.45∗

BS+GARCH 0.03∗ 0.29 0.71 1.26 2.73
Kou+GARCH 0.06 0.27∗ 0.1∗ 0.29∗ 2.72
∗ The star indicates the lowest absolute pricing error.
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7.6 Summary

The Monte Carlo simulation is applied to these four models – the Black-Scholes

model, the Kou model, the Black-Scholes & GARCH model, the Kou & GARCH

model – to estimate the IBM call option price. When the time to maturity is 7

days, or 27 days, or 92 days, or 162 days, the Kou & GARCH model shows the best

performance in pricing errors, for most of the strike prices, visually. However, if their

errors are measured by statistical methods such as mean absolute error (MAE), mean

square error (MSE), root mean square error (RMSE), normalized root mean square

error (NRMSE), information ratio (IR), the Kou model shows the lowest errors.

The reason is that there exist some large pricing errors when the strike prices are

low and the large errors add a big value to MAE, MSE and RMSE to make the

comparison less descriptive. A solution is to divide the dataset into two parts. One

is for the strike prices that are lower than $130; the other is for the strike prices is

equal to or larger than $130. The Kou model shows the best performance in the

pricing error for the lower part of strike prices, and the Kou & GARCH model shows

better performance in the pricing error for the higher part of the strike prices when

the time to maturity is 27 days, 92 days, 162 days.

It should be noted that the conclusion is based on a special dataset, the IBM histori-

cal stock and call option price. In other words, it does not mean that this conclusion

is valid for any other dataset. Sepp (2003) points out that there is no accepted model

for every market and every market has its own favorite.
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8 Conclusion & future work

Due to the two puzzles that the Black-Scholes model is unable to explain, the double

exponential jump diffusion model is introduced to model the jump that occurs in

stockprices caused by the overaction or underaction to outside news. The two models

were used to price the IBM call option by Monte Carlo simulation. The results show

that the double exponential jump diffusion model creates less pricing errors than

the Black-Scholes model does.

Furthermore, a stochastic volatility model based on GARCH(1,1) is developed to

forecast the non-constant volatility. Two new models, the Black-Scholes & GARCH

model and the Kou & GARCH model, based on the Black-Scholes model and the

double exponential jump diffusion model, respectively, but with stochastic volatility,

are developed. The two new models were also applied to price the IBM call option

by Monte Carlo simulation. The four models are compared by the pricing errors

both visually and statistically. For the higher part of strike prices, both visual

observation and statistical study show that the Kou & GARCH model has the best

performance on the pricing error. However, the lower part of the strike prices, the

double exponential jump diffusion model performs the best. Theoretically, the Kou

& GARCH model is expected to be the best model among the four models. The

inconsistency may be caused by poor volatility forecasting performance from the
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GARCH model.

Therefore, a future work could be to build a GARCH model based on Hidden Markov

Models (HMMs). By using the concept of hidden states, HMMs allows for periods

with different volatility levels characterized by the hidden states. Within each state,

local GARCH models can be applied to model conditional volatility.

This study is based on an individual dataset, IBM historical stock and option price.

Thus, the conclusion may be different for other datasets. The performance of the

four models needs to be checked on other data sets as well as against other models.

This is left for future work.

In fact, the market is always influenced by the global economy. When the economy is

stable and not much outside news, the Black-Scholes model may be the best model.

However, if the economy is turbulent, such as, after the 1987 crash or the "Panic of

2008", the double exponential jump diffusion model or the Kou & GARCH model

may perform better.

98



A Figures for volatility smile

The figures of the volatility smile for the time to maturity T of 7 days and 92 days

were given in Section 2.1.2. In order to compare and contrast the volatility smile

for different time to maturity, the volatility smile for the time to maturity T of 27

days, 162 days, and 422 days is given in this appendix.
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A Figures for volatility smile

A.1 Volatility smile for 27 days maturities
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Figure A.1: (a) The call option price versus the strike price for IBM stock. (b) The
observed implied volatility curve. The time to maturity T is 27 days.
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A.2 Volatility smile for 162 days maturities

A.2 Volatility smile for 162 days maturities
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Figure A.2: (a) The call option price versus the strike price for IBM stock. (b) The
observed implied volatility curve. The time to maturity T is 162 days.
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A Figures for volatility smile

A.3 Volatility smile for 422 days maturities
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Figure A.3: (a) The call option price versus the strike price for IBM stock. (b) The
observed implied volatility curve. The time to maturity T is 422 days.
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B Figures for comparing the four

models

The comparison of the call price estimated by the models with the market call

price, and the pricing error between the call price estimated by the models and the

market price for time to maturity of 92 days was discussed in Chapter 7. Here, the

comparison of the call price estimated by the models with the market call price and

the pricing error between the call price estimated by the models and the market

price for time to maturity of 7 days, 27 days, 162 days, 422 days will be shown.
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B.1 Time to maturity is 7 days
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Figure B.1: The comparison of the call option price estimated by the Black-Scholes
model (o) and the Black-Scholes & GARCH model (*) for the time to maturity T
of 7 days. The solid line shows the market call price.
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(a) BS model
BS & GARCH model .
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(b) BS model
BS & GARCH model .

Figure B.2: The pricing errors between the call option price estimated by the Black-
Scholes model (o) or the Black-Scholes & GARCH model (*) and the market call
price. Figure (a) shows the real value. Figure (b) shows the absolute value. The
time to maturity T is 7 days.
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Figure B.3: The comparison of the call option price estimated by the Kou model
(o) and the Kou & GARCH model (*) for the time to maturity T of 7 days. The
solid line shows the market call price.
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(a) Kou model
Kou & GARCH model .
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(b) Kou model
Kou & GARCH model .

Figure B.4: The pricing errors between the call option price estimated by the Kou
model (o) or the Kou & GARCH model (*) and the market call price. Figure (a)
shows the real value. Figure (b) shows the absolute value. The time to maturity T
is 7 days.
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Figure B.5: The comparison of the call option price estimated by the four models.
The Black-Scholes model (o), the Black-Scholes & GARCH model (*), the Kou
model (+) and the Kou & GARCH model (x) for the time to maturity T of 7 days.
The solid line shows the market call price.
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(a) BS model

BS & GARCH model
Kou model
Kou & GARCH model .
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(b) BS model
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Figure B.6: The pricing errors between the call option price estimated by any of
the four models and the market call price. The Black-Scholes model (o), the Black-
Scholes & GARCH model (*), the Kou model (+) and the Kou & GARCH model
(x) for the time to maturity T of 7 days. Figure (a) shows the real value. Figure
(b) shows the absolute value.
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B.2 Time to maturity is 27 days

80 100 120 140 160 180

0

10

20

30

40

50

Strike price [USD]

C
a

ll 
p

ri
ce

 [
U

S
D

]

 

 

Market price
BS model
BS & GARCH model .

Figure B.7: The comparison of the call option price estimated by the Black-Scholes
model (o) and the Black-Scholes & GARCH model (*) for the time to maturity T
of 27 days. The solid line shows the market call price.
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(a) BS model
BS & GARCH model .
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(b) BS model
BS & GARCH model .

Figure B.8: The pricing errors between the call option price estimated by the Black-
Scholes model (o) or the Black-Scholes & GARCH model (*) and the market call
price. Figure (a) shows the real value. Figure (b) shows the absolute value. The
time to maturity T is 27 days.
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Figure B.9: The comparison of the call option price estimated by the Kou model
(o) and the Kou & GARCH model (*) for the time to maturity T of 27 days. The
solid line shows the market call price.
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(a) Kou model

Kou & GARCH model .
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(b) Kou model

Kou & GARCH model .

Figure B.10: The pricing errors between the call option price estimated by the Kou
model (o) or the Kou & GARCH model (*) and the market call price. Figure (a)
shows the real value. Figure (b) shows the absolute value. The time to maturity T
is 27 days.
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Figure B.11: The comparison of the call option price estimated by the four models.
The Black-Scholes model (o), the Black-Scholes & GARCH model (*), the Kou
model (+) and the Kou & GARCH model (x) for the time to maturity T of 27 days.
The solid line shows the market call price.
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(a) BS model

BS & GARCH model
Kou model
Kou & GARCH model .
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(b) BS model
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Kou model
Kou & GARCH model .

Figure B.12: The pricing errors between the call option price estimated by any of
the four models and the market call price. The Black-Scholes model (o), the Black-
Scholes & GARCH model (*), the Kou model (+) and the Kou & GARCH model
(x) for the time to maturity T of 27 days. Figure (a) shows the real value. Figure
(b) shows the absolute value.
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B.3 Time to maturity is 162 days
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Figure B.13: The comparison of the call option price estimated by the Black-Scholes
model (o) and the Black-Scholes & GARCH model (*) for the time to maturity T
of 162 days. The solid line shows the market call price.
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B.3 Time to maturity is 162 days
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(b) BS model

BS & GARCH model .

Figure B.14: The pricing errors between the call option price estimated by the
Black-Scholes model (o) or the Black-Scholes & GARCH model (*) and the market
call price. Figure (a) shows the real value. Figure (b) shows the absolute value. The
time to maturity T is 162 days.
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Figure B.15: The comparison of the call option price estimated by the Kou model
(o) and the Kou & GARCH model (*) for the time to maturity T of 162 days. The
solid line shows the market call price.
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(b) Kou model

Kou & GARCH model .

Figure B.16: The pricing errors between the call option price estimated by the Kou
model (o) or the Kou & GARCH model (*) and the market call price. Figure (a)
shows the real value. Figure (b) shows the absolute value. The time to maturity T
is 162 days.
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Figure B.17: The comparison of the call option price estimated by the four models.
The Black-Scholes model (o), the Black-Scholes & GARCH model (*), the Kou
model (+) and the Kou & GARCH model (x) for the time to maturity T of 162
days. The solid line shows the market call price.

120



B.3 Time to maturity is 162 days

50 100 150 200

−8

−6

−4

−2

0

2

4

6

8

10

Strike price [USD]

E
rr

o
rs

 

 
(a) BS model

BS & GARCH model
Kou model
Kou & GARCH model .

50 100 150 200

0

2

4

6

8

10

Strike price [USD]

E
rr

o
rs

 in
 a

b
so

lu
te

 v
a

lu
e
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Figure B.18: The pricing errors between the call option price estimated by any of
the four models and the market call price. The Black-Scholes model (o), the Black-
Scholes & GARCH model (*), the Kou model (+) and the Kou & GARCH model
(x) for the time to maturity T of 162 days. Figure (a) shows the real value. Figure
(b) shows the absolute value.

121



B Figures for comparing the four models

B.4 Time to maturity is 422 days
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Figure B.19: The comparison of the call option price estimated by the Black-Scholes
model (o) and the Black-Scholes & GARCH model (*) for the time to maturity T
of 422 days. The solid line shows the market call price.
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(b) BS model

BS & GARCH model.

Figure B.20: The pricing errors between the call option price estimated by the
Black-Scholes model (o) or the Black-Scholes & GARCH model (*) and the market
call price. (a) the real value. (b) the absolute value. The time to maturity T is 422
days.
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Figure B.21: The comparison of the call option price estimated by the Kou model
(o) and the Kou & GARCH model (*) for the time to maturity T of 422 days. The
solid line shows the market call price.
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(b) Kou model

Kou & GARCH model.

Figure B.22: The pricing errors between the call option price estimated by the Kou
model (o) or the Kou & GARCH model (*) and the market call price. Figure (a)
shows the real value. Figure (b) shows the absolute value. The time to maturity T
is 422 days.
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Figure B.23: The comparison of the call option price estimated by the four models.
The Black-Scholes model (o), the Black-Scholes & GARCH model (*), the Kou
model (+) and the Kou & GARCH model (x) for the time to maturity T of 422
days. The solid line shows the market call price.
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(b) BS model
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Figure B.24: The pricing errors between the call option price estimated by any of
the four models and the market call price. The Black-Scholes model (o), the Black-
Scholes & GARCH model (*), the Kou model (+) and the Kou & GARCH model
(x) for the time to maturity T of 422 days. Figure (a) shows the real value. Figure
(b) shows the absolute value.
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