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Abstract

In recent years, some approximate high-dimensional imgexchniques
have shown promising results by trading off quality guagastfor improved
query performance. While the query performance and qudiittyese meth-
ods has been well studied, however, the performance of indexrtenance
has not yet been reported in any detail. In this thesis wesfoauhe dynamic
behavior of the NV-tree, which is a disk-based approximatkex for very
large collections. The NV-tree has several configuratiahiarplementation
options that affect the performance of index maintenance.r&gort on an
initial study of the effects of these options on the dynaneiledvior of the bal-
anced NV-tree, and show that with appropriate implemesmatsignificant
performance improvements are possible. We implementeibiegonfigu-
ration into the balanced NV-tree and ran detailed querycbea@xperiments
on live data. We show that our configurations not only redueetenance
cost, but can also improve search performance significavitly minimal
loss of search quality.



Kvik hegdun jafnveegra NV-trjaa
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Utdrattur

A undanférnum arum hafa komid fram nyjar gerdir margvidrinaarvisa
sem hafa gefid géda raun med pvi ad forna abyrgd a leitargagduradkinn
leitarhrada. Margskonar rannsoknir hafa verid gerdarkusiivisum med
bad ad markmidi ad skoda og auka afkdst og gaedi peirra, eeddegphe-
fur litid verid rannsakad hvernig best er ad vidhalda slikisum. | pessari
ritgerd er kvik hegdun NV-trjda skodud, en NV-tré eru nalguisar fyrir
mjog stor gagnasofn. NV-tré bjoda upp a marga stilli- og tafeendguleika,
sem hafa mismunandi ahrif & hversu skilvirkt vidhald peeraVid birtum
nidurstodur rannsokna a ahrifum pessara stillinga a kviigdhn NV-trjaa og
synum ad med vandadri utfeerslu ma na fram umtalsverdri efaakningu.
Vid atfeerdum einnig nyjar sveigjanlegar stillingar i N\é& og keyrdum
itarlegar myndaleitir & raungogn. Pessar stillingar baeka e&nungis skil-
virkni viohaldsadgerda, heldur auka einnig leitarafk@estidega med adeins
smaveaegilegum ahrifum a leitargaedi.
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Chapter 1
Introduction

Content-based multimedia indexing has been an active aresedrch and development
for the last two decades. Typically, multimedia contenthsas sound, images or video,
is mapped into one or many high-dimensional vectors of nuslvehich are then stored

in a high-dimensional index. Multimedia queries are likesvmapped into vectors, which
are typically used to conduct nearest neighbor queriesddiph-dimensional index.

These queries return the most similar vectors, which arepedyback into multimedia

data.

1.1 Requirements of Content-Based Indexing

Since the number and size of multimedia collections have geawving exponentially in
recent years, the requirements for high-dimensional imgekave been changing very
dramatically in at least three important ways.

First, multimedia data is of higher quality and complexiggquiring much more intricate
description methods than before. While color histogramseveemsidered potentially
useful in early systems, recent state-of-the-art systaws &dopted local descriptors such
as the SIFT descriptors, which describe the content in gietail (Lowe, 2004).

Second, multimedia collections have grown in size by ordémagnitude and are still
growing. Flickr, for example, currently holds more than thitlion images in its collec-
tion. It has been shown quite conclusively that in such kmgpde environments, exact
methods cannot cope with the application requirements @dgs& Gros, 2001). Ap-
proximate methods are therefore required to cope with tlee-ieereasing quantity of
data.
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Third, unlike assumptions made by early systems, multimedilections are now sub-
ject to extremely high update activities. YouTube, for epdancurrently receives about
100,000 new videos per day. Search engine users alreadgtergadul answers on current
events and they will expect no less of tomorrow’s multimegpalications. Furthermore,
in some cases, such as for copyright protection applicatioew material is actually more
valuable than older material.

As multimedia collections are updated with new contentjildex strategies used on the
collections must handle inserts and deletions dynamicéigh growing collections, the
search strategies must be able to retrieve results botreefficand effectively.

1.2 Current Index Strategies

Index strategies for low dimensional collections have be@uoind for many years. One-

dimensional data is frequently used in our daily life usietational databases. These
databases use indexing strategies that have provided/heffattive and efficient search

strategies. The indexes are usually basetlashingandtrees

As the dimensionality of data increases, we need to considter indexing strategies.
Techniques for medium range dimensionality include VAeEi(Weber, Schek, & Blott,
1998), IQ-trees (Bohm, Berchtold, & Keim, 2001), R-trees (@aih, 1984) and the
Pyramid-Technique (Berchtold, Bohm, & Kriegel, 1998), alamigh many other tech-
niques. Most of these index techniques use exadiN search strategy that has shown
good results for dimensionality lower thaf — 16. For higher dimensional data it has
been shown that these search strategies perform worse seguantial scan of the whole
collection (Amsaleg & Gros, 2001).

Recently, some approximate high-dimensional indexingrtegles have shown promis-
ing results by trading off result quality guarantees for ioyed query performance. Per-
haps the most popular technique is Locality Sensitive Hags(liSH) (Datar, Indyk, Im-
morlica, & Mirrokni, 2006), which has been used for some aapions (e.g., see (Casey
& Slaney, 2006)). LSH has been shown to be an effective seasthod but a single
hashtable bucket can become very large in LSH and this cahtteanpredictable 10
costs (Lejsek, Asmundsson, Jénsson, & Amsaleg, 2008).

More recently, however, the NV-tree, which is a disk-basgpreximate index for very
large collections (Lejsek et al., 2008), has been shown tipesform LSH for large-scale
retrieval (Lejsek et al., 2008). While the query performant&V-tree has been well



Arnar Olafsson 3

studied, however, the performance trade-offs of the indeitanance and redundancy
has not yet been reported in any detail.

1.3 Contribution of this Thesis

In this thesis we focus on the dynamic behavior of the NV:tfB&e NV-tree has several
configuration and implementation options that affect thequenance of index mainte-
nancel We report on an initial study of the effects of these optionstlre dynamic
behavior of the balanced NV-tree. We chose to use a balanvedel as it is easier to
simulate. To advance the NV-tree in high end applicatioressywark on four new aspects
of the NV-tree.

e First, we introduce a flexible overlap configuration into baanced NV-tree. The
flexibility controls the redundancy of the NV-tree by adjongtthe index to different
overlap configurations. With less redundancy the index lesosmaller and is
more likely to fit in memory, thus improving the performandeiraex creation,
inserts and search.

e Second, as values are inserted, the redundant spaces eathetles are filled up
and the tree requires maintenance. We introduce five diffenaintenance policies
and study the effects of each policy on the index by simujatisertion of 250,000
images into the NV-tree.

e Third, we simulate auffered insertstrategy and compare the benefitsdicect
inserts As disk reads and writes are the most expensive operati@analyze the
effect of using the buffer to assist with insertions to irase performance.

e Fourth, we analyze the effect of usipgrtition fileswith the NV-tree. The partition
files are sorted subsets of the object collection. When maantee tasks are per-
formed the whole collections needs to be sequentially ssdifor each leaf parti-
tion used in the index. By reducing the sequential scans teetsiiof the collection,
performance is improved.

We have created a simulation model, using the Python largguagsimulate the above
functionality in the NV-tree. Our simulation model sim@@at250,000 image insertions
into a pre-existing collection of approximately 30,000 gea. We simulate different
variations of the flexible configurations, maintenance @e$, buffering and partitions
files.

1 Note that concurrency control is outside the scope of thesith
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The flexible configuration is a major factor in our dynamic &é@br and has large impact
on the index. In a second performance study, we therefodeestinow the flexible con-
figurations affect search quality, by running a large setugrg images on live data using
a balanced NV-tree. In this study, we focused on two key facta) the search quality
and b) the search performance. We use 3,120 modified imag@sdriginal images in
the collection, based on 26 different modifications.

Our results show that our configurations not only reduce taaance cost, but can also
improve search performance significantly with minimal loésearch quality.

1.4 Overview of this Thesis

First, we describe the NV-tree and its main features in 8e@i We then demonstrate
how redundancy can be implemented in a flexible manner imbathNV-trees in Sec-

tion 3. In Section 4 we define a simulation model to study ttiecé$ of various con-

figuration and implementation options. In Section 5 we expthe implementation of

our simulation model. In Section 6 we perform a detailed guenince study, analyz-
ing the index maintenance performance, and show that wihogpiate implementation,

significant performance improvements are observed. Ini@ectwe perform detailed

performance and quality measurements on the flexible N&/tging 26 image modifica-
tions created from 120 query images. We show that searcbrpgathce can be improved
considerably with a small trade-off in search quality. Wertltonclude our findings in

Section 8.



Chapter 2

The NV-tree

The NV-tree is a disk-based data structure designed to gecefficient approximaté-
nearest neighbor search in very large high-dimension&aadns. In essence, it trans-
forms costly nearest neighbor searches in high-dimenkspaae into efficient uni-dimen-
sional accesses using a combination of projections of datagto lines and (redundant)
partitioning of the projected space.

This chapter describes several aspects of the NV-treesifogparticularly on the aspects
that are important for understanding the remainder of thesis. We therefore describe
first the two main operations of index creation and searchthéfe briefly outline different
strategies for projecting the descriptors, partitioning tlata collection, and introducing
redundancy. Section 3 is entirely dedicated to investigatew strategies for redundancy.
The internal data structures of the NV-tree are then desdiiefore presenting the index
maintenance operations. A more detailed description of\t¥idree and its operations
can be found in (Lejsek et al., 2008).

2.1 NV-tree Creation

Overall, an NV-tree is a tree index consisting of: a) a h@mgrof smallinner nodes
which are kept in memory during query processing and guigedesscriptor search to
the appropriate leaf node; and b) lardeaf nodeswhich are stored on disk and contain
references to actual descriptors.

When the construction of an NV-tree starts, all descriptoescansidered to be part of a
single temporary partition. Descriptors belonging to thetifon are first projected onto
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a singleprojection linethrough the high-dimensional space. Strategies for Setptte
projection lines are discussed in Section 2.3.

Next, the projected values are partitioned into disjunbtgartitions based on their posi-
tion on the projection line. Information about all these-galotitions, such as the partition
borders on the projection line, form the inner node of the liengel of the NV-tree. Strate-
gies for partitioning are described in Section 2.4.

Since descriptors which are close to partition bordersiketylto be similar to descrip-
tors in the adjacent partition, the NV-tree partitions dleveed to overlap for redundant
coverage. An overlap parameter is used to control the amufurgdundancy between
partitions. In the extreme case, for each pair of adjacertitipas, an overlapping sub-
partition is created which covers 50% of both partitionstatgies for overlap are de-
scribed in Section 2.5.

To build subsequent levels of the NV-tree, this process ofegting and partitioning is
repeated for all the new sub-partitions using a new prajadine at each level, creating
a hierarchy of inner nodes. The process stops when the nushblesscriptors in a sub-
partition falls below a specified limit designed to be no mthran single 1/0. A new
projection line is then used to order the descriptor idearsfof the sub-partition, and the
ordered identifiers are written to a leaf node on disk.

2.2 NV-tree Nearest Neighbor Retrieval Process

During query processing, the query descriptor first traagthe hierarchy of inner nodes
of the NV-tree. At each level of the tree, the query descritprojected to the projection
line associated with the current node. The search is thacttdn to the sub-partition
with the center-point closest to the projection of the quaegcriptor. This process of
projection and choosing the right sub-partition is repeatetil the search reaches a leaf
node.

The leaf node is fetched into memory and the query descripfomojected onto the pro-
jection line of the leaf node. The search then starts at téipo of the query descriptor
projection. The two descriptor identifiers on either sidéhaf projected query descriptor
are returned as the nearest neighbors, then the seconddaripder identifiers, etc. Thus,
the k /2 descriptor identifiers found on either side of the query dptar projection are
alternated to form the rankédapproximate neighbors of the query descriptor.
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Note that since leaf partitions have a fixed size, the NV-tre@rantees query processing
time of a single disk read regardless of the size of the dasercollection. Larger col-
lections need deeper NV-trees but the intermediate nodeadity in memory and tree
traversal cost is negligible.

2.3 Projection Strategies

In the NV-tree, projection lines are used at each level otithe, and hence a strategy is
needed for selecting those lines. There are two alternatregegies. First, we can use
random line from a pool of random lines, that are created Ioygaing isotropic random
lines requiring a minimal angle between pairs of lines. gsandom lines is independent
of data, but may lead to sub-optimal partitioning. Seconel,can select the “best” line
using Principal Component Analysis (PCA), which is very godtt (Lejsek et al., 2008),
however, amapproximate PC/Astrategy is proposed, which selects the best line from a
large line pool. This strategy proved to yield search respilbetter quality than random
lines; the simulation model for inserts therefore assumel$ ehosen lines from a line
pool.

2.4 Partitioning Strategies

A partitioning strategy is likewise needed at every levelhaf NV-tree. Three strategies
were proposedBalanced UnbalancedandHybrid.

The Balancedstrategy partitions data based on cardinality. Therefaseh sub-partition
gets the same number of descriptors, and eventually allpl@ditions are of the same
size. Although node fanout may vary from one level to the ottiee NV-tree becomes
balanced as each leaf node is at the same height in the tree.

The Unbalancedpartitioning strategy adjusts to the data distributionuling distances
instead of cardinalities. In this case, sub-partitions @eated such that the absolute
distance between their boundaries is equal. All the datatpan each interval belong to
the associated sub-partition. With this strategy, howetyer normal distribution of the
projections leads to a significant variation in the cardiies of sub-partitions. Due to
the repeated application of the partitioning strategy,NNetree becomes unbalanced as
dense areas are partitioned more often than sparse areas.
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The Hybrid strategy first follows théJnbalancedstrategy until a sub-partition is of a
size that could fit into around six leaf partitions. Then Beancedstrategy is used to

construct the leaf partitions. As a result, leaf partitians better utilized and the tree is
shallower, both of which result in smaller space requiretsien

We have chosen to focus on tBalancedstrategy in our work since it is much easier to
implement and model.

2.5 Overlap Strategies

An overlap strategy is needed at each level of the NV-tree @ntion is theNo Overlap
strategy, where each descriptor is only inserted into aeigsgb-partition, as described
above. A second option is tHeull Overlap strategy, where each descriptor is inserted
into two partitions, except for the descriptors at both ewofdhie projection line. We can
also chose intermediate values to control the overlap. Mitie remainder of this thesis
explores the implementation and effect of partially ovepiag partitions.

2.6 NV-tree Nodes

The intermediate nodes of the NV-tree are used for two p@siot guide the search
for a descriptor to the single appropriate leaf node, anduidegthe insertion of a de-
scriptor to all appropriate leaf nodes, as described bel®ypically, in non-redundant
tree structures, such as the traditional-Bee, this can be achieved by storing an array
of partitioning values in each intermediate node. Due topibtential redundancy of the
NV-tree, however, these two purposes of the intermediatiesonust be achieved using
different arrays of values. Thaartition bordersarray stores values guiding the insertion
process to all appropriate leaf nodes. Bearch borderarray keeps track of the values
which are mid-way between the partition borders and are iesgdide the search process.
Intermediate nodes are small and are kept in memory duriegyqurocessing.

Each leaf node is the size of a disk block and stopesjected valuedescriptor identifiey
pairs. For efficiently finding the pair of the leaf, which h&sprojected value closest to
the projection of the query descriptor, leaves are organimethe projected values in a
sorted look-up table.
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2.7 Insertions and Deletions

Consider first insertions to the NV-tree, with no overlapppagtitions. In this case, the
insertion process must first descend the tree in the sameanasthe search, to find the
appropriate leaf to insert the descriptor into. Then thd faingjection line is used to find
the appropriate location for the descriptor identifier witthat leaf.

With overlapping partitions, on the other hand, each dpsmrimust potentially be in-
serted into many leaf nodes, due to the redundancy arisorg the overlapping parti-
tions. Unlike the search, the insertion process must therach level, descend into either
one or two sub-partitions which contain the projection &f tlescriptor. In the worst case
of full overlap, a descriptor may thus need to be insertea 2ftleaf nodes, wheré is
the number of levels in the tree.

Note that until the descriptor has been inserted into alagh@opriate partitions, it cannot
be considered fully inserted and may not show up in certagmygresults. Needless to say,
insertion can be an expensive operation that: 1) can affiecthoices of index creation
strategies, and 2) must be implemented carefully. In Sestibthrough 6, we analyze
cost models for several implementation choices.

Deletion is implemented in a similar manner as insertiors ftossible, however, to keep
atable of recently deleted descriptors and filter them oth@fesult. In this way, deleted
descriptors can be removed from query results, althoughrteey still be found in one
or more partitions on disk. For this reason, we do not adddesetion further in this
thesis.

2.8 Summary

Overall, an NV-tree consists of a hierarchy of small innede® which fits in memory,
and larger leaf nodes, which are stored on disk and contasorigéor identifiers. In
this section, we have described the processes for indekamneandex search, and index
maintenance, as well as alternative strategies for thexindeation and search. As we
have pointed out, insertion can be an expensive operatnihcan affect the choices of
index creation strategies, and 2) must be implementedudbrdh this thesis, we examine
the effects of various strategies and implementation aptan the insertion performance
of balanced NV-trees.



Chapter 3
Implementing Redundancy

In this chapter we propose a methodology for implementimiynelancy within the bal-
anced NV-tree in a flexible manner, ranging from no overlafuicoverlap. We assume
that the administrator of the NV-tree index supplies fivefmpmation values: tree height
h; collection sized (in tuples); partition size (in tuples); desired leaf node utilization
u; and the desired overlap factore [0, 1]. This section describes how these five values
are used to compute amdex level configuration™ = [(7,...,l;_,], which describes the
number of sub-partition§ at each level of the balanced NV-tree.

3.1 Defining Partial Overlap

During the NV-tree construction, a key issue is how to partiitntermediate sub-partitions.
At each stage of the construction, the overlap fact® used to decide what fraction of
each partition should overlap with other partitions. For 0.5, for example, half of
the descriptor identifiers of the partition must also be @néén other partitions. As we
shall see in the following discussion, it may not be possiblgartition in such a way
that the overlap is exacthy (as then the last partition would be smaller than the others)
Therefore, we now describe a general partitioning methdteresthe overlap between
partitions is at least.

Without loss of generality, we assume in the following dssian that we are splitting an
intermediate sub-partitionof sizelp into leaf partitions, and that the desired utilization
isu = 100%. The goal is then to split into a number of partitions, such that each

1 The size of intermediate partitions is always an integettipial of pu.
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intermediate partition s

W] &

"

P2 |

(a) No overlapt = 0.0)

intermediate partition s

(b) Partial overlapf = 0.67)

intermediate partition s

(c) Full overlap ¢ = 1.0)

Figure 3.1: Partial overlap configurations

partition gets exactly descriptors and the actual overlap between leaf partitiorag
leastr.

EXAMPLE 1.

Figure 3.1 shows three possible sub-partition configuragidor an intermediate sub-
partition s of size3p. These configurations have: a) three leaf partitions and verlap

(r = 0); b) four leaf partitions and partial overlapr(= 2/3); and c) five leaf partitions
and full overlap ¢ = 1). As the figure shows, since each partition (aside from the end
partitions) is adjacent to two partitions, the overlap betweay two adjacent partitions
isT/2.

Since the size of each partition must be exagtlypnly a few values of- yield distinct
partial overlaps in each case. These values depend on thefsilze intermediate sub-
partition, Ip, and the number of leaf partitions, and are therefore denoted by,. In
Figure 3.1, those values arg; = 0, 734 = 2/3 andr;5; = 1. Havingr = 1/2, for
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K

Lk 6 7 8 9 10 [ 11 [ 12 [ 13 [ 14 | 15 | 16 | 17 | 18
6 | 0.00] 0.33]057|0.75| 0.89] 1.00| - - - - - - -
7 - (000|029 050|067 0.73]0.83] 092 1.00] -

8 - [000[ 025044 060|0.73]0.83] 092 1.00| - -

1 [9 - [ 000]022]040| 055|067 0.77]| 0.86| 0.93| 1.00| -
10 - [ 000/ 020]036]050|062]0.71] 0.80| 0.88| 0.94
11 - | 0.00[0.18]0.33]0.46| 057| 0.67| 0.75] 0.82
12 - [000[017]0.31] 043053 0.63]0.71

Table 3.1: Partial lookup table for actual overlap.

example, should yield the same partitioning as witk- 2/3. When partitioning a sub-
partition s of sizelp, the goal is therefore to find the number of partitidnahich gives
the smallest overlap factar;, > 7.

The minimum value fok is whenr = 0. In this case, only sub-partitions can be defined.
Conversely, the maximum value fbiis whenr = 1; in this casel — 1 sub-partitions can
be created. Generally, for ahyndk, the amount of overlap between théeaf partitions
is (k — 1)%~, yielding the following equation:

k—(l{:—l)%:l (3.1)
Solving forr; , results in:
2(k —1)
= 2
Tk = T (3.2)

EXAMPLE 2.

Solving Equation 3.2 for all values éfand £ yields a look-up table of;; values as
partially shown in Table 3.1. If = 8 thenk ranges from 8 to 15. When = 0.5 is
desired, for example, thénmust be 11, leading to an actual overlaprgf; = 0.6.

Givenp andr; ;, the partition borders can be easily determined. The |loagitipn border
of sub-partitiorp; can be found at rank(: — i7; /2) in the intermediate node about to be
partitioned, while the upper partition border can be foutn@akp(i+1—i7;/2). Search
borders are determined, as before, by finding the mid-p@twéen partition borders of
adjacent sub-partitions.

3.2 Non-Overlapping Configuration

The computation of the index configuration proceeds in t@pstFirst, a non-overlapping
configurationZ’ is found, corresponding to = 0. Then the index configuratioh™ is de-
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termined by applying the procedure described above at eaehdf the non-overlapping
configuration.

In the absence of overlap, the expected number of leaf jpaditis simplyd/pu. In
order to get an initial configuratioh® = [1J,...,[,_,] with at leastd/pu partitions, we

define:
= | Y/dfpu] (3.3)

and initialize!? = [°. The total number of leaf partitions given by this configimatis
denoted by:

i =11% (3.4)

As this configuration may give more thalipu leaf partitions, we must seek a config-
uration which better approximates the desitggu partitions. In essence, we seek the
configurationZ® = [1°,...,1°1° —1,...,1° — 1] which gives the smallest number of leaf
partitions|L°| > d/pu.

EXAMPLE 3.

Givenh = 4, d = 35,484,770, p = 16,384 andu = 67%, the expected number of
partitions isd/pu = 3,233. The initial partitioning estimate i&’ = [/3,233] = 8.
Since8 x 8 x 8 x 8 = 4,096, however, a better configuration can be found. Next,
8 X 8 x 8 x 7 = 3,584, while8 x 8 x 7 x 7 = 3,136, which is smaller thars, 233.
Therefore, the configuratioh® = [8, 8, 8, 7] is chosen.

3.3 Overlapping Configuration

Next, the overlap factor is used to determine the initial index configuratibh based
on the non-overlapping configuratidii. At each level, we usé? to solve Equation 3.1
of Section 3.1, yielding the number of overlapping subiparts, (7, at that level. This
process is efficiently implemented using the look-up tabteas in Table 3.1. The vector
L™ = [if,...,1;_,] then describes the balanced NV-tree index configuratiomtwhas
the smallest overlap greater than

Note that the number of partitions, and thus index util@atmay differ from the intended
configuration parameters. This is due to the approximatioth® overlap factor. As
before, the number of leaf partitions is denoted by:

=114 (3.5)
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EXAMPLE 4.

Assume the non-overlapping configuratiens, 8, 7] of Example 3 and a desired overlap
factor of 7 = 1/2. The resulting index configuration & = [11, 11,11, 9], which has
|L7| =11 x 11 x 11 x 9 = 11,979 leaf partitions.

3.4 Summary

In this section we have proposed a general method for pastelap. We have defined

equations to configure the correct number of leaf partitivesed on the collection size
and user defined values such as the desired overlap factdraV¥ealso described how the
desired overlap factor is only a proposed lower limit to thrertap needed. In Section 4,

we will describe the cost models for insertions and mainteaaneeded based on the
partial overlapping method proposed in this section.



Chapter 4
Modeling Inserts

In this chapter, we describe the simulation model which weehmplemented in order
to study the expected performance of various insertioriegfi@s for NV-trees. In this
section, we focus on the cost model, while the implememasaescribed in Chapter 5.
We start by giving the simulation model basics in Section & hhen we detail the cost
formulas behind individual implementation options in $@as$ 4.2 through 4.4.

4.1 Simulation Model Basics

In Section 2, three major strategic choices were discussetthé NV-tree. In this work,
we have focused on the balanced partitioning strategyijgaibre amenable to modeling
than the unbalanced and hybrid strategies. The projedtiategy is not modeled as such,
but the model assumes well chosen lines from a large set dbrarines. Finally, the
overlap strategy is fundamental to the model and followsrthEementation described in
Section 3.

Table 4.1 shows the input parameters of the model, as welleagstantiation used for

examples and in the experimental section. First, an irbagnced NV-tree configuration

L7 is created, based on the first half of Table 4.1, and usedttaliné the appropriate data
structures. Then, as multiple descriptor insertions arakited, the simulation model

accumulates insertion costs, based on the second half & Fabas described in detail

below, and updates the data structures appropriatelyrtimse are paused every 10,000
images and the various performance metrics written to disk.

It has been shown that the NV-tree copes well with the reqmergs of image and video
copyright protection applications using powerful locasdeptors (Lejsek et al., 2008).
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The most popular such descriptors are the SIFT descriptansg, 2004), which we
simulate in our model. SIFT descriptors are 128-dimengiand can be stored in 132
bytes (1 byte per dimension plus 4 bytes to store the descigntifiers), saD = 132d.
Note that the number of descriptafsn the initial collection corresponds to the set of
SIFT descriptors for about 30 thousand photo-agency images

The main structure of the simulation model is an array ofipants, P = [po, e ,p‘er.
Each partitiorp; holds local information about: the number of descriptorth@partition
(p;.cound; the probability of insertions to the partitiop,(prob); the parent node of the
leaf; and other book-keeping elements. When the index idemteshe partition size
is uniform as the index creation is rank based, makipngount = [d/|L°[]. During
insertion, each descriptor may be inserted into more thanleaf partition forr > 0.
While in the worst case it may be inserted iro partitions, the expected number of
inserted partitions is:

V= |L7|/|L° (4.1)

If the distribution of the descriptors to insert is identita the distribution of descrip-
tors in the original collection, which is likely, the insed descriptors will be uniformly
distributed into the partitions. The initial probability imsertion into a given partition is
thusp;.prob = 1/|L°|. During index insertion and maintenance, thesountandp;.prob
values are then maintained depending on the insertion ditiihgppolicies.

The cost model of the simulator focuses on disk cost, as the€@Btbf traversing the in-
dex is generally only 1-3% of disk cost (Lejsek et al., 2008¢. assume all disk accesses
to transferP bytes, but distinguish between random and sequential i@ar model; we
assume that for any file read of more tharP, sequential reads can be achieved through
a combination of pre-fetching, buffering and blocked I/O.iWkrue sequential access is
typically two orders of magnitude faster than true randoceas, we use a ratio of 1/10
to account for other disk traffic which may interrupt long gential reads. The simula-
tion model ignores effects of buffer management entiredyywa have observed that the
uniform distribution of accesses reduces the effectivemédbuffer manageme#t.We
do, however, consider using a buffer of si2dor inserted descriptor identifers and their
projected values.

In the remainder of this section, we develop and argue foctst formulas of the sim-

ulation model. We have broadly split the insertion cost imio parts. First, there is the
cost of insertion to a leaf partition (Section 4.2). Secawpartitions overfill, there is an
additional cost of index maintenance (Section 4.3). No&t $ince any method must ap-

1 The smallest NV-trees are likely to fit in memory, leading toaxverestimation of I/O cost; we note
this effect when analyzing the results.
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Description Notation Value
Initial tree height h 4

Initial collection size d 35,484,770 tuples
Desired leaf size D 16,384 tuples
Desired leaf utilization 67%

Desired overlap factor 7 [0,...,1]
D
P

Collection size on disk dx 132b = 4,36 GB
Size of a single disk I/O p x 8b =128 KB

Cost of random 1/Os Cr 12.5ms
Cost of sequential I/0s Cg Cr/10
Buffer size B 512 MB

Table 4.1: Simulation model parameters.

pend the descriptors to the actual descriptor collectiwet, ¢ost is not included. We also
discuss an implementation strategy called partition fildgere the descriptors themselves
are stored redundantly for each partition (Section 4.4).

4.2 Costof Insert

When a descriptor must be inserted, fRevector is traversed and, for each partition,
thep;.probvalue is used in a random trial to determine whether a descigpould be in-
serted into that partition. We propose two strategies fegiition: one where the descriptor
Is inserted directly into the appropriate partitions, ané ahere insertions are buffered.
The buffer is assumed to be organized as a hash table on tit@padentifiers. Thus,
all descriptors belonging to the same partition are stavgdther. The search is modified
to search not only the partition on disk, but also the in-mnstructure.

4.2.1 Direct Insertions

Direct insertion of a descriptor into a partition involvesading in the appropriate parti-
tion, modifying it and writing back to disk, for a cost 2f'%.

EXAMPLE 5.

Consider the collection described in Table 4.1. With fullrtye a descriptor will on
average be inserted intt' = 12.24 partitions, and inserting a single image with 500
descriptors therefore requiré®)0 x 12.24 x 2 x 12.5 ms= 153 seconds. With no overlap
V' =1 and the same insertion will také)0 x 2 x 12.5 ms= 12.5 seconds.
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4.2.2 Buffered Insertions

In this case, there are two scenarios which lead to diskigcti¥irst, when a specific
bucket has reached a sizedf/3, it is flushed to disk to avoid situations where a single
bucket causes multiple splits. The cost of such a flush is d@neesas that of a direct
insert,2C'r. Second, if the entire buffeB is full, all partitions in memory are flushed
to disk in a sequential manner, incurring a coseOf|L7|. This method is chosen since
the uniform distribution of inserts makes it likely that nydsuckets are filled to a similar
capacity.

The precise savings of buffering depend on the size of th&ebahd the distribution
of inserts. Note that a clever implementation would oppastically update partitions
when they are read in by a search process and flush buffers eibleractivity is low.
Our simulation model, however, cannot capture such dedaii$ does not model buffer
management.

4.3 Cost of Index Maintenance

When the utilization of a particular leaf node reaches 100%nbde must be split. Unlike

many other tree structures, however, splitting is a compferation in the NV-tree and

there are many potential splitting policies. The key défarator between these policies
is the amount of local re-organization of the index requingdhe policy. Furthermore,

as a result of the re-organization, some leaf partitions awuire a new random line

necessitating re-projections of a part of the descriptdection. The cost of each policy

is thus composed of the following two components:

Csplit = Creorg + Crepro (42)

In the simulation model, we have considered the following flicies: No split Leaf
split; Parent split Hybrid split (Leaf splitor Parent spli); and Re-Generation These
policies and the associated cost formulas are describe@tail dn the following sub-
sections. The cost formulas are summarized in Table 4.2gvigure 4.1 is used to
illustrate the differences between the policies.



Arnar Olafsson 19

Maintenance Policy Creorg Crepro
No Splits Cr 0
Leaf Splits Cr(Al}_,) Cscan
Parent Splits Cr2l,_1+ Al 1 —2) Csean
Re-Generation Cregen

Table 4.2: Index maintenance cost.

Inner Node Inner Node

L V £ A V A
Leaf Node Leaf Node Leaf Node Leaf Node Updated Leaf Node
Leaf Node
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Leaf Node
(a) Before Split (b) No Split
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Leaf Node [ Leaf Node } [ Leaf Node }

s X\
Updated New
Leaf Node Leaf Node

(c) Leaf Split (d) Parent Split
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Updated
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Leaf Node

Figure 4.1: Effect of split policies when the central leafdecoverflows: (a) original
partitions before split; (b) with No split; (c) with Leaf spland (d) with Parent split.

4.3.1 No Splits

The straight-forward way to deal with a partition overflontassimply allocate a second
disk block (or third, etc.) and maintain all disk blocks asimgke partition (see Fig-
ure 4.1(b)). In this case, the cost of the reorganizatiorsisté of reading the original
partition and writing it, as well as writing the second didkdk. As the reading and
writing of the original disk block are already accounted fiorough the insertion cost,
only a single random disk writ€’z must be counted. Needless to say, there is no cost of
reprojecting the collection.

Two observations are in order, however. First, this polisp affects the cost of insertions
to that partition; the cost formulas of Section 4.2 must bdtiplied by [p,.count/p]|.

Second, this policy also affects query costs as many bloakst potentially be read at
retrieval time. This policy negates the fundamental prgpef the NV-tree that query
results are always returned in a single disk read; as questg @ve not accounted for in
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the simulation, all results must be analyzed in view of tBait this approach serves, in a
sense, as a lower bound on the cost of index maintenance.

4.3.2 Leaf Splits

ThelLeaf splitpolicy works as follows (see Figure 4.1(c)). First, a neverntediate node
Is created, which replaces the leaf node in the NV-tree. TWweror more new (partially
overlapping) leafs are created for the new intermediateentitls extending the local
depth of the NV-tree. Note that this policy leads to localhbalanced trees and rapidly
increasing space requirements. The search time, howsvest affected.

In the simulation model, the;.prob andp;.countvalues of the partitions are maintained
appropriately. The index maintenance cost is then cakedlas follows. First the old node
must be read and then the new nodes must be written to diskn@iereplaces the old
leaf node). Since, as wito split two disk operations are already accounted for through
the insertion cost, the cost of re-organization is the wrist of the new leafs:

Creorg = CR(Alg_l) (43)

Since the new leafs are associated with a new random lineg\ewit is necessary to
re-project the descriptors. The most efficient method icémghe entire descriptor col-
lection and compute the projectioh3.hus the cost of re-projections is:

Cscan = CS'D/P (44)

4.3.3 Parent Splits

With the Parent splitpolicy (see Figure 4.1(d)), all immediate siblings of thaflaode
to be split are considered as a set and re-organized togéthefParent splitadds one
or more leaf nodes to the sibling set and using the partigmrocess of Section 3 to
populate the partitions.

EXAMPLE 6.
Consider a newly created non-overlapping NV-tree< 0) with /] _, = 4 and desired
utilizationu = 67%. Assume that all four leaf nodes of a particular parent aranhefull,

2 Since the split partition contained at leastlescriptors, as many asrandom disk reads may be

required to find the descriptors. Unless the collection iy Varge,p random reads cost far more than a
sequential scan.
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when the first leaf must be split. Then there are negpldistinct descriptor identifiers in
the four leaves. After splitting, there should b&: ~ 6 partitions, each with aboutu
descriptors.

When the original leafs overlap, care must be taken to remuaeredundancy before
populating the new partitions. Unlike ttheaf splitpolicy, theParent splitpolicy creates
wider trees but retains the original depth of the tree, taguin lower space requirements.
When the parent node is split repeatedly, however, the jpagiimay become “narrow”
leading to potentially reduced result quality.

As before, the;.prob andp;.countvalues of the partitions are maintained appropriately.
The re-organization cost is then derived as follows. Assanmewly created tree with
partitioning L™ = [I7,...,1;_,]. Upon a split/;_, leaf nodes must be read atjd, +
Al7_, written. As before, two disk operations are accounted fotha insertion cost,
leading to the formula in Table 4.2. When the tree is modifiddirgy counts are updated
to correctly account for re-organization cost. As witaf split the collection must then
be scanned to re-project all the descriptors.

4.3.4 Hybrid Splits

This policy works as follows. If a leaf has few siblings, thitre Parent splitpolicy is
employed. Once the leaf is one §for more siblings, however, theeaf splitpolicy is
used. The resulting new leaf nodes then have one or few gfhliend theParent split
policy is used again. This policy should yield the lower speequirements of thBarent
split and the higher result quality of thesaf split The cost associated with each split, of
course, depends on the split policy used.

4.3.5 Re-Generation

With this policy, no splits are performed. Instead, the indebuilt from scratch once the
first leaf overflows, resulting in a new index configuratiorssAming a uniform distribu-
tion of inserts, many leaf nodes are likely to be nearly fullahusRe-Generatiorcan
potentially avoid a long string of expensive splits. Whiléstpolicy may not be appro-
priate in many high-availability situations, it is neveglbss interesting to understand the
associated costs.

In order to model the costs, we must recall the index cregirocess. Essentially, it is
a depth-first process of creating temporary files contaiewvegy smaller sub-partitions,
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until the appropriate leaf size is found. The cost calcafais made easier by the fact
that the index creation process results in balanced treese e tree configuratiob”™ =
45, ..., l;_,] has been computed, the total sizeof the intermediate files at levekan
be computed as follows:

Dy = D
D = D, (/1) (4.5)

For each tree level, the index creation process must then réadP disk blocks and
write D,/ P disk blocks, for a total cost of:

>
=

C
Cregen - FS (Di+1 + Dz) (46)

7

Il
o

4.4 Partition Files

The bulk of the cost of theeaf splitandParent splitpolicies is due to the cost of scanning
the collection to re-project the descriptors. In order tmimize this cost, we consider
introducing even further redundancy into the index by siprihe descriptors for each
leaf node or leaf parent node in spegalrtition files When splitting the partitions, the
partition files can then be read instead of scanning the wdallection.

For Leaf split one partition file corresponds to each leaf node. In thigecdsere are
initially f; = |L7| partition files and the size of each partition filelig / f;. For Parent
split, partition files are maintained one level higher in the tresulting inf, = |L"| /1] _,
partition files of sizeD,,_,/ f,. The cost of scanning is thus reducedg/ f, P for Leaf
splitand D,/ f,, P for Parent split ForHybrid split, the partition files alternate between
parent nodes and leaf nodes.

When inserting a descriptor identifier to a leaf partitiore trescriptor must also be in-
serted into the corresponding partition file. As with insento partitions, there are two
alternative implementations. First, the descriptors maynserted directly into the parti-
tion file, resulting in a cost dfC'r; as we observe in the next section, this cost is too high
to be feasible. Second, the buffBrmay also be used to hold the descriptors until the
buffer is flushed; this is the approach taken in our modelhimdase, however, the buffer
will fit many fewer descriptors, as each descriptors now iregu 32 + 8 = 140 bytes of
storage compared to the 8 bytes required to store the demcidentifier and projected
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value. When flushing the buffers, the partition files must lzelr@nd written, leading to
costs o2Cs D,/ P and2Cs D,/ P for Leaf splitandParent split respectively.

4.5 Summary

In this section, we have defined and described the cost moflelsertion and mainte-

nance. The cost formulas are based on the I/O cost produced imkerting. When a

partition reaches 100% utilization, maintenance must wopaed to keep the NV-tree

available for further inserts. The maintenance cost isdbasae-organizing subset of the
NV-tree and re-projecting that same subset to new parsitidn Section 5 we describe
how we implement the cost formulas and the proposed pane&dapping method into

the NV-tree simulator.



Chapter 5
Implementing the Simulation Model

In this chapter, we describe how the simulation model wadempnted and the basic
data structures used in the model. The simulator was writsemg Python 2.5 and the
Eclipse development software. No additionally installedhen packages where used,
creating portable code for multiple machines on differdatfprms.

In Section 5.1 we describe how data structures in the moeehdralized and how the

NV-tree is created. In Section 5.2 we explain how the datacires are maintained
when records are inserted. In Section 5.3 we describe hoxinthintenance tasks are
implemented and how they effect the data structures. Ini@eét4 we describe how

partition files are implemented into the model and in Secdhwe describe a more
efficient implementation of our proposed uniform distribat

5.1 Overview

The code was designed to be object-oriented to encapsutizteedt data structures and
create readable and reusable code. One external file wasasiehing descriptor counts
for approximately 250,000 images used for the insertioruiation. The file was created
by counting SIFT descriptors from a large image collectibpress photos provided by
one of the major Icelandic newspapdvirgunbladid

A specialRunclass was designed to create flexible simulations for baias.r Each
experiment is defined by a list of five simulation parametelsmaintenance strategy,
b) buffer flag, c) buffer size, d) partition file flag, andeJactor. Not all variations are
simulated, e.g., using partition files witRe-Generatiordoes not result in meaningful
experiment.
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The Runclass also handles error handling and messaging. Sinceeggehiment can
run for days, depending on combination of settings and hare\we implemented the
error handling to use the pythaockle library to serialize classes when a run-time error
or user cancellation was raised. This means that erron@ousasions can be executed
from the same state after the error has been fixed. Re-exgdatiad simulations only
applies if the data has not been altered because of the el Completion and error
messaging was also implemented in Renclass. Three options are possible: a) no
messages, b) e-mail message, or ¢) SMS message to a mohile. phite SMS service
was implemented so that response to errors could be handieklygto minimize wasted
idle CPU time.

TheRunclass implements a batch of experiments. Each batch cedistultiple exper-
iments grouped together. As each experiment is highly CRehsie, it is recommended
to distribute the experiments over multiple CPU’s or macsine

Each experiment creates a new instance ofShmsulationclass. TheSimulationclass
encapsulates a single experiment; it implements the insectlls based on an external
descriptor file and creates the result files for post-prangss

The Simulationinstance creates an instance of M¥éTreeobject class. The class is the
main operation class of the model. The main functionalityNdfTreeis: a) create the
partition nodes and its partitions, b) execute maintensasles when needed, c) keep ref-
erence to buffer, d) create the partition files, and e) siteufeserts into partitions.

When theNVTreeclass is initialized it uses the same initialization confagion as speci-
fied in Table 4.1. The only user provided values are the sitiaug parameters.

A bookkeeping clasd,eaflLevelCreataris used by thdNVTreeto create the initial con-
figurations and return a python lisP] containing the partition classes. The list simulates
the partitions stored on disk. The leaf list is calculateditst finding L° based in the
initialization configuration and theh™. The size ofP is found to bg L7 |. TheLeafLevel-
Creator class also provides additional functions to maintain tlee @nd its configura-
tions.

5.2 Implementing Insertions

Each partition on disk is represented by Ragtition class. ThdPartitionis a simple book-
keeping class storing internal parameters which define @ngtipn instance. Awalue
pairs (projected valuedescriptor identifiey are inserted, an internal counggrcountreg-
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isters the insertions and calculates the local utilizatbthe partitionu; = p;.count/p.
Each partition also keeps track of the insertion probahjiljtprob.

When simulating insertion int@ we use a uniform distribution. The estimated number
of values to insert into the tree for each descriptor is afiiticonsidered as the value
V = |L"|/|L°|. When the tree is created, all partitions are assigned withahility of
insertionp;.prob = 1/|L°]. This means that all partitions have the same probability to
have values inserted on creation. If the tree would nevex,gs@ could simply select’
partitions using random integers between P| — 1] to approximate uniform distribution.
The NV-tree is simulated as a balanced flexible tree thatsdacmaintenance events,
however, and when adding the new partitions to the tree kieéilbod of inserting will
change.

Our first approach to the uniform distribution was to seqadigtgo through all partitions
(in Section 5.5, we describe a more efficient implementatidfor each partition, the
probability is retrieved and compared to new random value/@en|0, 1]. If the random

value is less thap;.prob, thenp; is selected as partition for insertion.

EXAMPLE 7.

Assume we haveé’ = [8,8,8,7]. If 7 = 0.0, we have|P| = 3,584 and p;.prob =
1/3,584. Given that probability we should select a random number lotlvan p;.prob
approximately” = 1 times for each pass through. If 7 = 1.0, we have P| = 43,875
and p;.prob = 1/3,584. We should now select a random number lower thaprob
approximately)” = 12.24 times for each pass through.

5.2.1 Direct Insertions

Algorithm 1 shows how the direct insert scenario is impletadn For all descriptors
in image we traverse all partitions iA. As we traverse the partition list we compare the
probabilityp;.prob of each partitiorp; with our newly created random numberplfprob

is larger than the random number, we ins@tue pairinto the partition.
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Algorithm 1 Inserting directly to disk
1: procedure DIRECTINSERT(P, Image)

2: for all desce Imagedo
3 for j «— 0,|P| do

4 if P[j].prob > new Random(}hen
5 P[j].insert()

6: end if
7

8

9

end for
end for
. end procedure

5.2.2 Buffered Insertions

Algorithm 2 shows how the buffered insert scenario is immgated. Inserting into the
buffer follows the same functionality as direct insertsstéad of inserting to disk, how-
ever, the values are inserted into the appropriate buckbeibuffer. After each insert we
check for two possible scenarios to flush: a) if the bufferfeashed its maximum limit,
we flush all buckets in the buffer and b) if the current bucketyi/3 full, we flush the
bucket. The reason for flushing when the bucket has reazh&tlis to avoid multiple
splits of a single partition. Thep/3 flushing does not apply tRe-Generatiorand No
split.

Algorithm 2 Inserting using buffer
1: procedure BUFFERED NSERT(Buffer, P, Image)

2: for all desce Imagedo

3 for j — 0,|P| do

4 if P[j].prob > new Random(jhen

5 Buffer[s].insert()

6: if Buffer.Full == Truethen

7 Buffer.Flush(P)

8 else ifBuffer[j]. TwoThirdsFull == Truethen
9 Buffer.Flush(P}])

10: end if

11 end if

12: end for

13: end for
14: end procedure
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5.3 Implementing Index Maintenance

When new partitions are added to the tree it does not make tHexgually considered
when inserting. We now detail the maintenance ofthprob andp;.countvalues, as the
index is updated.

5.3.1 No Splits

The No splitincrements the;.countwith each insertedalue pairwith overfill option.
This means that more tharvalues can be stored in the partitian$ 1). The additional
values are stored in the partition but are represented as than a single 10 (see Sec-
tion 4.3.1). Since no splitting occurs, theprobis the same from the start and the value
of V does not change.

5.3.2 Leaf Splits

When Leaf splitis used the partition records.countuntil v = 1. At this point the
partition returns aplit flag to the NVTreeclass. When the flag is received tN&/Tree
performs a_eaf spliton the flagged partition.

WhenLeaf splitis triggered, we grow the tre#gownwardsrom the flagged partition. We
mark the flagged partition as the internal partition and #al new partitions to the leaf
list P. The new partition courttis calculated by finding how many partitions fit using the
determined utilization.

The flagged partition is now internal and not applicable seimtions. The new partitions
are considered as child partitions and can be traverseadno tine internal partition. To
maintain the correct probability of insertions as the tremvg downwards we update the
probability of the new child partitions as shown in equattoh.

p,.prob
t—(t—1)(1/2)

At the same time all values of the internal partition must ra@wdivided unto the new
partitions. How they are divided depends on thealue. If 7 = 0, the values are divided
equally between the new partition.7f> 0, then the overlap needs to be taken into count.
Equation 5.2 shows how the values are distributed over thepagtitions.

Prew-Prob = (5.1)
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pj-count

t—(t—1)(7/2)

The basic implementation of thesaf splitfunctionality is described in algorithm 3.

Pnew-COUNt= (5.2)

Algorithm 3 Leaf Split Method
1: procedure LEAFSPLIT(P, NodeListp, t)

2: count«— p.count/(t — (t — 1)(7/2))
prob — p.prob/(t — (t — 1)(7/2))
p.anternal «+— 1

node<— new Node()

fori« 1,tdo

Pnew < NEW Partition()
Prew-count <— count

Pnew-Prob «— prob
10: P.addf,.c.,)

11: node.addy{,,.,)
12: end for

13: NodeList.add(node)
14: end procedure

5.3.3 Parent Splits

All partitionsp; € P are contained within @artition node The number of children in
each partition node is initialized &5 _,. The partition nodes are used to group together
partitions and keep track of local node configurations asrdeechanges.

The partition recordg;.countuntil v = 1. As described in théeaf splitsection, the
partition returns &plit flagto theNVTreeclass. At this point th&lVTreetriggers aParent
split on the partition node containing the flagged partition. Taeept node is splitin such
way thatAl; , additional partitions are added to the existing partitiod@such that the
tree growssideways If Parent splitis used with buffered inserts, all values stored in the
buffer are calculated into the partition node before sptitt The amount of partitions to
add depends on four factors: a) number of partitions cugrémthe node, b) the initial
utilization of the tree, c) total number of values in eachtipan, and d) ther value used.
We first need to find how many unique values are stored in eatitigganoden.
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(2 jen Pj-cOUNY X (n.count— (n.count— 1) x I)“ (5.3)

n.unique= 2
n.count

Equation 5.3 defines how we determine the number of uniqueesdbund in the current
partition node. We start by summing up the number of valuesaichp; € n. For
example, ifr = 0, we return all values as unique. 4f> 0, we filter out any doubled
overlap values.

The unique values can be considered a subset of the collectising the number of
values we can calculate ti&given the desired utilization. Theand!® is then used to
look up the correct™ using values from Table 3.1.

Now we need to focus op,.countand p;.prob for all partitions in the partition node.
Equations 5.4 shows how the probability is calculated fahgzartitions in the node and
then all partitions in the node are updated with the new value

pj.probx 1} _,

54
o+ Al &4

pj.prob =
At the same time values from all partitions in the node mustbe divided td; ,+Al]
partitions. How theAl] , is calculated depends on thevalue and desired utilization.
Equation 5.5 shows how the values are distributed to eaditipain the new node.

pj.countx I _,
RN

pj.count= (5.5)
Algorithm 4 describes how thearent splitis implemented. We start by getting the parent
node of the partition to be split. From the parent node we eamere the partition count
(partition siblings). We then calculate how many partii@re needed using the unique
values found from the current partition node, thand desired utilization. We then cal-
culate how values are distributed and assign the new priitigatioi each partition. The
current partitions must be updated and the new partitiodgddo the current partition
node.



Arnar Olafsson 31

Algorithm 4 Parent Split Method
1: procedure PARENTSPLIT(NodeList,p;)

2 node«— NodelList,]
size<— node.PartitionCountinNode() I size=old partition coupts
delta— GetDeltaCount(node) Il delta=]
Pnew-count «— |node.valuels<size/(sizet-delta)
Pnew-prob «— p;.probxsize/ (size+-delta)
for i — 1, sizedo
pi < nodef]

Pi.count <— Ppew-count
10: i Prob «— Dpey,.prob
11 node.updatex)

12: end for

13: for i — 1, deltado

14: p; < new Partition()
15: Pi.count <— Ppew-count
16: Di-prob «— Ppew.prob
17: node.addy;)

18: end for
19: end procedure

5.3.4 Hybrid Splits

The Hybrid splitis a combination of thé.eaf splitand Parent splitstrategies. We im-
plemented thédybrid split to use the partition count in each node as the deciding factor
for maintenance tasks to use. We initialize each partitiodenwith/; _, partitions. If

], < 1§, theHybrid split will chose Parent splitas first split. As thd_eaf splitgener-
ates a partition node containing two, or a few, partitions,have space to grow the node
sideways Since theParent splitcan grow more than a single partition each time, we turn
to leaf partition when the partition count in the node is équaarger tharn;.

Algorithm 5 shows how we access the partition count in theentmddetermine what
task to use. Theadybrid split simply decides between tHeeaf splitand Parent split
strategies.
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Algorithm 5 Hybrid Split Method
1: procedure HYBRIDSPLIT(p;)

2 count— Nodep;).getPartitionCountinNode()
3 if count>= [] then
4 LeafSplit(p,)

5: else
6

7

8

ParentSplitg,)
end if
. end procedure

5.3.5 Re-Generation

When Re-Generationis used, the partition only records the.countuntil v = 1. At
this point the whole tree is re-computed and re-built basethe current collection size.
The same rules apply to.prob as withNo split, since no actual partition split is done.
Thep;.prob stays unchanged until it is re-calculated based on the newap/configura-
tions.

5.4 Implementing Partition Files

The patrtition files are created and stored usingRasritionFiles class. The class stores
two dictionary objects; each dictionary holds buckets fifedent maintenance tasks.
When usind_eaf splitwe store descriptors inserted into each partition ané#&oent split
we store descriptors inserted into all partitions in speg#frtition node. When using
Hybrid split both dictionaries are used, depending on the state of threrdupartition
node. When we switch frormeaf to Parentsplit we must also re-organize the descriptors
in the dictionaries.

When partition files are used with buffering we go through enas procedure as inserting
values into partitions. We store the descriptors the sanyeawaalues, only they will take

more space in the buffer. Using partitions with the buffevies smaller buffer space for
values. For each partition touched with insert, we inset iy&es into the buffer for the

descriptor, 128 bytes are stored for the 128 dimensionseadéscriptor and an additional
4 bytes for the descriptor identifier. The actual value p@irexd only takes 8 bytes, which
means that the buffer fills up more quickly using partitioadil
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5.5 More Efficient Approach

Our proposed approximation uniform distribution methodigrates an extremely high
number of random values, as we sequentially traverse dltipas for each inserted de-
scriptor and generate a random number in every partition.

EXAMPLE 8.

Assume we have configuration [8,8,8,7] and= 1. We insert using 250,000 images
having on average 513 descriptors, for a total of 128,250,@@scriptors. For each
descriptor we need to sequentially traverse a minimum of3pfartitions. We therefore
need at least 128,250,000 43,875 random numbers for this single experiment. The
average time of generating single random number was gainguidiiing the time taken

to execute 1,000,000,000 random numbers. Single randomefteaution time is about
4.5 x 1079 seconds. This experiment would thus take a minimum of ab@d® hours,
just to generate the random numbers.

Our more efficient approach was to ugeto estimate the number of inserts as the tree
grows. The only maintenance tasks effectedi/bis theLeaf andHybrid split This is
due to the tree height only growing for these tasks. Udiogsplit Re-Generatiorand
Parent splitdoes not changg throughout the experiments. For theaf andHybrid split,

we have to adjust” as the tree grows downwards.

SinceV is not an integer, we sum up theftover(V — |V']) for each inserted descriptor
until the leftoveris larger thanl. At this point we increment the number of estimated
values to| V' | + 1 for that insertion and decremeeftoversby one This adjusts th& to
include theleftovers

The actual size o/ also needs to change durihgaf Split Equation 5.6 shows how
we calculate the estimation &f as the tree grows usingeaf split The increase o/

is in relation tor; whent = 0 we have no increase vi. This is as expected since the
insertion path through the tree never encounters overthppdes. The valugin eq. 5.6
the number of partitions we initialize the new partition rod

V = V+ (Zp.new — Zp.old)

t X p.old
=V ———— —p.old
+<t—<t—1>§ ne

= V+ (p.old X (ﬁ — 1)) (5.6)
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The changes t& are local in the tree so the estimate only changes slightly each_eaf
split. Part of implementing the new method was adding a newAistpntaining| P| float
numbers. The value; € A represents the odds forvalue pairbeing inserted int@,.
All values in A are initialized ad and will store float numbers in the range 0 to 1.

When usingLeaf ParentandHybrid split we need to change the odds of access;in
based on how,.prob changes. We use the same method to calculats we dg,.prob
only hereq, is based on the initial valug not1/|L°| as withp;.prob. The probability of
each partition is used to calculdtewhen splitting as defined in equation 5.6.

Let us look at algorithm 6 for implementation of tMore Efficient MethodThe method
starts by iterating’ times to search for partitions to insert. We start by satgciirandom
integer betweefD, |P| — 1]. We use this integer to retrieve a partition from the pamtiti
list P. Since the_eaf splitgenerates internal partitions, we check for internal stathe
selected patrtition. If the partition is internal, we selactew random integer and check
again until we find leaf partition. When a leaf partition is falwe generate a random float
number and compare that numberatoof the selected partition. It the random number
is smaller thanz;, then this partition is selected for insertion; otherwise, repeat the
procedure. Using this method, large scale experimentsnieed¢aasible. Note that this
method does not affect the simulation results.

Algorithm 6 More Efficient Method
1. procedure FINDPARTITIONS(V)

2: for i — 1,V do

3 while found=0do
4 insertid«— random.randin{®, |P| — 1)
5 if P[insertid].internal=xhen
6: found«— 0
7 else
8 if Alinsertid] > new Random(}hen
9 found— 1
10: InsertintoPartition(insertid)
11 else
12: found<— 0
13: end if
14: end if
15: end while

16: end for
17: end procedure
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5.6 Summary

In this section we have described the implementation of détride simulator. The sim-
ulator inserts descriptors based on the definitions in 8est8 and 4. We described the
implementation of buffered inserts vs. direct inserts aoa Ipartition files would as-
sist maintenance. We also define more effective implemient&t simulate the uniform
distribution into growing NV-tree. In Section 6 we descrilng simulation experiments
using the NV-tree simulator.



Chapter 6
Simulation Results

In this chapter, we describe the experimental results obtbirom the simulation model
described in Chapters 4 and 5. In Section 6.1 we detail thelafion environment and
initial configurations for our experiments. In Sections &5.5 we focus on key results
from our experiments and describe the results. Section@azes the effect of buffering
inserts on a baseline strategy Ré-Generation Section 6.3 examines the effect of our
split policies. We study the effect of using partition fileditnit the cost of re-projections
in Section 6.4. Finally, in Section 6.5 we study the effedtdifferent buffer sizes on the
Hybrid split policy. Then we summarize the results in Section 6.6.

6.1 Simulation Environment

All experiments were run on a Beowolf Cluster with Rocks Disttibn containingnine
compute nodes. Each node consists of dual Intel Pentiyd4D0 MHz CPUs and 2GB
main memory.

The workload models a collection of high-quality press plsptvhich starts out at about
30 thousand photos or approximately 36 million descriptdige inserted images con-
sist of approximately 250,000 high-quality press photas/led by a local newspaper,
Morgunbladid SIFT descriptors were extracted from the images and ammattokup
file was created with the exact number of descriptors for éaege. The lookup file
Is used as the basis for our inserted object collection. ©te humber of descriptors
extracted from our workload images were approximately 12Bbom.

The experimental setup was described in Table 4.1 on pageolcbntrol the experiment
we supply the simulation witfive configurations defined in Table 6.1. All maintenance
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Description Values

Maintenance task no-split, re-generation, leaf splitepasplit, hybrid split
Buffer flag 0,1

Buffer size 32MB, 64MB, 256MB, 512MB (default), 768MB, 1024MB
Partition flag 0,1

T factor 0.00, 0.25, 0.50, 1.00

Table 6.1: User defined simulation model parameters.

tasks are simulated with and without the buffer additionst &l simulations the buffer
is set to 512MB (exception in Section 6.5, where additiondfdr size simulations are
conducted withHybrid split only). Partition files are only applicable witkeaf, Parent
andHybrid splits The fourr factors are used for all simulations.

6.2 Experiment 1: Direct vs. Buffered Inserts

In this experiment, we ran a baseline policyRé-Generation Descriptors are inserted,
either directly to the index or indirectly through the déstor buffer. Once the first
partition splits, processing is halted and the index isitetsam the collection. During the
index construction, each leaf node is filled to 67% of cagalgaving room for insertions.
The assumption behind this policy is that since the inseguaiform, many partitions
will be about to be split, and hence rebuilding the index @aresnany collections scans.
Here we focus on the costs of the insertion and ignore theaddbke index builds, as we
wish to understand the effects of buffering on insertiorfqgrenance.

Figure 6.1 shows the insertion costs of this policy, for falifferent values ofr €
{0.0,0.25,0.5,1.0}, with and without the insertion buffer. Theaxis shows the num-
ber of descriptors that have been inserted, in millionsduhiteon to the nearly 36 million
descriptors in the original index, while theaxis shows the total time of the insertions
(note the logarithmic scale). As the figure shows, the peréorce difference is enor-
mous, as without buffering each insert requires two expensindom disk operations,
while with buffering the index is occasionally scanned anidten sequentially, resulting
in fewer and less expensive disk operations. We therefdsecamsider buffered inserts
in the remainder of this thesis.

It is interesting to observe the evolution of the index simemty this experiment, shown
in Figure 6.2. Ther-axis shows the number of inserted descriptors as beforide Wie
y-axis shows the size of the NV-tree index at each time, fon @atue ofr for both direct
and buffered inserts, as well as the size of the collection.th® index is periodically
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Figure 6.1: Insertion cost for Re-Generation with and wititbe inser-
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Figure 6.2: NV-tree size for Re-Generation with and withdw# inser-
tion buffer (varyingr; no partition files; 512MB buffer).

rebuilt, the size and utilization are regularly reset to desired value; these points are
seen as a step-wise growth of the NV-tree index. In betwéerpartially empty partitions
are slowly filling up until a split is required, triggeringehndex rebuild. There are two
key observations to be made.
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First, as Figure 6.2 shows, the index size is highly dependeon the value of. For
7 = 1.0, the index is roughly as large as the collection, while fox= 0.0, the index
remains at less than 2.5 GB, or about 12% of the collection 3i¢kile our simulation
model does not capture the effects of buffer managemeninda smaller index will
result in much improved buffer management performanceantiqular when the index
can fit in memory. In our setting, a server with 4 GB of memoryldceasily fit both the
index and the insertion buffer, leading to excellent perfance.

Second, with buffered inserts, the index growth invariaddgurs later in the insertion
process. In the case of= 0.0, this is particularly obvious, as then the insertion buffer
can store the first 60 million descriptors or so, while withbuffering the index starts
growing after about 20 million descriptors. As a result, tedlection is larger when the
index is re-built, leading to a larger index. With= 1.0, relatively fewer descriptors fit
in the insertion buffer as each descriptor goes into manfitigaass and indexre-builds
are only postponed briefly. As we shall see later, postpottiegsplits may have an
adverse effect on the overall performance. In this exparinf®wever, the effect is only
positive.

6.3 Experiment 2: Split Policies

Turning to the effect of split policies, Figures 6.3, 6.4 &8 show the total cost of
insertions and splits for the five different split policies + = 0.0, 7 = 0.25 andr = 0.5,
respectively. Before analyzing the performance of the difiepolicies, a few effects are
worth noting. First, as these figures only consider buffénedrts, the total cost is much
lower than in Figure 6.1. Second, due to the effect of buffgand since the simulation
model only considers the cost of disk operations, no costgsstered until after 60, 35
and 20 million descriptors have been inserted, respeytivel

The two simple policies dflo splitandRe-Generatiomare included as baseline references.
No split affects query costs negatively, as it negates the key featuthe NV-tree that
each query is answered in a single disk read. Since query aosexpected to dominate
most applications, thio splitpolicy should not be used. ThRe-Generatiompolicy may
not be feasible in many applications, as it requires hakithgrocessing while index re-
construction takes place. Figures 6.3 through 6.5 showgherythat these policies are
very efficient for insertions.

Turning to the three main split policies, we observe tlesf splitgenerally has the worst
performance. Consider first Figure 6.3, where 0.0. In this case, no partitions overlap
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Figure 6.4: Insertion and split cost of the different splfipies (- =
0.25; buffered inserts; no partition files).

and each descriptor is inserted into a single partition. rElason for the higher insertion
cost ofLeaf splitis that when the insertion buffer is flushed, many partitiaressplit, re-
sulting in a significantly larger index. Therefore, the s buffer fills up more rapidly,
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leading to further splits, and so on. In Figures 6.4 and 6l&ererr = 0.25 andT = 0.5,

respectively, very similar effects are seen.
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without partition files ¢ = 0.0; buffered inserts).

Figures 6.3, 6.4 and 6.5 also show tRarent splitgenerally has the best overall perfor-
mance. As described in Section 4, however, the aggresditangpof this policy is likely
to lead to lower result quality. Theybrid splitpolicy is therefore recommended.

Figure 6.6 shows how the tree size increases with our mairpstiicies, forr € {0.0,0.5}.
We observe thateaf splitshows the largest increase in tree size, and as ikdarger,
the greater is the jump from other policies. TRarent splitshows the lowest increase
in size after 125 million inserted descriptors. THgbrid split, on the other hand, shows
lower index sizes until around 85 million inserts where ijs in between the Leaf and
the Parent split A similar effect is observed for a#t factors. This observation supports
the Hybrid splitas the recommended split policy.

6.4 Experiment 3: Partition Files

Figures 6.7, 6.8 and 6.9 show the performance of three gglitips with and without
partition files forr = 0.0, 7 = 0.25 andT = 0.5, respectively. Using partition files is
much more efficient in all cases for two reasons. First, whgitssare performed, only
a relatively small partition file must be read instead of swag the whole collection.
Second, when the actual descriptors must be stored in tagims buffer, it is effectively
about 90% smaller than before; as was mentioned above, dadmaller insertion buffer
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can actually improve performance. Due to these effectsséivéngs in total execution
time are about 97.7% far = 0.0 and over 99% for- = 0.5. Note that for an index with
no overlap, partition files can actually replace the desaripollection, resulting in even
further savings.
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Figure 6.10: NV-tree size for Leaf, Parent and Hybrid spliith partition
files (varyingr; buffered inserts).

Figure 6.10 shows the tree size of the three main split @dicising the partition files;
it can be compared to Figure 6.6. As can be seenl.#ad splitpolicy needs far greater
space than the other policies needing around 80 GB of spéeel&i0 million inserted
descriptors using = 0.5. As before,Parent splitgenerally perform best andceaf split
worst, but due to quality concerns and moderate disk spagereenents thélybrid split
is the recommended policy.

6.5 Experiment 4: Buffer Sizes

Turning to different buffer sizes, Figure 6.11 shows thaltobst of insertions and splits
for six different buffer sizes, for € {0.0,0.25, 0.5}, for theHybrid splitpolicy only. The
x-axis shows the different buffer sizes in megabytes, whig,taxis shows the total cost
of the insertions (note the logarithmic scale on thandy-axis). As the figures shows,
the performance difference with and without partition fiiesvery high as described in
Section 6.4. There are two key observations to be made.

First, without the partition files there is a small increasé¢oital cost as the buffer size is
increased. This shows that smaller buffer sizes can be nevefigial. It is interesting
to see how using 256MB and 512MB buffer sizes with= 0.0, in particular, shows
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Figure 6.11: Insertion and split cost for Hybrid split (vemy 7; with and
without partition files; varying buffer).

increased total cost. This is explained by additional sjagts generated very late in the
insertion process, when the collection is larger.

Second, increasing the buffer size has a positive effechertdtal cost using partition
files. Usingr = 0.5 and 32MB buffer takes around 120 hours to insert 250,000 @siag
Increasing the buffer size to 1,024MB decreases the totltoal hours.

6.6 Summary

In our simulations we have seen that using the buffer imgaolre performance of inser-
tions by orders of magnitude. We have also seen that usingyhad split policy is the
best choice for inserts. THeeaf splitpolicy generates very large and deep tree with a
small number of partitions in each leaf node. Hagent splitpolicy creates a smaller tree
but with a very high number of partitions in each leaf node.tigefore recommend the
Hybrid splitpolicy, since it will work to maintain the balanced struawf the tree and we
expect the search quality to be maintained. UstegGeneratiorshould be investigated
further to see, whether, ways to maintain the index avditglaluring re-generation can
be implemented. This could make-Generatiorthe most efficient split policy. Using
partition files shows a large decrease in total cost of insedue to lower re-projection
cost when split policies are executed but increases thespis&e needed. If disk space is



46 Dynamic Behavior of Balanced NV-trees

not an issue, we recommend using partition files. Usingpamtfiles creates a redundant
database collection. It could be argued that the partities iould be substituted for the
actual database collection to limit the redundancy furtidex the NV-tree grows down-
wards and sideways usingaf splitandParent splif respectively, it can affect the search
results. While we do not investigate the effects of splitg@eb any further in this thesis,
however, we experiment with the effect of thealue on search quality and performance,
as ther value determines the partial overlap and is a major factdhenindex size and
insertion performance. In Section 7 we therefore analyeetfect of partial overlapping
on the search performance and quality.



Chapter 7

Effect of 7 on Search Quality and
Performance

In this chapter we run detailed search experiments on lite dsing the flexible con-
figuration, as described in Section 3. The flexible configanatvas implemented into
the balanced NV-tree to investigate the effect of parti@rtapping on search quality and
performance. The query searches were conducted withong ladiected by insertions
and maintenance. Our simulation model was designed to atmal single index. Run-
ning our experiments in this chapter using a single indewlted in poor quality results,
however, we therefore added experiments using two and thaeges. In (Lejsek et al.,
2008), single index search has been solved usingitiialanced\V-tree; by combin-
ing smaller leafs, better line selections and other cordigoms, theunbalanced\V-tree
Is quite effective for single index searches. A single indar return more false posi-
tives, but adding more indexes to the NV-tree has shown toedse false positives. In
Section 7.1, we detail the experimental environment arlr@onfigurations for our ex-
periments. In Section 7.2 we run extensive query searchesmaalyze the results. In
Section 7.3, we analyze the search performance of the feegimfiguration. We then
summarize the results in Section 7.4.

7.1 Experimental Environment

The data collection was created using 29,277 high-qualitgte images, generating a
total of 35,484,770 local descriptors. Each descriptor i2& dimensional SIFT fea-
ture vector. We created three different NV-trees using eddime five values ofr €

{0.0,0.25,0.5,0.75,1.0}. Each of the NV-trees is unique in two ways; a) differentdine
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are selected for each node in the index and b) different apesl created, based on the
value.

The workload consists of 120 images extracted from the ddkaotion. For each original
image, 26 image modifications were created. Each modifitéidescribed in Table 7.1.
The total workload, thus consisted of 3,120 query images.

All experiments were run on an Intel Xeon 3.20GHz with 1024KBcache and 2GB
memory. The same computer was used to minimize hardwarend&ion timing results.

No specialmemory warmingvas conducted before or between queries. Since different
NV-trees were used each time, this was not considered raagess

The NV-tree internal buffer size was set to 1,000 partition$28MB. The internal buffer
manager uses LRU (Least Recently Used) algorithm to exchpadiions to and from
the buffer manager.

The NV-tree offers stopping rules to increase performaii¢e.repeated all experiments
using stop rules for alt values. More detailed description on the stopping rulesrédtlym
can be found in (Lejsek, Asmundsson, Jonsson, & Amsaled3)200

When more than one NV-tree is used, the descriptor distarmmmputed in the NV-tree
using median rank distance. The NV-tree evaluates everyiges as nearest neighbor
using themedian rank aggregatioMEDRANK) (Fagin, Kumar, & Sivakumar, 2003).
The MEDRANK needs to find the sangescriptor idin more than half of the indexes to
return it as a positive result. When the sadescriptor idis found, the image containing
that descriptor receives\ate As more descriptors are found, the meomesthe image
collects. All images that receive\ate are written to a result file. The image with the
highest vote score is considered the winner and the next ettmipis the image that
scores second most votes.

For the query results we focused on: a) the percentage ofesnfoyind over all image
variants, b) number of descriptors needed to finish the Beajonumber of descriptors
found for the winning image, d) number of descriptors fouadthe next competitor, e)
total pin counts and CPU ticks for each pinned partition, o total search time.

The NV-tree uses its own internal buffer manager. When atfmartis requested it is read
into memory and pinned. The operating system uses an adaittmiffer manager that
can use performance techniques to transfer data to and fiskrsdch as pre-fetching.
When the NV-tree requests a partition into its own memory rgand may have already
been moved into memory from disk by the operating system.
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Modif. Description Class. Modif. Description Class.
AFFINE 1 Shearin X Easy MEDIAN9  9x9 median filter Med.
AFFINE 2 ShearinY Easy NOISES5 Applied 5% noise Med.
AFFINE 3 Shearin XandY Easy PSNR Watermark removal Easy
CONV1 Low brightness Med. RESC 200 Image scaled to 200% Med.
CONV 2 High brightness Med. RESC 75 Image scaled to 75% Easy
CONV 3  Sharpen Med. ROT 10 1@otation Easy
CONV 4  Strong sharpen Hard ROT 90 “A@tation Easy
CONV 5 Emboss filter Hard ROTCROP 2 ° potation and crop. Easy
COTR 1 High contrast Med. ROTCROP 5 ° gptation and crop. Easy
COTR 2 Low contrast Hard ROTSCAL2 ROTCROP 2 +scaling Med.
CROP 75 Crop 75% from cent. Easy ROTSCAL2 ROTCROPS5 +scaling Med.
JPEG 15 15% quality Med. SS1 Change in color space  Med.
JPEG 80 80% quality Easy SS2 Change in color space  Easy

Table 7.1: Image modifications variants.
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Figure 7.1: Distribution of CPU ticks

To see whether a partition had been read from disk or memargdeded a time measure-
ment of CPU ticks around all pin requests. We created a hstogrsing the CPU ticks
to determine the local boundary between the piosn memoryandfrom disk A mod-
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Figure 7.2: Average top score result for 3,120 images (agryi 1-3
indexes).

erate value was picked as a local minimum threshold valugpandounts were divided
into groups offrom memoryor from diskpins. We choose to use 3,000,000 CPU ticks
(=~ 9210~* seconds) as a divider between the two groups. Figures aa¢gy.1(b) show
the distribution of CPU tick counts using= 0.0 andr = 1.0, respectively. Both figures
show both the overall distribution, and the detail of thedasreads. Our chosen value
Is located in bucket number 75, but as Figures 7.1(a) andb)/show the results are not
sensitive to that value.

7.2 Experiment 1. Search Quality

In this experiment, we ran 3,120 query images on each ditvbéalanced NV-tree vari-
ants. Image types like the CONV4, CONV5 and COTR?2 are extremefioatibns and

have been shown be the least effective query modificatiang tise NV-tree. Each query
was repeated using 2 and3 indexes.

Figure 7.2 shows the aggregated average top score over ¢hdiffierent values of <

{0.0,0.25,0.5,0.75,1.0}. Thez-axis shows different values, while thej-axis shows
the average top score. For each modification we aggregagetbphscore and divided
by the number of modifications. As the figure shows, the nurob@nages at top rank
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Figure 7.3: Image modification ranking

increases slightly as thevalue increases. In this figure there are two key observatmn
be made.

First, using only a single index returns a very low top scémes is due to configuration
in the balancedNV-tree. As explained in the chapter introduction, this basen solved
using theunbalanced\\V-tree.

Second, the difference in overall quality of the query sedor two indexes is 2.5%
betweenr = 0.0 andr = 1.0. Forthreeindexes the difference is only 1.1%. Going from
two indexes to three indexes increases the quality on agdrpd..1%. Adding the stop
rules decreases the overall quality ustng indexes by an average of 5% and foree
indexes the decrease is only 3.1%.
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Figure 7.4: Average descriptor ratio for 3,120 images (veyy; 1-3
indexes).

Figure 7.3 shows the average rank of each modification glue usingthreeindexes.
The z-axis showsr values grouped by image modifications, while thaxis shows the
average search rank (note the logarithmic scale). As thesfighows, the ranking is very
high, almost always close tbfor the easy and medium modifications. We also see that
the hard modifications have a very low rank.

In Figure 7.3 we have one key observation, namely that @iffer values do not sig-
nificantly affect the ranking of the result images. For madifions like COTR2 and
MEDIAN9 we see that some values show lower ranking with highervalues. Fig-
ure 7.3(b) shows in more detail three easy modificationse(tiety-range) found in Fig-
ure 7.3(a). As seen the query images are found in almostsdkcdor € {0.5,1.0} for
the AFFINE3 modification we did not have the correct imageomrank in two cases of
120. The difference between the indexes is a) line selectioereation and by value. It
Is more likely that the lower rank is due to worse lines fouadthat modification. Since
lower 7 indexes return the images with higher rank, we cannot asshateonly ther
value is causing the images not to be found.

Figure 7.4 shows the aggregated descriptor ratio over tleediifferent values of- <
{0.0,0.25,0.5,0.75,1.0}. Thez-axis shows different values, while the-axis shows the
average descriptor ratio. The descriptor ratio is aggesbfdr each image modification
and the average found. As the figure shows, the descriptorinatreases slightly with a
higherr value. In this figure there are two key observations to be made
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Figure 7.5: Number of descriptors needed for 3,120 imageg sop
rules (varyingr; 1-3 indexes).

First, as expected, the ratio for a single index is very lolisTorresponds to the result in
Figure 7.2 as the single index fails to find any result, andtlezage ratio between winner
and competitor descriptors is very low. Using only a singldeix with a small collection
introduces noise on into the search. Descriptors are betogred as false positives and
the correct images are not being found. Adding the secorekitmthe NV-tree reduces
this noise and filters out false positive descriptors. Watigér collections the noise level
should decrease.

Second, it is interesting to see that using stop rules esuét higher descriptor ratio than
searching all descriptors in the query image. When using rsti®s we can experience
that larger set of meaningfully nearest neighbors can beigosd either; a) early in the
search or b) late in the search. When the set is positioneyg] earlget a higher descriptor
ratio since either the correct image or false positive hanlfeund and many of the
competitors will not be searched. If the set is positionéd ia the search we mayiss
the image in the search. The higher descriptor ratio in opeBments is most likely due
to meaningful descriptors found early in the search.

Figure 7.5 shows the aggregated descriptors needed usmguts over the five different
values ofr € {0.0,0.25,0.5,0.75,1.0}. Note that without stop rules all descriptors are
searched, and therefore we only focus on stop rules for i¢sis needed. The-axis
shows different values, while the-axis shows the average number of descriptors needed
to finish the search using stop rules. The results are aggdfar each image modifi-
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cation and the average found. As the figure shows, the nunilukysariptors needed to
return either found or not found decreases considerably avitigherr value using the
two and three indexes. In this figure there are two key obsensto be made.

First, using single index results in a high number of desargoneeded. This is expected
as the search hardly finds any images matching the query snages leads to the search
continuing until the NV-tree stops the search confident tihatcorrect image will not be
found.

Second, as more indexes are used, the stop rule gains ca&idarlier in the search.
Using 7 = 0.0 with threeindexes need on average 52 descriptors to stop searching and
only 39 descriptors withr = 1.0. Using two indexes the same values increase to 65
descriptors and 45 descriptors, respectively. On aver&get® 30% fewer descriptors

are needed using = 1.0 thant = 0.0.

7.3 Experiment 2: Search Performance

In this experiment, we ran 3,120 query images on each ditbéalanced NV-tree vari-

ants. For each query image we recorded the pin count and thetiCdJneeded to

fetch the partition into the internal buffer manager. Weoaiscorded the total number
of partitions needed to finish searching all 3,120 imagestlaadotal time needed for all
images.

Figure 7.6 shows the total NV-tree size using 1, 2 and 3 inslexer the five different
values ofr € {0.0,0.25,0.5,0.75,1.0}. Thez-axis shows different values, while the
y-axis shows the size in gigabytes. In this figure there arek®yoobservations to be
made.

First, the index difference between= 0.0 andr = 1.0 is very large. Using a smaller
7 value decreases redundancy in the NV-tree and createsniratsimaller index. Using
7 = 0.0 will generate a 92% smaller index than= 1.0. Adding indexes to the search
results in a linear increase in the total disk size needed.

Second, 32-bit operating systems offer up to 4GB of main ntgmithis means thdbur
indexes using = 0.25 would fit into the main memory anivo indexes using = 0.5.
Being able to fit the index into memory will greatly improve fmemance as we will
see.

Figure 7.7 shows the average number of partitions neededaiels using 1, 2 and 3
indexes over the five different valuesof {0.0,0.25,0.5,0.75,1.0}. Thex-axis shows



Arnar Olafsson 55

18 T T T
16 h
14 32bit buffer limit - 7
Using : 1 index —e—
m 12 | 2 indexes —o— |
0] 3indexes —&—
£
(0]
N
0
()
g
©
o
'_
0 1 1 1
0 0.25 0.50 0.75 1.0
Tau Factor
Figure 7.6: Total NV-tree size (varying 1-3 indexes).
10000 T T ;
1000 —F o
L . - .-
%’ :::::::i::::::ZZZ::tiIZZZZZ::::::::::::ti::::::::::::::::::t:::::::::::::::::::
E ! ]
Q@ 10 4
(@]
£ I 1
L
P L
5 e No stopping rules: 1 index —e— E
3 r 2 index ——
£ b 3index —&— E
o 0.1 | Stopping rules: 1 index ---e--- 4
L 2 index ---¢---
3index ---m---
0.01 .
0.001 L L L
0.0 0.25 0.50 0.75 1.0

Tau Factor

Figure 7.7: Total reads needed (varyirigl—3 indexes).

different r values, while thej-axis shows average total number of partitions needed for
each query image for each index. Fato andthreeindexes, the data points are divided
by the number of indexes and number of images. This is donertgpare all indexes
based on average value of single image.
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Figure 7.8 shows the percentage of pins from disk using 1d23andexes over the five
different values ofr € {0.0,0.25,0.5,0.75,1.0}. The z-axis shows different values,
while they-axis shows the percentage of pins from disk. In the Figurésiid 7.8 there
are three key observations to be made.

First, as seen in Figure 7.7, when using fewer indexes aqdrates we need to search
more partitions. This corresponds to Figure 7.5 where welsstewe need a larger set
of query descriptors to finish the search with fewer indexé¢hen searching all query
descriptors we need approximately the same number of ipadito search. The only
difference is that using a single index requires a singli thad and then an additional
disk read for each index added.

Second, as figure 7.8 shows, searching with stop rules nedegbher percentage of reads
from disk than searching all query descriptors. Using stdpsruses on average 96%
fewer partitions over all values, than searching all query descriptors. Since we do
not warm up the memory, large portition of the partitions come frorekdusing stop
rules.

Third, usingT = 0.0 and 3 indexes, each index size is 448 MB (1,344 MB total) and
the internal buffer manager only requires 0.07% of the itsti@ns being read from disk,
despite not warming the buffer. When thevalue is increased, the index gets larger and
more disk reads are required during the search.7Fer(0.5 and 3 indexes, the index is
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Figure 7.9: Query search time for 3,120 images (varying indexes).

1,500 MB (4,500 MB total) and we need approximately 58% ofréwiired partitions to
be read from disk and with = 1.0 the index has reached 5,484 MB (16,452 MB total)
and we need 87% of its partitions from disk. The internal @ufhanager was configured
to use 128 MB as its internal memory; even so the operatin@gsys storing almost all
partitions in the main memory when= 0.0. As ther value grows, the main memory is
not able to keep all partitions in memory so we have incredssadaccess.

Figure 7.9 shows the time taken to search 3,120 images usthgrid 3 indexes with and
without stop rules for five different values ofe {0.0,0.25,0.5,0.75,1.0}. Thez-axis
shows different- values, while thej-axis shows the search time in hours. Note that real
time measurements can be affected by access to disk and CPtddrypoocesses. Run-
ning the same experiments again could result in slightliedgéht values, but the overall
trend should be the same. In Figure 7.9 there are three keywat®ons to be made.

First, as fewer indexes are used, the better performanceasumed. This is expected
since fewer partitions need to be read from disk. As the figli@vs, adding an index
to the NV-tree increases the search time on average 35%djrstes and 44% for full
search.

Second, the performance difference between 0.0 andr = 1.0 is very high. Using
7 = 0.0 has 98.7% better performance than= 1.0 usingthreeindexes. The average
search time is 1.8 seconds using= 0.0 and 143 seconds far = 1.0. This shows that
minimizing redundancy in the NV-tree has enourmous effagh@rformance.

Third, using stop rules with the flexible configuration impee the performance even
more. The average search time is 0.19 seconds usirg 0.0 and 3.85 seconds for



58 Dynamic Behavior of Balanced NV-trees

7 = 1.0. Using7T = 0.0 has 95% better performance than= 1.0 usingthreeindexes
and stop rules.

7.4 Summary

In our experiments we have seen that reducingrthalue only slightly decreases the
search quality in return for a huge improvement in searcfopmance. Usinghreein-
dexes we have a 1.1% decrease in quality, 92% smaller indea 88.7% improvement
in performance. We recommend adjusting thealue to maximize the amount of par-
titions stored in the main memory. We have also seen thagustiop rules improves
performance even further. Using= 0.0, we get 3.1% decrease in quality usitigee
indexes but gain 94.9% improvement on performance. Usiegniemory as primary
storage for the NV-tree is extreamly beneficial for perfone® Redundancy is added to
the NV-tree, both by using > 0 and by adding additional indexes to the NV-tree. We
recommend using as lowvalue as possible. Using = 0 is recommended, if enough
buffer space is available. When the index is larger than tladadble buffer space, we
recommend selecting the lowest possibte 0 value, as it will continue to support single
disk read for each query descriptor. Search quality can peaved by adding indexes to
the NV-tree and selecting low value will assist in keeping larger portion of the indexes
in the buffer.



Chapter 8
Conclusion

In this thesis we have addressed the implementation andrpehce of dynamic behav-
ior of the balanced NV-tree, using a detailed simulation ebodVe have experimented
with various parameters that effect the insertion cost adéx size. In particular, we
have observed how the overlap Yalue) has a major impact on the NV-tree. Based on
this observation, we also investigated the effect of opeda search quality and perfor-
mance using live data. From our simulations and query exyaaris we make three key
conclusions.

First, we observed that using an insertion buffer is a vefigieht technique. Furthermore,
using partition files results in very significant performanmprovements. Note that for
an index with no overlap, the partition files can actuallylaep the descriptor collection,
resulting in even further savings. Interestingly, usingr@é buffer shows improved per-
formance only when used with patrtition files. We recommerat tuffered insertions
and partition files should be used together to maximize tBertiron and maintenance
performance.

Second, although thgo splitandRe-Generat@olicies show good performance, they are
not always applicable in practice, due to high query costissggnificant unavailability, re-
spectively. UsingRe-Generatiorshould be investigated further, however, to see whether
ways to maintain the index availability during re-generatcan be implemented. This
could makeRe-Generatiothe most efficient split policy. From our three basic spliipo
cies, we see thdteaf splitshows the worst insertion cost and creates a large index. The
Parent split showed the lowest insertion cost, but due to repeatedisglihis technique

can lower the search quality. Therefore, we recommend ubi@glybrid split policy,
which performs similarly tdarent split but avoids the lower search quality.
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Finally, the simulations indicated that overlap is a keydaa determining performance.
We showed that reducing the overlap improves the searchrpeahce significantly with
minimal effect on search quality. When using the balancedtid¥-configuration, we
need to use 2-3 indexes. Using overlap the search quality is 1-3% worse then udiuni)
overlap but we have around 95% improvement in performance. The reason for this
performance improvement is improved buffer performancatdismaller indexes.

There is a trade-off using redundancy. First, reducingrtiialue will decrease the index
size and improve overall performance but will decreaseg¢hech quality. Second, adding
additional indexes will increase the space requiremenitsinproves the search quality.
Both scenarios can work together, adding additional indéxesprove search quality
can be countered with a smallvalue for performance.

We recommend selecting = 0 for two main reasons. First, it maximizes the insertion
performance and, secondly, we fit a higher proportion of tidkex in memory. When the
collection is small, the whole index can actually fit into @y resulting in an extremely
efficient search. As the index grows, however, more and migierdads are needed due
to memory limitations. At this point, increasing thesalue could be beneficial, even if it
increases redundancy and the index size gets larger.
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