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Abstract

In recent years, some approximate high-dimensional indexing techniques
have shown promising results by trading off quality guarantees for improved
query performance. While the query performance and quality of these meth-
ods has been well studied, however, the performance of indexmaintenance
has not yet been reported in any detail. In this thesis we focus on the dynamic
behavior of the NV-tree, which is a disk-based approximate index for very
large collections. The NV-tree has several configuration and implementation
options that affect the performance of index maintenance. We report on an
initial study of the effects of these options on the dynamic behavior of the bal-
anced NV-tree, and show that with appropriate implementation, significant
performance improvements are possible. We implemented flexible configu-
ration into the balanced NV-tree and ran detailed query search experiments
on live data. We show that our configurations not only reduce maintenance
cost, but can also improve search performance significantlywith minimal
loss of search quality.
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Útdráttur

Á undanförnum árum hafa komið fram nýjar gerðir margvíðra nálgunarvísa
sem hafa gefið góða raun með því að fórna ábyrgð á leitargæðum fyrir aukinn
leitarhraða. Margskonar rannsóknir hafa verið gerðar á slíkum vísum með
það að markmiði að skoða og auka afköst og gæði þeirra, en til þessa he-
fur lítið verið rannsakað hvernig best er að viðhalda slíkumvísum. Í þessari
ritgerð er kvik hegðun NV-trjáa skoðuð, en NV-tré eru nálgunarvísar fyrir
mjög stór gagnasöfn. NV-tré bjóða upp á marga stilli- og útfærslumöguleika,
sem hafa mismunandi áhrif á hversu skilvirkt viðhald þeirraer. Við birtum
niðurstöður rannsókna á áhrifum þessara stillinga á kvika hegðun NV-trjáa og
sýnum að með vandaðri útfærslu má ná fram umtalsverðri afkastaaukningu.
Við útfærðum einnig nýjar sveigjanlegar stillingar í NV-tréð og keyrðum
ítarlegar myndaleitir á raungögn. Þessar stillingar bæta ekki einungis skil-
virkni viðhaldsaðgerða, heldur auka einnig leitarafköst verulega með aðeins
smávægilegum áhrifum á leitargæði.
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Chapter 1

Introduction

Content-based multimedia indexing has been an active area ofresearch and development

for the last two decades. Typically, multimedia content, such as sound, images or video,

is mapped into one or many high-dimensional vectors of numbers, which are then stored

in a high-dimensional index. Multimedia queries are likewise mapped into vectors, which

are typically used to conduct nearest neighbor queries to the high-dimensional index.

These queries return the most similar vectors, which are mapped back into multimedia

data.

1.1 Requirements of Content-Based Indexing

Since the number and size of multimedia collections have been growing exponentially in

recent years, the requirements for high-dimensional indexing have been changing very

dramatically in at least three important ways.

First, multimedia data is of higher quality and complexity,requiring much more intricate

description methods than before. While color histograms were considered potentially

useful in early systems, recent state-of-the-art systems have adopted local descriptors such

as the SIFT descriptors, which describe the content in greatdetail (Lowe, 2004).

Second, multimedia collections have grown in size by ordersof magnitude and are still

growing. Flickr, for example, currently holds more than twobillion images in its collec-

tion. It has been shown quite conclusively that in such large-scale environments, exact

methods cannot cope with the application requirements (Amsaleg & Gros, 2001). Ap-

proximate methods are therefore required to cope with the ever-increasing quantity of

data.
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Third, unlike assumptions made by early systems, multimedia collections are now sub-

ject to extremely high update activities. YouTube, for example, currently receives about

100,000 new videos per day. Search engine users already expect useful answers on current

events and they will expect no less of tomorrow’s multimediaapplications. Furthermore,

in some cases, such as for copyright protection applications, new material is actually more

valuable than older material.

As multimedia collections are updated with new content, theindex strategies used on the

collections must handle inserts and deletions dynamically. With growing collections, the

search strategies must be able to retrieve results both efficiently and effectively.

1.2 Current Index Strategies

Index strategies for low dimensional collections have beenaround for many years. One-

dimensional data is frequently used in our daily life using relational databases. These

databases use indexing strategies that have provided highly effective and efficient search

strategies. The indexes are usually based onhashingandtrees.

As the dimensionality of data increases, we need to considerother indexing strategies.

Techniques for medium range dimensionality include VA-Files (Weber, Schek, & Blott,

1998), IQ-trees (Böhm, Berchtold, & Keim, 2001), R-trees (Guttman, 1984) and the

Pyramid-Technique (Berchtold, Böhm, & Kriegel, 1998), alongwith many other tech-

niques. Most of these index techniques use exactk-NN search strategy that has shown

good results for dimensionality lower than10 − 16. For higher dimensional data it has

been shown that these search strategies perform worse than asequential scan of the whole

collection (Amsaleg & Gros, 2001).

Recently, some approximate high-dimensional indexing techniques have shown promis-

ing results by trading off result quality guarantees for improved query performance. Per-

haps the most popular technique is Locality Sensitive Hashing (LSH) (Datar, Indyk, Im-

morlica, & Mirrokni, 2006), which has been used for some applications (e.g., see (Casey

& Slaney, 2006)). LSH has been shown to be an effective searchmethod but a single

hashtable bucket can become very large in LSH and this can lead to unpredictable IO

costs (Lejsek, Ásmundsson, Jónsson, & Amsaleg, 2008).

More recently, however, the NV-tree, which is a disk-based approximate index for very

large collections (Lejsek et al., 2008), has been shown to outperform LSH for large-scale

retrieval (Lejsek et al., 2008). While the query performanceof NV-tree has been well
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studied, however, the performance trade-offs of the index maintenance and redundancy

has not yet been reported in any detail.

1.3 Contribution of this Thesis

In this thesis we focus on the dynamic behavior of the NV-tree. The NV-tree has several

configuration and implementation options that affect the performance of index mainte-

nance.1 We report on an initial study of the effects of these options on the dynamic

behavior of the balanced NV-tree. We chose to use a balanced NV-tree as it is easier to

simulate. To advance the NV-tree in high end applications, we work on four new aspects

of the NV-tree.

• First, we introduce a flexible overlap configuration into thebalanced NV-tree. The

flexibility controls the redundancy of the NV-tree by adjusting the index to different

overlap configurations. With less redundancy the index becomes smaller and is

more likely to fit in memory, thus improving the performance of index creation,

inserts and search.

• Second, as values are inserted, the redundant spaces in the leaf nodes are filled up

and the tree requires maintenance. We introduce five different maintenance policies

and study the effects of each policy on the index by simulating insertion of 250,000

images into the NV-tree.

• Third, we simulate abuffered insertstrategy and compare the benefits todirect

inserts. As disk reads and writes are the most expensive operations,we analyze the

effect of using the buffer to assist with insertions to increase performance.

• Fourth, we analyze the effect of usingpartition fileswith the NV-tree. The partition

files are sorted subsets of the object collection. When maintenance tasks are per-

formed the whole collections needs to be sequentially scanned for each leaf parti-

tion used in the index. By reducing the sequential scans to subsets of the collection,

performance is improved.

We have created a simulation model, using the Python language, to simulate the above

functionality in the NV-tree. Our simulation model simulates 250,000 image insertions

into a pre-existing collection of approximately 30,000 images. We simulate different

variations of the flexible configurations, maintenance policies, buffering and partitions

files.
1 Note that concurrency control is outside the scope of this thesis.
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The flexible configuration is a major factor in our dynamic behavior and has large impact

on the index. In a second performance study, we therefore studied how the flexible con-

figurations affect search quality, by running a large set of query images on live data using

a balanced NV-tree. In this study, we focused on two key factors: a) the search quality

and b) the search performance. We use 3,120 modified images from original images in

the collection, based on 26 different modifications.

Our results show that our configurations not only reduce maintenance cost, but can also

improve search performance significantly with minimal lossof search quality.

1.4 Overview of this Thesis

First, we describe the NV-tree and its main features in Section 2. We then demonstrate

how redundancy can be implemented in a flexible manner in balanced NV-trees in Sec-

tion 3. In Section 4 we define a simulation model to study the effects of various con-

figuration and implementation options. In Section 5 we explain the implementation of

our simulation model. In Section 6 we perform a detailed performance study, analyz-

ing the index maintenance performance, and show that with appropriate implementation,

significant performance improvements are observed. In Section 7 we perform detailed

performance and quality measurements on the flexible NV-tree using 26 image modifica-

tions created from 120 query images. We show that search performance can be improved

considerably with a small trade-off in search quality. We then conclude our findings in

Section 8.



Chapter 2

The NV-tree

The NV-tree is a disk-based data structure designed to provide efficient approximatek-

nearest neighbor search in very large high-dimensional collections. In essence, it trans-

forms costly nearest neighbor searches in high-dimensional space into efficient uni-dimen-

sional accesses using a combination of projections of data points to lines and (redundant)

partitioning of the projected space.

This chapter describes several aspects of the NV-tree, focusing particularly on the aspects

that are important for understanding the remainder of this thesis. We therefore describe

first the two main operations of index creation and search. Wethen briefly outline different

strategies for projecting the descriptors, partitioning the data collection, and introducing

redundancy. Section 3 is entirely dedicated to investigating new strategies for redundancy.

The internal data structures of the NV-tree are then described before presenting the index

maintenance operations. A more detailed description of theNV-tree and its operations

can be found in (Lejsek et al., 2008).

2.1 NV-tree Creation

Overall, an NV-tree is a tree index consisting of: a) a hierarchy of small inner nodes,

which are kept in memory during query processing and guide the descriptor search to

the appropriate leaf node; and b) largerleaf nodes, which are stored on disk and contain

references to actual descriptors.

When the construction of an NV-tree starts, all descriptors are considered to be part of a

single temporary partition. Descriptors belonging to the partition are first projected onto
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a singleprojection linethrough the high-dimensional space. Strategies for selecting the

projection lines are discussed in Section 2.3.

Next, the projected values are partitioned into disjunct sub-partitions based on their posi-

tion on the projection line. Information about all these sub-partitions, such as the partition

borders on the projection line, form the inner node of the first level of the NV-tree. Strate-

gies for partitioning are described in Section 2.4.

Since descriptors which are close to partition borders are likely to be similar to descrip-

tors in the adjacent partition, the NV-tree partitions are allowed to overlap for redundant

coverage. An overlap parameter is used to control the amountof redundancy between

partitions. In the extreme case, for each pair of adjacent partitions, an overlapping sub-

partition is created which covers 50% of both partitions. Strategies for overlap are de-

scribed in Section 2.5.

To build subsequent levels of the NV-tree, this process of projecting and partitioning is

repeated for all the new sub-partitions using a new projection line at each level, creating

a hierarchy of inner nodes. The process stops when the numberof descriptors in a sub-

partition falls below a specified limit designed to be no morethan single I/O. A new

projection line is then used to order the descriptor identifiers of the sub-partition, and the

ordered identifiers are written to a leaf node on disk.

2.2 NV-tree Nearest Neighbor Retrieval Process

During query processing, the query descriptor first traverses the hierarchy of inner nodes

of the NV-tree. At each level of the tree, the query descriptor is projected to the projection

line associated with the current node. The search is then directed to the sub-partition

with the center-point closest to the projection of the querydescriptor. This process of

projection and choosing the right sub-partition is repeated until the search reaches a leaf

node.

The leaf node is fetched into memory and the query descriptoris projected onto the pro-

jection line of the leaf node. The search then starts at the position of the query descriptor

projection. The two descriptor identifiers on either side ofthe projected query descriptor

are returned as the nearest neighbors, then the second two descriptor identifiers, etc. Thus,

thek/2 descriptor identifiers found on either side of the query descriptor projection are

alternated to form the rankedk approximate neighbors of the query descriptor.
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Note that since leaf partitions have a fixed size, the NV-treeguarantees query processing

time of a single disk read regardless of the size of the descriptor collection. Larger col-

lections need deeper NV-trees but the intermediate nodes fiteasily in memory and tree

traversal cost is negligible.

2.3 Projection Strategies

In the NV-tree, projection lines are used at each level of thetree, and hence a strategy is

needed for selecting those lines. There are two alternativestrategies. First, we can use

random line from a pool of random lines, that are created by generating isotropic random

lines requiring a minimal angle between pairs of lines. Using random lines is independent

of data, but may lead to sub-optimal partitioning. Second, we can select the “best” line

using Principal Component Analysis (PCA), which is very costly. In (Lejsek et al., 2008),

however, anapproximate PCAstrategy is proposed, which selects the best line from a

large line pool. This strategy proved to yield search results of better quality than random

lines; the simulation model for inserts therefore assumes well chosen lines from a line

pool.

2.4 Partitioning Strategies

A partitioning strategy is likewise needed at every level ofthe NV-tree. Three strategies

were proposed:Balanced, UnbalancedandHybrid.

TheBalancedstrategy partitions data based on cardinality. Therefore,each sub-partition

gets the same number of descriptors, and eventually all leafpartitions are of the same

size. Although node fanout may vary from one level to the other, the NV-tree becomes

balanced as each leaf node is at the same height in the tree.

TheUnbalancedpartitioning strategy adjusts to the data distribution, byusing distances

instead of cardinalities. In this case, sub-partitions arecreated such that the absolute

distance between their boundaries is equal. All the data points in each interval belong to

the associated sub-partition. With this strategy, however, the normal distribution of the

projections leads to a significant variation in the cardinalities of sub-partitions. Due to

the repeated application of the partitioning strategy, theNV-tree becomes unbalanced as

dense areas are partitioned more often than sparse areas.
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The Hybrid strategy first follows theUnbalancedstrategy until a sub-partition is of a

size that could fit into around six leaf partitions. Then theBalancedstrategy is used to

construct the leaf partitions. As a result, leaf partitionsare better utilized and the tree is

shallower, both of which result in smaller space requirements.

We have chosen to focus on theBalancedstrategy in our work since it is much easier to

implement and model.

2.5 Overlap Strategies

An overlap strategy is needed at each level of the NV-tree. One option is theNo Overlap

strategy, where each descriptor is only inserted into a single sub-partition, as described

above. A second option is theFull Overlap strategy, where each descriptor is inserted

into two partitions, except for the descriptors at both endsof the projection line. We can

also chose intermediate values to control the overlap. Muchof the remainder of this thesis

explores the implementation and effect of partially overlapping partitions.

2.6 NV-tree Nodes

The intermediate nodes of the NV-tree are used for two purposes: to guide the search

for a descriptor to the single appropriate leaf node, and to guide the insertion of a de-

scriptor to all appropriate leaf nodes, as described below.Typically, in non-redundant

tree structures, such as the traditional B+-tree, this can be achieved by storing an array

of partitioning values in each intermediate node. Due to thepotential redundancy of the

NV-tree, however, these two purposes of the intermediate nodes must be achieved using

different arrays of values. Thepartition bordersarray stores values guiding the insertion

process to all appropriate leaf nodes. Thesearch bordersarray keeps track of the values

which are mid-way between the partition borders and are usedto guide the search process.

Intermediate nodes are small and are kept in memory during query processing.

Each leaf node is the size of a disk block and stores(projected value, descriptor identifier)

pairs. For efficiently finding the pair of the leaf, which has its projected value closest to

the projection of the query descriptor, leaves are organized by the projected values in a

sorted look-up table.
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2.7 Insertions and Deletions

Consider first insertions to the NV-tree, with no overlappingpartitions. In this case, the

insertion process must first descend the tree in the same manner as the search, to find the

appropriate leaf to insert the descriptor into. Then the final projection line is used to find

the appropriate location for the descriptor identifier within that leaf.

With overlapping partitions, on the other hand, each descriptor must potentially be in-

serted into many leaf nodes, due to the redundancy arising from the overlapping parti-

tions. Unlike the search, the insertion process must then, at each level, descend into either

one or two sub-partitions which contain the projection of the descriptor. In the worst case

of full overlap, a descriptor may thus need to be inserted into 2h leaf nodes, whereh is

the number of levels in the tree.

Note that until the descriptor has been inserted into all theappropriate partitions, it cannot

be considered fully inserted and may not show up in certain query results. Needless to say,

insertion can be an expensive operation that: 1) can affect the choices of index creation

strategies, and 2) must be implemented carefully. In Sections 4 through 6, we analyze

cost models for several implementation choices.

Deletion is implemented in a similar manner as insertion. Itis possible, however, to keep

a table of recently deleted descriptors and filter them out ofthe result. In this way, deleted

descriptors can be removed from query results, although they may still be found in one

or more partitions on disk. For this reason, we do not addressdeletion further in this

thesis.

2.8 Summary

Overall, an NV-tree consists of a hierarchy of small inner nodes, which fits in memory,

and larger leaf nodes, which are stored on disk and contain descriptor identifiers. In

this section, we have described the processes for index creation, index search, and index

maintenance, as well as alternative strategies for the index creation and search. As we

have pointed out, insertion can be an expensive operation that: 1) can affect the choices of

index creation strategies, and 2) must be implemented carefully. In this thesis, we examine

the effects of various strategies and implementation options on the insertion performance

of balanced NV-trees.
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Implementing Redundancy

In this chapter we propose a methodology for implementing redundancy within the bal-

anced NV-tree in a flexible manner, ranging from no overlap tofull overlap. We assume

that the administrator of the NV-tree index supplies five configuration values: tree height

h; collection sized (in tuples); partition sizep (in tuples); desired leaf node utilization

u; and the desired overlap factorτ ∈ [0, 1]. This section describes how these five values

are used to compute anindex level configurationLτ =
[

lτ0 , . . . , l
τ
h−1

]

, which describes the

number of sub-partitionslτi at each leveli of the balanced NV-tree.

3.1 Defining Partial Overlap

During the NV-tree construction, a key issue is how to partition intermediate sub-partitions.

At each stage of the construction, the overlap factorτ is used to decide what fraction of

each partition should overlap with other partitions. Forτ = 0.5, for example, half of

the descriptor identifiers of the partition must also be present in other partitions. As we

shall see in the following discussion, it may not be possibleto partition in such a way

that the overlap is exactlyτ (as then the last partition would be smaller than the others).

Therefore, we now describe a general partitioning method, where the overlap between

partitions is at leastτ .

Without loss of generality, we assume in the following discussion that we are splitting an

intermediate sub-partitions of sizelp into leaf partitions,1 and that the desired utilization

is u = 100%. The goal is then to splits into a number of partitions, such that each

1 The size of intermediate partitions is always an integer multiple of pu.
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intermediate partition s

(a) No overlap (τ = 0.0)

intermediate partition s

(b) Partial overlap (τ = 0.67)

intermediate partition s

(c) Full overlap (τ = 1.0)

Figure 3.1: Partial overlap configurations

partition gets exactlyp descriptors and the actual overlap between leaf partitionsis at

leastτ .

EXAMPLE 1.

Figure 3.1 shows three possible sub-partition configurations for an intermediate sub-

partition s of size3p. These configurations have: a) three leaf partitions and no overlap

(τ = 0); b) four leaf partitions and partial overlap (τ = 2/3); and c) five leaf partitions

and full overlap (τ = 1). As the figure shows, since each partition (aside from the end

partitions) is adjacent to two partitions, the overlap between any two adjacent partitions

is τ/2.

Since the size of each partition must be exactlyp, only a few values ofτ yield distinct

partial overlaps in each case. These values depend on the size of the intermediate sub-

partition, lp, and the number of leaf partitions,k, and are therefore denoted byτl,k. In

Figure 3.1, those values areτ3,3 = 0, τ3,4 = 2/3 andτ3,5 = 1. Having τ = 1/2, for
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τl,k
k

6 7 8 9 10 11 12 13 14 15 16 17 18

l

6 0.00 0.33 0.57 0.75 0.89 1.00 - - - - - - -
7 - 0.00 0.29 0.50 0.67 0.73 0.83 0.92 1.00 - - - -
8 - - 0.00 0.25 0.44 0.60 0.73 0.83 0.92 1.00 - - -
9 - - - 0.00 0.22 0.40 0.55 0.67 0.77 0.86 0.93 1.00 -
10 - - - - 0.00 0.20 0.36 0.50 0.62 0.71 0.80 0.88 0.94
11 - - - - - 0.00 0.18 0.33 0.46 0.57 0.67 0.75 0.82
12 - - - - - - 0.00 0.17 0.31 0.43 0.53 0.63 0.71

Table 3.1: Partial lookup table for actual overlap.

example, should yield the same partitioning as withτ = 2/3. When partitioning a sub-

partitions of sizelp, the goal is therefore to find the number of partitionsk which gives

the smallest overlap factorτl,k ≥ τ .

The minimum value fork is whenτ = 0. In this case, onlyl sub-partitions can be defined.

Conversely, the maximum value fork is whenτ = 1; in this case2l−1 sub-partitions can

be created. Generally, for anyl andk, the amount of overlap between thek leaf partitions

is (k − 1)
τl,k

2
, yielding the following equation:

k − (k − 1)
τl,k

2
= l (3.1)

Solving forτl,k results in:

τl,k =
2(k − l)

k − 1
(3.2)

EXAMPLE 2.

Solving Equation 3.2 for all values ofl and k yields a look-up table ofτl,k values as

partially shown in Table 3.1. Ifl = 8 thenk ranges from 8 to 15. Whenτ = 0.5 is

desired, for example, thenk must be 11, leading to an actual overlap ofτ8,11 = 0.6.

Givenp andτl,k, the partition borders can be easily determined. The lower partition border

of sub-partitionpi can be found at rankp(i− iτl,k/2) in the intermediate node about to be

partitioned, while the upper partition border can be found at rankp(i+1−iτl,k/2). Search

borders are determined, as before, by finding the mid-point between partition borders of

adjacent sub-partitions.

3.2 Non-Overlapping Configuration

The computation of the index configuration proceeds in two steps. First, a non-overlapping

configurationL0 is found, corresponding toτ = 0. Then the index configurationLτ is de-
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termined by applying the procedure described above at each level of the non-overlapping

configuration.

In the absence of overlap, the expected number of leaf partitions is simplyd/pu. In

order to get an initial configurationL0 =
[

l00, . . . , l
0
h−1

]

with at leastd/pu partitions, we

define:

l0 =
⌈

h
√

d/pu
⌉

(3.3)

and initializel0i = l0. The total number of leaf partitions given by this configuration is

denoted by:

|L0| =
∏

i

l0i (3.4)

As this configuration may give more thand/pu leaf partitions, we must seek a config-

uration which better approximates the desiredd/pu partitions. In essence, we seek the

configurationL0 = [l0, . . . , l0, l0 − 1, . . . , l0 − 1] which gives the smallest number of leaf

partitions|L0| ≥ d/pu.

EXAMPLE 3.

Givenh = 4, d = 35, 484, 770, p = 16, 384 and u = 67%, the expected number of

partitions isd/pu = 3, 233. The initial partitioning estimate isl0 =
⌈

4
√

3, 233
⌉

= 8.

Since8 × 8 × 8 × 8 = 4, 096, however, a better configuration can be found. Next,

8 × 8 × 8 × 7 = 3, 584, while 8 × 8 × 7 × 7 = 3, 136, which is smaller than3, 233.

Therefore, the configurationL0 = [8, 8, 8, 7] is chosen.

3.3 Overlapping Configuration

Next, the overlap factorτ is used to determine the initial index configurationLτ based

on the non-overlapping configurationL0. At each leveli, we usel0i to solve Equation 3.1

of Section 3.1, yielding the number of overlapping sub-partitions, lτi , at that level. This

process is efficiently implemented using the look-up table shown in Table 3.1. The vector

Lτ =
[

lτ0 , . . . , l
τ
h−1

]

then describes the balanced NV-tree index configuration which has

the smallest overlap greater thanτ .

Note that the number of partitions, and thus index utilization, may differ from the intended

configuration parameters. This is due to the approximation of the overlap factor. As

before, the number of leaf partitions is denoted by:

|Lτ | =
∏

i

lτi (3.5)
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EXAMPLE 4.

Assume the non-overlapping configuration[8, 8, 8, 7] of Example 3 and a desired overlap

factor of τ = 1/2. The resulting index configuration isLτ = [11, 11, 11, 9], which has

|Lτ | = 11× 11× 11× 9 = 11, 979 leaf partitions.

3.4 Summary

In this section we have proposed a general method for partialoverlap. We have defined

equations to configure the correct number of leaf partitionsbased on the collection size

and user defined values such as the desired overlap factor. Wehave also described how the

desired overlap factor is only a proposed lower limit to the overlap needed. In Section 4,

we will describe the cost models for insertions and maintenance needed based on the

partial overlapping method proposed in this section.



Chapter 4

Modeling Inserts

In this chapter, we describe the simulation model which we have implemented in order

to study the expected performance of various insertion strategies for NV-trees. In this

section, we focus on the cost model, while the implementation is described in Chapter 5.

We start by giving the simulation model basics in Section 4.1. Then we detail the cost

formulas behind individual implementation options in Sections 4.2 through 4.4.

4.1 Simulation Model Basics

In Section 2, three major strategic choices were discussed for the NV-tree. In this work,

we have focused on the balanced partitioning strategy, as itis more amenable to modeling

than the unbalanced and hybrid strategies. The projection strategy is not modeled as such,

but the model assumes well chosen lines from a large set of random lines. Finally, the

overlap strategy is fundamental to the model and follows theimplementation described in

Section 3.

Table 4.1 shows the input parameters of the model, as well as the instantiation used for

examples and in the experimental section. First, an initialbalanced NV-tree configuration

Lτ is created, based on the first half of Table 4.1, and used to initialize the appropriate data

structures. Then, as multiple descriptor insertions are simulated, the simulation model

accumulates insertion costs, based on the second half of Table 4.1 as described in detail

below, and updates the data structures appropriately. Insertions are paused every 10,000

images and the various performance metrics written to disk.

It has been shown that the NV-tree copes well with the requirements of image and video

copyright protection applications using powerful local descriptors (Lejsek et al., 2008).
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The most popular such descriptors are the SIFT descriptors (Lowe, 2004), which we

simulate in our model. SIFT descriptors are 128-dimensional and can be stored in 132

bytes (1 byte per dimension plus 4 bytes to store the descriptor identifiers), soD = 132d.

Note that the number of descriptorsd in the initial collection corresponds to the set of

SIFT descriptors for about 30 thousand photo-agency images.

The main structure of the simulation model is an array of partitions,P =
[

p0, . . . , p|Lτ |

]

.

Each partitionpj holds local information about: the number of descriptors inthe partition

(pj.count); the probability of insertions to the partition (pj.prob); the parent node of the

leaf; and other book-keeping elements. When the index is created, the partition size

is uniform as the index creation is rank based, makingpj.count = ⌈d/|L0|⌉. During

insertion, each descriptor may be inserted into more than one leaf partition forτ > 0.

While in the worst case it may be inserted into2h partitions, the expected number of

inserted partitions is:

V = |Lτ |/|L0| (4.1)

If the distribution of the descriptors to insert is identical to the distribution of descrip-

tors in the original collection, which is likely, the inserted descriptors will be uniformly

distributed into the partitions. The initial probability of insertion into a given partition is

thuspj.prob = 1/|L0|. During index insertion and maintenance, thepj.countandpj.prob

values are then maintained depending on the insertion and splitting policies.

The cost model of the simulator focuses on disk cost, as the CPUcost of traversing the in-

dex is generally only 1–3% of disk cost (Lejsek et al., 2008).We assume all disk accesses

to transferP bytes, but distinguish between random and sequential I/Os in our model; we

assume that for any file read of more than10P , sequential reads can be achieved through

a combination of pre-fetching, buffering and blocked I/O. While true sequential access is

typically two orders of magnitude faster than true random access, we use a ratio of 1/10

to account for other disk traffic which may interrupt long sequential reads. The simula-

tion model ignores effects of buffer management entirely, as we have observed that the

uniform distribution of accesses reduces the effectiveness of buffer management.1 We

do, however, consider using a buffer of sizeB for inserted descriptor identifers and their

projected values.

In the remainder of this section, we develop and argue for thecost formulas of the sim-

ulation model. We have broadly split the insertion cost intotwo parts. First, there is the

cost of insertion to a leaf partition (Section 4.2). Second,as partitions overfill, there is an

additional cost of index maintenance (Section 4.3). Note that since any method must ap-

1 The smallest NV-trees are likely to fit in memory, leading to an overestimation of I/O cost; we note
this effect when analyzing the results.
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Description Notation Value
Initial tree height h 4
Initial collection size d 35,484,770 tuples
Desired leaf size p 16,384 tuples
Desired leaf utilization u 67%
Desired overlap factor τ [0, . . . , 1]
Collection size on disk D d× 132b = 4,36 GB
Size of a single disk I/O P p× 8b = 128 KB
Cost of random I/Os CR 12.5 ms
Cost of sequential I/Os CS CR/10
Buffer size B 512 MB

Table 4.1: Simulation model parameters.

pend the descriptors to the actual descriptor collection, that cost is not included. We also

discuss an implementation strategy called partition files,where the descriptors themselves

are stored redundantly for each partition (Section 4.4).

4.2 Cost of Insert

When a descriptor must be inserted, theP vector is traversed and, for each partition,

thepj.probvalue is used in a random trial to determine whether a descriptor should be in-

serted into that partition. We propose two strategies for insertion: one where the descriptor

is inserted directly into the appropriate partitions, and one where insertions are buffered.

The buffer is assumed to be organized as a hash table on the partition identifiers. Thus,

all descriptors belonging to the same partition are stored together. The search is modified

to search not only the partition on disk, but also the in-memory structure.

4.2.1 Direct Insertions

Direct insertion of a descriptor into a partition involves reading in the appropriate parti-

tion, modifying it and writing back to disk, for a cost of2CR.

EXAMPLE 5.

Consider the collection described in Table 4.1. With full overlap a descriptor will on

average be inserted intoV = 12.24 partitions, and inserting a single image with 500

descriptors therefore requires500×12.24×2×12.5 ms= 153 seconds. With no overlap

V = 1 and the same insertion will take500× 2× 12.5 ms= 12.5 seconds.
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4.2.2 Buffered Insertions

In this case, there are two scenarios which lead to disk activity. First, when a specific

bucket has reached a size of2p/3, it is flushed to disk to avoid situations where a single

bucket causes multiple splits. The cost of such a flush is the same as that of a direct

insert,2CR. Second, if the entire bufferB is full, all partitions in memory are flushed

to disk in a sequential manner, incurring a cost of2CS|Lτ |. This method is chosen since

the uniform distribution of inserts makes it likely that many buckets are filled to a similar

capacity.

The precise savings of buffering depend on the size of the buffer and the distribution

of inserts. Note that a clever implementation would opportunistically update partitions

when they are read in by a search process and flush buffers whendisk activity is low.

Our simulation model, however, cannot capture such detailsas it does not model buffer

management.

4.3 Cost of Index Maintenance

When the utilization of a particular leaf node reaches 100%, the node must be split. Unlike

many other tree structures, however, splitting is a complexoperation in the NV-tree and

there are many potential splitting policies. The key differentiator between these policies

is the amount of local re-organization of the index requiredby the policy. Furthermore,

as a result of the re-organization, some leaf partitions mayacquire a new random line

necessitating re-projections of a part of the descriptor collection. The cost of each policy

is thus composed of the following two components:

Csplit = Creorg + Crepro (4.2)

In the simulation model, we have considered the following five policies:No split; Leaf

split; Parent split; Hybrid split (Leaf split or Parent split); andRe-Generation. These

policies and the associated cost formulas are described in detail in the following sub-

sections. The cost formulas are summarized in Table 4.2, while Figure 4.1 is used to

illustrate the differences between the policies.
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Maintenance Policy Creorg Crepro

No Splits CR 0
Leaf Splits CR(∆lτh−1

) Cscan

Parent Splits CR(2lτh−1
+ ∆lτh−1

− 2) Cscan

Re-Generation Cregen 0

Table 4.2: Index maintenance cost.

Leaf NodeLeaf Node

Inner Node

Updated

Leaf Node

New Over�ow

Leaf Node

Leaf NodeLeaf NodeLeaf Node

Inner Node

(b) No Split(a) Before Split

Inner Node

Inner Node
New

Leaf NodeLeaf Node

Leaf NodeLeaf Node

Updated New

Leaf Node Leaf Node Leaf Node Leaf Node

Updated Updated Updated Updated

Inner Node
Updated

(c) Leaf Split (d) Parent Split

Figure 4.1: Effect of split policies when the central leaf node overflows: (a) original
partitions before split; (b) with No split; (c) with Leaf split; and (d) with Parent split.

4.3.1 No Splits

The straight-forward way to deal with a partition overflow isto simply allocate a second

disk block (or third, etc.) and maintain all disk blocks as a single partition (see Fig-

ure 4.1(b)). In this case, the cost of the reorganization consists of reading the original

partition and writing it, as well as writing the second disk block. As the reading and

writing of the original disk block are already accounted forthrough the insertion cost,

only a single random disk writeCR must be counted. Needless to say, there is no cost of

reprojecting the collection.

Two observations are in order, however. First, this policy also affects the cost of insertions

to that partition; the cost formulas of Section 4.2 must be multiplied by ⌈pj.count/p⌉.
Second, this policy also affects query costs as many blocks must potentially be read at

retrieval time. This policy negates the fundamental property of the NV-tree that query

results are always returned in a single disk read; as query costs are not accounted for in
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the simulation, all results must be analyzed in view of that.But this approach serves, in a

sense, as a lower bound on the cost of index maintenance.

4.3.2 Leaf Splits

TheLeaf splitpolicy works as follows (see Figure 4.1(c)). First, a new intermediate node

is created, which replaces the leaf node in the NV-tree. Thentwo or more new (partially

overlapping) leafs are created for the new intermediate node, thus extending the local

depth of the NV-tree. Note that this policy leads to locally unbalanced trees and rapidly

increasing space requirements. The search time, however, is not affected.

In the simulation model, thepj.prob andpj.countvalues of the partitions are maintained

appropriately. The index maintenance cost is then calculated as follows. First the old node

must be read and then the new nodes must be written to disk (onenode replaces the old

leaf node). Since, as withNo split, two disk operations are already accounted for through

the insertion cost, the cost of re-organization is the writecost of the new leafs:

Creorg = CR(∆lτh−1) (4.3)

Since the new leafs are associated with a new random line, however, it is necessary to

re-project the descriptors. The most efficient method is to scan the entire descriptor col-

lection and compute the projections.2 Thus the cost of re-projections is:

Cscan = CSD/P (4.4)

4.3.3 Parent Splits

With the Parent splitpolicy (see Figure 4.1(d)), all immediate siblings of the leaf node

to be split are considered as a set and re-organized together. TheParent splitadds one

or more leaf nodes to the sibling set and using the partitioning process of Section 3 to

populate the partitions.

EXAMPLE 6.

Consider a newly created non-overlapping NV-tree (τ = 0) with lτh−1
= 4 and desired

utilizationu = 67%. Assume that all four leaf nodes of a particular parent are nearly full,

2 Since the split partition contained at leastp descriptors, as many asp random disk reads may be
required to find the descriptors. Unless the collection is very large,p random reads cost far more than a
sequential scan.
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when the first leaf must be split. Then there are nearly4p distinct descriptor identifiers in

the four leaves. After splitting, there should be4/u ≈ 6 partitions, each with aboutpu

descriptors.

When the original leafs overlap, care must be taken to remove that redundancy before

populating the new partitions. Unlike theLeaf splitpolicy, theParent splitpolicy creates

wider trees but retains the original depth of the tree, resulting in lower space requirements.

When the parent node is split repeatedly, however, the partitions may become “narrow”

leading to potentially reduced result quality.

As before, thepj.prob andpj.countvalues of the partitions are maintained appropriately.

The re-organization cost is then derived as follows. Assumea newly created tree with

partitioningLτ =
[

lτ0 , . . . , l
τ
h−1

]

. Upon a split,lτh−1
leaf nodes must be read andlτh−1

+

∆lτh−1
written. As before, two disk operations are accounted for inthe insertion cost,

leading to the formula in Table 4.2. When the tree is modified, sibling counts are updated

to correctly account for re-organization cost. As withLeaf split, the collection must then

be scanned to re-project all the descriptors.

4.3.4 Hybrid Splits

This policy works as follows. If a leaf has few siblings, thenthe Parent splitpolicy is

employed. Once the leaf is one oflτ0 or more siblings, however, theLeaf splitpolicy is

used. The resulting new leaf nodes then have one or few siblings, and theParent split

policy is used again. This policy should yield the lower space requirements of theParent

split and the higher result quality of theLeaf split. The cost associated with each split, of

course, depends on the split policy used.

4.3.5 Re-Generation

With this policy, no splits are performed. Instead, the index is built from scratch once the

first leaf overflows, resulting in a new index configuration. Assuming a uniform distribu-

tion of inserts, many leaf nodes are likely to be nearly full and thusRe-Generationcan

potentially avoid a long string of expensive splits. While this policy may not be appro-

priate in many high-availability situations, it is nevertheless interesting to understand the

associated costs.

In order to model the costs, we must recall the index creationprocess. Essentially, it is

a depth-first process of creating temporary files containingever smaller sub-partitions,
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until the appropriate leaf size is found. The cost calculation is made easier by the fact

that the index creation process results in balanced trees. Once the tree configurationLτ =
[

lτ0 , . . . , l
τ
h−1

]

has been computed, the total sizeDi of the intermediate files at leveli can

be computed as follows:

D0 = D

Di+1 = Di

(

lτi /l
0

i

)

(4.5)

For each tree leveli, the index creation process must then readDi/P disk blocks and

write Di+1/P disk blocks, for a total cost of:

Cregen =
CS

P

h−1
∑

i=0

(Di+1 + Di) (4.6)

4.4 Partition Files

The bulk of the cost of theLeaf splitandParent splitpolicies is due to the cost of scanning

the collection to re-project the descriptors. In order to minimize this cost, we consider

introducing even further redundancy into the index by storing the descriptors for each

leaf node or leaf parent node in specialpartition files. When splitting the partitions, the

partition files can then be read instead of scanning the wholecollection.

For Leaf split, one partition file corresponds to each leaf node. In this case, there are

initially fl = |Lτ | partition files and the size of each partition file isDh/fl. For Parent

split, partition files are maintained one level higher in the tree,resulting infp = |Lτ |/lτh−1

partition files of sizeDh−1/fp. The cost of scanning is thus reduced toDh/flP for Leaf

split andDh−1/fpP for Parent split. ForHybrid split, the partition files alternate between

parent nodes and leaf nodes.

When inserting a descriptor identifier to a leaf partition, the descriptor must also be in-

serted into the corresponding partition file. As with inserts into partitions, there are two

alternative implementations. First, the descriptors may be inserted directly into the parti-

tion file, resulting in a cost of2CR; as we observe in the next section, this cost is too high

to be feasible. Second, the bufferB may also be used to hold the descriptors until the

buffer is flushed; this is the approach taken in our model. In this case, however, the buffer

will fit many fewer descriptors, as each descriptors now requires132 + 8 = 140 bytes of

storage compared to the 8 bytes required to store the descriptor identifier and projected
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value. When flushing the buffers, the partition files must be read and written, leading to

costs of2CSDh/P and2CSDh−1/P for Leaf splitandParent split, respectively.

4.5 Summary

In this section, we have defined and described the cost modelsof insertion and mainte-

nance. The cost formulas are based on the I/O cost produced when inserting. When a

partition reaches 100% utilization, maintenance must be performed to keep the NV-tree

available for further inserts. The maintenance cost is based on re-organizing subset of the

NV-tree and re-projecting that same subset to new partitions. In Section 5 we describe

how we implement the cost formulas and the proposed partial overlapping method into

the NV-tree simulator.



Chapter 5

Implementing the Simulation Model

In this chapter, we describe how the simulation model was implemented and the basic

data structures used in the model. The simulator was writtenusing Python 2.5 and the

Eclipse development software. No additionally installed Python packages where used,

creating portable code for multiple machines on different platforms.

In Section 5.1 we describe how data structures in the model are initialized and how the

NV-tree is created. In Section 5.2 we explain how the data structures are maintained

when records are inserted. In Section 5.3 we describe how index maintenance tasks are

implemented and how they effect the data structures. In Section 5.4 we describe how

partition files are implemented into the model and in Section5.5 we describe a more

efficient implementation of our proposed uniform distribution.

5.1 Overview

The code was designed to be object-oriented to encapsulate different data structures and

create readable and reusable code. One external file was usedcontaining descriptor counts

for approximately 250,000 images used for the insertion simulation. The file was created

by counting SIFT descriptors from a large image collection of press photos provided by

one of the major Icelandic newspapers,Morgunblaðið.

A specialRun class was designed to create flexible simulations for batch runs. Each

experiment is defined by a list of five simulation parameters:a) maintenance strategy,

b) buffer flag, c) buffer size, d) partition file flag, and e)τ factor. Not all variations are

simulated, e.g., using partition files withRe-Generationdoes not result in meaningful

experiment.
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The Runclass also handles error handling and messaging. Since eachexperiment can

run for days, depending on combination of settings and hardware, we implemented the

error handling to use the pythonpickle library to serialize classes when a run-time error

or user cancellation was raised. This means that erroneous simulations can be executed

from the same state after the error has been fixed. Re-executing failed simulations only

applies if the data has not been altered because of the failedcode. Completion and error

messaging was also implemented in theRun class. Three options are possible: a) no

messages, b) e-mail message, or c) SMS message to a mobile phone. The SMS service

was implemented so that response to errors could be handled quickly to minimize wasted

idle CPU time.

TheRunclass implements a batch of experiments. Each batch consists of multiple exper-

iments grouped together. As each experiment is highly CPU intensive, it is recommended

to distribute the experiments over multiple CPU’s or machines.

Each experiment creates a new instance of theSimulationclass. TheSimulationclass

encapsulates a single experiment; it implements the insertion calls based on an external

descriptor file and creates the result files for post-processing.

TheSimulationinstance creates an instance of theNVTreeobject class. The class is the

main operation class of the model. The main functionality ofNVTreeis: a) create the

partition nodes and its partitions, b) execute maintenancetasks when needed, c) keep ref-

erence to buffer, d) create the partition files, and e) simulate inserts into partitions.

When theNVTreeclass is initialized it uses the same initialization configuration as speci-

fied in Table 4.1. The only user provided values are the simulations parameters.

A bookkeeping class,LeafLevelCreator, is used by theNVTreeto create the initial con-

figurations and return a python list (P ) containing the partition classes. The list simulates

the partitions stored on disk. The leaf list is calculated byfirst finding L0 based in the

initialization configuration and thenLτ . The size ofP is found to be|Lτ |. TheLeafLevel-

Creator class also provides additional functions to maintain the tree and its configura-

tions.

5.2 Implementing Insertions

Each partition on disk is represented by thePartition class. ThePartition is a simple book-

keeping class storing internal parameters which define the partition instance. Asvalue

pairs(projected value, descriptor identifier) are inserted, an internal counterpj.countreg-
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isters the insertions and calculates the local utilizationof the partitionuj = pj.count/p.

Each partition also keeps track of the insertion probability pj.prob.

When simulating insertion intoP we use a uniform distribution. The estimated number

of values to insert into the tree for each descriptor is initially considered as the value

V = |Lτ |/|L0|. When the tree is created, all partitions are assigned with probability of

insertionpj.prob = 1/|L0|. This means that all partitions have the same probability to

have values inserted on creation. If the tree would never grow, we could simply selectV

partitions using random integers between[0, |P |−1] to approximate uniform distribution.

The NV-tree is simulated as a balanced flexible tree that reacts to maintenance events,

however, and when adding the new partitions to the tree the likelihood of inserting will

change.

Our first approach to the uniform distribution was to sequentially go through all partitions

(in Section 5.5, we describe a more efficient implementation). For each partition, the

probability is retrieved and compared to new random value between[0, 1]. If the random

value is less thanpj.prob, thenpj is selected as partition for insertion.

EXAMPLE 7.

Assume we haveL0 = [8, 8, 8, 7]. If τ = 0.0, we have|P | = 3, 584 and pj.prob =

1/3, 584. Given that probability we should select a random number lowerthanpj.prob

approximatelyV = 1 times for each pass throughP . If τ = 1.0, we have|P | = 43, 875

and pj.prob = 1/3, 584. We should now select a random number lower thanpj.prob

approximatelyV = 12.24 times for each pass throughP .

5.2.1 Direct Insertions

Algorithm 1 shows how the direct insert scenario is implemented. For all descriptors

in image we traverse all partitions inP . As we traverse the partition list we compare the

probabilitypj.probof each partitionpj with our newly created random number. Ifpj.prob

is larger than the random number, we insertvalue pairinto the partition.
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Algorithm 1 Inserting directly to disk
1: procedure DIRECTINSERT(P, Image)

2: for all desc∈ Imagedo

3: for j ← 0, |P| do

4: if P[j].prob> new Random()then

5: P[j].insert()

6: end if

7: end for

8: end for

9: end procedure

5.2.2 Buffered Insertions

Algorithm 2 shows how the buffered insert scenario is implemented. Inserting into the

buffer follows the same functionality as direct inserts. Instead of inserting to disk, how-

ever, the values are inserted into the appropriate bucket inthe buffer. After each insert we

check for two possible scenarios to flush: a) if the buffer hasreached its maximum limit,

we flush all buckets in the buffer and b) if the current bucket is 2p/3 full, we flush the

bucket. The reason for flushing when the bucket has reached2p/3 is to avoid multiple

splits of a single partition. The2p/3 flushing does not apply toRe-GenerationandNo

split.

Algorithm 2 Inserting using buffer
1: procedure BUFFEREDINSERT(Buffer, P, Image)

2: for all desc∈ Imagedo

3: for j ← 0, |P| do

4: if P[j].prob> new Random()then

5: Buffer[j].insert()

6: if Buffer.Full == Truethen

7: Buffer.Flush(P)

8: else ifBuffer[j].TwoThirdsFull == Truethen

9: Buffer.Flush(P[j])

10: end if

11: end if

12: end for

13: end for

14: end procedure
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5.3 Implementing Index Maintenance

When new partitions are added to the tree it does not make them all equally considered

when inserting. We now detail the maintenance of thepj.probandpj.countvalues, as the

index is updated.

5.3.1 No Splits

The No split increments thepj.countwith each insertedvalue pairwith overfill option.

This means that more thanp values can be stored in the partition (u > 1). The additional

values are stored in the partition but are represented as more than a single IO (see Sec-

tion 4.3.1). Since no splitting occurs, thepj.prob is the same from the start and the value

of V does not change.

5.3.2 Leaf Splits

When Leaf split is used the partition recordspj.count until u = 1. At this point the

partition returns asplit flag to theNVTreeclass. When the flag is received theNVTree

performs aLeaf spliton the flagged partition.

WhenLeaf splitis triggered, we grow the treedownwardsfrom the flagged partition. We

mark the flagged partition as the internal partition and thenaddt new partitions to the leaf

list P . The new partition countt is calculated by finding how many partitions fit using the

determined utilization.

The flagged partition is now internal and not applicable to insertions. Thet new partitions

are considered as child partitions and can be traversed to from the internal partition. To

maintain the correct probability of insertions as the tree grows downwards we update the

probability of the new child partitions as shown in equation5.1.

pnew.prob =
pj.prob

t− (t− 1)(τ/2)
(5.1)

At the same time all values of the internal partition must nowbe divided unto thet new

partitions. How they are divided depends on theτ value. Ifτ = 0, the values are divided

equally between the new partition. Ifτ > 0, then the overlap needs to be taken into count.

Equation 5.2 shows how the values are distributed over the new partitions.
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pnew.count=
pj.count

t− (t− 1)(τ/2)
(5.2)

The basic implementation of theLeaf splitfunctionality is described in algorithm 3.

Algorithm 3 Leaf Split Method
1: procedure LEAFSPLIT(P, NodeList,p, t)

2: count← p.count/(t− (t− 1)(τ/2))

3: prob← p.prob/(t− (t− 1)(τ/2))

4: p.internal ← 1

5: node← new Node()

6: for i← 1, t do

7: pnew ← new Partition()

8: pnew.count← count

9: pnew.prob← prob

10: P.add(pnew)

11: node.add(pnew)

12: end for

13: NodeList.add(node)

14: end procedure

5.3.3 Parent Splits

All partitionspj ∈ P are contained within apartition node. The number of children in

each partition node is initialized aslτh−1
. The partition nodes are used to group together

partitions and keep track of local node configurations as thetree changes.

The partition recordspj.countuntil u = 1. As described in theLeaf split section, the

partition returns asplit flagto theNVTreeclass. At this point theNVTreetriggers aParent

split on the partition node containing the flagged partition. The parent node is split in such

way that∆lτh−1
additional partitions are added to the existing partition node such that the

tree growssideways. If Parent splitis used with buffered inserts, all values stored in the

buffer are calculated into the partition node before splitting. The amount of partitions to

add depends on four factors: a) number of partitions currently in the node, b) the initial

utilization of the tree, c) total number of values in each partition, and d) theτ value used.

We first need to find how many unique values are stored in each partition noden.
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n.unique=

⌈

(
∑

j∈n pj.count)× (n.count− (n.count− 1)× τ
2
)

n.count

⌉

(5.3)

Equation 5.3 defines how we determine the number of unique values found in the current

partition node. We start by summing up the number of values ineachpj ∈ n. For

example, ifτ = 0, we return all values as unique. Ifτ ≥ 0, we filter out any doubled

overlap values.

The unique values can be considered a subset of the collection. Using the number of

values we can calculate thel0 given the desired utilization. Theτ andl0 is then used to

look up the correctlτ using values from Table 3.1.

Now we need to focus onpj.countandpj.prob for all partitions in the partition node.

Equations 5.4 shows how the probability is calculated for each partitions in the node and

then all partitions in the node are updated with the new value.

pj.prob =
pj.prob× lτh−1

lτh−1
+ ∆lτh−1

(5.4)

At the same time values from all partitions in the node must now be divided tolτh−1
+∆lτh−1

partitions. How the∆lτh−1
is calculated depends on theτ value and desired utilization.

Equation 5.5 shows how the values are distributed to each partition in the new node.

pj.count=
pj.count× lτh−1

lτh−1
+ ∆lτh−1

(5.5)

Algorithm 4 describes how theParent splitis implemented. We start by getting the parent

node of the partition to be split. From the parent node we can retrieve the partition count

(partition siblings). We then calculate how many partitions are needed using the unique

values found from the current partition node, theτ and desired utilization. We then cal-

culate how values are distributed and assign the new probability to each partition. The

current partitions must be updated and the new partitions added to the current partition

node.
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Algorithm 4 Parent Split Method
1: procedure PARENTSPLIT(NodeList,pj)

2: node← NodeList[pj]

3: size← node.PartitionCountInNode() // size=old partition count=lτh−1

4: delta← GetDeltaCount(node) // delta=∆lτh−1

5: pnew.count← |node.values|×size/(size+delta)

6: pnew.prob← pj.prob×size/(size+delta)

7: for i← 1, sizedo

8: pi ← node[i]

9: pi.count← pnew.count

10: pi.prob← pnew.prob

11: node.update(pi)

12: end for

13: for i← 1, deltado

14: pi ← new Partition()

15: pi.count← pnew.count

16: pi.prob← pnew.prob

17: node.add(pi)

18: end for

19: end procedure

5.3.4 Hybrid Splits

The Hybrid split is a combination of theLeaf splitandParent splitstrategies. We im-

plemented theHybrid split to use the partition count in each node as the deciding factor

for maintenance tasks to use. We initialize each partition node with lτh−1
partitions. If

lτh−1
< lτ0 , theHybrid split will choseParent splitas first split. As theLeaf splitgener-

ates a partition node containing two, or a few, partitions, we have space to grow the node

sideways. Since theParent splitcan grow more than a single partition each time, we turn

to leaf partition when the partition count in the node is equal or larger thanlτ0 .

Algorithm 5 shows how we access the partition count in the node to determine what

task to use. TheHybrid split simply decides between theLeaf split and Parent split

strategies.
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Algorithm 5 Hybrid Split Method
1: procedure HYBRIDSPLIT(pj)

2: count← Node(pj).getPartitionCountInNode()

3: if count>= lτ0 then

4: LeafSplit(pj)

5: else

6: ParentSplit(pj)

7: end if

8: end procedure

5.3.5 Re-Generation

When Re-Generationis used, the partition only records thepj.count until u = 1. At

this point the whole tree is re-computed and re-built based on the current collection size.

The same rules apply topj.prob as withNo split, since no actual partition split is done.

Thepj.probstays unchanged until it is re-calculated based on the new overlap configura-

tions.

5.4 Implementing Partition Files

The partition files are created and stored using thePartitionFilesclass. The class stores

two dictionary objects; each dictionary holds buckets for different maintenance tasks.

When usingLeaf splitwe store descriptors inserted into each partition and forParent split

we store descriptors inserted into all partitions in specific partition node. When using

Hybrid split both dictionaries are used, depending on the state of the current partition

node. When we switch fromLeaf to Parentsplit we must also re-organize the descriptors

in the dictionaries.

When partition files are used with buffering we go through the same procedure as inserting

values into partitions. We store the descriptors the same way as values, only they will take

more space in the buffer. Using partitions with the buffer leaves smaller buffer space for

values. For each partition touched with insert, we insert 132 bytes into the buffer for the

descriptor, 128 bytes are stored for the 128 dimensions of the descriptor and an additional

4 bytes for the descriptor identifier. The actual value pair stored only takes 8 bytes, which

means that the buffer fills up more quickly using partition files.
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5.5 More Efficient Approach

Our proposed approximation uniform distribution method generates an extremely high

number of random values, as we sequentially traverse all partitions for each inserted de-

scriptor and generate a random number in every partition.

EXAMPLE 8.

Assume we have configuration [8,8,8,7] andτ = 1. We insert using 250,000 images

having on average 513 descriptors, for a total of 128,250,000 descriptors. For each

descriptor we need to sequentially traverse a minimum of 43,875 partitions. We therefore

need at least 128,250,000× 43,875 random numbers for this single experiment. The

average time of generating single random number was gained byprofiling the time taken

to execute 1,000,000,000 random numbers. Single random float execution time is about

4.5 × 10−6 seconds. This experiment would thus take a minimum of about 7,000 hours,

just to generate the random numbers.

Our more efficient approach was to useV to estimate the number of inserts as the tree

grows. The only maintenance tasks effected byV is theLeaf andHybrid split. This is

due to the tree height only growing for these tasks. UsingNo split, Re-Generationand

Parent splitdoes not changeV throughout the experiments. For theLeaf andHybrid split,

we have to adjustV as the tree grows downwards.

SinceV is not an integer, we sum up theleftover(V − ⌊V ⌋) for each inserted descriptor

until the leftover is larger than1. At this point we increment the number of estimated

values to⌊V ⌋+ 1 for that insertion and decrementleftoversby one. This adjusts theV to

include theleftovers.

The actual size ofV also needs to change duringLeaf Split. Equation 5.6 shows how

we calculate the estimation ofV as the tree grows usingLeaf split. The increase ofV

is in relation toτ ; whenτ = 0 we have no increase inV . This is as expected since the

insertion path through the tree never encounters overlapped nodes. The valuet in eq. 5.6

the number of partitions we initialize the new partition node.

V = V +
(

∑

p.new −
∑

p.old
)

= V +

(

t× p.old

t− (t− 1) τ
2

− p.old

)

= V +

(

p.old×
(

t

t− (t− 1) τ
2

− 1

))

(5.6)
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The changes toV are local in the tree so the estimate only changes slightly with eachLeaf

split. Part of implementing the new method was adding a new list (A) containing|P | float

numbers. The valueaj ∈ A represents the odds for avalue pairbeing inserted intopj.

All values inA are initialized as1 and will store float numbers in the range 0 to 1.

When usingLeaf, ParentandHybrid split, we need to change the odds of access inaj

based on howpj.probchanges. We use the same method to calculateaj as we dopj.prob

only hereaj is based on the initial value1, not1/|L0| as withpj.prob. The probability of

each partition is used to calculateV when splitting as defined in equation 5.6.

Let us look at algorithm 6 for implementation of theMore Efficient Method. The method

starts by iteratingV times to search for partitions to insert. We start by selecting a random

integer between[0, |P | − 1]. We use this integer to retrieve a partition from the partition

list P . Since theLeaf splitgenerates internal partitions, we check for internal statein the

selected partition. If the partition is internal, we selecta new random integer and check

again until we find leaf partition. When a leaf partition is found we generate a random float

number and compare that number toaj of the selected partition. It the random number

is smaller thanaj, then this partition is selected for insertion; otherwise,we repeat the

procedure. Using this method, large scale experiments became feasible. Note that this

method does not affect the simulation results.

Algorithm 6 More Efficient Method
1: procedure FINDPARTITIONS(V)

2: for i← 1, V do

3: while found=0do

4: insertid← random.randint(0, |P | − 1)

5: if P[insertid].internal=1then

6: found← 0

7: else

8: if A[insertid] > new Random()then

9: found← 1

10: InsertIntoPartition(insertid)

11: else

12: found← 0

13: end if

14: end if

15: end while

16: end for

17: end procedure
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5.6 Summary

In this section we have described the implementation of our NV-tree simulator. The sim-

ulator inserts descriptors based on the definitions in Sections 3 and 4. We described the

implementation of buffered inserts vs. direct inserts and how partition files would as-

sist maintenance. We also define more effective implementation to simulate the uniform

distribution into growing NV-tree. In Section 6 we describeour simulation experiments

using the NV-tree simulator.



Chapter 6

Simulation Results

In this chapter, we describe the experimental results obtained from the simulation model

described in Chapters 4 and 5. In Section 6.1 we detail the simulation environment and

initial configurations for our experiments. In Sections 6.2to 6.5 we focus on key results

from our experiments and describe the results. Section 6.2 analyzes the effect of buffering

inserts on a baseline strategy ofRe-Generation. Section 6.3 examines the effect of our

split policies. We study the effect of using partition files to limit the cost of re-projections

in Section 6.4. Finally, in Section 6.5 we study the effects of different buffer sizes on the

Hybrid split policy. Then we summarize the results in Section 6.6.

6.1 Simulation Environment

All experiments were run on a Beowolf Cluster with Rocks Distribution containingnine

compute nodes. Each node consists of dual Intel Pentium(III) 1400 MHz CPUs and 2GB

main memory.

The workload models a collection of high-quality press photos, which starts out at about

30 thousand photos or approximately 36 million descriptors. The inserted images con-

sist of approximately 250,000 high-quality press photos provided by a local newspaper,

Morgunblaðið. SIFT descriptors were extracted from the images and an external lookup

file was created with the exact number of descriptors for eachimage. The lookup file

is used as the basis for our inserted object collection. The total number of descriptors

extracted from our workload images were approximately 125 million.

The experimental setup was described in Table 4.1 on page 17.To control the experiment

we supply the simulation withfiveconfigurations defined in Table 6.1. All maintenance
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Description Values
Maintenance task no-split, re-generation, leaf split, parent split, hybrid split
Buffer flag 0, 1
Buffer size 32MB, 64MB, 256MB, 512MB (default), 768MB, 1024MB
Partition flag 0, 1
τ factor 0.00, 0.25, 0.50, 1.00

Table 6.1: User defined simulation model parameters.

tasks are simulated with and without the buffer additions. For all simulations the buffer

is set to 512MB (exception in Section 6.5, where additional buffer size simulations are

conducted withHybrid split only). Partition files are only applicable withLeaf, Parent

andHybrid splits. The fourτ factors are used for all simulations.

6.2 Experiment 1: Direct vs. Buffered Inserts

In this experiment, we ran a baseline policy ofRe-Generation. Descriptors are inserted,

either directly to the index or indirectly through the descriptor buffer. Once the first

partition splits, processing is halted and the index is rebuilt from the collection. During the

index construction, each leaf node is filled to 67% of capacity, leaving room for insertions.

The assumption behind this policy is that since the inserts are uniform, many partitions

will be about to be split, and hence rebuilding the index can save many collections scans.

Here we focus on the costs of the insertion and ignore the costof the index builds, as we

wish to understand the effects of buffering on insertion performance.

Figure 6.1 shows the insertion costs of this policy, for fourdifferent values ofτ ∈
{0.0, 0.25, 0.5, 1.0}, with and without the insertion buffer. Thex-axis shows the num-

ber of descriptors that have been inserted, in millions, in addition to the nearly 36 million

descriptors in the original index, while they-axis shows the total time of the insertions

(note the logarithmic scale). As the figure shows, the performance difference is enor-

mous, as without buffering each insert requires two expensive random disk operations,

while with buffering the index is occasionally scanned and written sequentially, resulting

in fewer and less expensive disk operations. We therefore only consider buffered inserts

in the remainder of this thesis.

It is interesting to observe the evolution of the index size during this experiment, shown

in Figure 6.2. Thex-axis shows the number of inserted descriptors as before, while the

y-axis shows the size of the NV-tree index at each time, for each value ofτ for both direct

and buffered inserts, as well as the size of the collection. As the index is periodically
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Figure 6.1: Insertion cost for Re-Generation with and without the inser-
tion buffer (varyingτ ; no partition files; 512MB buffer).
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Figure 6.2: NV-tree size for Re-Generation with and without the inser-
tion buffer (varyingτ ; no partition files; 512MB buffer).

rebuilt, the size and utilization are regularly reset to thedesired value; these points are

seen as a step-wise growth of the NV-tree index. In between, the partially empty partitions

are slowly filling up until a split is required, triggering the index rebuild. There are two

key observations to be made.



Arnar Ólafsson 39

First, as Figure 6.2 shows, the index size is highly dependent upon the value ofτ . For

τ = 1.0, the index is roughly as large as the collection, while forτ = 0.0, the index

remains at less than 2.5 GB, or about 12% of the collection size. While our simulation

model does not capture the effects of buffer management, having a smaller index will

result in much improved buffer management performance, in particular when the index

can fit in memory. In our setting, a server with 4 GB of memory could easily fit both the

index and the insertion buffer, leading to excellent performance.

Second, with buffered inserts, the index growth invariablyoccurs later in the insertion

process. In the case ofτ = 0.0, this is particularly obvious, as then the insertion buffer

can store the first 60 million descriptors or so, while without buffering the index starts

growing after about 20 million descriptors. As a result, thecollection is larger when the

index is re-built, leading to a larger index. Withτ = 1.0, relatively fewer descriptors fit

in the insertion buffer as each descriptor goes into many partitions and indexre-builds

are only postponed briefly. As we shall see later, postponingthe splits may have an

adverse effect on the overall performance. In this experiment, however, the effect is only

positive.

6.3 Experiment 2: Split Policies

Turning to the effect of split policies, Figures 6.3, 6.4 and6.5 show the total cost of

insertions and splits for the five different split policies for τ = 0.0, τ = 0.25 andτ = 0.5,

respectively. Before analyzing the performance of the different policies, a few effects are

worth noting. First, as these figures only consider bufferedinserts, the total cost is much

lower than in Figure 6.1. Second, due to the effect of buffering and since the simulation

model only considers the cost of disk operations, no cost is registered until after 60, 35

and 20 million descriptors have been inserted, respectively.

The two simple policies ofNo splitandRe-Generationare included as baseline references.

No split affects query costs negatively, as it negates the key feature of the NV-tree that

each query is answered in a single disk read. Since query costs are expected to dominate

most applications, theNo splitpolicy should not be used. TheRe-Generationpolicy may

not be feasible in many applications, as it requires haltingall processing while index re-

construction takes place. Figures 6.3 through 6.5 show, however, that these policies are

very efficient for insertions.

Turning to the three main split policies, we observe thatLeaf splitgenerally has the worst

performance. Consider first Figure 6.3, whereτ = 0.0. In this case, no partitions overlap
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Figure 6.3: Insertion and split cost of the different split policies (τ = 0.0;
buffered inserts; no partition files).
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Figure 6.4: Insertion and split cost of the different split policies (τ =
0.25; buffered inserts; no partition files).

and each descriptor is inserted into a single partition. Thereason for the higher insertion

cost ofLeaf splitis that when the insertion buffer is flushed, many partitionsare split, re-

sulting in a significantly larger index. Therefore, the insertion buffer fills up more rapidly,
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Figure 6.5: Insertion and split cost of the different split policies (τ = 0.5;
buffered inserts; no partition files).
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Figure 6.6: NV-tree size for Leaf, Parent and Hybrid splits without par-
tition files (varyingτ ; buffered inserts).

leading to further splits, and so on. In Figures 6.4 and 6.5, whereτ = 0.25 andτ = 0.5,

respectively, very similar effects are seen.
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Figures 6.3, 6.4 and 6.5 also show thatParent splitgenerally has the best overall perfor-

mance. As described in Section 4, however, the aggressive splitting of this policy is likely

to lead to lower result quality. TheHybrid split policy is therefore recommended.

Figure 6.6 shows how the tree size increases with our main split policies, forτ ∈ {0.0, 0.5}.
We observe thatLeaf splitshows the largest increase in tree size, and as theτ is larger,

the greater is the jump from other policies. TheParent splitshows the lowest increase

in size after 125 million inserted descriptors. TheHybrid split, on the other hand, shows

lower index sizes until around 85 million inserts where it jumps in between the Leaf and

theParent split. A similar effect is observed for allτ factors. This observation supports

theHybrid split as the recommended split policy.

6.4 Experiment 3: Partition Files

Figures 6.7, 6.8 and 6.9 show the performance of three split policies with and without

partition files forτ = 0.0, τ = 0.25 andτ = 0.5, respectively. Using partition files is

much more efficient in all cases for two reasons. First, when splits are performed, only

a relatively small partition file must be read instead of scanning the whole collection.

Second, when the actual descriptors must be stored in the insertion buffer, it is effectively

about 90% smaller than before; as was mentioned above, having a smaller insertion buffer
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Figure 6.9: Insertion and split cost of different split policies with and
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can actually improve performance. Due to these effects, thesavings in total execution

time are about 97.7% forτ = 0.0 and over 99% forτ = 0.5. Note that for an index with

no overlap, partition files can actually replace the descriptor collection, resulting in even

further savings.
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Figure 6.10 shows the tree size of the three main split policies using the partition files;

it can be compared to Figure 6.6. As can be seen, theLeaf splitpolicy needs far greater

space than the other policies needing around 80 GB of space after 150 million inserted

descriptors usingτ = 0.5. As before,Parent splitgenerally perform best andLeaf split

worst, but due to quality concerns and moderate disk space requirements theHybrid split

is the recommended policy.

6.5 Experiment 4: Buffer Sizes

Turning to different buffer sizes, Figure 6.11 shows the total cost of insertions and splits

for six different buffer sizes, forτ ∈ {0.0, 0.25, 0.5}, for theHybrid splitpolicy only. The

x-axis shows the different buffer sizes in megabytes, while they-axis shows the total cost

of the insertions (note the logarithmic scale on thex andy-axis). As the figures shows,

the performance difference with and without partition filesis very high as described in

Section 6.4. There are two key observations to be made.

First, without the partition files there is a small increase in total cost as the buffer size is

increased. This shows that smaller buffer sizes can be more beneficial. It is interesting

to see how using 256MB and 512MB buffer sizes withτ = 0.0, in particular, shows
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Figure 6.11: Insertion and split cost for Hybrid split (varying τ ; with and
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increased total cost. This is explained by additional splitcosts generated very late in the

insertion process, when the collection is larger.

Second, increasing the buffer size has a positive effect on the total cost using partition

files. Usingτ = 0.5 and 32MB buffer takes around 120 hours to insert 250,000 images.

Increasing the buffer size to 1,024MB decreases the total cost to 4 hours.

6.6 Summary

In our simulations we have seen that using the buffer improves the performance of inser-

tions by orders of magnitude. We have also seen that using theHybrid split policy is the

best choice for inserts. TheLeaf splitpolicy generates very large and deep tree with a

small number of partitions in each leaf node. TheParent splitpolicy creates a smaller tree

but with a very high number of partitions in each leaf node. Wetherefore recommend the

Hybrid splitpolicy, since it will work to maintain the balanced structure of the tree and we

expect the search quality to be maintained. UsingRe-Generationshould be investigated

further to see, whether, ways to maintain the index availability during re-generation can

be implemented. This could makeRe-Generationthe most efficient split policy. Using

partition files shows a large decrease in total cost of insertion due to lower re-projection

cost when split policies are executed but increases the diskspace needed. If disk space is
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not an issue, we recommend using partition files. Using partition files creates a redundant

database collection. It could be argued that the partition files could be substituted for the

actual database collection to limit the redundancy further. As the NV-tree grows down-

wards and sideways usingLeaf splitandParent split, respectively, it can affect the search

results. While we do not investigate the effects of split policies any further in this thesis,

however, we experiment with the effect of theτ value on search quality and performance,

as theτ value determines the partial overlap and is a major factor inthe index size and

insertion performance. In Section 7 we therefore analyze the effect of partial overlapping

on the search performance and quality.



Chapter 7

Effect of τ on Search Quality and

Performance

In this chapter we run detailed search experiments on live data using the flexible con-

figuration, as described in Section 3. The flexible configuration was implemented into

the balanced NV-tree to investigate the effect of partial overlapping on search quality and

performance. The query searches were conducted without being affected by insertions

and maintenance. Our simulation model was designed to simulate a single index. Run-

ning our experiments in this chapter using a single index resulted in poor quality results,

however, we therefore added experiments using two and threeindexes. In (Lejsek et al.,

2008), single index search has been solved using theunbalancedNV-tree; by combin-

ing smaller leafs, better line selections and other configurations, theunbalancedNV-tree

is quite effective for single index searches. A single indexcan return more false posi-

tives, but adding more indexes to the NV-tree has shown to decrease false positives. In

Section 7.1, we detail the experimental environment and initial configurations for our ex-

periments. In Section 7.2 we run extensive query searches and analyze the results. In

Section 7.3, we analyze the search performance of the flexible configuration. We then

summarize the results in Section 7.4.

7.1 Experimental Environment

The data collection was created using 29,277 high-quality photo images, generating a

total of 35,484,770 local descriptors. Each descriptor is a128 dimensional SIFT fea-

ture vector. We created three different NV-trees using eachof the five values ofτ ∈
{0.0, 0.25, 0.5, 0.75, 1.0}. Each of the NV-trees is unique in two ways; a) different lines
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are selected for each node in the index and b) different overlap is created, based on theτ

value.

The workload consists of 120 images extracted from the data collection. For each original

image, 26 image modifications were created. Each modification is described in Table 7.1.

The total workload, thus consisted of 3,120 query images.

All experiments were run on an Intel Xeon 3.20GHz with 1024KBL2 cache and 2GB

memory. The same computer was used to minimize hardware influence on timing results.

No specialmemory warmingwas conducted before or between queries. Since different

NV-trees were used each time, this was not considered necessary.

The NV-tree internal buffer size was set to 1,000 partitionsor 128MB. The internal buffer

manager uses LRU (Least Recently Used) algorithm to exchangepartitions to and from

the buffer manager.

The NV-tree offers stopping rules to increase performance.We repeated all experiments

using stop rules for allτ values. More detailed description on the stopping rules algorithm

can be found in (Lejsek, Ásmundsson, Jónsson, & Amsaleg, 2006).

When more than one NV-tree is used, the descriptor distance iscomputed in the NV-tree

using median rank distance. The NV-tree evaluates every descriptor as nearest neighbor

using themedian rank aggregation(MEDRANK) (Fagin, Kumar, & Sivakumar, 2003).

The MEDRANK needs to find the samedescriptor idin more than half of the indexes to

return it as a positive result. When the samedescriptor idis found, the image containing

that descriptor receives avote. As more descriptors are found, the morevotesthe image

collects. All images that receive avoteare written to a result file. The image with the

highest vote score is considered the winner and the next competitor is the image that

scores second most votes.

For the query results we focused on: a) the percentage of images found over all image

variants, b) number of descriptors needed to finish the search, c) number of descriptors

found for the winning image, d) number of descriptors found for the next competitor, e)

total pin counts and CPU ticks for each pinned partition, and f) the total search time.

The NV-tree uses its own internal buffer manager. When a partition is requested it is read

into memory and pinned. The operating system uses an additional buffer manager that

can use performance techniques to transfer data to and from disk such as pre-fetching.

When the NV-tree requests a partition into its own memory manager it may have already

been moved into memory from disk by the operating system.
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Modif. Description Class. Modif. Description Class.
AFFINE 1 Shear in X Easy MEDIAN 9 9x9 median filter Med.
AFFINE 2 Shear in Y Easy NOISE 5 Applied 5% noise Med.
AFFINE 3 Shear in X and Y Easy PSNR Watermark removal Easy
CONV 1 Low brightness Med. RESC 200 Image scaled to 200% Med.
CONV 2 High brightness Med. RESC 75 Image scaled to 75% Easy
CONV 3 Sharpen Med. ROT 10 10◦ rotation Easy
CONV 4 Strong sharpen Hard ROT 90 90◦ rotation Easy
CONV 5 Emboss filter Hard ROTCROP 2 2◦ rotation and crop. Easy
COTR 1 High contrast Med. ROTCROP 5 5◦ rotation and crop. Easy
COTR 2 Low contrast Hard ROTSCAL 2 ROTCROP 2 + scaling Med.
CROP 75 Crop 75% from cent. Easy ROTSCAL 2 ROTCROP 5 + scaling Med.
JPEG 15 15% quality Med. SS 1 Change in color space Med.
JPEG 80 80% quality Easy SS 2 Change in color space Easy

Table 7.1: Image modifications variants.
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Figure 7.1: Distribution of CPU ticks

To see whether a partition had been read from disk or memory, we added a time measure-

ment of CPU ticks around all pin requests. We created a histogram using the CPU ticks

to determine the local boundary between the pinsfrom memoryand from disk. A mod-
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Figure 7.2: Average top score result for 3,120 images (varying τ ; 1–3
indexes).

erate value was picked as a local minimum threshold value andpin counts were divided

into groups offrom memoryor from diskpins. We choose to use 3,000,000 CPU ticks

(≈ 9x10−4 seconds) as a divider between the two groups. Figures 7.1(a)and 7.1(b) show

the distribution of CPU tick counts usingτ = 0.0 andτ = 1.0, respectively. Both figures

show both the overall distribution, and the detail of the fastest reads. Our chosen value

is located in bucket number 75, but as Figures 7.1(a) and 7.1(b) show the results are not

sensitive to that value.

7.2 Experiment 1: Search Quality

In this experiment, we ran 3,120 query images on each of thefivebalanced NV-tree vari-

ants. Image types like the CONV4, CONV5 and COTR2 are extreme modifications and

have been shown be the least effective query modifications using the NV-tree. Each query

was repeated using1, 2 and3 indexes.

Figure 7.2 shows the aggregated average top score over the five different values ofτ ∈
{0.0, 0.25, 0.5, 0.75, 1.0}. Thex-axis shows differentτ values, while they-axis shows

the average top score. For each modification we aggregated the top score and divided

by the number of modifications. As the figure shows, the numberof images at top rank
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Figure 7.3: Image modification ranking

increases slightly as theτ value increases. In this figure there are two key observations to

be made.

First, using only a single index returns a very low top score;this is due to configuration

in thebalancedNV-tree. As explained in the chapter introduction, this hasbeen solved

using theunbalancedNV-tree.

Second, the difference in overall quality of the query search for two indexes is 2.5%

betweenτ = 0.0 andτ = 1.0. For threeindexes the difference is only 1.1%. Going from

two indexes to three indexes increases the quality on average by 1.1%. Adding the stop

rules decreases the overall quality usingtwo indexes by an average of 5% and forthree

indexes the decrease is only 3.1%.
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Figure 7.4: Average descriptor ratio for 3,120 images (varying τ ; 1–3
indexes).

Figure 7.3 shows the average rank of each modification byτ value usingthree indexes.

Thex-axis showsτ values grouped by image modifications, while they-axis shows the

average search rank (note the logarithmic scale). As the figure shows, the ranking is very

high, almost always close to1 for the easy and medium modifications. We also see that

the hard modifications have a very low rank.

In Figure 7.3 we have one key observation, namely that different τ values do not sig-

nificantly affect the ranking of the result images. For modifications like COTR2 and

MEDIAN9 we see that someτ values show lower ranking with higherτ values. Fig-

ure 7.3(b) shows in more detail three easy modifications (note they-range) found in Fig-

ure 7.3(a). As seen the query images are found in almost all cases. Forτ ∈ {0.5, 1.0} for

the AFFINE3 modification we did not have the correct image in top rank in two cases of

120. The difference between the indexes is a) line selectionon creation and b)τ value. It

is more likely that the lower rank is due to worse lines found for that modification. Since

lower τ indexes return the images with higher rank, we cannot assumethat only theτ

value is causing the images not to be found.

Figure 7.4 shows the aggregated descriptor ratio over the five different values ofτ ∈
{0.0, 0.25, 0.5, 0.75, 1.0}. Thex-axis shows differentτ values, while they-axis shows the

average descriptor ratio. The descriptor ratio is aggregated for each image modification

and the average found. As the figure shows, the descriptor ratio increases slightly with a

higherτ value. In this figure there are two key observations to be made.
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First, as expected, the ratio for a single index is very low. This corresponds to the result in

Figure 7.2 as the single index fails to find any result, and theaverage ratio between winner

and competitor descriptors is very low. Using only a single index with a small collection

introduces noise on into the search. Descriptors are being returned as false positives and

the correct images are not being found. Adding the second index to the NV-tree reduces

this noise and filters out false positive descriptors. With larger collections the noise level

should decrease.

Second, it is interesting to see that using stop rules results in a higher descriptor ratio than

searching all descriptors in the query image. When using stoprules we can experience

that larger set of meaningfully nearest neighbors can be positioned either; a) early in the

search or b) late in the search. When the set is positioned early, we get a higher descriptor

ratio since either the correct image or false positive has been found and many of the

competitors will not be searched. If the set is positioned late in the search we maymiss

the image in the search. The higher descriptor ratio in our experiments is most likely due

to meaningful descriptors found early in the search.

Figure 7.5 shows the aggregated descriptors needed using stop rules over the five different

values ofτ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. Note that without stop rules all descriptors are

searched, and therefore we only focus on stop rules for descriptors needed. Thex-axis

shows differentτ values, while they-axis shows the average number of descriptors needed

to finish the search using stop rules. The results are aggregated for each image modifi-
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cation and the average found. As the figure shows, the number of descriptors needed to

return either found or not found decreases considerably with a higherτ value using the

two and three indexes. In this figure there are two key observations to be made.

First, using single index results in a high number of descriptors needed. This is expected

as the search hardly finds any images matching the query images. This leads to the search

continuing until the NV-tree stops the search confident thatthe correct image will not be

found.

Second, as more indexes are used, the stop rule gains confidence earlier in the search.

Using τ = 0.0 with three indexes need on average 52 descriptors to stop searching and

only 39 descriptors withτ = 1.0. Using two indexes the same values increase to 65

descriptors and 45 descriptors, respectively. On average 25% to 30% fewer descriptors

are needed usingτ = 1.0 thanτ = 0.0.

7.3 Experiment 2: Search Performance

In this experiment, we ran 3,120 query images on each of thefivebalanced NV-tree vari-

ants. For each query image we recorded the pin count and the CPUticks needed to

fetch the partition into the internal buffer manager. We also recorded the total number

of partitions needed to finish searching all 3,120 images andthe total time needed for all

images.

Figure 7.6 shows the total NV-tree size using 1, 2 and 3 indexes over the five different

values ofτ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. Thex-axis shows differentτ values, while the

y-axis shows the size in gigabytes. In this figure there are twokey observations to be

made.

First, the index difference betweenτ = 0.0 andτ = 1.0 is very large. Using a smaller

τ value decreases redundancy in the NV-tree and creates in turn a smaller index. Using

τ = 0.0 will generate a 92% smaller index thanτ = 1.0. Adding indexes to the search

results in a linear increase in the total disk size needed.

Second, 32-bit operating systems offer up to 4GB of main memory. This means thatfour

indexes usingτ = 0.25 would fit into the main memory andtwo indexes usingτ = 0.5.

Being able to fit the index into memory will greatly improve performance as we will

see.

Figure 7.7 shows the average number of partitions needed to search using 1, 2 and 3

indexes over the five different values ofτ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. Thex-axis shows
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Figure 7.7: Total reads needed (varyingτ ; 1–3 indexes).

different τ values, while they-axis shows average total number of partitions needed for

each query image for each index. Fortwo andthreeindexes, the data points are divided

by the number of indexes and number of images. This is done to compare all indexes

based on average value of single image.
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Figure 7.8 shows the percentage of pins from disk using 1, 2 and 3 indexes over the five

different values ofτ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. Thex-axis shows differentτ values,

while they-axis shows the percentage of pins from disk. In the Figures 7.7 and 7.8 there

are three key observations to be made.

First, as seen in Figure 7.7, when using fewer indexes and stop rules we need to search

more partitions. This corresponds to Figure 7.5 where we seethat we need a larger set

of query descriptors to finish the search with fewer indexes.When searching all query

descriptors we need approximately the same number of partitions to search. The only

difference is that using a single index requires a single disk read and then an additional

disk read for each index added.

Second, as figure 7.8 shows, searching with stop rules needs ahigher percentage of reads

from disk than searching all query descriptors. Using stop rules uses on average 96%

fewer partitions over allτ values, than searching all query descriptors. Since we do

not warm up the memory, large portition of the partitions come from disk using stop

rules.

Third, usingτ = 0.0 and 3 indexes, each index size is 448 MB (1,344 MB total) and

the internal buffer manager only requires 0.07% of the its partitions being read from disk,

despite not warming the buffer. When theτ value is increased, the index gets larger and

more disk reads are required during the search. Forτ = 0.5 and 3 indexes, the index is
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Figure 7.9: Query search time for 3,120 images (varyingτ ; 3 indexes).

1,500 MB (4,500 MB total) and we need approximately 58% of therequired partitions to

be read from disk and withτ = 1.0 the index has reached 5,484 MB (16,452 MB total)

and we need 87% of its partitions from disk. The internal buffer manager was configured

to use 128 MB as its internal memory; even so the operating system is storing almost all

partitions in the main memory whenτ = 0.0. As theτ value grows, the main memory is

not able to keep all partitions in memory so we have increaseddisk access.

Figure 7.9 shows the time taken to search 3,120 images using 1, 2 and 3 indexes with and

without stop rules for five different values ofτ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. Thex-axis

shows differentτ values, while they-axis shows the search time in hours. Note that real

time measurements can be affected by access to disk and CPU by other processes. Run-

ning the same experiments again could result in slightly different values, but the overall

trend should be the same. In Figure 7.9 there are three key observations to be made.

First, as fewer indexes are used, the better performance is measured. This is expected

since fewer partitions need to be read from disk. As the figureshows, adding an index

to the NV-tree increases the search time on average 35% for stop rules and 44% for full

search.

Second, the performance difference betweenτ = 0.0 andτ = 1.0 is very high. Using

τ = 0.0 has 98.7% better performance thanτ = 1.0 using three indexes. The average

search time is 1.8 seconds usingτ = 0.0 and 143 seconds forτ = 1.0. This shows that

minimizing redundancy in the NV-tree has enourmous effect on performance.

Third, using stop rules with the flexible configuration improves the performance even

more. The average search time is 0.19 seconds usingτ = 0.0 and 3.85 seconds for
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τ = 1.0. Usingτ = 0.0 has 95% better performance thanτ = 1.0 using three indexes

and stop rules.

7.4 Summary

In our experiments we have seen that reducing theτ value only slightly decreases the

search quality in return for a huge improvement in search performance. Usingthree in-

dexes we have a 1.1% decrease in quality, 92% smaller index and a 98.7% improvement

in performance. We recommend adjusting theτ value to maximize the amount of par-

titions stored in the main memory. We have also seen that using stop rules improves

performance even further. Usingτ = 0.0, we get 3.1% decrease in quality usingthree

indexes but gain 94.9% improvement on performance. Using the memory as primary

storage for the NV-tree is extreamly beneficial for performance. Redundancy is added to

the NV-tree, both by usingτ > 0 and by adding additional indexes to the NV-tree. We

recommend using as lowτ value as possible. Usingτ = 0 is recommended, if enough

buffer space is available. When the index is larger than the available buffer space, we

recommend selecting the lowest possibleτ > 0 value, as it will continue to support single

disk read for each query descriptor. Search quality can be improved by adding indexes to

the NV-tree and selecting lowτ value will assist in keeping larger portion of the indexes

in the buffer.



Chapter 8

Conclusion

In this thesis we have addressed the implementation and performance of dynamic behav-

ior of the balanced NV-tree, using a detailed simulation model. We have experimented

with various parameters that effect the insertion cost and index size. In particular, we

have observed how the overlap (τ value) has a major impact on the NV-tree. Based on

this observation, we also investigated the effect of overlap on search quality and perfor-

mance using live data. From our simulations and query experiments we make three key

conclusions.

First, we observed that using an insertion buffer is a very efficient technique. Furthermore,

using partition files results in very significant performance improvements. Note that for

an index with no overlap, the partition files can actually replace the descriptor collection,

resulting in even further savings. Interestingly, using a large buffer shows improved per-

formance only when used with partition files. We recommend that buffered insertions

and partition files should be used together to maximize the insertion and maintenance

performance.

Second, although theNo splitandRe-Generatepolicies show good performance, they are

not always applicable in practice, due to high query costs and significant unavailability, re-

spectively. UsingRe-Generationshould be investigated further, however, to see whether

ways to maintain the index availability during re-generation can be implemented. This

could makeRe-Generationthe most efficient split policy. From our three basic split poli-

cies, we see thatLeaf splitshows the worst insertion cost and creates a large index. The

Parent split, showed the lowest insertion cost, but due to repeated splitting this technique

can lower the search quality. Therefore, we recommend usingthe Hybrid split policy,

which performs similarly toParent split, but avoids the lower search quality.
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Finally, the simulations indicated that overlap is a key factor in determining performance.

We showed that reducing the overlap improves the search performance significantly with

minimal effect on search quality. When using the balanced NV-tree configuration, we

need to use 2-3 indexes. Usingno overlap, the search quality is 1-3% worse then usingfull

overlap, but we have around 95% improvement in performance. The mainreason for this

performance improvement is improved buffer performance due to smaller indexes.

There is a trade-off using redundancy. First, reducing theτ value will decrease the index

size and improve overall performance but will decrease the search quality. Second, adding

additional indexes will increase the space requirements, but improves the search quality.

Both scenarios can work together, adding additional indexesto improve search quality

can be countered with a smallτ value for performance.

We recommend selectingτ = 0 for two main reasons. First, it maximizes the insertion

performance and, secondly, we fit a higher proportion of the index in memory. When the

collection is small, the whole index can actually fit into memory, resulting in an extremely

efficient search. As the index grows, however, more and more disk reads are needed due

to memory limitations. At this point, increasing theτ value could be beneficial, even if it

increases redundancy and the index size gets larger.
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