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Abstract

In this thesis the welfare e�ects of exchange rate intervention in small open economies
will be examined. A dynamic stochastic general equilibrium model is built that
incorporates the basic features of these economies. A monetary policy that re-
sponds to the in�ation rate and the output gap is compared to monetary policies
that additionally respond to the real exchange rate. The reaction of the economy
to various shocks is examined and the welfare loss is estimated in order to compare
monetary policies. Historical observations of various parameters for the Icelandic
economy are used to estimate the parameters of the model using Bayesian estima-
tion.
This thesis shows that in order to reduce the welfare loss introduced by various
exogenous shocks exchange rate intervention is necessary. Exchange rate interven-
tion reduces the observed volatility in the output gap, the domestic in�ation and
in the interest rate when used in response to certain exogenous shocks.

Keywords: DSGE model, Bayesian estimation, Iceland, Icelandic economy, ex-
change rate intervention, monetary policy, small open economy, dynamic stochas-
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Nomenclature

This chapter de�nes the terminology used in the dissertation, in alphabetical order.

Variable Description

at Percent deviation from steady state of labor productivity.
At Speci�c labor productivity.
A The steady state of labor productivity.
b∗′r,t Percent deviation from the steady state of real foreign assets.

Denominated in the domestic currency.
bFr,t Percent deviation from the steady state of real foreign debt.

Denominated in the domestic currency.
Bt Nominal net domestic debt of households, domestic currency.
B∗t Domestic nominal holding of foreign assets, denominated in

the foreign currency.
B∗′t Domestic nominal holding of foreign assets, denominated in

the domestic currency.
BF
t Foreign nominal debt of the domestic economy, denominated in

the domestic currency.
B∗r,t Domestic real holding of foreign assets, denominated in

the foreign currency.
B∗′r,t Domestic real holding of foreign assets, denominated in

domestic currency.
BF
r,t Foreign real debt of the domestic economy, denominated in

domestic currency.
B
∗
r,t The steady state of real foreign assets. Domestic currency.

B
F

r,t The steady state of real foreign debt. Domestic currency.
ct Percent deviation of the private consumption from its steady state.
cF,t Percent deviation of the imports from the steady state.
c∗H,t Percent deviation of the exports from the steady state.
Ct The composite consumption index of foreign and domestically

produced goods. Equation 3.2.
CF,t The aggregate consumption index of foreign produced goods.

Equation 3.20.
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CH,t The aggregate consumption index of domestically produced goods.
Equation 3.43.

C∗t Aggregate foreign private consumption. Equation 3.28.
C
∗

Steady state foreign private consumption.
C
∗
H Steady state of exports from the domestic economy.

CF Steady state of imports from the foreign economy.
CAt Nominal current account, equation 3.44.
et Percent deviation from steady state of the nominal exchange rate, ξt.
Et{xt+1} The expected value of x one period ahead, taken at time t.
ft Percent deviation from steady state of the real net foreign debt.
Ft Net real foreign debt of the domestic economy. Equation 3.46.
F Steady state net real foreign debt, denominated in domestic currency.
h External habit formation of the optimizing household.
mct Percent deviation from steady state of the domestic production

�rms' real marginal cost.
MCt Total domestic real marginal cost. Equation 3.33.
nt Percent deviation from steady state of hours of labor.
Nt Hours of labor.
N The steady state of hours of labor.
NMCt Nominal marginal cost of domestic producers.
pt Percent deviation from steady state of the domestic price level.
PH,t The price level of domestically produced goods. Equation 3.40.
PF,t The price level of imported goods. Equation 3.41.
Pt The domestic consumer price index. Equation 3.10.
P ∗t The foreign consumer price index.
P ′H,t The price level that optimizing producing �rms set each period.
P ′F,t The price level that optimizing importing �rms set each period.
P Steady state domestic price level.
P F The steady state of the price level of imported goods.
PH The steady state of the price level of domestically produced goods.
Qt The real exchange rate. Equation 3.24.
Q The steady state of the real exchange rate.
R′t The nominal domestic interest rate, in percentages.
Rt Scaled domestic interest rate. Equal to 1 +R′t.
R∗′t The foreign nominal interest rate.
R∗t Scaled foreign interest rate. Equal to 1 +R∗′t . Equation 3.29.
R
′
real Steady state real interest rate, in percentages.

Rreal Steady state scaled real interest rate of the domestic economy.
Equal to 1 +R

′
real.

R Steady state domestic nominal scaled interest rate level.
st Percent deviation from steady state of the terms of trade.
St The terms of trade. Equation 3.23.
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TCt Total domestic real production cost. Equation 3.32.
wrealt The percent deviation from the steady state of real wages.
wt The percent deviation from the steady state of nominal wages.
Wt The nominal wages. Equation 3.21.
W The steady state of nominal wages.
XM
t Real imports, denominated in the foreign currency.

yt Percent deviation from the steady state of real GDP.
Yt Real gross domestic product of the domestic economy. Equation 3.48.
Y Steady state gross domestic product.

α The degree of openness of the domestic economy.
α∗ Degree of openness of the foreign economy.
α1 Rate of interest rate smoothing, α1 ∈ [0, 1].
α2 Weight on in�ation, in the monetary policy.
α3 Weight on the output gap, in the monetary policy.
α4 Weight on the real exchange rate level, in the monetary policy.
α5 Weight on the rate of change of the real exchange rate, in

the monetary policy.
β The rate of time preference.
γ Long term risk premium for the domestic economy.
ε The elasticity of substitution between varieties of di�erent goods,

assumed to be the same for foreign and domestically produced goods.
εat Gaussian shock to the labor productivity.
εft Gaussian shock to the net foreign debt.
εqt Gaussian shock to the real exchange rate.
εpremt Gaussian shock to the risk premium.
επFt Gaussian shock to the in�ation in imported goods.
εψt Gaussian shock to the LOP gap.
εc
∗
t Gaussian shock to the foreign consumption.
εr
∗
t Gaussian shock to the foreign interest rate.
επ
∗
t Gaussian shock to the foreign in�ation.
η The elasticity of substitution between home and foreign goods.
η∗ Elasticity of substitution between home and foreign goods, seen from

the foreign economy.
θF Fraction of importing �rms unable to reset their prices optimally.
θH Fraction of domestic producers unable to reset their prices optimally.
µ How an individual values between the lagged term and the scaled-

terms of trade factor, in equation 3.43.
νat A latent shock variable for the labor productivity.
νft A latent shock variable for the net foreign debt.
νqt A latent shock variable for the real exchange rate.
νpremt A latent shock variable for the risk premium.
νπFt A latent shock variable for the in�ation in imported goods.
νψt A latent shock variable for the LOP gap.
νc
∗
t A latent shock variable for the foreign private consumption.
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νr
∗
t A latent shock variable for the foreign interest rate.
νπ
∗

t A latent shock variable for the foreign in�ation.
ξt The nominal exchange rate. Foreign currency to domestic currency.
πt Percent deviation from the steady state of domestic in�ation.
π∗t Percent deviation from the steady state of foreign in�ation.
Π∗t Foreign in�ation. De�ned as P ∗t

P ∗t−1
.

Πt Domestic in�ation. Equal to Pt
Pt−1

.

Π
T

CBI's in�ation target.
Π Steady state domestic in�ation.
Π
∗

Steady state foreign in�ation.
ρa Autocorrelation coe�cient for the labor productivity.
ρf Autocorrelation coe�cient for the net foreign debt.
ρprem Autocorrelation coe�cient for the risk premium.
ρπF Autocorrelation coe�cient for the in�ation in imported goods.
ρψ Autocorrelation coe�cient for the LOP gap.
ρq Autocorrelation coe�cient for the real exchange rate.
ρπ∗ Autocorrelation coe�cient for the foreign in�ation.
ρr∗ Autocorrelation coe�cient of the nominal foreign interest rate.
ρc∗ Autocorrelation coe�cient for the foreign consumption.
σ The inverse elasticity of intertemporal substitution.
φ The inverse elasticity of labor supply.
Φ The risk premium of the domestic economy. Equation 3.27.
ψt Percent deviation from steady state of the law of one price gap, Ψt.
Ψ The law of one price gap. Equation 3.25.
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1 Introduction

'Central banks in small open economies should openly recognize that exchange
rate stability is part of their objective function'1

February 12, 2010,
Olivier Blanchard,

Chief economist at the International Monetary Fund

The same laws do not apply in the design of monetary policies for small open
economies as for large developed ones. Small open economies have to deal with
stronger volatility in international �nancial markets and international trade. High
variability of country risk premiums and commodity prices play an important
role and central banks must take notice to these factors when implementing the
monetary policy.

One of the key variables is the real exchange rate through which the �uctuations of
international markets are transmitted to the small open economy. External shocks
can alter the real exchange rate which may lead to increased cost of external debt
service, the income of commodity exports, the cost of imports and other factors.
A key factor is that change in the real exchange rate may alter the expected path
of domestic in�ation and the central bank must make appropriate adjustments.

The goal of this thesis is to estimate empirically how the monetary policy in a
small open economy interacts with shocks to the economy, mainly external shocks.
A welfare analysis will be made to compare di�erent monetary policies. A model
of a typical small open economy is built and estimated using historical data of the
Icelandic economy. The model has to be su�ciently general to incorporate the
basic structures observed in small open economies. A dynamic stochastic general
equilibrium (DSGE) model is built and estimated with Bayesian techniques to
estimate all the equations and shocks simultaneously. We will also look at impulse
response functions to see how di�erent structural variables respond to di�erent
shocks, which gives a little insight into the dynamics of the model.

1See Blanchard, Dell'Ariccia, and Mauro [2010].
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The model considers imperfect capital markets using a risk premium that depends
on net foreign debt. Nominal and real rigidities, exports and imports of goods,
imperfect pass-through of the exchange rate and wage indexation will also be con-
sidered. The foreign economy is taken to be exogenous to the domestic economy.

This thesis approaches four general questions. 1) What are the welfare e�ects
of using the real exchange rate as one of the factors when deciding the central
banks interest rate, in small open economies? 2) Should central banks in small
open economies with �oating currencies use more exchange rate intervention? 3)
To what kind of shocks should the central banks react to by using exchange rate
intervention? 4) How do di�erent monetary policies compare in terms of welfare
loss: monetary policies that respond to the exchange rate level, monetary policies
that respond to the rate of change of the real exchange rate or monetary policies
that allow the currency to �oat freely?
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2 Literature Survey

In academics, central banks and various international policy institutions, in recent
years, there has been a growing interest in open economy macroeconomic models
called Dynamic Stochastic General Equilibrium (DSGE) models based on the new
Keynesian framework. A few noted institutions that have developed DSGE models
are for example (see Tovar [2008]): Bank of Canada, Bank of England, Central
bank of Brazil, Central bank of Chile, Central Bank of of Peru, European Central
Bank, Norges Bank, Sveriges Riksbank, US federal reserve and the IMF.

Much of the literature on monetary policy in open economies has focused on
whether the central banks responded to the real exchange rate or not. Empir-
ical studies indicate that many countries include the real exchange rate in their
policy reaction functions. The evidence is not conclusive though, New Zealand
and Australia for example did not incorporate the exchange rate in their policy
reaction function (Lubik and Schorfheide [2007]). Welfare analysis has produced
contradictory results depending on the model used (Bergin, Shin, and Tchakarov
[2007]). It has been found that having the monetary policy respond to the real
exchange rate marginally improves macroeconomic performance of central banks,
see for example Ball [1999].
But other studies such as Wollmershauser [2006], Morón and Winkelried [2005] and
Cavoli [2009] show that defending the exchange rate may be useful in a context of
�nancial instability or as a response to fear of �oating.

In a recent paper on the subject, Gonzalez and Garcia [2010], it was found that risk
premium shocks explain most of the variance of the exchange rate. The changes
in the real exchange rate causes important reallocation of resources across sectors
in the short run. In the paper it was found that when a shock to the risk premium
occurs the central bank can avoid excess volatility by raising the interest rate. But
an important result from Gonzalez and Garcia [2010] is that in order to reduce
the observed volatility of in�ation and in the output gap, more exchange rate
intervention is necessary, in small open economies. The volatility can be greatly
reduced by changing the interest rate when the exchange rate is �uctuating due
to a risk premium shock.

3



Recent contributors to DSGE estimations of small open economies are for example
Adolfson, Laseén, Lindé, and Villani [2007a], Dib, Gammoudi, and Moran [2008],
Justiniano and Preston [2004a], Liu [2006] and Lubik and Schorfheide [2005].

Kydland and Prescott [1982] originally used the term DSGE in their seminal contri-
bution on the Real Business Cycle (RBC) model. Later research in DSGE models
included Keynesian short run macroeconomic features called nominal rigidities,
such as Calvo [1983] type staggering pricing behavior and Taylor [1980] type wage
contracts. This new DSGE modeling framework is called new-neoclassical syn-
thesis or new-Keynesian modeling paradigm, see for example Clarida, Galí, and
Gertler [1999], Galí and Gertler [2007], Goodfriend [2007], Goodfriend and King
[1997], Mankiw [2006] and Lubik and Schorfheide [2005].

This DSGE modeling framework uses micro-foundations of both households and
�rms optimization problems with both nominal and real (price/wage) rigidities
that provide short-run dynamic macroeconomic �uctuations and combine it with
a description of the monetary policy transmission mechanism, for instance see
Christiano, Eichembaum, and Evans [2005] and Smets and Wouters [2004].
The key advantage of modern DSGEmodels, over traditional reduced form macroe-
conomic models, is that the structural interpretation of their parameters allows to
overcome the famous Lucas critique. In Lucas [1976] and Lucas and Sargent [1979]
it is argued that if private agents behave according to a dynamic optimization ap-
proach and use available information rationally, they should respond to economic
policy announcements by adjusting their supposed behavior. Hence reduced form
parameters are subject to the Lucas critique. But, DSGE models are based on
optimizing agents. Deep parameters of these models are therefore less susceptible
to this critique.

The model derived in the next chapter is a DSGE model consistent with Kolasa
[2008], Liu [2006], Galí and Monacelli [2005] and Lubik and Schorfheide [2005], to
name a few. It is also worth noting that the Central Bank of Iceland has very
recently published a working paper on a DSGE model for Iceland, and the CBI
will most likely switch to the DSGE model from their Quarterly Macroeconomic
Model in the near future, see Seneca [2010].
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3 The Model

Now we will de�ne the small open economy model that is used in the estimation.
Derivation of key structural equations is laid out. The work of earlier literature
on the subject is used as a foundation and a small model is constructed to capture
as much dynamic as possible for the small open economy1. A small open economy
is an economy that participates in international trade, but is small enough, com-
pared to other economies, that its policies do not alter the world prices, interest
rates or incomes. Countries with small open economies are therefore price takers.

The economy consists of utility optimizing households and pro�t maximizing �rms
but the government is excluded and the representative social planner form is used.
There is an import/export sector and we consider nominal and real rigidities in
prices and wages. The foreign economy is exogenous to the small open economy.
The uncovered interest rate parity with a risk premium is used to model the real
exchange rate and a dynamic asset equation is used to model the net foreign as-
sets. Capital is assumed to be �xed, for simpli�cation. The model is de�ned in
the following sections.

We begin by taking a look at an economic property that will be used when we
de�ne the model. This property is called Constant elasticity of substitution, (CES),
and it is a desirable property of some economic functions. It refers to a particular
type of aggregator function which combines two or more inputs into an aggregated
quantity. The aggregator function has the general form:

y =

[
n∑
i=1

aρ1

i x
ρ2

i

] 1
ρ2

Where y is the output, 0 ≤ ai ≤ 1 are the share parameters and xi ≥ 0 are in-
put factors. The parameters ρ1 ∈ R and −∞ < ρ2 < 1 de�ne the shape of the

1Previous work includes for example Smets and Wouters [2004], Monacelli [2005] and Galí
and Monacelli [2005].
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function. The parameter ρ2 is also a measure of substitutability between inputs.
For example as ρ2 approaches zero the aggregate function approaches the Cobb-
Douglas functional form. If we choose ρ1 = 1

σ
and ρ2 = σ−1

σ
the aggregate function

becomes the general form of the CES production function. Where σ > 0 is the
elasticity of substitution between inputs.
The aggregator function exhibits constant elasticity of substitution, it is therefore
often called the CES function. The elasticity of substitution measures the percent-
age change in the input ratio divided by the percentage change in the technical
rate of substitution2 (TRS), with output being held �xed.

3.1 Households

We imagine a representative household who seeks to maximize3:

Et=0

{
∞∑
t=0

βt{U(Ct, Ht)− V (Nt)}

}
(3.1)

Where:

U(Ct, Ht) = (Ct−Ht)1−σ

1−σ and V (Nt) =
N1+φ
t

1+φ

Where Et is expectation at time t, β is the rate of time preference, σ is the
inverse elasticity of intertemporal substitution and φ is the inverse elasticity of
labor supply. Nt denotes hours of labor, Ct is private consumption at time t and
we de�ne Ht ≡ hCt−1 which represents external habit formation of the optimizing
household4. We have h ∈ (0, 1).

Private consumption, Ct, is the composite consumption index of foreign and do-
mestically produced goods5:

Ct ≡
(

(1− α)
1
ηC

η−1
η

H,t + α
1
ηC

η−1
η

F,t

) η
η−1

(3.2)

This functional form arises as a utility function in consumer theory6. Where
α ∈ [0, 1] corresponds to the share of domestic consumption allocated to imported

2Also referred to as Marginal rate of technical substitution.
3The work of Galí and Monacelli [2005] is followed.
4For more information see Justiniano and Preston [2004a] and Bouakez and Ruge-Murcia

[2005].
5This de�nition of the consumption index is quite common, and used by, for example, Haider

and Khan [2008], Liu [2006] and Monacelli [2005].
6A CES utility function is one of the cases considered by Avinash Dixit and Joseph Stiglitz

in their study of optimal product diversity in a context of monopolistic competition.
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goods. It is also in this sense that α represents a natural index of openness7.
We have η > 0 which is the elasticity of substitution between home and foreign
goods, from the viewpoint of the domestic consumer. Note that when σ → 0 the
consumption goods CF,t and CH,t are perfect substitutes. The consumption index
has constant elasticity of substitution.

Each country produces a continuum of di�erentiated goods, represented by the
unit interval. The variable CH,t is an index of consumption of domestic goods
given by the CES function:

CH,t =

(∫ 1

0

CH,t(j)
ε
ε−1dj

) ε−1
ε

(3.3)

Where j ∈ [0, 1] denotes the good variety and where ε > 1 denotes the elasticity
of substitution between varieties of goods produced within any given country.
The variable CF,t is an index of imported goods, given by:

CF,t =

(∫ 1

0

Ci,t(j)
κ
κ−1di

)κ−1
κ

(3.4)

Where κ measures the substitutability between goods produced in di�erent foreign
countries. And Ci,t an index of the quantity of goods imported from country i and
consumed by households of the domestic economy. It is given by an analogous
CES function:

Ci,t =

(∫ 1

0

Ci,t(j)
ε
ε−1dj

) ε−1
ε

(3.5)

The household's budget constraint is constant at time t and is given by8:∫ 1

0

PH,t(j)CH,t(j)dj +

∫ 1

0

∫ 1

0

Pi,t(j)Ci,t(j)djdi+RtBt ≤ Et{Bt+1}+WtNt (3.6)

for t = 1, 2, ...,∞. Pi,t(j) is the price of variety j imported from country i, de-
nominated in the domestic currency. PH,t is the domestic price index. Wt are the
nominal wages and Nt are the total hours of labor.
Bt is the nominal net debt of households, denominated in domestic currency and
Bt can become negative or positive, depending on if the household is a net bor-
rower or a net owner of assets, if Bt > 0 the household is in net debt.
R is de�ned as R ≡ 1 + R′, where R′ is the domestic nominal interest rate, in
percentages.

The domestic price index is given by the following CES function:

PH,t =

(∫ 1

0

PH,t(j)
1−εdj

) 1
1−ε

(3.7)

7So α = 0 means a closed economy.
8A similar budget constraint is used by Monacelli [2005]. The net debt expression in the

budget constraint is from Wickens [2008].
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Where ε denotes the elasticity of substitution between varieties produced within
any given country like before. The price index for goods imported from country i,
in the domestic currency, is given by:

Pi,t =

(∫ 1

0

Pi,t(j)
1−εdj

) 1
1−ε

(3.8)

For all i ∈ [0, 1]. Finally the price index for imported goods, expressed in the
domestic currency is given by:

PF,t =

(∫ 1

0

P 1−κ
i,t di

) 1
1−κ

(3.9)

The overall domestic Consumer price index, CPI, is de�ned as9:

Pt ≡
{

(1− α)P 1−η
H,t + αP 1−η

F,t

} 1
1−η (3.10)

Where η is the elasticity of substitution between home and foreign goods like
before.
Total consumption expenditures by domestic households is given by:

PtCt = PH,tCH,t + PF,tCF,t (3.11)

Using the preceding expressions, and following Monacelli [2005], we rewrite the
budget constraint assuming symmetry across all j goods as:

PtCt +RtBt ≤ Et{Bt+1}+WtNt (3.12)

We will also make the assumption that ε, the elasticity of substitution between
varieties of goods, is assumed to be the same in the foreign and home economies
so we have ε = κ. The assumption is irrelevant because domestic consumption of
foreign goods has negligible e�ect on the foreign economy.

Now we will derive the optimal expression for consumption of domestically pro-
duced products, CH,t, and for consumption of imported products, CF,t. We begin
by setting up the household Lagrangian, where we maximize the utility function
and use the households budget constraint as a constraint of the maximization,
equation 3.13.
The household's optimizing problem then becomes:

L = Et=0

{
∞∑
t=0

e−βt{U(Ct, Ht)− V (Nt)}

}
(3.13)

+
∞∑
t=0

λt [Bt+1 +WtNt −RtBt − PtCt]

9See for example Monacelli [2005], where the same de�nition of the CPI is used.
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We use equation 3.2 to rewrite the budget constraint in equation 3.13, eliminating
Ct, we get the following Lagrangian expression:

L = Et=0

{
∞∑
t=0

e−βt{U(Ct, Ht)− V (Nt)}

}
(3.14)

+
∞∑
t=0

λt

[
Bt+1 +Wt+jNt −RtBt − Pt

[(
(1− α)

1
ηC

η−1
η

H,t + α
1
ηC

η−1
η

F,t

) η
η−1

]]

We also use equation 3.11 two rewrite the budget constraint in equation 3.13,
eliminating Ct, we get the yet another Lagrangian expression:

L = Et=0

{
∞∑
t=0

e−βt{U(Ct, Ht)− V (Nt)}

}
(3.15)

+
∞∑
t=0

λt [Bt+1 +WtNt −RtBt − (PH,tCH,t + PF,tCF,t)]

Taking the partial derivative of equation 3.14 with respect to CH,t gives us:

δL
δCH,t

= −λtPt
η

η − 1

[(
(1− α)

1
ηC

η−1
η

H,t + α
1
ηC

η−1
η

F,t

) η
η−1
−1
]

(1− α)
1
η
η − 1

η
C

η−1
η
−1

H,t

+ e−βt
δ

δCH,t
U(Ct, Ht) (3.16)

We can rewrite equation 3.16, using equation 3.2, as:

δL
δCH,t

= −λtPt(1− α)
1
ηC

η−1
η
−1

H,t CtC
− η−1

η

t + e−βt
δ

δCH,t
U(Ct, Ht) (3.17)

Taking the partial derivative of equation 3.15 with respect to CH,t gives us:

δL
δCH,t

= −λtPH,t + e−βt
δ

δCH,t
U(Ct, Ht) (3.18)

Combining equations 3.17 and 3.18 and solving for CH,t gives us:

CH,t = (1− α)

(
PH,t
Pt

)−η
Ct (3.19)

Taking the partial derivatives of equations 3.14 and 3.15 with respect to CF,t and
combining them, like we did for CH,t, yields:

CF,t = α

(
PF,t
Pt

)−η
Ct (3.20)

Which concludes the derivation of the optimal expressions for imports and domes-
tically produced goods.
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Solving the household's optimizing problem, maximizing equation 3.13 with re-
spect to Ct, Nt and Bt+1, yields the following two �rst order conditions (FOC's)10:

Wt

Pt
= Nφ

t (Ct −Ht)
σ (3.21)

(Ct −Ht)
−σeβ = Et

{
(Ct+1 −Ht+1)−σ

Rt+1

Πt+1

}
(3.22)

These two equations will be used to model the wages and the consumption of
households, in the domestic economy.

3.2 The Foreign Economy

The home economy is very small compared to the foreign economy so the foreign
economy is taken to be exogenous. Imports and exports from the home economy
have negligible e�ect on the foreign economy. In this section we start by examining
the connection to the foreign economy in terms of the exchange rate and related
variables, then we examine foreign production, in�ation and the foreign interest
rate.

3.2.1 The Exchange Rate and Terms of Trade

We begin by de�ning the terms of trade, which is de�ned as11:

St =
PF,t
PH,t

(3.23)

The terms of trade is the price of imports divided by the price of exports, it is a
measure of competitiveness of the home economy. An increase in St corresponds
to an increase in competitiveness.
We de�ne ξt as the nominal exchange rate in units of foreign currency to domestic
currency. So an increase in ξt corresponds to an appreciation of the domestic
currency. The real exchange rate then becomes12:

Qt = ξt
Pt
P ∗t

(3.24)

Where P ∗t is the foreign price level, in units of foreign currency. Taking the partial
derivative with respect to ξt on both sides gives us:

δQt

δξt
=

δ

δξt
ξt
Pt
P ∗t

=
Pt
P ∗t

> 0

10See Appendix A for a derivation of equations 3.21 and 3.22.
11This de�nition of the terms of trade is quite common and used by for example Haider and

Khan [2008].
12The de�nition of the real exchange rate comes from Wickens [2008], page 147.
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So an increase in the real exchange rate, Qt, can be considered as an appreciation
of the domestic currency, because of the positive relationship between Qt and ξt.

We de�ne the law of one price gap as13:

Ψ =
P ∗t
ξtPF,t

(3.25)

The law of one price holds if Ψ = 1, then we have PF,t =
P ∗t
ξt
. The LOP gap is a

wedge between the foreign price of goods and the domestic price of these imported
foreign goods.

3.2.2 The Uncovered Interest Rate Parity

A simple uncovered interest rate parity (UIP) has been shown to be rejected em-
pirically14. The UIP comes from the idea that border free �nancial markets make
the yield between interest bearing accounts highly competitive since it's possible
to choose between domestic and foreign bank accounts and investments. If a risk
premium is added to the UIP relationship it becomes more empirically stable, so
we have UIP with a risk premium15:

ΦtRt
ξt+1

ξt
= R∗t (3.26)

Where R∗t = 1+R∗′t , where R
∗′
t is the foreign nominal interest rate, in percentages.

Φ is the risk premium needed for the UIP to become more empirically stable. The
risk premium is thought to be correlated to the net foreign debt of the economy16.
This means that a domestic surplus indicates a lower risk, so foreign investors
accept lower yield. The risk premium captures the default risk as perceived by
investors with the domestic interest rate being higher than the world interest rate,
if the economy is a net borrower. The risk premium has the following expression17,
where the risk premium is proportional to net foreign debt, Ft, domestically de-
nominated:

Φt = e
−γ Ft

Yt (3.27)

Where γ ≥ 0 is the neutral risk premium factor, depending on the country's history
of risk. γ is assumed to be a constant. Ft is the real net foreign debt18, denominated
in domestic currency and Yt is the real gross domestic product (GDP).

13This form of the LOP gap is used in Liu [2006], for example.
14See for example Adolfson, Vredin., Lindé, and Villani [2007b].
15Following Post [2007].
16According to Lane and Milesi-Ferretti [2001].
17See Post [2007] page 45.
18De�ned by equation 3.46.
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3.2.3 Foreign Consumption, In�ation and Interest Rate

It is customary when modeling DSGE models for small open economies that the
foreign sector is taken to be exogenous. The home country has negligible e�ect on
the outside world. The foreign private consumption, the foreign in�ation and the
foreign interest rate are taken as exogenous. The variables are subject to shocks
but revert to their steady state at a certain pace, determined by a autocorrelation
coe�cient ρ19. We assume that the variables have a de�ned steady state, we will
discuss the steady states further in chapter 4.
The foreign private consumption is de�ned as20:

C∗t
C
∗ =

(
C∗t−1

C
∗

)ρC∗
eε
C∗
t (3.28)

Where C∗t is real foreign private consumption and C
∗
is the steady state of foreign

private consumption21. We have ρC∗ ∈ (0, 1) and εC
∗

t is a Gaussian shock with
non-zero mean and variance σ2

εC∗
22. Note that the shocks can also be interpreted

as measurements error.

Foreign in�ation and interest rate are de�ned in the same way:

Π∗t
Π
∗ =

(
Π∗t−1

Π
∗

)ρΠ∗

eε
Π∗
t and

R∗t
R
∗ =

(
R∗t−1

R
∗

)ρR∗
eε
R∗
t (3.29)

Where Π∗t ≡
P ∗t
P ∗t−1

is foreign in�ation and R∗ ≥ 1 is the scaled nominal foreign

interest rate. R∗ = 1 + R∗′ where R∗′ is the foreign nominal interest rate, in
percentages. R

∗
is the steady state of the scaled foreign nominal interest rate and

Π
∗
is the steady state of foreign in�ation. εR

∗
t and εΠ

∗
t are Gaussian shocks. The

parameters ρR∗ ∈ (0, 1) and ρΠ∗ ∈ (0, 1) are autocorrelation coe�cient's.

19Note that when equations 3.28 and 3.29 are log-linearized they become an AR(1) process,
see chapter 4.

20For the foreign consumption, interest rate and in�ation I follow preceding work on DSGE
models for small open economies, see for example Liu [2006], Haider and Khan [2008] and Justini-
ano and Preston [2004b]. When equations 3.28 and 3.29 are log-linearized they follow an AR(1)
process which is customary for the exogenous processes, see chapter 4 where the equations are
log-linearized.

21The real foreign private consumption is a growth variable, but it is thought to have a steady
state for a short period of time, since we are only interested in the dynamics of the model, not the
growth. This problem will be addressed further in chapter 4 where the model is log-linearized.

22See chapter 5, page 35 for further explanation.
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3.3 Firms

Domestic producers inhabit the domestic economy along with households. They
are identical monopolistically competitive �rms, producing di�erentiated goods.
There is a continuum of �rms, indexed by j ∈ (0, 1) where each �rm maximizes its
pro�ts, subject to an isolated demand curve and the �rms only use a homogeneous
type of labor for production, the capital is assumed to be �xed and is therefore
left out.

3.3.1 Production Technology and Cost

We have domestic �rms with the same CRS-technology, so we have a linear produc-
tion function with only labor as input. Firm number j produces a di�erentiated
good, Y (j)23:

Yt(j) = AtNt(j) (3.30)

Where At is the speci�c labor productivity. Aggregate output can be written as24:

Yt =

[∫ 1

0

Yt(j)
−(1−ε)dj

] 1
−(1−ε)

(3.31)

Since capital is omitted the only cost of �rms is the wage cost so the real total
cost becomes:

TCt ≡
Wt

PH,t
Nt =

Wt

PH,t

Yt
At

(3.32)

Where PH is the price of domestically produced products. The real marginal cost
becomes:

δTCt
δYt

≡MCt =
Wt

PH,tAt
(3.33)

3.3.2 Calvo-Type Price Setting Behavior

This section explains the equations and relationships that de�ne the price level
and in�ation in domestically produced goods and imported goods. For the model,
�rms set prices according to a Calvo type staggered-price setting25.

23See Monacelli [2005] page 9 where the same production function is used.
24This is a CES-functional form, as is done in Monacelli [2005].
25See Calvo [1983] and Monacelli [2005] for more information on the equations and derivations

for price level of domestically produced goods and imported goods.
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3.3.2.1 Domestic Price Level

Domestic di�erentiating goods are subject to a Calvo-price setting. In any period
a (1 − θH) fraction of �rms are able to reset their prices optimally, θH ∈ [0, 1].
While the other fraction, θH , can not26.
The latter fraction is assumed to adjust their prices, P I

H,t(j), by indexing it to the
in�ation in the last period27:

P I
H,t(j) = PH,t−1(j)

(
PH,t−1

PH,t−2

)θH
(3.34)

It is assumed that the degree of past in�ation is the same as the probability of
resetting prices28. We only consider the symmetric equilibrium where the prices
for the �rms are the same, PH,t(j) = PH,t(k)∀j, k. So we let P ′H,t denote the price
level that optimizing �rms set each period. The aggregate domestic price level
becomes:

PH,t =

(1− θH)(P ′H,t)
1−ε + θH

[
PH,t−1

(
PH,t−1

PH,t−2

)θH]1−ε


1
1−ε

(3.35)

Where ε > 1 denotes the elasticity of substitution between varieties of goods
produced within any given country, like before and equation 3.35 is in a CES
functional form. Firms re-optimize their prices and maximize their pro�ts, in
aggregate, after setting the new price P ′H,t(j) at time t as

29:

max
∞∑
k=0

Et

[
(θH)k

{
Dt,t+k

(
YH,t+k

[
P ′H,t −NMCH,t+k

])}]
(3.36)

Where Dt,t+k is a discount factor, considered as the price of a discount bond that
pays one unit of the domestic currency at time t+ k. We maximize equation 3.36
with respect to P ′H,t(j), subject to the following demand function:

YH,t+k ≤
(
CH,t+k + C∗H,t+k

) [ P ′H,t
PH,t+k

]−ε
Where NMCH,t+k is the nominal marginal cost. Demand comes from both con-
sumption of domestic products, CH,t, and from imported products, CF,t. The �rst
order condition from the maximization problem, equation 3.36, becomes:

∞∑
k=0

Et

[
(θH)k

{
Dt,t+k

(
YH,t+k

[
P ′H,t −

ε

ε− 1
NMCH,t+k

])}]
= 0 (3.37)

26The average duration of a price is given by 1
1−θH

.
27See Appendix 2 in Galí and Monacelli [2005] for more details.
28This assumption ensures that the Phillips curve is vertical in the long run.
29According to Calvo [1983].
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Where ε
ε−1

is the real marginal cost if prices were fully �exible, a frictionless
markup30. Now we divide through equation 3.37 by PH,t−1, and write ΠH,t+k =
PH,t+k
PH,t−1

and MCH,t+k =
NMCH,t+k
PH,t+k

. Equation 3.37 can therefore be written as:

∞∑
k=0

Et

[
(θH)k

{
Dt,t+k

(
YH,t+k

[
P ′H,t
PH,t−1

− ε

ε− 1
ΠH,t+kMCH,t+k

])}]
= 0 (3.38)

Now we use the fact that31:

Dt,t+k = βkEt

{(
Pt
Pt+k

)(
Ct+k
Ct

)−σ}
(3.39)

And we rewrite equation 3.38 as:
∞∑
k=0

(βθH)k
[
Et

{(
C−σt+k
Pt+k

YH,t+k

[
P ′H,t
PH,t−1

− ε

ε− 1
ΠH,t+kMCH,t+k

])}]
= 0 (3.40)

We will come back to this equation in chapter 4, where we will log-linearize the
equation and solve for in�ation in domestically produced products, ΠH .

3.3.2.2 Prices of Imported Goods

At the wholesale level for imports, the assumption is made that the law of one price
(LOP) holds, but endogenous �uctuations from purchasing power parity (PPP) in
the short run arise because of monopolistically competitive importers. Domestic
prices of imports are therefore over and above the marginal cost. The LOP fails
to hold at the retail level for imports because of this. Importers purchase foreign
goods at world market prices and then sell to domestic consumers and a markup
is charged over their cost, which creates a wedge between domestic and import
prices of foreign goods, measured in the domestic currency. We therefore have a
LOP gap, equation 3.25.

Following the domestic producers with sticky prices, the optimal price setting
behavior for the domestic monopolistically competitive importer is de�ned as,
similar to equation 3.4032:

∞∑
k=0

(βθF )k
[
Et

{(
C−σt+k
Pt+k

YF,t+k

[
P ′F,t
PF,t−1

− ε

ε− 1
ΠF,t+kMCF,t+k

])}]
= 0 (3.41)

30See also Galí [2008] for further detail.
31This equation of the discount factor is obtained from the households optimizing problem on

page 5 in Monacelli [2005] where a conventional stochastic Euler equation is derived and solved
for the discount factor.

32This form of the price level of imported goods is also used in Liu [2006] and Haider and
Khan [2008].
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Where θF ∈ [0, 1] is the stickiness parameter of importing retailers that do not re
optimize their prices every period. Equation 3.41 can be linearized and solved for
in�ation in the prices of imported goods. This is done in chapter 4.

3.3.3 The Import / Export Sector

Competition in the world market is assumed to bring import prices equal to
marginal cost at the wholesale level, but rigidities arising from ine�cient distribu-
tion networks and monopolistic retailers allow domestic import prices to deviate
from the world price33.

The import relationship for the economy has been derived here above, equation
3.20:

CF,t = α

(
PF,t
Pt

)−η
Ct

The magnitude of imports depends on the elasticity of substitution between for-
eign and domestic goods, η, the degree of openness, α and the share of the price
level for imported goods to the aggregated price level, PF/P . Imports also depend
on the total level of private consumption, Ct.

Now we need an expression for exports. We begin by writing the import function
for the foreign economy, which is also the export function for the domestic economy,
analogous to equation 3.2034:

C∗H,t = α∗
(
PH,t
P ∗t

ξt

)−η∗
C∗t (3.42)

Where C∗H,t is the export of the domestic economy and the import of the foreign
economy, α∗ is the degree of openness for the foreign economy, η∗ is the elasticity
of substitution between home and foreign goods (seen from the foreign economy)
and C∗t is the aggregate private consumption of the foreign economy.

If the foreign consumers had perfect information, the fraction of all buyers who

would purchase from the representative Icelandic �rm would be α∗
(
PH,t
P ∗t
ξt

)−η∗
.

The assumption is made that an individual Icelandic �rm is small relative to the
domestic market and that it competes with other Icelandic �rms in the same way
as it competes with foreign �rms with the same market share. The stock of buyers,
C∗H,t
C∗t

, is assumed to adjusts slowly towards its long term equilibrium, so we add

33Similar argument is used by Burstein, Neves, and Rebelo [2003], which they support using
United States data.

34This same method for obtaining an expression for the import function of the foreign economy
is used by Liu [2006], page 13.
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a sticky component to equation 3.4235. We also assume that the LOP holds for
exports so that

Ψt = 1 => PF,t =
P ∗t
ξt

=>
PH,t
P ∗t

ξt =
1

St

The export function then becomes:

C∗H,t
C∗t

=
[
α∗ (St)

η∗
]µ(C∗H,t−1

C∗t−1

)1−µ

(3.43)

Where µ ∈ [0, 1] is the factor that notes how an individual values between the
lagged term and the scaled terms of trade factor, α∗ (St)

η∗ .

3.4 The Dynamic Asset Equation

Now an expression for the asset accumulation of the economy is derived. We start
by looking at the Current account (CA) for the small open economy, it is de�ned
as36:

CAt = PtC
∗
H,t −

P ∗t
ξt
Xm
t +R∗t

B∗t
ξt
−RtB

F
t =

∆B∗t+1

ξt
−∆BF

t+1 (3.44)

Where CAt is the nominal current account, XM
t is real imports denoted in foreign

currency, B∗t is the domestic nominal holding of foreign assets expressed in foreign
currency and BF

t is the foreign holding of domestic assets expressed in domestic
currency but we will use it as the foreign debt of the domestic economy to the
foreign economy, denominated in the domestic currency. C∗H,t is the real exports
of domestic goods expressed in the domestic currency, like before.
To obtain the CA in real terms we divide by Pt through the equation above and
obtain:

C∗H,t −
P ∗t
ξtPt

Xm
t + (1 +R∗′t )

B∗t
ξtPt
− (1 +R′t)

BF
t

Pt
=
B∗t+1

ξtPt
−
BF
t+1

Pt

We remember the de�nition of the real exchange rate from equation 3.24 so we
get:

C∗H,t −
Xm
t

Qt

+ (1 +R∗′t )
B∗t
ξtPt
− (1 +R′t)

BF
t

Pt
=
B∗t+1

ξtPt
−
BF
t+1

Pt

Imports in foreign currency divided by the real exchange rate becomes imports in
domestic currency, so we get: Xm

t

Qt
= CF,t. We de�ne domestic holdings of foreign

35Here the work of Gottfries [2002] is followed. Export sluggishness and the sticky component is
emphasized in literature like Phelps andWinter [1970] and Gottfries [1991]. They derive customer
�ow equations similar to equation 3.43 assuming that customers have imperfect information about
prices charged by di�erent suppliers.

36We use the de�nition of the CA from Wickens [2008], Chapter 7: The Open Economy.
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assets in domestic currency as: B∗′t =
B∗t
ξt
, we also remember that Rt = 1 +R′t and

R∗t = 1 +R∗′t . Now we rewrite the Current account equation as:

C∗H,t − CF,t +R∗t
B∗′t
Pt
−Rt

BF
t

Pt
=
B∗′t+1

Pt
−
BF
t+1

Pt

We multiply the Bt+1 variables by
Pt+1

Pt+1
and get:

C∗H,t − CF,t +R∗t
B∗′t
Pt
−Rt

BF
t

Pt
=
B∗′t+1

Pt

Pt+1

Pt+1

−
BF
t+1

Pt

Pt+1

Pt+1

We remember that Πt+1 = Pt+1

Pt
so the CA equation in real terms becomes:

C∗H,t − CF,t +R∗t
B∗′t
Pt
−Rt

BF
t

Pt
=
B∗′t+1

Pt+1

Πt+1 −
BF
t+1

Pt+1

Πt+1 (3.45)

Net foreign debt, Ft, was used in equation 3.27, we now de�ne it as (in real terms):

Ft =
BF
t

Pt
− B∗′t

Pt
(3.46)

Equations 3.45 and 3.46 form an expression for the asset/debt accumulation of the
economy.

3.5 Market Equilibrium

The goods market clearing for the domestic economy requires that domestic output
is equal to domestic private consumption plus exports of domestic goods but minus
imports of foreign goods.
We write the national identity as:

Yt = Ct + C∗H,t − CF,t (3.47)

If we put the expression for imports and exports into equation 3.47 we get the
following relationship:

Yt = Ct + C∗t

[
α∗ (St)

η∗
]µ(C∗H,t−1

C∗t−1

)1−µ

− α
(
PF,t
Pt

)−η
Ct

If we collect Ct we get:

Yt = C∗t

[
α∗ (St)

η∗
]µ(C∗H,t−1

C∗t−1

)1−µ

+

(
1− α

(
PF,t
Pt

)−η)
Ct (3.48)

Which is the expression for the gross domestic product of the economy.
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3.6 Monetary Policy and Welfare

The monetary policy is a very important component of the model. We want to
use a monetary policy, that is similar to the monetary policy of the Central Bank
of Iceland (CBI), and compare it to a monetary policy that additionally responds
to the real exchange rate. We will de�ne a loss function for the economy and use
it to estimate the di�erence in welfare loss between di�erent monetary policies.

3.6.1 A basic Monetary Policy

Let's begin by looking at the monetary policy of the Central Bank of Iceland. The
o�cial Central Bank of Iceland's main objective is price stability. It is de�ned as
a 12-month rise in the Consumer Price Index of 2.5%37.
The Central Bank's main instrument for attaining its in�ation target, at least
before late 2008, was the interest rate on its loans to the �nancial undertakings
against collateral. The Bank can also buy or sell foreign currency in the interbank
market with the aim of in�uencing the exchange rate of the króna and the domestic
in�ation.
The Icelandic króna has been �oating for two decades, up until 2001 the Central
Bank of Iceland tried to control the �oat, by exchange rate intervention. But since
March 2001 it has not been an o�cial objective to control the exchange rate, until
the �nancial crisis of 2008. The exchange rate did have some e�ect on CBI's ac-
tions from 2001, but the króna was allowed to �oat freely and the o�cial Monetary
Policy did not incorporate exchange rate directly when modeling the interest rate.

The CBI uses a Quarterly Macroeconomic Model (QMM) to model the Icelandic
economy38. The interest rate expression used in the model is as follows39:

RSt = 0.6RSt−1 + 0.4 [(RRNt + IT ) + 1.5 (INFt+4 − IT ) + 0.5GAPAVt] (3.49)

Where RS is the Short-term interest rate, RRN is the Real neutral interest rate
(exogenous), IT is the In�ation Target, 2.5%, (exogenous), INFt+4 is the Four-
quarter CPI in�ation rate (rational expectations) and GAPAV is the Annual
average of output gap. The factors 0.6 and 1 − 0.6 = 0.4 in the CBI's model are
interest rate smoothing factors.

We want to make a similar model of the CBI's interest rate that can be used in a
DSGE model. The default interest rate is the long term real interest rate plus the

37In�ation targeting was used up until the �nancial crisis of 2008 and still is but capital controls
have been in place since the crisis and a temporary exchange rate target is being used.

38The CBI is currently working on a Bayesian DSGE model for the Icelandic economy and it
will likely replace the current QMM model, for in�ation targeting at least.

39This is the short term interest rate model as it appears in Daníelsson, F. Gudmundsson,
Haraldsdóttir, Ólafsson, Pétursdóttir, Pétursson, and Sveinsdóttir [2009].
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in�ation target. The model reacts to changes in in�ation relative to the in�ation
target, and it reacts to percent changes in GDP relative to long term GDP growth.
The DSGE reaction function is de�ned as40:

Rt = Rα1
t−1

{
RrealΠ

T
(

Πt+1

Π
T

)α2
(
Yt/Yt−1

GDP

)α3
}1−α1

(3.50)

We will refer to equation 3.50 as monetary policy 1. Rt is the scaled domestic
nominal interest rate in period t. We have α1 ∈ [0, 1] which is the interest rate
smoothing parameter, α2 ≥ 0 is the weight on in�ation and α3 ≥ 0 is the weight
on output gap. Πt+1 is the rational expectation of in�ation, for the next period.
Remember that Πt = 1 + Π′t where Π′t is the percent change in the domestic price

level. Π
T
is the CBI's in�ation target. GDP is the steady state economic growth

of the economy, but since we do not allow growth in our model we have GDP = 1,
we will talk more about the growth variables in later chapters. The variable Rreal

is the scaled equilibrium real interest rate de�ned as one plus the percentage rate.
We have Rreal = 1 + R

′
real where R

′
real is the steady state real interest rate, in

percentages.

3.6.2 Monetary Policy and the Real Exchange Rate

Now we have de�ned the basic monetary policy. We want to de�ne a new one
that also responds to the Real Exchange Rate. Recent literature on the subject is
followed41 and the real exchange rate is added to equation 3.50 as follows:

Rt = Rα1
t−1

{
RrealΠ

T
(

Πt+1

Π
T

)α2
(
Yt/Yt−1

GDP

)α3
(
Qt

Q

)−α4
}1−α1

(3.51)

We will refer to equation 3.51 as monetary policy 2. Qt is the real exchange rate
from equation 3.24 and Q is the steady state real exchange rate. This mone-
tary policy therefore responds to the level of the real exchange rate, and tries to
maintain exchange rate equilibrium. α4 ≥ 0 is the weight on the real exchange
rate level. It has a minus sign because a rise in the real exchange rate denotes
appreciation of the domestic currency and the interest rate should be lowered42.

We will also examine a similar monetary policy, that in addition to reacting to the
real exchange rate level, it also reacts to the rate of change in the real exchange
rate between periods43:

Rt = Rα1
t−1

{
RrealΠ

T
(

Πt+1

Π
T

)α2
(
Yt/Yt−1

GDP

)α3
(
Qt

Q

)−α4
(

Qt

Qt−1

)α5
}1−α1

(3.52)

40When this monetary policy is log-linearized it becomes like the monetary policies used in
Haider and Khan [2008] and Liu [2006], for example. See chapter 4 for the log-linearization.

41Here Gonzalez and Garcia [2010] is followed, where a monetary policy with the same form
is used.

42We calculate the optimal value for the monetary policy parameters in chapter 5.
43See Gonzalez and Garcia [2010], page 9.
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We will refer to equation 3.52 as monetary policy 3. α5 is the weight on the rate
of change of the real exchange rate.

3.6.3 The Loss Function

The three monetary policies stated above will be compared. We will de�ne a loss
function that measures the Welfare Loss of the economy. The loss function is
a function of �uctuations of the GDP from its steady state, �uctuations of the
domestic in�ation from its steady state and �uctuations of the domestic interest
rate from its steady state. The loss function is de�ned as44:

LF = σ2
π +

1

2
σ2
y +

1

5
σ2
r (3.53)

Where σ2
π is the variance of the deviations of in�ation from its steady state, σ2

y

is the variance of the deviations of the GDP from its steady state and σ2
r is the

variance of the deviations of the interest rate from its steady state. The dynamics
for the deviations of the GDP, in�ation and interest rate from their steady states
are derived in chapter 4. The lower the Loss Function's value, the greater the
Welfare45.

44See Gonzalez and Garcia [2010] and Hunt [2006] for similar loss functions.
45The international �nancial crisis of 2007-2010 shows us that when an economy deviates from

its steady state by many percentages it can have severe consequences, and the dampening of
these economic �uctuations are necessary, see for example Stiglitz [2010].
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4 Linearization

In general, nonlinear systems like the expressions derived in chapter 3 cannot be
solved analytically. However, their solution can be very well approximated by a
corresponding set of linear equations.
The equations for the model are log-linearized around the steady state of the
variables. The variables become deviations from the steady state. The deviations
may not become large because a Taylor approximation is used. This chapter goes
through the basics in the linearization, demonstrates basic concepts and derives
the model in log-linear form. The model is simulated in the linear form1.

4.1 The basics of Log-Linearization

The idea is to use Taylor series approximations. In general, any nonlinear function
F (xt, yt) can be approximated around any point (x∗t , y

∗
t ) using the formula:

F (xt, yt) = F (x∗t , y
∗
t ) + Fx(x

∗
t , y
∗
t )(xt − x∗t ) + Fy(x

∗
t , y
∗
t )(yt − y∗t )+

Fxx(x
∗
t , y
∗
t )(xt − x∗t )2 + Fxy(x

∗
t , y
∗
t )(xt − x∗t )(yt − y∗t ) +

Fyy(x
∗
t , y
∗
t )(yt − y∗t )2 + ...

If the gap between (xt, yt) and (x∗t , y
∗
t ) is small, then high order terms and cross-

terms will all be very small and can be ignored. But if the linearization is around
a point that is 'far away' from (xt, yt) then this approximation will not be accu-
rate. Since we are linearizing around the steady state, we are linearizing around
zero, (0, 0, ...), because our variables are deviations from the steady state and zero
deviation is the equilibrium.

When linearizing for DSGE models we take logs and then linearize the logs of
variables around a steady state path in which all real variables are growing at
the same rate. The steady state path is relevant because the stochastic economy

1See chapter 6 for details on the simulation
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will, on average, tend to �uctuate around the values given by this path, making
the approximation an accurate one. This gives us a set of linear equations in
the deviations of the logs of these variables from their steady state values. An
important approximation is the following:

log(X)− log(Y ) ≈ X − Y
Y

(4.1)

This approach has the advantage that variables are expressed in terms of their
percentage deviations from the steady state paths. So we have a system that
can be thought of as the business cycle component of the model. Coe�cients can
be thought of as elasticities and impulse response functions (IRF's) are easy to
interpret. This method doesn't require taking a lot of derivatives.

Lower case letters will generally denote deviations of variables from their steady
state:

xt ≡
Xt −X
X

≈ log(Xt)− log(X) (4.2)

An important identity is that every variable can be written as:

Xt = X
Xt

X
= Xext (4.3)

Taking the �rst order Taylor approximation we get:

Xt = Xext ≈ X(1 + xt) (4.4)

Another important approximation is the following:

XtYt ≈ XY (1 + xt)(1 + yt) ≈ XY (1 + xt + yt) (4.5)

Setting the cross terms, xtyt, equal to zero is a good approximation because we
are looking at small deviations from the steady state.

Still another important approximation that will be used is:

log(1 + xt) ≈ xt and log(1 + xt + yt) ≈ xt + yt

We assume that log-linear technology follows an AR(1)2 process:

at = ρatat−1 + εatt

Where at = log(At)− log(A) and A is the steady state technology. The parameter
εatt is a Gaussian shock with non-zero mean and variance σ2

a∗t
. Technology is the

source of all long run growth in the economy, so there is no trend growth in our
model because we consider A as a constant. This means that the steady state
variables are all constants. It is possible to have a trend growth in the model but
we skip it for simpli�cation, because we are mainly interested in the dynamics of
the model, not the growth3.

2Autoregressive process with one lag.
3More information on the trend growth and the linearization can be found in Uhlig [1995]
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4.2 Log-linearizing the Model

Now the equations derived in chapter 3 are log-linearized. This is a set of few key
equations and we will linearize them one by one. Basic steps are shown in most
cases, but methods in the above section are mainly used.

4.2.1 Wages

We begin by linearizing equation 3.21. We get:

W

P
(1 + wt − pt) =

(
N(1 + nt)

)φ (
C(1 + ct)−H(1 + ht)

)σ
Taking logs on both sides and using the fact that Ht = hCt−1 we get:

log

(
W

P

)
+ log(1 + wt − pt) =

φ
(
log(N) + log(1 + nt)

)
+ σ

(
log(C(1 + ct)− hC(1 + ct−1))

)
Now we use the Taylor approximation:

log(C(1 + ct)− hC(1 + ct−1)) ≈ log(C − hC) + ct
1

1− h
− ct−1

h

1− h

Inserting the Taylor approximation into the equation we get:

log

(
W

P

)
+ log(1 + wt − pt) = φ

(
log(N) + log(1 + nt)

)
+σ

(
log(C − hC) + ct

1

1− h
− ct−1

h

1− h

)
(4.6)

The steady state of equation 3.21 is:

W t

P t

= N
φ

t (Ct − hC)σ

Taking logs on both sides:

log(W )− log(P ) = φlog(N) + σlog(C − hC) (4.7)

Subtracting equation 4.7 from equation 4.6 we get:

wrealt = wt − pt = φnt + ct
σ

1− h
− ct−1

σh

1− h
(4.8)

Where we have used the approximation that log(1 + x) ≈ x. Note that wt =
log(Wt)− log(W ), pt = log(Pt)− log(P ), nt = log(Nt)− log(N) and ct = log(Ct)−
log(C).

- 25 -



4.2.2 Consumption

Linearizing equation 3.22, the consumption equation, we get:

eβΠ(1 + πt+1)
(
C(1 + ct)− hC(1 + ct−1)

)−σ
=

R(1 + rt+1)
(
C(1 + ct+1)− hC(1 + ct)

)−σ
Taking logs on both sides we get:

β + log(Π) + πt+1 − σlog(C(1 + ct)− hC(1 + ct−1)) =

−σlog(C(1 + ct+1)− hC(1 + ct))

Using the Taylor approximation like we did before, and subtracting the log expres-
sion of the steady state formula we get:

ct = ct−1
h

1 + h
+ ct+1

1

1 + h
− (rt+1 − πt+1)

1− h
1 + h

1

σ
(4.9)

Which is our log-linear consumption equation.

4.2.3 The Terms of Trade

The log-linearized form of the terms of trade formula, equation 3.23 is:

st = pF,t − pH,t (4.10)

Subtracting the equation in period (t− 1) from the equation in period t yields:

st − st−1 = pF,t − pF,t−1 − (pH,t − pH,t−1) = πF,t − πH,t (4.11)

Where we have used the fact that πt = pt − pt−1.

4.2.4 The Consumer Price Index

Now we log-linearize the CPI, equation 3.10. We rewrite the equation as:

P 1−η
t − αP 1−η

F,t = (1− α)P 1−η
H,t

Rewriting like before, we get:

P
1−η

(1 + pt)
1−η − αPF

1−η
(1 + pF,t)

1−η = (1− α)PH
1−η

(1 + pH,t)
1−η

Now we say that the steady states of the price levels are equal, so we get P =
PF = PH . Canceling these terms out we get:

(1 + pt)
1−η − α(1 + pF,t)

1−η = (1− α)(1 + pH,t)
1−η (4.12)
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Taking logs on both sides gives:

log
[
(1 + pt)

1−η − α(1 + pF,t)
1−η] = log(1− α) + (1− η)log(1 + pH,t) (4.13)

Now we use the following Taylor approximation:

log
[
(1 + pt)

1−η − α(1 + pF,t)
1−η] ≈ log(1− α) +

1− η
1− α

pt − α
1− η
1− α

pF,t

Putting the Taylor approximation into equation 4.13 we get:

log(1− α) +
1− η
1− α

pt − α
1− η
1− α

pF,t = log(1− α) + (1− η)log(1 + pH,t)

Canceling out (1 − η), noting that log(1 + pH,t) ≈ pH,t and rewriting the terms
gives:

pt = (1− α)pH,t + αpF,t (4.14)

Subtracting period (t− 1) from period t in equation 4.14 gives:

πt = (1− α)πH,t + απF,t (4.15)

Which is our log-linearized expression of the aggregate domestic in�ation. Putting
together equations 4.10 and 4.14 we get:

pt = pH,t + αst (4.16)

4.2.5 The Real Exchange Rate

Log-linearizing the real exchange rate, equation 3.24 yields:

qt = et + pt − p∗t (4.17)

Where et ≡ log(ξt)− log(ξ) and qt ≡ log(Qt)− log(Q). We will use equation 4.17
when we log-linearize the uncovered interest rate parity.

4.2.6 The Law of One Price Gap

Log-linearizing the LOP gap, equation 3.25, yields:

ψt = p∗t − et − pF,t (4.18)

Where ψt = log(Ψt)− log(Ψ). Using equation 4.17 to eliminate p∗t from equation
4.18 yields:

ψt = −qt + pt − pF,t (4.19)
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Using equation 4.16 to eliminate pt gives:

ψt = −qt + pH,t + αst − pF,t

And �nally using equation 4.10 to eliminate pF,t − pH,t and rewriting gives us the
log-linearized LOP gap:

ψt = −qt − (1− α)st (4.20)

Now we want to be able to apply a shock to the LOP gap and model the response
of the economy to this shock. The shock can also be thought of as a measurement
error. We de�ne a shock variable νψt as follows:

νψt = ρψν
ψ
t−1 + εψt

The shock variable follows an AR(1) process where 0 < ρψ < 1 is the autocorre-
lation coe�cient. The parameter εψt is a Gaussian shock with non-zero mean and
variance σ2

ψ. The shock and the autocorrelation coe�cient will be de�ned further
in chapter 5. The LOP gap equation with a shock variable becomes:

ψt = −qt − (1− α)st + νψt (4.21)

4.2.7 The Uncovered Interest Rate Parity

Log-linearizing the UIP, equation 3.26, gives us:

−γF
Y

(1 + ft − yt) + log(R) + rt + et+1 − et = log(R
∗
) + r∗t

Subtracting the steady-state like before, gives us:

−γF
Y

(ft − yt) + rt + et+1 − et = r∗t

Using equation 4.17 to eliminate et+1 and et gives us:

qt+1 − qt = r∗t − π∗t+1 − (r − πt+1) + γ
F

Y
(ft − yt) (4.22)

We want to be able to shock the real exchange rate but also the risk premium. We
divide equation 4.22 into two separate equations as follows:

qt+1 − qt = r∗t − π∗t+1 − (r − πt+1) + premt + νqt (4.23)

premt = γ
F

Y
(ft − yt) + νpremt (4.24)

Equations 4.23 and 4.24 form our log-linear expression for the uncovered interest
rate parity with a risk premium. Where F is the steady state net foreign debt of
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the economy and Y is the steady state GDP. And using the general terminology
we have πt+1 = log(Πt+1)− log(Π) and ft = log(Ft)− log(F ).
We have also added a shock, νqt , to the real exchange rate and a shock νpremt to the
risk premium, as we did with the LOP gap equation. The shocks follow an AR(1)
process and are de�ned as follows:

νqt = ρqν
q
t−1 + εqt and ν

prem
t = ρpremν

prem
t−1 + εpremt

Where 0 < ρq, ρprem < 1 are the autocorrelation coe�cients. The parameters εqt
and εpremt are Gaussian shocks with non-zero mean and variance σ2

q and σ2
prem,

respectively.

4.2.8 Foreign Consumption, In�ation and Interest Rate

The log-linear form of foreign consumption, equation 3.28, becomes an AR(1)
process:

c∗t = ρc∗c
∗
t−1 + εc

∗

t (4.25)

Foreign in�ation and the foreign interest rate also become an AR(1) process, equa-
tion 3.29:

π∗t = ρπ∗π
∗
t−1 + επ

∗

t (4.26)

r∗t = ρr∗r
∗
t−1 + εr

∗

t (4.27)

Where ρc∗ , ρπ∗ , ρr∗ ∈ (0, 1) are the autocorrelation coe�cients. The parameters
εc
∗
t , ε

π∗
t and εr

∗
t are Gaussian shocks with non-zero mean and variance σ2

c∗ , σ
2
π∗ and

σ2
r∗ , respectively. These shocks will be de�ned further in chapter 5.

4.2.9 The Production Function, Marginal Cost and Tech-
nology

Assuming a symmetric equilibrium across all j �rms, the �rst order log-linear
approximation of the aggregate production function, equation 3.31, becomes:

yt = at + nt (4.28)

Where yt = log(Yt)− log(Y ) and at = log(At)− log(A).

In the beginning of this chapter we assumed that log-linear technology follows an
AR(1) process:

at = ρatat−1 + εatt (4.29)

Where εatt is a Gaussian shock with non-zero mean and variance σ2
a∗t
.
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When log-linearizing real �rms' marginal cost, equation 3.33, we get:

mct = wt − pH,t − at
= (wt − pt) + (pt − pH,t)− at

Using equation 4.8 to eliminate wt− pt and equation 4.16 to eliminate pt− pH,t we
get:

mc = φnt + ct
σ

1− h
− ct−1

σh

1− h
+ αst − at

Now using equation 4.28 to eliminate nt we get the marginal cost expression as:

mc = φ(yt − at) + ct
σ

1− h
− ct−1

σh

1− h
+ αst − at

= φyt + ct
σ

1− h
− ct−1

σh

1− h
+ αst − (1 + φ)at (4.30)

4.2.10 Domestic In�ation

Now we log-linearize equation 3.40, in�ation in domestically produced goods. The
log-linearization is done around the steady state to obtain the decision rule for
P ′H,t and we get4:

p′H,t = pH,t−1 +
∞∑
k=0

{
(βθH)k [Et(πH,t+k) + (1− βθH)Et(mct+k)]

}
(4.31)

So �rms set their prices according to the future discounted sum of in�ation and
deviations of real marginal cost from its steady state5. We rewrite the equation
as:

p′H,t = pH,t−1 + πH,t + (1− βθH)mct

+(βθH)
∞∑
k=0

{
(βθH)k [Et(πH,t+k+1) + (1− βθH)Et(mct+k+1)]

}
= pH,t−1 + πH,t + (1− βθH)mct + βθH(p′H,t+1 − pH,t)

In the �rst line we split up the summation into two terms, at time t and at from
time t+ 1 to ∞. The second line rewrites the last term using equation 4.31. Now
we rearrange to obtain the following expression:

p′H,t − pH,t−1 = βθHEt(πH,t+1) + πH,t + (1− βθH)mct (4.32)

Subtracting period t− 1 form period t in equation 4.32 and rearranging we obtain
an expression for the in�ation in domestically produced goods:

πH,t = β(1− θH)Et(πH,t+1) + θHπH,t−1 + λHmct (4.33)

4Following Galí and Monacelli [2005].
5Since we are holding capital �xed and the banking sector and money multiplier are not

considered.
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Where λH = (1−βθH)(1−θH)
θH

. Equation 4.33 is the familiar New Keynesian Phillips
Curve (NKPC) that we derived using the Calvo pricing structure. So domestic in-
�ation has both a forward looking component and a backward looking component.
If all �rms were able to adjust their prices at each period (θH = 0) the in�ation
process would be purely forward looking and disin�ationary policy would be com-
pletely costless. The real marginal cost for �rms is an important determinant of
domestic in�ation.

Now we want to obtain a similar expression for the in�ation in imported goods,
ΠF . We log-linearize equation 3.41 in the same way as we did for in�ation in do-
mestically produced goods and the price setting behavior for the domestic imports
becomes6:

p′F,t = pF,t−1 +
∞∑
k=0

{
(βθF )k [Et(πF,t+k) + (1− βθF )Et(ψt+k)]

}
(4.34)

We follow the same steps as for the in�ation in domestically produced products.
Analogous to equation 4.33, the log-linear in�ation in prices of imported goods
arising from the Calvo-pricing structure becomes:

πF,t = β(1− θF )Et(πF,t+1) + θFπF,t−1 + λFψt + νπFt (4.35)

Where λF = (1−βθF )(1−θF )
θF

. We have also added a shock variable, νπFt , which is
de�ned as follows:

νπFt = ρπF ν
πF
t−1 + επFt

The shock variable follows an AR(1) process where 0 < ρπF < 1 is the autocorre-
lation coe�cient. The parameter επFt is a Gaussian shock with non-zero mean and
variance σ2

πF
.

Equations 4.15, 4.33 and 4.35 complete the in�ation dynamics for the small open
economy. In sticky-price models, in�ation dynamics are mainly driven by �rms'
preference for smoothing their pricing decisions. This gives rise to nominal rigidi-
ties that would not be present if prices were fully �exible.
The cost of in�ation in this case is the cost to the economy because prices are not
able to adjust, hence the classi�cation of such models as 'New Keynesian'7. From
the social planner's perspective, optimal policy is one that minimizes deviations
of marginal cost and the LOP gap from its steady state.

4.2.11 Imports and Exports

Log-linearizing equation 3.20, the import equation, gives us:

cF,t = η(pt − pF,t) + ct (4.36)

6Following Galí and Monacelli [2005] as before.
7The cost of adjustment argument for a �rm's pricing decision yields a similar NKPC expres-

sion, see Yun [1996].
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Inserting equation 4.19 into equation 4.36 yields:

cF,t = η(ψt + qt) + ct (4.37)

Which gives us a log-linear expression for imports.

Log-linearizing the export function, equation 3.43, gives us the log-linearized ex-
port function:

c∗H,t = c∗t + µη∗st + (1− µ)(c∗H,t−1 − c∗t−1) (4.38)

Where c∗H,t = log(C∗H,t) − log(C
∗
H) is the log-linear real export of the domestic

economy.

4.2.12 The Dynamic Asset Equation

Now the asset equation is log-linearized, equation 3.45, step by step. We begin
with the following:

C
∗
H(1 + c∗H,t)− CF (1 + cF,t) +R

∗
B
∗′
r (1 + r∗t + b∗′r,t)

−RBF

r (1 + rt + bFr,t) = B
∗′
r Π(1 + b∗′r,t+1 + πt+1)

−BF

r,t+1Π(1 + bFr,t+1 + πt+1) (4.39)

Where BF
r,t ≡

BFt
Pt

and B∗′r,t ≡
B∗′t
Pt

is foreign debt and assets in real terms. We also

have bFr,t = log(BF
r,t) − log(B

F

r ) and b∗′r,t = log(B∗′r,t) − log(B
∗′
r ) as usual. Now we

write the asset equation in equilibrium terms:

C
∗
H − CF +R

∗
B
∗′
r −RB

F

r = B
∗′
r Π−BF

r Π (4.40)

Now we subtract equation 4.40 from equation 4.39 and get:

C
∗
H(c∗H,t)− CF (cF,t) +R

∗
B
∗′
r (r∗t + b∗′r,t)−RB

F

r (rt + bFr,t) =

B
∗′
r Π(b∗′r,t+1 + πt+1)−BF

r Π(bFr,t+1 + πt+1) (4.41)

Equilibrium export is equal to equilibrium import, so we have C
∗
H = CF . We

rewrite equation 4.41 as:

C
∗
H(c∗H,t − cF,t) +R

∗
B
∗′
r r
∗
t −RB

F

r rt =

Π(B
∗′
r b
∗′
r,t+1 −B

F

r b
F
r,t+1) +RB

F

r b
F
r,t −R

∗
B
∗′
r b
∗′
r,t

+(B
∗′
r Π−BF

r Π)πt+1 (4.42)

Log-linearizing equation 3.46, net foreign debt, yields:

Fft = B
F

r b
F
r,t −B

∗′
r b
∗′
r,t (4.43)
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Now we make the following approximation:

RB
F

r b
F
r,t −R

∗
B
∗′
r b
∗′
r,t ≈

R +R
∗

2
Fft (4.44)

Inserting equations 4.43 and 4.44 into equation 4.42 yields:

C
∗
H(c∗H,t − cF,t) +R

∗
B
∗′
r r
∗
t −RB

F

r rt =

−ΠFft+1 +
R +R

∗

2
Fft + Π(B

∗′
r −B

F

r )πt+1

Which we rewrite as:

ft+1 =
R +R

∗

2Π
ft−

C
∗
H

ΠF
(c∗H,t−cF,t)−

R
∗
B
∗′
r

ΠF
r∗t +

RB
F

r

ΠF
rt+

B
∗′
r −B

F

r

F
πt+1+νft (4.45)

So equation 4.45 is the dynamic net foreign debt equation8 of the economy, in real
terms. We have added a shock variable like before, νft , which is de�ned as follows:

νft = ρfν
f
t−1 + εft

The shock variable follows an AR(1) process where 0 < ρf < 1 is the autocorre-
lation coe�cient. The parameter εft is a Gaussian shock with non-zero mean and
variance σ2

f .

4.2.13 The Gross Domestic Product

Now we log-linearize the market equilibrium expression, equation 3.48. We begin
by noting that equilibrium imports are equal to equilibrium exports:

CF = δ

(
P

P F

)η
C = C

∗
H = C

∗
(δ∗S

η∗

)µ

(
C
∗
H

C
∗

)1−µ

(4.46)

Log-linearizing equation 3.48 and using the expression in equation 4.46 we get:

Y (1 + yt) = (1 + ct)
(
C − C∗H(1 + pt − pF,t)η

)
+C

∗
H(1 + c∗t )(1 + st)

µη∗
(
1 + c∗H,t−1 − c∗t−1

)1−µ
(4.47)

Since exports are equal to imports in the long run we get:

Y = C + C
∗
H − CF = C (4.48)

Taking logs on both sides of equation 4.47 and using a �rst order Taylor approxi-
mation around zero9 for the right hand side we get:

log(C) + yt ≈ f(~0) + ctfct(~0) + ptfpt(~0) + pF,tfpF,t(~0)

+stfst(~0) + c∗H,t−1fc∗H,t−1
(~0) + c∗t−1fc∗t−1

(~0) + c∗tfc∗t (
~0) (4.49)

8But we sometimes refer to it as the dynamic asset equation.
9Also known as Maclaurin series.
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Where:

f(ct, pt, pF,t, st, c
∗
H,t−1, c

∗
t−1, c

∗
t ) ≡ log((1 + ct)

(
C − C∗H(1 + pt − pF,t)η

)
(4.50)

+ C
∗
H(1 + c∗t )(1 + st)

µη∗
(
1 + c∗H,t−1 − c∗t−1

)1−µ
)

And fx ≡ δf
δx
. We get:

log(C) + yt ≈

=log(C)︷ ︸︸ ︷
log(C + C

∗
H − CF ) +

(ct(C − CF ) + pt(−ηCF ) + pF,t(ηCF ) + st(C
∗
Hµη

∗) (4.51)

+c∗H,t−1(C
∗
H(1− µ)) + c∗t−1(−C∗H(1− µ)) + c∗t (C

∗
H))

1

C

We rewrite equation 4.51 as:

yt
C

C∗H
= ct(

C

C
∗
H

− 1)− η(pt− pF,t) + stµη
∗+ c∗H,t−1(1−µ)− c∗t−1(1−µ) + c∗t (4.52)

Now we use the import equation, equation 4.36, to replace pt − pF,t and we get:

yt
C

C∗H
= ct(

C

C
∗
H

− 1) + (ct − cF,t) + stµη
∗ + c∗H,t−1(1− µ)− c∗t−1(1− µ) + c∗t (4.53)

We rewrite the equation once again and get:

(yt − ct)
C

C∗H
= c∗t − cF,t + stµη

∗ + (c∗H,t−1 − c∗t−1)(1− µ) (4.54)

Which concludes the market equilibrium expression for the economy.

4.2.14 The Monetary Policy

The log-linearizing monetary policy 1, equation 3.50, gives us10:

rt = α1(rt−1) + (1− α1) {α2(πt+1) + α3(yt − yt−1)} (4.55)

Where rt = log(Rt)− log(R).

The log-linearized form of monetary policy 2, equation 3.51, becomes:

rt = α1(rt−1) + (1− α1) {α2(πt+1) + α3(yt − yt−1)− α4(qt)} (4.56)

The log-linearized form of monetary policy 3, equation 3.52, becomes:

rt = α1(rt−1)+(1−α1) {α2(πt+1) + α3(yt − yt−1)− α4(qt) + α5(qt − qt−1)} (4.57)

Which concludes the log-linearization of the model. In the next chapter we cali-
brate the model.

10Which is a very similar form of the monetary policy that was used in Hunt [2006] where a
New Keynesian model of the Icelandic economy was used.
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5 Calibration

In the previous chapter we derived the dynamic model for the small open economy
in log-linearized form. The equations de�ned there describe the dynamics of the
economy in terms of deviations from the steady state. This chapter calibrates
the constants used and we also de�ne the prior distributions for the parameters
in the model. To estimate the model parameters historical observables are used.
Since the model has implications for the log-deviations from the steady state of
the variables we have to preprocess the data before the estimation stage.
The observables are de�ned and we use historical time series for the observables
as input to the model. When the model has been calibrated it can be estimated
and that is done in chapter 6.

5.1 Observables and Steady states

The variables in the model are de�ned in terms of deviations from their steady
states. We have de�ned many steady state variables in the preceding chapter.
Variables with a bar over them are steady states, X, and they will be calibrated
using historical time series of the observables. Quarterly observations of the Ice-
landic economy are used but we also have two observables of the foreign economy.

5.1.1 Growth Variables

Observations from the period 1997 to 2009 are used. We make the approximation
that there is a constant steady state for the whole period, so we have to �lter the
growth out of the time series in order to obtain an approximation for the steady
states. We have �ve steady states of growth variables: C

∗
H , B

∗′
r , B

F

r , C and Y .
We have to detrend these time series so there is no growth in the period. The
growth variables in real terms are shown in �gure 5.1. The prices are �xed at the
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beginning of the year 1996. The drop in foreign assets and foreign debt in 2008, as
seen in the �gure, is because deposit institutions in winding-up proceedings have
been taken out. So the assets and debt of these institutions are not included1.

Figure 5.1: Foreign assets (B star), foreign debt (B F), exports, GDP and private con-
sumption in real terms.

We calculate the average growth in GDP per quarter. The average growth is
1.376% per quarter. We �lter the growth of the economy out of the series using
the following method. If there are n observations in a time series, then observation
number k in the detrended time series becomes:

x′k =
xk

(1.01376)(k−1)

Where x′k is observation number k in the detrended series, and xk is observation
number k in the original series.

This is done to every observation of all the time series that experience growth. We
detrend the GDP (Yt), private consumption (Ct), foreign assets of the economy
(B∗′r,t), foreign debt (BF

r,t) and exports (C∗H,t). The result is shown in �gure 5.2.

We see that GDP, private consumption and exports have become stable but foreign
assets and debt are not. We can now obtain a steady state for the period by taking

1The time series for the foreign assets and foreign debt were obtained from the Central Bank
of Iceland, www.sedlabanki.is. The time series for the private consumption, exports and GDP
were obtained from Statistics Iceland, www.statice.is.

- 36 -



Figure 5.2: Detrended foreign assets, foreign debt, exports, GDP and private consump-
tion.

the average of these detrended time series. We will take the average of the whole
period for GDP, exports and private consumption to obtain an approximation for
the steady state. But we use only the period from 1997 to 2005 for foreign assets
and foreign debt. Foreign assets and foreign debt is relatively stable in that period,
and then a bubble begins. Calculating the steady states this way, we get the results
shown in table 5.1. These are the average values of the real detrended time series.

According to equation 4.48 the steady state GDP is equal to steady state private
consumption, since we don't have investments and government expenditure. We
can see that the estimated steady state for Y in table 5.1 is higher than the one
for C so we have to lower the value for Y so that it becomes equal to C. The
dynamics of the Yt time series are still used, but the steady state is scaled because
of the simpli�cations in our model.

M.kr.
B
∗′
r = 256,744

B
F

r = 552,579
Y = 459,789
C
∗
H = 110,050

C = 264,403

Table 5.1: Steady states of the growth variables.
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5.1.2 Non Growth Variables

Now we need to calculate the other steady states used in the model. We have
quarterly observations for the same period, 1997 to 2009 for the variables: Ft, Rt,
R∗t and Πt.

For the net foreign debt steady state, F , we use the foreign debt and foreign asset
steady state:

F = B
F

r −B
∗′
r = 552, 579− 256, 744 = 295, 835M.kr.

We cannot use the net foreign debt as an observable because of its large deviation
from equilibrium. We only use the steady state of the net foreign debt, and the
steady state is calculated as the average of the net foreign debt from 1997 until
2005. After 2005 it deviates largely from the steady state. The net debt time
series is shown in �gure 5.3.

Figure 5.3: Real net foreign debt of the domestic economy, Ft.

The domestic central bank interest rate is an observable for the model. We use a
time series of the nominal unindexed interest rate and it can be seen in �gure 5.42.
We calculate the steady state of the interest rate as the average of the time series
over the whole period. R = 1.099.
We also use domestic in�ation as an observable. We use a time series of the

2The time series for the interest rate are obtained at the Central Bank of Iceland,
www.sedlabanki.is.

- 38 -



consumer price index, a plot of the series is shown in �gure 5.43. We calculate the
average of the series to obtain the steady state, Π = 1.054.
The foreign interest rate is also used as an observable. Around 50% to 60% of the
exports from Iceland are sold in euros, and around 30% to 40% is in US dollars.
We therefore only use the interest rate of the US dollar and the euro as the foreign
interest rate, for simplicity. The foreign interest rate is de�ned as:

R∗t = 0.6REur
t + 0.4RUS

t

Where REur
t is the interest rate on the Euro and RUS

t is the interest rate on the
US dollar. We use the nominal central bank interest rate4. The foreign central
bank interest rate is shown in �gure 5.4. We use the average of the time series as
the steady state, R

∗
= 1.039.

Figure 5.4: Domestic interest rate (R), foreign interest rate (R star) and domestic in�a-
tion (Pi).

We take the real exchange rate of the domestic economy as an observable5. The
real exchange rate can be seen in �gure 5.5. We also use foreign in�ation as an
observable for the model. For simplicity we only use the consumer price index for
the Euro Area and for the United States, like we did with the foreign interest rate.
We de�ne the foreign in�ation as:

Π∗t = 0.6ΠEur
t + 0.4ΠUS

t

3The time series for the CPI is obtained at Statistics Iceland, www.statice.is.
4The Euro interest rate is obtained at the European Central Bank, www.ecb.int, and the US

interest rate is obtained at the Federal Reserve, www.federalreserve.gov.
5The real exchange rate time series is obtained at the Central Bank of Iceland,

www.sedlabanki.is.
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Figure 5.5: The real exchange rate, Qt.

Where ΠEur
t is the consumer price in�ation in the Euro Area and ΠUS

t is the
consumer price in�ation in the United States6. Foreign consumer price in�ation,
Π∗t is shown in �gure 5.6. All the steady states used in the model are shown in
table 5.2. Note that foreign in�ation is an observable, but we don't use its steady
state in the model. All the observables are summarized in table 5.3.

The steady states
R = 1.099
R
∗

= 1.039
Π = 1.054
F = 295,835 M.kr.
B
∗′
r = 256,744 M.kr.

B
F

r = 552,579 M.kr.
Y = 459,789 (264,403) M.kr.
C
∗
H = 110,050 M.kr.

C = 264,403 M.kr.

Table 5.2: The Steady states of the model.

6The US consumer price index was obtained at the U.S. Bureau of Labor Statistics and the
Euro Area consumer price index was obtained at Eurostat.
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Figure 5.6: Foreign in�ation, Pi star.

The Observables Figure
Πt Domestic in�ation 5.4
Rt Domestic interest rate 5.4
Π∗t Foreign in�ation 5.6
R∗t Foreign interest rate 5.4
Qt Domestic real exchange rate 5.5
C∗H,t Domestic exports 5.2
Ct Domestic private consumption 5.2
Yt Domestic GDP 5.2

Table 5.3: The observables of the model.

5.2 Parameters: Priors and Constants

In this section we calibrate the parameters and constants used in the model. Priors
can re�ect strongly held beliefs about the validity of economic theories. The priors
incorporate the researchers beliefs about possible ranges regarding the nature and
behavior of the variables7. In practice, priors are chosen based on observation,
facts or from existing empirical literature. We will use existing literature and
optimal policy calculations for the choice of priors, more on that here below. The
Bayesian estimation will be discussed in chapter 6 page 49.

7See for example Smets and Wouters [2004].
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5.2.1 Households

For the households we have a few parameters. We have the rate of time preference
β, the inverse elasticity of inter temporal substitution σ, the inverse elasticity of
labor supply φ and the external habit formation h. See chapter 3 for more detail.
We choose the priors in line with earlier literature8, they are de�ned in table 5.4.
We also have η, the elasticity of substitution between home and foreign goods. We
�x the discount factor as β = 0.95.

Parameter Distribution Mean S.E. Domain
σ Gamma 2.00 0.10 <+

φ Gamma 1.00 0.30 <+

h Beta 0.50 0.20 [0, 1]
η Gamma 1.00 0.30 <+

Table 5.4: Priors for households' parameters.

5.2.2 Firms

We have the price setting fractions for �rms, θH and θF . The priors for these
two parameters are shown in table 5.5, and they are chosen in line with earlier
literature9 like the priors for households.

Parameter Distribution Mean S.E. Domain
θH Beta 0.50 0.25 [0, 1]
θF Beta 0.50 0.25 [0, 1]

Table 5.5: Priors of the parameters for �rms.

5.2.3 The Foreign Economy

For the foreign economy we have the factor that notes how an individual values
between terms in the export function, equation 3.43, µ. We also have the elasticity
of substitution between the home and foreign goods seen from the foreign economy,
η∗. Then we have the degree of openness, α. The priors for these parameters are
shown in table 5.6 10. Since η∗ is the elasticity of substitution of the rest of the
world, it should have a higher value than η. The reason is that it's likely for the

8See Liu [2006], Haider and Khan [2008] and Gonzalez and Garcia [2010].
9See for example Haider and Khan [2008], where the same priors are used.
10The priors for the foreign economy are in line with Gottfries [2002].
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rest of the world to have more substitutes to choose from than the small open
economy. We also have the risk premium, we �x the long term risk premium as
γ = 0.01. But the risk premium varies with net foreign debt to GDP as shown by
equation 3.27.

Parameter Distribution Mean S.E. Domain
µ Beta 0.10 0.20 [0, 1]
η∗ Gamma 3.00 0.30 <+

α Beta 0.40 0.25 [0, 1]

Table 5.6: Priors for the parameters in the foreign economy.

5.2.4 Shocks

The shocks are a very important factor in the model. In chapter 4 when the model
was log-linearized we added shocks to some equations. These shocks will be de�ned
here. We have added shocks to various equations and we want to estimate how
the model responds to these shocks. We want to estimate how various monetary
policies respond to various shocks. We have a stationary stochastic model so that
shocks to it are only allowed to be temporary. A permanent shock cannot be
accommodated because the model needs to revert to the steady state, and the
steady state is considered constant. Furthermore, shocks can only hit the system
today, as the expectation of future shocks must be zero. The shock follows an
AR(1) process and propagates throughout the economy until it reaches the steady
state. To do that we use a 'latent shock variable' and we add it to the relationship
that we want to shock, like we did when we log-linearized the model. The shock
variable is an AR(1) process. For example if we wanted to add a shock to the LOP
gap (equation 4.21) we add the shock variable:

ψt = −qt − (1− α)st + νt (5.1)

The νt variable is endogenous but we add en exogenous shock to it:

νt = ρνt−1 + εt

Where εt is a Gaussian shock with variance V ar(εt) = σ2
ε and non-zero mean.

The parameter ρ ∈ (0, 1) de�nes how fast the shock variable goes to zero, called
Autocorrelation Coe�cient. This way we can shock the LOP gap for a certain
period until it reverts to the steady state.
Note that in order to avoid stochastic singularity, there must be at least as many
shocks or measurement errors in the model as there are observed variables11. We

11The estimation will be discussed in detail in chapter 6, but for more information on DSGE
technicalities, see for example Hamilton [1994] or Canova [2007].
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have eight observables and we de�ne a total of nine shocks to the model. We add
a shock variable to the log-linear expression of the variable that we want to shock,
like we do in equation 5.1. The shocks to endogenous variables are de�ned in table
5.7 and shock to the exogenous processes are de�ned in table 5.8. When we add a
shock to the exogenous processes we don't use a latent shock variable but we can
add the shock, εt, directly, since the exogenous processes are AR(1) processes.

Variable Shock to variable
qt νqt = ρqν

q
t−1 + εqt

ft νft = ρfν
f
t−1 + εft

πF,t νπFt = ρπF ν
πF
t−1 + επFt

ψt νψt = ρψν
ψ
t−1 + εψt

premt νpremt = ρpremν
prem
t−1 + εpremt

Table 5.7: Shocks to the endogenous variables.

Variable Shock to variable
at at = ρaat−1 + εat
c∗t c∗t = ρc∗c

∗
t−1 + εc

∗
t

r∗t r∗t = ρr∗r
∗
t−1 + εr

∗
t

π∗t π∗t = ρπ∗π
∗
t−1 + επ

∗
t

Table 5.8: Shocks to the exogenous processes.

The autocorrelation coe�cients, ρx, will also be estimated with Bayesian tech-
niques. In previous literature the coe�cients are generally de�ned the same way12.
The priors for the autocorrelation coe�cients are de�ned in table 5.9. The priors
are all de�ned the same way.

Parameter Distribution Mean S.E. Domain
ρx Beta 0.50 0.10 [0, 1]

Table 5.9: The priors of the autocorrelation coe�cients.

We de�ne the shocks to the model, ε, as Gaussian with non-zero mean. We de�ne
the prior distribution for the shocks, the mean and standard deviation. When
we simulate the model a random shock is taken from the prior distribution and
the shock is applied at t = 0, and then we estimate the response functions. The
response functions are often called Impulse response functions, because the shock
is only applied at t = 0 as an impulse, but not at later times. This is done in
detail in chapter 6. The shocks are de�ned in table 5.1013.

Note that the shock to the net foreign debt has a positive mean, so the net foreign
debt increases on average when shocked. The shock to the real exchange rate has
a negative mean so the currency is depreciating and the shock to foreign private

12See for example Gonzalez and Garcia [2010].
13Where S.D. is the standard deviation of the prior.
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Shock Distribution Mean S.D.
εft Normal 0.05 0.02
εψt Normal 0.01 0.01
εqt Normal -0.05 0.02
επFt Normal 0.01 0.01
εat Normal 0.01 0.01

εpremt Normal 0.05 0.02
επ
∗
t Normal 0.05 0.02
εr
∗
t Normal 0.05 0.02
εc
∗
t Normal -0.05 0.02

Table 5.10: The priors of the shocks.

consumption does also have a negative mean so the consumption is decreasing on
average when the shock hits. We have de�ned a smaller mean of the prior for the
shocks to ψt, πt,F and at. This is because we are mostly interested in the shocks to
the foreign variables: premt, π∗t , r

∗
t and c

∗
t . We want to see how the three monetary

policies compare when these shocks are applied to the economy.

5.3 Optimal Policy

Finally we calibrate the monetary policies used in the model, equation 3.50 to
3.52. We want to calibrate the parameters, α1 ... α5. We use an algorithm that
searches numerically for the best value for the coe�cients of the policy14. The
algorithm minimizes an objective function. The objective function is a weighted
sum of variances and we calibrate the objective function so it becomes like the
loss function, equation 3.53. We iterate through the model by changing the policy
parameters until a minimum of the objective function has been reached. We will
use the optimal policy calculations as guidelines for choosing the priors, along with
earlier literature.

We apply all the shocks de�ned in table 5.10 and iterate until the objective function
has been minimized. We use the weights used in the loss function where in�ation
variance has weight equal to 1, output variance has weight 0.5 and the interest
rate variance has weight 0.2. We use these weights for our optimal policy objective
function.

We calculate the values of the parameters using the optimal policy algorithm,
minimizing the welfare loss. The results are displayed in table 5.11.

Note that we put a minus sign on α4 when de�ning the monetary policies, equations

14Using Dynare, we use a function called Optimal simple rule (OSR) that does this numerical
calculation.
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M.P. 1 M.P. 2 M.P. 3
Parameter Optimal values

α1 0.40 0.56 0.50
α2 3.00 3.03 2.75
α3 0.50 0.36 0.30
α4 - 0.12 0.40
α5 - - 0.50

Table 5.11: Optimal policy parameters for monetary policies 1,2 and 3, equations 3.50,
3.51 and 3.52.

3.51 and 3.52, because we wanted a negative relationship between the interest rate
and the level of the real exchange rate because when the exchange rate appreciates
the interest rate should be lowered. The optimal policy calculations imply that this
was correct, since the optimal value for α4 is positive, and hence the relationship
is negative.

Looking at recent literature, Gonzalez and Garcia [2010] use a very similar mone-
tary policy to monetary policy 3, where it also responds to the real exchange rate.
They use a DSGE model to examine the role of risk premium shocks to small open
economies. Let's take a look at the priors used there for the monetary policy, they
are shown in table 5.12.

Parameter Distribution Mean S.D.
α1 Beta 0.50 0.05
α2 Gamma 2.00 0.10
α3 Gamma 0.50 0.10
α4 Gamma 0.25 0.10
α5 Gamma 0.25 0.10

Table 5.12: Priors for the monetary policy parameters, from recent literature.

Taking note of table 5.12 and the optimal policy parameters derived above, we
choose the priors for the monetary policies' parameters. We choose di�erent priors
for the monetary policies so that each monetary policy is calibrated as optimal as
possible. The choice of priors for the monetary policies parameters can be found
in tables 5.13, 5.14 and 5.15.

Parameter Distribution Mean S.D.
α1 Gamma 0.40 0.10
α2 Gamma 3.00 0.10
α3 Gamma 0.50 0.10

Table 5.13: The priors for the parameters in monetary policy 1, equation 3.50.
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Parameter Distribution Mean S.D.
α1 Gamma 0.56 0.10
α2 Gamma 3.03 0.10
α3 Gamma 0.36 0.10
α4 Gamma 0.12 0.10

Table 5.14: The priors for the parameters in monetary policy 2, equation 3.51.

Parameter Distribution Mean S.D.
α1 Gamma 0.60 0.10
α2 Gamma 2.00 0.10
α3 Gamma 0.40 0.10
α4 Gamma 0.75 0.10
α5 Gamma 0.40 0.10

Table 5.15: The priors for the parameters in monetary policy 3, equation 3.52.

All the priors have the same standard deviation, or 0.10. Monetary policy 3 has
the highest rate of interest smoothing but the lowest weight on in�ation variance.
Also note that monetary policy 3 puts relatively high weight on the real exchange
rate level while monetary policy 2 puts low weight on it. When the model has
been estimated we can compare the posteriors.

This concludes the calibration of the model and now it can be estimated. In chapter
6 the model will be simulated and the posteriors estimated. Then in chapter 7
come the results from the simulation and we compare the welfare loss between
di�erent monetary policies.
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6 Estimation

Now the model that we derived and calibrated in the preceding chapters will be
estimated. We will simulate the log-linearized model for a number of periods and
examine the models response to various shocks. The posteriors of the parameters
will be estimated and we will examine the impulse response functions. Di�erent
monetary policies will be used and we will examine the di�erence in response of
the model, based on what monetary policy is used. We will use the loss function
de�ned in chapter 3 to measure the di�erence in welfare loss between di�erent
monetary policies. The results of the estimation will be discussed in chapter 7.

The working procedure of the estimation, in short, is that we use the log-linear
model from chapter 4 and we apply shocks to it at period t = 0. The shocks are
drawn from the prior distributions de�ned in table 5.10. The parameters are also
drawn from their prior distributions. We use the historical time series from section
5.1 and use them to �nd the likelihood function that describes the density of the
data, given the model and its parameters. We use the likelihood function together
with the priors to obtain the posterior distributions, using Bayesian estimation.
When we have the posterior distributions we simulate the model and iterate the
simulation a number of times, drawing the shocks and the parameters from the
posterior distributions and obtain a medium response of the system. We use this
response to calculate the welfare using the loss function, equation 3.53 and to
compare monetary policies.

6.1 Bayesian Estimation

Bayesian estimation has become increasingly popular in the �eld of macroeco-
nomics. Recent literature on DSGE models commonly uses Bayesian estimation
to estimate the models. Central banks around the world are using Bayesian esti-
mated DSGE models extensively, for in�ation targeting and other purposes. The
Bayesian estimation is used for technical reasons, and because of greater computer
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power it is becoming more frequently used.

There are a number of advantages of Bayesian estimation. For example, the
Bayesian estimation is based on the likelihood, which is generated by the DSGE
system, but not on the indirect con�ict between the implied DSGE and VAR im-
pulse response functions. But our model must not be mis-speci�ed, which can be
a disadvantage.

The Bayesian estimation uses priors which work as weights in the estimation pro-
cess so that the posterior distribution avoids peaking at strange points where the
likelihood peaks. Because the DSGE models can be misspeci�ed, the likelihood
often peaks in regions of the parameter space that do not �t to common observa-
tions, leading to the dilemma of absurd parameter estimates.
It helps us to identify parameters to include priors. But when estimating the
model, identi�cation can be a problem. It can be summarized by di�erent values
of structural parameters leading to the same joint distribution for observables.
This can happen when the posterior distribution is �at over a subspace of parame-
ter values. But weighting the prior densities with the likelihood can lead to adding
just enough curvature in the posterior distribution to assist numerical maximiza-
tion.
By including shocks the Bayesian estimation explicitly addresses model misspeci-
�cation, which can be interpreted as observation errors, in the structural equations.

6.1.1 The Basic Mechanics of Bayesian estimation

Bayesian estimation can be thought of as a bridge between calibration and max-
imum likelihood. The calibration of models is done by the speci�cation of priors.
The maximum likelihood approach comes from the estimation process based on
using the model together with data. Priors can be thought of as weights on the
likelihood function in order to give more importance to certain areas of the pa-
rameter subspace. The priors and likelihood functions are linked by Bayes' rule,
as we will describe here below.

We describe the priors by a density function of the form:

p(θA | A)

Where A is a speci�c model, θA represents the parameters of model A and p(· )
stands for a probability density function (pdf). The likelihood function describes
the density of the observed data, given the model and the parameters:

L(θA | YT ,A) ≡ p(YT | θA,A)

Where YT are the observations until period T , and the likelihood in our case is
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recursive and we write it as:

p(YT | θA,A) = p(y0 | θA,A)
T∏
t=1

p(yt | Yt−1, θA,A)

Using Bayes theorem we obtain the density of the parameters, knowing the data.
Generally we have:

p(θ | YT ) =
p(θ;YT )

p(YT )

We know that:

p(YT | θ) =
p(θ;YT )

p(θ)
⇐⇒ p(θ | YT ) = p(YT | θ)p(θ)

Now we can combine the prior density and the likelihood function to get the
posterior density:

p(θA | YT ,A) =
p(YT | θA,A)p(θA,A)

p(YT | A)

Where p(YT | A) is the marginal density of the data conditional on the model:

p(YT | A) =

∫
θA

p(θA;YT | A)dθA

The posterior density that is not normalized (posterior kernel) corresponds to the
numerator of the posterior density:

p(θA | YT ,A) ∝ p(YT | θA,A)p(θA | A) ≡ K(θA | YT ,A)

This is the main equation that we use to rebuild all posterior moments of interest.
Matlab R©1 is used for all calculations together with a toolbox called Dynare2, which
is a software that estimates and solves DSGE models. A program of the model
is written, which is solved and estimated using Dynare and Matlab. The general
working of the Dynare estimation is discussed here below. The likelihood function
will be estimated using the Kalman �lter and then we simulate the posterior kernel
using a Monte Carlo method called the Metropolis-Hastings. These topics will also
be explained further in the following section.

6.1.2 Bayesian Estimation of DSGE models

A DSGE model can be thought of as a collection of �rst order conditions and
equilibrium conditions, we can write it in the form:

Et{f(yt+1, yt, yt−1, ut)} = 0, E(ut) = 0 and E(utu
′
t) = Σu

1Matlab is a numerical computing environment, see www.mathworks.com for more informa-
tion.

2Dynare is a pre-processor and a collection of Matlab and GNU Octave routines which solve
non-linear models with forward looking variables. See www.dynare.org for more information.
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Where y is vector of endogenous variables of any dimension and u is a vector
exogenous stochastic shocks of any dimension. The policy function is a solution to
this system. It is a set of equations relating variables in the current period to the
past state of the system and to current shocks, that satisfy the original system.
We write the policy function as yt = g(yt−1, ut).

We write the solution to a DSGE model as follows:

y∗t = Mȳ(θ) +Mŷt +N(θ)xt + ηt
ŷt = gy(θ)ŷt−1 + gu(θ)ut

E(ηtη
′
t) = V (θ)

E(utu
′
t) = Q(θ)

Where ŷt are variables in deviations from steady state, ȳ is the vector of steady
state values and θ is the vector of deep (structural) parameters to be estimated.
The variable ηt is the process error. M is a m×m1 vector of constants, where m
is the number of endogenous variables and m1 is the number of ηt shocks. N(θ)
is a m ×m2 matrix where m2 is the number of ut shocks and xt is a variable to
allow for a linear trend, to allow for the most general case3. y∗ is observable and
it is related to the true variables win an error ηt. The �rst and second equation
here above make up a system of state equations.

Now we estimate the likelihood of the DSGE solution system. The equations
above are non-linear in deep parameters, θ, but they are linear in endogenous and
exogenous variables so the likelihood can be evaluated with a linear prediction error
algorithm, and we will use the Kalman �lter. The Kalman �lter is a mathematical
method and its purpose is to use measurements, observed over time, that contain
noise and other inaccuracies. The Kalman �lter produces estimates of the true
values of measurements and their associated calculated values by predicting a
value, estimating the uncertainty of the predicted value and computing a weighted
average of the predicted value and the measured value. Kalman �lters are based
on linear dynamic systems who are discrete in the time domain. They are modeled
on a Markov Chain built on linear operators who are shocked by Gaussian noise.

Following is how the Kalman �lter recursion goes4:
For t = 1, ..., T and with initial values y1 and P1 we have:

v∗t = y∗t − ȳ∗ −Mŷt −Nxt
Ft = MPtM

′ + V
Kt = gyPtg

′
yF
−1
t

ŷt+1 = gyŷt +Ktvt
Pt+1 = gyPt(gy −KtM)′ + guQg

′
u

3See Hamilton [1994] and Canova [2007] for more information on solving DSGE models.
4For more information on the Kalman �lter see for example Canova [2007] and Hamilton

[1994].
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From the Kalman �lter recursion, it is possible to derive the log-likelihood given
by:

ln
{
L(~θ | Y∗T )

}
= −Tk

2
ln(2π)− 1

2

T∑
t+1

|Ft| −
1

2
v′tF

−1
t vt

Where the vector ~θ contains the parameters we have to estimate: θ, V (θ) and
Q(θ). The variable Y∗T expresses the set of observable endogenous variables y∗t
found in the measurement equation.

The log-likelihood above is one step in �nding the posterior distribution of our
parameters. The log-posterior kernel can be expressed as:

ln{K(~θ | Y∗T )} = ln{L(~θ | Y∗T )}+ ln{p(~θ)} (6.1)

Where the �rst term on the right hand side is known after carrying out the Kalman
�lter recursion. Now to �nish calculating the posteriors we need to use the priors.

To �nd the mode of the posterior distribution we maximize the log posterior ker-
nel, equation 6.1, with respect to θ. This is done using numerical methods. The
likelihood function is not Gaussian with respect to θ but to functions of θ as they
appear in the state equation. The posterior distribution will be given by the ker-
nel equation above but its a nonlinear function of the θ parameters. Therefore
we cannot �nd an explicit form of θ̂ML. Instead we use a sampling-like method
called theMetropolis-Hastings, which is well known in the Bayesian literature. The
Metropolis-Hastings algorithm simulates the posterior distribution using a 'rejec-
tion sampling algorithm' that generates a sequence of samples from a distribution
that is unknown at the outset5.
We have the posterior mode but we are often interested in the mean and the vari-
ance of estimators of θ. To calculate the mean and variance the algorithm builds on
the fact that under general conditions the distribution of the deep parameters will
be asymptotically normal. The algorithm constructs a Gaussian approximation
around the posterior mode and uses a scaled version of the asymptotic covariance
matrix as the covariance matrix for the proposal distribution. This allows for an
e�cient exploration of the posterior distribution, at least in the neighborhood of
the mode6. The Metropolis-Hastings algorithm implements the following steps:

1. A starting point is chosen, ~θ0, which is typically chosen as the posterior
mode. The loop 2-3-4 is then run.

2. A proposal, ~θ∗, is drawn from a jumping distribution

J(~θ∗ | ~θt−1) = N (~θt−1, cΣm)

Where Σm is the inverse of the Hessian computed at the posterior mode and
c is the scale factor.

5Known as the Markov Chain process.
6See An and Schorfheide [2006], page 18, for more information on these calculations.
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3. The acceptance ratio is computed:

r =
p(~θ∗ | YT )

p(~θt−1 | YT )
=
K(~θ∗ | YT )

K(~θt−1 | YT )

4. Finally we accept or discard the proposal ~θ∗ according to the following rule:

~θt =

{
~θ∗ with probability min(r, 1)
~θt−1 otherwise

Then we update, if necessary, from the jumping distribution.

We have such a complicated acceptance rule to be able to visit the entire domain
of the posterior distribution. It is not good to throw out the candidate giving a
lower value of the posterior kernel too quickly. Using that candidate for the mean
of the drawing distribution allows us to leave a local maximum and travel towards
the global maximum. The idea is therefore to allow the search to turn away from
taking a small step up, and instead take a few small steps down in the hope of
being able to take a big step up in the near future. An important parameter in the
searching procedure is the variance of the jumping distribution and in particular
the scale factor. If the scale factor is too small, the acceptance rate will be too
high and the Markov Chain of candidate parameters will 'mix slowly', meaning
that the distribution will take a long time to converge to the posterior distribution
since the chain is likely to get 'stuck' around a local maximum. But if the scale
factor is too large, the acceptance rate will be very low and the chain will spend
too much time in the tails of the posterior distribution.

Using the methods in this section we are able to calculate the posterior distri-
butions of the parameters with the help of Matlab and the Dynare toolbox7. In
the next section we calculate the posteriors for the parameters in our small open
economy model.

6.2 The Parameters

We have a number of parameters in the model that we want to estimate using
Bayesian techniques. We have declared the priors in chapter 5 and there we also
de�ned observables and we introduced historical time series of the observables.
Now we use these priors and observables to estimate the posterior distributions of
the parameters, given the measurements, the priors and the model. We will use
the methods discussed in the preceding section.

7For more information on how Dynare solves DSGE models see Gri�oli [2007] and Adjemian,
Juillard, Mihoubi, Perendia, and Villemot [2009].
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We begin with the log-linearized model from chapter 4. We use the constants and
priors from chapter 5. We then apply all the 9 shocks to the model, the shocks are
de�ned in table 5.10. We use the historical data from chapter 5 for the following
eight observables: Yt, Πt, Rt, R∗t , Qt, C∗H,t, Π∗t and Ct.

We use the Metropolis-Hastings algorithm and we use two independent chains,
each of length 100.000 units. We have to do three runs, one for each monetary
policy we want to use. The monetary policies used are de�ned by equations 3.50,
3.51 and 3.52. We obtain the posteriors for all the structural parameters and for
all the shocks. The numerical results from the Bayesian estimation are displayed
in Appendix B page 65.

Figure 6.1: A few priors and posteriors, when monetary policy 1 was used, equation 3.50.
See Appendix C for all the posteriors.

Graphical results of all the priors and all the posteriors are in Appendix C page 69.
In �gure 6.1 we can see the priors and posteriors for a few structural parameters,
when monetary policy 1 was used.
Now we have estimated the posteriors and in the next section we take look at the
models response to the shocks applied.
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6.3 Simulation and Impulse Response Functions

Now we take a little look at the dynamics of the model. We have de�ned nine
shocks that we apply to the model at time t = 0, the shocks are de�ned in table
5.10. We estimate the response using the posteriors obtained in the preceding sec-
tion. Parameters and shocks are taken at random from the posterior distributions
and the model is simulated for one hundred periods, T = 100.

For each shock we do 500 iterations, so we draw 500 times from the same posterior
distribution, for the shocks and the parameters, and simulate the response. Then a
medium response is calculated from the 500 simulations, with a con�dence interval.
We look at the response of the observables. Since there are two foreign observables
we model the response for six domestic observables: Yt, Πt, Rt, Qt, C∗H,t and Ct
and possibly the foreign observable being shocked.

This is done for each monetary policy. We have nine shocks and three monetary
policies, a total of 27 response graphs, each graph with six to seven response
functions. The response functions of the observables, when a shock is applied to
the risk premium, can be seen in �gures 6.2, 6.3 and 6.4.

All the �gures of the impulse response functions are shown in Appendix D. There
we get a graphical display of the dynamics of the economy. We can see the response
of the observables to the shocks, for every monetary policy. We can also see a
con�dence interval for the path of the variable, shown in gray.

Figure 6.2: Response functions to a risk premium shock, when monetary policy 1 was
used, equation 3.50.
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Figure 6.3: Response functions to a risk premium shock, when monetary policy 2 was
used, equation 3.51.

Figure 6.4: Response functions to a risk premium shock, when monetary policy 3 was
used, equation 3.52.

Now we have estimated the model using various shocks. We have obtained an
average response of the observables to all the shocks, for 100 periods. It is the
variance of the average response that we are interested in. We have estimated

- 57 -



the model using three di�erent monetary policies and we want to know which
monetary policy dampens the deviations of the variables from their steady states
the most. We will look at the deviations and variances in the next chapter, where
the results of the estimation are put forth and discussed.

- 58 -



7 Results

In the preceding chapter we estimated the model using Bayesian estimation. Shocks
were applied to the model and the posterior distributions were estimated. From
these posterior distributions parameters and shocks were drawn to simulate the
model. The model was simulated and an average response was calculated. The
response functions are displayed graphically in Appendix D and the results from
the posterior estimation are in Appendix B and Appendix C.

We are interested in the deviations from the steady state. In chapter 3 we de�ned
a loss function that we will use to compare the di�erent monetary policies. The
monetary policies are de�ned by equations 3.50, 3.51 and 3.52. The loss function,
equation 3.53, was de�ned as follows:

LF = σ2
π +

1

2
σ2
y +

1

5
σ2
r

The average response estimated in the preceding chapter gives us the time series
for the observables of the model. This time-series gives us the deviations from
steady state, over 100 periods. We can see from the �gures in Appendix D that
the variables have reached the steady state in most cases before the 100 periods
are over, in most cases even well before. If we look at �gures 6.2, 6.3 and 6.4
for example, we see the response when the risk premium experiences a shock. In
Appendix B we can see the posteriors for the shocks. We see that the average
risk premium shock is around 5% upward deviation from the steady state. In
the �gures we see that this leads to a depreciation of the currency, a quite big
depreciation in the �rst periods. This then leads to an increase in exports. Private
consumption decreases but it decreases less that than the increase in exports so we
have a net increase in the GDP. The in�ation rate goes up in the �rst periods and
the interest rate as well, as we would have expected. The dynamics are similar for
all three monetary policies but the di�erence is how much the variables deviate
from the steady state. This is what we are interested in. The rest of the �gures of
the response functions are in Appendix D.

We calculate the variance of the time-series for the average response. We do this
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for the response in all the observables. For example when the risk premium shock
is applied we have a response in six observables, like we saw in the three �gures.
We calculate the variance of the average response, which is the middle line in the
response graphs. The results of these calculations are in Appendix E. We have
eight observables and nine shocks, which gives a total of 72 response time-series,
for each monetary policy. The variance of all these time series are displayed in
the appendix. This gives us the variance of the deviations from the steady state.
We can see that sometimes the variance is zero, this is because shocks to domestic
variables do not a�ect the foreign economy.

Now we use the results for the variances in Appendix E and we calculate the
Welfare Loss using equation 3.53. We use the variance in GDP, in�ation and
interest rate for each shock. The results are in tables 7.1 and 7.2.

M.P. 1 M.P. 2 M.P. 3
Shock Welfare loss
εq 3.5706×10−6 8.1687×10−6 7.9939×10−6

εa 14.837×10−6 15.459×10−6 15.782×10−6

εψ 3.1393×10−6 3.0762×10−6 3.8138×10−6

επF 3.0721×10−6 3.4076×10−6 5.4307×10−6

εf 12.320×10−6 11.816×10−6 8.0799×10−6

Average: 7.3878×10−6 8.3855×10−6 8.2201×10−6

Table 7.1: The welfare loss for the three di�erent monetary policies, when shocks are
applied to the domestic variables .

M.P. 1 M.P. 2 M.P. 3
Shock Welfare loss
εc∗ 0.3656×10−6 0.3799×10−6 0.3693×10−6

εr∗ 0.6733×10−6 0.6658×10−6 0.5286×10−6

επ∗ 0.2142×10−6 0.2226×10−6 0.1457×10−6

εprem 7.4090×10−6 3.6898×10−6 4.7804×10−6

Average: 2.1655×10−6 1.2395×10−6 1.4560×10−6

Table 7.2: The welfare loss for the three di�erent monetary policies, when shocks are
applied to the foreign variables.

For the welfare loss when a shock is applied to the domestic variables we see that
monetary policy 1 is almost always better than the other two. About 10% better
on average. This is what we would have expected since exchange rate intervention
is not expected to be used against shocks in domestic variables.

But in table 7.2, when we have shocks to the foreign variables we see that monetary
polices 2 and 3 are always better in terms of welfare loss, except when there is
a shock to the foreign consumption then all the monetary policies yield similar
results.
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8 Conclusion

When the results are examined we see that the monetary policies that respond
to the real exchange rate fare better in terms of welfare loss. The monetary
policies yield similar results when there is a shock to foreign private consumption.
Monetary policy 3, that responds to both the level of the real exchange rate and
the rate of change of the real exchange rate, yields the least welfare loss when
shocks are applied to the foreign interest rate and to foreign in�ation. The welfare
loss of monetary policy three is 78% and 68% of the welfare loss of monetary policy
1 when responding to foreign in�ation and interest rate shocks. We conclude that
exchange rate intervention reduces welfare loss greatly in response to shocks in
foreign interest rate and foreign in�ation.

We see that a shock to the risk premium has the greatest e�ect, of the foreign
shocks, on the welfare loss. This is in line with Gonzalez and Garcia [2010] where
it was found that risk premium shocks explained most of the variability of the real
exchange rate which has important reallocation e�ects in the short run and they
concluded that more exchange rate intervention is necessary in order to reduce
volatility produced by risk premium shocks.
Monetary policy 2 fares best against the risk premium shocks. The welfare loss
observed using monetary policy 2 is only 50% of the welfare loss when monetary
policy 1 is used, when faced with a positive risk premium shock. We conclude that
exchange rate intervention reduces observed volatility greatly when the domestic
economy faces risk premium shocks.

Net foreign debt is all the foreign debt of the economy minus the foreign assets,
denominated in the domestic currency. When a positive shock is applied to this
variable, so that net foreign debt increases, we can see in table 7.1 that the mone-
tary policies that use exchange rate intervention fare a lot better in terms of welfare
loss. The welfare loss of monetary policy 3 is only around 65% of the welfare loss
of using monetary policy 1 against the same shock. We conclude that in order
to reduce the welfare loss introduced to the economy through foreign assets and
foreign debt volatility, exchange rate intervention is necessary.

61



Note that when the economy is hit by a real exchange rate shock, depreciation,
the welfare loss is around 50% less using monetary policy 1 that the other ones.
When we examine the posterior distributions of the shocks1 we see that the mean
of the real exchange rate shock is -0.0198 when monetary policy 1 is used but
the mean is -0.0495 and -0.0547 for monetary policies 2 and 3, respectively. The
welfare loss is greater for monetary policies 2 and 3 because the domestic in�ation
rises much more than when monetary policy 1 is used. We conclude that exchange
rate intervention only increases the welfare loss when the economy experiences a
depreciation shock because of the e�ect the intervention has on domestic in�ation,
in the short run.

The general conclusion is therefore that small open economies should use exchange
rate intervention instead of letting its currency �oat freely since it is likely to reduce
the welfare loss introduced by external shocks signi�cantly.

Further Extensions

Further extensions could include adding a banking sector to the model. It would
also be possible to add capital and investment. The governments budget constraint
could also be added to account for government expenditures and government in-
vestment. Doing this we might get a look at how the money multiplier works in
the economy, and the �nancial acceleration. This might help us understand the
monetary policy better and the working of the economy in terms of interest rates
and exchange rate interventions.

A housing sector could also be added along with a model of the �nancial market
and the banking sector. Then it could be examined if the central bank should
monitor asset price in�ation along with consumer price in�ation, and the e�ects
of exchange rate intervention on asset prices and in�ation.

1The numerical results for the posterior estimation are in Appendix B.
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Appendix A

We set up the Lagrangian for the households optimizing problem, where we max-
imize utility and the households budget constraint is used as a maximizing con-
straint.

L = Et=0

{
∞∑
t=0

e−βt{U(Ct, Ht)− V (Nt)}

}
(1)

+
∞∑
t=0

λt [Bt+1 +WtNt −RtBt − PtCt]

We begin by di�erentiating with respect to Ct:

δL
δCt

= e−βt
(
(Ct −Ht)

−σ)− λtPt ≡ 0 (2)

Rewriting gives: (
(Ct −Ht)

−σ) = λtPte
βt (3)

Di�erentiating the Lagrangian with respect to Nt gives us:

δL
δNt

= e−βt
(
−Nφ

t

)
+ λtWt ≡ 0 (4)

Rewriting gives:
Nφ
t = λtWte

βt (5)

Solving equations 3 and 5 together gives us:

Wt

Pt
= Nφ

t (Ct −Ht)
σ (6)

Which is the same as equation 3.21.

Now we di�erentiate the Lagrangian, equation 1, with respect to Bt+1:

δL
δBt+1

= λt −Rt+1λt+1 ≡ 0 (7)
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Rewriting gives us:
λt+1Rt+1 = λt (8)

Now we write equation 3 for the period t+ 1:(
(Ct+1 −Ht+1)−σ

)
= λt+1Pt+1e

β(t+1) (9)

Now we insert equations 3 and 9 into equation 8, eliminating λt and λt+1, we get:

((Ct+1 −Ht+1)−σ)

Pt+1eβ(t+1)
Rt+1 =

((Ct −Ht)
−σ)

Pteβt
(10)

We rewrite equation 10 using the fact that Πt+1 = Pt+1

Pt
and we get:

(Ct −Ht)
−σeβ = Et

{
(Ct+1 −Ht+1)−σ

Rt+1

Πt+1

}
(11)

Which is the same as equation 3.22.
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Appendix B

This appendix holds the numerical results of the posterior estimation for the model.
The numerical results for all the structural parameters and all the shocks are
displayed, one set for each monetary policy. For a graphical display of the priors
and posteriors see Appendix C.

Parameters Prior mean Post. mean 95% conf. interval Prior Prior S.D.
h 0.500 0.4716 0.3420 0.6011 beta 0.2000
θ 2.000 1.9618 1.8082 2.1121 gamm 0.1000
η 1.000 1.5822 1.1978 1.9563 gamm 0.3000
φ 1.000 1.4956 0.9235 2.0843 gamma 0.3000
θH 0.500 0.1177 0.0197 0.2021 beta 0.2500
θF 0.500 0.5203 0.4804 0.5608 beta 0.2500
α 0.400 0.8400 0.7705 0.9098 beta 0.2500
µ 0.100 0.0497 0.0261 0.0734 beta 0.2000
η∗ 3.000 3.0657 2.5736 3.5586 gamma 0.3000
α1 0.400 0.6360 0.5640 0.7097 gamma 0.1000
α2 3.000 2.9526 2.7984 3.1139 gamma 0.1000
α3 0.500 0.5526 0.4042 0.6967 gamma 0.1000
ρπ∗ 0.500 0.6076 0.5014 0.7211 beta 0.1000
ρq 0.500 0.6211 0.5185 0.7252 beta 0.1000
ρa 0.500 0.8756 0.8153 0.9392 beta 0.1000
ρc∗ 0.500 0.5949 0.4499 0.7495 beta 0.1000
ρr∗ 0.500 0.7665 0.7012 0.8330 beta 0.1000
ρprem 0.500 0.2298 0.1397 0.3140 beta 0.1000
ρψ 0.500 0.8233 0.7586 0.8897 beta 0.1000
ρf 0.500 0.8181 0.7467 0.8939 beta 0.1000
ρπF 0.500 0.8182 0.7648 0.8706 beta 0.1000

Table 1: Posterior results of the structural parameters using monetary policy 1, equation
3.50.
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Shocks Prior mean Post. mean 95% conf. interval Prior Prior S.D.
επ∗ 0.050 0.0078 0.0064 0.0091 norm 0.0200
εprem 0.050 0.0478 0.0340 0.0625 norm 0.0200
εq -0.050 -0.0198 -0.0289 -0.0099 norm 0.0200
εr∗ 0.050 0.0066 0.0054 0.0078 norm 0.0200
εc∗ -0.050 -0.0198 -0.0245 -0.0152 norm 0.0200
εψ 0.010 0.0270 0.0206 0.0335 norm 0.0100
εa 0.010 0.0393 0.0307 0.0480 norm 0.0100
εpiF 0.010 0.0299 0.0223 0.0378 norm 0.0100
εf 0.050 0.0937 0.0708 0.1168 norm 0.0200

Table 2: Posterior results of the shocks using monetary policy 1, equation 3.50.

Parameters Prior mean Post. mean 95% conf. interval Prior Prior S.D.
h 0.500 0.4607 0.3318 0.5884 beta 0.2000
θ 2.000 1.9604 1.7940 2.1186 gamma 0.1000
η 1.000 1.5958 1.2264 1.9802 gamma 0.3000
φ 1.000 1.4418 0.8552 2.0198 gamma 0.3000
θH 0.500 0.1241 0.0203 0.2148 beta 0.2500
θF 0.500 0.5167 0.4777 0.5576 beta 0.2500
α 0.400 0.8226 0.7398 0.9068 beta 0.2500
µ 0.200 0.0522 0.0250 0.0780 beta 0.2000
η∗ 3.000 3.0564 2.5828 3.5392 gamma 0.3000
α1 0.560 0.6481 0.5807 0.7192 gamma 0.1000
α2 3.030 2.9834 2.8160 3.1458 gamma 0.1000
α3 0.360 0.4562 0.2810 0.6170 gamma 0.1000
α4 0.120 0.0241 0.0000 0.0493 gamma 0.1000
ρπ∗ 0.500 0.6122 0.5073 0.7191 beta 0.1000
ρq 0.500 0.2270 0.1396 0.3145 beta 0.1000
ρa 0.500 0.8811 0.8249 0.9467 beta 0.1000
ρc∗ 0.500 0.6051 0.4622 0.7505 beta 0.1000
ρr∗ 0.500 0.7632 0.6991 0.8312 beta 0.1000
ρprem 0.500 0.6139 0.5107 0.7145 beta 0.1000
ρψ 0.500 0.8314 0.7668 0.8971 beta 0.1000
ρf 0.500 0.8173 0.7460 0.8992 beta 0.1000
ρπF 0.500 0.8168 0.7661 0.8701 beta 0.1000

Table 3: Posterior results of the structural parameters using monetary policy 2, equation
3.51.
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Shocks Prior mean Post. mean 95% conf. interval Prior Prior S.D.
επ∗ 0.050 0.0078 0.0065 0.0092 norm 0.0200
εprem 0.050 0.0199 0.0107 0.0288 norm 0.0200
εq -0.050 -0.0495 -0.0634 -0.0346 norm 0.0200
εr∗ 0.050 0.0066 0.0054 0.0077 norm 0.0200
εc∗ -0.050 -0.0201 -0.0249 -0.0153 norm 0.0200
εψ 0.010 0.0268 0.0203 0.0333 norm 0.0100
εa 0.010 0.0394 0.0307 0.0484 norm 0.0100
επF 0.010 0.0302 0.0231 0.0371 norm 0.0100
εf 0.050 0.0922 0.0690 0.1150 norm 0.0200

Table 4: Posterior results of the shocks using monetary policy 2, equation 3.51.

Parameters Prior mean Post. mean 95% conf. interval Prior Prior S.D.
h 0.500 0.4716 0.3380 0.6056 beta 0.2000
θ 2.000 1.9312 1.7684 2.0932 gamma 0.1000
η 1.000 1.5781 1.2072 1.9563 gamma 0.3000
φ 1.000 1.5067 0.9295 2.0800 gamma 0.3000
θH 0.500 0.0997 0.0123 0.1779 beta 0.2500
θF 0.500 0.5320 0.4968 0.5673 beta 0.2500
α 0.400 0.8185 0.7490 0.8897 beta 0.2500
µ 0.100 0.0450 0.0234 0.0656 beta 0.2000
η∗ 3.000 3.0920 2.5980 3.5795 gamma 0.3000
α1 0.500 0.6421 0.5741 0.7098 gamma 0.1000
α2 2.750 2.7629 2.5986 2.9243 gamma 0.1000
α3 0.300 0.3424 0.1844 0.5004 gamma 0.1000
α4 0.400 0.1953 0.1256 0.2624 gamma 0.1000
α5 0.500 0.3347 0.2551 0.4165 gamma 0.1000
ρπ∗ 0.500 0.5887 0.4825 0.6926 beta 0.1000
ρq 0.500 0.2659 0.1776 0.3574 beta 0.1000
ρa 0.500 0.8781 0.8170 0.9431 beta 0.1000
ρc∗ 0.500 0.6142 0.4729 0.7642 beta 0.1000
ρr∗ 0.500 0.7669 0.7028 0.8340 beta 0.1000
ρprem 0.500 0.6463 0.5536 0.7465 beta 0.1000
ρψ 0.500 0.8302 0.7684 0.8917 beta 0.1000
ρf 0.500 0.7816 0.6933 0.8800 beta 0.1000
ρπF 0.500 0.8368 0.7859 0.8882 beta 0.1000

Table 5: Posterior results of the structural parameters using monetary policy 3, equation
3.52.
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Shocks Prior mean Post. mean 95% conf. interval Prior Prior S.D.
επ∗ 0.050 0.0078 0.0065 0.0091 norm 0.0200
εprem 0.050 0.0244 0.0133 0.0345 norm 0.0200
εq -0.050 -0.0547 -0.0702 -0.0391 norm 0.0200
εr∗ 0.050 -0.0064 -0.0075 -0.0054 norm 0.0200
εc∗ -0.050 -0.0192 -0.0233 -0.0150 norm 0.0200
εψ 0.010 0.0278 0.0214 0.0341 norm 0.0100
εa 0.010 0.0396 0.0308 0.0480 norm 0.0100
επF 0.010 0.0253 0.0196 0.0308 norm 0.0100
εf 0.050 0.0914 0.0671 0.1159 norm 0.0200

Table 6: Posterior results of the shocks using monetary policy 3, equation 3.52.
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Appendix C

This appendix shows graphical results for all the priors and posteriors for all
the shocks and structural parameters, when estimated with the three di�erent
monetary policies. The gray line is the prior, the darker line is the posterior and
the dotted line is the posterior mean.

Figure 1: Priors and posteriors for all the shocks, when monetary policy 1 was used,
equation 3.50.
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Figure 2: Priors and posteriors for the structural parameters, when monetary policy 1
was used, equation 3.50. Figure 1/3.

Figure 3: Priors and posteriors for the structural parameters, when monetary policy 1
was used, equation 3.50. Figure 2/3.
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Figure 4: Priors and posteriors for the structural parameters, when monetary policy 1
was used, equation 3.50. Figure 3/3.

Figure 5: Priors and posteriors for all the shocks, when monetary policy 2 was used,
equation 3.51.
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Figure 6: Priors and posteriors for the structural parameters, when monetary policy 2
was used, equation 3.51. Figure 1/3.

Figure 7: Priors and posteriors for the structural parameters, when monetary policy 2
was used, equation 3.51. Figure 2/3.
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Figure 8: Priors and posteriors for the structural parameters, when monetary policy 2
was used, equation 3.51. Figure 3/3.

Figure 9: Priors and posteriors for all the shocks, when monetary policy 3 was used,
equation 3.52.
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Figure 10: Priors and posteriors for the structural parameters, when monetary policy 3
was used, equation 3.52. Figure 1/3.

Figure 11: Priors and posteriors for the structural parameters, when monetary policy 3
was used, equation 3.52. Figure 2/3.
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Figure 12: Priors and posteriors for the structural parameters, when monetary policy 3
was used, equation 3.52. Figure 3/3.
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Appendix D

This appendix shows all the response function graphs. There are 9 shocks and
they are all applied to the three di�erent monetary policies, which gives a total of
27 graphs. Each graph displaying six to seven response functions. The shocks are
drawn from their posterior distributions, see Appendix B.

Monetary policy 1

Figure 13: Response functions when a shock, εprem, is applied to the risk premium,
premt. Monetary policy 1 is used here, equation 3.50. Figure 1/9.
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Figure 14: Response functions when a shock, εa, is applied to the labor productivity, at.
Monetary policy 1 is used here, equation 3.50. Figure 2/9.

Figure 15: Response functions when a shock, επF , is applied to the in�ation in imported
goods, πF,t. Monetary policy 1 is used here, equation 3.50. Figure 3/9.
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Figure 16: Response functions when a shock, εq, is applied to the real exchange rate, qt.
Monetary policy 1 is used here, equation 3.50. Figure 4/9.

Figure 17: Response functions when a shock, εψ, is applied to the law of one price gap,
ψt. Monetary policy 1 is used here, equation 3.50. Figure 5/9.
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Figure 18: Response functions when a shock, εc∗ , is applied to the foreign private con-
sumption, c∗t . Monetary policy 1 is used here, equation 3.50. Figure 6/9.

Figure 19: Response functions when a shock, εr∗ , is applied to the foreign interest rate,
r∗t . Monetary policy 1 is used here, equation 3.50. Figure 7/9.
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Figure 20: Response functions when a shock, εf , is applied to the net foreign debt, ft.
Monetary policy 1 is used here, equation 3.50. Figure 8/9.

Figure 21: Response functions when a shock, επ∗ , is applied to the foreign in�ation, π∗t .
Monetary policy 1 is used here, equation 3.50. Figure 9/9.
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Monetary policy 2

Figure 22: Response functions when a shock, εprem, is applied to the risk premium,
premt. Monetary policy 2 is used here, equation 3.51. Figure 1/9.

Figure 23: Response functions when a shock, εa, is applied to the labor productivity, at.
Monetary policy 2 is used here, equation 3.51. Figure 2/9.
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Figure 24: Response functions when a shock, επF , is applied to the in�ation in imported
goods, πF,t. Monetary policy 2 is used here, equation 3.51. Figure 3/9.

Figure 25: Response functions when a shock, εq, is applied to the real exchange rate, qt.
Monetary policy 2 is used here, equation 3.51. Figure 4/9.
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Figure 26: Response functions when a shock, εψ, is applied to the law of one price gap,
ψt. Monetary policy 2 is used here, equation 3.51. Figure 5/9.

Figure 27: Response functions when a shock, εc∗ , is applied to the foreign private con-
sumption, c∗t . Monetary policy 2 is used here, equation 3.51. Figure 6/9.
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Figure 28: Response functions when a shock, εr∗ , is applied to the foreign interest rate,
r∗t . Monetary policy 2 is used here, equation 3.51. Figure 7/9.

Figure 29: Response functions when a shock, εf , is applied to the net foreign debt, ft.
Monetary policy 2 is used here, equation 3.51. Figure 8/9.

- 85 -



Figure 30: Response functions when a shock, επ∗ , is applied to the foreign in�ation, π∗t .
Monetary policy 2 is used here, equation 3.51. Figure 9/9.
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Monetary policy 3

Figure 31: Response functions when a shock, εprem, is applied to the risk premium,
premt. Monetary policy 3 is used here, equation 3.52. Figure 1/9.

Figure 32: Response functions when a shock, εa, is applied to the labor productivity, at.
Monetary policy 3 is used here, equation 3.52. Figure 2/9.
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Figure 33: Response functions when a shock, επF , is applied to the in�ation in imported
goods, πF,t. Monetary policy 3 is used here, equation 3.52. Figure 3/9.

Figure 34: Response functions when a shock, εq, is applied to the real exchange rate, qt.
Monetary policy 3 is used here, equation 3.52. Figure 4/9.
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Figure 35: Response functions when a shock, εψ, is applied to the law of one price gap,
ψt. Monetary policy 3 is used here, equation 3.52. Figure 5/9.

Figure 36: Response functions when a shock, εc∗ , is applied to the foreign private con-
sumption, c∗t . Monetary policy 3 is used here, equation 3.52. Figure 6/9.
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Figure 37: Response functions when a shock, εr∗ , is applied to the foreign interest rate,
r∗t . Monetary policy 3 is used here, equation 3.52. Figure 7/9.

Figure 38: Response functions when a shock, εf , is applied to the net foreign debt, ft.
Monetary policy 3 is used here, equation 3.52. Figure 8/9.
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Figure 39: Response functions when a shock, επ∗ , is applied to the foreign in�ation, π∗t .
Monetary policy 3 is used here, equation 3.52. Figure 9/9.
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Appendix E

In this appendix we have the variance of the time series of the observables, for
the 100 period simulated response that was calculated in chapter 6. This is the
variance of the deviation from the steady state, and can be found in tables 7, 8
and 9.
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Parameter Shock Variance Parameter Shock Variance
y εq 6.2733e-07 y εprem 2.2284e-07
π εq 2.6305e-06 π εprem 6.7846e-06
r εq 3.1325e-06 r εprem 2.5644e-06
r∗ εq 0 r∗ εprem 0
q εq 6.2390e-06 q εprem 2.0353e-05
c∗H εq 8.3614e-06 c∗H εprem 3.1642e-06
π∗ εq 0 π∗ εprem 0
c εq 2.4283e-06 c εprem 7.9041e-07
y εa 2.3958e-05 y εψ 5.7971e-06
π εa 2.7844e-06 π εψ 1.6463e-07
r εa 3.6569e-07 r εψ 3.8080e-07
r∗ εa 0 r∗ εψ 0
q εa 9.4569e-07 q εψ 1.0847e-05
c∗H εa 4.0604e-05 c∗H εψ 3.1924e-05
π∗ εa 0 π∗ εψ 0
c εa 1.5928e-05 c εψ 2.1841e-06
y εc∗ 6.6656e-07 y εf 2.3826e-05
π εc∗ 2.7379e-08 π εf 1.6101e-07
r εc∗ 2.4808e-08 r εf 1.2290e-06
r∗ εc∗ 0 r∗ εf 0
q εc∗ 5.2257e-08 q εf 6.8154e-06
c∗H εc∗ 4.7649e-06 c∗H εf 3.5099e-04
π∗ εc∗ 0 π∗ εf 0
c εc∗ 4.4833e-09 c εf 6.1904e-05
y εr∗ 1.9564e-07 y επF 2.0017e-06
π εr∗ 4.1486e-07 π επF 1.3822e-06
r εr∗ 8.0346e-07 r επF 3.4452e-06
r∗ εr∗ 9.9893e-07 r∗ επF 0
q εr∗ 9.9399e-07 q επF 8.1554e-05
c∗H εr∗ 2.5090e-06 c∗H επF 2.6873e-05
π∗ εr∗ 0 π∗ επF 0
c εr∗ 8.1292e-07 c επF 7.4681e-06
y επ∗ 3.9139e-08
π επ∗ 1.5602e-07
r επ∗ 1.9322e-07
r∗ επ∗ 0
q επ∗ 3.7201e-07
c∗H επ∗ 5.1776e-07
π∗ επ∗ 9.3160e-07
c επ∗ 1.5442e-07

Table 7: The variance of the average response functions. The �rst column shows the
observable, the second shows the shock that was applied and the third shows the variance
of the response of the observable to the shock. Here monetary policy 1 was used, equation
3.50.
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Parameter Shock Variance Parameter Shock Variance
y εq 2.3827e-07 y εprem 6.1490e-07
π εq 7.5055e-06 π εprem 2.7611e-06
r εq 2.7207e-06 r εprem 3.1063e-06
r∗ εq 0 r∗ εprem 0
q εq 2.1718e-05 q εprem 6.5495e-06
c∗H εq 3.3870e-06 c∗H εprem 8.2621e-06
π∗ εq 0 π∗ εprem 0
c εq 8.2653e-07 c εprem 2.3194e-06
y εa 2.4878e-05 y εψ 5.6521e-06
π εa 2.9405e-06 π εψ 1.6868e-07
r εa 3.9898e-07 r εψ 4.0720e-07
r∗ εa 0 r∗ εψ 0
q εa 1.0415e-06 q εψ 1.0752e-05
c∗H εa 4.1641e-05 c∗H εψ 3.3773e-05
π∗ εa 0 π∗ εψ 0
c εa 1.6466e-05 c εψ 2.1559e-06
y εc∗ 6.8318e-07 y εf 2.2897e-05
π εc∗ 3.4466e-08 π εf 1.5074e-07
r εc∗ 1.9465e-08 r εf 1.0821e-06
r∗ εc∗ 0 r∗ εf 0
q εc∗ 4.7701e-08 q εf 6.8395e-06
c∗H εc∗ 4.9367e-06 c∗H εf 3.3112e-04
π∗ εc∗ 0 π∗ εf 0
c εc∗ 5.4835e-09 c εf 5.6151e-05
y εr∗ 1.9220e-07 y επF 1.9500e-06
π εr∗ 4.1441e-07 π επF 1.6991e-06
r εr∗ 7.7671e-07 r επF 3.6678e-06
r∗ εr∗ 1.0020e-06 r∗ επF 0
q εr∗ 1.0054e-06 q επF 7.7295e-05
c∗H εr∗ 2.5154e-06 c∗H επF 2.6389e-05
π∗ εr∗ 0 π∗ επF 0
c εr∗ 7.8531e-07 c επF 7.0323e-06
y επ∗ 4.1373e-08
π επ∗ 1.6278e-07
r επ∗ 1.9602e-07
r∗ επ∗ 0
q επ∗ 3.8626e-07
c∗H επ∗ 5.5122e-07
π∗ επ∗ 9.4724e-07
c επ∗ 1.5975e-07

Table 8: The variance of the average response functions. The �rst column shows the
observable, the second shows the shock that was applied and the third shows the variance
of the response of the observable to the shock. Here monetary policy 2 was used, equation
3.51.
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Parameter Shock Variance Parameter Shock Variance
y εq 2.9353e-07 y εprem 1.0284e-06
π εq 7.2481e-06 π εprem 3.3497e-06
r εq 2.9948e-06 r εprem 4.5822e-06
r∗ εq 0 r∗ εprem 0
q εq 2.8619e-05 q εprem 1.1050e-05
c∗H εq 4.0503e-06 c∗H εprem 1.3743e-05
π∗ εq 0 π∗ εprem 0
c εq 1.2745e-06 c εprem 4.5767e-06
y εa 2.4739e-05 y εψ 6.2846e-06
π εa 3.3028e-06 π εψ 4.5613e-07
r εa 5.5009e-07 r εψ 1.0766e-06
r∗ εa 0 r∗ εψ 0
q εa 1.1861e-06 q εψ 1.0168e-05
c∗H εa 3.9010e-05 c∗H εψ 3.7178e-05
π∗ εa 0 π∗ εψ 0
c εa 1.7189e-05 c εψ 2.7089e-06
y εc∗ 6.2923e-07 y εf 1.5662e-05
π εc∗ 5.1434e-08 π εf 1.0206e-07
r εc∗ 1.6654e-08 r εf 7.3407e-07
r∗ εc∗ 0 r∗ εf 0
q εc∗ 4.0947e-08 q εf 5.8437e-06
c∗H εc∗ 4.7164e-06 c∗H εf 2.3243e-04
π∗ εc∗ 0 π∗ εf 0
c εc∗ 5.9968e-09 c εf 4.4747e-05
y εr∗ 1.6452e-07 y επF 2.0069e-06
π εr∗ 3.1423e-07 π επF 3.0522e-06
r εr∗ 6.6104e-07 r επF 6.8757e-06
r∗ εr∗ 9.5435e-07 r∗ επF 0
q εr∗ 1.0449e-06 q επF 6.9013e-05
c∗H εr∗ 2.1546e-06 c∗H επF 2.8103e-05
π∗ εr∗ 0 π∗ επF 0
c εr∗ 7.7323e-07 c επF 7.4655e-06
y επ∗ 2.3606e-08
π επ∗ 1.0850e-07
r επ∗ 1.2722e-07
r∗ επ∗ 0
q επ∗ 3.5147e-07
c∗H επ∗ 3.1777e-07
π∗ επ∗ 9.0516e-07
c επ∗ 1.0658e-07

Table 9: The variance of the average response functions. The �rst column shows the
observable, the second shows the shock that was applied and the third shows the variance
of the response of the observable to the shock. Here monetary policy 3 was used, equation
3.52.
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