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Ágrip

Í ritgerðinni er notuð almenn stýrijafna án nálgunar Markovs til þess að

lýsa tímaháðum flutningi rafeinda um kerfi sem er skilgreint sem endanlegur

fleygbogalagaður vír tengdur við tvær hálf-óendanlegar leiðslur. Hægt er að

þrengja vírinn á einum eða tveimur stöðum. Endanlega skammtavírnum og

leiðslunum með nokkrum orkuborðum er lýst með samfellulíkani. Eiginástönd

vírsins og leiðslanna eru reiknuð í ytra þverstæðu segulsviði. Tengingum

leiðslanna og vírsins er lýst með óstaðbundnum kjarna sem tengir bylgjuföll

hvors kerfis ásamt þjálu tengifalli sem kveikt er á klukkan t=0 til þess að

rannsaka og ræða uppsöfnun hleðslu í vírnum, sveipstrauma um leiðslurnar og

sístæða ástandið sem kerfið nálgast að lokum. Við kynnum hvernig tímaháðu

tenginguna við vinstri leiðsluna má nýta til að vekja merki í vírnum sem nema

má í hægri leiðslunni. Einnig er hægt að halda tengingunum við vinstri og

hægri enda vírsins úr fasa til að líkja eftir skammtafæribandi. Forspennan sett

á kerfið með mismunandi efnamætti leiðslanna, eiginleikar snertanna og áhrif

tíðni á leiðnina eru þættir sem eru kannaðir með og án ytra segulsviðs. Við

tökum eftir hvernig jaðarástönd sköpuð af segulsviðinu taka þátt í dælingu

rafhleðslunnar um kerfið.





Abstract

In this thesis we use a non-Markovian generalized master equation to describe

the time-dependent transport through a “sample system” defined as a parabolic

quantum wire of a finite length coupled to two semi-infinite leads. The sample

may also include one or two embedded quantum point contacts (QPCs). The

quantum wire and the leads with several subbands are described by a continu-

ous model. We calculate the eigenstates of the finite wire and of the leads in an

external perpendicular magnetic field. The coupling between the leads and the

sample are described by a non-local kernel connecting the wave functions from

both sides and by a time-dependent coupling function with a smooth onset at

the initial moment t=0 to investigate and discuss the charge accumulation in

the sample, the transient currents along the leads, and the final steady state.

We see how the time-dependent coupling of the left lead to the system can be

used to generate a signal which is observed in the right lead. We can also keep

the contacts out of phase to model a quantum turnstile. The chemical poten-

tial bias, the character of the contacts, the effects of the driving period, are

examined in the absence and in the presence of the magnetic field. We observe

how the edge states created in the presence of the magnetic field contribute to

the pumped charge.





Always be ready to explain the how s and w hys.
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1

Introduction

Most electronic devices today use semiconductor components for process-

ing electric signals. The study of semiconductor devices and the related

technology is therefore an important branch of physics. These devices

are modeled using quantum mechanics in order to take into account

quantum effects in the restricted geometry. Low-dimensional devices are

structures where the electrons can be confined in one or two dimensions

in order to enhance the control of their density and conduction. When

the electrons are confined in one spatial system dimension or on a long

two-dimensional strip they create a quantum wire. A quantum wire is

an electrically conducting system, in which quantum effects are affecting

transport properties. The electrons can also be confined in all directions

resulting in a quantum dot.

Quantum wires and dots are created from a two-dimensional electron

gas (2DEG) by using lateral confinement potentials in the plane of the

2DEG produced by metal electrodes at some distance from the 2DEG.

A two-dimensional electron gas of high mobility can be formed at an

interface of AlGaAs and GaAs in a semiconductor. The reason why these

semiconductors are chosen is that they have a similar lattice constant

(GaAs - 5.653A and AlGaAs - 5.660A) while the energy gaps between
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1. INTRODUCTION

the conduction and valence band differ. Using the technique of Molecular

Beam Epitaxy (MBE), they are grown on top of each other, with atomic

monolayer precision (see Figure 1.1).

GaAs

    2DEG

 Substrate

AlGaAs:Si

 Cap layer

AlGaAs

Figure 1.1: GaAs/AlGaAs:Si heterostructure used to make a 2DEG.

A layer of GaAs is grown on a substrate, usually made of GaAs.

Then a layer of undoped AlGaAs followed by a layer of Si doped AlGaAs.

The Si atoms act as donors for the 2DEG and the undoped layer acts

as a barrier between the electrons and the donors to minimize electron

scattering by the ionized donors. On top of this another GaAs layer

is grown, called cap layer which keeps the Al from oxidizing. At very

low temperatures, 3D semiconductors are insulating but in 2D system

or a quantum wire there can be a metallic type electronic system. By

doping the AlGaAs-layer with Si-donors, free carriers are introduced (the

conduction electrons move to the GaAs-layer). A triangular potential is

formed at the interface and the conduction electrons are confined by this

potential to a layer of thickness ≈ 10 nm, leading to a quantization of

the electron motion perpendicular to the interface and a free motion in

2
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the x−y plane parallel to the AlGaAs/GaAs interface. The energy levels

have the following form

E = Ea +
~

2m∗ (k2
x + k2

y). (1.1)

In the above equation m∗ is the effective mass of the electron, kx and

ky are the wave-vectors in the plane of the 2DEG and Ea are the elec-

tric quantum levels arising from the confinement in the growth direction.

The effective Bohr radius in GaAs is a∗0 = 9.79 nm. In this approxima-

tion the effect of the surrounding lattice is included in the effective mass

(m∗ = 0.067me for GaAs, and me is the free-electron mass). The static

transport properties of low dimensional systems of this type have been

intensively studied since about 1980, both theoretically and experimen-

tally.

More recently, the time-dependent properties of semiconductor nanos-

tructures and their response to electric pulses become accessible through

transient current measurements and in a pump-and-probe configuration

(1; 2; 3). With these experimental developments theoretical schemes

for the description of time-dependent transport emerged. The methods

include the non-equilibrium Keldysh-Green function formalism (4; 5),

Lippmann-Schwinger formalism (6), and more recently the generalized

master equation (GME) adapted for electronic transport (7; 8). The

non-equilibrium Keldysh-Green function formalism is a useful tool for

first-principles studies of non-equilibrium many-particle systems.

Caroli et al. (9), applied the Keldysh formalism to mesoscopic trans-

port. Starting from a very simple model Hamiltonian they considered

that a description of the system as a whole does not permit the cal-

culation of the current, because tunneling is a non-equilibrium process.

This is one of the reasons for using an effective Hamiltonian of type:

Heff = HL + HR + T ; with HL and HR corresponding to two discon-

nected systems. T is the transfer term which induces transitions of an

3



1. INTRODUCTION

electron between these two systems. The transition probability is calcu-

lated by means of first order time dependent perturbation theory.

They realized that the current can be calculated directly, even at finite

voltage, with the help of the theory of perturbations in non-equilibrium

systems. Within this framework it is also possible to take into account

many-body effects systematically, without any of the difficulties encoun-

tered in the usual tunneling formalism.

Recently, Moldoveanu et al. (10) calculated transient currents from

the non-equilibrium Green-Keldysh formalism for a many-level finite sys-

tem coupled to semiinfinite biased leads. Here, the numerical simulations

are restricted to the steplike coupling of the sample to the leads. The

model allows consideration of more general time-dependent potentials

between the leads and the central region or sample.

In contrast to most of the previous studies they describe a time depen-

dent current through systems with more complex structure than only one

ore two levels. By increasing the system size the shape of the transient

current and the evolution towards the steady state differs significantly

from the single-site oscillatory behavior and depends crucially on the

number of electronic states available in the bias window.

The electron-electron interaction plays an important role in the transient

behavior and the formalism allows the inclusion of Coulomb terms in the

Hamiltonian, but they did not take it into account because the Coulomb

interaction in the Keldysh approach is very complex and requires strong

approximation schemes for the self-energy.

Another method used to describe the conductivity of open systems

is the Lippmann-Schwinger scattering approach. Thorgilsson et al. (11)

demonstrated and elucidated how the embedded quantum dots in a uni-

form perpendicular magnetic field affect the transport characteristics of

the electron wave packet in a quantum wire system. By changing the

embedded potential and the scattering wave function into a momentum-

coordinate representation, they found that the wave packet transmission

4



probability can be obtained using the Lippmann-Schwinger method ex-

tended to the time-domain. They considered embedded antidot and

double-dot systems in an external magnetic field.

The Lippmann-Schwinger formalism and the non-equilibrium Green

functions methods have been used for predicting I/V characteristics of

quantum systems connected to two metal leads. The point is that both

theories are exact in their respective domains: LS is limited to elastic

processes while the NEGF can treat both elastic and inelastic processes.

The quantum master equation approach is an alternative tool for

studying the irreversible dynamics of quantum systems coupled to a

macroscopic environment. Owing to its simple structure, it provides

an intuitive understanding of the system dynamics and has been used in

various fields such as quantum optics (12; 13), solid state physics (14)

and chemical dynamics (15).

The natural theoretical tool for investigating transitions and comput-

ing life times is the reduced density operator (RDO) method which gives

information about the sample in the presence of the leads. The general

strategy goes as follows: 1) One starts with disconnected subsystems,

i.e. a sample S and some particle reservoirs characterized by different

chemical potentials; 2) at an initial instant the sample is coupled to the

reservoirs via a transfer Hamiltonian HT which is time-dependent; 3)

starting from the quantum Liouville equation for the statistical operator

W (t) that describes the total system one performs a partial trace over

the reservoirs and writes down an integro-differential equation for the

reduced density operator (RDO). This equation is called the generalized

Master equation because it contains both diagonal and off-diagonal ele-

ments of RDO. The effect of the reservoirs on the sample is taken into

account through the so-called memory kernel which contains an infinite

sum of time-ordered multiple commutators of the type [HT , [..[HT , ρ]].

Otherwise stated, in its general form the equation for the RDO is non-

Markovian. Usually the effect of the leads is taken into account up

5



1. INTRODUCTION

to the second order in HT , in the kernel of the integro-differential equa-

tion, which at the physical level describes sequential tunneling processes.

There are several versions of the GME method that have been proposed

in the context of quantum transport.

Harbola et al. (16) used the GME to calculate the dynamics of

a quantum system connected to two leads with different chemical po-

tentials using projection operators which project the total many-body

density matrix of the system into the system subspace corresponding to

a fixed number of electrons. Studying the transient and steady-state

transport properties of a coupled quantum dot the authors found that

coherence between the many-body levels can affect the transport prop-

erties of the quantum system.

Gurvitz and Prager (17) were the first to derive a hierarchy of QMEs

which keeps track of the number of electrons transferred from the source

lead to the collector lead. Using this hierarchy they studied the effects

of quantum coherence and Coulomb blockade in steady-state electron

transport in the high bias limit.

Moldoveanu et al. (18) solved the GME using the Crank-Nicolson

algorithm for the time integration. The numerical simulations were per-

formed for a lattice Hamiltonian. They computed the transients proper-

ties associated with each level of a 2D lattice in the presence of a strong

perpendicular magnetic field. The authors presented the analysis of the

electron dynamics in the transient regime and also studied the matrix

elements (population and coherence) of the reduced density operator.

The Coulomb interaction inside the sample was not included in this

work but in another paper (19) they combined the GME method with

the Coulomb interaction. Using three sample models, a short 1D wire

with five sites, but also a larger 2D lattice with 120 sites and a continuous

model (20) they analyzed the dynamics of the electrons starting with the

moment when the leads are coupled to the sample until a steady state is

reached. Because the Fock space increases exponentially with the number

6



of SES it is possible to describe just few electrons in the system (they

have up to 12 SESs in a reduced Fock space). These studies were very

important for understanding the transient regime and the steady-state.

Other important aspects in the time-dependent transport calcula-

tions are quantum pumping and turnstile pumping. A pump is a device

that generates a DC current due to an oscillating input. In the sim-

plest configuration a pump has two leads connected to two reservoirs.

The pump takes particles from one reservoir and transfers them into

the other. A current is produced even if the reservoirs have the same

temperature and chemical potential.

There are experimental realizations of electron pumps in semiconduc-

tor quantum dots using the principle of Coulomb blockade. If the dot is

coupled to the outside world via tunneling point contacts, the charge on

the dot is quantized and transport is inhibited for certain ranges in the

bias as a result of the high energy cost of adding an extra electron to the

dot.

The first experiment on electron pumping in single electron devices

was performed by Pothier et al. (21). They constructed an electron

pump operating at low frequency and with a reversible pumping di-

rection. The pump consists of three tunnel junctions in the Coulomb

blockade regime and works through a mechanism that closely resembles

a peristaltic pump: charge is pumped through the junctions from the left

to the right, electron-by-electron as the voltage U1 ∝ sin(ωt) of the left

dot reaches its minima and maxima before the voltage U2 ∝ sin(ωt− φ)

of the right one. The pumping direction can be reversed by reversing the

phase difference φ of the two gate voltages.

Adiabatic quantum pumping in mesoscopic noninteracting open quan-

tum dots was investigated theoretically by Brouwer (22) by means of a

scattering approach. He demonstrated that the pumping current is pro-

portional to the driving frequency and shows large mesoscopic fluctua-

tions.

7



1. INTRODUCTION

Torres (23), studied quantum charge pumping in a system with a

single time-periodic parameter where the pump consists of a ring con-

nected to two leads and containing a subsystem embedded in one of its

arms. He showed that a pumped current proportional to the square of

the driving frequency appears as a result of the combined effect of spatial

interference through the ring and photon-assisted tunneling.

In another paper, Cota et al. (24), proposed and analyzed a new

scheme of realizing both spin filtering and spin pumping by using a dou-

ble quantum dot, with the time-dependent gate voltages in the presence

of a magnetic field including electron-electron interaction. The results

demonstrated that the width in frequency of the spin-up pumped current

gives information about spin decoherence in the quantum dot.

On the another hand, a turnstile pump is a single-electron device

where the sample is periodically connected and disconnected with the

left and right lead respectively, but with a relative phase shift. This

setup is different from a quantum pump where a current is generated by

asymmetric external oscillations, but without a bias. It was experimen-

tally created by Kouwenhoven et al. (25) by modulating in time the two

tunneling barriers between a quantum dot and two leads. The electrons

were driven by a finite bias between the leads.

In a recent publication, Moldoveanu et al. (26) investigated the mod-

ulation of the drain current when a sequence of square pulses is applied

to the source probe connected to a quantum dot and a short quantum

wire described within lattice model. This model set-up is close to the

experiments by Naser et al. and Lai et al. A characteristic of this kind

of experiments is that the chemical potentials of the leads are such that

the first excited state is above the bias window, while the ground state

is embedded in it. Obviously, the current in the leads cannot capture all

the details of the dynamics of electrons in the sample.

Considering all of these, the aim of this thesis is to investigate the

time-dependent transport in mesoscopic structures by solving the GME

8



without using the Markov approximation and we propose an implemen-

tation of the generalized master equation which allows us to take into ac-

count the geometry of the sample. The results are obtained using a pure

finite quantum wire with parabolic confinement and a wire with an em-

bedded constriction (a potential barrier). The quantum wire considered

has a complex structure. We start from the single-particle Hamiltonian

of a two-dimensional wire of length Lx parabolically confined along the y

direction and with hard-wall conditions at ±Lx/2. We put a special effort

on describing the lead-sample contacts which are opened and closed pe-

riodically by simulating rectangular pulses on metallic strip gates which

define the contact region. The calculations can be performed, both in

the absence and in the presence of the magnetic field.

9
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2

Description of the central

system

In this chapter we analyze a physical system which consists of two el-

ements: A, a finite quantum wire and B, two semi-infinite leads. The

system is depicted on Figure 2.1. We are interested in what happens in

A which is much smaller than part B. Subsystem B is important for the

injection (extraction) of electrons in subsystem A, and the A-B interac-

tion affects the evolution of A. Actually, B is a reservoir (27; 28), and

plays the role of an environment which is defined by external factors.

All of this is important in the context of quantum information theory

(29; 30), when the relevant subsystem is influenced by the surroundings.

C2C1

Left lead Right lead

S
RL

Sample

Figure 2.1: A schematic view of the sample to the leads.
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2. DESCRIPTION OF THE CENTRAL SYSTEM

2.1 Finite isolated quantum wire in magnetic field

The electronic states in an infinitely long wire with parabolic lateral

confinement or lateral hard walls can be calculated analytically. This

is no longer possible if the wire is finite in length and in a constant

magnetic field, perpendicular to the wire. This kind of system can not

be solved analytically but we can find the eigenvalues and eigenvectors

of the corresponding Hamiltonian numerically.

We consider an isolated finite quantum wire, extended in the x-

direction. The width of the wire is defined by a parabolic confinement

potential in the y-direction with the characteristic energy ~Ω0 = 1.0

meV. The quantum wire is terminated at ±Lx/2 with hard wall poten-

tials as shown in Figure 2.2. This is the subsystem A, which we will also

call the “sample”.

Figure 2.2: A finite length wire in a constant magnetic field.

The Hamiltonian of the sample in a magnetic field is defined as follows

HS = H0 + Vconf (y), (2.1)

where H0 describes a particle moving in two dimensions under the ac-

tion of a constant magnetic field and Vconf (y) is the lateral confinement

12
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2.1 Finite isolated quantum wire in magnetic field

potential.

2.1.1 Confinement potential

To describe the confinement potential we use a harmonic oscillator po-

tential

Vconf (y) =
1

2
m∗Ω2

0y
2. (2.2)

This confinement in vanishing external magnetic field gives “rise” to

eigenstates ψS
a (x, y) that are solutions to the eigenvalue equation, (a

indicates a quantum number of the system)

[

− ~2

2m∗

(
d2

dx2
+

d2

dy2

)

+ Vconf (y)

]

ψS
a (x, y) = Eaψ

S
a (x, y), (2.3)

where Ea are the eigenvalues of HS .

In the presence of a magnetic field oriented along the z direction,

B(r) = Bez, we chose the vector potential in the Landau gauge, A(r)

= (−By, 0, 0), and obtain

HS =
1

2m∗

[(

px − e

c
By

)2
+ p2

y + Ω2
0y

2

]

. (2.4)

A more convenient form of HS can be obtained with the help of the

following notations

Ω2
w = Ω2

0 + Ω2
c Ω2

c =

(
eB

m∗c

)2

l2 =
~c

eB
=

~c

m∗Ωc
aw =

√

~

m∗Ωw
, (2.5)

13



2. DESCRIPTION OF THE CENTRAL SYSTEM

where the constant l is called the magnetic length and aw has the di-

mension of length. Then we can write

HS =
1

2m∗ p2
x

︸ ︷︷ ︸

Hx

+

[
1

2m∗ p2
y +

1

2
m∗Ω2

wy2

]

︸ ︷︷ ︸

Hy

+
~c

m∗l2
pxy

︸ ︷︷ ︸

Hx,y

. (2.6)

In fact, our system consists of an infinite potential well in the x direction,

a harmonic oscillator with frequency Ωω in the y direction and a coupling

in the x and y direction proportional to pxy.

We write the eigenstates of the Hamiltonian HS , |α), as a linear com-

bination of the vectors in the complete orthonormal basis |α〉 consisting

of the eigenstates of the Hamiltonian Hx + Hy, i.e. the product of the

eigenstates of Hx and the eigenstates Hy, |α〉 = |nxny〉. Thus

|α) =
∑

β

|β〉〈β|α〉 =
∑

β

Cβα|β〉. (2.7)

The eigenvalue equation

HS |α) = ǫα|α) (2.8)

is then solved by projecting it on the |β〉-basis and using the expansion

(2.7) for the eigenstates |α) resulting in

∑

γ

Cγα {Eγδβγ + 〈β|Hxy|γ〉} = ǫαCβα (2.9)

We know that without Hxy the problem is separable

Enxny = Ex
nx

+ Ey
ny

. (2.10)

Hx is the Hamiltonian for an infinite square well, and thus

14



2.1 Finite isolated quantum wire in magnetic field

Ex
nx

= ~Ωω
a2

ω

L2
x

n2
xπ2

2
. (2.11)

Hy is the Hamiltonian for an harmonic oscillator, so

Ey
ny

=

(

ny +
1

2

)

~Ωω, ny = 0, 1, 2, ..., . (2.12)

Combining these, we have

Enxny = ~Ωω

[

ny +
1

2
+

a2
ω

L2
x

n2
xπ2

2

]

. (2.13)

The energy spectrum ǫα and the states |α) are found by diagonalizing the

set of coupled linear eigenvalue equation (2.9) afther the matrix elements

of Hxy are evaluated analytically.

2.1.2 Embedded subsystem

To study the effects of the geometry of the sample we include an embed-

ded subsystem. The new Hamiltonian of the sample becomes

HS → HS + W (x, y), (2.14)

with W (x, y) a combination of Gaussian potentials. It is sufficient for us

to show the method of solution for one such potential

W (x, y) = V e[−βx,1(x−x1)]
2−[βy,1(y−y1)]2 , (2.15)

where V is the strength of the potential, while (x1, y1) and β(x,y),1 con-

trol the location and the range of the potential. In Figure 2.3(a,b), for
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2. DESCRIPTION OF THE CENTRAL SYSTEM

the positive potential (V = 3 meV) we would expect to see an antidot

and respectively a dot if the potential is negative (V = −3 meV).

On the other hand, by varying the parameters x1, y1, we have the possi-

bility to change the placement of the Gauss potential as shown in Figure

2.3(c, d) for x1 = 250 nm and y1 = 20 nm.

The matrix elements of W (x, y) are evaluated in appendix A.2.
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Figure 2.3: The potential of a quantum wire with an embedded subsys-

tem. Lx = 900 nm.

2.1.3 Properties of eigenstates

Pure finite quantum wire in vanishing external magnetic field

Before describing the transport formalism for the system we need to

investigate the equilibrium properties of the disconnected subsystems,

the semi-infinite leads and the finite quantum wire.
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2.1 Finite isolated quantum wire in magnetic field

The eigenvalues of the system are shown in Figure 2.4.
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m
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a
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4 5

B=0T

Figure 2.4: The energy spectrum of the pure isolated quantum wire for

vanishing external magnetic field. Lx = 900 nm. The horizontal axis a

shows the index of the state in an increasing energy order.

The position of the arrows indicates the eigenstates for which we plot

the probability density in Figure 2.5. In the lowest part of the energy

spectrum one can distinguish subband created by the oscillator states.

The states 1, 2 and 4, are situated in the lowest subband and the state

5 in the next subband; therefore the probability densities for the states

1, 2 and 4, have one maxima in the y direction, while the probability

density for the state 5 has two maxima.

Constant external magnetic field

In Figure 2.6 we plotted the energy spectra of the pure wire without

and with magnetic field. For a= 1 we see how the magnetic field has very

little effect compared to the previous case. By increasing the energy, for

a = 8, we obtain an edge state. For a = 12, we have a similar situation

as before for a =5: the probability is concentrated in the bulk of the wire

and with a split maximum.

Constant magnetic field and embedded potential well-or hill

As we would expect, a potential well described by a Gauss potential

reduces the energy values while the positive Gauss potential raises them.
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2. DESCRIPTION OF THE CENTRAL SYSTEM
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Figure 2.5: The probability density of the single-electron eigenstates of

the pure wire for vanishing external magnetic field. Lx = 900 nm.
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Figure 2.6: The energy spectrum of the pure wire for B = 1 T in com-

parison with B = 0 T. Lx = 900 nm.
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2.1 Finite isolated quantum wire in magnetic field
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Figure 2.7: The probability density of the single-electron eigenstates of

the pure wire for B = 1 T. Lx = 900 nm.
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Figure 2.8: The energy spectra of the finite quantum wire with an em-

bedded Gaussian well for B = 1 T and V = ±3 meV. Lx = 900 nm.
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2. DESCRIPTION OF THE CENTRAL SYSTEM

This is shown in Figure 2.8.

We note that the energy of the 1st state is negative for V = −3 meV.

In Figure 2.9 we remark that for a = 1, the negative potential traps the

electron, while a positive potential splits the electron localization in two

distinct peaks. For a = 3, for a negative potential, the electron is drawn

to the center, but in the last case (V = 3 meV), two distinct circular

orbits are created.

a=1; V=-3meV
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Figure 2.9: The probability density of the single-electron eigenstates of

the finite quantum wire with an embedded well (left) or hill (right) for

B = 1 T and V = ±3 meV. Lx = 900 nm.
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3

Generalized Master Equation

formalism

3.1 Coupled system

In this section we introduce the Hamiltonian of the total system consist-

ing of the leads and the sample. To make the connection between the

sample and the leads we define a transfer Hamiltonian. Such a trans-

fer Hamiltonian was introduced in the early days of electronic quantum

transport and discussed in a series of papers (31; 32; 33). The trans-

fer Hamiltonian has also been used within the non-equilibrium Green-

Keldysh transport formalism. Usually the wide-band limit approxima-

tion was assumed and the energy dependence of the coupling coefficients

was neglected (34).

3.1.1 Modeling the contacts

We consider three subsystems: the two semi-infinite leads l = L, R (left

and right), and the central sample which is a finite two dimensional wire

in xy-plane. In the y-direction the electrons in the sample are paraboli-

cally confined with the characteristic energy ~Ω0, but in the x-direction
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3. GENERALIZED MASTER EQUATION FORMALISM

they are confined by hard walls at x = ±Lx/2. The effective width of

our typical sample is about 4 − 5 times smaller than the length.

We denote by ψS
a (r) and Ea the eigenfunctions and eigenvalues of the

single-particle Hamiltonian HS where a indicates the two quantum num-

bers of the system, nS
x and nS

y . The reservoirs have different chemical

potentials. The single-electron Hamiltonian of the left and the right leads

is noted by HL or HR, respectively. Their eigenfunctions are ψL,R
q (r) and

the eigenvalues are ǫL,R(q), where q stands both for a continuous wave

number and a discrete subband number nL,R
y defined by the parabolic

confinement in the y direction.

The single particle Hamiltonian of the disconnected system is

H0 = HL + HR + HS , (3.1)

where HS is

HS =
p2

2m∗ +
1

2
m∗Ω2

0y
2 + W (r), (3.2)

with W (r) representing an embedded subsystem in the wire.

Our method can be implemented both for continuous or discrete mod-

els. Here we shall present only the continuous case.

Using the eigenstates corresponding to the isolated sample and leads

we write the Hamiltonians of the disconnected subsystems as

HS =
∑

a

Ea|ψS
a 〉〈ψS

a |, HL,R =
∑

q

ǫL,R(q)|ψl
q〉〈ψl

q|. (3.3)

In order to describe the coupling between the two subsystems we add a

perturbation to H0. The single-particle form of the transfer Hamiltonian

can be written as

22



3.1 Coupled system

HT (t) =
∑

l=L,R

∑

a

∑

q

χl(t)(T
l
qa|ψS

a 〉〈ψl
q| + h.c). (3.4)

The time-dependent part of the coupling is controlled by the switching

functions χl(t), with l = L, R. At t=t0 the sample and the leads are

disconnected, i.e. χl(t = t0)=0, and they are gradually coupled for

t > t0, i.e. χl(t > t0)>0, and χl(t → ∞)=1, if we wish to keep the

subsystem coupled ever after.

Now, because we have an open system with variable number of par-

ticles (recall that the semi-infinite leads simulate particle reservoirs) it

is natural to use a many-particle Hamiltonian, although we shall com-

pletely neglect the Coulomb interaction for the electrons in the central

system and the leads. The many-body formalism allows us to account for

electron correlations in the central system imposed on it by the coupling

to the leads. According to the general rules of second quantization (35)

a basis in the Fock space F of the coupled system can be constructed

starting from the eigenfunctions ψS
a (x, y) and ψL,R

q (x, y). One defines

creation and destruction operators for electrons in the leads c†ql (cql) and

in the sample d†a (da). Then the second-quantized total Hamiltonian

reads as follows

H(t) =
∑

a

Ead
†
ada +

∑

q,l=L,R

ǫl(q)c†qlcql + HT (t), (3.5)

where the tunneling Hamiltonian HT (t) = HL
T (t) + HR

T (t) describes the

coupling of the system to the left and right leads

H l
T (t) = χl(t)

∑

q,a

{

T l
qac

†
qlda + (T l

qa)
∗d†acql

}

. (3.6)

The coefficients T l
qa following from Equation (3.3) could have the form

T l
qa ∼ [ψl

q(±Lx/2)]∗[ψS
a (±Lx/2)]. (3.7)
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3. GENERALIZED MASTER EQUATION FORMALISM

Rigorously speaking the states in the isolated sample and leads vanish

at the boundaries ±Lx/2, such that according to the definition (3.7),

T l
qa=0.

Therefore we shall adopt a phenomenological assumption (ansatz) that

the transfer coefficients are in fact given by a non-local overlap of a pair

of eigenstates (ψS
a , ψl

q) on a domain Ωl
S×Ωl defining the contact between

the sample and the l-th lead. The coupling strength tensor T l
qa is thus

modeled as

T l
qa =

∫

Ωl
S
×Ωl

drdr′
(

ψl
q(r

′)
)∗

ψS
a (r)gl

aq(r, r
′) + h.c. (3.8)

We chose the integration domains for the leads as

ΩL =

{

(x, y)|
[

−Lx

2
− 2aw,−Lx

2

]

× [−3aw, +3aw]

}

,

ΩR =

{

(x, y)|
[

+
Lx

2
, +

Lx

2
+ 2aw

]

× [−3aw, +3aw]

}

, (3.9)

and for the sample

ΩL
S =

{

(x, y)|
[

−Lx

2
,−Lx

2
+ 2aw

]

× [−3aw, +3aw]

}

,

ΩR
S =

{

(x, y)|
[

+
Lx

2
− 2aw, +

Lx

2

]

× [−3aw, +3aw]

}

. (3.10)

In Equation (3.8) the function

gl
aq(r, r

′) = gl
0 exp

[

−δl
1(x − x′)2 − δl

2(y − y′)2
]

exp

(−|Ea − ǫl(q)|
∆l

E

)

,

(3.11)

with r ∈ Ωl
S and r′ ∈ Ωl defines the coupling of any two single-electron

states by the ‘nonlocal overlap’ of their wave functions in the contact

region of the leads and the sample. The parameters δl
1 and δl

2 define the

spatial range of the coupling within the chosen domains Ωl
S × Ωl.
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3.1 Coupled system

3.1.2 Reduced Density Operator

After introducing the second quantized Hamiltonian H(t) we now define

the statistical operator of the whole quantum system as the solution of

the Liouville equation

i~Ẇ (t) = [H(t), W (t)], W (t < t0) = ρLρRρS , (3.12)

where ρS is the density operator of the isolated sample (at t < t0) and

ρL,R are the density operators of the disconnected lead l = L, R

ρl =
e−

1

kT
(Hl−µlNl)

Trl{e−
1

kT
(Hl−µlNl)}

(3.13)

In the above equation µl and Nl are the chemical potential and the

occupation number operator of the lead l.

The RDO is defined as the (partial) trace on the Fock space of the

leads

ρ(t) = TrLTrRW (t), ρ(t0) = ρS . (3.14)

To find the matrix elements of ρ(t) with respect to a basis in the Fock

space FS of the sample we compute conditional reduced operators acting

in different n-particle sectors of the Fock space. Li et al. (36) proposed

a factorization for the full density matrix (ρ(t) =
∑

n ρ(n)⊗ρleads) which

generalizes the usual Born-Markov approximation. In our approach, we

do not impose an equilibrium state on the leads after the coupling is

switched on, which would mean to take W (t) = ρLρRρ(t). We will use

an occupation number basis constructed from the single electron states

(SESs) of the isolated finite quantum wire {ψS
a }. The many electron

state (MES) µ reads as follow

|µ〉 = |iµ1 , iµ2 , . . . , iµn, . . . 〉, (3.15)
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3. GENERALIZED MASTER EQUATION FORMALISM

where the number iµn indicates if the n-th single particle state is occupied

(iµn = 1) or empty (iµn = 0). The corresponding energy of the noninter-

acting many-body state is represented by Eµ and is given by the sum

of the occupied single-particle levels, Eµ =
∑

a Eai
µ
a . If the central re-

gion contains N ∼ 20 electrons the size of the reduced density matrix

becomes very large and for N ∼ 50 it seems quite impossible to compute

the entire matrix, even within the Markov approximation. We consider

that the number of MESs that are relevant to the transport problem can

actually be much smaller, and at low temperatures it is controlled by the

bias applied to the leads. In the present model the bias is included as the

difference between the chemical potentials of the leads i.e. eV = µL−µR,

a procedure which is also used in the Keldysh formulation of electronic

transport (37; 38). We assume now that at an initial instant t0 the den-

sity operator of the central region is such that the first N0 single-particle

states are occupied and all the higher states are empty, that is

ρ(t0) = |µ0〉〈µ0|, |µ0〉 = | 1, 1, ....1
︸ ︷︷ ︸

N0 states

, 0, 0, .....〉 (3.16)

where µ0 is just the label of the selected many-body state. When the

leads are connected to the central region the following situation is ex-

pected: 1) The lowest N0 levels remain occupied and will not contribute

to transport. 2) We assume that electrons tunnel through the dot only

via the levels located in the energy range [µR − δ, µL + δ]. 3) In the tran-

sient regime the occupation numbers of these states will depend on time

and will eventually settle down in a steady-state regime. Taking into

account all of these it is clear that there are only (Nmax − N0) single-

particle states which are active in the transport process and consequently

it is sufficient to compute only the matrix elements of the RDO for the

N = 2Nmax−N0 many-body states having the following form

|µ〉 = | 1, 1, ....1
︸ ︷︷ ︸

N0 states

, iµN0+1, ...., i
µ
Nmax

, 0, 0, .....〉 (3.17)
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3.2 Time evolution
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Figure 3.1: The initial configuration in the many-level quantum dot for

a given pair of chemical potentials on the leads µL, µR and a ’gap’ δ. The

occupied levels are marked by thick lines.

This assumption of us about relatively few active transport states

has to be numerically investigated for each particular model of interest.

3.2 Time evolution

3.2.1 Derivation of GME

By using using the superoperator method developed by Haake (39) and

the notation U(t) = e(HS+Hleads)/i~ for the unitary propagator associated

to the disconnected system we obtain the following GME for the reduced

density operator up to second order in the tunneling Hamiltonian in the

kernel of the integro-differential equation

ρ̇(t) = − i

~
[HS, ρ(t)]

− 1

~2

∑

l=L,R

∫

dq χl(t)([Tl, Ωql(t)] + h.c.), (3.18)
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3. GENERALIZED MASTER EQUATION FORMALISM

where we have introduced two operators to compactify the notation

Ωql(t) = U †
S(t)

∫ t

t0

ds χl(s)Πql(s)e
i((s−t)/~)εl(q)US(t),

Πql(s) = US(s)
(

T
†
l ρ(s)(1 − fl) − ρ(s)T†

l fl

)

U †
S(s),

and a scattering operator T acting in the many-electron Fock space of

the system

Tl(q) =
∑

α,β

T
l
αβ(q)|α〉〈β| ,

T
l
αβ(q) =

∑

a

T l
aq〈α|d†a|β〉 . (3.19)

Tl
αβ(q) describes the ‘absorption’ of electrons from the leads to the system

and changes the many-electron state of the latter from β → α. The

Fermi function of the SES labelled by q ↔ (nl
yq) in lead l is noted by

fl (ǫ(q)) = {exp[ǫ(q) − µl]/kT + 1}−1.

More details about the derivation of GME are given in Appendix A.

3.2.2 Observables

With the RDO it is now possible to compute the statistical average of

the charge operator in the coupled sample QS = e
∑

n d†ndn

〈QS(t)〉 = Tr{W (t)QS} = TrS{[TrLRW (t)]QS}
= TrS{ρ(t)QS} = e

∑

a,µ

iµa 〈µ|ρ(t)|µ〉, (3.20)

with the traces assumed over the Fock space. We are also interested in

the average spatial distribution of the time-dependent charge

〈QS(r, t)〉 = e
∑

ab

∑

µν

Ψ∗
a(r)Ψb(r)ρµν(t)〈ν|d†adb|µ〉. (3.21)
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3.2 Time evolution

Then we define the net currents in the leads as follows JL(t) = −dQL

dt

and JR(t) = dQR

dt . We therefore have JL > 0 if the electrons flow from

the left lead towards the sample and JR > 0 if they flow from the sample

towards the right lead. It is more convenient to consider positive the

currents flowing from left to right at both contacts and negative if the

flow from right to left. Therefore in the following we will define JR(t) =

−dQR

dt . In the transient regime the sign of the net currents can change.

The continuity equation reads

J(t) = JL(t) − JR(t) =
d〈QS(t)〉

dt

=
∑

n

∑

ν

iνn 〈µ|ρ̇(t)|µ〉 . (3.22)

In the steady state, i.e. for (t → ∞) the charge in the sample QS(t) is

constant and thus J(t) = 0. This means the current entering the sample

equals the current exiting the sample, JL(t) = JR(t).

Through the GME (3.18) it is possible to identify the contribution

of each SES in the system to the current from the left lead or into the

right lead.
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4

Time Dependent Transport

4.1 Transient and steady states

In order to describe the gradual coupling of the leads to the sample (with

the length Lx = 900 nm) we use specific coupling functions χl(t), with

l = L, R. Initially, the coupling of both leads is defined by χl(t) =

1 − 2/(eγt + 1), where the parameter γ = 1.0 ps−1 defines the smooth-

ness of the coupling. The parameters determining the coupling of the

subsystems in the function gl
aq (equation 3.8, and 3.11 ) are: δ1a

2
w = 1.0,

and δ2a
2
w = 2.0. For the numerical coupling constant gl

0, we select the

value g0a
3/2
w = 926.0 meV for both leads. The unusual dimension of the

numerical coupling constant comes from the fact that the x part of the

wave function in the leads is only δ-normalizable. The effective coupling

of the states in the leads and the central sample are much “smaller” since

the contact areas are only a small fraction of the total area of the cen-

tral system. In the next two subsections of this chapter we focus our

attention on the effects of these parameters.

Later, when we will investigate turnstile pumping we shall introduce

an alternative form for χl(t).
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4. TIME DEPENDENT TRANSPORT

4.1.1 Pure finite quantum wire

To explore the properties of the system we study the time-dependent

transport of electrons through it. The energy spectrum of the leads and

of the sample are shown in Figure 4.1. The maximum energy for each

subband shown in the graph indicates the corresponding maximum wave

vector in the qaw-integration of the GME. The chemical potentials in

the leads defining the bias window (BW) are shown with the dotted

horizontal lines. We consider µL = 1.0 meV and µR = 0.85 meV with

the limits µR − ∆ and µL + ∆ with ∆ = 0.15 meV defining the window

of relevant states around the applied bias eVbias = µL − µR = 0.15

meV. The states with energies below µR − ∆ will be considered totally

and permanently occupied and the states with energies above µL + ∆

will be considered totally empty. The states with energy in the interval

[µR − ∆, µL + ∆] will be considered active in transport.

In the present example the active window contains 4 SESs while the bias

window includes 1 SES.
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Figure 4.1: The energy spectrum of the leads vs. the scaled wave vector

qaw (red). The subband index is n = 0, 1. The energy spectrum of the

isolated sample (Lx = 900 nm) with crosses. With horizontal narrow

dotted lines (green) the chemical potentials µL = 1.0 meV and µR = 0.85

meV and with horizontal wide dashed lines the limits µR −∆ and µL + ∆

with ∆ = 0.15 meV, B = 0 T.
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4.1 Transient and steady states

In Figure 4.2 we display both currents in the leads: the current en-

tering the system from the left lead, and the current exiting the system

into the right lead, when the system is initially empty and also when it

contains one electron. We see that in the case of the initially empty sys-

tem, the current in the right lead, is negative meaning that it is directed

into the system for t < 60 ps. When the system is initially occupied by

one electron, in the lowest active state a = 6, we see fluctuations in the

right current for t < 20 ps before it turns positive when a net current is

flowing through the system (since there are two states below µR).
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Figure 4.2: The total current from the left lead, and the total current

from the right lead for an initially empty system and a system with one

electron initially in equilibrium. Lx = 900 nm, B = 0 T.

The time-dependent occupation of each sample state included in the

calculation is shown in Figure 4.3; we also indicate the functions χl(t).

The states are 6, 7, 8, 9 in the order of increasing energy shown with

crosses in Figure 4.1. We note that some of the higher SESs seem to

reach a steady state fast, while the ones lower in energy are still increasing

their occupation at times as large as 120 ps. This happens because the

higher lying states are stronger coupled to states in the leads and they

can conduct faster. We see that in case of one electron initially in the

system there is a finite but small probability for the electron to get out

of the system, even though it has energy below the actual bias window.
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4. TIME DEPENDENT TRANSPORT
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Figure 4.3: The time dependent occupation of the relevant SESs for an

initially empty system (a), and for a system occupied with initially one

electron (b). The time coupling functions χl(t), with l = L,R, are shown

for reference (wide dashed black curves). Lx = 900 nm, B = 0 T.
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Figure 4.4: The average spatial charge distribution for the MES con-

structed from the four relevant SESs in the quantum wire, at different

time moments. The system is initially empty. Lx = 900 nm, B = 0 T.
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4.1 Transient and steady states

As expected, the system looses the electron occupying the SES, a=7,

(this state is situated below µR).

Using the reduced density operator we calculate the average spatial

charge distribution of the MES in the finite quantum wire at any instant

of time. In Figure 4.4 we show it for different times. Soon after the

coupling of the system to the leads (t = 5.3 ps), the probability density

increases from both sides of the wire. When the system reaches a steady

state (t = 182.3 ps), we see that the coupling to the leads maintains a

higher probability at the ends of the finite wire.

4.1.2 Quantum Point Contacts

One Quantum Point Contact (QPC)

Now, because we want to explore the effects of the geometry of the

system on the transport, we introduce a QPC into the finite quantum

wire. Geometrically a quantum point contact is a constriction that can

be simulated by two Gaussian potentials as long as we are describing

electrons in a finite energy range

W (x, y) = V1e
[−βx,1(x−x1)]2−[βy,1(y−y1)]2 + V2e

[−βx,2(x−x2)]
2−[βy,2(y−y2)]2 ,

(4.1)

with the parameters V1 = V2 = ±6.5 meV and βx = βy = 0.03 nm−1.

The contour of the potential defining this system can be seen in Figure

4.5.

In Figure 4.6, the energy spectrum of the SES is shown for a QPC for

the potential given by equation (4.1) and compared to the case for a pure

wire. We select the chemical potentials in each lead and the extended

bias window in a such way to include the same SESs like in the case for

a pure wire.
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Figure 4.5: The potential for a quantum wire with a single Quantum

Point Contact. Lx = 900 nm, B = 0 T.
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Figure 4.6: The energy spectrum of the isolated sample with a QPC (Lx

= 900 nm). With horizontal narrow dashed lines the chemical potentials

µL = 1.06 meV and µR = 0.86 meV and with horizontal wide dashed lines

the limits µR − ∆ and µL + ∆ with ∆ = 0.1 meV.
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4.1 Transient and steady states

We show also the currents from the left and right lead, corresponding

to these states in Figures 4.8 and 4.9.
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Figure 4.7: The total current from the left lead, and the total current

from the right lead for an initially empty system. The system contains

One QPC respectively no QPC. Lx = 900 nm.
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Figure 4.8: The partial current from the left lead (a) respectively from

the right lead (b) for an initially empty system. The system contains no

QPC. Lx = 900 nm.

When we have a QPC (Figure 4.9), the current into the state with

the lowest energy, a=6, reaches a steady state after a long time relatively

to other states because the coupling between the wire and the leads is

stronger for these higher states as shown in Figure 4.12.

We look at the charge distribution, for the system which contains a
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Figure 4.9: The partial current from the left lead (a) respectively from

the right lead (b) for an initially empty system. The system contains one

QPC. Lx = 900 nm.

QPC (V1 = V2 = 6.5 meV), before and after the system has reached a

steady state (Figure 4.10). Soon after the initial coupling (t = 5.3 ps),

we see electron probability seeping in from both contact regions, though

more from the higher bias region at the left. In the steady state regime

(t = 197.5 ps), the electrons have a higher probability to be found around

the constriction.
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Figure 4.10: The average spatial charge distribution for the system em-

bedded with a QPC, at different time moments. The system is initially

empty. Lx = 900 nm.

In Figure 4.11, for a double dot cavity (V1 = V2 = −6.5 meV), at
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4.1 Transient and steady states

t = 5.3 ps, we see the charge seeping into the system from both contact

regions, like before, but now no extra probability is seen close to the

constriction. The steady state attained in the end (t = 197.5 ps) is a

mixed state with contribution from all of the available SESs, and the

coupling to the leads maintains a higher probability at the ends of the

finite wire.
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Figure 4.11: The average spatial charge distribution for the system em-

bedded with a double dot cavity, at different time moments. The system

is initially empty. Lx = 900 nm.

It is interesting to view in Figure 4.12 the probability density of the

relevant SESs. There we see that the SES a = 7 and a = 9 have a high

probability in the constriction but a much reduced probability density

toward the contact ends of the system. The emergence of a higher charge

density in the constriction of the QPC in Figure 4.10 could thus be

viewed like a formation of a broad resonance state. A phenomenon that

has been observed in models built on scattering approaches to transport,

like Lippmann-Schwinger formalism.

To mark out the effects of the next subband we select the location

of the bias window just below and touching the second subband of the

system (Figure 4.13). The position of arrows indicates for which number

of state we plot in Figure 4.14 the probability density.
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Figure 4.12: The probability density of the single-electron eigenstates of

the system embedded with a QPC. Lx = 900 nm.
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Figure 4.13: The energy spectrum of the isolated sample with a QPC (Lx

= 900 nm). With horizontal narrow dashed lines the chemical potentials

µL = 1.45 meV and µR = 1.3 meV and with horizontal wide dashed lines

representing the limits µR − ∆ and µL + ∆ with ∆ = 0.15 meV.
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4.1 Transient and steady states
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Figure 4.14: The probability density of the single-electron eigenstates of

the system embedded with a QPC. Lx = 900 nm.

For a = 12 and a = 13 the electron probability has a character of a

state of the second subband, but it is very interesting what happens for

a = 14; it has a character of a state from the first subband.

Generally, the steps seen in the current in Figure 4.7 are indicative

of the presence of more than one active transport state. The different

dynamical behavior of the states and the competition between them leads

to the steps.
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4. TIME DEPENDENT TRANSPORT

Double Quantum Point Contact

A double QPC is made up of two QPCs which are positioned in series. A

cavity is formed between the QPCs that can capture electrons in quasi-

bound states. We represent a double QPC with the following form

W (x, y) = V1e
[−βx,1(x−x1)]2−[βy,1(y−y1)]2 + V2e

[−βx,2(x−x2)]
2−[βy,2(y−y2)]2

+V3e
[−βx,3(x−x3)]

2−[βy,3(y−y3)]2 + V4e
[−βx,4(x−x4)]

2−[βy,4(y−y4)]
2

,

(4.2)

with the parameters V1 = V2 = V3 = V4 = 6.5 meV and βx = βy = 0.03

nm−1.

The system with embedded double QPC can be seen in Figure 4.15.
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Figure 4.15: The potential for a quantum wire with two Quantum Point

Contacts. Lx = 900 nm.

The energy spectrum for this system is shown in Figure 4.16 in com-

parison with a system containing one QPC. Here we keep the same SESs

as before, and in addition the energy spectrum gives us the possibility to

select the same chemical potentials in leads as in the case for one QPC.

We use this opportunity to show the difference between the total

currents from both leads when the system includes one and two QPCs
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Figure 4.16: The energy spectrum of the isolated sample with a double

QPC (Lx = 900 nm). With horizontal narrow dashed lines the chemical

potentials µL = 1.06 meV and µR = 0.86 meV and with horizontal wide

dashed lines the limits µR − ∆ and µL + ∆ with ∆ = 0.1 meV, B = 0 T.

(Figure 4.17). The double QPC may considerably slow down the tran-

sient processes and affects the shape of the currents; the amplitude of

the currents is smaller. The same statement could be true for the partial
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Figure 4.17: The total current from the left lead , and the total current

from the right lead for an initially empty system. The system contains one

respectively two QPCs. Lx = 900 nm, B =0.

currents, where in Figure 4.18 we analyze the current corresponding to

the 8th state (this state is situated in the bias window, see Figure 4.16).
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Figure 4.18: The partial currents into the state a = 8 from the left lead

(a) respectively from the right lead (b) for an initially empty system. The

system contains one respectively two QPCs. Lx = 900 nm.

The explanation is given by the coupling strength tensor, which gives

the coupling between a state a in the relevant extended bias window and

a state qny in the leads (the coupling is the same for left and right lead).

In Figure 4.19, we see that when we have two QPCs the coupling which

corresponds to the 8th state is weaker in contrast to the case of one QPC

in the wire.
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Figure 4.19: The coupling tensor between the states situated in the

sample and states of the lowest subband in the leads for one (left), and

respectively two QPCs (right). Lx = 900 nm.

We have seen the properties of the system affected by the band struc-
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4.1 Transient and steady states

ture in the neighborhood of the first and of the bottom of the second

subband. The question is what happens with the bottom of the first

subband? There the states in the sample are less coupled to the states

in the leads and carry a smaller amount of a current.

In Figure 4.20 we show again the energy spectrum of a system embed-

ded with a double QPC together with the chemical potentials selected

but here just the bound state of the well is below the bias window. We

show the time-dependent occupation of the SESs, and we see that the

system is far from reaching a steady state for SES a=2 and a=3; the

occupation of the levels is still growing linearly (Figure 4.21(a)). This

can also be verified by observing the partial left current for the relevant

SESs in Figure 4.21(b).

Even though the density of states is high close to the band edge, the

group velocity of the states is very low, and in addition the low energy

eigenstates in the central system and the leads do not penetrate strongly

into the contact region leading to low current.
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Figure 4.20: The energy spectrum of the isolated sample with a double

QPC. With horizontal narrow dashed lines the chemical potentials µL =

0.6 meV and µR = 0.52 meV and with horizontal wide dashed lines the

limits µR − ∆ and µL + ∆ with ∆ = 0.07 meV. Lx = 900 nm.
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Figure 4.21: The time dependent occupation of the relevant SESs (a)

and the partial current from the left lead (b) for an initially empty system.

The system contains two QPCs. Lx = 900 nm.

4.2 Modulated currents

In this section we see how the time-dependent coupling of the left lead

to the system is used to generate a signal which is observed in the right

lead. That the GME formalism can be used to describe this is not all

obvious but will be verified here.

In order to describe the gradual coupling of the leads to the sample

(with the length Lx = 300 nm) and the periodic modulation of the left

contact we use specific coupling functions χl(t), with l = L, R (see Figure

4.22). The coupling to the leads begins at t = 0 and evolves in time.

After some time t0 > 0 the coupling to the left lead is turned off and on

periodically while the right lead is always connected to the system.

4.2.1 Delay of the output signal

In this subsection we show the results in the absence of the magnetic

field.

The energy spectrum of the leads and of the sample are shown in

Figure 4.23. The maximum energy for each subband shown in the graph

indicates the corresponding maximum wave vector in the qaw-integration
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Figure 4.22: The time coupling functions χl(t), with l=L (red), R (blue).

T = 60 ps.

of the GME. The chemical potential in the leads defining the bias window

(BW) are shown with the dashed horizontal lines. We consider two BW’s:

BW1 with chemical potentials µL = 1.48 meV and µR = 0.78 meV, and

BW2 with µL = 2.48 meV and µR = 1.78 meV respectively. In both

cases the applied bias is eVbias = µL − µR = 0.70 meV. We also include

the sample states with energy outside the BW, between the limits µR−∆

and µL + ∆ with ∆ = 0.1 meV.

The first active window contains 4 SESs and the second one contains 5

SESs.

In Figure 4.24 we show the time-dependent total occupation of the

relevant SESs for BW1 and BW2. We also indicate the functions χl(t).

In this example the parameters characterizing the coupling of the sample

to the leads are: g0a
3/2
w = 926.0 meV, δ1a

2
w = 1.0, and δ2a

2
w = 2.0.

For the higher bias window (BW2) we see that more charge is trans-

ferred through the system in comparison with the lower one. The reason

for that is that BW2 includes three subbands of the leads, while BW1

includes only two (see Figure 4.23). In addition, the higher lying states

penetrate stronger into the contact region leading to stronger coupling.

In Figure 4.25 we plot again the energy spectrum but now for a

higher chemical potential of the left lead. The reason for doing this is
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Figure 4.23: The energy spectrum of the leads vs. the scaled wave vector

qaw (B = 0 T). The subband index is n = 0, 1, 2, 3. With crosses the

energy spectrum of the isolated sample (Lx = 300 nm). With horizontal

wide dashed lines the chemical potentials µL = 1.48 meV and µR = 0.78

(BW1), and with horizontal narrow dashed lines µL = 2.48 meV and

µR = 1.78 meV (BW2).
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Figure 4.24: The time dependent total occupation of the relevant SESs

for a system occupied initially with 1 electron for the first (solid), and

second (dotted) bias window. The time coupling functions χl(t), with

l = L,R, are shown for reference. Other parameters: g0a
3/2

w = 926 meV,

δ1a
2

w = 1.0, δ2a
2

w = 2.0, and T = 60 ps. Lx = 300 nm.
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4.2 Modulated currents

that we want to include in the BW2 three SESs (we shall discuss later

this reason).
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Figure 4.25: The energy spectrum of the isolated sample (Lx = 300 nm).

The chemical potentials are µL = 2.54 meV and µR = 1.78.

The currents depend strongly on the pulse length. To underline that

we show in Figure 4.26 the time-dependent total currents in both leads

for different pulse length (µL = 2.54 meV and µR = 1.78 meV). In the

beginning the system is coupled to the leads and both contacts are kept

open for a time t0. Then the the left contact is modulated by pulses while

the other one is left open. The four signals do not drop at the same time

because of the different shifts τ used in the construction of χL(t) (we

have τL = 30 ps, 45 ps, 55 ps and 75 ps). The first observation is that

for very short pulses (T = 10 ps in Figure 4.26(a)) the input current JL

has a triangular shape although the modulating signal is rectangular. In

addition JR does not vanish when the left lead is disconnected.

When the pulse length increases the shape and the amplitude of the

output current change considerably. JR reaches maxima even before the

pulse is turned off and remains almost constant during the second half of

the pulse. We notice that right after the left contact opens the current

from the left lead is injected in the sample quite fast but the current in

the right lead increases slower.

In Figure 4.26(d) we see that if we increase further the pulse length,
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the amplitude of the output current increases too, but still does not

reproduce the input signal.
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Figure 4.26: The total current entering the system from the left lead and

the total current exiting the system into the right lead for four pulses (a)

T = 10 ps, b) 40 ps, c) 60 ps and d) 100 ps). Parameters: g0a
3/2

w = 926.0

meV, δ1a
2

w = 1, δ2a
2

w = 2 and µL = 2.54 meV and µR = 1.78. Lx = 300

nm.

In Figure 4.27 we compare the total charge accumulated on the 5

SESs within the bias window for the four pulse lengths. As the pulse

length increases more charge is transferred through the system and there-

fore the output current increases. We notice that for the 60 ps and 100 ps

pulses, the charge relaxes exponentially (by increasing the pulse length,

the left lead feeds enough charge to the sample).

We present in Figure 4.28 the snapshots of charge density for the con-

figuration which is presented in Figure 4.26(c). The charge distribution
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Figure 4.27: The total charge accumulated on the 5 SESs from the bias

window for the four pulse lengths considered in Figure 4.26. Lx = 300 nm.

reflects the geometry of the 5 SESs within the bias window and provides

interesting information on the electronic propagation in the system. We

show it soon after the coupling of the system to the leads at t = 1.52

ps (here the distribution of the charge is the same in both ends of the

sample). If we compare the scale, at t = 14.43 ps more charge is accu-

mulated in the system and the distribution is more pronounced in the

right part of the central region; to explain that we analyze the currents

and we see that at this time the current from the left decreases while

the right one increases. For the next three snapshots we have a similar

situation, but if we take a look on the scales the charge does not change

because between these intervals the occupation number reaches steady

state (see Figure 4.27 - blue line). At t = 68.36 ps is very easy to see

that the probability is smaller because the occupation number started to

decrease; when the occupation increases again we would expect to see a

higher probability (at t = 101.79 ps).
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t = 60.72 ps
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Figure 4.28: The average spatial charge distribution in the quantum wire

for B = 0 T, at different time moments. T = 60ps. Lx = 300 nm.
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4. TIME DEPENDENT TRANSPORT

4.2.2 Effects of magnetic fields

In the presence of a magnetic field we expect the amplitude of the charge

oscillations to decrease. The reason is that the electronic trajectories

can bend due to the Lorentz force and the electrons might return to the

source lead rather than traveling directly to the drain lead. At the same

time we should though remember that generally backscattering is re-

duced by magnetic field, as has been seen in studies using the Lippmann

Schwinger formalism.

We show the results for the same parameters as before, which char-

acterized the coupling of the sample to the leads (g0a
3/2
w = 926.0 meV,

δ1a
2
w = 1.0, and δ2a

2
w = 2.0) and we keep also the same number of SESs

(like before - Figure 4.25). We select the bias windows with three states

included in the windows and two marginal states in the extended regions

but now the bias window is different in comparison with B = 0 T because

for each new magnetic field we get a new energy spectrum.

In Figure 4.29(a) we see that the transfer of the electrons decreases

with increasing the magnetic field. For B = 0 T an amount of charge

Qp ≈ 0.9 electron can be transmitted along the wire sample in one cycle,

and for B = 0.2 T Qp ≈ 0.6. For stronger magnetic fields Qp drops to

0.4 for B = 0.4 T, and Qp < 0.25 at B > 0.6 T.

To have a better idea about what happens, in Figure 4.29(b), and

(c) we plot the currents in the left respectively right lead. Both currents

decrease with increasing the magnetic field. We saw that the presence

of the magnetic field reduces the electron transfer, but the charge still

increases with increasing coupling between the leads and the sample (see

Figure 4.30). The parameters for the coupling are: g0a
3/2
w = 1200 meV,

δ1a
2
2 = 0.75, and δ2a

2
w = 1.5. These parameters correspond to the same

physical parameters that were used for B = 0 T, as aw depends on B.

In Figure 4.31 we analyze both currents in the leads for B = 1 T. For

this value and for each value of the magnetic field we obtain the same

effect: the shape of the pulse can be reproduced by the output signal.
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Figure 4.29: (a) The time dependent total occupation of the relevant

SESs for different values of the magnetic field. The total current from the

left lead (b) and the total current into the right lead (c). g0a
3/2

w = 926

meV, δ1a
2

w = 1.0, δ2a
2

w = 2.0, T = 60 ps. Lx = 300 nm.
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Figure 4.30: The time dependent total occupation of the relevant SESs

for B = 0.9 − 1.2 T. g0a
3/2

w = 1200 meV, δ1a
2

2
= 0.75, and δ2a

2

w = 1.5,

T = 60. Lx = 300 nm.
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Figure 4.31: The total current entering the system from the left lead

and the total current exiting the system into the right lead. g0a
3/2

w = 1200

meV, δ1a
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2
= 0.75, and δ2a
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w = 1.5, T = 60 ps. Lx = 300 nm.
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Figure 4.32: The partial current from the left lead (a) respectively from

the right lead (b) for B = 1.0T. Other parameters: g0a
3/2

w = 1200 meV,

δ1a
2

2
= 0.75, and δ2a

2

w = 1.5. T = 60 ps. Lx = 300 nm.
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4.3 Turnstile pumping

In the following we compare the partial currents in the left (right)

lead for B = 1.0 T in the case of the long pulse, (T = 60 ps). The

currents entering the sample from the left lead (see Figure 4.32(a)) have

interesting features: the currents corresponding to the 7th, 8th and 9th

state rise suddenly to a maximum value, while the currents to the 6th

and 10th state increase slower and do not reach a maximum within the

pulse duration. This suggests that the lowest and highest state absorb

less charge from the left reservoir.

The partial currents JR(t) (Figure 4.32(b)) confirm that the 6th and

10th state do not contribute significantly to the transport.

By looking at the occupation numbers shown in Figure 4.33 one con-

vinces himself that this is indeed the case. The states 6 and 10 are

slightly outside the BW and obviously their contribution to the trans-

port is smaller.
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Figure 4.33: The time dependent total occupation of the relevant SESs

for B = 1.0 T. g0a
3/2

w = 1200 meV, δ1a
2

w = 0.75, and δ2a
2

w = 1.5. T = 60

ps. Lx = 300 nm.

4.3 Turnstile pumping

An important feature of the turnstile configuration is that the pumped

current has a definite direction due to the finite bias. It is important to
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remind the reader that the concept of parametric charge pumping was

introduced in the context of a net current in an unbiased system. We

review the effects of the bias window, pulse length, and magnetic field

on the evolution in time of the number of electrons in the sample. We

select the parameters describing the coupling of the leads to the wire in

two different ways, both scaled and not scaled with the effective width

of the sample, which depends on the magnetic field. As in our previous

sections describing the gradual coupling of the leads to the sample (with

the length Lx = 300 nm) we define analytically the coupling functions

χl(t), with l = L, R. First time we switch off the left contact the right

one is still kept on, then the the left is turned on again while the right

is turned off (40) (see Figure 4.34).
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Figure 4.34: The time coupling functions χl(t), with l=L (red), R(blue).

T = 60 ps.

4.3.1 Effects of the bias

In this part we show the results in the absence of the magnetic field

(using the same coupling of the sample to the leads as in the subsection

4.2.1: g0a
3/2
w = 926 meV, δ1a

2
w = 1.0, δ2a

2
w = 2.0) and we underline the

effects of the bias windows. In our calculations we keep the same number

of states using the same chemical potentials in the leads which define the

bias windows like in Fig. 4.23 (µL = 1.48 meV and µR = 0.78 for BW1,
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respectively µL = 2.48 meV and µR = 1.78 meV for BW2 with ∆ = 0.1

meV).

In Figure 4.35 we show the time-dependent total occupation na(t)

of the relevant SES for BW1 and BW2. We also indicate the functions

χl(t). The effects are similar like in the case for the modulated currents

(see Figure 4.24) but now, in comparison with that, the number of the

electrons for both bias windows increases because the contact from the

right lead is not always connected to the system.
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Figure 4.35: The time dependent total occupation of the relevant SES

for a system occupied initially with 1 electron for the first and second bias

window. The time coupling functions χl(t), with l = L,R, are shown for

reference. Other parameters: g0a
3/2

w = 926 meV, δ1a
2

w = 1.0, δ2a
2

w = 2.0,

and T = 60 ps. Lx = 300 nm.

It is interesting to observe the behavior of the states situated at the

boundaries of the BW. To show that we choose the BW1 and display in

Figure 4.37 respectively Figure 4.38 the partial currents and the occu-

pations created by each state of the sample included in the calculations

before and after changing the bias window. When the bias window is

slightly pushed upwards (µL = 1.54 meV instead of µL = 1.48 used in

Figure 4.37(a) and Figure 4.38(a) the 4th enters the bias window (Fig-

ure 4.36). State 1 (the lowest cross) is considered totally occupied and

frozen (it is not situated in the active region), states 3 and 4 are within
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the bias window while states 2 and 5 are situated in the extended window

µR − ∆ and µL + ∆. When the state number 4 is included in the BW

consequently the corresponding current increases. The current of state 5

also increases a bit, while the current associated to the other states does

not change.
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Figure 4.36: The energy spectrum of the isolated sample (Lx = 300 nm).

The chemical potentials are µL = 2.54 meV and µR = 1.78.
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Figure 4.37: The partial current entering the system from the left lead

when the bias window contains one respectively two SESs. T = 60 ps. Lx

= 300 nm.

By looking at the occupation number in Figure 4.38 we understand

that the inclusion of one more state into the BW increases the occupation

of the corresponding state and therefore the pumping. A similar behavior
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is displayed by state number 9 situated on top of BW2 (not shown).
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Figure 4.38: The time-dependent occupation for relevant SES when the

bias window contains one respectively two SESs. T = 60 ps. Lx = 300

nm.

Now we investigate the efficiency of the turnstile operation as a func-

tion of width of the bias window. We consider the case when the applied

bias is eVbias = µL − µR = 0.7 meV (the first bias window), then we

change the chemical potentials in the leads to get a new bias which is

smaller or higher than BW1 (eVbias = 0.1, 0.5, and 0.9 meV). So, if we

now compare the results (see Figure 4.39(a)), the systematic observation

is the following: as the bias window decreases or increases the total oc-

cupation of the parabolic wire decreases or increases as well respectively.

The same statement is true for the total currents (Figure 4.39(b)).

To confirm what we said before we shall show the average pumped

charge as a function of bias in Figure 4.40.

The efficiency of the turnstile operation depends on the pulse length

T . The previous results are obtained with T = 60 ps. In those setups

the system transfers at least two electrons per cycle. The present GME

method is valid in the lowest (quadratic) order of the lead-sample cou-

pling in the kernel of the integral equation, which means the tunneling

of the electrons from the leads to the sample and back is a relatively
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Figure 4.39: The time-dependent occupations and the currents from the

right lead for different values of bias window. T = 60 ps. Lx = 300 nm.
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Figure 4.40: Pumped charge per cycle, vs. bias. T = 60 ps. Lx = 300

nm.
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4.3 Turnstile pumping

slow process. Therefore by increasing or decreasing the pulse duration

the transferred charge increases or decreases respectively. Denoting by

Tt the characteristic tunneling time, if T ≤ Tt the turnstile operation is

not expected to work, the allowed time for the charging and discharging

of the system being too short. This is the case for T = 10 ps as shown

in Figure 4.41, when clearly very little charge can enter and leave the

system in a pumping cycle. Actually, the time Tt depends on the pair-

wise coupling (or overlap) of each state of the leads to each state of the

sample with energies within the BW. But in order to obtain significant

pumping effects, the pulse duration has to include the time of flight (or

propagation time) of electrons along the wire. This extra time depends

on the energy of the electrons injected from the left lead.
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t
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Figure 4.41: The time dependent total occupation of the sample for three

pulses at zero magnetic field. The trace for T = 60 ps is the same as in

Figure 4.35. Lx = 300 nm.

Therefore, for a longer pulse, T = 40 ps, the turnstile pumping pro-

cess is able to transfer charge through the sample. The occupation num-

ber has a triangular shape in time and it becomes periodic after 2-3 cy-

cles. During the initial cycle, which includes the initial charging phase,

the system accumulates more than 2 electrons and the steady state is

already reached at about 30 ps when the charge in the system is satu-

rated. This is possible because the right contact is still off. The right
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4. TIME DEPENDENT TRANSPORT

contact opens for the first time at 45 ps allowing more than 1 electron

charge to pass into the right lead. For a longer period, like T = 60 ps,

the occupation number develops toward a saw-tooth profile typical for

the charging/relaxation processes. The asymmetry of the charge peaks

is determined by the direction of the bias: the electrons leave the sam-

ple faster than they entered. The system drives almost two electrons

from one lead into the other, which is remarkable given the length of our

sample (300 nm).

4.3.2 Magnetic field and edge states

In order to compare our results at B = 0 T we first keep the same

coupling parameters: g0a
3/2
w = 926.0 meV, δ1a

2
w = 1.0, and δ2a

2
w = 2.0.

In Figure 4.42 we present the evolution of the total charge in the

turnstile cycles at different values of the magnetic field and for each bias

window. A technical detail has to be mentioned: for each value of the

magnetic field the active window was adjusted such that the same states

of the wire are contained in it. Moreover, the magnetic field is included

in the leads as well so the subband structure changes.

As a general statement one can say that increasing the magnetic field

the efficiency of the turnstile pump decreases. For B = 0 T and B = 0.2

T more than one electron is still transmitted across the wire in one cycle,

but then the pumped charge Qp drops to 0.7 for B = 0.4 T, and finally

Qp < 0.3 at B = 0.6 T and B = 0.8 T (for the first bias window). An

interesting detail is that for BW2 is little difference between B = 0.6

T and B = 0.8 T in comparison with BW1. It is also clear that for

these coupling parameters, the charging time increases in the presence

of the magnetic field. More precisely, there is less charge accumulated in

the system in the normal switching regime (χL = χR, t<60 ps) and, on

the other hand, the charging process continues even after the pumping

cycles starts. We should make two observations: one that it is clear that

for BW2 the pumping is much better than for the BW1; for B = 0.2
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4.3 Turnstile pumping

T we transfer Qp = 1.3 while for the first bias window we just have

Qp = 1, because the coupling is much stronger for the states situated in

the second BW (see Figure 4.43, where we should follow the scale on z

axis).
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Figure 4.42: The time-dependent occupation of the relevant SESs for

different magnetic fields: a) first bias window and b) second bias window.

T = 60 ps. Lx = 300 nm.
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Figure 4.43: The coupling energies between the states situated in the

sample and states of the lowest subband in the leads for the first and

second bias window (B = 0.2 T).

One the other hand for both bias windows, increasing magnetic field

reduces the electron transfer.

Like in our previous section (Modulated currents), the number of
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Figure 4.44: The coupling tensor between the states a = 2−5 and states

of the lowest subband in the leads for B = 0.2, 0.4, 0.6, 0.8 T (first bias

window). Lx = 300 nm.
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4.3 Turnstile pumping

electrons increases with increasing coupling between the leads and the

sample. Here, the parameters for strong coupling are: g0a
3/2
w = 1200

meV, δ1a
2
w = 0.75, and δ2a

2
w = 1.5.

We analyze the probability density associated to the five active single-

electron states (number 6-10) of the finite quantum wire (Figure 4.45).

The figures indicates that all the five states have the characteristics

of edge states. As the magnetic field increases the Lorentz force squeezes

the probability of some states close to the edge of the finite wire. This

also happens at the hard-wall ends of the wire, the contact area. This

fact explains why the increasing of the coupling through increasing g0

should be more effective at high magnetic field. It is evident that the

edge states will have different coupling strengths to the leads due to the

difference in their finer structure in the contact area. This finer structure

in the contact area of the wire induces differential coupling to the states

in the different subbands of the leads.

The time-dependent charge in the quantum wire is shown in Figure

4.46.

The charge distribution reflects the geometry of the quantum wire

and of the five SESs involved. The selected time moments cover the

initial charging cycle plus a part of the next cycle. It is interesting to

observe how the electrons are injected at the left contact into the sample

traveling along the quantum wire on the upper edge channel, and how

they are reflected back at the right contact traveling along the lower

channel.
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Figure 4.45: The probability density of the single-electron eigenstates of

the sample number 6-10, for B = 1 T. Lx = 300 nm.
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4.3 Turnstile pumping

t = 1.52 ps
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Figure 4.46: The average spatial charge distribution in the quantum wire

for B = 1 T, at different time moments. g0a
3/2

w = 1200 meV, δ1a
2

w = 0.75,

and δ2a
2

w = 1.5. Lx = 300 nm.
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4.3 Turnstile pumping

4.3.3 Coupling strength

Another important aspect in our model is the strength of the lead-sample

coupling, the parameters g0, δ1, and δ2.

Our GME implementation is restricted to the lowest order in HT , in the

kernel of an integro-differential equation, and thus the parameters have

to be appropriately selected. In general it is difficult to evaluate whether

the coupling strength is sufficiently low.

A necessary (although not sufficient) condition is to obtain positive di-

agonal elements of the statistical operator, which are the populations

of the MES and hence probabilities. Although we always check in our

calculations, strictly speaking this condition does not guarantee the va-

lidity of the lowest order approximation. So in practice we cannot avoid

choosing our parameters in a semi-empirical manner.

To have an idea about the relation between the pumping amplitude

and the coupling strength we show in Figure 4.47 three calculations done

with three strengths of the coupling, which we consider in relative terms

weak, intermediate, and strong.
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Figure 4.47: The time dependent total occupation for B = 0 T and three

values of the coupling strength. Weak: g0a
3/2

w = 1408 meV, δ1a
2

w = 1.85,

δ2a
2

w = 3.7. Intermediate: g0a
3/2

w = 1408 meV, δ1a
2

w = 1.39, δ2a
2

w = 2.77.

Strong: g0a
3/2

w = 1824 meV, δ1a
2

w = 1.39, δ2a
2

w = 2.77. The pulse period

is T = 60 ps. Lx = 300 nm.
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In order to compare with the results obtained in the presence of a

magnetic field shown in the next examples, the scaled parameters g0a
3/2
w

and δ1,2a
2
w are chosen such that the physical values g0 and δ1,2 are the

same as for B = 0.9 T. The time dependent occupation of the states in

the active window is shown for longer times than in the previous figures

to indicate better the final periodic regime. It is not surprising to see

that the pumping amplitude increases with the coupling strength, since

tunneling of electrons becomes more likely.

We already have seen that the increasing of magnetic field reduces

the electron transfer if the parameters describing the coupling are scaled.

The general situation is more complex. To show that we solve the GME

for a fixed magnetic field B = 0.9 T for three sets of coupling parameters,

which we again call (in relative terms) weak, intermediate, and strong

coupling, respectively, see Figure 4.48.
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Figure 4.48: The time dependent total occupation for B = 0.9 T and

three coupling strength: weak (g0a
3/2

w = 926 meV, δ1a
2

w = 1.0, and δ2a
2

w =

2.0), intermediate (g0a
3/2

w = 926 meV, δ1a
2

w = 0.75, and δ2a
2

w = 1.5), and

strong (g0a
3/2

w = 1200 meV, δ1a
2

w = 0.75, and δ2a
2

w = 1.5). The pulse

period is T = 60 ps. Lx = 300 nm.

The parameters for the weak coupling are the same as in Figure 4.47.

For the intermediate coupling we use g0a
3/2
w = 926 meV, δ1a

2
w = 0.75,

and δ2a
2
w = 1.5. For the strong coupling g0a

3/2
w = 1200 meV, δ1a

2
2 = 0.75,
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4.3 Turnstile pumping

and δ2a
2
w = 1.5. So, if we now compare the results at B = 0.9 T with the

results at B = 0 we see quite similar charge amplitudes, but somewhat

more sensitive to the coupling strength at B = 0.9 T. For example, at

B = 0.9 T we obtain Qp ≈ 0.4 electrons at low coupling, Qp ≈ 1.2 at

intermediate coupling, and Qp ≈ 2.4 at strong coupling. For B = 0 these

numbers are Qp ≈ 0.3, 1.2, and 1.8, as can be read from Figure 4.47.

Of course that this is just a particular case.

Another example (B = 0.4 T) demonstrates that in comparison with

B = 0 the electron transfer decreases for all the couplings (Qp ≈ 0.3, 0.85

and 1.5, see Figure 4.49). It is not easy to make a comparison between all

of these because when we change the magnetic field we get a new energy

spectrum and we should change all the time the chemical potentials in

the leads. To get an idea about what happens we shall show the average

pumped charge as a function of magnetic field (Figure 4.50). For the

higher values of the magnetic field the magnetic length is getting smaller

than the characteristic length scales of the sample and clear edge states

are forming with reduced backscattering.
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Figure 4.49: The time dependent total occupation for B = 0.4 T and

three coupling strength: weak (g0a
3/2

w = 1241 meV, δ1a
2

w = 1.52, and

δ2a
2

w = 3.04, intermediate (g0a
3/2

w = 1241 meV, δ1a
2

w = 1.14, and δ2a
2

w =

2.28), and strong (g0a
3/2

w = 1609 meV, δ1a
2

w = 1.14, and δ2a
2

w = 2.28).

The pulse period is T = 60 ps. Lx = 300 nm.
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Figure 4.50: Pumped charge per cycle, vs. magnetic field for strong

coupling. The pulse period is T = 60 ps. Lx = 300 nm.
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5

Summary

In this thesis a time-dependent model for electron transport through

a semiconductor system connected to broad leads was investigated using

the generalized master equation formalism.

The model presented here is very flexible, in the sense that the

parabolic confinement of the system and the leads can be determined

independently and the geometry of the central system can be varied by

embedding a series of Gaussian potentials in it representing, quantum

dots, rings, or antidots.

We describe phenomenologically the coupling between the individual

single-electron states in the semi-infinite leads and the continuous states

in the finite wire employing a nonlocal overlap of the wave functions from

both sides of the contact.

Properties of the model set-up gave us the possibility to study both

the transient and the steady state regime. We do this for a system

coupled smoothly to the leads at a specific timepoint. We further inves-

tigated if the formalism is appropriate to describe modulated currents

and turnstile pumping through the central system.

We have observed how quantum point contacts alter the current and

slow down the transient processes. We have in addition seen the dynam-
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ical formation of a broad resonance state in the QPC.

We have investigated under what condition a signal can be propa-

gated through the central system that is weakly coupled to the broad

leads. As a continuation we investigated the turnstile operation of the

central system. It was not clear at the outset of the research that a for-

malism built on the generalized quantum master equation could be used

for the description of the signal modulation and turnstile operation, but

we have found that this is possible, and we have mapped out the physical

parameters that are a necessary precondition.

Due to the special state-dependent coupling scheme we introduce

in the thesis built on an idea of a general tunneling Hamiltonian the

behavior of the contacts in a magnetic field is not uniquely determined

in the absence of a microscopic model. We approach this dilemma by

proposing two different ways the coupling scheme can depend on the

magnetic field. Both schemes display interesting magnetic field effects

in the transport, with the subtle difference only to be determined by an

experiment or a microscopic model of the contacts.

The numerical accuracy of the results presented in this work has been

tested by varying the size of the relevant functional basis and tuning

integration and converging schemes.

We did not include the electro-electron interaction as we have only

taken the first steps to use the GME formalism for a system with rich

geometry without resorting to the Markov approximation. We are deal-

ing with a system with a variable number of electrons where different

charging regimes may be of importance depending on the type of cou-

pling between the leads and the system. One has to remember that the

coupling to the leads in the many-electron formalism used forces correla-

tion on the electron states of the central system even though we do not

include Coulomb interaction between the electrons.
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Appendix A

Appendices

A.1 Derivation of GME

In this appendix we derive the generalized master equation (GME). To

simplify the notations we first define the Liouville-von Neumann operator

L(t)

L(t)A = [H(t), A] , (A.1)

where A is any operator from the Hilbert space and H(t) the Hamilto-

nian, in principle time dependent. The statistical operator of the total

system, which is the sample plus the two leads, W (t), satisfies the Liou-

ville equation (or equation of motion)

i~
dW (t)

dt
= [H(t), W (t)] ≡ L(t)W (t) . (A.2)

The Hamiltonian has the form H = HS + Hleads + HT and thus the

Liouville operator can be decomposed in three terms: LS = [HS , ·],
Lleads = [Hleads, ·], LT = [HT , ·], such that L = LS + Lleads + LT .

The total statistical operator W includes the distribution of states in

the leads, in the sample, and in the connected system, in a combined and

complicated manner. In the absence of the contacts, i.e. for isolated leads

and sample, it becomes the product of the separate statistical operators.
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Assuming the leads and the sample are disconnected at t ≤ 0 we have

W (t ≤ 0) = ρleadsρS , (A.3)

where ρleads and ρS are statistical operators for the isolated leads and

the isolated sample. At t > 0 the statistical operator for the sample is

defined as a mean value of the total statistical operator over the degrees

of freedom corresponding to the leads

ρ(t) = TrleadsW (t) , (A.4)

having the initial value ρ(0) = ρS used in Equation (A.3). ρ(t) is called

the reduced density operator (RDO).

We define now the projector operator P = ρleadsTrleads, and thus we

can write

PW (t) = ρleadsρ(t) , (A.5)

and we will also use the complement of P, defined as Q = 1 − P. These

two operators have the following simple properties

P
2 = P , Q

2 = Q , PQ = QP = 0 . (A.6)

Acting now with both P and Q on both sides of Equation (A.2) we can

transform this equation into the system of equations

i~PẆ = PLW = PL(P + Q)W (A.7)

i~QẆ = QLW = QL(P + Q)W .

It is now straightforward to show the following properties

PLS = LSP , PLleadsP = 0 , PLT P = 0 , (A.8)

which used in Equations (A.7) lead to

i~PẆ = LSP + PLT QW (A.9)

i~QẆ = LT PW + (LS + Lleads + QLT )QW .
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In order to find the RDO we have to solve the differential system

(A.9) where the unknown functions are PW and QW . At the present

stage we need to eliminate the second unknown function QW to obtain an

equation only for the RDO. One possibility is to do iterations: We neglect

the term QLT QW on the right side of the second Equation (A.9), we use

the resulting solution for QW in the first equation, solve it (formally) for

PW , return in the second equation, and so on. This procedure leads to a

formal solution for PW written as a time-ordered product of exponentials

of LT . Here we want to obtain the solution for a relatively weak strength

of the contacts. To do that let’s observe that in the limit HT → 0 the

sample and the leads become disconnected and according to Equations

(A.3-A.5) we get

lim
HT→0

PW (t) = ρleadsρS = W (0) . (A.10)

This simply means that in the low-coupling limit the system evolves

very slowly, or P → 1, or Q → 0. Thus, for finite, but sufficiently

weak coupling we can consider Q a "small" parameter. Therefore, in this

situation we can say that QLT ≪ LS + Lleads and the second Equation

(A.7) becomes

i~QẆ = LT PW + (LS + Lleads)QW . (A.11)

We see in Equation (A.11) a simple first-order linear differential equa-

tion for QW (t) with the inhomogeneous term LT PW (t). To find the

solution we first write the general solution of the homogeneous equation,

which has the form

R(t) = e(HS+Hleads)t/i~ B e−(HS+Hleads)t/i~ (A.12)

where B is a time independent (constant) operator. We now need to find

a particular solution of the inhomogeneous Equation (A.12), which can

be done with the so-called method of variation of constants. B is forced
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now to be time dependent, and R(t) is inserted in Equation (A.11). The

resulting differential equation for B(t) can be easily solved and we obtain

B(t) =

∫ t

0
dse−(HS+Hleads)s/i~

(
1

i~
LT PW (s)

)

e(HS+Hleads)s/i~ .

(A.13)

We used the initial condition QW (0) = 0 which implies B(0) = 0. So

now the formal solution for of Equation (A.11) is

QW (t) =
1

i~

∫ t

0
ds U(t − s)LT PW (s)U †(t − s) , (A.14)

where we have used the time evolution operator of the disconnected

system U(t) = e(HS+Hleads)t/i~. Now we go back into the first Equation

(A.9) where we substitute QW (t) and we obtain

PẆ (t) =
1

i~
LSPW (t) +

1

(i~)2
PLT

∫ t

0
ds U(t − s)LT PW (s)U †(t − s) ,

(A.15)

which is the generalized master equation (GME). Using the definition of

the projector P and of the Liouville operators we can write it as:

ρ̇(t) =
1

i~
[HS , ρ(t)] (A.16)

+
1

(i~)2
Tr

[

HT (t),

∫ t

0
ds U(t − s) [ HT (s), ρleadsρ(t) ] U †(t − s)

]

,

The GME is an integro-differential equation which in the present form is

second order in the transfer Hamiltonian HT in its kernel. But the solu-

tion can actually be seen as power series in H2
T . So it is not necessarily

valid only in the lowest (second) order of the coupling strength.

We now use the explicit form of the transfer Hamiltonian HT given

in Equation (3.6) defined with the creation and annihilation operators

in the leads, c†ql, cql and in the sample, d†a, da. We then calculate the

internal commutator combined with the evolution operator,

U(t − s)[HT (s), ρleadsρ(t)]U †(t − s) (A.17)
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using the commutation of the field operators in the leads with those

in the sample. The (fermionic) field operators in the leads satisfy the

anticommutation rules {cql, cq′l} = {c†ql, c
†
q′l} = 0, {cql, c

†
q′l} = δqq′ . We

also use the relation

eHleadst/i~cqle
−Hleadst/i~ = cqle

−ǫl
qt/i~

and the corresponding Hermitian conjugate (42). The explicit form of

the operator (17) is long and we will not write it here, but it becomes

simpler after we carry on the trace (Tr) in Equation (A.16). To do that

we introduce the Fermi functions in the leads as

Tr(c†q′lcqlρleads) = δqq′fl

Tr(cqlc
†
q′lρleads) = δqq′(1 − fl) .

In the end the GME takes the form shown in the main text, in Equations

(3.18-3.19)

We solve the GME numerically by discretizing the time, using the

Crank-Nicolson method. For each time step tn we find ρ(tn) by itera-

tions.
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A.2 Matrix elements for the Potential

In this section we will show the analytical calculations for the matrix ele-

ments of the potential describing an embedded subsystem in the quantum

wire. The subsystem is represented by a combination of Gauss potentials

of the form

Wi(x, y) = Vie
[−βx,i(x−xi)]

2−[βy,i(y−yi)]
2

, (A.18)

where Vi is the strength of the potential, while (xi, yi) and β(x,y),i control

the range of the potential. Wi(x, y) is separable and thus we can consider

the integrals for the matrix element in our SES basis separately.

The matrix elements for the x part are

Vi;m,m′ =

∫ Lx/2

−Lx/2
dxψ∗

m(x)Wi(x, y)ψm′(x), (A.19)

where ψm(x) is the basis function in the x direction.

ψm(x) =

√
2

Lx
cos

(
mπx

Lx

)

, m = odd (A.20)

and

ψm′(x) =

√
2

Lx
sin

(
m′πx

Lx

)

, m′ = even (A.21)

From Equations (A.20-A.21) we see that if m + m′ = 1, then Vi;m,m′(y)

= 0.

On the other hand, if m + m′ = 0, then
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Vi;m,m′ =
2

Lx

∫ Lx/2

−Lx/2
dx sin

(
mπx

Lx

)

sin

(
m′πx

Lx

)

e−[βx,i(x−xi)]
2

=
2

π

∫ π/2

0
dx

[
cos(m − m′)x − cos(m − m′)x

]
e−[α(x−xi)]

2

.

(A.22)

or, if m + m′ = 2, we have

Vi;m,m′ =
2

Lx

∫ Lx/2

−Lx/2
dx cos

(
mπx

Lx

)

cos

(
m′πx

Lx

)

e−[βx,i(x−xi)]
2

=
2

π

∫ π/2

0
dx

[
cos(m − m′)x − cos(m + m′)x

]
e−[α(x−xi)]

2

,

(A.23)

where α = βx,iLx/π.

Then the first (or the second) expression becomes

∫ π/2

0
dx cos(Zx)e−[α(x−xi)]

2

=
1

2

∫ π/2

0
dx(eiZx + e−iZx)e−[α(x−xi)]

2

=

√
π

2α
e−Z2/4α2

[

Φ

(
απ

2
− i

Z

2α

)

+ Φ

(
απ

2
+ i

Z

2α

)]

=

√
π

2α
e−Z2/4α2ℜ

[

Φ

(
απ

2
+ i

Z

2α

)]

,

(A.24)

where Φ is the error function.

We solve the integral by using Equation (3.321.2) on page 354 in (41).

By combining Equations (A.22-A.23-A.24) we get

83



A. APPENDICES

Vi;m,m′ =
1

α
√

π
e−(m−m′)2/4α2ℜ

[

Φ

(
(m − m′)i + πα2

2α

)]

+ (−1)n+1 1

α
√

π
e−(m+m′)2/4α2ℜ

[

Φ

(
(m + m′)i + πα2

2α

)]

.

(A.25)

The matrix elements for the y part are

Vi;n,n′ =

∫ ∞

−∞
dyψ∗

n(y)Wi(x, y)ψn′(y), (A.26)

where ψn(y) is the wave functions of the subbands for a parabolic con-

finement

ψn(y) =
e
− y2

2a2
w

√

2n
√

πn!aw

Hn

(
y

aw

)

, (A.27)

The embedded subsystem or Gauss potential is given by Equation (A.18).

We have

Vi;n,n′ =
Vi√

2n+n′n!n′!π

∫ ∞

−∞
dȳe−β2

y,ia
2
w(ȳ−ȳi)

2−ȳ2

Hn(ȳ)Hn′(ȳ). (A.28)

In the above equation we have used the following notation: ȳ = y
aw

and

also we shall use β̄ = β2
y,ia

2
w. The exponent in the integral is

− β̄(ȳ − ȳi)
2 − ȳ2 = −





(√

1 + β̄

)

ȳ − β̄ȳi
(√

1 + β̄
)





2

− β̄ȳ2
i

1 + β̄
.(A.29)

Using this relation and the notation: z =
√

1 + β̄ȳ we get
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Vi;n,n′ =
Vi√

2n+n′n!n′!π

e
− β̄

¯
y2
i

1+β̄

√

1 + β̄

×
∫ ∞

−∞
dze

−
„

z− β̄ȳi√
1+β̄

«2

Hn

[

z
√

1 + β̄

]

Hn′

[

z
√

1 + β̄

]

. (A.30)

By using Equation (7.374.9) on page 843 in (41) we obtain

Vi;n,n′ =
Vi√

2n+n′n!n′!

e
−

β2
y,ia2

wy2
i

1+β2
y,i

a2
w

√

1 + β2
y,ia

2
w

×
min(n,n′)

∑

k=0

2kk!

(
n

k

)(
n′

k

) (

β2
y,ia

2
w

1 + β2
y,ia

2
w

)n+n′

2
−k

Hn+n′−2k





√

β2
y,ia

2
wyi

√

1 + β2
y,ia

2
w



 .

(A.31)
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A.3 Semiinfinite wire in a magnetic field

For the semi-infinite leads with the previously introduced confinement

parameters, we can use the same basis functions for the y direction, but

for the x direction we use

ψq(x) =
1√
2π

sin [q(x ± Lx/2)] , (A.32)

with “+” in the left lead and “-” in the right lead.

We need to solve

HL,R(B)|pny〉 = Epny |pny〉, (A.33)

and use the expansion

|pny〉 =
∑

n′

y

∫

dqCnyn′

y(p, q)|qn′
y〉, (A.34)

obtaining

EpmyC
nymy(q, p) =

∑

n′

y

∫

dk〈qny|HL,R(B)|kn′
y〉Cn′

ymy(k, p). (A.35)

By using that

〈qny|HL,R(B)|kn′
y〉 = δnyn′

y
δ(q − k)E0

qny
+







√

n′
y

2
δny ,n′

y−1
+

√

n′
y+1

2
δny ,n′

y+1






~ωcawIqk (A.36)
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where Iqk = − iqp
2π

P

q2−p2 ,

and simplifying the notations by defining

Ȳny ,n′

y
=







√

n′
y

2
δny ,n′

y−1
+

√

n′
y+1

2
δny ,n′

y+1






, (A.37)

we can rewrite Equation (A.35) as

EpmyC
nymy(q, p) =

∑

n′

y

∫

dk
{

δnyn′

y
δ(q − k)E0

qny
+ ~ωcawIqk

}

Cn′

ymy(k, p).

(A.38)

This eigenvalue problem is not convenient for numerical evaluation, so

we try an analytical integration of the second term, where P denotes the

principal value

∫ ∞

0
dk

Pk

q2 − k2
Cn′

ymy(k, p) =
1

2

∫ ∞

−∞
dk

P|k|
q2 − k2

Cn′

ymy(|k|, p). (A.39)

The integral can be done in the complex plane as, see Figure (A.1).

1

2

∫ ∞

−∞
dk

P|k|
q2 − k2

Cn′

ymy(|k|, p) = Ic − iπ {Res F (q) − Res F (−q)} ,

(A.40)

where

Ic =
iπ

2
Cn′

ymy(q, p) Res F (q) =
|q|Cn′

ymy(q, p)

2q
(A.41)

By making the substitution of Equations (A.40), (A.41) in (A.38) we get
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EpmyC
nymy(q, p) =

∑

n′

y

{

δnyn′

y
E0

qn′

y
− ~ωcaw

4
qȲny ,n′

y

}

Cn′

ymy(q, p)

(A.42)

The interpretation is that for each q we only have to diagonalize the

nmax × nmax-matrix where nmax is the maximum number of subbands

in the basis. In the contour integration we have assumed that no bound

states are formed in the semiinfinite leads.

−a a

c

Figure A.1: The contour for evaluation of the integral (A.39) in the

complex plane.
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