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Abstract

Structural Operational Semantics (SOS) provides a mathematically rigourous
way of specifying the semantics of formal (programming) languages. This
thesis presents three individual contributions which highlight different uses
of SOS and demonstrate how it may be used to benefit computer science. To-
gether, the topics span a relatively wide spectrum, but their common theme
is their use of SOS although each topic contains its own scientific contribu-
tion as well. In order, the topics range from practical applications of SOS to
abstract meta-theory reasoning about SOS rules at a higher level.

The first contribution relates to the use of operational semantics to specify
the behaviour of a policy enforcement architecture built on top of transac-
tional memory in Haskell. The second one discusses work in constructing
a method for compositional reasoning about process calculi that includes a
representation of the history of a computation, and allows the specification
logic to look into the past. The final topic looks at SOS at a higher level,
where we develop a rule format, which is a syntactic constraint on SOS rules
that guarantees certain properties about the operators they define, namely
determinism and idempotency.



Formleg merkingarfræði og nýting hennar
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Útdráttur

Merkingarfræði forrita má skilgreina með Structural Operational Semantics
(SOS) reglum. Slíkar reglur veita stærðfræðilega nákvæma leið til aðsetja
fram merkingarfræði (forritunar-) mála. Íþ essari ritgerð verða kynntþrjú
sjálfstæð verkefni sem öll beita SOS með mismunandi hætti og sýna hvernig
hagnýta má formlega merkingafræði. Saman spanna verkefnin breitt svið,
en mynda heild í gegnum notkunþ eirra á SOS. Hvert verkefni inniheldurþó
sjálfstæða og nýja niðurstöðu á viðkomandi sviði. Íþ eirri röð sem verkefnin
birtast er að finna allt frá hagnýtingu SOS viða ð skilgreina merkingarfræði,
til fræðilegrar notkunar viða ð sanna almenn eigindi mála óháðeinstökum
málum.

Fyrsta verkefnið fjallar um notkun formlegrar merkingarfræði til aðskil-
greina hegðun kerfis sem tryggir að öryggisreglur séu virtar við keyrslu for-
rits. Kerfið byggir á færsluminni (e. transactional memory) og er útfært í
Haskell. Annað verkefnið kynnir niðurstöður á sviði ferla-algebru sem inni-
heldur möguleika á að horfa á keyrslusögu ferla. Verkefnið kynnir aðferðir
til að fjalla um eigindi fjölþráðakerfa á grundvelli eiginda einstakra ferla in-
nanþ ess.Þrið ja og síðasta verkefniðsý nir almennt form fyrir SOS reglur,
þannig að mál með merkingafræði áþ ví formi uppfylla algebruleg skilyrði
um einkvæma hegðun (e. deterministic behaviour) og sjálfvalda virkja (e.
idempotent operators).
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chapter one

Introduction

Languages are among the most important and ubiquitous concepts in Computer
Science. In almost every sub-field of Computer Science, one can find specific
languages for describing and reasoning about the concepts of that field. Program-
ming languages are the best known example of course, but file formats, network
protocols, instruction sets and even the various diagrammatic techniques used in
So+ware Engineering can be considered as (visual) languages.!eoretical Com-
puter Science has specification languages and various logics. Natural Language
Processing has markup languages for describing voicing and sentence structure.
Artificial Intelligence uses specific languages for describing behaviour, the rules of
games and the constraints of planning problems. Indeed, it seems to be common
practice in Computer Science to invent formalisms for specific problems, and these
formalisms very o+en involve some kinds of languages.

Any language consists of two parts: its syntax and its semantics. !e syntax
defines what strings of symbols are valid, i.e. part of the language, while the
semantics defines the actualmeaning of any valid string. Formal specification of
syntax is very common, even in non-academic use of Computer Science. However,
one can argue that what really defines the true nature of a a language is its semantics.
Different languages are much rather set apart by different semantics than different
syntax. !is thesis is a study, by way of example, of one specific technique of
specifying semantics formally, namely Structural Operational Semantics. To put
things in context, we’ll start by an informal overview of this field.

. Structural Operational Semantics
Structural Operational Semantics [Plotkin a,b], SOS or simply Operational
Semantics  for short, is a way of defining the meaning of terms in formal languages.
By formal languages we mean any language for specifying ideas formally in the
mathematical sense. !is includes programming languages, process languages
for modelling and verification as well as many others. By terms we usually mean
programs or specifications written in these languages.

As the name indicates, SOS describes semantics in terms of program structure
and the operations a program carries out as it computes. An SOS specification of
the semantics for a certain language is a collection of rules.!ese rules specify how

!e term Operational Semantics is sometimes used as a synonym for Structural Operational
Semantics (small-step semantics) and Natural Semantics (large-step semantics). In this thesis we are
mostly concerned with the former.


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a term with a certain structure behaves, by describing the operation that the next
step of execution of this term performs (o+en on a hypothetical machine), and
what is the term that should be executed for the next step a+er that. An example of
an SOS rule is

t
a!→ t′ t

b!→ t′
op(t , t)

b!→ t′
(.)

!is rule specifies how a term of the form op(t , t) behaves, where t and t can be
any sub-terms as allowed by the syntax.!is is seen by looking at the le+-hand side
of the conclusion, the part appearing below the line. !e two expressions above the
line are called premises. !ese are operations of the sub-terms that describe when
the rule is applicable to derive a step of computation of the composite program
op(t , t). !is particular rule only applies if the operations in the premises can
be deduced from the collection of rules. Naturally, this depends in each case on
what the terms t and t actually are. If the operations in all the premises are valid
for given sub-terms, the label of the arrow and the right-hand side below the line
specify what is the operation performed by executing op(t , t) and what is the
term that results a+er doing so. As one can see, both of these may be parameterised
with information from the premises.

!e hypothetical execution of terms proceeds by finding a rule that matches
the term to be executed and whose premises are met.!is rule then specifies an
operation, i.e. a single step of execution, and the term to use for finding the next
step. !is process is repeated to create a sequence of operations. It is important to
note that execution in this context does not necessarily mean execution on a real
machine, but rather it is a useful abstract metaphor for reasoning about program
behaviour. We say the sequences of operations are steps in the execution of a
program on a hypothetical machine.

O+en it is useful to indicate when such a sequence may stop, i.e. when the
program terminates. We o+en do this by designating a specific set of terms as
terminal, meaning that when a sequence of operations reaches such a term, the
application of rules stops. Sometimes this is the empty term, e.g. a program of the
form print "Hello"; print "World"might perform the following sequence of operations

print "Hello"; print "World"
!"Hel l o"!→ print "World"

!"World"!→ є

where the operation !string stands for writing string to the screen, and є is the
empty program. In other settings the terminal terms may represent values. For
example, a functional programming language might specify the meaning of the
term  −  ×  with the following sequence of operations.

 −  ×  !→  −  !→ 

In this case, the term  is terminal since it contains no operators.
!ere is an important difference between the two approaches; in the former

case the natural meaning of the program print "Hello"; print "World" is determined
by the sequence of operations that its execution goes through, while in the latter
the meaning of the program  −  ×  is represented by the final value that the
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sequence reaches. Which one we choose depends on the particular setting in which
we are using SOS.

For the latter interpretation, where the meaning of a term is taken to be the
final value reached by a sequence of operations, there is an important thing to
note about an SOS specification (collection of rules). In the general case, there is
nothing that prevents the specification to contain rules that allow us to deduce
multiple sequences of operations. For example, consider a system that contains the
rule.  above, but also contains the following rule.

t
a!→ t′ t

b!→ t′
op(t , t)

a!→ t′
(.)

Presented with a term of the form op(t , t), we can see that both rules may apply
(depending on t and t). If they do, we have a case of non-determinism where
the termmay either be executed according to rule.  or rule. . In fact, an operator
with this pair of rules is known as a choice operator, i.e. the execution of the term
op(t , t)may choose whether it behaves like t or like t.

It is not difficult to see that, when we take the meaning of a program to be its
final value, if such non-determinism exists in the SOS specification, this meaning
is not well defined. A term might give rise to multiple sequences of operations
and thus multiple final values. !us, when this view of meaning is taken, which
is common when dealing with purely functional languages, we o+en make the
requirement that the language’s specification given by the rules is deterministic,
i.e. for each term there is at most one operation and subsequent term that can
be deduced from the collection of rules. Such collection of rules are the topic of
Chapter  of this thesis.

In the other setting, where meaning of a term is taken to be the sequence of
operations it gives rise to, non-determinism is generally allowed.!is is for example
the case in Process Algebra, where the meaning of a term is simply determined, in
some formal sense, by the set of all possible behaviours it may generate. Two terms
might for instance be considered equal if they generate the same set of operation
sequences.

Sometimes the terms of the language don’t contain enough information them-
selves to model execution. !is is for example the case in programming languages
that have variables which are globally bound. To find the value of a program term
 + x, one needs to know the value of x. In SOS specifications, this is solved by
using configurations instead of terms in the rules. A configuration is a predefined
structure which models the state of the execution completely. In the case of lan-
guages with variables, a common formulation is to represent the states as pairs of
a term (with the same meaning as described above) and a variable store, written⟨t, Θ⟩. !e variable store is in turn a function from the set of variables to actual
values (or terms in the case of lazy languages). A typical rule in such a language

Here we use the term non-determinism loosely. In process algebra, we only use this term if the
labels in the conclusion of the two rules match. !e key point here is that o%en there is a choice of
several rules that can be applied to a particular term.
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might look like this.

⟨x := n, Θ⟩!→ ⟨є, Θ[x ↦ n]⟩ n ∈ N (.)

Note that this rule has no premises, which means that it applies whenever the term
to be executed matches the le+-hand side of the conclusion.!e rule specifies that
the operation of executing an assignment term, e.g. x := 28, under a store Θ, results
in a configuration with an empty term and a store that is identical to Θ except
for its value in x, which is mapped to  (this is the conventional meaning of the[⋅↦ ⋅] syntax). Formally there is nothing special about using configurations instead
of terms; configurations can themselves be considered ‘‘terms’’ of an extended
language.

Another interesting thing to note about rule.  is that it is in fact a rule schema.
In other words, it represents a countably infinite number of rules, indexed by the
natural number n. !is is common when a part of the syntax of the language comes
from a large domain such as N.

!is thesis consists of three main chapters, each of which is an independent
paper. While their topics are in essence not related to each other, they all make
use of operational semantics in a central manner. Although familiarity with SOS
helps, the informal introduction above should provide the reader with enough
background to read Chapter , which exemplifies a fairly complex use case of
SOS. Chapters  and especially Chapter  use semantics in a more formal way;
these chapters will each introduce the necessary preliminaries needed for their
discussion. !e following section introduces each chapter and highlights their ties
to operational semantics.

. !esis contributions
Over the course of  months, rather than working solely on one single MSc study
project, I have participated in several research projects at Reykjavik University
and at the Technical University of Eindhoven.!e result of this work are research
contributions made by my co-authors and me to a few different fields of Computer
Science. Each of these projects have built on the theory of SOS; in fact one of the
projects (Chapter ) is only about the theory of SOS rule systems, independent of
their use.

!e papers are arranged in order of increasing abstraction. Chapter  uses SOS
to specify the semantics of an authorisation framework in a functional program-
ming language. !e SOS specification presented is non-trivial, but is intended
solely for clarifying the semantics of this particular framework.!e specification is
accompanied by a detailed discussion of the semantics as well as an implementation
of the framework in question.

Chapter  is in the field of Process Algebra. It uses SOS to provide quotienting
techniques a la [Larsen and Xinxin ] for extensions to the process specification
language CCS and Hennessy-Milner logic. CCS has a simple operational seman-
tics and the paper proves, using the semantics, a powerful theorem for studying
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properties, that include past modalities, in a decompositional manner.
Finally, Chapter  goes one abstraction level above SOS specifications and pro-

vides so-calledmeta-theorems about rule systems that guarantee their determinism
and the idempotence of certain operators. !e meta-theorems consist of syntactic
conditions on the rules themselves, such conditions are generally referred to as
SOS rule formats.

In order to give the reader enough background for each chapter, we will now
describe the general field of each paper, its contributions as well as highlight the
specific contributions I made to each.

.. Semantics of Transactional Memory Introspection

Chapter  builds on previous work of [Birgisson et al. ]. In that paper we
present an authorisation architecture called Transactional Memory Introspection,
or TMI.!e motivation for this architecture comes from the fact that So+ware
Transactional Memory has recently become a popular way of avoiding race condi-
tions in concurrent programs. So+ware Transactional Memory, or STM for short,
tackles the issue of shared memory by replacing programmer managed locks with
transactions. Where programmers would conventionally manage access to shared
resources by careful lock placement, they may use STM instead to offload this
responsibility to a machine controlled framework.

When using STM, programmers do away with lock management and instead
mark sections of code as atomic. At run-time, an STM system will, as part of the
program in question, ensure that the accesses a single thread makes to shared
resources inside such atomic sections, appear atomic to other threads. Moreover,
STM provides an isolation guarantee, that threads running inside such atomic
sections do not affect, nor are affected by the actions of, concurrent threads. Se-
mantically this is equivalent to enforcing a rule which says that only one thread
may be running in an atomic section at each time, sometimes referred to as the
serializability of transactions.

!e beauty of STM comes from the fact that the actual implementation does
not enforce such strict policies, as that would hurt performance. Instead, multiple
threads are allowed to execute simultaneously inside atomic sections. Meanwhile,
the STM system will carefully monitor the actions of each one of the threads.
Generally, the threads will be accessing disjoint sets of resources, so most of the
time this simultaneous execution poses no problems. However, in the cases where
threads in atomic sections do conflict in their accesses, the STM system will notice
and simply roll back some or all of the threads involved, and restart their execution
at the start of their atomic sections. A rollback consists of undoing all work done
by the threads, and will be triggered in cases when the execution of a thread has
violated the isolation guarantee of the STM system. In practice, such violations
happen in the minority of cases, so o+en the overhead of this approach will be paid
for by the overhead saved in not using fine grained locking.

To implement the above, an STM system generally must provide

• isolation of concurrent threads in atomic sections,
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• monitoring of resource access to detect conflicts,

• the ability to abort and rollback execution of an atomic section.

In [Birgisson et al. ] we argue that these mechanisms can be very beneficial
to the problem of policy enforcement. Policy enforcement (or authorisation) is
required in programs that handle sensitive data, to ensure that no illegal operations
are performed, such as releasing confidential data or otherwise violate the applica-
tions policy. Traditionally this is done by careful code scrutiny and great effort on
the programming side. Just as with locking, this practice is prone to errors.

Since programs that use STM systems for synchronisation purposes are already
paying the price of monitoring and maintaining the ability to abort code, we
conjectured that these mechanisms could be used to simplify policy enforcement
at a relatively little extra cost. We identified three common problems (or errors) in
modern policy enforcement code.

• Time of check to time of use (TOCTTOU) bugs. !ese happen when a policy
decision ismade prior to access, but the state used for the decisions ismutated
in between by a concurrent thread.

• Difficulty in guaranteeing complete mediation, i.e. ensuring that any access,
explicit or implicit, is accompanied by the relevant policy check. !is is
non-trivial in complex systems and empirical studies show that this is a
source of several security holes in critical so+ware.

• Difficulty in dealing with authorisation errors, when a policy violation has
been detected, the system state must be carefully reset in order not to leak
sensitive information or implicitly cause other policy violations.

!e first of these is simply a synchronisation issue, and could be solved with locking.
However, STM systems provide a synchronisation mechanism with added benefits;
we can make use of its careful monitoring and abort capabilities to severely reduce
the second and third difficulties.

When an application that makes use of TMI (which implies the use of STM)
runs, any accesses made inside atomic sections are inspected by the STM system.
TMI hooks into this inspection and also notifies an application specific security
manager, which checks if the access is allowed by the application policy. At any time,
the security manager has the capability to veto an access due to policy violation,
in which case the abort mechanism of the STM is invoked. In one fell swoop this
solves the issue of complete mediation, since the STM diligently inspects every
access, as well as the issue of error handling since the rollback puts the system
back into a consistent state and the isolation guarantees of the STMmake sure that
no concurrent thread gained knowledge of the actions leading up to the policy
violation.

Our previous work of [Birgisson et al. ] consists of an extended discussion
of the above, accompanied by a proof-of-concept implementation based on a
prototype STM framework for Java [Herlihy et al. ]. However, while working
with TMI and STM systems in general, we discovered that there are a great number
of subtleties in the behaviour of unusual edge cases. An informal discussion,



  

and even an implementation, did not provide a thorough understanding of the
semantics of TMI.!us the contribution presented in Chapter  consists of the
formal specification of the semantics of our architecture, in the form of an extension
to the semantics of the Haskell STM system [Harris et al. ].!e semantics is
accompanied by a matching implementation.

My specific contributions to Chapter  consist of most of the technical work
involved. I built the extension of the Haskell STM semantics, which went through
several iterations of discussions withmy co-author and revisions. In parallel I wrote
the implementation in Haskell, which provided a lot of insight into the design
decisions behind the semantic specification. I wrote the initial versions of most of
the text, except for the introduction and the background on STM and TMI. All
sections underwent a rewriting phase carried out jointly by my co-author and me.

!is work has been accepted for publication in the proceedings of the ACM
SIGPLAN FourthWorkshop on Programming Languages and Analysis for Security
(PLAS ), scheduled for June th  in Dublin, Ireland.

.. DecompositionalReasoning about theHistory of Parallel Processes
Inmodel checking, process specification languages are used to construct behavioural
models of so+ware and hardware systems, in particular reactive systems. !ese
models are then used for detailed analysis of a system’s behaviour. !e process
specification languages are usually accompanied by logic languages that allow
the designer to specify an array of desirable, or non-desirable, properties. Such
properties include

• liveness properties, guaranteeing that the system can always continue no
matter the input it faces;

• safety properties such that the system will never perform certain critical
operations unless it is in a state where it is safe to do so; and

• security properties such as ensuring that operations are properly authorised.

In most cases, the semantics of the specification languages is given as Structural
Operational Semantics. A model is simply a term of the language, where the
possible execution paths given by the semantics define the behavioural capabilities
of themodel.!e properties to be checked are then described as logical expressions,
o+en in logics which include modal operators (e.g. the model can perform a
particular operation) or operators on the possible sequences of operations (such
as on each possible path there is a term with a particular property). Examples of
the former include Hennessy-Milner logic [Hennessy and Milner ] and of the
latter Computation Tree Logic [Clarke and Emerson ] and Linear Temporal
Logic [Pnueli ].

Most specification languages, or process calculi, include an operator that allows
one to describe a process resulting from the parallel composition of two or more
agents Usually this models interleaving concurrency, but in general a model of
a process, which is composed of multiple parallel components, can exhibit the
behaviour of any of the components in addition to certain synchronising behaviour
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where two or more of the components communicate.!is means that the number
of possible behaviours of a system grows exponentially in the number of parallel
components.

Model checking is the act of testing if a certain model satisfies a property de-
scribed by a logical expression. !e resource usage of the algorithms that perform
model checking depends directly on the number of possible behaviours that the
model can exhibit, as the algorithms must exhaustively check every possible be-
haviour. Since many systems are best described as a number of smaller systems
working in parallel such state space explosion is one of the biggest hurdles that
must be overcome to make model checking practically useful.

One way of addressing the problem of the great increase in possible behaviours
when systems are composed in parallel, is decompositional reasoning. Say we have
a systemmade of the components P and Q composed in parallel, usually written as

System = P ∥ Q .

We want to answer the following question: Does System satisfies a given property
described by a logic formula φ? !e number of transitions that the parallel term can
afford can potentially be the product of the transitions afforded by each of P and Q,
and even if P and Q alone are of moderate size, this product can be unmanageably
large since a model checker must examine all the possibilities. However, in many
cases we can use our knowledge of the system Q to construct another property
(i.e. a logic formula) ψ such that the following question of P is equivalent to our
original one of System: Does P satisfy the property ψ? In other words, if we can
prove the bi-implication

P ∥ Q satisfies φ ⇔ P satisfies ψ,

we have reduced the size of the model checking problem to the size of P. However,
the property ψ is constructed from φ and the system Q. !e property ψ may thus
be more complex than φ, and the size of Q has a direct impact on the difference.
However this kind of reasoning has been shown to be efficient in model checking
composed systems [Andersen , Laroussinie and Larsen ].

Another use of decompositional reasoning arises when coupling it with synthe-
sis of models from logical specifications. Suppose that a logical formula φ gives the
specification of the expected behaviour of the system to be built and that our system
has the form P ∥ Q. Assume furthermore that we have been given component Q
off the shelf. A natural question to ask is whether we can we build P so that the
resulting system will satisfy the specification φ. Using quotienting, this question
can be reduced to whether we can build a model of the formula ψ. Such models
can be constructed using known model construction techniques for many logics
of interest.

Decompositional reasoning in essence tries to describe global properties of
composed systems in terms of the local properties of its components, and dates
back to the work of Larsen and Xinxin [Larsen and Xinxin ]. It has been
further developed by several studies [Giannakopoulou et al. , Xie and Dang
, Andersen , Laroussinie and Larsen ]. Chapter  of this thesis aims to
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extend and apply such techniques in a setting which, to the best of my knowledge,
has not been attempted before, namely the setting where the models maintain a
record of their execution history.

In process calculus, one generally talks about states of execution. In the SOS
sense, these states are the terms (or configurations) of the transition system gen-
erated by the semantic rules for the process calculus, starting from a designated
initial state. !e initial state is the term that represents the behavioural model
of the system being described. Just as the initial state encodes the behavioural
capabilities of the system, an intermediate state reached a+er performing some
operations usually represents the behavioural capabilities of the system at that
point. In particular, the intermediate states usually do not contain any information
about the past, i.e. the operations performed by the system before reaching the
aforementioned state.

For many properties that we want to check, this poses no problems. However,
by enriching intermediary states with information about the past behaviour of the
system in reaching them, some kinds of properties become easier to reason about.
!is includes for example epistemic properties, where one looks at the knowledge
gained by agents (partially) observing the system during execution [Dechesne et al.
].

As for decompositional reasoning, the literature is rich with studies of process
systems that involve the past [Hennessy and Stirling , Phillips and Ulidowski
, Laroussinie and Schnoebelen , Nicola et al. ]. Our contribution
in Chapter  is combining the two fields. We build on a core subset of the process
calculus CCS [Milner ] and extend the formalism based on its operational
semantics to states that maintain full information about the execution history of
processes. We similarly extend Hennessy–Milner Logic [Hennessy and Milner
] with modalities that look back in the history, in contrast with the standard
HML modalities that look forward to the possible future behaviours. !e main
theorem of the chapter proves that decompositional reasoning can be applied to
parallel processes in this setting.

!e results presented here are however only a milestone towards a richer theory
of decompositional reasoning about the past, albeit an important milestone. Work
is currently underway to extend these results further, to include the ability to
reason about recursive properties, i.e. those containing fixed-point operators,
which greatly enhances the expressiveness of our extended logic.

!e technical work and writing of Chapter  is for the most part mine apart
from the introduction.

.. Rule Formats for Determinism and Idempotency

When designing a language, or analysing the semantics of existing ones, one is o+en
interested in certain algebraic properties. For example, the language might contain
an operator +, which combines two subterms in some way. Naming an operator +
immediately signals to the user of the language that this operator possesses some
properties of regular arithmetic addition, such as commutativity and associativity.
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!ese are algebraic properties described by the equations

x + y = y + x and (x + y) + z = x + (y + z).
Such properties are o+en desirable to have, both to simplify the mental model one
has of a language and also for technical purposes. For example, associativity can
be very useful for automatically distributing large computations across an array of
processors.

!e properties we are are interested in are many. Besides commutativity and
associativity, other useful properties include zero and unit elements of operators,
and determinism and idempotency. InChapter we are concernedwith the last two;
determinism of operators, which means that at most one operation and subsequent
term can be produced by the execution of a given term; and idempotency of
operators, which is best described by the algebraic equation

f (x , x) = x
where f is an operator of the language. As noted in Section.  earlier in this
introduction, determinism is o+en a very important property. Idempotency is also
a very natural requirement to make of certain operators.

Given an SOS specification of a language, such properties can be proven to hold.
Such proofs generally consists of structural induction on the syntax of the language
and/or on proof structures that arise when the SOS rules are used to deduce the
operations that a term can afford. O+en one has to consider a number of cases,
and for real life languages, both the syntax and the number of rules can become
reasonably large, so that o+en such proofs are tedious listings of a great number of
cases. Such proofs are generally tedious to construct and check, as well as prone to
errors. Furthermore such proofs must be made in the context of one language, and
if the syntax or semantics of an evolving language change any existing proofs must
be adapted and re-checked.

!is has given rise to themeta-theory of SOS, in particular so-called rule for-
mats [Aceto et al. , Mousavi et al. ]. By putting constraints on the SOS
rules used for a language (or a part of a language), one can prove properties such as
those given above, in general for any language which as an SOS specification that
meets the constraints. O+en the constraints can be kept purely syntactical, in which
case it becomes a relatively easy matter to check a certain specification against
those constraints. Such constraints are called rule formats, and are accompanied
by meta-theorems that state that any semantics that meets the constraints defines a
language that has a particular property.

Many rule formats exist already. !ere are rule formats for commutativity
[Mousavi et al. ] and associativity [Cranen et al. ] of operators, and
congruence of behavioral equivalences [Verhoef ], as well as for less algebraic
properties such as non-interference [Tini ] and stochasticity [Lanotte and
Tini ]. In Chapter  we present two related formats. One guarantees the
determinism of a transition system (or a subset thereof) and the other guarantees
idempotency of a given operator.

My contributions to this work include both technical developments and writing.
!is work has been published in the rd International Conference on Fundamentals
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of So+ware Engineering (FSEN’) in April. !e three proofs appearing in
the chapter underwent peer-review through the FSEN program committee, but
were omitted from the conference publication due to space constraints. Otherwise
the published version is identical to the one that appears here.
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chapter two

Semantics of Transactional
Memory Introspection

joint work with Úlfar Erlingsson

. Introduction

!e implementation of security enforcement mechanisms requires special care, as
any flaw may open the door to malicious attacks. !is is especially true in the case
of multithreaded so+ware, as the designer must consider all possible interleavings
of code paths. In [Birgisson et al. ] we presented Transactional Memory In-
trospection (TMI), an architecture that greatly simplifies the implementation of
correct reference monitors on mechanisms that implement So+ware Transactional
Memory (STM) [Harris and Fraser , Herlihy and Moss ] support. In this
paper we present a formal semantics for TMI, as well as a reference TMI imple-
mentation over the Haskell STM.!ese specifications clarify the TMI architecture
and help identify and resolve ambiguities in its implementation.

STM systems provide many useful guarantees that make the implementation
of multithreaded so+ware easier and less error-prone. In particular, STM offers
atomicity and isolation through optimistically executing concurrent code and
monitoring for conflicting accesses to resources. By providing rollbackmechanisms,
STM systems can resolve conflicting accesses by undoing the work of a transaction
and retrying that transaction again, from the beginning.

All STM implementations must perform bookkeeping of accesses (such as
reads and writes) to shared resources. By imposing on this bookkeeping, and the
necessary monitoring and validation steps, TMI provides facilities to support the
creation of robust and correct enforcement mechanisms. TMI provides complete
mediation by enhancing the STM runtime checks against conflicting, concurrent ac-
cesses, and TMI adds the requirement that all accesses must have been successfully
authorized before a transaction is committed. TMI also simplifies error handling.
When unauthorized accesses are detected in a transaction, the transaction is rolled
back and not retried. !is saves the programmer from the onerous and error-prone
task of performing clean-up a+er a failed authorization.

Another common problem in traditional authorization is time of check to time
of use bugs. Such bugs arise when an authorization check is used to decide if a
dangerous operation should be performed, and when the interleaving of code exe-


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cution may cause state changes that invalidate that decision, before the dangerous
operation is actually performed. TMI resolves this problem, by making use of STM
mechanisms to execute both the authorization check and the dangerous operation
within a single transaction.

In [Birgisson et al. ] we give a comprehensive, informal overview of the
TMI architecture and also evaluate a Java TMI implementation built on the DSTM
library [Herlihy et al. ]. In this previous, companion paper, we also discuss
the relationship between TMI and other approaches, such as aspect-oriented and
transactional techniques for security enforcement.

In this current paper, we give a more formal treatment of TMI, and provide a
clear, well-defined structural operational semantics [Plotkin a] for the TMI
architecture. Our TMI semantics builds on the well founded semantics for the the
Haskell STM system in [Harris et al. ], and is accompanied by an implementa-
tion over the Haskell STM system.

We found that the development of a formal semantics alongside an imple-
mentation helped us us disambiguate design choices and resolve ambiguities. In
particular, the formal semantics allowed us to safely combine multiple TMI actions
and different security managers into a single, atomic authorization decision.!e
implications of such compositionality are not clear, given only informal reasoning,
and, indeed, some of our initial implementation strategies did not provide correct
enforcement. However, as described further in Section , when combined with a
formal semantics, we can establish that our TMI implementation correctly enforces
the intended security policy.

!e structure of the paper is as follows. In Section  we give the necessary
background, including STM systems and how TMI makes use of their mechanisms,
as well as an overview of the Haskell STM implementation. Section  covers TMI
in greater detail and describes its Haskell implementation from the user standpoint.
Section  defines the formal semantics of TMI, building on existing semantics for
STM Haskell. Section  describes the key elements of our Haskell implementation
and Section  discusses future work.

. Background

.. STM and TMI
STM provides attractive guarantees for multithreaded so+ware; namely atomicity,
consistency and isolation of specifically marked blocks of code in transactions. In
general, STM implementations must do so by performing
● careful monitoring of the resources that are accessed within a transaction,
● validation of the accesses of concurrent transactions, and
● complete rollback of the effects of aborted transactions.

TMI builds on this machinery and allows security enforcement to benefit from
the STM guarantees. TMI helps the programmer to write correct enforcement
mechanisms and simplifies error-handling. In [Birgisson et al. ] we outline
three main benefits of TMI:
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Complete mediation. TMI provides complete mediation by implicitly invoking
the reference monitor before any effects of a transaction are permanently com-
mitted. !e reference monitor validation checks are able to inspect the resource
access logs of the STM and may veto the commit if an application specific policy is
violated. In general, this requires that STM mechanisms provide strong atomicity,
i.e. resources marked for transactional scrutiny may not be accessed outside the
scope of a transaction.

Freedom fromTOCTTOUbugs. Time of check to time of use (TOCTTOU) bugs
arise in conventional enforcementmechanismswhen interleaved threadsmay affect
the policy decisions of each other. For example, a thread may make a policy-based
decision to allow access to a certain resource, e.g. reading a memory location. Be-
fore that operation is actually performed, execution may be preempted by another
thread. !at thread can change the global state so that the policy decision becomes
invalid, e.g. by writing privileged information into the memory location.

!is problem is implicitly solved by using STM, which guarantees that transac-
tions are isolated and cannot affect the policy decisions of each other.

Simplified error handling. In the event of an authorization failure, TMI uses the
STM facilities to completely roll back the effects of the transaction in question and
raise an appropriate exception to the code that initiated the transaction.!is frees
the programmer from having to undo state changes leading up to the unauthorized
operation, a common source of errors [Weimer and Necula].

.. Haskell STM
For a formal treatment, we build our semantics and implementation on those
of the Haskell STM [Harris et al. ], which in turn is built on Concurrent
Haskell [Peyton Jones et al. ]. Concurrent Haskell is an extension to Haskell
, a lazy (i.e. call-by-name), pure, functional language. It supports concurrent
threads and communications between them. Non-pure computations are modelled
with monads [Peyton Jones and Wadler ]; this includes computations with
side-effects such as input/output and mutable state.

!e main entry to a Haskell program is an instantiation of the I/O monad, i.e.
a value that represents an action of the type IO (). An action of this type can, in
addition to performing pure computation, perform other I/O actions by way of
composing smaller actions into larger ones. For an example, Haskell standard li-
braries define the basic I/O actions getChar and putChar, which read from standard
input and write to standard output, respectively.!e most common composition
is simple sequencing. For example the composed I/O action

main = do { c <- getChar; putChar c; putChar c }

defines an action that, when executed, will perform the three actions listed in
sequence.

In general a value of type IO a represents an action that when executed, may
perform some I/O operations as defined by the Haskell libraries and then result in
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a value of type a. Pure functions cannot execute such actions without jeopardizing
their purity and this is neatly enforced by the Haskell type system. Naturally, I/O
actions are however free to run pure computations. !us the only way to get at
the value of an action is if it is a part of a bigger I/O action. !e Haskell runtime
bootstraps the whole process by executing the special I/O action called main.

In addition to conventional input and output, I/O actions can perform reads
and updates of mutable memory cells. !e type IORef a represents a mutable cell
that contains a value of type a. Haskell provides the basic I/O actions newIORef,
readIORef and writeIORef formanipulation of such cells. As with other I/O actions,
these operations can only be used when composing larger I/O actions.

Concurrent Haskell supports explicit forking of threads through the I/O action
forkIO.

forkIO :: IO a -> IO ThreadID

forkIO takes another I/O action as a parameter and spawns a new thread to ex-
ecute the action, immediately returning a newly allocated thread identifier. For
further discussion of concurrency we refer to [Peyton Jones ] or tutorials such
as [Peyton Jones and Singh].

!e Haskell STM is based on a monadic type similar to the one for I/O actions,
namely STM a. A value of this type represents an STM action, which when executed
may perform smaller STM actions and result in a value of type a. STM actions
may contain pure computations as well, but note that they cannot contain e.g. I/O
actions. !e main STM actions provided are actions that allow manipulations of
another kind of memory cells, which have the type TVar a, where a is the type of
value that the cell holds. !e actions are newTVar, readTVar and writeTVar, so they
have the same power as their I/O counterparts. !e important thing to note is that
sets of IORefs and TVars are kept separate; one can only be used in I/O actions and
the other in STM actions.

STM actions can be composed. Similar to I/O actions, the most common
composition is sequencing, but in addition Haskell STM provides the basic STM
action retry and a combinator orElse. !e action retry is a blocking operation for
STM actions, which restarts the current transaction with potentially updated TVar
contents. By issuing retry, the programmer is stating that the current transaction
cannot finish for the state of TVars it started in. !e Haskell STM provides an
optimized implementation of retry. !is implementation captures the set of TVars
that a transaction has read before the retry, and suspends the transaction until
at least one of those TVars has been updated. !is makes sense because the only
outside factors that can affect the execution of an STM action are the values of the
TVars it reads.

If t1 and t2 are STM actions, then t1 `orElse` t2 is an STM action that first
tries performing t1 on its own. If t1 invokes the retry action, then the combined
action rolls back the effects of t1 and tries t2 instead. If that one retries also, the
whole action retries, but waits for updates on the variables read by both t1 and t2.

For an example how the above can be used for synchronization primitives such
as communication channels, see Section  of [Harris et al. ].

While the basic STM actions and their compositions give us a way to build
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larger STM actions, we have not discussed how those actions can be run or how
they relate to transactions. For this, STM Haskell provides us with the atomically
function, whose type is

atomically :: STM a -> IO a

!is function gives an I/O action that, when performed, will execute the input STM
action. !e atomicity comes from the fact that STMHaskell will guarantee that the
effects that the STM action has on TVars are atomic, i.e. they all become visible at
once and that what happens inside the STM action is not affected by concurrent
threads.

!e Haskell STM system does this by monitoring concurrent invocations of
STM actions, taking care of rolling them back if they conflict with each other
and retrying them. As an example, the following program creates a transactional
variable holding a counter and spawns three threads that each increments the
counter atomically.

increment :: TVar Int -> STM ()
increment counter = do x <- readTVar counter

writeTVar counter (x + 1)

main = do c <- atomically (newTVar 0)
forkIO (atomically (increment c))
forkIO (atomically (increment c))
forkIO (atomically (increment c))

!e increment action is a classical example of where a race condition might occur
in a traditional setting, but in our situation the STM system will guarantee the
atomicity of each invocation.

. Transactional Memory Introspection
In this section we give an overview of the TMI architecture and how it is imple-
mented. We then describe our Haskell implementation from a user standpoint.

.. Overview of TMI
As described in our previous work [Birgisson et al. ], the TMI architecture
aims to raise the level of abstraction in the implementation of security enforcement
mechanisms. It allows the programmer to decouple application logic from secu-
rity enforcement. Just as STM frees the programmer from worrying about lock
acquisition order and other synchronization efforts, TMI can be used to eliminate
concerns about check placement, race conditions and exceptional execution paths.

TMI provides these guarantees by imposing on the STM system.!e program-
mer marks certain variables as security sensitive. !is implicitly indicates to the

While [Harris et al. ] uses the name atomic, the actual implementation of the Glasgow
Haskell Compiler uses atomically.
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STM system that these variables are shared, and ensures that the STM system will
protect against race conditions in accesses to the variables. TMI enhances the
monitoring of these security sensitive variables by ensuring that an access-control
reference monitor is invoked every time that the variables are accessed.

Time of policy evaluation with TMI: !e TMI architecture only loosely con-
strains when a policy must be evaluated, and in [Birgisson et al. ] we consider
a number of alternatives. In particular, TMI enforcement can be eager or lazy. With
eager enforcement, every access to a variable triggers the reference monitor, which
immediately checks it against the relevant policy. If authorization is denied, the
transaction is immediately aborted. With lazy enforcement, accesses to variables
are simply logged (o+en they are already logged by the STM) and the logs are
inspected by the reference monitor only at the end of the transaction. If any of the
logged accesses are invalid, the whole transaction is aborted.

A key property of TMI enforcement is that policy decisions can be evaluated
at any time, as long as they are evaluated in a serialized fashion, and evaluation is
fully complete before the transaction commits. A good STM system will ensure
that each transaction is executed in isolation, such that aborting one will have the
same semantics as not having started it. !is said, for our formal treatment and
Haskell implementation, we focus on lazy enforcement only.!us, the following
discussion only deals with the lazy variant unless otherwise noted.

Utilizing TMI enforcement: To use TMI, the programmer declares a set of vari-
ables as security relevant. !is implicitly indicates to the underlying STM system
that those variables should be protected against race conditions.!is means the
values held by these variables can only be read or modified within a transaction,
and that the STM system takes care of resolving conflicting accesses by concurrent
transactions. !is also means that, upon every variable access, TMI appends infor-
mation identifying the variable in question to a transaction-specific introspection
log. In particular, the introspection log will contain information about the creation,
reading, and writing of the security sensitive variables.

In addition, TMI requires that all sections of code that access security-sensitive
variablesmust be explicitlymarked as atomic. To execute such atomic code sections,
programmers initiate a TMI transaction and provide a reference to the atomic block
and a security manager. !e security manager is a block of code (or closure) that
encodes the intended, application-specific security policy, and is able to determine
whether a transaction introspection log satisfies the security policy.!e security
manager closure includes the active principal, and other auxiliary information that
is needed to check policy compliance.

Finally, transaction commit plays a special role in TMI enforcement. TMI
runs atomic blocks as transactions in the underlying STM system, but changes
the semantics of transaction commit. A+er a TMI atomic block has finished
execution, but before it is committed, TMI ensures that the security manager
has fully evaluated whether the transaction introspection log complies with the
intended security policy. Importantly, this evaluation occurs within the same STM
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transaction as the execution of the atomic block, and a commit of the transaction
is attempted only if the security manager returns success.

Even when the transaction has complied with the security policies, the at-
tempted commit may still fail, and the transaction is retried, in the case when
the STM system finds conflicting concurrent accesses. Also, if the security man-
ager finds the transaction in violation of policy, all state changes are rolled back—
including changes to the security manager state, in the case of history-based
policies—and, instead of retrying the transaction, an exception is raised to the
invoker of the atomic block.

A simple example: !e following pseudo code shows what so+ware that makes
use of TMI-based security enforcement might look like. (Note that the code makes
use of function-argument currying.)

declare sensitive accounts = array of Account

function withdraw(account, amount):
account.balance = account.balance - amount

function security_manager(user, log):
if log contains <withdrawal from account>:

if account.owner == user:
return Allowed

return Denied

main program:
user = aquire_login_credentials()
try:

transaction with security_manager(user):
withdraw(get_account(123456), 42)

catch AuthorizationFailed:
tell user about error

In this code, two aspects are especially noteworthy. First, security enforcement
code is completely decoupled from the application logic and the function withdraw
performs no authorization. Even so, complete mediation is ensured, since the
introspection log is implicitly updated by the TMI reference monitor upon each
access to account variables.

Second, in the case of authorization failure (e.g. a withdrawal from a different
user’s account), the error handler need only consider how to indicate the error
to the user. !e error handler need not clean up any mess: the state changes that
happened during the transaction (if any) have already been rolled back when the
error handler starts execution. Although perhaps not apparent in this simplified
example, there is ample evidence that writing correct cleanup code is difficult,
especially when multiple security-relevant operations are involved [Weimer and
Necula].
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x , y ∈ Variabl e
r, t ∈ Name
c ∈ Char

V ∶∶= r ∣ c ∣ /x->M∣ return M ∣ M >>=N∣ putChar c ∣ getChar∣ throw M ∣ catch M N∣ retry ∣ M `orElse` N∣ forkIO M ∣ atomically M∣ newTVar M∣ readTVar r ∣ writeTVar r M∣ newTMIVar N M∣ readTMIVar r ∣ writeTMIVar r M∣ authorized N M ∣ liftSTM M∣ getlog ∣ UnauthorizedError
M ,N ∶∶= x ∣ V ∣ M N ∣ . . .

Figure. : Syntax of values (V ) and terms (N ,M)

While the above observations form the two main benefits of the TMI architec-
ture, the third is freedom from TOCTTOU bugs. Without TMI, this example code
might suffer from TOCTTOU race conditions, e.g., if accounts could change own-
ers. However, with TMI, such account-ownership changes would be isolated, and a
transaction would be guaranteed to see the same owner throughout its execution.

.. TMI in Haskell

We saw earlier how Concurrent Haskell uses the type system to confine operations
on shared variables to STM actions, and provides a single function to wrap STM
actions into an atomic I/O action. For TMI, we do something very similar. We
confine operations on security sensitive variables to TMI actions, and provide a
single function to turn a TMI action into an STM action and associating it with a
security manager at the same time.

Figure.  shows the extensions of STM Haskell with the TMI extensions (high-
lighted). We define a new monad that represents TMI actions and operations on
sensitive variables. In addition, we li+ all standard STM functions to their TMI
counterparts. !is is done so that an existing Haskell STM program can be easily
adapted to TMI with minimal changes to their code.!e TMI monad also encap-
sulates state, namely the introspection log of a transaction.!e introspection log
contains entries which specify the access type (create, read or write) of a variable
and the security descriptor of a variable. Security descriptors are provided by the
programmer when she creates sensitive variables and contain the metadata about
the variable that is necessary for authorization, such as the owner of an account,
permissions of a file, etc.
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Since the type of security descriptors is application specific, our new monad
type is polymorphic,

TMI d a

where d is the type of descriptors and a is the type returned by the action. For
security sensitive variables, we have a type similar to IORef a and TVar a,

TMIVar d a

An instance of this type is a cell with a security descriptor of type d and a value of
type a. While the value can change over time, the security descriptor is specified
when the cell is created and cannot change a+er that. Creation, reading and writing
of cells is performed with the following set of functions.

newTMIVar :: d -> a -> TMI d (TMIVar d a)
readTMIVar :: TMIVar d a -> TMI d a
writeTMIVar :: TMIVar d a -> a -> TMI d ()

For an example, the following code defines a descriptor type for a bank account.
!e account itself is represented by a simple integer.

-- Security descriptor for accounts
data AccountDescr = AccountDescr {

acctOwner :: String,
acctNumber :: Int

}
type Account = TMIVar AccountDescr Int

createAccount :: String -> Int -> Int
-> TMI Account

createAccount owner number balance =
newTMIVar (AccountDescr owner number) balance

!e next function demonstrates reading and writing of the security-relevant ac-
count variables.

deposit :: Account -> Int -> TMI AccountDescr ()
deposit acct amount =

do balance <- readTMIVar acct
writeTMIVar acct (balance + amount)

To turn a TMI action into an STM action, we need to associate it with a security
manager, i.e. a boolean function that evaluates the transaction introspection log of
security-relevant accesses and determines if the transaction should be aborted. As
an input to this function, TMI defines the type of an introspection log.

data AccessType = CreateVar | ReadVar | WriteVar
type TMILog d = [(AccessType, d)]

To specify the application specific policy, the programmer must supply the security
manager, a function of the type TMILog d -> Bool. !is function, along with a



  .     

TMI action is passed to the authorized function. !e simplest security manager is
one that performs no authorization and simply allows all operations.

allowAll :: forall d. TMI d a -> STM a
allowAll tx = authorized (const True) tx

A slightly more complex example is a security manager that looks at all Accounts
touched by a transaction and verifies that they belong to the current user. !e
current user is passed to the security manager as the first argument, and this
currying ensures that we satisfy the type required by authorized.

auth :: String -> TMILog AccountDescr -> Bool
auth user thelog = all checkowner thelog

where
checkowner :: (AccessType, AccountDescr)

-> Bool
checkowner (_,descr) =

user == (acctOwner descr)

-- Defined by the TMI module:
-- authorized :: (TMILog d -> Bool)
-- -> TMI d a
-- -> STM a

main =
do acct <- atomically (allowAll mkAccount)

atomically (doDeposit acct "alice") -- OK
atomically (doDeposit acct "bob") -- FAILS

where
mkAccount = createAccount "alice" 123456 0
doDeposit acct user =

authorized (auth user) (deposit acct 42)

Since TMI actions are ultimately executed as STM actions, we also provide a
li+ing operation to li+ STM operations into TMI operations, liftSTM. !is allows
for the embedding of an STM action inside a TMI action. Once the TMI action is
turned into an STM action via authorized, the embedded action is just composed
with it in the normal way. An interesting effect of this is that it allows for nested calls
to authorized. While this might cause ambiguity for other implementations, in this
Haskell-based implementation such nesting has clear and well-defined semantics,
and can therefore be permitted. In fact, we will make explicit use of such nesting
in the following sections to implement privilege amplification.

TMI actions are also composable in the same way STM actions are.!is means
the monadic bind acts as sequential composition and we provide orElseTMI and
retryTMI that behave as their STM counterparts. When TMI actions composed
with orElseTMI are turned into STM actions, via atomically, the security manager
only sees the log entries for TMIVar-actions that are actually committed or could
have affected the committed actions.
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!read soup P,Q ∶∶= Mt ∣ (P ∣Q)
Descriptors D! ∶∶= M ∪ {#}

HeapΘ ∶∶= r ↪ M ×D!
Allocations∆ ∶∶= r ↪ M ×D!
Access types T ∶∶= {, ,}

Log Σ ∶∶= list monoid ([],⊕) over T × D
Evaluation E ∶∶= [⋅] ∣ E >>=M ∣ catch E M
contexts S ∶∶= [⋅] ∣ S >>=M

P ∶∶= St ∣ (P∣P) ∣( P∣P)
Action a ∶∶= !c ∣ ?c ∣ є

Figure. : Program state and evaluation contexts

. Formal semantics of TMI
To formalize the semantics of TMI, we build on the semantics for the Haskell
STM presented in [Harris et al. ]. !e semantics is a structural operational
semantics in the style of Plotkin [Plotkin a]. For the sake of completeness and
to help the reader understand our extensions, we give a cursory explanation of the
concepts of the semantics from [Harris et al. ] so that a reader not familiar
with it may understand our extensions.

It is not obvious that the ideas presented in the previous section are indeed
always safe. For example, we could not be sure that the nesting of TMI actions
inside an STM action — in turn li+ed to yet another TMI action — would result
in a reasonable behavior. !e construction of the following semantics greatly
clarified our understanding of such subtleties. Our first dra+s of the semantics
revealed several ambiguities that were later resolved. Furthermore, constructing
semantics for our intermediate implementation ideas sometimes revealed cases
where incorrect behavior was possible, and the intended security guarantees of
TMI were violated. Initially, for instance, a clear distinction of security-relevant
data was missing and, while TMI actions naturally supported STM functionality,
we had to explore several options to find the support for flexible STM and TMI
combinations that is present in the final semantics.

In particular, the final semantics provides a a clear separation between TMI
and STM actions, which allows STM actions to be li+ed to the TMI level and
ensures correct behavior when nesting TMI and STM actions, or several TMI
actions, one within another. !is nesting support provides powerful composability
properties, and makes it possible to safely combine multiple TMI actions and
different security managers into a single, atomic authorization decision. Without a
formal semantics, the implications of such composability would have been unclear,
and its correctness suspect. However, in our final semantics, given below, it is
straightforward to see that the TMI security policy enforcement guarantees are
always correctly maintained.

Figures.  through.  give the operational rules that describe the steps a
program may take. At the top level, a program transforms a state of the form P; Θ
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via a labelled transition.
P; Θ a→ Q; Θ′

P represents a program term in the syntax of Figure.  while Θ stands for amemory
store, a partial function from variable names to annotated terms. An annotated
value is a tuple (t, d) where t is a program term and d is a value that holds the
security relevant description of the relevant variable. !e labels on transitions
represent the program’s input and output actions. Q and Θ′ represent the term
that is le+ unevaluated and the updated store a+er a transition, respectively.

To model atomicity of transactions, separate relations represent the top level
I/O transitions and the STM actions. We extend this by adding a third relation
representing the security relevant TMI actions. Furthermore we add a simple
relation for evaluation of security managers under the context of an immutable
transaction log.

Execution of a program proceeds by non-deterministically picking a program
term from a collection of terms, each representing a separate thread of execution.
One I/O transition of this term combined with the current store is performed and
then the process is repeated. !is models interleaved concurrency at the level of
I/O transitions. STM transitions however can only be performed as a required
premise of the atomically operator at the I/O level, and thus appear in this model
as a single atomic step.

As mentioned in [Harris et al. ] there is no need to represent rollback, but
contrary to the semantics in that paper, our extensions do need to formalize the
notion of the transaction log as it is no longer purely an implementation detail. For
simplicity though, we only model the log for security sensitive operations as they
are the only ones relevant to the semantics of TMI.

.. Syntax, states and evaluation contexts
!e syntax of terms for a subset of STM Haskell is given in Figure.  with our
TMI-related extensions (highlighted). Terms and values are standard except that
the application of somemonadic operators are considered values, a technique again
li+ed from [Harris et al. ]. !e do-notation used up until now is standard
syntactic sugar for the monad bind and return operations.

do {x<-e; Q} ≡ e >>= (/x -> do {Q})
do {e; Q} ≡ e >>= (/_ -> do {Q})

do {e} ≡ e

Figure.  defines some symbols used in the semantics. !e metavariable D
represents a set of terms used to describe the security properties of variables. We
extend this set with an invalid value % and write D" for the extended set. A state
of a computation is a pair (M , Θ) of a term that remains to be evaluated and a
store Θ. !e store maps variable names to terms and their variable descriptors. If
a variable does not have a suitable descriptor, we use % as a fill-in. !is is used to
distinguish security-relevant variables from other variables.

!e set of access types, T , consists of three constants, each representing an
operation performed on variables. An introspection log Σ is a list monoid of pairs
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Administrative transitions M → N

M → V if V⟦M⟧ = V and M ≢ V (EVAL)
return N >>=M → M N (BIND)
throw N >>=M → throw N (THROW)

retry >>=M → retry (RETRY)

I/O transitions P; Θ a→ Q; Θ′

P[putChar c]; Θ !c→ P[return ()]; Θ (PUTC)
P[getChar ]; Θ ?c→ P[return c]; Θ (GETC)
P[forkIO M]; Θ → (P[return t] ∣Mt); Θ t ∉ P, Θ,M (FORK)

P[catch (return M)N]; Θ → P[return M]; Θ (CATCH)
P[catch (throw M)N]; Θ → P[N M]; Θ (CATCH)

M → N
P[M]; Θ → P[N]; Θ (ADMIN)

M; Θ, {} ∗⇒ return N ; Θ′ , ∆′
P[atomically M]; Θ → P[return N]; Θ′ (ARET)

M; Θ, {} ∗⇒ throw N ; Θ′ , ∆′
P[atomically M]; Θ → P[throw N]; Θ ∪ ∆′ (ATHROW)

Figure. : Evaluation of terms and monad operations and IO actions

(t, d) where t is an access type and d is a descriptor term; we use [] for the empty
list and⊕ for concatenation, and in the semantics we use [⋅] as a constructor. Other
symbols are conventional and taken from [Harris et al. ].

For a (partial) function f whose co-domain is a cross-product of two or more
sets, and an integer i, we write f i instead of π i ○ f where π i is the standard i-th
projection function. For convenience, we introduce the following notation for
filtering logs. If ∆ is a store and Σ is an introspection log, we define the ∆-restriction
of Σ, indicated byΣ ∣∆ , thus

[]∣∆ = []
([(t, d)]⊕ Σ′)∣∆ = ⎧⎪⎪⎨⎪⎪⎩

[(t, d)]⊕ Σ′∣∆ if d ∈ img(∆)
Σ′∣∆ otherwise

Intuitively, Σ∣∆ is the list of entries from Σ which apply to variables defined by ∆,
where variables are identified by their security descriptors.

Interleaving of operations is modelled with the evaluation context P, o+en
referred to as a thread soup. !rough this evaluation context the semantics can
non-deterministically choose a term for reduction from the parallel construct, each
term representing a thread. Haskell terms are usually reduced according to the
evaluation context E, which allows for reductions of the right hand side of the
>>= operator as well as within the body of a catch term. However, since we want
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to handle exceptions in a specific manner for STM and TMI actions, we will use
the simpler context S which requires the operational semantics rules to specify
explicitly how catch terms are handled.

.. Operational semantics
Figures.  through.  detail the transition relations of our semantics. Figures.
and.  are mostly the same as in the semantics of [Harris et al. ], parts added
for TMI are indicated with a darker ink. !e semantics uses several different
transition systems that are layered such that a sequence of reductions in one layer
becomes one reduction in the next layer above.!is makes a sequence of transitions
in a lower layer appear as one atomic transition at the higher level.!ere are three
main layers - the top level I/O context, the STM context and the TMI context. An
auxiliary transition system is used to reduce authorization functions.

Values and I/O transitions: !e admin transitions of Figure.  define the evalua-
tion of terms to values via a function V . !is function is standard and its definition
omitted here. Administrative transitions also include the behaviour of the monadic
bind operator >>=.

!e top level I/O actions are described by the labelled → relation.!ey operate
on the P context, which allows for picking any program term from the thread soup
for reduction. !e first two rules are I/O primitives. !e rule FORK is used to
create a new thread and enter it into the thread soup, choosing a fresh thread id t.
!e rules CATCH and CATCH deal with exception handling as described in the
appendix of the post-publication, extended version of theHaskell semantics [Harris
et al. ]. !e ADMIN rule allows for li+ing of administrative transitions to the
I/O transition relation. !is is done to reduce repetition, as the administrative
rules also apply to the STM and TMI transition relations, which have a similar
li+ing rule. Finally, the rules ARET and ATHROW enable the use of the atomic
combinator to li+ a sequence of reductions in the STM transition relation to a
single I/O transition.

If the series of STM reductions results in a return value, the effects on the store
are retained. If it however results in an exception (i.e. a throw value), the modi-
fications to existing variables are discarded but any new allocations are retained.
!is is necessary as the exception value may hold references to newly allocated
variables.

STM transitions: !e STM transitions define the behaviour of STM actions. !e
states used in these transitions are extended from the I/O transitions by adding a
separate store for new allocations ∆, and an introspection log Σ. A transition of
the form

M; Θ, ∆,Σ ⇒ N ; Θ′ , ∆′ , Σ′
represents a reduction of the term M to the term N . Some variables in Θ may
be introduced or altered to yield Θ′. ∆ is a store similar to Θ, that only tracks
newly allocated variables while Σ is a log of accesses to TMI variables. ∆ and Σ
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STM transitions M; Θ,∆ , Σ ⇒ N ; Θ′ , ∆′ , Σ′

S[readTVar r]; Θ,∆ , Σ ⇒ S[return Θ(r)]; Θ,∆ , Σ
if r ∈ dom(Θ) andΘ (s) = # (READ)

S[writeTVar r M]; Θ,∆ , Σ ⇒ S[return ()]; Θ[r ↦ (M , #)], ∆, Σ
if r ∈ dom(Θ) andΘ (s) = # (WRITE)

S[newTVar M]; Θ,∆ , Σ ⇒ S[return r]; Θ[r ↦ (M , #)], ∆[r ↦ (M , #)], Σ
r ∉ dom(Θ) (NEW)

M → N
S[M]; Θ,∆ , Σ ⇒ S[N]; Θ,∆ , Σ

(AADMIN)

M ; Θ,∆ , Σ ∗⇒ return N ; Θ′ , ∆′ , Σ′
S[M ‘orElse‘ M]; Θ,∆ , Σ ⇒ S[return N]; Θ′ , ∆′ , Σ′ (OR)

M ; Θ,∆ , Σ ∗⇒ throw N ; Θ′ , ∆′ , Σ′
S[M ‘orElse‘ M]; Θ,∆ , Σ ⇒ S[throw N]; Θ′ , ∆′ , Σ′ (OR)

M ; Θ,∆ , Σ ∗⇒ retry; Θ′ , ∆′ , Σ′
S[M ‘orElse‘ M]; Θ,∆ , Σ ⇒ S[M]; Θ,∆ , Σ

(OR)

M; Θ, {}, [] ∗⇒ return M′; Θ′ , ∆′ , Σ′
S[catch M N]; Θ,∆ , Σ ⇒ S[return M′]; Θ′ , ∆ ∪ ∆′ , Σ ⊕ Σ′ (XSTM)

M; Θ, {}, [] ∗⇒ throw M′; Θ′ , ∆′ , Σ′
S[catch M N]; Θ,∆ , Σ ⇒ S[N M′]; Θ ∪ ∆′ , ∆ ∪ ∆′ , Σ ⊕ (Σ′∣∆′) (XSTM)

M; Θ, {}, [] ∗⇒ retry; Θ′ , ∆′ , Σ′
S[catch M N]; Θ,∆ , Σ ⇒ S[retry]; Θ,∆ , Σ

(XSTM)

M; Θ, {}, [] ∗⇀ return M′; Θ′ , ∆′ , Σ′ Σ′ ⊢ N ∗↝ return N ′
S[authorized N M]; Θ, ∆,Σ ⇒ S[return M′]; Θ′ , ∆′ , Σ (AURET)

M; Θ, {}, [] ∗⇀ throw M′; Θ′ , ∆′ , Σ′ Σ′ ⊢ N ∗↝ return N ′
S[authorized N M]; Θ, ∆,Σ ⇒ S[throw M′]; Θ′ , ∆′ , Σ (AUTHROW)

M; Θ, {}, [] ∗⇀ return M′; Θ′ , ∆′ , Σ′ Σ′ ⊢ N ∗↝ throw N ′
S[authorized N M]; Θ, ∆,Σ ⇒ S[throw UnathorizedError]; Θ′ , ∆′ , Σ (AURET)

M; Θ, {}, [] ∗⇀ throw M′; Θ′ , ∆′ , Σ′ Σ′ ⊢ N ∗↝ throw N ′
S[authorized N M]; Θ, ∆,Σ ⇒ S[throw UnauthorizedError]; Θ′ , ∆′ , Σ (AUTHROW)

M; Θ, {}, [] ∗⇀ retry; Θ′ , ∆′ , Σ′
S[authorized N M]; Θ, ∆,Σ ⇒ S[retry]; Θ′ , ∆′Σ (AURETRY)

Figure. : Operational semantics for STM actions
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TMI transitions M; Θ, ∆,Σ ⇀ N ; Θ′ , ∆′ , Σ′

S[readTMIVar r]; Θ, ∆,Σ ⇀ S[return Θ(r)]; Θ, ∆,Σ ⊕ [(, Θ(r))]
if r ∈ dom(Θ) andΘ (r)) ≠ # (TMIREAD)

S[writeTMIVar r M]; Θ, ∆,Σ ⇀ S[return ()]; Θ[r ↦ (M , Θ(r))], ∆,Σ ⊕ [(, Θ(r))]
if r ∈ dom(Θ) andΘ (r)) ≠ # (TMIWRITE)

S[newTMIVar N M]; Θ, ∆,Σ ⇀ S[return r]; Θ[r ↦ (M ,N)], ∆[r ↦ (M ,N)], Σ ⊕ [(,N)]
r ∉ dom(Θ) (TMINEW)

M → N
S[M]; Θ,∆ , Σ ⇀ S[N]; Θ,∆ , Σ

(TADMIN)

M; Θ, ∆,Σ ∗⇒ N ; Θ′ , ∆′ , Σ′
S[liftSTM M]; Θ, ∆,Σ ⇀ S[N]; Θ′ , ∆′ , Σ′ (LIFTSTM)

M ; Θ,∆ , Σ ∗⇀ return N ; Θ′ , ∆′ , Σ′
S[M ‘orElse‘ M]; Θ,∆ , Σ ⇀ S[return N]; Θ′ , ∆′ , Σ′ (TOR)

M ; Θ,∆ , Σ ∗⇀ throw N ; Θ′ , ∆′ , Σ′
S[M ‘orElse‘ M]; Θ,∆ , Σ ⇀ S[throw N]; Θ′ , ∆′ , Σ′ (TOR)

M ; Θ,∆ , Σ ∗⇀ retry; Θ′ , ∆′ , Σ′
S[M ‘orElse‘ M]; Θ,∆ , Σ ⇀ S[M]; Θ,∆ , Σ

(TOR)

M; Θ, {}, [] ∗⇀ return M′; Θ′ , ∆′ , Σ′
S[catch M N]; Θ,∆ , Σ ⇀ S[return M′]; Θ′ , ∆ ∪ ∆′ , Σ ⊕ Σ′ (XTMI)

M; Θ, {}, [] ∗⇀ throw M′; Θ′ , ∆′ , Σ′
S[catch M N]; Θ,∆ , Σ ⇀ S[N M′]; Θ ∪ ∆′ , ∆ ∪ ∆′ , Σ ⊕ (Σ′∣∆′) (XTMI)

M; Θ, {}, [] ∗⇀ retry; Θ′ , ∆′ , Σ′
S[catch M N]; Θ,∆ , Σ ⇀ S[retry]; Θ,∆ , Σ

(XTMI)

Authorization transitionsΣ ⊢ M ↝ N

M → N
Σ ⊢ E[M] ↝ E[N] (AUADMIN)

Σ ⊢ E[getlog] ↝ E[return hs(Σ)] (GETLOG)

Σ ⊢ E[catch (return M)N] ↝ E[return M] (ACATCH)

Σ ⊢ E[catch (throw M)N] ↝ E[N M] (ACATCH)

Figure. : Operational semantics for TMI actions
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are transaction local, i.e. they are reset at the start of each atomic sequence of
reductions in the STM system, see e.g. rule (ARET).

!e first three rules define actions on transactional variables. !ey operate
on the store Θ but only on those variables where the second component (i.e. the
security descriptor) is %. !is is what differentiates regular transactional variables
from security sensitive variables.

Other rules in the STM transition system define the behavior of STM combina-
tors as described in Section.. . We have used the revised semantics of exception
handling from the later versions of [Harris et al. ], namely the rule XTM, to
ensure that when a term reduction results in a caught exception, all effects of that
reduction are rolled back except for new allocations.

TMI transitions: A key TMI addition to the STM transitions is the handling
of authorized. !e rules AURETn and AUTHROWn specify that for a term of
the form (authorized N M) if M evaluates to a return or throw value, then that
value is propagated only if N evaluates to a return value under the authorization
relation (see later). If evaluation of the authorization term N raises an exception,
 a fixed exception containing no information about the local transaction state is
thrown. !is triggers a rollback of any updates performed during that invocation
of authorized.

We should note that in the case of an exception, including authorization failure,
new allocations are retained for the reason described above. In the implementation,
this is not done explicitly as deallocation of references is handled by the garbage
collector. Any new allocations that are actually referenced by exception values are
thus retained, but others are discarded. !us, since we don’t allow any variable
references in our special exception for authorization failures, no new allocations
will leak in practice.

Figure.  shows the two new TMI transition relations. !e first one deals
with TMI actions and is indicated by the symbol ⇀ . !e configurations of this
transition system are identical to those of the STM system. Indeed, TMI actions
behave very much like STM actions, the main difference is that variable operations
in TMI actions can operate on security sensitive variables. A variable v is security
sensitive if and only if Θ(v) ≠ %. !e first three rules of Figure.  describe the
variable operations. When these operations are performed, a log entry is added
to Σ with the contents of the variable’s security descriptor. Another addition
over STM behavior is rule LIFTSTM.!is rule states that any sequence of STM
reductions can be li+ed to the TMI level.!is is necessary to allow TMI code to
access regular transactional variables, and should be possible, since TMI actions
are always performed in the context of an enclosing STM action.

Finally, we add a separate transition system to evaluate authorization functions.
In this system a transition of the form

Σ ⊢ M ↝ N

In the actual implementation the authorization term is simply a boolean function of the log.
!is difference exists to simplify both the semantics and the implementation.
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represents the reduction of termM to termN , under the context of an introspection
log Σ. !e reason for this notation is that the introspection log is fixed, i.e. read-
only, for these transitions. !is system only allows pure operations and monad
binding via the administrative transitions, the usual exception handling and one
special term getlog. !e getlog term is reduced to a list representation (in the
Haskell sense) of the access log Σ. !e terms reduced with this system can thus
examine the log and make decisions based on its contents.

An example: As an example of reading and applying the rules, consider the
program

atomically
(

authorized (assert (isEmpty getlog))
(writeTMIVar x 10)

)

Working from the inside out, we can see that the innermost expression ofwriteTMIVar
x 10 will update the value of x in Θ as well as enter an entry to the introspection
log Σ, by applying rule (TMIWRITE). !e resulting term is return (). As the
resulting log is non-empty, the authorization term assert (isEmpty getlog) will
throw an exception. !us, for the authorized term, rule (AURET) is the only ap-
plicable one, so that term evaluates to throw UnauthorizedError. !e atomically
term is therefore evaluated to the same result via rule (ATHROW), but this rule
does not preserve updates to the store Θ, meaning that the transaction has been
aborted.

Nested TMI actions: As we mentioned in the previous section, the capability of
li+ing STM actions up to the TMI levels allows us to nest TMI actions. An inner
TMI action can be authorized with a separate authorization term. Consider the
following example of an action that provides a student with information about her
grade for a course, as well as the average of all grades of other students. Naturally,
the student doesn’t have access to other students’ grades but for the purpose of
calculating the average we may allow such access in a nested action.

Assume that we have defined the following terms.
● ownGradesRead s is an authorization term that succeeds only if the input log
only contains reading of grades that belong to student s
● allGradesRead is an authorization term that succeeds only if the log only con-
tains reading of grades, but regardless of the owner of the grades.!is may be
considered a kind of a system read access to grades.
● readGrade s is a TMI action that reads a grade of a student from the relevant

TMIVar and returns it. !e introspection log will contain an appropriate entry
a+erwards.
● averageGrades is a TMI action that reads grades of all students from the appro-
priate TMIVars and returns their average. !e introspection log will contain an
entry for every read grade.
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Now it is possible to define the following TMI action that provides a student with
her own grade as well as the average grades of all students.

gradeInformation :: Student -> TMI (Grade, Grade)
gradeInformation s =
do own <- readGrade s

avg <- liftSTM (authorized allGradesRead averageGrades)
return (own, avg)

!is function may be called with the appropriate authorization function, namely
one that only allows a student access to her own grades.

atomically (authorized (ownGradesRead s) (gradeInformation s))

By applying the operational semantics rules to this term, one can find that
the innermost action averageGrades will be authorized by allGradesRead before
turning it into an STM transition. !is may, for example, happen through rule
(AURET). Note that such a rule does not keep the log entries of already authorized
actions, i.e. the Σ is not affected in the⇒ transition below the line. !us the log of
the nested action is not contained in the log authorized by the outer authorization
function ownGradesRead.

!is use of nesting constitutes a privilege amplification in a manner similar to
stack inspection [Fournet and Gordon ].

. Implementation
Our Haskell implementation is comprised of one module, TMI.!e most important
components are the monad TMI d a and the type for TMI variables, TMIVar d a.
Both are parameterized on the descriptor type d, which is chosen by the user of
this module. A TMI variable is represented by a descriptor value and an STM TVar,

data TMIVar d a = TMIVar {
getTVar :: TVar a,
getDescriptor :: d

}

!e field accessors getTVar and getDescriptor are not exported and only available
inside the TMImodule.

!e TMI monad is a stack of the standard writer monad on top of the regular
STMmonad. !e writer monad has the ability of collecting accumulating informa-
tion in a sequence, which is exactly what we need to maintain the introspection
log. In the TMI module, the regular STMmodule is imported under the name T.

newtype TMI d a = TM {
unwrapTM :: WriterT (TMILog d) T.STM a

} deriving (Monad)

!e type TMILog d represents a log of all accesses to TMI variables. It is defined by
the following declarations.
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data TMIAccess = CreateVar | ReadVar | WriteVar
type TMILog d = [(TMIAccess, d)]

For inserting entries in the log, we define the following shortcut, where tell is the
standard function that the writer monad uses to collect information.

log :: (TMIAccess, d) -> TMI d ()
log entry = (TM . tell) [entry]

log returns an STM action which has the only effect of appending its argument to
the introspection log. Note that this helper is not exported, so users of the TMI
module cannot append to the log directly. As expected, a log entry of the form
(ReadVar, x) just means that a variable with descriptor value x was read.

!e liftSTM function li+s an STM operation to a TMI operation. !e log is
not affected by the work performed in the STM action.

liftSTM :: STM a -> TMI d a
liftSTM = TM . lift

!e functions to create, read and write TMI variables are now simple to define.
!ey all enter the relevant entries to the log and then call the underlying functions
from the STMmodule.

newTMIVar :: d -> a -> TMI d (TMIVar d a)
newTMIVar description val =

do log (CreateVar, description)
var <- liftSTM (T.newTVar val)
return (TMIVar var description)

readTMIVar :: TMIVar d a -> TMI d a
readTMIVar tv =

do log (ReadVar, getDescriptor tv)
liftSTM (T.readTVar (getTVar tv))

writeTMIVar :: TMIVar d a -> a -> TMI d ()
writeTMIVar tv val =

do log (WriteVar, getDescriptor tv)
liftSTM (T.writeTVar (getTVar tv) val)

!e combinators from the STM world are defined thus.

retryTMI = liftSTM T.retry

runTMI = runWriterT . unwrapTM -- helper

orElseTMI t1 t2 = TM . WriterT (runTMI t1 `T.orElse` runTMI t2)

What is le+ is to define the crucial authorized function. !is function accepts
an authorization function with the type TMILog d -> Bool and a TMI action; it
should return an STM action that performs the operation of the TMI action,
validates the resulting log with the authorization function and either returns the
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result or throws an exception. With this description in mind, the implementation
is pretty straight-forward.

authorized :: (TMILog d -> Bool) -> TMI d a -> T.STM a
authorized auth act = do

(result, log) <- runTMI act
if not (auth log)

then throw (AssertionFailed "Access denied")
else return result

Note that a custom exception may be more appropriate but for sake of clarity we
simply use the standard assertion failure to trigger a transaction abort.

Our Haskell TMI implementation can support variants of history-based policy
enforcement [Abadi and Fournet ], in particular allowing privilege amplifica-
tion with nested TMI actions as described in the previous section. In particular
a call to authorized will return an STM action which contains a TMI operation
and an associated authorization closure. When code inside a TMI action needs
increased privileges it can nest a call to authorized with a different authorization
manager and use liftSTM to li+ the resulting STM operation back to the TMI level.

As in stack inspection [Fournet and Gordon ], privilege amplification
provides TMI security managers with a useful escape hatch to perform operations
as a more powerful ‘‘application principal’’.

. Discussion and future work
We have presented both a formal semantics and an implementation of TMI over
the Haskell STM system. During this work, we discovered that there are many
design decisions to be made and the design we have presented here is only one
of many possibilities. !e variants we experimented with in the design process
did not always exhibit the behaviour that we expected or wanted. For this task,
defining the formal semantics proved to be an essential tool to understand and
evaluate different design decisions as well as spotting special cases that were not so
obvious in the actual implementation. Indeed, constructing the semantics helped
us discover bugs and unexpected behaviour in the code, even a+er weeks of careful
consideration. In addition the formal semantics gives a clear and unambiguous
description of the TMI architecture.

!e TMI architecture, as described in Section.. , can support the enforcement
of stateful security policies that depend on the execution history over multiple
transactions. In our paper [Birgisson et al. ], we have experimented with such
policies in another implementation of the TMI architecture. However, we have not
explored the addition of such facilities here, in order to simplify the exposition of
our semantics and Haskell implementation.

!e privilege amplification by nested TMI actions naturally relies on the pro-
grammer to ensure that the nested authorization manager does not violate the
enclosing policy. !e objective of the TMI architecture is to provide facilities for
writing policy enforcement code, not to prevent injection of malicious code. In
the case of library development where one deals with untrusted code, such nesting
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may not be desirable and can be disabled. We have experimented with other ways
of implementing privilege amplification without relying on this nesting, with good
results.

In our implementation we are maintaining the introspection log by hand.
!is works well for prototypical purposes, but we would like to investigate the
possibility of making use of the real underlying transaction log. !is requires
modifications to the STM framework provided in the GHC runtime library. Having
the formal semantics as the definition of the desired behaviour should make such
an implementation easier to construct and check.

Future work in this context also involves writing or porting complex so+ware
to the architecture to obtain realistic performance measurements. Also, our se-
mantics may still be simplified, while allowing the same behavior; for example,
the transaction log seems redundant in STM transitions, and may possibly be
eliminated.

Most importantly, we think that having clear semantics for TMI and an imple-
mentation over a production-ready STM system, further validates our claim that
TMI architecture is very relevant to practical so+ware development.
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Decompositional Reasoning
about the History of

Parallel Processes
joint work with Luca Aceto, Anna Ingólfsdottir,

and MohammadReza Mousavi

. Introduction

State-space explosion is a major obstacle inmodel-checking logical properties. One
approach to combat this problem is compositional reasoning, where properties of
a system as a whole are deduced from the properties of its components. Decom-
positional reasoning [Giannakopoulou et al. , Xie and Dang , Andersen
, Laroussinie and Larsen , Larsen and Xinxin ] o+en improves upon
compositional reasoning by automatically decomposing the global property to
be model checked into local properties of (possibly unknown) components. For
example, Andersen’s paper shows the effectiveness of the method in the analysis
of Milner’s scheduler [Milner ]. In the context of process algebras, as the
specification language, and Hennessy-Milner logic, as the logical formalism for
properties, decompositional reasoning techniques date back to the seminal work
of Larsen and Xinxin in the ’s and early ’s [Larsen and Xinxin ], which is
further developed in [Ingólfsdóttir et al. , Simpson , Fokkink et al.].
However, we are not aware of any such decomposition technique which applies to
reasoning about the ‘‘past’’. !is is particularly interesting in the light of recent
developments concerning reversible processes [Phillips and Ulidowski ] and
knowledge representation (epistemic aspects) inside process algebra [Dechesne
et al. , Borgström et al. , Hommersom et al. , Raimondi and Lo-
muscio , Halpern and O’Neill ], all of which involve some notion of
specification and reasoning about the past.

In this chapter, we tackle this problem and present a decomposition technique
for Hennesy–Milner logic with past. As the specification language, we use a subset
CCS with parallel composition, non-deterministic choice, action prefixing and
the inaction constant. !e rest of the chapter is structured as follows. Section.
introduces preliminary definitions and the extension of Hennessy–Milner logic


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with past. Section.  discusses how parallel computations that maintain their
history are decomposed into their parallel components. Section.  presents the
decompositional reasoning and the main theorem of the chapter, and Section.
discusses related work and possible extensions to our results.

. Preliminaries

.. Computations and CCS
!e following definitions come mostly from [Nicola et al. ].

D .. (Labelled transition system) A labelled transition system (LTS) is
a triple ⟨P,A, !→ ⟩ where

• P is a set of process names.

• A is a finite set of action names, not including a silent action τ. We write Aτ
for A∪ {τ}.

• !→ ⊆ P × Aτ × P is the transition relation, we call its elements transitions
and usually write p α!→ p′ to mean that (p, α, p′) ∈ !→ .

We let p, q, . . . range over P, a, b, . . . over A and α, β, . . . over Aτ .

D .. (Sequences and computations) For any set S we let S∗ be the set
of finite sequences of elements from S. Concatenation of sequences is represented
by juxtaposition. λ denotes the empty sequence and ∣σ ∣ stands for the length of a
sequence σ .

Given an LTS T = ⟨P,A, !→ ⟩, we define a path from p to be a sequence of
transitions

p
α!→ p , p

α!→ p , . . . , pn
αn−!→ pn

and usually write this as

p
α!→ p

α!→ p
α!→⋯ αn−!→ pn .

We use π, µ, ... to range over paths. A computation from p is a pair (p, π) where π
is a path from p and we use ρ, σ , . . . to range over computations. CT (p), or simplyC(p) when the LTS T is clear from the context, is the set of computations from p
and CT is the set of all computations in T .

For a computation ρ = (p , π) where π = p α!→ p
α!→ p

α!→⋯ αn−!→ pn we
define

first(ρ) = first(π) = p
last(ρ) = last(π) = pn

trace(ρ) = (α . . . αn−) ∈ A∗τ∣ρ∣ = ∣π∣ = n
We refer to elements of A∗ as traces.
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Concatenation of computations ρ and ρ′ is denoted by their juxtaposition ρρ′
and is defined iff last(ρ) = first(ρ′). When last(ρ) = p we will write ρ(p α!→ q) as
a shorthand for the slightly longer ρ(p, p α!→ q). We also use ρ α!→ ρ′ to denote
that there exists a computation σ = (p, p α!→ p′), for some processes p and p′,
such that ρ′ = ρσ .
R. Representing computations with a pair (p, π)might seem redundant
at first, since π must start with p. However, an empty computation (p, λ) is also
valid and must be distinguished from (q, λ) if p ≠ q.

.. Hennessy-Milner Logic with Past
D .. (Hennessy Milner logic with past) Let T = ⟨P,A,→⟩ be an LTS.
!e set HML!(A), or simplyHML!, ofHennessy-Milner logic formulae with past
is defined by the following grammar, where α ∈ Aτ .

φ,ψ ∶∶= ⊺ ∣ φ ∧ ψ ∣ ¬φ ∣ ⟨α⟩φ ∣ ⟨←α⟩φ.
We define the satisfaction relation⊧⊆ CT ×HML! as the least relation that satisfies
the following clauses:

• ρ ⊧ ⊺ for all ρ ∈ CT ,
• ρ ⊧ φ ∧ ψ iff ρ ⊧ φ and ρ ⊧ ψ,
• ρ ⊧ ¬φ iff not ρ ⊧ φ,

• ρ ⊧ ⟨α⟩φ iff ρ α!→ ρ′ and ρ′ ⊧ φ for some ρ′ ∈ CT ,
• ρ ⊧ ⟨←α⟩φ iff ρ′ α!→ ρ and ρ′ ⊧ φ for some ρ′ ∈ CT .

!e satisfaction relation⊧⊆ P×HML! is defined by p ⊧ φ if and only if (p, λ) ⊧ φ.

We will make use of some standard shorthands for Hennessy-Milner type
logics.

% = ¬⊺
φ ∨ ψ = ¬(¬φ ∧ ¬ψ)
[α]φ = ¬⟨α⟩(¬φ)
[←α]φ = ¬⟨←α⟩(¬φ)

For a finite set of actions A, we will also use the following notation.

⟨A⟩φ = ⋁
α∈A ⟨α⟩φ ⟨←A⟩φ = ⋁

α∈A ⟨←α⟩φ
[A]φ = ⋀

α∈A [α]φ [←A]φ = ⋀
α∈A [←α]φ
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Intuitively, ρ ⊧ ⟨←α⟩φ means the last action of ρ is labelled with α and the preced-
ing computation satisifies φ, while ρ ⊧ [←α]φ means that if the last computation
is labelled with α, then the preceding computation satisfies φ. Specifically, a com-
putation with an empty path, i.e. the initial state, can never satisfy the former while
it will always vacuously satisfy the latter.

Determinism of the past

It is worth mentioning that the operators ⟨⋅⟩ and ⟨← ⋅⟩ are not entirely symmetric.
!e future is non-deterministic, i.e. at any point we may have a choice of multiple
ways for a computation to proceed. In our semantics forHML!, the past however
is always deterministic; there is always at most one transition that was the last
transition to occur. !is is by design, and we could have chosen to model the
past as nondeterministic as well, i.e. to take a possibilistic view where we would
consider all possible histories.

!is would make the forward and backwards diamond operators symmetric in
their view of the process graph. However, we aremore interested in properties about
the actual past of a computation, especially w.r.t. modelling epistemic properties,
which rely on observations of some aspects of the computation so far. (We do not
discuss such properties in the current chapter.) We have thus reached the same
conclusion as [Laroussinie and Schnoebelen ] that the deterministic view is
more appropriate for our purposes. Laroussinie and Schnoebelen list two other
properties of their model of the past in addition to being deterministic, namely
that the past is finite (there is a fixed initial state) and that past is cumulative (at
each transition the history gains information). We make implicit use of the latter
property in our proofs and find that the former is a natural property of the processes
we want to model.

Treating the past as deterministic might suggest that it is unnecessary to index
the operator ⟨←α⟩ with the action and instead provide an operator ⟨←⟩ which
matches any action (since there is at most one). However this turns out to be
insufficient, as such a logic could not distinguish between the two computations

(r, r α!→ t) and (r, r β!→ s)
when α ≠ β. For our intended purposes, it is important that we are able to tell these
two apart.

. Decomposing Computations
We seek a definition of a formula quotient w.r.t. a process/state following the work
of [Larsen and Xinxin ]. !is might be written as φ/p where φ is an HML!
formula and p is a process. !e theorem we then seek to prove is this:

p ∥ q ⊧ φ ⇔ p ⊧ φ/q
where the parallel composition operator ∥ is suitably defined over LTSs.
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Given our definition of ⊧ forHML!, this requires us to prove a theorem of the
form

ρ ⊧ φ ⇔ ρ ⊧ φ/ρ
where ρ, ρ , ρ are computations such that ρ is a computation of a process of the
form p ∥ q and that is, in some sense, the ‘‘parallel composition’’ of ρ and ρ. In
the standard setting it is straightforward to identify the components of a parallel
composition. In the case of computations, however, this is not so obvious. A
computation composed of two processes run in parallel has the form

(p ∥ q, π)
where p ∥ q is a syntactic representation of the initial state and π is the path leading
up to the current state. !e path π however may involve contributions from both
of the parallel components. Separating the contributions of the components for the
purposes of decompositional model checking requires us to unzip these paths into
separate paths that might have been observed by considering only one argument
of the composition. !is means that we have to find two paths πp and πq such that
the computations (p, πp) and (q, πq)
are in some sense independent computations that run in parallel will yield(p ∥ q, π).

.. Decomposition of computations
In the setting of HML without past, parallel composition may be defined directly
on LTSs independent of the syntax or semantics of the underlying process algebra.
When dealing with computations, this does not provide enough information to find
the two computations that make up the parallel composition. For this information,
one needs to look into the syntax and semantics of the processes themselves and
moreover their semantics have to follow some restrictions.

For this study, in order to highlight the main ideas and technical tools in
our approach, we will restrict ourselves to a subset of CCS, namely CCS without
renaming, restriction or recursion. (We will discuss possible extensions of our
results in Section. .) Processes are thus defined by the following grammar.

p, q ∶∶=  ∣ α.p ∣ p + q ∣ p ∥ q
with the following operational semantics

α.p α!→ p
p α!→ p′

p + q a!→ p′
q α!→ q′

p + q a!→ q′
p α!→ p′

p ∥ q α!→ p′ ∥ q
q α!→ q′

p ∥ q α!→ p ∥ q′
p a!→ p′ q ā!→ q′
p ∥ q τ!→ p′ ∥ q′

We write p α!→ q to denote that this transition is provable by these rules. We
assume also that ⋅̄ ∶ A→ A is a function on action names such that ¯̄a = a. !e LTS
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associated with a CCS process p is the largest transition system generated by these
rules starting from the process p.

!e decomposition of a computation running two parallel components must
retain the information about the order of steps in the interleaved computation.
We do this by modelling the decomposition using stuttering computations. !ese
are computations that are not only sequences of transition triplets, but may also
involve pseudo steps labelled with ⇢ . Intuitively, p⇢ pmeans that process p has
remained idle in the last transition performed by a parallel process having p as one
of its parallel components. We denote the set of stuttering computations with C∗T
or simply C∗. For example, the computation

(a. ∥ b., a. ∥ b. a!→  ∥ b. b!→  ∥ )
is decomposed into the stuttering computations

(a., a. a!→ ⇢ ) and

(b., b.⇢ b. b!→ ).
However, the decomposition of a parallel computation is not in general unique, as
theremay be several possibilities stemming from different synchronisation patterns.
For example consider a computation with the following trace.

(a. + b.) ∥ (ā. + b̄.) τ!→  ∥ 
From this computation it is not possible to distinguish if the transition labelled
with τ was the result of communication of the a and ā actions, or of the b and b̄
actions. For our purposes, this is not necessarily a problem because no expression
of our logic can differentiate between the two synchronisations, given only the
composed computation. We thus consider all possibilities simultaneously, i.e. a
decomposition of a computation will actually be a set of pairs of components.

!e following function over paths defines the decomposition of a computation.

D(λ) = {(λ, λ)}
D(π′(p′ ∥ q′ ⇢ p′ ∥ q′)) = {(µ(p′ ⇢ p′), µ(q′ ⇢ q′)) ∣( µ , µ) ∈ D(π′)}

D(π′(p′ ∥ q′ α!→ p′′ ∥ q′′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(µ(p′ α!→ p′′), µ(q′ ⇢ q′))
∣ (µ , µ) ∈ D(π′)} if q′ ≡ q′′

{(µ(p′ ⇢ p′), µ(q′ α!→ q′′))
∣ (µ , µ) ∈ D(π′)} if p′ ≡ p′′

{(µ(p′ a!→ p′′), µ(q′ ā!→ q′′))
∣ (µ , µ) ∈ D(π′), a ∈ A,

p′ a!→ p′′ , q′ ā!→ q′′} otherwise and α = τ
We should make a note of the fact that if (µ , µ) is a decomposition of a computa-
tion π, then the three computations have the same length. Furthermore

last(π) = last(µ) ∥ last(µ). (.)
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Also of interest is that, even though the above definition yields a set of decomposi-
tions of π, the only case where multiple possibilities are generated is the last case
where both components evolve, and where there is ambiguity in the processes as
to which actions actually contributed to the communication. As we mentioned
above, there is no expression of theHML! logic that can resolve such ambiguity
only by looking at a composed computation. Since our goal is to model check of
such expressions, the existence of multiple decompositions of one computation
will not pose any problem.

Another notable property of path decomposition, is that its inverse is unique,
i.e. a pair (µ , µ) can only be the decomposition of a single path. We formalise
this as a lemma which will come in handy later.

L .. Let π be a path of a parallel computation and (µ , µ) ∈ D(π). If π
is a path such that (µ , µ) ∈ D(π) also, then π = π.

Proof. We start by noting that π and π cannot differ in length, as they are both
equal in length to µ (and µ). We apply induction on their common length.

If both are empty, π = π = λ, then there is nothing to prove. Now assume
they are non-empty and that

π = π′(p′ ∥ q′ R p ∥ q)
π = π′(p′ ∥ q′ R p ∥ q)

where R , R are relations of the form
α!→ or ⇢ . !e induction hypothesis states

that π′ = π′, which also means that p′ = p′ and q′ = q′. Property (.) above
furthermore gives that p = p and q = q. !us we only need to show that the
final steps coincide also, i.e. that R = R. !e proof proceeds by case analysis on
the last steps of µ and µ.

• If both µ and µ end with a pseudo-step, then we see from the definition of
D that both R and R must be pseudo-transitions.

• If only one of µ and µ ends with a pseudo-step, then the action of the other
one must be the same as the last action of both π and π′.

• If both µ and µ end with a proper transition, we note that by the definition
of D the actions must complement each other. !en the last step of both π
and π′ must thus be labelled with τ.

• If both µ and µ end with a proper transition, we note that by the definition
of D the actions must complement each other. !en the last step of both π
and π′ must thus be labelled with τ.

!is covers all the cases and thus we have shown that R = R, p = p and q = q.
Coupled with the induction hypothesis, this means that π = π′.

Note that the definition of D relies on some properties of CCS specifically.
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. We must have that p a!→ p′ leads to p /≡ p′. !is is necessary so that the case-
definitions are well defined, i.e. that they are mutually exclusive. !is means
that we can rely on ≡-testing to determine if one side of the composition
took a step or not.
We should also note that this requirementmeans that we can actually remove
the text ‘‘and α = τ’’ from the last case condition. To see why, note that the
condition q′ /≡ q′′ ∧ p′ /≡ p′′ (as implied by the word ‘‘otherwise’’) means
that both must have taken a step simultaneously and communicated, and
therefore the only possible result action is indeed τ. !is means that the
definition properly covers all cases.

. !e only possible result of a communication is τ, and τ can never act as one
partner of the communication.

We now want to define quotient onHML!-formulae such that a property of
the form (p ∥ q, π) ⊧ φ ⇔ (p, µ) ⊧ φ/(q, µ)
where (µ , µ) ∈ D(π). However, since we are dealing with sets of decompositions,
we need to quantify over these sets. It turns out that a natural way that also gives
a strong result is the following. Given that a composed computation satisfies a
formula, we can prove that one component of every decomposition satisfies a
formula quotiented with the other component,

(p ∥ q, π) ⊧ φ ⇒ ∀(µ , µ) ∈ D(π) ∶ (p, µ) ⊧ φ/(q, µ).
On the other hand, to show the other direction, we need only one witness of a
decomposition that satisfies a quotiented formula to deduce that the composed
computation satisfies the original one,

∃(µ , µ) ∈ D(π) ∶ (p, µ) ⊧ φ/(q, µ) ⇒ (p ∥ q, π) ⊧ φ.

Before defining the quotienting transformation we need define what ⊧means
with respect to stuttering computations. We do this by extendingHML! toHML∗!
by adding two operators.

D .. (Stuttering Hennessy Milner logic with past) Let T = ⟨P,A,→⟩
be an LTS. !e set HML∗!(A), or simply HML∗!, of stuttering Hennessy-Milner
logic formulae with past is defined by the grammar

φ,ψ ∶∶= ⊺ ∣ φ ∧ ψ ∣ ¬φ ∣ ⟨α⟩φ ∣ ⟨←α⟩φ ∣ ⟨⇢⟩φ ∣ ⟨⇠⟩φ
where i ∈ N and α ∈ Aτ . We define the satisfaction relation ⊧∗ ⊆ C∗T ×HML∗! as
the least relation that satisfies the following,

• ρ ⊧∗ ⊺ for all ρ ∈ C∗T ,
• ρ ⊧∗ φ ∧ ψ iff ρ ⊧∗ φ and ρ ⊧∗ ψ,
• ρ ⊧∗ ¬φ iff not ρ ⊧∗ φ,
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• ρ ⊧∗ ⟨α⟩φ iff for some ρ′ ∈ C∗T ∶ ρ α!→ ρ′ and ρ′ ⊧∗ φ
• ρ ⊧∗ ⟨←α⟩φ iff for some ρ′ ∈ C∗T ∶ ρ′ α!→ ρ and ρ′ ⊧∗ φ
• ρ ⊧∗ ⟨⇢⟩φ iff ρ(p⇢ p) ⊧∗ φ where p = last(ρ).
• ρ ⊧∗ ⟨⇠⟩φ iff ρ′ ⊧∗ φ where ρ = ρ′(p⇢ p) for some p.

!e satisfaction relation ⊧∗ ∈ P × HML∗! is defined by p ⊧∗ φ if and only if(p, λ) ⊧∗ φ.
R. !e satisfaction relations ⊧∗ and ⊧ coincide over CT ×HML!.

.. Why are the stutters necessary?
One may ask why we need to extend both computations and the logic to include
the notion of stuttering steps. !e reason for doing so is to capture the information
about the interleaving order in component computations.!is in turn is necessary
because the original logic can differentiate between different interleavings of parallel
processes.

For an example, let p be a process that cannot perform an a action, but p b!→ p′
for some p′. Consider the computation (a. ∥ p, π) where

π = a. ∥ p a!→  ∥ p b!→  ∥ p′ (.)

Clearly this computation does not satisfy the formula ⟨←a⟩⊺.
Another interleaving of the same parallel composition is the computation(a. ∥ p, π′) where

π′ = a. ∥ p b!→ a. ∥ p′ a!→  ∥ p′ . (.)

!is computation however does satisfy ⟨←a⟩⊺. Since the logic can distinguish
between different interleaving orders of a parallel computation, it is vital tomaintain
information about interleaving order in our decomposition. If the decomposition of
the above computations only consider the actions contributed by each component,
this information is lost and both decompose to the same pair of computations
and we cannot reasonably expect to test if they satisfy the formula ⟨←a⟩⊺ in a
decompositional manner.

. Decompositional Reasoning
We now define the quotienting construction over formulae structurally. Quotient-
ing distributes over the boolean operators.

⊺/ρ = ⊺
(φ ∧ φ)/ρ = φ/ρ ∧ φ/ρ(¬φ)/ρ = ¬(φ/ρ)
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!emodal operators however needmore attention. We start with ⟨α⟩φ and consider
separately the cases where α ∈ A and α = τ. In the following we assume p′ = last(ρ).
(⟨a⟩φ)/ρ = ⟨a⟩ (φ/ρ(p′ ⇢ p′)) ∨ ⎛⎜⎝ ⋁ρ′∶ρ a→ ρ′

⟨⇢⟩(φ/ρ′)⎞⎟⎠

(⟨τ⟩φ)/ρ = ⟨τ⟩ (φ/ρ(p′ ⇢ p′)) ∨ ⎛⎜⎝ ⋁ρ′∶ρ τ→ ρ′
⟨⇢⟩(φ/ρ′)⎞⎟⎠ ∨

⎛⎜⎝ ⋁
ρ′ ,a∶ρ a→ ρ′

⟨ā⟩(φ/ρ′)⎞⎟⎠
Intuitively, the first case states that when we expect the composed computation to
be able to perform an a-transition, there are two possibilities. !e first possibility
is that the component we intend to test with the quotient formula can perform an
a-transition. !e rest of the formula must then be quotiented with ρ plus a pseudo-
step representing that this component remained idle. !e second possibility is
that there is an a-transition from ρ. In this case the component we want to test
must proceed with a pseudo-step. !e same holds when we look for a τ-transition,
with one addition. If ρ can advance with a non-τ action, then we should look for a
matching action in the other component that may have caused the two components
to communicate.

To define the transformation for formulae of the form ⟨←α⟩φ, we again look
at several cases separately. First we consider the case when ρ has the empty path.
In this case it is obvious that no backward step is possible.

(⟨←α⟩φ)/(p, λ) = %
!e second case to consider is when ρ ends with a pseudo-transition, or a ‘‘gap’’.
In this case the only possibility is that the other component (the one we are testing)
is able to perform the backward transition.

(⟨←α⟩φ)/ρ′(p′ ⇢ p′) = ⟨←α⟩(φ/ρ′)
!e third case applies when ρ does indeed end with the transition we look for. In
this case the other component must end with a matching gap.

(⟨←α⟩φ)/ρ′(p′′ α!→ p′) = ⟨⇠⟩(φ/ρ′) (.)

!e only remaining case to consider is when ρ ends with a transition different from
the one we look for. We split this case further and consider again separately the
cases when α ∈ A and when α = τ. !e former case is simple: if ρ indicates that
the last transition has a label other than the one specified in the diamond operator,
there is no way that the composed computation satisfies it.

(⟨←a⟩φ)/ρ′(p′′ β!→ p′) = % where a ≠ β
If however the diamond operator mentions a τ transition, then we must look for
a transition in the other component that can synchronise with the last one of ρ.
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Note that this case does not include computations ending with a τ transition, as
that case is covered by equation..

(⟨←τ⟩φ)/ρ′(p′′ b!→ p′) = ⟨← b̄⟩(φ/ρ′)
!is covers all possible cases for ⟨←α⟩φ/ρ.

For the new operators, ⟨⇢⟩ and ⟨⇠⟩, the transformation is simple. First, if a
composed computation should satisfy ⟨⇢⟩φ, then it must be because both compo-
nents are able to add a pseudo step and satisfy φ. I.e.

(⟨⇢⟩φ)/ρ = ⟨⇢⟩ (φ/ρ(p′ ⇢ p′))
where again p′ = last(ρ). If the composition should end with a ⇢ pseudo-
transition, then both components must also end with ⇢ . !us, we have to consider
two cases, where ρ does end with such a pseudo-transition and when it doesn’t.

(⟨⇠⟩φ)/ρ = ⎧⎪⎪⎨⎪⎪⎩
⟨⇠⟩(φ/ρ′) if ρ = ρ′(p′ ⇢ p′)
% otherwise

!e complete quotienting transformation is summarised in Table..

.. Decomposition theorem
Before we state and prove our main theorem, we establish a few useful lemmas.

L .. If p ∥ q α!→ p′ ∥ q′ where p /≡ p′ and q /≡ q′ then α = τ.
Proof. Consider the proof tree for the transition p ∥ q α!→ p′ ∥ q′ and, in particular,
the last rule used in the proof.!is rule can be one of the three rules for the parallel
operator. !e first two, where only one component advances, are ruled out since
then either p ≡ p′ or q ≡ q′ must hold. !erefore the last rule used in the proof
must be the communication rule, in which case the label of the proved transition
can only be τ.

L .. Let p, q be processes, (p ∥ q, π) ∈ C(p ∥ q) and (µ , µ) ∈ D(π).
(i) If (p ∥ q, π) α!→ (p ∥ q, π′) then there exists a pair (µ′ , µ′) ∈ D(π′) such that
one of the following holds.

. (p, µ) α!→ (p, µ′) and (q, µ)⇢ (q, µ′),
. (p, µ)⇢ (p, µ′) and (q, µ) α!→ (q, µ′) or
. α = τ, (p, µ) a!→ (p, µ′) and (q, µ) ā!→ (q, µ′) for some a ∈ A.

(ii) Symmetrically,

. If there exists a µ′ s.t. (p, µ) α!→ (p, µ′) then there exists a π′ s.t. (p ∥
q, π) α!→ (p ∥ q, π′) and (µ′ , µ(q′ ⇢ q′)) ∈ D(π′) where q′ = last(µ).
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⊺/ρ = ⊺
(φ ∧ φ)/ρ = φ/ρ ∧ φ/ρ(¬φ)/ρ = ¬(φ/ρ)
(⟨a⟩φ)/ρ = ⟨a⟩ (φ/ρ(p′ ⇢ p′)) ∨ ⎛⎜⎝ ⋁ρ′∶ρ a→ ρ′

⟨⇢⟩(φ/ρ′)⎞⎟⎠

(⟨τ⟩φ)/ρ = ⟨τ⟩ (φ/ρ(p′ ⇢ p′)) ∨ ⎛⎜⎝ ⋁ρ′∶ρ τ→ ρ′
⟨⇢⟩(φ/ρ′)⎞⎟⎠

∨ ⎛⎜⎝ ⋁
ρ′ ,a∶ρ a→ ρ′

⟨ā⟩(φ/ρ′)⎞⎟⎠
(⟨←α⟩φ)/(p, λ) = %

(⟨←α⟩φ)/ρ′(p′ ⇢ p′) = ⟨←α⟩(φ/ρ′)
(⟨←α⟩φ)/ρ′(p′′ α!→ p′) = ⟨⇠⟩(φ/ρ′)
(⟨←a⟩φ)/ρ′(p′′ β!→ p′) = % where a ≠ β
(⟨←τ⟩φ)/ρ′(p′′ b!→ p′) = ⟨← b̄⟩(φ/ρ′)

(⟨⇢⟩φ)/ρ = ⟨⇢⟩ (φ/ρ(p′ ⇢ p′))
(⟨⇠⟩φ)/ρ = ⎧⎪⎪⎨⎪⎪⎩

⟨⇠⟩(φ/ρ′) if ρ = ρ′(p′ ⇢ p′)
% otherwise

Table. : Quotienting transformations of formulae inHML∗!

. If there exists a µ′ s.t. (q, µ) α!→ (q, µ′) then there exists a π′ s.t. (p ∥
q, π) α!→ (p ∥ q, π′) and (µ(p′ ⇢ p′), µ′) ∈ D(π′) where p′ = last(µ).

. If there exist µ′ and µ′ s.t. (p, µ) a!→ (p, µ′) and (q, µ) ā!→ (q, µ′) for
some a ∈ A, then there exists π′ s.t. (p ∥ q, π) τ!→ (p ∥ q, π′) and (µ′ , µ′) ∈
D(π′).

Proof. (i) Assume that (p ∥ q, π) α!→ (p ∥ q, π′) and let (µ , µ) ∈ D(π). !is
means there exist processes p′ , q′ , p′′ , q′′ with π′ = π(p′′ ∥ q′′ α!→ p′ ∥ q′),
p′′ = last(µ), q′′ = last(µ). Since p′′ ∥ q′′ /≡ p′ ∥ q′ we observe that p′′ ≡ p′ and
q′′ ≡ q′ cannot hold simultaneously, so we consider the remaining cases.

. p′′ /≡ p′ and q′′ ≡ q′. In this case the transition p′′ ∥ q′ α!→ p′ ∥ q′
was proven using the first rule for ∥. Its only premise must hold, namely
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p′′ α!→ p′. We therefore let µ′ = µ(p′′ α!→ p′) and µ′ = µ(q′ ⇢ q′). From
the inductive definition of D it is easy to see that (µ′ , µ′) ∈ D(π′).

. p′′ ≡ p′ and q′′ /≡ q′. !is case is entirely symmetric to the previous one
where the proof is based on the second rule for ∥.

. p′′ /≡ p′ and q′′ /≡ q′. Here the proof of the transition p′′ ∥ q′′ α!→ p′ ∥ q′
must be based on the third rule for ∥, namely the communication rule and
α = τ, as seen by Lemma. . By the premises of this rule there exists an
a ∈ A such that p′′ a!→ p′ and q′′ ā!→ q′. We simply let µ′ = µ(p′′ a!→ p′)
and µ′ = µ(q′′ ā!→ q′). Again it is clear from the definition of D that(µ′ , µ′) ∈ D(π′).

(ii) !e construction of π′ in all cases is straightforward and unique (cfr.
Lemma.). !e rest is simple to check with the definition of D.

L .. Let (p ∥ q, π) ∈ C(p ∥ q) with π non-empty and (µ , µ) ∈ D(π).
Let π′ , µ′ and µ′ be the prefixes of length ∣π∣ −  of π, µ and µ respectively. !en(µ′ , µ′) ∈ D(π′).
Proof. Follows directly from the definition of D.

We are now ready to prove the main theorem in this chapter, to the effect that
the quotienting of a formula φ with respect to a computation ρ is properly defined.

T .. For CCS processes p, q and a computation (p ∥ q, π) ∈ C(p ∥ q)
and a formula φ ∈ HML∗! we have

(p ∥ q, π) ⊧∗ φ ⇒ ∀(µ , µ) ∈ D(π) ∶ (p, µ) ⊧∗ φ/(q, µ) (.)

and conversely (note the direction of the implication),

(p ∥ q, π) ⊧∗ φ ⇐ ∃(µ , µ) ∈ D(π) ∶ (p, µ) ⊧∗ φ/(q, µ). (.)

Proof. We prove both implications simultaneously by induction on the structure
of φ. In the following text, the terms “the le$-hand side” and “the right-hand side”
refer respectively to the le+- and right-hand sides of the above implications where
the quantifier used in the right-hand side will be made clear by the context.
Case φ = ⊺ !en φ/(q, µ) = ⊺ and both sides of both (.) and (.) are trivially
satisfied.
Case φ = ψ ∧ ψ

(⇒) First assume (p ∥ q, π) ⊧∗ ψ ∧ ψ and let (µ , µ) ∈ D(π). Since both ψ
and ψ are smaller than φ and both are satisfied by (p ∥ q, π)we have by induction
that (p, µ) ⊧∗ ψ i/(q, µ) for i ∈ {, }. Since φ/(q, µ) = (ψ ∧ ψ)/(q, µ) =
ψ/(q, µ) ∧ ψ/(q, µ) we obtain (p, µ) ⊧∗ φ/(q, µ).
(⇐) Now assume the right side of (.),

∃(µ , µ) ∈ D(π) ∶ (p, µ) ⊧∗ (ψ ∧ ψ)/(q, µ).
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Bydefinition the formula is equal toψ/(q, µ)∧ψ/(q, µ). By induction (p ∥ q, π)
satisfies both ψ and ψ and thus also ψ ∧ ψ = φ.
Case φ = ¬ψ
(⇒) First assume the le+side (p ∥ q, π) ⊧∗ ¬ψ. Assume towards contradic-
tion that there does exist a decomposition (µ′ , µ′) ∈ D(π) such that (p, µ′) ⊧∗
ψ/(q, µ′). !en by induction (.) gives (p ∥ q, π) ⊧∗ ψ, which is in direct con-
tradiction with our assumption. Since no such decomposition can exist, it holds
for all (µ , µ) ∈ D(π) that (p, µ) ⊧∗ ¬ψ/(q, µ) = φ/(q, µ).
(⇐) Assume the right side of (.), namely there exists a decomposition (µ , µ) ∈
D(π) such that (p, µ) ⊧∗ ¬ψ/(q, µ). Assume, again towards a contradiction,
that (p ∥ q, π) ⊧∗ ψ. By induction, (.) then gives that for all (µ′ , µ′) ∈ D(π),(p, µ′) ⊧∗ ψ/(q, µ′). In particular, this holds for the decomposition (µ , µ),
which contradicts our assumption. !erefore we must have that (p ∥ q, π) ⊧∗¬ψ = φ.
Case φ = ⟨α⟩ψ
(⇒) Again, first assume the le+ side and take (µ , µ) ∈ D(π). !en there exists
a computation (p ∥ q, π′) s.t. (p ∥ q, π) α!→ (p ∥ q, π′) and (p ∥ q, π′) ⊧∗ ψ. By
part (i) of Lemma.  there exists a pair (µ′ , µ′) ∈ D(π′). Since ψ is a subformula
of φ we have by induction that

(p, µ′) ⊧∗ ψ/(q, µ′) (.)

Lemma.  also states that one of the following three cases holds.

. (p, µ) α!→ (p, µ′) and (q, µ)⇢ (q, µ′). From (.) we have that (p, µ) ⊧∗⟨α⟩(ψ/(q, µ′)) and since the formula ⟨α⟩(ψ/(q, µ′)) is the first clause of
the disjunction defining φ/(q, µ) then also (p, µ) ⊧∗ φ/(q, µ).

. (p, µ) ⇢ (p, µ′) and (q, µ) α!→ (q, µ′). Again from (.) we have that(p, µ) ⊧∗ ⟨⇢⟩(ψ/(q, µ′)), and again the formula ⟨⇢⟩(ψ/(q, µ′)) is a
clause of the disjunction defining φ/(q, µ) so (p, µ) ⊧∗ φ/(q, µ).

. α = τ, (p, µ) a!→ (p, µ′) and (q, µ) ā!→ (q, µ′) for some a ∈ A. !en the
disjunction φ/(q, µ) has a clause ⟨a⟩ (ψ/(q, µ′)) (note that ¯̄a = a). By (.)
we get that (p, µ) ⊧∗ φ/(q, µ).

In all cases the result is the same, namely (p, µ) ⊧∗ φ/(q, µ) which is what we
wanted to prove.
(⇐) Now assume the right side of (.), i.e. there exists a (µ , µ) ∈ D(π) such
that that (p, µ) ⊧∗ ⟨α⟩ψ/(q, µ). We know ⟨α⟩ψ/(q, µ) is a disjunction of one
or more clauses so (p, µ)must satisfy at least one of them. Each clause has one
of three forms, and we analyze the possible cases. Let φ′ be a clause that (p, µ)
satisfies.

. Assume that φ′ = ⟨α⟩ (ψ/(q, µ)(q′ ⇢ q′)) where q′ = last(q, µ). !en
there is a µ′ such that (p, µ) α!→ (p, µ′) and (p, µ′) ⊧∗ ψ/(q, µ(q′⇢ q′)).
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If we let µ′ = µ(q′ ⇢ q′) then part (ii) of Lemma.  gives that there exists
a π′ with (µ′ , µ′) ∈ D(π′) and (p ∥ q, π) α!→ (p ∥ q, π′). Since (p, µ′) ⊧∗
ψ/(q, µ′) then by induction, since ψ is smaller than φ, (p ∥ q, π′) ⊧∗ ψ.
!is in turn means that (p ∥ q, π) ⊧∗ ⟨α⟩ψ = φ.

. Assume that φ′ = ⟨⇢⟩ (ψ/(q, µ′)) for some µ′ such that (q, µ) α!→ (q, µ′).
Let µ′ = µ(p′ ⇢ p′) where p′ = last(p, µ). Lemma.  gives the existence
of π′ with (µ′ , µ′) ∈ D(π′) and (p ∥ q, π) α!→ (p ∥ q, π′). Since (p, µ′) ⊧∗
ψ/(q, µ′) then by induction (p ∥ q, π′) ⊧∗ ψ and thus (p ∥ q, π) ⊧∗ ⟨α⟩ψ =
φ.

. Assume that α = τ andφ′ = ⟨ā⟩ (ψ/(q, µ′)) for some µ′ s.t. (q, µ) a!→ (q, µ′)
and a ∈ A. !is means there is a µ′ with (p, µ) ā!→ (p, µ′). Lemma.  then
says that there exists π′ with (p ∥ q, π) τ!→ (p ∥ q, π′) and (µ′ , µ′) ∈ D(π′).
Since (p, µ′) ⊧∗ ψ/(q, µ′) then by induction (p ∥ q, π′) ⊧∗ ψ and thus(p ∥ q, π) ⊧∗ ⟨τ⟩ψ = φ.

In all cases we obtain what we wanted to prove, namely (p ∥ q, π) ⊧∗ φ.
Case φ = ⟨←α⟩ψ
(⇒) Assume that (p ∥ q, π) ⊧∗ ⟨←α⟩ψ and take (µ , µ) ∈ D(π). Since
(p ∥ q, π′) α!→ (p ∥ q, π) for some π′ such that (p ∥ q, π′) ⊧∗ ψ, there exist
processes p′ , q′ , p′′ , q′′ such that π = π′(p′′ ∥ q′′ α!→ p′ ∥ q′). By analysing the
definition of D, we can gain some information about µ and µ, in particular by
comparing p′′ to p′ and q′′ to q′. Since p′′ ∥ q′′ /≡ p′ ∥ q′ we must consider three
cases.

. p′′ /≡ p′ and q′′ ≡ q′. !en (µ , µ) = (µ′(p′′ α!→ p′), µ′(q′⇢ q′)) for some(µ′ , µ′) ∈ D(π′). Given this formof µ we also know that (⟨←α⟩ψ)/(q, µ) =⟨←α⟩ (ψ/(q, µ′)). Since (p ∥ q, π′) ⊧∗ ψ, we get by induction that (p, µ′) ⊧∗
ψ/(q, µ′), which in turn means that (p, µ) ⊧∗ ⟨←α⟩ (ψ/(q, µ)) and since
the last step of µ is a pseudo-step, ⟨←α⟩ (ψ/(q, µ)) = (⟨←α⟩ψ)/(q, µ).

. p′′ ≡ p′ and q′′ /≡ q′. In this case (µ , µ) = (µ′(p′ ⇢ p′), µ′(q′′ α!→ q′))
where (µ′ , µ′) ∈ D(π′). !is form of µ means that ⟨←α⟩ψ/(q, µ) =⟨⇠⟩ (ψ/(q, µ′)). By induction, the fact that (p ∥ q, π′) ⊧∗ ψ gives that
(p, µ′) ⊧∗ ψ/(q, µ′), so since µ = µ′(q′′ α!→ q′) holds, then we have that(p, µ) ⊧∗ ⟨⇠⟩ (ψ/(q, µ′)) = (⟨←α⟩ψ)/(q, µ).

. p′′ /≡ p′ and q′′ /≡ q′. By Lemma. α must be equal to τ. !us we have that
(µ , µ) = (µ′(p′′ a!→ p′), µ′(q′′ ā!→ q′)) for some a ∈ A and (µ′ , µ′) ∈
D(π′). !is also means that (⟨←α⟩ψ)/(q, µ) = ⟨←a⟩ (ψ/(q, µ′)). Since(p ∥ q, π′) ⊧∗ ψ we again have by induction that (p, µ′) ⊧∗ ψ/(q, µ′). We
therefore obtain that (p, µ) ⊧∗ ⟨←a⟩ (ψ/(q, µ′)) = (⟨←α⟩ψ)/(q, µ).

In all cases we obtain the same result, namely (p, µ) ⊧∗ (⟨←α⟩ψ)/(q, µ) =
φ/(q, µ).



  .    

(⇐) Now assume that there is (µ , µ) ∈ D(π) s.t. (p, µ) ⊧∗ (⟨←α⟩ψ)/(q, µ).
!is means that µ and µ are non-empty. By comparing α with the last transition
of µ we can infer the form of (⟨←α⟩ψ)/(q, µ).

• If the last transition of µ is a ⇢ transition, i.e. µ = µ′(q′⇢ q′) for some µ
and q′ = last(q, µ), thenwe know that (⟨←α⟩ψ)/(q, µ) = ⟨←α⟩ (ψ/(q, µ′)).
By our assumption this is satisfied by (p, µ) so there exists a µ′ s.t. (p, µ′) α!→ (p, µ)
and (p, µ′) ⊧∗ ψ/(q, µ′). Let π′ be π without the last transition (note
that π is non-empty since µ and µ are). By Lemma. (µ′ , µ′) ∈ D(π′)
and by induction we have that (p ∥ q, π′) ⊧∗ ψ. From the definition of
D we can also see that the last transition of π can only be α!→ . !us
(p ∥ q, π′) α!→ (p ∥ q, π) so (p ∥ q, π) ⊧∗ ⟨←α⟩ψ.

• If the last transition of µ is an
α!→ transition, i.e. one having the same

label as the formula is testing for, then (⟨←α⟩ψ)/(q, µ) = ⟨⇠⟩ (ψ/(q, µ′))
where µ′ is µ without the last transition. Note that (q, µ′) α!→ (q, µ).
Since (p, µ) satisfies this formula there is a µ′ s.t. (p, µ′) ⇢ (p, µ) and(p, µ) ⊧∗ ψ/(q, µ′). By Lemma. (µ′ , µ′) ∈ D(π′) where π′ is again
π without the last transition. Also again, we can see from the definition
of D that (p ∥ q, π′) α!→ (p ∥ q, π). By induction it thus holds that(p ∥ q, π′) ⊧∗ ψ and so (p ∥ q, π) ⊧∗ ⟨←α⟩ψ.

• !e only remaining case to consider is when µ ends with a transition
β!→ where β ≠ α. !en α can only be τ, since otherwise the formula(⟨←α⟩ψ)/(q, µ) equals %, which contradicts our assumption that (p, µ)

satisfies it. Since β ≠ α = τ we also know β must be some label a ∈ A. !is
means that (⟨←α⟩ψ)/(q, µ) = ⟨← ā⟩ (ψ/(q, µ′)) where µ′ is yet again
µ without the last transition. Since (p, µ) satisfies this formula, there
is a µ′ s.t. (p, µ′) ā!→ (p, µ) and (p, µ′) ⊧∗ ψ/(q, µ′). By Lemma.,(µ′ , µ′) ∈ D(π′) where π′ is π without the last transition. By induction,(p ∥ q, π′) ⊧∗ ψ and from the definition of D we can see that (p ∥
q, π′) τ!→ (p ∥ q, π) is the only possible transition between the two compu-
tations. !erefore, (p ∥ q, π) ⊧∗ ⟨←τ⟩ψ = ⟨←α⟩ψ.

In all cases (p ∥ q, π) ⊧∗ ⟨←α⟩ψ = φ.
Case φ = ⟨⇢⟩ψ
(⇒) First assume (p ∥ q, π) ⊧∗ ⟨⇢⟩ψ and take (µ , µ) ∈ D(π). !is means
there exists a π′ s.t. (p ∥ q, π) ⇢ (p ∥ q, π′) and (p ∥ q, π′) ⊧∗ ψ. By defini-
tion (⟨⇢⟩ψ)/(q, µ) = ⟨⇢⟩ (ψ/(q, µ′)), where we let (µ′ , µ′) = (µ(p′ ⇢ p′),
µ(q′ ⇢ q′)) with (p′ ∥ q′) = last (p ∥ q, π). !is is according to the defini-
tion of D so (µ′ , µ′) ∈ D(π′). !us, by induction (p, µ′) ⊧∗ ψ/(q, µ′). Since(p, µ)⇢ (p, µ′) we obtain that (p, µ) ⊧∗ ⟨⇢⟩ (ψ/(q, µ′)) = (⟨⇢⟩ψ)/(q, µ).(⇐) Assume that ∃(µ , µ) ∈ D(π) ∶ (p, µ) ⊧∗ (⟨⇢⟩ψ)/(q, µ). We want
to show that (p ∥ q, π) ⊧∗ ⟨⇢⟩ψ. Let p′ = last(µ) and q′ = last(µ). !e
formula ⟨⇢⟩ψ)/(q, µ) is equal to ⟨⇢⟩ (ψ/(q, µ′)) where µ′ = µ(q′ ⇢ q′). If
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we let π′ = π(p′ ∥ q′ ⇢ p′ ∥ q′) and µ′ = µ(p′ ⇢ p′), then, by definition of
D, (µ′ , µ′) ∈ D(π′). Observe that (p, µ) ⇢ (p, µ′) and that the ⇢ relation is
deterministic. !erefore (p, µ′) ⊧∗ ψ/(q, µ′) for each (µ , µ). Induction gives
that (p ∥ q, π′) ⊧∗ ψ. Now it follows trivially that (p ∥ q, π) ⊧∗ ⟨⇢⟩ψ because(p ∥ q, π)⇢ (p ∥ q, π′).
Case φ = ⟨⇠⟩φ
(⇒) Assume (p ∥ q, π) ⊧∗ ⟨⇠⟩ψ and take (µ , µ) ∈ D(π). !is means that
π = π′(p′ ∥ q′ ⇢ p′ ∥ q′) and (p ∥ q, π′) ⊧∗ ψ, where p′ ∥ q′ = last(π). It
is obvious, from the definition of D that µ and µ both end with ⇢ since π
ends with ⇢ . Let π′ , µ′ , µ′ be π, µ , µ without their last transition respectively
(note that our assumption guarantees that they are non-empty). By Lemma.
we know that (µ′ , µ′) ∈ D(π′). Since (p ∥ q, π′) ⊧∗ ψ, we have by induction that(p, µ′) ⊧∗ ψ/(q, µ′). !en (p, µ) ⊧∗ ⟨⇠⟩ (ψ/(q, µ′)) = (⟨⇠⟩ψ)/(q, µ).
(⇐) Now assume ∃(µ , µ) ∈ D(π) ∶ (p, µ) ⊧∗ (⟨⇠⟩ψ)/(q, µ). !en the last
step of µ is ⇢ since otherwise the formula would be equal to %, which could
not be satisfied by (p, µ). We see furthermore that the quotiented formula is⟨⇠⟩ (ψ/(q, µ′)) where µ′ is again µ without its last step. !is means the last step
of µ is also ⟨⇢⟩ (a fact we could also have deduced from the definition of D).
Let µ′ be µ without this step. If we also let π′ be π without the last step, then by
Lemma.  we have (µ′ , µ′) ∈ D(π′). Since (p, µ′) ⊧∗ ψ/(q, µ′) induction gives
that (p ∥ q, π′) ⊧∗ ψ. By the definition of D we see that the last step of π can only
be ⇢ so (p ∥ q, π) ⊧∗ ⟨⇠⟩ψ.

!is concludes the analysis of all structural forms for φ. In each case we have
shown by structural induction that each direction of the theorem holds.

!eorem.  uses the existential quantifier in the right-to-le+ direction.!is
makes it easy to show that a composed computation satisfies a formula, given only
one witness of a decomposition with one component satisfying a rewritten formula.
Note however that the set of decompositions of any given process is never empty,
i.e. every parallel computation has a decomposition. !is allows us to write the
above theorem in a more symmetrical form.

C .. For CCS processes p, q, a parallel computation (p ∥ q, π) and
a formula φ ∈ HML∗! we have

(p ∥ q, π) ⊧∗ φ ⇔ ∀(µ , µ) ∈ D(π) ∶ (p, µ) ⊧∗ φ/(q, µ) (.)

Proof. (⇒) !is case follows directly from the theorem.

(⇐) Assume that ∀(µ , µ) ∈ D(π) ∶ (p, µ) ⊧∗ φ/(q, µ). Specifically, since
there exists at least one decomposition (µ′ , µ′) ∈ D(π), the above holds for
that particular decomposition. By the⇐ part of!eorem. , we thus have that(p ∥ q, π) ⊧∗ φ.
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. Extensions and related work

So far we have stated and proven a decompositional theorem that allows us to apply
decompositional reasoning for history-based computations over CCS and the logic
HML!. However, more work remains to be done in order to apply this theory to
meaningful examples. Part of this work is well underway already although the
details have not been worked out fully for this particular thesis submission. In
particular, we have extended the decompositional theorem to a recursive logic
HML∗!,X (equivalent to extending the modal µ-calculus with past), which allows a
much wider class of interesting properties to be specified as fixed-points of systems
of recursive logic equations.

In the decomposition of computations, we rely on some specific properties
of CCS at the syntactic level, namely to detect which rule of the parallel operator
was applied. By tagging transitions with their proofs [Boudol and Castellani ,
Degano and Priami ], or even just the last proof used, we could eliminate this
restriction and extend our approach to more general languages involving parallel
composition. Another possibility is to construct a rule format that guarantees the
properties we use at a more general level, inspired by the work of [Fokkink et al.
].

In this work we have only considered parallel composition. However, de-
compositional results have been shown for the more general setting of process
contexts [Larsen and Xinxin ]. !e two parts considered as components are
then not confined to components of the parallel construction, but a context C[⋅]
(a process term with a hole) and general process p to instantiate the context with.
A general property of the instantiated context C[p] can the be transformed into
an equivalent property of p, where the transformation depends on C. As the state
space explosion of model-checking problems is o+en due to use of the parallel
construct, we deemed our approach as a useful step towards a full decompositional
result, since the decomposition of computations will be more complex for general
contexts.

!e initial motivation for this work was the application of epistemic logic to
behavioural models [Dechesne et al. ]. We would therefore like to extend our
results to logics that include epistemic operators, reasoning about the knowledge of
agents observing a running system.!is work depends somewhat on our extensions
to recursive formulae.

Our work is based onmany previous results, both in decompositional reasoning
as well as history-based process systems. Yet, to the best of our knowledge, we are
the first to combine the two.

Our notion of computations comes from [Nicola et al. ], where they are
used to compare bisimulations, that consider both forwards and backward actions,
to more conventional forward-only bisimulations. !e backwards modality of
HML!comes from [Hennessy and Stirling ], which shares the same notion
of computations as well. Our methods for decompositional reasoning largely
build on and adapt the methods from [Ingólfsdóttir et al. , Larsen and Xinxin
, Fokkink et al. ]. However, as the work presented in this chapter shows,
the development of a theory of decompositional reasoning in a setting with past



    

modalities involves subtleties and design decisions that do not arise in previous
work on HML and Kozen’s µ-calculus [Kozen ].
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chapter four

Rule Formats for
Determinism and Idempotency

joint work with Luca Aceto, Anna Ingólfsdottir,
MohammadReza Mousavi and Michel Reniers

. Introduction
Structural Operational Semantics (SOS) [Plotkin a] is a popular method
for assigning a rigorous meaning to specification and programming languages.
!e meta-theory of SOS provides powerful tools for proving semantic proper-
ties for such languages without investing too much time on the actual proofs;
it offers syntactic templates for SOS rules, called rule formats, which guarantee
semantic properties once the SOS rules conform to the templates (see, e.g., the
references [Aceto et al. , Mousavi et al. ] for surveys on the meta-theory of
SOS).!ere are various rule formats in the literature for many different semantic
properties, ranging from basic properties such as commutativity [Mousavi et al.
] and associativity [Cranen et al. ] of operators, and congruence of be-
havioral equivalences (see, e.g., [Verhoef ]) to more technical and involved
ones such as non-interference [Tini ] and (semi-)stochasticity [Lanotte and
Tini ]. In this chapter, we propose rule formats for two (related) properties,
namely, determinism and idempotency.

Determinism is a semantic property of (a fragment of) a language that specifies
that a program cannot evolve operationally in several different ways. It holds for
sub-languages of many process calculi and programming languages, and it is also a
crucial property for many formalisms for the description of timed systems, where
time transitions are required to be deterministic, because the passage of time should
not resolve any choice.

Idempotency is a property of binary composition operators requiring that the
composition of two identical specifications or programs will result in a piece of spec-
ification or program that is equivalent to the original components. Idempotency
of a binary operator f is concisely expressed by the following algebraic equation.

f (x , x) = x
Determinism and idempotency may seem unrelated at first sight. However, it turns
out that in order to obtain a powerful rule format for idempotency, we need to


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have the determinism of certain transition relations in place. !erefore, having
a syntactic condition for determinism, apart from its intrinsic value, results in a
powerful, yet syntactic framework for idempotency.

To our knowledge, our rule format for idempotency has no precursor in the
literature. As for determinism, in [Fokkink andVu ], a rule format for bounded
nondeterminism is presented but the case for determinism is not studied. Also,
in [Ulidowski and Yuen ] a rule format is proposed to guarantee several time-
related properties, including time determinism, in the settings of Ordered SOS. In
case of time determinism, their format corresponds to a subset of our rule format
when translated to the setting of ordinary SOS, by means of the recipe given in
[Mousavi et al.].

We made a survey of existing deterministic process calculi and of idempotent
binary operators in the literature and we have applied our formats to them. Our
formats could cover all practical cases that we have discovered so far, which is an
indication of its expressiveness and relevance.

!e rest of this chapter is organized as follows. In Section.  we recall some
basic definitions from the meta-theory of SOS. In Section. , we present our rule
format for determinism and prove that it does guarantee determinism for certain
transition relations. Section.  introduces a rule format for idempotency and
proves it correct. In Sections.  and. , we also provide several examples to
motivate the constraints of our rule formats and to demonstrate their practical
applications. Finally, Section.  concludes the chapter and presents somedirections
for future research.

. Preliminaries
In this section we present, for sake of completeness, some standard definitions
from the meta-theory of SOS that will be used in the remainder of the chapter.

D .. (Signature and terms) We let V represent an infinite set of vari-
ables and use x , x′ , x i , y, y′ , y i , . . . to range over elements of V . A signature Σ is a
set of function symbols, each with a fixed arity. We call these symbols operators
and usually represent them by f , g , . . . . An operator with arity zero is called a
constant. We define the set T(Σ) of terms over Σ as the smallest set satisfying the
following constraints.● A variable x ∈ V is a term.

● If f ∈ Σ has arity n and t , . . . , tn are terms, then f (t , . . . , tn) is a term.
We use t, t′ , t i , . . . to range over terms. We write t ≡ t if t and t are syntactically
equal. !e function vars ∶ T(Σ)→ V gives the set of variables appearing in a term.
!e set C(Σ) ⊆ T(Σ) is the set of closed terms, i.e., terms that contain no variables.
We use p, p′ , p i , . . . to range over closed terms. A substitution σ is a function of
typeV → T(Σ). We extend the domain of substitutions to terms homomorphically.
If the range of a substitution lies in C(Σ), we say that it is a closing substitution.
D .. (Transition System Specifications (TSS), formulae and transition
relations) A transition system specification is a triplet (Σ, L,D) where
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● Σ is a signature.

● L is a set of labels. If l ∈ L, and t, t′ ∈ T(Σ) we say that t l→ t′ is a positive
formula and t

l↛ is a negative formula. A formula, typically denoted by φ,
ψ, φ′, φ i , . . . is either a negative formula or a positive one.
● D is a set of deduction rules, i.e., tuples of the form (Φ, φ) where Φ is a set
of formulae and φ is a positive formula. We call the formulae contained in
Φ the premises of the rule and φ the conclusion.

We write vars(φ) and vars(r) to denote the set of variables appearing in a formula
φ and a deduction rule (r), respectively. We say a formula is closed if all of its terms
are closed. Substitutions are also extended to formulae and sets of formulae in the
natural way. A set of positive closed formulae is called a transition relation.

We o+en refer to a formula t l→ t′ as a transition with t being its source, l its
label, and t′ its target. A deduction rule (Φ, φ) is typically written as Φ

φ . For a
deduction rule r, we write conc(r) to denote its conclusion and prem(r) to denote
its premises. We call a deduction rule f -defining when the outermost function
symbol appearing in its source of the conclusion is f .

!e meaning of a TSS is defined by the following notion of least three-valued
stable model. To define this notion, we need two auxiliary definitions, namely
provable transition rules and contradiction, which are given below.

D .. (Provable Transition Rules) Adeduction rule is called a transition
rule when it is of the form N

φ with N a set of negative formulae. A TSS T proves N
φ ,

denoted by T ⊢ N
φ , when there is a well-founded upwardly branching tree with

formulae as nodes and of which

• the root is labelled by φ;

• if a node is labelled by ψ and the nodes above it form the set K then:

– ψ is a negative formula and ψ ∈ N , or
– ψ is a positive formula and K

ψ is an instance of a deduction rule in T .
D .. (Contradiction and Contingency) Formula t l→ t′ is said to con-
tradict t

l↛ , and vice versa. For two sets Φ and Ψ of formulae, Φ contradicts Ψ,
denoted by Φ ⊭ Ψ, when there is a φ ∈ Φ that contradicts a ψ ∈ Ψ. Φ is contingent
w.r.t. Ψ, denoted byΦ ⊧ Ψ, when Φ does not contradict Ψ.

It immediately follows from the above definition that contradiction and contin-
gency are symmetric relations on (sets of) formulae. We now have all the necessary
ingredients to define the semantics of TSSs in terms of three-valued stable models.

D .. ("e Least "ree-Valued Stable Model) A pair (C ,U) of sets of
positive closed transition formulae is called a three-valued stable model for a TSST when

• for all φ ∈ C, T ⊢ N
φ for a set N such that C ∪U ⊧ N , and
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• for all φ ∈ U , T ⊢ N
φ for a set N such that C ⊧ N .

C stands for Certainly and U for Unknown; the third value is determined by the
formulae not in C ∪ U . !e least three-valued stable model is a three valued
stable model which is the least with respect to the ordering on pairs of sets of
formulae defined as (C ,U) ≤ (C′ ,U ′) iff C ⊆ C′ and U ′ ⊆ U . When for the least
three-valued stable model it holds that U = {}, we say that T is complete.

Complete TSSs univocally define a transition relation, i.e., the C component of
their least three-valued stable model. Completeness is central to almost all meta-
results in the SOS meta-theory and, as it turns out, it also plays an essential role in
our meta-results concerning determinism and idempotency. All practical instances
of TSSs are complete and there are syntactic sufficient conditions guaranteeing
completeness, see for example [Groote ].

. Determinism
D .. (Determinism) A transition relation T is called deterministic for
label l , when if p l→ p′ ∈ T and p l→ p′′ ∈ T , then p′ ≡ p′′.

Before we define a format for determinism, we need two auxiliary definitions.
!e first one is the definition of source dependent variables, which we borrow
from [Mousavi and Reniers ] with minor additions.

D .. (Source dependency) For a deduction rule, we define the set of
source dependent variables as the smallest set that contains

. all variables appearing in the source of the conclusion, and

. all variables that appear in the target of a premise where all variables in the
source of that premise are source dependent.

For a source dependent variable v, letR be the collection of transition relations ap-
pearing in a set of premises needed to show source dependency through condition
. We say that v is source dependent via the relations inR.

Note that for a source dependent variable, the setR is not necessarily unique.
For example, in the rule

y l→ y′ x l→ z z l→ y′
f (x , y) l→ y′

the variable y′ is source dependent both via the set { l→} as well as { l→ , l→}.
!e second auxiliary definition needed for our determinism format is the

definition of determinism-respecting substitutions.

D .. (Determinism-Respecting Pairs of Substitutions) Given a set L
of labels, a pair of substitutions (σ , σ ′) is determinism-respecting w.r.t. a pair of
sets of formulae (Φ,Φ ′) and L when for all two positive formulae s l→ s′ ∈ Φ and
t l→ t′ ∈ Φ′ such that l ∈ L, σ(s) ≡ σ ′(t) only if σ(s′) ≡ σ ′(t′).
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Wenowhave all the necessary ingredients to define a rule format that guarantees
determinism.

D .. (Determinism Format) A TSS T is in the determinism format
w.r.t. a set of labels L, when for each l ∈ L the following conditions hold.

. In each deduction rule Φ
t l→ t′

, each variable v ∈ vars(t′) is source dependent
via a subset of { l→ ∣ l ∈ L}, and

. for each pair of distinct deduction rules Φ

t
l→ t′

and Φ

t
l→ t′

and for each

determinism-respecting pair of substitutions (σ , σ ′) w.r.t. (Φ , Φ) and
L such that σ(t) ≡ σ ′(t), it holds that either σ(t′) ≡ σ ′(t′) or σ(Φ)
contradicts σ ′(Φ).

!e first constraint in the definition above ensures that each rule in a TSS in the
determinism format, with some l ∈ L as its label of conclusion, can be used to prove
at most one outgoing transition for each closed term. !e second requirement
guarantees that no two different rules can be used to prove two distinct l-labelled
transitions for any closed term.

T .. Consider a TSS with (C ,U) as its least three-valued stable model
and a subset L of its labels. If the TSS is in the determinism format w.r.t. L, then C
is deterministic for each l ∈ L.
Proof. Instead of proving that C is deterministic for each l ∈ L, we establish the
following more general result. We prove that, for each l ∈ L,

if p l→ p′ ∈ C ∪U and p l→ p′′ ∈ C then p′ ≡ p′′ . (.)

Assume the first two statements. Since p l→ p′ ∈ C ∪ U , then there exists a
provable transition rule, such that T ⊢ N

p l→ p′
, for some set N of negative formulae

such thatC ⊧ N . We show the claim (.) by an induction on the proof structure for
the transition rule N

p l→ p′
. Let (r) be the last deduction rule, and σ the substitution,

used in the proof structure for N
p l→ p′

.

Similarly, since p l→ p′′ ∈ C, there also exists a proof structure such that T ⊢
N′

p l→ p′′
for some set N ′ of negative formulae such that C ∪ U ⊧ N ′. Let (r′) be

the last deduction rule, and σ ′ the substitution, used in the proof structure forT ⊢ N′
p l→ p′′

.

!e proof is split in two main cases, the case when both proofs are based on
the same rule ((r) = (r′)) and the case when they are based on two distinct rules
((r) ≠ (r′)).
Case (r) = (r′). In this case, say the rules (r) and (r′) are both the rule Φ

t l→ t′
.

Obviously σ(t) ≡ σ ′(t) since both must be equal to p. Since σ(t′) and σ ′(t′) are
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equal to p′ and p′′ respectively, to show our claim (.) we thus need to show that
σ(t′) ≡ σ ′(t′).

We define the distance of a source-dependent variable as the length of the
shortest backward path from the variable, via premises with a label in L, to the
variables in the source of conclusion. A variable in the source of the conclusion is
thus of distance.

By induction on its distance, we now show that any variable v, which is source-
dependent via a subset of { l→ ∣ l ∈ L}, is assigned the same value by σ and σ ′,
i.e. σ(v) ≡ σ ′(v). !e first constraint of our rule format dictates that any variable
appearing in the target t′ of the rule, is source-dependent via this set. !erefore if
σ and σ ′ agree on all such variables, they must also agree on t′.

Let v be a variable appearing in the rule, which is source-dependent via some
subset of { l→ ∣ l ∈ L}. !e base case of the induction is simple: If the distance of v
is zero, this means v appears in the source t. Since σ(t) ≡ σ ′(t) it must be the case
that σ(v) ≡ σ ′(v).

For the inductive step, assume v has a non-zero distance. According to Def-
inition.  this means that v appears in the target of some premise t i

l i→ t′i ∈ Φ
where l i ∈ L, and all variables appearing in t i are also source dependent via the set
{ l→ ∣ l ∈ L}. However, each variablew ∈ vars(t i) has a smaller distance than v. By
the induction hypothesis (on variable distances), we thus have that σ(w) ≡ σ ′(w).

At this point, we can invoke the outer induction hypothesis, namely that of
our induction on the proof structure of p l→ p′. Since t i l i→ t′i is a premise of the
first rule used, it must be provable with a smaller proof structure, using either
the substitution σ or σ ′. By the induction hypothesis, the claim (.) holds for
it. In other words the target of the premise is the same whether we use σ or σ ′,
i.e. σ(t′i) ≡ σ ′(t′i). Since the variable v appears in t′i , it must thus hold that
σ(v) ≡ σ ′(v).

We have thus showed that σ and σ ′ agree on the value of v in all cases. As
noted above, this holds specifically for all variables of t′ and we can conclude that
σ(t′) ≡ σ ′(t′), or p′ ≡ p′′, which proves the claim (.) in the case of (r) = (r′).
Case (r) ≠ (r′). We now consider the case where the rules (r) and (r′) are
distinct. Let (r) = Φ

s l→ s′
and (r′) = Φ′

t l→ t′
. We first show that the pair (σ , σ ′) is

determinism-respecting w.r.t. (Φ,Φ ′) and L.
Assume, towards a contradiction, that the pair is not determinism-respecting.

!en there exist two positive formulae s i
l ′→ s′i and t i l ′→ t′i for some l ′ ∈ L among the

premises of (r) and(r′), respectively, such that σ(s i) ≡ σ ′(t i) but σ(s′i) ≢ σ ′(t′i).
Since s i

l→ s′i is a premise of (r), we know that σ(s i l→ s′i) ∈ C∪U and it has a smaller
proof structure than p l→ p′ ∈ C∪U . Following a similar reasoning, σ ′(t i l→ t′i) ∈ C.
But the induction hypothesis (on the proof structure) applies and hence, we have
σ(s′i) ≡ σ ′(t′i), which contradicts our earlier conclusion that σ(s′i) ≢ σ ′(t′i) does
not hold. Hence, we conclude that our assumption is false and that (σ , σ ′) is
determinism-respecting w.r.t. (Φ,Φ ′) and L.
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Since we have shown that (σ , σ ′) is determinism respecting, it then follows
from the second condition of the determinism format that either σ(s′) ≡ σ ′(t′),
which was to be shown, or there exist premises φ i ≡ u i

l i→u′i in one deduction rule

and φ′i ≡ w i
l i↛ in the other deduction rule such that σ(φ i) contradicts σ ′(φ′i).

We show that the latter possibility leads to a contradiction, thus completing the
proof. Assume σ(φ i) contradicts σ ′(φ′i), then we have that σ(u i) ≡ σ ′(w i). We
distinguish the following two cases based on the status of the positive and negative
contradicting premises with respect to (r) and (r′).

. Assume that the positive formula is a premise of (r). !en, σ(u i
l i→u′i) ∈

C ∪U but from C ∪U ⊧ N ′ and σ ′(φ′i) ∈ N ′, it follows that for no p′′, we
have that σ(u i) ≡ σ ′(w i) l i→ p′′ ∈ C ∪U , thus reaching a contradiction.

. Assume that the positive formula is a premise of (r′).!en, σ ′(u i) l i→ σ(u′i) ∈
C but from C ⊧ N and σ(φ′i) ∈ N , it follows that for no p, we have that
σ(w i) ≡ σ ′(u i) l i→ p ∈ C, hence reaching a contradiction.

For a TSS in the determinism format with (C ,U) as its least three-valued stable
model,U and thusC∪U need not be deterministic.!e following counter-example
illustrates this phenomenon.

E .. Consider the TSS given by the following deduction rules.

a l→ a

a l→ b

a
l↛

a l→ a

!e above-given TSS is in the determinism format since a l→ a and a
l↛ contradict

each other (under any substitution). Its least three-valued stable model is, however,
({}, {a l→ a, a l→ b}) and {a l→ a, a l→ b} is not deterministic.

C .. Consider a complete TSS with L as a subset of its labels. If the
TSS is in the determinism format w.r.t. L, then its defined transition relation is
deterministic for each l ∈ L.

Constraint  in Definition.  may seem difficult to verify, since it requires
checks for all possible (determinism-respecting) substitutions. However, in practi-
cal cases, to be quoted in the remainder of this chapter, variable names are chosen
in such a way that constraint  can be checked syntactically. For example, consider
the following two deduction rules.

x a→ x′
f (x , y) a→ x′

y
a↛ x b→ x′

f (y, x) a→ x′

If in both deduction rules f (x , y) (or symmetrically f (y, x)) was used, it could
have been easily seen from the syntax of the rules that the premises of one deduction
rule always (under all pairs of substitutions agreeing on the value of x) contradict
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the premises of the other deduction rule and, hence, constraint  is trivially satisfied.
Based on this observation, we next present a rule format, whose constraints have a
purely syntactic form, and that is sufficiently powerful to handle all the examples
we discuss in Section.. . (Note that, for the examples in Section.. , checking
the constraints of Definition.  is not too hard either.)

D .. (Normalized TSSs) A TSS is normalized w.r.t. L if each deduc-
tion rule is f -defining for some function symbol f , and for each label l ∈ L, each
function symbol f and each pair of deduction rules of the form

(r) Φr

f (!→s ) l→ s′
(r′) Φr′

f (!→t ) l→ t′

the following constraints are satisfied:

. the sources of the conclusions coincide, i.e., f (!→s ) ≡ f (!→t ),
. each variable v ∈ vars(s′) (symmetrically v ∈ vars(t′)) is source dependent

in (r) (respectively in (r′)) via some subset of { l→ ∣ l ∈ L},
. for each variable v ∈ vars(r)∩ vars(r′) there is a set of formulae in Φr ∩Φr′

proving its source dependency (both in (r) and (r′))) via some subset of
{ l→ ∣ l ∈ L}.

!e second and third constraint in Definition.  guarantee that the syntactic
equivalence of relevant terms (the target of the conclusion or the premises negating
each other) will lead to syntactically equivalent closed terms under all determinism-
respecting pairs of substitutions.

!e reader can check that all the examples quoted from the literature in Section
.. are indeed normalized TSSs.

D .. (Syntactic Determinism Format) A normalized TSS is in the
(syntactic) determinism formatw.r.t. L, when for each two deduction rules Φ

f ("→s ) l→ s′
and Φ

f ("→s ) l→ s′′
, it holds that s′ ≡ s′′ orΦ  contradictsΦ .

!e following theorem states that for normalized TSSs, Definition.  implies
Definition..

T .. Each normalized TSS in the syntactic determinism format w.r.t. L
is also in the determinism format w.r.t. L.

Proof. Let T be a normalized TSS in the syntactic determinism format w.r.t. L.
Condition  of Definition.  is satisfied since T is normalized. To see this, consider
item  of Definition. , by taking (r) and (r′) to be the same rule.

To prove condition  of Definition. let (r) = Φ

t
l→ t′

and (r′) = Φ

t
l→ t′

be

distinct rules of T and (σ , σ ′) be a determinism-respecting pair of substitutions
w.r.t. (Φ , Φ) and L such that σ(t) ≡ σ ′(t). Since T is normalized, both (r)
and (r′) are f -defining for some function symbol f , i.e., t = f (!→s ) and t = f (!→t ).
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Furthermore, since f (!→s ) ≡ f (!→t ) we have that σ and σ ′ agree on all variables
appearing in f (!→s ) = f (!→t ).

For each variable v ∈ vars(r)∩vars(r′), we define its common source distance to
be the source distance of v when only taking the formulae in Φ ∩Φ into account.
Note that such a source distance exists since by constraint  of Definition.  all
v ∈ vars(r) ∩ vars(r′) are source dependent via a subset of { l→ ∣ l ∈ L} included
inΦ  ∩Φ.

We prove for each v ∈ vars(r) ∩ vars(r′) that σ(v) ≡ σ ′(v) by an induction on
the common source distance of variables v. Suppose that we show the above claim,
then we can prove the theorem as follows. It follows from Definition.  that
either t′ ≡ t′ or Φ contradicts Φ. If t′ ≡ t′, then variables in vars(t′) = vars(t′)
are all source dependent via transitions in L that are common to both Φ and
Φ (by constraint  of Definition. ). By the above-mentioned claim, σ(t′) ≡
σ ′(t′), thus, constraint  of Definition.  follows, which was to be shown. If Φ

contradicts Φ, then assume that the premises negating each other are φ j ≡ s j l j→ s′j
and φ j′ ≡ t j′

l j↛ and it holds that s j ≡ t j′ . All variables in t j ≡ s j are source
dependent via transitions in L (by constraint  of Definition. ). It follows from
the claim that σ(s j) ≡ σ ′(t j′) and thus, σ(φ j) contradicts σ ′(φ j′), which implies
constraint  of Definition..

Hence, it only remains to prove, by an induction on the common source distance
of v, that σ(v) ≡ σ ′(v). If v ∈ vars( f (!→s )) then we know that σ(v) ≡ σ ′(v)
(since t ≡ t and σ(t) ≡ σ ′(t). Otherwise, since v is source dependent in
(r) via transitions with labels in L, there is a positive premise u l→u′ in Φ with
l ∈ L such that v ∈ vars(u′) and all variables in u are source dependent with
a shorter common source distance. Furthermore, since v appears in both rules,
i.e., v ∈ vars(r) ∩ vars(r′), this premise also appears in Φ according to item
 of Definition.  and thus vars(u) ⊆ vars(r) ∩ vars(r′). By the induction
hypothesis we have that σ(u) ≡ σ ′(u) and since (σ , σ ′) is determinism-respecting
w.r.t. (Φ , Φ) and L, we know that σ(u′) ≡ σ ′(u′). Specifically, the substitutions
must agree on the value of v, i.e. σ(v) ≡ σ ′(v).

!e following statement is a corollary to!eorems.  and..

C .. Consider a normalized TSSwith (C ,U) as its least three-valued
stable model and a subset L of its labels. If the TSS is in the (syntactic) determinism
format w.r.t. L (according to Definition. ), then C is deterministic w.r.t. any
l ∈ L.

.. Examples
In this section, we present some examples of various TSSs from the literature
and apply our (syntactic) determinism format to them. Some of the examples we
discuss below are based on TSSs with predicates. !e extension of our formats
with predicates is straightforward and we discuss it in Section..  to follow.
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E .. (Conjunctive Nondeterministic Processes) Hennessy and Plotkin,
in [Hennessy and Plotkin ], define a language, called conjunctive nondetermin-
istic processes, for studying logical characterizations of processes.!e signature
of the language consists of a constant , a unary action prefixing operator a._ for
each a ∈ A, and a binary conjunctive nondeterminism operator ∨. !e operational
semantics of this language is defined by the following deduction rules.

 cana a.x cana

x cana

x ∨ y cana

y cana

x ∨ y cana

 a+era  a.x a+era x a.x a+erb  a ≠ b
x a+era x′ y a+era y′

x ∨ y a+era x′ ∨ y′
!e aboveTSS is in the (syntactic) determinism formatwith respect to the transition
relation a+era (for each a ∈ A). Hence, we can conclude that the transition
relations a+era are deterministic.

E .. (Delayed choice) !e second example we discuss is a subset of the
process algebra BPAδє +DC [Baeten and Mauw ], i.e., Basic Process Algebra
with deadlock and empty process extended with delayed choice. First we restrict
attention to the fragment of this process algebra without non-deterministic choice+ and with action prefix a._ instead of general sequential composition ⋅. !is
altered process algebra has the following deduction rules, where a ranges over the
set of actions A:

є ↓ a.x a→ x
x ↓

x ∓ y ↓
y ↓

x ∓ y ↓
x a→ x′ y a→ y′
x ∓ y a→ x′ ∓ y′

x a→ x′ y
a↛

x ∓ y a→ x′
x

a↛ y a→ y′
x ∓ y a→ y′

In the above specification, predicate p ↓ denotes the possibility of termination for
process p.!e intuition behind the delayed choice operator, denoted by_∓ _, is that
the choice between two components is only resolved when one performs an action
that the other cannot perform. When both components can perform an action,
the delayed choice between them remains unresolved and the two components
synchronize on the common action. !is transition system specification is in the
(syntactic) determinism format w.r.t. {a ∣ a ∈ A}.

Addition of non-deterministic choice + or sequential composition ⋅ results in
deduction rules that do not satisfy the determinism format. For example, addition
of sequential composition comes with the following deduction rules:

x a→ x′
x ⋅ y a→ x′ ⋅ y

x ↓ y a→ y′
x ⋅ y a→ y′

!e sets of premises of these rules do not contradict each other. !e extended
TSS is indeed non-deterministic since, for example, (є ∓ (a.є)) ⋅ (a.є) a→ є and
(є ∓ (a.є)) ⋅ (a.є) a→ є ⋅ (a.є).
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E .. (Time transitions I) !is example deals with the Algebra of Timed
Processes, ATP, of Nicollin and Sifakis [Nicollin and Sifakis ]. In the TSS given
below, we specify the time transitions (denoted by label χ) of delayable deadlock δ,
non-deterministic choice _ ⊕ _, unit-delay operator ⌊_⌋_ and parallel composition
_ ∥ _.

δ
χ→ δ

x
χ→ x′ y

χ→ y′
x ⊕ y

χ→ x′ ⊕ y′ ⌊x⌋(y) χ→ y
x

χ→ x′ y
χ→ y′

x ∥ y χ→ x′ ∥ y′
!ese deduction rules all trivially satisfy the determinism format for time transi-
tions since the sources of conclusions of different deduction rules cannot be unified.
Also the additional operators involving time, namely, the delay operator ⌊_⌋d_,
execution delay operator ⌈_⌉d_ and unbounded start delay operator ⌊_⌋ω , satisfy
the determinism format for time transitions. !e deduction rules are given below,
for d ≥ :

⌊x⌋(y) χ→ y
x

χ→ x′
⌊x⌋d+(y) χ→ ⌊x′⌋d(y)

x
χ↛

⌊x⌋d+(y) χ→ ⌊x⌋d(y)
x

χ→ x′
⌊x⌋ω χ→ ⌊x′⌋ω

x
χ↛

⌊x⌋ω χ→ ⌊x⌋ω
x

χ→ x′
⌈x⌉(y) χ→ y

x
χ→ x′

⌈x⌉d+(y) χ→ ⌈x′⌉d(y)
E .. (Time transitions II) Most of the timed process algebras that origi-
nate from theAlgebra of Communicating Processes (ACP) from [Bergstra andKlop
, Baeten andWeijland ] such as those reported in [Baeten andMiddelburg
] have a deterministic time transition relation as well.

In the TSS given below, the time unit delay operator is denoted by σrel_, nonde-
terministic choice is denoted by _ + _, and sequential composition is denoted by
_ ⋅ _. !e deduction rules for the time transition relation for this process algebra
are the following:

σrel(x) → x
x → x′ y → y′
x + y → x′ + y′

x → x′ y
↛

x + y → x′
x

↛ y → y′
x + y → y′

x → x′ x /↓
x ⋅ y → x′ ⋅ y

x → x′ y
↛

x ⋅ y → x′ ⋅ y
x → x′ x ↓ y → y′
x ⋅ y → x′ ⋅ y + y′

x
↛ x ↓ y → y′

x ⋅ y → y′
Note that here we have an example of deduction rules, the first two deduction
rules for time transitions of a sequential composition, for which the premises
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do not contradict each other. Still these deduction rules satisfy the determinism
format since the targets of the conclusions are identical. In the syntactically richer
framework of [van Weerdenburg and Reniers ], where arbitrary first-order
logic formulae over transitions are allowed, those two deduction rules are presented
by a single rule with premise x → x′ ∧ (x /↓ ∨y ↛ ).

Sometimes such timed process algebras have an operator for specifying an
arbitrary delay, denoted by σ∗rel_, with the following deduction rules.

x
↛

σ∗rel(x) → σ∗rel(x)
x → x′

σ∗rel(x) → x′ + σ∗rel(x)
!e premises of these rules contradict each other and so, the semantics of this
operator also satisfies the constraints of our (syntactic) determinism format.

. Idempotency

Our order of business in this section is to present a rule format that guarantees the
idempotency of certain binary operators. In the definition of our rule format, we
rely implicitly on the work presented in the previous section.

.. Format

D .. (Idempotency) A binary operator f ∈ Σ is idempotent w.r.t.
an equivalence ∼ on closed terms if and only if for each p ∈ C(Σ), it holds that
f (p, p) ∼ p.

Idempotency is defined with respect to a notion of behavioral equivalence.
!ere are various notions of behavioral equivalence defined in the literature, which
are by and large, weaker than bisimilarity defined below. !us, to be as general
as possible, we prove our idempotency result for all notions that contain, i.e., are
weaker than, bisimilarity.

D .. (Bisimulation) Let T be a TSS with signature Σ. A relationR ⊆ C(Σ) ×C(Σ) is a bisimulation relation if and only ifR is symmetric and for
all p , p , p′ ∈ C(Σ) and l ∈ L

(pR p ∧ T ⊢ p
l→ p′)⇒ ∃p′∈C(Σ)(T ⊢ p

l→ p′ ∧ p′R p′).
Two terms p , p ∈ C(Σ) are called bisimilar, denoted by p ↔ p, when there
exists a bisimulation relation R such that pRp.

D .. ("e Idempotency Rule Format) Let γ ∶ L × L → L be a partial
function such that γ(l , l) ∈ {l , l} if it is defined. We define the following two
rule forms.
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l . Choice rules {x i l→ t} ∪Φ
f (x , x) l→ t

, i ∈ {, }

l , l . Communication rules

{x l→ t , x
l→ t} ∪Φ

f (x , x) γ(l , l)→ f (t , t)
, t ≡ t or (l = l and l→ is deterministic )

In each case, Φ can be an arbitrary, possibly empty set of (positive or negative)
formulae.

In addition, we define the starred version of each form, ∗l and ∗l , l . !e starred
version of each rule is the same as the unstarred one except that t, t and t are
restricted to be concrete variables and the set Φ must be empty in each case.

A TSS is in idempotency format w.r.t. a binary operator f if each f -defining
rule, i.e., a deduction rule with f appearing in the source of the conclusion, is of
the forms l or l , l , for some l , l , l ∈ L, and for each label l ∈ L there exists at
least one rule of the forms ∗l or ∗l , l .

We should note that the starred versions of the forms are special cases of their
unstarred counterparts; for example a rule which has form ∗l also has form l .

T .. Assume that a TSS is complete and is in the idempotency format
with respect to a binary operator f . !en, f is idempotent w.r.t. to any equivalence∼ such that↔ ⊆ ∼.
Proof. First define the relation ≃ f ⊆ C(Σ) × C(Σ) as follows.

≃ f = {(p, p), (p, f (p, p)), ( f (p, p), p) ∣ p ∈ C(Σ)}
To prove the theorem it suffices to show that ≃ f is a bisimulation relation. If it is,
then f (p, p)↔ p for any closed term p and since↔ ⊆∼ we obtain the theorem.

Let (C ,U) be the least three-valued stable model for the TSS under consider-
ation. First consider a closed term p s.t. p l→ p′ ∈ C for some l and p′ (note that
U = {} since the TSS is complete). Next, we argue that f (p, p) l→ p′′ for some p′′
such that p′ ≃ f p′′. Since p l→ p′ ∈ C, there exists a provable transition rule of the
form N

p l→ p′
for some set of negative formulae N such that C ⊧ N . In particular,

that means that p
l↛ ∉ N . In this case we make use of the requirement that there

exists at least one rule of a starred form for label l . If there exists a rule of the form
∗l , i.e.

x i
l→ x′

f (x , x) l→ x′
, i ∈ {, }

then we can instantiate it to prove that f (p, p) l→ p′ ∈ C. In particular, it does not
matter if i =  or i = . Since ≃ f is reflexive, p′ ≃ f p′ holds. If there exists a rule of
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the form ∗l , l , we observe that γ(l , l) = l so the transition rule becomes

x
l→ x′ x

l→ x′
f (x , x) l→ f (x′ , x′) ,

where x′ ≡ x′ or l→ is deterministic. Now we can use the existence of p l→ p′ to
satisfy both premises and obtain that f (p, p) l→ f (p′ , p′). By the definition of ≃ f
we also have that p′ ≃ f f (p′ , p′). In either case, if p l→ p′ ∈ C, then there exists a

p′′ s.t. f (p, p) l→ p′′ ∈ C and p′ ≃ f p′′.
Now assume that f (p, p) k→ p′ ∈ C. !en there exists a provable transition rule
N

f (p,p) k→ p′
for some set of negative formulae N such that C ⊧ N . Since all rules for

f are either of the form l or l , l , this provable transition rule must be based on a
rule of those forms. We analyze each possibility separately, showing that in each
case p k→ p′′ for some p′′ such that p′ ≃ f p′′.

If the rule is based on a rule of form l , its positive premises must also be
provable. In particular it must hold that p k→ p′ ∈ C since both x and x in the rule
are instantiated to p. !e other premises are of no consequence to this conclusion
and, again, we observe that p′ ≃ f p′.

Now consider the case where the transition is a consequence of a rule of the
form l , l . If t ≡ t, say both are equal to p′′, we must consider two cases, namely
k = l and k = l. If k = l then the first premise of the rule actually states that
p k→ p′′. If k = l then the second premise similarly states that p k→ p′′. In either
case, we note that p′ ≡ f (p′′ , p′′)must hold and again by the definition of ≃ f we
have that f (p′′ , p′′) ≃ f p′′.

If however t /≡ t the side condition requires that l = l = k, which also implies
γ(l , l) = l = k, and that the transition relation l→ is deterministic. In this case
it is easy to see that the right-hand sides of the first two premises, namely t and
t, evaluate to the same closed term in the proof structure, say p′′. !e conclusion
then states that k = l and p′ ≡ f (p′′ , p′′). It must thus hold that p k→ p′′ ∈ C and
f (p′′ , p′′) ≃ f p′′ as before.

From this we obtain that if f (p, p) k→ p′ ∈ C then there exists a p′′ such that
p k→ p′′ ∈ C and p′ ≃ f p′′. !us, ≃ f is a bisimulation.

.. Relaxing the restrictions
In this section we consider the constraints of the idempotency rule format (Def-
inition. ) and show that they cannot be dropped without jeopardizing the
meta-theorem.

First of all we note that, in rule form l , it is necessary that the label of the
premise matches the label of the conclusion. If it does not, in general, we cannot
prove that f (p, p) simulates p or vice versa. !is requirement can be stated more
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generally for both rule forms in Definition. ; the label of the conclusion must
be among the labels of the premises.!e requirement that γ(l , l ′) ∈ {l , l ′} exists
to ensure this constraint for form l , l ′ . A simple synchronization rule provides a
counter-example that shows why this restriction is needed. Consider the following
TSS with constants, τ, a and ā and two binary operators + and ∥.

α α→
x α→ x′

x + y α→ x′
y α→ y′

x + y α→ y′
x a→ x′ y ā→ y′
x ∥ y τ→ x′ ∥ y′

where α is τ, a or ā. Here it is easy to see that although (a + ā) ∥ (a + ā) has an
outgoing τ-transition, a + ā does not afford such a transition.

!e condition that for each l at least one rule of the forms ∗l or ∗l , l must exist
comprises a few constraints on the rule format. First of all, it says there must be at
least one f -defining rule. If not, it is easy to see that there could exist a process p
where f (p, p) deadlocks (since there are no f -defining rules) but p does not. It
also states that there must be at least one rule in the starred form, where the targets
are restricted to variables. To motivate these constraints, consider the following
TSS.

a a→
x a→ a

f (x , y) a→ a

!e processes a and f (a, a) are not bisimilar as the former can do an a-transition
but the latter is stuck. !e starred forms also require that Φ is empty, i.e. there is no
testing. !is is necessary in the proof because in the presence of extra premises, we
cannot in general instantiate such a rule to show that f (p, p) simulates p. Finally,
the condition requires that if we rely on a rule of the form ∗l , l ′ and t ≡/ t, then
the labels l and l ′ in the premises of the rule must coincide. To see why, consider
a TSS containing a le$ synchronize operator !, one that synchronizes a step from
each operand but uses the label of the le+ one. Here we let α ∈ {a, ā}.

α α→
x α→ x′

x + y α→ x′
y α→ y′

x + y α→ y′
x a→ x′ y ā→ y′
x! y a→ x′! y′

In this TSS the processes (a + ā) and (a + ā)! (a + ā) are not bisimilar since the
latter does not afford an ā-transition whereas the former does.

For rules of form l , l ′ we require that either t ≡ t, or that the mentioned
labels are the same and the associated transition relation is deterministic. !is
requirement is necessary in the proof to ensure that the target of the conclusion fits
our definition of ≃ f , i.e. the operator is applied to two identical terms. Consider
the following TSS where α ∈ {a, b}.

a a→ a a a→ b b b→ b
x α→ x′ y α→ y′
x∣y α→ x′∣y′

For the operator ∣, this violates the condition t ≡ t (note that
a→ is not deter-

ministic). We observe that a∣a a→ a∣b. !e only possibilities for a to simulate this
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a-transition is either with a a→ a or with a a→ b. However, neither a nor b can be
bisimilar to a∣b because both a and b have outgoing transitions while a∣b is stuck.
!erefore a and a∣a cannot be bisimilar. If t /≡ t we must require that the labels
match, l = l, and that l→ is deterministic. We require the labels to match because
if they do not, then given only p l→ p′ it is impossible to prove that f (p, p) can
simulate it using only a ∗l , l ′ rule. !e determinacy of the transition with that
label is necessary when proving that transitions from f (p, p) can, in general, be
simulated by p; if we assume that f (p, p) l→ p′ then we must be able to conclude
that p′ has the shape f (p′′ , p′′) for some p′′, in order to meet the bisimulation
condition for ≃ f . Consider the standard choice operator + and prefixing operator .
of CCS with the ∣ operator from the last example, with α ∈ {a, b, c}.

α α→ α.x α→ x
x α→ x′

x + y α→ x′
y α→ y′

x + y α→ y′
x α→ x′ y α→ y′
x∣y α→ x′∣y′

If we let p = a.b + a.c, then p∣p a→ b∣c and b∣c is stuck. However, p cannot simulate
this transition w.r.t. ≃ f . Indeed, p and p∣p are not bisimilar.

.. Predicates
!ere are many examples of TSSs where predicates are used. !e definitions
presented in Section.  and.  can be easily adapted to deal with predicates as
well. In particular, two closed terms are called bisimilar in this setting when, in
addition to the transfer conditions of bisimilarity, they satisfy the same predicates.
To extend the idempotency rule format to a setting with predicates, the following
types of rules for predicates are introduced:

P . Choice rules for predicates

{Px i} ∪Φ
P f (x , x) , i ∈ {, }

P . Synchronization rules for predicates

{Px , Px} ∪Φ
P f (x , x)

As before, we define the starred version of these forms, ∗P and ∗P . !e starred
version of each rule is the same as the unstarred one except that the set Φ must be
empty in each case. With these additional definition the idempotency format is
defined as follows.

A TSS is in idempotency format w.r.t. a binary operator f if each f -defining
rule, i.e., a deduction rule with f appearing in the source of the conclusion, is
of one the forms l , l , l , P or P for some l , l , l ∈ L, for each label l ∈ L and
predicate symbol P. Moreover, for each l ∈ L, there exists at least one rule of the
forms ∗l or ∗l , l , and for each predicate symbol P there is a rule of the form ∗P or
∗P .
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.. Examples
E .. !e most prominent example of an idempotent operator is non-
deterministic choice, denoted +. It typically has the following deduction rules:

x
a→ x′

x + x a→ x′
x

a→ x′
x + x a→ x′

Clearly, these are in the idempotency format w.r.t. +.
E .. (External choice) !e well-known external choice operator◻ from
CSP [Hoare ] has the following deduction rules

x
a→ x′

x ◻ x a→ x′
x

a→ x′
x ◻ x a→ x′

x
τ→ x′

x ◻ x τ→ x′ ◻ x
x

τ→ x′
x ◻ x τ→ x ◻ x′

Note that the third and fourth deduction rule are not instances of any of the
allowed types of deduction rules. !erefore, no conclusion about the validity
of idempotency can be drawn from our format. In this case this does not point
to a limitation of our format, because this operator is not idempotent in strong
bisimulation semantics [D’Argenio ].

E .. (Strong time-deterministic choice) !e choice operator that is used
in the timed process algebra ATP [Nicollin and Sifakis ] has the following
deduction rules.

x
a→ x′

x ⊕ x
a→ x′

x
a→ x′

x ⊕ x
a→ x′

x
χ→ x′ x

χ→ x′
x ⊕ x

χ→ x′ ⊕ x′
!e idempotency of this operator follows from our format since the last rule for⊕
fits the form ∗χ, χ because, as we remarked in Example. , the transition relation
χ→ is deterministic.

E .. (Weak time-deterministic choice) !e choice operator + that is
used in most ACP-style timed process algebras [Baeten and Middelburg ] has
the following deduction rules:

x
a→ x′

x + x a→ x′
x

a→ x′
x + x a→ x′

x
→ x′ x

→ x′
x + x → x′ + x′

x
→ x′ x

↛
x + x → x′

x
↛ x

→ x′
x + x → x′

!e third deduction rule is of the form ∗, , the others are of forms ∗a and ∗ .
!is operator is idempotent (since the transition relation → is deterministic, as
remarked in Example.).



  .      

E .. (Conjunctive nondeterminism) !e operator ∨ as defined in Ex-
ample.  by means of the deduction rules

x cana

x ∨ y cana

y cana

x ∨ y cana

x a+era x′ y a+era y′
x ∨ y a+era x′ ∨ y′

satisfies the idempotency format (extended to a setting with predicates).!e first
two deduction rules are of the form ∗cana

and the last one is of the form ∗a ,a .
Here we have used the fact that the transition relations a+era are deterministic as
concluded in Example. .

E .. (Delayed choice) Delayed choice can be concluded to be idempo-
tent in the restricted setting without + and ⋅ by using the idempotency format and
the fact that in this restricted setting the transition relations a→ are deterministic.
(See Example..)

x ↓
x ∓ y ↓

y ↓
x ∓ y ↓

x a→ x′ y a→ y′
x ∓ y a→ x′ ∓ y′

x a→ x′ y
a↛

x ∓ y a→ x′
x

a↛ y a→ y′
x ∓ y a→ y′

!e first two deduction rules are of form ∗↓ , the third one is a ∗a ,a rule, and the
others are a rules. Note that for any label a starred rule is present.

For the extensions discussed in Example.  idempotency cannot be estab-
lished using our rule format since the transition relations are no longer determinis-
tic. In fact, delayed choice is not idempotent in these cases.

. Conclusions
In this chapter, we presented two rule formats guaranteeing determinism of cer-
tain transitions and idempotency of binary operators. Our rule formats cover all
practical cases of determinism and idempotency that we have thus far encountered
in the literature.

We plan to extend our rule formats with the addition of data/store. Also, it is in-
teresting to study the addition of structural congruences pertaining to idempotency
to the TSSs in our idempotency format.
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