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Abstract

The aim of selective search in adversary board games is to concentrate the
search capacity on important lines of play, as to mimic the cognitive approach
of humans. This is achieved by placing available moves into move categories,
where interesting categories are examined more closely while less interest-
ing ones are terminated early. One of the main challenges with selective
search is designing effective move categories (features), which is a manual
trial and error task that requires both intuition and expert human knowledge.
Automating this task potentially enables the discovery of both more complex
and more effective move categories. In this work we introduce Gradual Fo-
cus, an algorithm for automatically discovering interesting move categories
for selective search. The algorithm iteratively creates new more refined move
categories by combining mutually exclusive features from an atomic feature
set. Each iteration selectively creates more detailed move categories. This
enables the assessment of a move categories’ evolutionary progress, making
Gradual Focus a merit driven method which continues to evolve move cate-
gories while it is still beneficial. Empirical data is presented for the games
Breakthrough and chess showing that Gradual Focus looks at two orders of
magnitude less than a brute force method would do.



Gradual Focus:
Sjalfvirk uppgotvun a valbundnum leitar sérkennum

eftir
Palmi Skowronski

Januar 2009

Utdrattur

Tilgangur valbundinnar andstedings leitar (e. selective adversary search)
i hefdbundnum leikjum 4 bord vid skdk er ad styra leitinni & pann hatt ad
ahugaverdir leikir eru skodadir ndnar, sem er svipud ndlgun og vid men-
nirnir notum til ad leysa sambarileg vandamél. Petta er dtfeert pannig ad
allar mogulegar adgerdir (e. moves) eru flokkadar i adgerdaflokka eftir pvi
hversu dhugaverdar adgerdirnar eru. Med pessum hatti getur leitin eytt meiri
tima { ad skoda dhugaverdar adgerdir og minni tima i ad skoda 6dhugaverdar
adgerdir. Pad ad skilgreina dhugaverda adgerdaflokka er badi flokid og
villugjarnt ferli par sem um er ad r&da handvirkt ferli sem krefst sérfredi
pekkingar mannanna. Ef ferlid yrdi aftur & méti sjalfvirkt mundu opnast nyir
moguleikar { ad mynda fléknari og dhrifarikari adgerdaflokka en 4dur. I pes-
sari ritgerd lysum vid algrimnum Gradual Focus sem uppgotvar sjalfkrafa
dhugaverda adgerdaflokka fyrir valbundna leit. Med honum eru nyir og
sértekari adgerdaflokkar bunir til { itrudu ferli par sem adgerdaflokkar ur
sidustu itrun eru sameinadir vid hop af fyrirfram skilgreindum grunn (e.
atomic) adgerdaflokkum sem ttiloka hvor adra. Med pessu moéti er hegt
ad meta préun adgerdaflokkanna sem gerir algrimnum kleift ad préa nyja
adgerdaflokka pangad til peir eru ekki lengur gagnlegir. Gedi algrimsins eru
synd 1 leikjunum Breakthrough og skdk par sem pad kemur 1 1j6s ad Grad-
ual Focus skodar einungis tver sterdargradur af adgerdaflokkum til saman-
burdar vid allar mégulegar samsetningar.
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Chapter 1

Introduction

If I have ever made any valuable discoveries, it has been owing more to
patient attention, than to any other talent.
Isaac Newton (1642 - 1727)

Enabling computers to play sophisticated board games such as chess is one of the oldest
research areas in artificial intelligence. In 1950 Claude Shannon wrote a seminal paper
(Shannon, 1950) where he successfully described two different search strategies for game
playing programs called type A and B. Type A programs employ a brute force search,
where all continuations are searched to a fixed depth. Type B programs try to mimic the

playing abilities of humans by selectively examining "promising" and unstable lines of
play.

Most chess programs pursued Shannon’s strategy of type B by generating "plausible”
moves until the mid 1970. At that time brute-force programs managed to reach depth
of 5 plies and higher and with the introduction of iterative deepening, brute-force pro-
grams consistently won over plausible-move generation programs, creating a new trend
in computer chess where knowledge and intuition for plausible move selection was next to
ignored. Although regularly there would be some programs that tried to implement some
level of knowledge based selective search, it was not until about 1990 with the emergence
of null-move pruning (Beal, 1989, 1990; Goetsch & Campbell, 1990; Donninger, 1993)
that the importance of speculative enhancements was again recognized, which has been

the dominant approach since, in chess as well as other adversary games.

The purpose of selective enhancements is to enable the search to concentrate on the right
areas of the game tree, just as humans would. Successfully constructing these schemas

is a difficult multi dimensional task. One of these is choosing effective move categories
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to control the search, which is commonly done manually. This can be a tedious and
time consuming trial and error prone process which requires intuition and expert human
knowledge of the domain. Automating this process potentially enables more complex and

efficient move categories to be created.

This thesis describes an automated feature discovery algorithm for selective search, called
Gradual Focus. The method iteratively creates new move categories by combining mutu-
ally exclusive feature from a given atomic feature set. Each iteration selectively creates
more refined move categories. This enables the assessment of a move categories’ evolu-
tionary progress, making Gradual Focus a merit driven method which continues to evolve

move categories while still being beneficial.

In this work we use the Gradual Focus method to discover search extensions features
for the game of Breakthrough as well as finding known extension features in chess. In
Breakthrough the method successfully discovered interesting features that improved a

game-playing programs playing strength, significantly.

The main contributions of this thesis are an introduction of a method to automatically
discover search-control features as well as a set of effective extension features for the

game of Breakthrough.

The structure of the thesis is as follows: Chapter 2 introduces the basics of adversary
search, followed by a more detailed description of Selective Search and its effects on
the search tree. Chapter 3 gives a detailed description of the Gradual Focus algorithm
and its enhancements. In Chapter 4 experimental results are presented for the games
Breakthrough and chess. Finally, conclusions and discussion of future work is given in
Chapter 5.



Chapter 2

Background

All truths are easy to understand once they are discovered; the point is to
discover them.
Galileo Galilei (1564 - 1642)

In this chapter we explain selective search in adversary games. The emphasis is placed

on search extensions, since they are the main focus of the thesis.

2.1 Search Overview

The objective of adversary search is to come up with a move decision in games played

against an opponent, such as Chess and Othello.

2.1.1 The Search Tree

The search space can be impicitly represented as a tree where each node is a state and the
edges between states represent legal moves. A move made by a player is also referred to
as a ply. The search tree is traversed in a depth-first manner from left to right. When a
leaf node is reached, it is evaluated and assigned a numeric value indicating its quality.

The larger the number, the higher the quality.

The value is passed up to the leaf’s parent, that in turn passes up the best possible value
of all its children which is not always the largest. This process is called backing-up the
value and continues until the best possible value has been propagated up to the root node.

Therefore an optimal path through the tree, from root to leaf, can be plotted by choosing
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Figure 2.1: Optimal path throug a 2-ply MiniMax search tree

the next child, from current node, with the highest backed-up value. This can be seen in
Figure 2.1 where the value 4 has been backed up to the root revealing an optimal path via

moves as and d;.

In most games, the game tree is too deep, making true terminal nodes unreachable. In-
stead, the search relies on a limited look ahead for evaluating the "best” move. The deeper
the look ahead, the more accurate the best move decision will be on average. The average
number of children for each node in a given domain is called the branching factor. As
each level of the tree is expanded, the number of nodes increases exponentially in pro-
portion to the branching factor. This puts limitations to the look ahead depth, making the
branching factor one of the main indicators of the search domain’s complexity.

It is evident that for most games an exhaustive brute-force search is impractical as the

number of nodes explored would be astronomical.

2.1.2 MiniMax Algorithm

The basic method for traversing game trees in adversary search is the Minimax search
(Neuman & Morgenstern, 1944). The first player, known as Max, tries to maximize his
gain by always choosing the move with the highest backed up value, while the other
player, known as Min, tries to minimize the other player’s gain by choosing the move with
the lowest backed value. Given that the game is a zero sum game!, only one player can

win, Min increases his odds of winning by decreasing Max’s chances of winning.

Figure 2.2 shows an example of a MiniMax tree where square nodes represent Max’s turn

to move and circle nodes represent Min’s turn to move. The tree is traversed depth-first

! The term Zero sum describes the property that the sum of the scores for both players, always equals
zero.
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Figure 2.2: 4-ply MiniMax tree example
(Korf, 2007)

from left to right, expanding moves ay, b1, ¢1, and d; where the leaf node is evaluated as
7, then move d is expanded where the next leaf is evaluated as 6. At this point Min backs
up the lowest possible value, 6. Next move expanded is ¢, where the same process is
performed, backing up the lowest value 2. Next Max backs up the largest available value,
6. When all the sub-trees have been evaluated in this manner, Max at the root will back

up the largest value, in this case 6, indicating that a; is the best move.

Although the minimax algorithm guarantees finding the best move based on the underly-
ing evaluation function, it does so by traversing through the entire tree. This is unneces-
sary because only a so called minimal or critical tree needs to be explored to determine
the best move. Continuations that are not part of the critical tree have no chance of influ-

encing the outcome of the search, making their expansion unnecessary.

Moves and their continuations that are not a part of the critical tree in Figure 2.2, are
shown with cutoff markers at moves e,, fo, ko, > and is. A detailed description of identi-

fying the critical tree will be given in the next section.

2.1.3 «af Search

af search (Knuth & Moore, 1975) is a widely practiced and proven search method that

takes advantage of the fact that only the critical tree needs to be searched to find the best
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Algorithm 1 of( state, o, 3, depth )
1: if depth < 0 or isTerminal( state ) then
2:  return evaluate( state )
3: end if
4: best +— «
5: movelist < generateMoves( state )
6
7
8
9

: while move <« nextMove( moveList ) do
makeMove( state, move )
value = —a3( state, — 3, —a, depth — 1)
retractMove( state, move )
10:  if value > best then
11: best < value

12: o < value

13: if best > (3 then
14: return best
15: end if

16:  end if

17: end while
18: return best

move. This is done by creating a search window with two bounds that define the possible
range of the best value/move, lower bound « and upper bound 3. The scope between the
« and 3 values is known as the a5 window. Search continuations with backed up values
outside the a3 window, fail-low if less than « or fail-high if greater or equal than /3, are
not explored because they are not a part of the critical tree and as such have no chance
of affecting the move decision at the root. This is called pruning as it cuts off a tree’s
branches. During the search the o3 window is narrowed as new indications of the best
move are found. By narrowing the o3 window the chances of pruning increases, enabling

a deeper search with the time saved, resulting in an increase in the search’s quality.

The a3 algorithm, shown as Algorithm 1, is a recursive algorithm that reduces the depth
by one for each recursion (/ine 8) until a terminal node or the tree’s maximum height is
reached (line 1). For each recursion the o and 3 parameters are switched and negated.
This and the negation of the returned evaluation are part of the negamax formulation
(Reinefeld, 1983) which excludes special distinction between Min and Max by making
both players back up the best value from the perspective of the player to move. The
narrowing of the a5 window can be seen in lines 10-12, as « is replaced by the new best
value. If the value is greater than or equal to the upper bound [ (line 13), that node’s
remaining subtrees are pruned off, immediately returning the best value. Because of the
negamax formulation the algorithm needs only consider fail-high instances when pruning

off sub-trees.
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Applying Algorithm 1 on Figure 2.2’s search tree will return the same solution but by
expanding only about half of the tree’s nodes, as moves e, f5, ks, l5, and is and their sub-
trees are pruned off. Though the pruning might change the o3 bounds for some nodes, in

this case two nodes marked "*", it will never change the outcome of the search.

Over the years many enhancements have been added to a3 search to increase its per-
formance. The best known enhancements are probably iterative deepening (Slate &
Atkin, 1977), move ordering (Slate & Atkin, 1977; Schaeffer, 1989), null window search
(Marsland, 1983; Reinefeld, 1983), transposition table (Slate & Atkin, 1977), and qui-
escence search (Shannon, 1950). Most of these methods are designed to improve af3
search’s pruning mechanism so that the search tree will be as close as possible to the

critical tree.

2.1.4 Null Window Search

The smaller the a3 window is the more continuations will be pruned off. In o3 search the
window is initialized with —oo,00 and gradually narrowed as the search continues. This is
done because the best value is not known and we don’t want to run the risk of overseeing

it by choosing a smaller search window that does not contain the best value.

Null window search (Marsland, 1983; Reinefeld, 1983), which is a a3 variation algo-
rithm, approaches this by performing only a regular search with full a3 bounds for the
first move, expecting it to be the best move. All other moves are searched with the small-
est possible a5 window (null window) around the backed up value of the first move,
-(value+1),-value. The narrow search is expecting to fail-low and thereby proving that
the first move is the best. If one of the alternative moves proves the opposite, i.e. value
> q, its true value is determined by re-searching the move with a larger search window,

establishing it as the new best move.

The overhead of performing re-searches is not significant in comparison with the in-
crease in pruned instances, making null window search a standard in adversary search.
Re-search instances can be decreased greatly with other standardized enhancements that

make promising moves expanded early, e.g. move ordering and transposition table.

2.2 Selective Search

The capability of games programs to calculate deep lines of play exceeds that of most

human capabilities. Despite this, it is not given that a game-playing program will win a
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Max depth

(a) Even Search Tree (b) Varible Depth Search (c) Agressive Extension

Figure 2.3: Search Tree Expantion Types

match against a human. Humans have an unexplained ability to ’see” what part of the
game-tree matters the most and focus on examining only relevant moves. While com-
puter’s conventional traversal of a search trees considers all moves to be of equal interest,
reducing the search depth by one for each move (i.e. line 8 in Algorithm 1). This re-
sults in an even expansion of the search tree to the tree’s max depth, as shown in Figure
2.3(a).

Of course all moves are not of equal interest. The goal of selective search is to guide the
search to focus in areas of the search tree that matter the most, as to mimic the abilities of
humans. This is done by examining interesting moves more closely while less interesting
moves are terminated early. A move is deemed interesting if expanding it has a good
potential for changing the backed up value significantly. Other moves that give no new
insight to the search are of little interest. This creates an unbalanced variable depth search
tree where beneficial continuations grow beyond the tree’s max depth while potentially
unfavorable paths are terminated early, not reaching the tree’s max depth. See Figure
2.3(b).

Selective search is categorised into two groups, speculative pruning and search exten-
sions. Speculative pruning applies to the case of terminating uninteresting moves early
while search extensions apply to the former, where interesting moves are examined more

closely.

As stated in Section 2.1.1, a search tree grows exponentially in accordance with its branch-

ing factor. It is evident that domains with a large branching factor require a greater effort
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to reach depths needed for adequate level of play. For these domains it becomes necessary

to focus the search on the right areas.

Most selective search schemas use intensive knowledge of the search space to achieve
maximum results. This makes the schemas domain dependent and hinders their usage on
different games. Games with similar properties are likely to gain from the same selective
search schema, but equal efficiency cannot be guaranteed, as the games’ criteria might

not be the same.

In Chapter 3 we propose a method for learning a selective search schema automatically,

thereby circumventing many of the known difficulties.

2.2.1 Speculative Pruning

The objective of speculative pruning, also known as forward pruning or search reductions,
is to prune off search continuations that are estimated to be irrelevant, within the critical
tree as well as outside. The notion is that a shallower search can sufficiently predict the
outcome of a full depth search without significantly distorting the quality of the search.
Because this category of methods may prune off parts of the critical tree, they run the risk
of wrongfully pruning away good moves that a deeper search would otherwise reveal.
This property is part of what is called the horizon effect. The risk of overseeing the best
possible move is of course grave, but if this occurs only rarely the time saved is worth the
risk as it is used to search interesting moves more closely, increasing the overall quality

of the search.

Null move pruning (Beal, 1989, 1990; Goetsch & Campbell, 1990; Donninger, 1993) is
probably the most used speculative pruning method. Other methods worth mentioning are
razoring (Birmingham & Kent, 1988), futility pruning (Slate & Atkin, 1977), late move
reductions (Romstad, 2006), multi-cut (Bjornsson & Marsland, 1998), and AEL prun-
ing (Heinz, 2000) which combines three enhanced methods, adaptive null move prun-
ing (Heinz, 1999), extended futility pruning (Heinz, 1998), and limited razoring (Heinz,
1998), and has shown good performance in the domain of chess.

2.2.2 Search Extentions

The focus of search-extension methods is to increase the quality of the search by examin-
ing interesting lines more deeply than others. This can be done by not reducing the depth

for interesting moves (i.e. depth — 1 decrement, line 8 in Algorithm I). This enables the
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height of the tree to grow beyond the max depth for lines of play with interesting moves,
which introduces the concept of aggressive extensions. If the search were to extend too
aggressively, it might follow a single line of play without the equivalent quality gain,
wasting time by leaving large parts of the search tree unexamined, thereby missing out on

other interesting lines of play. See Figure 2.3(c).

Search extensions are crucial in guiding the search in the right direction, but can be te-
dious to design. It requires the discovery of move categories, known as features, labels or
classes, that will contribute the most to the search’s advance and tuning the categories ex-
tension schema, while being careful not to extend too aggressively. The schema’s compu-

tation overhead must also be considered, making a successful design far from easy.

As an example of a successful search extensions in the domain of chess, the program Fruit
2.1 by Fabien Letouzey (Letouzey, 2005) extends all moves of the categories: single reply,
recapture, pawn promotion and checking moves, by a reduction of depth — 0. Though
the same extensions might also be applied in chess like games, i.e. games with similar
properties and goals, they are not guaranteed to be as efficient, as the game criteria might
not be the same. This emphasizes previous discussion on domain independence in Chapter
2.2.

2.2.3 Fractional Ply

Fractional ply (Hyatt, 1996; Levy, Broughton, & Taylor, 1989), is a variable depth ex-
tension that grades moves with fractional ply values (FP values) to control the search
strategy. The FP value is a real number that indicates the depth decrement for a given
move, instead of the conventional one ply reduction depth — 1 (i.e. line 8 in Algorithm
1), it is replaced by depth — fp where fp is the move’s decrement value. This means
that interesting moves receive a FP value between 0 and 1, regular moves receive a FP
value of 1, and uninteresting moves get a FP value > 1. The assignment of FP-values
to moves are done online by classifying each move into a category with pre-calculated

FP-values.

Figure 2.4 shows the expansion of a search tree where moves are decremented based on a
labels FP value.

The online classification of moves is a clear drawback, it requires extra computation time
which makes the search slower. While a complicated classification method might give
more insight into the moves quality and the accuracy of FP values, the extra time overhead

increases as well, gradually consuming the advantage of fractional ply.
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Figure 2.4: Fractional ply example

Another challenge with fractional ply is tuning the FP values, which is a time consuming
task largely based on trial and error, making the discovery of descriptive FP values for
large and complex categories impractical. To improve this process Bjornsson and Mars-
land presented a framework based on gradient-descent to tune FP values automatically
(Bjornsson, 2002; Bjornsson & Marsland, 2001).

In theory, fractional ply has both the characteristics of forward pruning and search exten-
sions. But in practice, it is only used as a search extension schema, extending interesting
lines of play. Reducing the search for uninteresting moves with fractional ply is not
deemed feasible because it makes the search subject to the horizon effect. The horizon
effect is when lines of play are evaluated wrongfully where a deeper search would have
returned the correct value, as it lies just beyond the "horizon". Levy, Broughton and Tay-
lor (Levy et al., 1989) tried to compensate for the horizon effect by identifying the cases
it occurred in and created special schemas for those instances. This of course increased

the complexity and computation of their program, presumably making it slower.

2.2.4 Realization Probability Search

Realization probability search (RPS) (Tsuruoka, Yokoyama, & Chikayama, 2002) is a
search method that is based on the fractional-ply framework. The fractional-ply values are
calculated by examining games played by expert players. Given a classification method

that categorizes each move to a specific category c, the probability that a given category,
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Pc, should be played is calculated from records of actual games played by expert players

as in Formula 2.1:

Pc=np/nc 2.1

where nc is the number of positions where it was possible to play a move of category ¢
and np is the number of times a move of category ¢ was actually played. The probability
Pc is called transition probability and is used to calculate the realization probability of a
node, but it can also be used to calculate fractional-ply weights for each category c¢ using

Formula 2.2:

FP =log(Pc)/log(C) (2.2)

In Formula 2.2, C is a game dependent constant between O and 1 that needs to be tuned
for each type of game-playing programs. If a move belongs to multiple categories, an
optimistic approach is taken, choosing the category with the lowest FP weight, hoping the
move is an interesting move worth investigating further. Algorithm 2 explicates the RPS
algorithm.

As mentioned earlier with fractional ply (see Section 2.2.3), prematurely terminated lines
of play can be evaluated positively, updating the best value, while a deeper search would
reveal it not to be. To counter this horizon effect RPS implements a re-search clause to

confirm the outcome of tactical unstable moves that have updated the best value.

If the FP value of a given move is larger than a predefined FP threshold, that move is
deemed unstable as shown in algorithm 2 (line 9). At first the move is evaluated with a
shallow null window search using the move’s FP value to reduce the depth, (line 11). If
the shallow search evaluates the move to be the best seen so far, (line 13), the outcome
is confirmed with a deeper re-search, (line 14), where the depth is reduced by the largest
safe reduction, fpinreshoia- On the other hand if the move’s FP value is within the tactical
safety limits, a normal FP search would be performed, (line 18), reducing the depth by
the FP value un-changed.

2.2.5 Enhanced Realization Probability Search

Winands and Bjornsson (Winands & Bjornsson, 2008) have pointed out two main prob-
lems with the RPS algorithm, one regarding a horizon effect for fail-low instances, and
the other regarding the re-search.
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Algorithm 2 rps( state, o, (3, depth )
1: if depth < 0 or isTerminal( state ) then
2:  return evaluate( state )

3: end if

4: best +— «

5: movelist < generateMoves( state )

6: while move < nextMove( movelList ) do

7 JDweight < JpWeight( move )

8:  makeMove( state, move )

9: i fPuweight > fPihreshola then

10: // Null window search

11: value = —rps( state, —(a + 1), —a, depth—fpueight )
12: // Re-search

13: if value > best then

14: value = —rps( state, — 3, —«, depth—fpinreshold )
15: end if

16:  else

17: // Normal fp search

18: value = —rps( state, —3, —c, depth—fpweight )

19:  end if

20:  retractMove( state, move )
21:  if value > best then

22: best — value

23: o < value

24: if best > (3 then
25: return best
26: end if

27:  end if

28: end while
29: return best

Fail-low instances are usually not a concern with conventional o3 search but can become
troublesome when using fractional ply. When continuations are terminated prematurely
there is a risk of wrongfully pruning away beneficial moves due to the horizon effect. RPS
addresses this problem by re-searching fail-low moves that have a large reduction value,

but always ignoring fail-low instances.

The second problem with RPS is the re-search implementation. Search reduction moves
that have updated the best value are always re-searched with a normal FP value, a relative
full depth. Not all moves need to be re-searched that deeply and doing so can be a waste
of time. Winands and Bjornsson compensate for these problems with their algorithm
Enhanced Realization Probability Search (ERPS) (Winands & Bjornsson, 2008).
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2.3 Feature Discovery

To come up with the move categories to extend electively is a difficult task which is
commonly done manually and requires both intuition and domain-specific knowledge.

This is a tedious and time consuming trial and error prone process.

For example, in the game Lines of Action the move categories for RPS was constructed
by combining tree intuitive feature groups, creating a set 277 mutually exclusive features
which cover all possible moves in the search (Winands & Bjornsson, 2008). A more
common approach is to identify a smaller set of more isolated features, as discussed for
chess in Section 2.2.2. Automating this process potentially enables more complex and

efficient features.

To the author’s knowledge there has little or no work been done on automatic feature
discovery for selective search, though there has been on automatically discovering eval-
uation features. Evaluation features are different from selective search features in a way
that evaluation features describe a state within the search whereas selective search fea-
tures describes moves within the search. The main approach for automatically construct-
ing evaluation feature is by combining predefined features through an iterative process,
where each iteration increases the number of combined feature per compilation by one

i.e. iter 1 {fl, 12, 13}, iter 2 {(f1 N\ f2), (f1 N\ f3), (fa A\ f3)}, and iter 3 { f1 \ fo A\ f3). Note

that the combination operator A could just as easily be V or ®.

One such method is Generalized Linear Evaluation Model (GLEM) (Buro, 1998), which
is a well suited for most board games. It is a semi-automatic process that combines
mutually exclusive atomic features as described above, with the addition to learning the
weights of newly formed features and evaluating their performance. This is a time con-
suming process which continues until the user is satisfied with the results and halts the
process. To reduce the evaluation time, GLEM only evaluates active combinations, where
a combination is active if it occurs at least n-times in a set of training positions. GLEM
has been used successfully in Othello where it added considerable playing strength to
Logistello, a program that has beaten the best human players. Besides discovering new
features and fitting their weights, GLEM also provides a procedure for generating training

positions.

Sturtevant and White (Sturtevant & White, 2006) use a similar approach when learning
features for the card game Hearts. As the features needed to play cards are quite complex,
they defined a set of useful perfect-information features describing the game. These fea-
tures where then used to create higher level features by exhaustively creating all possible

combinations as described above. Unlike GLEM, this method has no strategy of limiting
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the feature growth other than restricting the combinations to A operations, hampering the
method from creating larger than four-wise combinations. TD-learning was used to learn
and evaluate the features. A game-playing program using these features was able to beat
one of the best search-based hearts program, but what is interesting is that the more com-
plicated features did not always result in the best performance. For instance the four-wise
features were by far the best for avoiding the Qé whereas little difference was between

two- and tree-wise feature combinations when avoiding ©.

Fawcett and Utgoff take a different approach with their system Zenith (Fawcett & Utgoff,
1992), which starts with a single feature describing the system’s goal, from which other
features are derived creating sub-goals of a sort. This approach has been implemented
with some success for general game playing, where the features are derived from a logical
description of the game (Tomoyuki Kaneko & Kawai, 2001).

A more detailed compilation of automatic evaluation feature discovery can be read in
(Utgoft, 2001).

2.4 Summary

The chapter gave an introduction to adversary search, game tree, minimax algorithm and
the widely used a3 algorithm. The a3 algorithm and many of its enhancements improve
the search by gradually confining the search to the critical tree. But it does so considering

all explored moves to be of equal interest.

Selective search methods take a more intelligent approach by examining interesting moves
more closely, called search extensions, while less interesting moves are terminated early,
known as speculative pruning. Fractional ply is one such method that can both extend
and reduce the search. To prevent fractional ply from wrongfully pruning away important
moves it is mainly used as a search extension. Realization probability search (RPS) im-
proves on fractional ply’s shortcomings by re-searching tactically unsafe moves, enabling
reduced search for uninteresting moves with fractional ply. RPS also introduced a method
for learning fractional ply values based on human expert knowledge. Enhanced realiza-
tion probability search (ERPS) is a more stable implementation of RPS that considers a

larger scale of tactically unsafe moves and limits unnecessary re-searches.

We also gave an introduction to methods for automatic feature discovery in games. How-
ever, these methods all concentrate on learning features for heuristic evaluation functions.

There are no such methods for search-control feature discovery.
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In the next chapter we will introduce a new method called Gradual Focus, which auto-

matically discovers search-control features.



Chapter 3

Method

The more original a discovery, the more obvious it seems afterwards.
Arthur Koestler (1905 - 1983)

This chapter describes the method Gradual Focus (GF), which is a new approach for

discovering search-control features.

3.1 Search-Control Features

When choosing search control features, their properties and the effect they have on the
search tree must be considered. This is a combination of the feature’s frequency, fractional

ply (FP) value, and other properties.

For example, when extending on frequent features the nominal search depth might dimin-
ish too much, whereas extending on uncommon features has insignificant effects. The FP
value can be used to increase or decrease a feature’s effect on the search tree. However,
features with different properties are affected differently. The most beneficial features to
extend on are those where such an extension commonly reveals some new truth, but at the

same time is neither too frequent nor uncommon.

To employ an effective extension scheme that utilizes a range of different features, the
issues described above must be considered for the features collectively as well as individ-

ually, increasing the level of complexity even more.

The Gradual-focus method addresses these issues by discovering interesting features au-

tomatically through feature combinations.
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3.2 Feature Combinations

Atomic features are basic features of a domain e.g. move pawn or move piece to top row.
Other features are a combination of two or more atomic features e.g. move pawn to the
top row, which is the pawn promotion feature in chess. Some feature combinations are
natural because of preexisting domain knowledge, others are not. Given a set of atomic
features, in theory all possible combinations can be created by calculating the power set.
The output is a set of 2" — 1 features, excluding the empty set, where n is the number of

atomic features in the original set.

Evaluating all possible features would reveal the most effective combination, but unfor-
tunately the evaluation process is too time consuming. Even a relatively small set of 16
atomic features would take approximately 90 days given a 2 minute evaluation of each

new feature, making this method unfeasible for even for relatively small sets.

3.3 Gradual Focus

Gradual focus (GF) is a more intelligent way of constructing interesting features than the
exhaustive power-set method. GF combines mutually exclusive features in an iterative
fashion, where each iteration creates a set of more detailed features, gradually narrow-
ing their focus, using a variety of pruning methods to reduce the number of evaluations

needed.

3.3.1 Overview

GF discovers new features from a predefined set of mutually exclusive atomic features
that are provided by the user. Combining these features with an A operator creates more
detailed features, i.e. one-wise, two-wise, three-wise, etc. combinations. To keep track of
a feature’s evolution, GF iteratively evolves the features one level at a time and measures
their progress. Those features that do not increase the efficiency are pruned off and pre-
vented from occurring as subsets in other features. This process is repeated until there are

no more possible combinations, at which time GF outputs its results and halts.

Figure 3.1 shows an example of this process where the first level consist of the predefined
atomic features provided by the user, which is called the Base set. The second level shows
the feature set generated by the first iteration, were all two-wise combinations of the Base

set are created. Each feature in the set is evaluated individually and those that perform
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Figure 3.1: Overview of Gradual Focus

worse than either parent are discarded, as feature bAc in this example. The next iteration
evolves the surviving features further by combing the two-wise features with the features
in the Base set. As the bAc feature has been discarded it is not evolved any further, nor
are any evolving features containing b/\c allowed. This results in only two three-wise

combinations, as well as preventing four-wise combinations from being formed.

3.3.2 Implementation

The GF algorithm is shown as Algorithm 3, where it starts by initializing two variables,
Output and Neutral. The Output variable maintains a collection of promising selective
search features and their effect on the search, while the Neutral variable is an empty

feature.

The Neutral feature is evaluated in line 2 to get a sense for the search tree’s behavioral
pattern without the use of an search extensions. This serves as a baseline for evaluating the
quality of other features created by GF, as well a possible baseline for threshold pruning,

which is explained in more detail in Section 3.6.

Evaluating a feature gives it a value indicating its quality, the higher the value the greater
the quality. The evaluation also collects information about the feature’s effect on the
search tree, i.e. frequency in search and mean iterative depth, which is stored as part of
the feature, along with its value. The evaluation function will be examined more closely

in Section 3.7.



20 Gradual Focus: A Method for Automated Feature Discovery in Selective Search

Algorithm 3 featurLearner( ref Base, ref BlackList )
: Output «— {}

—

2: evaluate( Neutral )

3: for all b € Base do

4: evaluate( b )

5: end for

6: if UseThreasholdPruning then

7. for all b € Base do

8: if D,que <0 then

9: Base «— Base \ {b}

10: end if

11:  end for

12: end if

13: sortDesc( Base )

14: Qutput <« Neutral U Base

15: newSet < Base

16: while newSet # {} do

17:  sortDesc( newSet )

18:  newSet «— featureEvolution( newSet, Base, BlackList )
19:  for all feature € newSet do

20: if — isCompositionAllowed( feature, BlackList ) then
21: evaluate( feature )
22: Output < Output U filterEvolution( feature, BlackList )
23: end if
24:  end for

25: end while
26: sortDesc( Output )
27: display( Output )

GF’s main input is Base, which is a set of mutually exclusive atomic features. These fea-
tures are defined by the user and are the base from which other features will evolve from
through a series of combinations. Each of Base’s features is evaluated (line 4) to establish
a base line for the evolution process. Those features that are evaluated below an expected
level of quality (/ines 6-12) can be removed from the Base set, reducing GF’s branching
factor. This is an optional pruning method called threshold pruning which is discussed in
more detail in Section 3.6. The Neutral feature and the Base set are both added to GF’s
output (line 14): Neutral for its comparison properties, and Base to ensure that features

that will not benefit from combining with other features will not be cut off.

The feature evolution process occurs in lines 16-25. This is an iterative process that
gradually evolves the features in all possible dimensions by one step. A feature is evolved

by combining it with a feature from the Base set, creating a new feature. The number of
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Figure 3.2: A conceptual evolution slope
(Alexandrov, 2008)

possible evolutionary dimensions for a given feature is relative to the number of available

combinations with the Base set.

The evolution phase of each iteration is performed within the featureEvolution function
(line 18), where all the features in the newSet are evolved in accordance with the Base set
and the BlackList. The BlackList, GF’s second input parameter, is a pruning reference of
disproven features that should not occur as subsets in other combinations. It is within the
featureEvolution function that BlackList is used to prune away irrelevant combinations,
all other combinations are returned as a set, updating the newSet with the newly evolved
features. A more detailed description of the featureEvolution function will be given later
in this chapter. Note that both the Base and the newSet sets must be sorted in a descending
order by evaluation score (lines 13 and 17) before the evolution phase to prevent false-

positive assessments of a feature’s quality.

GF presumes the usage of mutually exclusive features, making newly formed features the
intersection of its parents. This creates more detailed features with each iteration, grad-
ually narrowing the features applicability and decreasing their frequency in a search, as
shown in Formula 3.1. This enables the assessment of a feature’ s evolutionary progress,

as newly evolved features should have a higher evaluation value than their parents.

(A N B)frequency < min(Afrequencyy Bfrequency) (31)



22 Gradual Focus: A Method for Automated Feature Discovery in Selective Search
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Figure 3.3: Evolution iteration

Figure 3.2 shows a conceptual representation how a feature evolves into a given dimension
by combining it with other features, where the height of the surface corresponds to a
feature’s value. When a feature’s evolution results in a decreasing value, the evolutionary
direction descends down the slope, indicating that the feature advancement in a given
direction should be terminated, pruning off further unnecessary evaluations. A feature has
reached a local maximum when there are no more evolutionary advancements available,

which is the features saddle point.

This occurs in line 19-24, where each of the newly evolved features are evaluated (line
21) and their evolutionary direction assessed within filterEvolution (line 22) as either as-
cending or descending. Descending combinations are added to the BlackList, thereby
removing them and their descendants from the evolutionary process, while ascending
combinations are returned from the function and added to GF’s output (line 22). Disprov-
ing a feature within filterEvolution might also disprove other features in the newSet that
are yet to be evaluated, which is why features are compared against the BlackList each

time in the loop before they are evaluated (line 20).

This evolution process is iterated until no new features can be formed, the featureEvolu-
tion function returns an empty set (line 18 and 16), meaning that all interesting evolution
paths have been explored. Figure 3.3 shows an example of this whole process where the

Base set consist of three features a, b, and c.
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Algorithm 4 featureEvolution( ref A, ref B, ref BlackList )
1: new «— {}
2: forall ac A do
3: forall b€ B do

4: if — belongToSameGroup( a, b) then

5: c < combine( a, b))

6: if — isCompositionAllowed( ¢, BlackList ) \ ¢ ¢ new then
7: new <« new U c

8: end if

9: end if

10:  end for

11: end for

12: return new

Algorithm S filterEvolution( ref newFeature, ref BlackList )
1: if newFeature,,. < newFeature ti,stparentsvalue + € then
2:  BlackList < BlackList U newFeature

3 if UseLinearTreePruning then

4 for all child € getChildren( newFeatureseconiparent ) dO
5: banned < combine( newFeature ;s parent, child )

6 BlackList — BlackList U banned

7 end for

8 end if

9: return return {}

10: else

11: return return newFeature

12: end if

The implementation of the featureEvolution routine is shown as Algorithm 4 where A is a
set of features that are to be evolved and B is its set of possible features to combine with.
The same feature can be composed in various ways with different first and second parent,
affecting its evolutionary assessment. To prevent false positive assessments of a feature’s
evolutionary progress, newly formed features’ first parent must have a greater value then
the second parent, which is why the input sets are sorted in descending order before the
evolution phase (line 13 and 17 in Algorithm 3) and then paired together from left to right
(line 2 and 3 in Algorithm 4). To prevent unnecessary combinations, the features can not
belong to the same group or be on the BlackList, as well as removing duplicate features
(line 4 and 6). Feature groups are to prevent illogical combinations and will be discussed
in more detail in Section 3.4. Combinations that are not pruned away are added to a new

set (line 7) which is then returned (/ine 12) as a new generation of features.

The implementation for assessing the evolution progress is shown in Algorithm 5. In line

I the new feature’s value is compared against its first parent. The variable € is a domain
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specific constant to control the lenience of the evolution process. As stated earlier, features
that do not enhance their parent are pruned off, which is done by adding the feature to the
BlackList (line 2) hindering it from occurring in new evolution sets. On the other hand if
the feature surpasses its parent, it is returned (line 11) and will be added to GF’s output as
a possible search control candidate. Lines 3-8 in the algorithm are part of the linear tree
pruning method which is an optional pruning addition that will be discussed in Section
3.5.

GF’s strength is its ability to assess the evolution process, pruning off unfavorable feature
combinations, and remove redundant evaluations with the use of groups. Unfortunately
the number of features may still grow exponentially, just as with other feature combination
methods. By using GF’s additional pruning methods, linear tree pruning and threshold

pruning, the exponential growth can be further reduced.

3.4 Groups

Some features are not compatible in a sense that by combining them will result in a feature
that can never occur in the domain e.g. for chess; capture the king or move a pawn and
move a rook. Evaluating these features is the same as evaluating the Neutral feature
and should therefore be pruned off. One solution would be to initialize the BlackList
with all possible combinations that are not compatible. This is of course not feasible for
large sets but can be used for deviations that are not to be evaluated for some reason. A
more intuitive approach is to place features into logical groups, where combining features
within a group is not allowed (line 4 in Algorithm 4). As an example, a set of six features
divided into two equal groups, creates 63 different feature combinations without the use
of Groups, but only 15 if employed. Features created through combination inherit the

groups of their parents, making them belong to more than one group.

3.5 Linear Tree Pruning

It is common for features within a group to form a natural hierarchy, e.g. where some
features are subsets of others. Taking advantage of the tree hierarchy gives additional
information that can be used to predict the outcome of future evaluations and prune off
those that are expected to have a negative evaluation. Features belonging to a hierarchy
of this type will be referred to as root, parent, and child features in accordance with

regular tree definitions. The logic is that if a new combination formed with a parent
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Figure 3.4: Linear tree pruning example

feature is pruned off, then other combinations with that feature’s children can also be

eliminated.

Figure 3.4 shows an example of this where the Base set has been divided into two groups,
where the second group has a hierarchy where c¢» and c3 are children of c;. In the first it-
eration GF creates all two-wise combinations which are then evaluated. The combination
a/\cy is negatively evaluated resulting in the more detailed features a/\c, and a/\c3 also to

be pruned off.

As a practical example envision an arbitrary game with an 8x8 board where the feature
a is to move a piece into an undefended position, ¢; is the opponent’s side of the board
(rank 5 to 8), co is rank 5 and 6, and c3 is rank 7 and 8. Given that piece count is an
important property of the game and that moving a piece undefended onto the opponent’s
half of the board frequently results in the piece’s capture, then the feature a/\c; will be

pruned off as well as the more specialized child features aAc, and a/\cs.

Unfortunately this method cannot guarantee that interesting combinations won’t be pruned
off as combinations with a highly frequent parent feature might result in a negative eval-
uation assessment as it would extend too aggressively, whereas a combination with its
less frequent children might not. It is the authors belief that this is an unlikely scenario
because the union of two feature will be considerable less frequent than its parents, as
shown by Formula 3.1. Nevertheless, the possibility of wrongfully pruning away interest-

ing continuations exists, making this an optional speculative enhancement.

The implementation is an addition to Algorithm 5 in line 3-8. It retrieves all the children
of the second parent feature (line 4) and creates a new combination with the first parent
and each of the retrieved children features (line 5), which are then added to the Black list
(line 6).
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3.6 Threshold Pruning

Threshold pruning is the last of the optional pruning methods available for GF. It is a
speculative pruning method which removes all features from the Base set that are be-
low a given quality threshold, determining those features immediately as disadvantageous
and therefore not eligible to participate in the evolution process (line 6-12 in Algorithm
3).

This is potentially a very effective pruning method as it reduces the exponential growth
in the number of combined features constructed by reducing the size of the Base set,
but the risk of wrongfully pruning away potentially good candidates exists. The risk
of wrongful pruning can be lessened by marking which features can be safely pruned;
this however requires some knowledge of the search domain. A sensible choice for the
threshold parameter 0 (line 8), would be to approximate it around the value of the Neutral

feature.

3.7 Evaluation Function

Each feature is evaluated by extending on it in the search of a relevant game-playing pro-
gram. Instead of playing actual games, which is time-consuming, a suite of carefully
selected test positions is used, with the best move known. Through this process infor-
mation about the feature’s effect on the search is collected: number of solved positions,
list of solved positions, mean iteration depth, mean height, and feature’s frequency in the

search.

The number of solved positions is used directly as an evaluation of the features quality,
though it is recognized that a more complicated and precise evaluation function might be

formed with the gathered information.

All of the collected information is attached to the features and displayed as part of the
output, as it gives insight into a feature’s behavioral pattern and makes the process of

choosing features from GF’s output more informative.

It should be noted that the collected information is an approximation of the true value de-
pending on how representative the positions are of the entire search domain e.g. opening,
middle, or endpositions. If needed, the correct value can be measured through a couple of

self-play games.



Pdlmi Skowronski 27

18 19 7

Rc-P ’ Re-N I Rc-B Rc-R Rc-Q ’

Figure 3.5: Example of non-mutually exclusive evolution

3.8 Mutually Exclusive Features

GF assumes the features in the Base set are all mutually exclusive, such that combining
them always results in a more focused feature. Through this assumption GF can guarantee

that it won’t overlook relevant combinations.

This can be shown with a toy example in chess where GF combines overlapping features,
meant to discover whether re-capture (Rc) is more important for some pieces than oth-
ers. Figure 3.5 shows the evaluation for different re-capture combinations. First Rc is
evaluated having an arbitrary value of 20. Rc is then evolved by combining it with all
possible pieces, which is equivalent of splitting Rc into its discrete components. None of
the newly evolved features surpass their parent and are therefore discarded. The mutually
exclusive approach as discussed in Section 3.3 would on the other hand have discarded
all re-captures except for Rooks and Bishops, when combined surpass the original Rc
feature.

3.9 Summary

Gradual focus is an off-line learning method for learning new features and to predict their
usefulness. The method starts with a set of general features that give a bird’s eye view
of the domain. The features are gradually evolved through feature combinations, creat-
ing more detailed features with each step, gradually narrowing the focus of the features.
A key point is that features must be mutually exclusive, or the method cannot guaranty
that relevant combinations are not overlooked. Grouping together related features and
the ability to assess features progress, enables GF to prune away unnecessary and redun-

dant evaluations, making feature combinations a possible approach. Additional pruning
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enhancements, linear tree pruning and threshold pruning further reduce the number of

evaluations, but at the potential risk of wrongful pruning, and are therefore optional.

In the next chapter we evaluate the effectiveness of the GF method in practice.



Chapter 4

Results

The important thing is not to stop questioning.
Albert Einstein (1879 - 1955)

This chapter provides the results of using the Gradual-focus method for discovering search

extension features for the games Breakthrough as well as preliminary results for chess.

4.1 Breakthrough

Breakthrough is a board game developed in 2001 by Dan Troyka (Handscomb, 2001). It
has a simple set of rules but a sophisticated strategy, making it an interesting test environ-
ment. See Appendix A for details about the game and the game-playing program we used

for our experiments.

4.1.1 Positions

As mentioned in Section 3.7, the Gradual-focus method evaluates the quality of a feature
by running a search using it on a set of representative tactical game positions. Unfor-
tunately there exists no standard test-suite of positions for Breakthrough where the best
move is known. We therefore created a set of approximately 300 endgame positions. The
only best moves known for certain in Breakthrough are ones that lead to a forced win,

which is why the positions we use are endgame positions. However, using only endgame
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positions will not give a correct representation of a feature’s true frequency, as discussed

in Section 3.7.

A searches’ heuristic function can also be used to measure feature quality, enabling a
wider variety of positions, but it would be a questionable approximation here because the

heuristic functions in Breakthrough used here is is not very refined yet.

Each of the 300 positions where picked from a game of self-play where the terminal state
could be reached in seven plies. Three programs using different heuristic evaluations were

used to get a variety of endgame positions.

4.1.2 Experiments Setup

A description of the input features, which form GF’s Base set, and their properties are
shown in Table 4.1 and 4.2. Each feature was evaluated with a fixed FP value of 0.5,
which allows us to only concentrate on choosing the set of relevant features. A FP value
of 0.5 was chosen somewhat arbitrary, although such that it is neither too conservative
nor too aggressive. Each feature was evaluated through a search of 500,000 nodes, which
corresponds to approximately 5-ply search. GF’s evolution parameter €, which is used to
control the lenience of the evolution process, was set to 3 to compensate for fluctuating
evaluations, and the threshold pruning parameter ¢ equals to the Neutral feature’s value,
which was a value of 29.

The experiments were performed on Linux CentOS 5 machines with two Intel(R) Xeon
(TM) 3.00GHz CPUs and 2GB in memory. Only a single processor was used per experi-

ment.

4.1.3 Feature Evolution Results

Five different instantiations of GF were evaluated and compared against the exhaustive
expansion of the power set. The results are shown in Table 4.3 where No Groups dis-
regards previously presented grouping of feature, placing each feature in a group of its
own. The Groups instance, groups features as described previously in Table 4.2 with-
out any additional pruning, whereas Linear Tree Pruning and Threshold Pruning & LTP
additionally employ the given pruning methods. The Domain Knowledge instance is the
same as Threshold Pruning & LTP, but with the additional knowledge that some features
should not be pruned off by threshold pruning.



Pdlmi Skowronski 31

Table 4.1: Description of Breakthrough’s base features

Feature Id Feature Description

Ud Moved piece is not threatened on destination square.
PP Piece’s direction is unhindered towards opponent’s back rank.
Rc Capture previously moved piece.
C Capture opponents piece.
Ms Majority of squares surrounding moved piece is
occupied by players pieces, forming a greater mass.
Rdb Players half of the board.
RdBb First and second rank of the board.
RdBt Third and fourth rank of the board.
Rdt Opponents half of the board.
RdTb Fifth and sixth rank of the board.
RdTt Seventh and eighth rank of the board.
Edg The board’s edges, columns a, b, g, and h.
Mr The board’s middle, columns ¢, d, e, and f.
Udp Prepare to move around opponent’s piece.
Piece is not threatened and standing opposite opponent’s piece.
Bv2 Block opponent’s advancement by placing piece in front of it,

creating a vertical defensive line of two pieces.

As can be seen by the No Groups instance, GF’s ability to assess the evolution process re-
duces the the number of generated features combinations immensely without apparently
overlooking any interesting combinations. Thirteen of these evaluations were incom-
patible combinations that can never occur in the game, which were prevented with the
Groups instance. Adding linear tree pruning improves the pruning slightly further and
without overlooking any previously interesting combinations. However, the possibility of
wrongful pruning with linear tree pruning exists, which questions its usage for such little
gains. A plausible explanation for its mediocre performance is that only 1 out of 8 groups

were formalized as a linear tree.

Threshold pruning, on the other hand, further reduces the number of evaluations sub-
stantially, but at the cost of overlooking five of the top ten most interesting combination,
Ud-PP-Rdt, Ud-Rdt, PP-Rdt, PP-Rdt-Edg, and Rc-Rdb. These features were overlooked
because their parent features, Rdb, Rdt, and Edg were pruned off, preventing the com-
binations from being formed. This knowledge can be embedded into GF, the Domain
Knowledge instance, by marking the features Rdb, RdTt, and Edg un-safe for threshold
pruning, as discussed in Section 3.6. This will only prevent the oversight of these five

features and at the cost of increasing the branching-factor substantially.
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Table 4.2: Base features for Breakthrough
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Tree hierarchy, Threshold pruning safe

Feature Id -~ Group parent’s namey No Knowledgg Kn%)wledge
Ud Ud - true true

PP PP — true true

Rc C - true true

C C - true true

Ms Ms - true true
Rdb Vertically  Root true false
RdBt Vertically Rdb true true
RdBb Vertically Rdb true true

Rdt Vertically  Root true false
RdTt Vertically  Rdt true true
RdTb Vertically  Rdt true true
Edg Horizontal Root true false
Mr Horizontal Root true true
Udp Udp - true true
Bv2 Bv2 - true true

Table 4.3: Gradual focus evaluations in Breakthrough

Method type Hours Evaluations # % of P Overlpok§d
combinations

Power Set - 32,768 100% None

No Groups 30.6 138 0.42% None
Groups 24.9 112 0.34% None

Linear Tree Pruning (LTP)  23.7 105 0.32% None
Threshold Pruning & LTP 5.8 27 0.08% 5

Domain Knowledge 10.0 45 0.13% None

4.1.4 Precision and Recall

GF’s findings were assessed by comparing them against a complete set of all one-, two-,

and tree-wise combinations, in all 377 features. The top 25 features are shown in Table

4.4 where star symbols correspond to the top 10 features discovered by GF.

As expected, GF discovers the features with the highest number of solved positions, which

is in accordance with the algorithm’s design. But on the other hand it would seem that

GF is overlooking a fair amount of effective features. However, these features are less

effective descendants of GF’s already discovered features and were therefore correctly

pruned off. These features are redundant as their benefits are already obtained with the
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Table 4.4: Tree-Wise Combinations in Breakthrough

Feature Id Solved Positions Parent

% Ud-RdTt 235 Ud
Ud-PP-RdTt 224  Ud-RdTt

Y PP-RdTt 211 PP

% RdTt 202 -

% Ud-PP-Rdt 173 Ud-PP

% Ud-PP 155 Ud
Ud-Edg-RdTt 149 Ud-RdTt
Edg-RdTt 142 RdTt
Ud-RdTt-Mr 141 Ud-RdTt
PP-RdTt-Mr 140 PP-RdTt
RdTt-Mr 138 RdTt

% Ud-Rdt 125 Ud
Ud-PP-Edg 122 Ud-PP
PP-Edg-RdTt 115 PP-RdTt
Ud-Ms-RdTt 114 Ud-RdTt
Ud-PP-RdTb 111 Ud-PP
Ms-RdTt 110 Ms
Ud-PP-Mr 109 Ud-PP
PP-Rdt-Edg 108 PP-Rdt
Ud-Rdt-Mr 105 Ud-Rdt

* Ud 102 -
Ud-Rdt-Edg 102 Ud-Rdt

Y PP-Rdt 98 PP
PP-Edg 97 PP
Rc-Rdb 96 Rc

use of their parent. Thus GF, at least in this domain, offers both good precision and recall

rate.

4.1.5 Tournament Results

The top ten features suggested by GF as being interesting based on the number of solved
positions were evaluated through self-play. Each of the players searched 500,000 nodes
per move with a FP value of 0.5, in consistency with the evolution criteria. Table 4.5
shows the results, where all but three of the features increased the winning percentage, by

them self and without any additional tuning of their FP values.

The features Rc-Rdb and PP-Rdt-Edg have a mediocre effect on the game which can be

explained by their low frequency. Their effect on the search can be increased by lowering
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Table 4.5: Features’ result in Breakthrough

. Frequenc
Feature Id Games # Wins % Conf. Int. In GE ! 50 games
Ud-Rdt 2400 58.17% 1197 | 15.57% 4.71%
PP-RdTt 2400 57.04% t198 | 2.87% 0.87%
RdTt 2400 56.54% t1.98 | 8.75% 1.91%
Ud-RdTt 2400 55.96% 199 | 7.76% 1.90%
Ud-PP 2400 53.92% t1.99 | 8.44% 2.31%
Ud-PP-Rdt 2400 53.50% 2,00 | 6.94% 1.99%
PP-Rdt 2400 52.03% 12.00 | 12.33% 3.92%
Rc-Rdb 2400 49.29% 1200 | 1.55% 1.48%
PP-Rdt-Edg 2400 49.13% 2,00 | 3.18% 1.18%
ud 2400 46.46% 2.00 | 32.18% 43.37%

their FP value, and it is known that Rc-Rdb with a FP value of 0.25 will increase the
winning percentage to 60% 3.92. A similar result could be expected for the PP-Rdt-Edg
feature. However, tuning the FP values is outside the scope of this thesis, but for further
reading see e.g. work by Bjornsson (Bjornsson, 2002; Bjérnsson & Marsland, 2001). The
Ud feature on the other hand has a negative effect on the game, the opposite of what was
observed during GF’s evaluation. This is because GF’s evaluation was based on end-game
positions where Ud’s frequency was within suitable limits for fractional-ply extensions of
0.5, whereas Ud’s frequency in the whole game-tree is much higher, where a FP value of

0.5 results in an over aggressive extension as described in Section 2.2.2.

By extending on all of these features, except Ud, and tuning their FP value might result in
even better performance than already shown, making GF a worthy addition to constructing

selective search schemes.

4.2 Chess

In chess there exists a well known set of features to extend on that have been established
over decades of experience with the development of chess-playing programs. These fea-
tures are re-capture, passing pawn, and check. If the GF method could discover these fea-
tures on its own it would strengthen the claim of its usefulness, besides satisfying our cu-
riosity, and was therefore used with Fabien Letouzey’s chess engine Fruit 2.1 (Letouzey,

2005), which is a formidable open source chess program.
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4.2.1 Positions

The Encyclopedia of Chess Middlegames (ECM) was used to evaluate the performance of
search extension features in chess. It is a set of 879 positions with a suggested best move
for each position, and is one of a few such suits that has become somewhat of a de-facto

standard for testing chess-program algorithms.

Howeyver, to minimize the evaluation turnaround time, the whole set was reduced to a bare
minimum of 102 positions (Appendix B.1). These 102 positions were identified as the
positions Fruit could solve additionally when using its known extensions. For simplicity
sake, all of the standard search additions were disabled in Fruit, except for the quiescence
search (Shannon, 1950).

4.2.2 Experiments Setup

The Base features used for discovering re-capture, passing pawn, and check are shown
in Table 4.6. However, GF requires its atomic features to be mutually exclusive or the
methods integrity cannot be guaranteed. This places a restriction on the granularity of
atomic features which prevents some of the known chess features from being discovered.
This is a clear shortcoming of the GF method which might confine its usage to certain do-
mains. Never the less, the chosen Base features should suffice for showing GF’s abilities

of finding interesting compositions.

The check extension is represented through the feature AcK which is an atomic feature,
meaning that the check extension cannot be a composition of two features or more without

breaking GF’s mutually exclusive rule.

The passing pawn extension should emerge as a combination of PcP and RdBt, though it
is unlikely that the combination would emerge at all as the ECM positions are middlegame

positions and passing pawns are more likely to occur in endgames.

The re-capture extension can be perceived as an atomic feature and is therefore a little
tricky to composite through other features and not entirely “truthful”, meaning that the
composition is more of an approximation. Combining the Cc and Lc groups should revel
re-captures of each piece type, LcP-CcP for pawns, LcN-CceN for knights, LcB-CeB for
bishops, LcR-CcR for rooks, and LcQ-CcQ for the queen. The only certain re-capture
instance is the LcQ-CcQ for there is only one queen, where as for knights, bishops, and

rooks there is a 1/2 chance of the feature being a re-capture instance and only 1/8 chance
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Table 4.6: Base features for Chess
Tree hierarchy, Threshold

Feature Id Feature Description Group , .
parent’s name  pruning safe
Move a piece
Pc* P - fal
’ (*|K.QRBNP} e
Attack a piece
Ac* A - fal
’ (*|K.QRB.NP) e
Rc Re-capture Rc - false
Rdb l;a&/lzrli::jfl Vertically Root false
First and second .
RdBb Vertically Rdb fal
rank of the board cricatly amse
Third and fourth .
RdB Vi lly R fal
! rank of the board ertically - Rdb awse
Rdt Oofpglznbe::;i;alf Vertically Root false
Fifth and sixth .
RdT Ily R fal
dTb rank of the board Vertically - Rdt alse
Seventh and eighth .
RdTt Vertically Rdt fal
rank of the board erucaty awse
Co* Capture a piece Ce B false

{*|Q7R7BaN7P}

Opponent previously
Lc* moved a piece Lc - false

{*QR,B,N,P}

for pawns. These features should stand out significantly never the less, except for pawns,

emerging an interesting re-capture pattern.

There are some feature combinations in Table 4.6 that are obviously not logical. These
combinations were initialized into the BlackList as discussed in Section 3.4 and are the
following; Pc-RdBb, RcK-RdTt, PcK-AcK, and PcK-AcQ.

To reduce the turnaround time the learning process was divided by learning the re-capture
composition, the Cc* and Lc* features, separately. Instead the true re-capture feature (Rc)

was added to the base set to observe Rc’s interaction with other features.

Each feature was evaluated through a search of 1,000,000 nodes, which corresponds to

approximately 7-ply search. GF’s evolution parameter € was initialized with a value 0
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Table 4.7: Gradual focus output in Chess

Feature Id  Solved Positions

AcK 44
PcK 29
Rc-Rdb 26
Rc 24
RdTt 17
PcQ-Rdt 17
RdBb 15
Rdt 15
PcN-RdTb 12
AcR 11

as Fruit’s evaluation function is much more decisive than that of Breakthrough. The

threshold parameter 6 was also set to 0 as it was never used.

All of the experiments were performed on Linux CentOS 5 machines with two Intel(R)
Xeon (TM) 3.00GHz CPUs and 2GB in memory. Only a single processor was used per

experiment.

4.2.3 Feature Evolution Results

Table 4.7 shows the top 10 features GF suggest and the discovery of re-recapture features
in Table 4.8. It comes as no surprise that the check feature AcK is among the highest
ranking, nor that passing pawn feature PcP-RdTt is not. What is surprising is that the only
certain re-capture feature, re-capturing the queen, does not emerge while re-capturing the

knight, bishop, and rook does.

The second best feature is moving the king (PcK), which is logical as it is a response
to the check feature. Another interesting result is that GF suggest that it is beneficial to
extend on re-captures on the players half of the board. Other features, RdTt to PcN-RdTb
are moving pieces onto the opponents half of the board, presumably leading up to a check

event.

Taking a close look at the emergence of the re-capture extension through Table 4.8, shows
that extending on true re-capture instances for all pieces results in a value of 24. The fact
that the only emerging re-capture approximation is that of the knight, bishop and rook,

indicate that these features are the main providers of re-captures success.
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Table 4.8: Re-capture results in Chess

Feature Id Solved Positions

Rc 24
CcR-LcR 15
CcB-LcB 14
CcR 13
CcB 11
CcKn-LcKn 11

Combining these into a feature that extends for re-capture of bishops, knights, and rooks
will result in a value of 21, narrowing it even further to bishops and rooks, removing the
weakest link, results in a value of 26. This is a very small increase, which is not enough
to claim a new re-capture approach in chess, but it is a good example of GF’s finesse in

finding new interesting combinations.

4.3 Summary

The Gradual focus method was used with a Breakthrough program, showing its capabil-
ities of finding interesting features combinations, while evaluating only 0.34% without
additional pruning methods, compared to a brute force method. The number of evalua-
tions was reduced even further with linear tree pruning and threshold pruning. Linear tree
pruning reduced the number of evaluations only additionally to 0.32%, while threshold
pruning further reduced the number of evaluations to 0.08%, but at the cost of overlook-
ing five interesting combination. GF’s suggestions for interesting labels in Breakthrough
were evaluated one at a time, without tuning the FP value. All but three label showed
positive results, which suggests that selecting a set of these labels and tuning their FP

value would create a formidable extension method.

Gradual focus was also implemented in chess with the purpose of finding known ex-
tensions and there by validating the method. Here GF’s shortcomings appear, due to
the restriction of mutually exclusive features, some levels of granularity for atomic fea-
tures cannot be reached, preventing some features from being discovered. Even so, GF
confidently identified the check extensions and re-capture to some extent. Though the
emerged re-capture combination was not as expected, it was a better fit to the data than
the standard re-capture implementation. As the data set covered only middlegames, pass-
ing pawns could not emerge. Never the less, a confident statement can be given for GF’s

effectiveness.
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Conclusions

Chess is generally considered to require “thinking” for a skilful play. A
solution to this problem will force us to admit that machine thinks, or further
restrict the concept of “thinking”.

Claude Shannon (1916-2001)

In this thesis we explained the importance of selective search. One of the control issues
is choosing effective move categories to extend on, which can be a tedious and time
consuming process. We therefore introduced a new method called Gradual Focus which
is an automatic feature discovery method for selective search. The method was used for
discovering search extension features for the game Breakthrough as well as finding known

extension features in chess.

Gradual Focus, like many other feature discovery methods, creates new features by com-
bining features from a given base set. This results in an exponential growth in the number
of possible features where all combinations is the power set which consists of 2" features
where n is the number of features in the base set of atomic features. Evaluating a set
of this magnitude is not feasible, which is why other feature discovery methods create
only combinations of very few features. Gradual-focus on the other hand is a merit driven

method which selectively continues to evolve features while still beneficial.

By presuming the usage of mutually exclusive features and combining them in an iter-
ative fashion, Gradual Focus is enable to assess a feature’s evolutionary progress, and
consequently prune off unfavorable combinations. In practice Gradual Focus was shown
to reduce the feature growth by two orders of magnitude without overlooking useful com-
binations. The number of features can be reduced even further with Gradual Focus’ ad-

ditional pruning enhancements: Groups, Linear Tree Pruning, and Threshold Pruning.
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Groups prunes away redundant features by placing them into logical groups, whereas
Linear Tree Pruning, and Threshold Pruning are speculative enhancements that further
reduces the number of combinations, although at the risk of wrongfully pruning away
interesting combinations. Features are evaluated by using them in searching a set of care-
fully selected tactical positions where the best move is known. Through this process
information on the feature’s effect on the search is collected, which is displayed as part
of the output, as it gives insight into a feature’s behavioral pattern and makes the pro-
cess of choosing features from Gradual Focus’s output more informative. To the author’s
knowledge, Gradual Focus is the only existing feature discovery method for selective

search.

Gradual Focus was evaluated in the game Breakthrough as well as partially for chess. In
Breakthrough the method discovered all interesting features, where all but three of the
top ten features increased program playing strength without any additional tuning of FP
values. In chess Gradual Focus was used with the purpose of finding known extensions
and thereby further validating the method. Here Gradual Focus’s shortcomings appear,
due to the restriction of requiring mutually exclusive features; some levels of granularity
for atomic features cannot be reached, preventing potentially useful features from being
discovered. Even so, Gradual Focus confidently identified the check extensions and re-
capture to some extent. Though the emerged re-capture combination was not as expected,

it was a better fit to the data than the standard re-capture implementation.

There are several pending issues for further work that would improve the method. First
of is finding a solution to Gradual Focus’s main shortcomings, which is not being able to
reach sufficient level of granularity for features in some domains as was seen in chess. It
is not clear what the best approach would be or if it is possible at all without losing some
of Gradual Focus’s properties. This is because this issue proceeds from the presumption
of combining only mutually exclusive features, which is the foundation for assessing the

evolutionary progress.

Secondly, it would be an interesting task to construct a more informative evaluation func-
tion than the number of solved positions. During this work a minor attempt was made to
construct such a function based on the information gathered during the feature evaluation.
Needless to say this is a difficult task but we are convinced that the solution lies in that

direction.

Thirdly, a natural continuation of creating an informative evaluation function would be to
answer the general question "What makes a good feature?", which in turn would open up

new dimensions in what features should be combined.
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Fourth, it would be beneficial to classify features based on their contribution in the search
e.g. attacking or defending features. This would increase Gradual Focus’s variety of
suggested features. One approach might be to compare features’ solved positions, which

could also be useful for constructing a new evaluation function as mentioned previously.

Another issue is that all the features are developed and evaluated with a fixed FP value
which undeniably excludes the discovery of some features. A simple solution would be
to run parallel instances of the process with different FP values and compare the output.
It would also increase the method’s effectiveness by automatically creating a variety of
test positions that are representative of the entire search domain. Last but not least, it
would be worthwhile to try Gradual Focus in more domains get a broader sense of its

efficiency.
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Appendix A

Breakthrough

Breakthrough (Handscomb, 2001) is a two person perfect information game created by
Dan Troyka in 2001 as part of the "2001 8x8 Game Design Competition", which he won.
The game is played on a Chess board where each player has 16 pawn like pieces that fill
the two front and back rows of the board. The objective of the game is to break through

the opponent’s ranks and advance a piece to the opponents back rank.

Breakthrough has a very simple set of rules, (see A.1), which makes it an easy game
to learn and implement. Compared to other games such as Chess, Breakthrough’s state
space is relative small making analysis of the game tree more convenient. Despite Break-
through’s simplicity it still has a sophisticated strategy which requires advanced search
methods to play at expert level. This makes Breakthrough an ideal platform for devel-
oping new search methods and hopefully a good stepping stone to other more interest-
ing domains such as Chess and Checkers. The downside of using Breakthrough as a
development platform is that there is little literature to build on or to compare results

against.

A.1 Rules

The rules of Breakthrough are as follows:
1. The start position is as shown in Figure A.1(a).

2. Players choose which side starts!.

! Our implemented Breakthrough program chooses always White as the starting side, traditional Chess
rules.
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3. Players alternate move a piece.

(a) Pieces can move one square forward or diagonally-forward to unoccupied
squares, see Figure A.1(b).

(b) Opponents piece can be captured by moving one square diagonally-forward
to a square containing opponents piece, captured pieces are removed from the
board. See Figure A.1(c).

4. Capture moves are not forced.

5. Game ends when player’s piece reaches the opponent’s back rank, see Figure A.1(d).
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Figure A.1: Breakthrough examples
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A.2 Strategy

Although the best playing strategy for Breakthrough is unclear, there are still some use-
ful heuristic to be exploited in creating an effective evaluation function for playing the

game.

Material

Having more pieces is good as it improves both the offensive and defensive capabilities
of a player.

Defense patterns

A single piece cannot stop the advancement of another piece, as the advancing piece can
pass safely around by moving first in front of the defending piece and then diagonally
beside it. To prevent this, defending pieces must form defense patters, the simplest being

a vertical line of two pieces.

Attack force

A simple strategy for breaking through the opponent’s defenses is concentrate the attack
at a single point, preferably the weakest. The attacking group should be tightly formed to
enable continuous attacks, preventing the opponent from regrouping.

Advancing pieces

The game itself is a race between players to get their piece to the opponent’s back rank. By
advancing your pieces as far as possible without sacrificing them needlessly brings them
closer to that goal. However, there is a tradeoff between how far a piece can advance and
how safe it is. By grouping many pieces together, the safer the pieces are and the chance

of breaking though the opponent’s ranks increases.

Attacking along edges

Attacking along the board’s edges reduces the opponents response options for he can only

counter the attack from one side instead of two. This might also force the opponent to use
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his middle pieces to aid against the attack, weakening the middle and the opposite side of

the defenses.

A.3 Heuristics

Some of the above strategies are difficult to implement successfully, they are either com-
putationally expensive or difficult to tune. A simple but fairly effective heuristic is the

combination of piece capture and advancing pieces.

To encourage piece advancement, each piece that is not threatened receives a bonus, the
further advanced the piece is the higher the bonus. Piece count is used to encourage
capturing of opponent’s pieces and to prevent pieces from advancing undefended up the
board.

A.4 A Game Playing Program

A simple Breakthrough game playing program was constructed to run experiments on. It
used o search with iterative deepening and has access to three different heuristics which
were used to create end-game positions as described in Section 4.1.1. The first heuristic
was a simple piece count heuristic, the second moved all pieces gradually up the board
in a misguided attempt to form a large attacking force, and the third heuristic was the
one described above in Appendix A.3. To compensate for indecisive heuristics, generated
moves are always shuffled. This prevents the first generated move from frequently being
chosen as the best move. A simple move ordering schema is employed which expands
the PV move for each ply first. This is to provide consistency between iterations so that

previous PV is not discarded prematurely before being examined further.



Appendix B

Test Suite

B.1 ECM Positions

This test suit contains 102 positions from the Encyclopedia of Chess Middlegames (ECM)
(Nikolai Krogius & Taimanov, 1980). The complete set consist of 879 positions but we
used a subset of 102 positions for each experiment, chosen such that the positions were
difficult to solve under the given time limit, unless using selective search extensions.

ECM position 5 ECM position 25

Black’s turn White’s turn White’s turn
Best move: Bxf2+ Best move: Ne7+ Best move: Bxf7+
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a b c e f ¢
Black’s turn

Best move: Bxg2+

ECM position 72

Black’s turn
Best move: Bfl

ECM position 97

White’s turn
Best move: Rxh7+

ECM position 43 ECM position 46

Black’s turn Black’s turn
Best move: Bxg2+ Best move: BxdS
ECM position 94 ECM position 96
. . .
7
6
5
4
3
2
1
White’s turn White’s turn
Best move: Qxh7+ Best move: Qe8+

ECM position 107

- N W » OO N

a b ¢ d '” f g h
Black’s turn White’s turn
Best move: Qxh3+ Best move: Qxf5+
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ECM position 138 ECM position 159

bc

e f g n a bcdel f g h
Black’s turn White’s turn White’s turn
Best move: Rxd5 Best move: Nd6 Best move: Nxt7
ECM position 184 ECM position 199
. , - . - :
7
6
5
4
3
2
1
Black’s turn White’s turn White’s turn
Best move: Nf2+ Best move: Qh6 Best move: Qf8+
ECM position 200 ECM position 218

vy

a b c¢c d “
White’s turn White’s turn Black’s turn
Best move: Bb&+ Best move: f4+ Best move: Rhl+
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ECM position 232 ECM position 238 ECM position 243
. .
-l
6
5
4
3
2
]
a b c d e f g h a b c¢c d e f g h a b c d e f g h
Black’s turn White’s turn White’s turn
Best move: Rh1+ Best move: Qcl Best move: Qxh7+
ECM position 246 ECM position 256

7 71 2k
6 6 > 217y
5 5
4 4 g/%
3 3
2 2
] & 1

a b c d e f g h a b c d e f g h

White’s turn White’s turn White’s turn
Best move: Qh6+ Best move: Bb7 Best move: Rxa7+

ECM position 263 ECM position 268
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a b c d g h
White’s turn White’s turn White’s turn
Best move: Qxh7+ Best move: Qd8+ Best move: Re8+
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ECM position 272 ECM position 275 ECM position 277
. . :
7
6
5
4
3
2
]

a b c¢c d e f g h
Black’s turn White’s turn White’s turn
Best move: Nh4+ Best move: Qg4+ Best move: Rh8+
ECM position 279 ECM position 293

- N W » O O N ©
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a b cde f g h

Black’s turn Black’s turn Black’s turn
Best move: Rxc3 Best move: Bxh3+ Best move: Qh2+
ECM position 294 ECM position 301 ECM position 302

- N W » OO N
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a b cde f g nh a bcdel f g h a b c d

(]

f g h
White’s turn White’s turn White’s turn
Best move: Qxg6+ Best move: Ne6 Best move: Qg3
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ECM position 317 ECM position 319 ECM position 328
. .
7
6
5
4
3
2
1
Black’s turn Black’s turn White’s turn
Best move: Rel+ Best move: Re4 Best move: Rxd7
ECM position 342 ECM position 357

White’s turn White’s turn White’s turn
Best move: Qf6+ Best move: Rxd4 Best move: Qxe8+

ECM position 380 ECM position 409

a b c d e f g h
White’s turn White’s turn White’s turn
Best move: Bc3 Best move: Rxh5 Best move: Rxf6
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ECM position 440

Black’s turn
Best move: Rf3

ECM position 454

White’s turn
Best move: Ng6+

ECM position 481

Black’s turn
Best move: Qxb5

ECM position 441

b ¢c d e f g
Black’s turn
Best move: Nb3+

b ¢ d f g
White’s turn
Best move: Bxf5

ECM position 506

Black’s turn
Best move: Bc6

55

ECM position 449
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Black’s turn
Best move: Rxh2+
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a b c d e f g h
Black’s turn
Best move: Qe8+

ECM position 511
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C
White’s turn
Best move: d5



56 Gradual Focus: A Method for Automated Feature Discovery in Selective Search

ECM position 521 ECM position 523 ECM position 537

8

7

6

5

4

3

2

]

a b c d e f g h a b c d e f g h

White’s turn Black’s turn White’s turn
Best move: g6 Best move: c4 Best move: Nf4

ECM position 540 ECM position 541 ECM position 550

- N W A O O N ©
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b c d e f g h a b cde f g h
White’s turn Black’s turn Black’s turn
Best move: Nf5+ Best move: Ng3+ Best move: Rf7+

ECM position 594 ECM position 612

White’s turn White’s turn Black’s turn
Best move: Bxe7 Best move: Bf4 Best move: Ng3+
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a b c d o g h
Black’s turn White’s turn Black’s turn
Best move: Rxg3+ Best move: Nxe6 Best move: Qh5

ECM position 655 ECM position 658

8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1 st
a b c d e f g h
White’s turn White’s turn White’s turn
Best move: Nxh7 Best move: Bxh7+ Best move: Qxh7+

ECM position 661

- N W A O O N ©

White’s turn White’s turn White’s turn
Best move: Qxh7+ Best move: Qxh7+ Best move: Qxh7+
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ECM position 707 ECM position 708

8

7

6

5

4

3

2

]

White’s turn White’s turn White’s turn

Best move: Rxg7+ Best move: Rxg7+ Best move: Rxg7
ECM position 724 ECM position 727 ECM position 728

a b c d e f g h a b c¢c d e f g h a b c d e f g h

White’s turn White’s turn White’s turn
Best move: Bxg7 Best move: Nh6+ Best move: Bxg7
ECM position 730 ECM Dposition 742 ECM position 751

- N W A O O N ©

f g h a b c d e
White’s turn White’s turn Black’s turn
Best move: Nxf7 Best move: d5 Best move: Qxf2+

a b c



Pdlmi Skowronski 59

ECM position 775 ECM position 777 ECM position 781
. , : -
7
6
5
4
3
2
1
a b c d e f g h
White’s turn White’s turn White’s turn
Best move: Rxh6+ Best move: Rxh6+ Best move: Rxh6+
ECM position 783 ECM Dposition 786 ECM position 787
7 8
7
6
5
4
3
2
1
Black’s turn White’s turn Black’s turn
Best move: Bxh3 Best move: Rxh6+ Best move: Rhxh3+
ECM position 788 ECM position 793 ECM position 795

- N W A O O N ©
=

Black’s turn White’s turn Black’s turn
Best move: Rxh3 Best move: Qxh6+ Best move: Bxh3
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ECM position 811 ECM position 812 ECM position 813
: . .
7
6
5
4
3
2
1
White’s turn White’s turn White’s turn
Best move: Rxg6b Best move: Bxgb+ Best move: Qxgb6

ECM position 819

a b cde f g h a bcdel f g h a b cde f g h

White’s turn Black’s turn White’s turn
Best move: Nxgb6 Best move: Ba3 Best move: Bxf6
ECM position 835 ECM position 850

- N W A O O N ©

a b c d g h
White’s turn Black’s turn White’s turn
Best move: Bxf6 Best move: Rxb2+ Best move: Qh6+
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