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Abstract

"I am fairly sure of this that none ever willingly errs".

Socrates

The motivation for this research is an increased call for highly interactive
games in virtual realities with intelligent Non-Player Characters (NPCs). The
NPCs currently implemented in computer games are rarely autonomous, al-
though some have an emotional drive and a set of goals to chase. Their ac-
tual interactions are usually pre-set or very limited. Additionally the games
themselves have pre-set narratives that result in games that the average player
does not care to play numerous times, simply because the game is always the
same.
The question addressed in this thesis is whether an NPC will interact with a
player and other NPCs in a rational and goal driven way when given a past
life and a decision mechanism based on a causal network like a Bayesian
network. Will the NPC adopt a strategy that will maximize its pay-offs?
To answer this question I built an engine that creates NPCs that have past
lives, a knowledge base and tools to find a sentence to speak in a rational
dialog. The knowledge base and past lives of the NPCs are created from
plots that a Dynamic Plot Generating Engine (DPGE) creates. The DPGE
creates continuously new plots for murder mystery games that are logically
consistent. The decision mechanisms of the NPCs are modelled using Multi-
Agent Influence Diagrams (MAIDs), a mathematical method for multi-agent
decision-making in competitive situations.
The engine created clearly indicates a basis to create NPCs that can partici-
pate in a rational dialog by calculating optimal sentences on the fly. The time
complexity is linear in respect to number of sentences and more than half
of the sentences are calculated in less than 1 minute. With some standard
optimizations these results can be greatly improved.



Vitræn samræða
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Útdráttur

"Ég er nokkuð viss um það að engin gerir nokkurntímann viljandi
mistök".

Socrates

Kveikjan að þessari rannsókn er aukin eftirspurn eftir gagnvirkum leikjum
í sýndar-veruleika (e. virtual reality) með vitrænum (e. rational) tölvu-
stýrðum leikmönnum (e. Non-Player Characters (NPCs)). Þeir NPCs sem
eru í tölvuleikjum í dag eru í fæstum tilfellum alveg sjálfvirkir, Þó hafa sumir
sjálfvirka tilfinningasvörun og eru gjarnan markmiðs drifnir. Samt er
megnið af samskiptum þeirra við umhverfið og aðra spilara forskriftað og
frekar takmarkað. Auk þess eru leikirnir sjálfir með forskriftaðann söguþráð
sem verður til þess að fáir vilja endurtaka leikinn vegna þess að sagan er
alltaf sú sama.
Hér er þeirri spurningu varpað fram hvort NPCs geti átt vitræn og markmiðs
drifin samskipti við aðra leikmenn ef hver NPC fær ævisögu og algrím til
ákvarðanatöku sem er byggt á ákvarðanatöku neti eins og Bayesian networks.
Til að svara þeirri spurningu þá byggði ég vél sem býr til slíka NPCs.
Þekkingargrunnurinn og ævisaga leikmannanna er búin til með Dynamic Plot
Generating Engine (DPGE), sem býr til nýjar lógískar flækjur fyrir morðgátu
leiki. Ákvarðanatöku algrím leikmannanna notast við Multi-Agent Influence
Diagrams (MAIDs), sem er stærðfræðileg aðferð, sem notast við Bayesian
networks, fyrir tölvu verur (e. agents) til að taka ákvarðanir í samskiptum við
aðrar verur þar sem ríkir samkeppni.
Vélin gefur skýrt til kynna að það er grundvöllur til að skapa NPCs sem
geta tekið þátt í samræðum með vitrænum hætti. Vöxtur MAIDs er línule-
gur miðað við fjölda setninga. Meira en helmingur setninga var ákvarðaður
á innan við mínútu, þann tíma er hægt að flýta töluvert með nokkrum vel
þekktum bestunar aðferðum.
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Chapter 1

Introduction

The motivation for the research described in this thesis is the increased demand for
highly interactive games. Moreover, with a growing game industry, there is a continuous
call for games that are intellectually challenging. I firmly believe that computer games
that include dynamically changing plots and rationally interactive Non-Player Characters
(NPCs) will open up a completely new genre of games. The techniques adopted in con-
structing such games may well be usable in interactive teaching programs and behavioral
analysis.

By dynamically changing plots I refer to patterns of events or main stories in narrative
or drama based games that change in response to actions by NPCs or players. A ra-

tionally interactive NPC is an NPC that interacts with both players and other NPCs in
a rational way. Rationality is defined as the choice of actions which best satisfy a per-
son’s objectives. These objectives are desires that motivate the individual (Heap, Hollis,
Lyons, Sugden, & Weale, 1992). Rationality is explicitly defined and discussed in this
thesis both from the mathematical viewpoint of game theory and from a philosophical
viewpoint where aid is sought from the ancient Greek philosophers.

The problem domain of creating rationally interactive NPCs is vast and thus I emphasize
on creating a rational dialog in the sense that an NPC decides on what to say in a dialog
by finding a rational sentence to speak. The specific problem investigated in the thesis is
whether an NPC will interact with a player and other NPCs in a rational and goal driven
way when given a past life and a decision support mechanism based on a causal network
like a Bayesian network (Jensen, 2001). Will the NPC adopt a strategy that will maximize
its payoff? The success of the research should be measured by the terms defined by game
theory (Heap et al., 1992) and by the NPC’s determination in maximizing his independent
payoff, e.g. his goals.
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There are three main problems that the above-mentioned question raises and all of them
will be tackled in the thesis. First it is necessary to create the past life of the NPCs.
Secondly each NPC needs a causally driven decision mechanism that contains the NPC’s
knowledge base characteristics and information that he gathers along the way. The third
and final problem is to make the NPC capable of finding equilibrium as defined by game
theory so that he can be said to maximize his payoff when talking to another NPC. My
solution to the problem stated above takes the form of a prototype computer engine whose
general structure is described in Figure 1.1.

Figure 1.1: The big picture

The game setting that I have chosen for this research is a murder mystery game. At each
new game, initialized by the player, there is a completely new narrative plot and set of
characters. The initial plot is created with the Dynamic Plot Generating Engine (DPGE)
(Arinbjarnar, 2008) that creates new mystery plots on demand using a Bayesian net and
Proppian functions and can be seen to the far left in Figure 1.1. Bayesian nets are causally
connected belief networks that use the rule of Bayes to determine the probability of some
event or property given the conditional probability that other properties hold. Proppian
functions refer to functions that are adapted to creating murder mystery plots from the
morphology that the Russian structuralist Vladimir Propp constructed (Propp, 1968).
Each resulting plot is consistent and coherent, meaning that the murderer has a credible
motive and had the opportunity and means to commit the murder. Moreover the murderer
can be discovered by pure deduction based on clues found in the game. The DPGE is the
result of my BSc project but the version I employ in this work has been extended with
motives and relations between characters of the plot.

The plot generated by the DPGE is used to create the initial setup of the NPCs. At the start
of each game there is some initial configuration that the game world is in. This means
that each NPC has some life history and is connected to the murder victim and/or other
NPCs in the game and that the plot is “fully developed" up to this point in time. Note
that this is only at the beginning of the game, when the NPCs start to interact with the
world then the stasis is lifted and the plot develops. This initial plot is used to generate
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the decision mechanism of each NPC using Bayesian nets and game theory; see Figure
1.1. Each NPC is given a knowledge base that in respect to the configuration of the world
and the NPC’s role within the game. As an example a suspect knows everything about
himself but has for the most part only approximate knowledge of the crime and other
NPCs. The murderer on the other hand has in addition to a complete knowledge of his
own person also a fairly complete knowledge of the crime. So each NPC gets a blueprint
from the newly generated plot in the form of a Bayesian net that is identical to the one that
generated the plot. The knowledge that he should have in respect to his role is instantiated.
Moreover he is equipped with tools to be able to interact rationally with other NPCs or
the player. The NPCs are also equipped with a Bayesian net to estimate how other NPCs
see the world. Finally the NPC has tools to update his knowledge base with information
from other NPCs.

As the game progresses the NPCs will interact with each other or the player by exchanging
information with them. At each turn the currently active NPC needs to find a rational thing
to say: that is, he wants to speak a sentence that maximizes his payoffs. In order to do so
he needs to find an equilibrium by the means of game theory. This the NPC accomplishes
in three steps.

• First, the NPC generates possible sentences and possible replies.

• Next, he calculates the optimal reply for each of the sentences.

• Finally, he calculates the optimal sentence given the optimal replies.

The method described above is developed using Multi Agent Influence Diagrams (MAIDs)
(Koller & Milch, 2003). MAIDs are extended Bayesian nets specifically designed to
find Nash equilibria for incomplete data, which is exactly the problem that the NPCs
face.

The result is a rationally interactive NPC that is able to receive information from other
NPC, evaluate it and, if he finds it sound, add it to his knowledge base. Thus the plot
develops by means of interactions between the characters very much as it would in real
life. The NPCs have no distinction between another NPC and a player, so if a player takes
the part of a suspect or murderer defined by the plot engine then the NPCs will interact
with the player just as any of the NPCs.

There where challenging technical problems that needed to be addressed in achieving
rational dialog, the most prominent problems where the following two. First was the con-
struction of a knowledge base for the NPCs. This problem was twofold the knowledge
base needs to be sufficiently abstract to handle any type of knowledge and it may not be-
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come to complex so that it will take to much time to compute it. The technical problems of
complexity where solved by splitting and aggregating nodes as is discussed in Section 7.1
and by abstracting and then aggregating the decision variables to the net using relational
aggregation as is discussed in Section 7.2. The knowledge base was divided into specific
sections called subnets that use sufficient abstraction to be able to deal with any type of
knowledge and handle causal connections between the abstract knowledge objects, (see
Section 9).

Secondly there was the problem of determining abstract types that where needed to find an
equilibrium by the terms of game theory as is described in Section 6.3. A naive approach
resulted in an exponential number of types. The solution to this was the use of MAIDs
and the construction of two decision setups for each NPC, one for the optimal reply that
he expects in a dialog and an other for the optimal sentence that he should say in respect
to the reply that he expects. This is explicitly described in Sections 8, 9.4 and 10.4.

This project is only a proof of concept and the current implementation is small and very
limited. The NPCs have a fairly small knowledge base of just over 3000 nodes in their
Bayesian nets. The algorithm for finding equilibrium lacks many possible optimizations
that could speed it up considerably. Still equilibrium is reached on average in just under
three minutes and sometimes in just 11 seconds. Additionally the complexity of this
approach is linear in respect to number of sentences.

In the process of this research it has become my firm opinion that rationality and game
theory are some of the necessary keys to create an intelligent machine. In particular that
it is essential to have an intelligent agent rational. Such a notion is not new, it appears in
Plato’s dialogs as arguments from Socrates that no one will willingly choose an erroneous
action, meaning that no one would choose an action that he himself beliefs will do him
greater harm than good.

Section 2 succinctly states the necessary preliminary information needed to read this the-
sis. I strongly recommend that the avid reader scan that section before continuing. Section
3 describes related work. Section 4 discusses with examples the philosophical aspect of
rationality. In Section 5 I introduce the Russian structuralist Propp and how his work re-
lates to the thesis and the project. Sections 6, 7, 8 are technical details that only those who
want the full picture should read. In Section 6 I give as detailed description as necessary
of game theory to fully grasp the techniques from game theory that are being used. In
Section 7 I describe the basic technicalities of the Bayesian net and define some extra al-
gorithms that are necessary to efficiently build the NPCs decision mechanism. In Section
8 I describe the MAIDs and how they are used to find Nash Equilibrium. In Section 9 I
describe in detail the knowledge base and the general make up of the NPC. In Section 10
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I describe a complete run of the engine from creating a plot and until an NPC has spoken.
Finally in Section 12 I summarize and discuss the results and point out future work to be
done.



Chapter 2

Preliminaries

In this project two strong fields are combined namely game theory and belief networks,
to solve problems in interactive computer games. Work of many prominent scientists in
computer science, mathematics, structuralism and even philosophy are used to construct
a sufficiently sound approach for solving the complex problem at hand. This results in
the need to choose one terminology to use consistently throughout the project. I have
after some consideration decided on the terminology used by Fudenberg and Tirol in their
book (Fudenberg & Tirole, 1991). The reason is that it is a very well defined terminology
that has been used throughout the game theory society for a number of years. It is well
developed, succinct and unambiguous. To describe those elements that are used in belief
networks, and that the game theory terminology does not cover, I use the terminology of
Koller and Milch in their article (Koller & Milch, 2003). This is also because this is the
terminology used to define the MAIDs that I rely on to calculate Nash equilibrium in this
project.

Henceforth in this project I will use the word player as the active NPC that needs to
make a decision. This is in accordance with the use of the word player in game theory.
This explicitly means that player is never referring to a human being unless specifically
indicated.

Opponent is the player that the current player is talking to and can be a human being
or another NPC. No distinction will be made between whether the opponent is a human
or the computer unless it has some significance. The player is not aware of a distinction
between a human and a computer opponent and reacts in the same way to both.

A player is denoted as i ∈ I and his opponent is denoted as −i ∈ I, where i 6= −i. This
is described in detail in Section 6.
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Graphical display issues. It is necessary to remark on the visual representation of the
Bayesian net. I use the very good graphical tool Genie (DSL, 2007a) to visually represent
the Bayesian nets. In Genie the values in the variables are rounded to two digits for better
viewing and transparency. This can cause some apparent discrepancy as can be seen in
the Risk variable in Figure 2.1.

Figure 2.1: Example of value discrepancy

Intuitively the values High = 72% and None = 29% should add up to exactly 100% and
not 101%. The actual values in this example are High = 0.715 and None = 0.285 which
indeed do ad up to 1. This will not be explained again in this project. Instead I will rely
on the reader’s deductive intelligence, when evaluating graphical examples, to realize this
basic rounding of values.

Code practices. When displaying algorithms or code I try to simplify the presentation
for the sake of clarity. The prototype engine that I have developed is coded in Java (Sun,
2007) and the code is thus just as illegible as most things written in such an overly ver-
bose programming language. When presenting the main algorithms I use Python syntax
(Python, 2007) in order to simplify the display. I also use the algorithm2e Latex package
which means that the Python syntax is not meticulously followed.



Chapter 3

Related work

There are numerous experiments dealing with automatic plot generation. Many are trying
to construct a story or narration of some sort. These are sometimes called interactive
storytelling engines. Storytelling engines usually have two main goals; first to create an
interactive narrative, a preset narrative that can be influenced by the player. This means
that some major narrative goals or events need to be accomplished but that the player
can influence the narration in some small ways. Moreover that the characters should
be dynamically responsive to the player’s character and actions. Secondly to have the
interface of the storytelling engine sufficiently simple so that non-technical people can
use them to author new stories. There are a number of examples of this technique and
here I will name some of them.

A recent one is Thespian (Si, Marsella, & Pynadath, 2005) which emphasizes on creating
autonomous agents that are both responsive to the user and consistent with their own
internal motivations and goals. Moreover that the characters and the story line can be
easily authored by people lacking programming skills.

Another recent example is the Open ended Proppian Interactive Adaptive Tale Engine
(Fairclough & Cunningham, 2004). The engine creates interactive narrations and is in a
large part based on Propp’s Morphology (Propp, 1968). The most interesting part of this
engine is a gossip system that connects the NPCs together and spreads news and opinions
about the current player character in respect to his actions.

The Story Engine (Schneider, Braun, & Habinger, 2003) is also based on Propp’s Mor-
phology. This is basically an engine to assist in writing multi linear stories for Role-Play
Games. It uses the Propp’s Morphology to avoid deadlocks and to assist in creating a
literary sound narration.
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Finally a system that is worth mentioning is the Character Focused Narrative Generation
(Riedl & Young, n.d.). There the authors have a set of actor-agents that each play out a
character. The actors plot a few moves onwards with assistance of a director agent and
a blackboard. Blackboard is a message board to post messages between agents. The
movements of the actors are causally dependent on each other and this restricts the plot
development and creates seemingly unnecessary complications.

The problem with such forced narration, as has just been described here, is that the chance
of a dead end or some other major logical conflict is very high and in some cases prac-
tically unavoidable. For example let’s imagine a wizard having a vital key to enter some
important place. Frequently a game would have a wizard give a quest like killing a beast
and retrieving a vial of its blood. As discussed by Lindley and Eladhari (Lindley &
Eladhari, 2002) many games have the problem that if you happen to kill the beast before
you meet the wizard for the first time, then he cannot give you his quest. The problem
here is with perspectives and backwards causality. The player is supposed to have met
the wizard before killing the beast and that if he failed to meet the wizard prior to killing
the beast that then he can’t get the key. This is equivalent to having a constraint that a
student must registering at the university before taking a course in Calculus. That if the
student first takes a course in calculus and then registers at a university that then he can
not graduate because he is not allowed to retake the course or use the scores from the pre-
vious course. When put into perspective it becomes obvious that this is backwards logic.
If the player kills the beast then the beast is dead and if he meets the wizard afterwards
and can give him the vial of blood as proof, then he should be rewarded, just as it does
not matter when and where you learn calculus. If you pass the tests and have mastered
the subjects required at a specific university then you should be able to graduate from
that university. This problem of forced narration is widely recognized and some solutions
have been offered. Many involve a graph of some sort as the following work shows.

The DPGE (Dynamic Plot Generating Engine) that I use to create a murder mystery plot
and past life for characters differs from the above solution in one significant way. The
plot that results from the DPGE is used to decide the past, that is, what has happened int
the world and for the characters up to the point in time that the game starts. The DPGE is
not intended to form future actions.

Verbrugge (Verbrugge, 2002) proposes a narrative flow graph that is based on a Petri net
(Reisig, 1988) that enforces constraints that he claims are necessary for a narrative game.
The petri nets are used to ensure that a player can not advance in the game unless he has
fulfilled certain goals from an authored narration. Of course he has a perfectly valid point
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if the aim is to enforce a predetermined narration but to enforce a predetermined narration
is not appropriate in an open-ended dynamic game world.

Lindley and Eladhari (Lindley & Eladhari, 2002) also discuss this problem of forced
narration in some detail. They propose a couple of solutions. The former is to apply
Boyce-Codd Normal Form to a causal net (Lindley & Eladhari, 2002) and the latter is
to apply object orientation and loose coupling. Their ideas are very sound but as with
(Verbrugge, 2002) they still enforce a preset narration.

The following experiments do not attempt to force a specific storyline onto the game or
make actions of characters in the game causally dependent on each other.

In the non-linear interactive storytelling game engine (NOLIST) (Bangsø, Jensen, Jensen,
Andersen, & Kocka, 2004) they utilize a Bayesian network to determine the culprit of a
murder mystery; the Bayesian network is dynamically changing in response to actions
and observations made by the player. It is not preset but rather it uses the player’s moves
and the logical inference of the net to determine the culprit. For example if the player
finds a body and a gun lying beside the body then the probability that the murder victim
was shot with the gun increases. The proposers of NOLIST do this to be able to construct
an engine that will create a dynamic storyline with respect to player actions and choices.
The plot and the culprit are not known by the game engine in the beginning but are de-
termined in the course of the game. Thus NOLIST creates the past in reaction to player
interaction. Although NOLIST is highly adaptive to player interaction it might actually
be too reactive. Players are likely to play games in similar manners each time and are thus
not good at surprising themselves.

This use of Bayesian nets to form a murder mystery plot resembles the DPGE to some
extent. Except that NOLIST does not fix the mystery plot at the start but continuously de-
velops it through game play. The DPGE on the other hand fixes the initial plot at the start
and then expects characters in the game to use it as background for future actions.

The Virtual Story Teller (Theune, Rensen, Akker, Heylen, & Nijholt, 2004; Theune,
Faas, Nijholt, & Heylen, 2002) deploys a director agent and character agents. The direc-
tor agent’s job is to direct the character agents towards meaningful goals to enforce an
emerging storyline, the character agents are very independent and their actions are con-
trolled by their feelings and by the priority of their goals, both of which are continuously
changing in light of actions and input from their surroundings. The director agent can
forbid or accept an action chosen by a character but he cannot command the character,
which essentially keeps the character actions coherent and sensible for that character. The
characters are given individual characteristics that have a direct influence on their feel-
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ings, reactions and response to input from other characters and the environment. They are
also given goals, primary and secondary, that are the driving force of their actions. Thus a
storyline emerges by the NPCs reactions to in-game events as they attempt to fulfill their
goals. This has not been implemented in an actual game and it appears that the player
would be hard pressed to be at the right place at the right time to interact intelligently
with an NPC and participate in the storyline.

An interesting approach of mapping existing theories of human behaviorism into com-
putational models uses C Language Integrated Production System (CLIPS) to build a
rule based system to manage agent emotions, drives and relationships with other agents
(Chaplin & Rhalibi, 2004). CLIPS provides a complete environment for the construc-
tion of rule and or object based expert systems. That system uses the Iterated Prisoners
Dilemma (Heap et al., 1992) to give the agents a chance to defect and for other agents
to show vengefulness if they find out about the defection. The authors implement the
Iterated Prisoners Dilemma through a set of norms. They apparently manage to connect a
rule based system with emotional drive based agents so that the agents are able to sustain
themselves and to coexist to some degree. The results put forth appear to be from a very
limited scenarios where the expected behaviors have been isolated.

Another approach compares adjustable rule sets and Neural Nets to model human be-
havior (Tolk, 2002). The proposers of this approach discover that even with adjustable
rule sets, the rules still need to be situationally adequate, that is they need to be closely
modeled for the actual scenario at hand and that Neural Networks will give a better per-
formance. On the other hand it is not always clear what the Neural Nets learn, e.g. how
they come to determine the expected reaction to stimuli, while the rule based systems are
much more transparent.

Davis and Lewis integrate an emotional model into two computational architectures (Davis
& Lewis, 2003). First in a four layer computational architecture emotions are accepted
to be appraisal states with descriptive or valancing and causal or arousal processes. This
concept is used to provide a control or regulatory framework to model the different forms
of “emotion inducing" events. They base this on the assumption that all agent events and
actions, internal and external, can be described in terms of this four layer computational
architecture of emotion. The second computational architecture proposed by Davis and
Lewis is the Children Reasoning about Intentions, Beliefs and Behavior computer model
(CRIBB) which is based upon a general sketch for belief-desire reasoning in children. It
simulates the knowledge and inference processes of a competent child solving false-belief
tasks. This is an ongoing research.
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An approach that vaguely resembles the intended decision mechanism of this proposal is
from (Silverman, Bharathy, O’Brien, & Cornwell, 2006). They use three sets of trees
called short term Goals, Standards for behavior of self and others, and long term Pref-
erences, or GSP trees. These trees are specific to each character motive modeled, e.g.
they are specific for sex, culture and other character specific attributes. The trees have
probabilities to determine the next action based on the previous action. For example, a
Somalian civilian female that is in a state of “wanting to belong" then she is 70% likely
to obey orders and 30% likely to try to protect her friends. These trees are clearly very
speciffic.

Finally B.J. Rhodes proposed an interesting approach using heuristic planning techniques
(Rhodes, 1996) in hybrid networks. Rhodes focuses on developing characters that use
planning techniques to realize their goals. Each characters has multiple means to ac-
complish his goals. The character should also have multiple and sometimes conflicting
goals to achieve in a dynamically changing world. The project was fairly successful and
promising but needs more work.



Chapter 4

Rationality and Philosophy

In the process of this research on rationality in computer played characters I have had the
fortune to discuss my ideas with very intelligent and proficient researchers. They have for
the most part acted very rationally. Still there are times when they have not appeared to
be acting in a rational way. Perhaps this is because they where tired or had other more
important things on their minds or perhaps when I was evaluating their behavior I was
seeing the situation from a different perspective.

When evaluating my own behavior in hindsight I see far to many instances where I myself
acted irrationally and I often wander why I do not learn from it and take just a few more
moments to think before acting. It would greatly reduce my irrational behavior.

Notice that this is always an evaluation made from a different perspective than the ac-
tual person has when deciding how to act. I also see and know that when I have acted
irrationally I did indeed find it to be very rational at the moment of acting, albeit not nec-
essarily very rational just a heartbeat later. I have never experienced a moment where I
have decided to do something irrational without some kind of rationality behind the be-
havior. Even when deciding to act very silly or in a manner that will clearly be damaging
to me or something that I care about.

Surely such a statement that I do not remember ever having intentionally acted irrationally
is a futile argument and has no bearing in a scientific research. Surely it is evident that
people are very irrational and frequently base their decisions on feelings and emotions
with little or no thought of the consequences. We can take many examples of this. Parents
loosing their temper at their children over trivialities. Gamblers loosing all their posses-
sions over night in a game of cards. People correcting the clerk in a supermarket when he
gives them to much change.
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It can really be argued that if people would act rationally that then most everyone would
fare better than they do. We would make much fewer mistakes. We would state our needs
and opinions at appropriate times and in an appropriate manner. Feelings and emotions
would not cloud our judgment and so we would never reveal a secret by accident, be
offensive, rude or shy away from an important discussion because of fear.

I disagree! I firmly belief that it is exactly the case that we always act rationally and
that this is exactly the reason for the apparently irrational behaviors that we constantly
exhibit.

Here follows a formal argument based on Platos dialogs (Plato, 1967) where Socrates
discusses virtue, justice and knowledge.

4.1 Socrates and rationality

Socrates and Protagoras agree that knowledge is a noble thing that is able to govern man.
That when he has learned what is good an what is bad that then his intelligence is a
sufficient aid for man to act rationally and choose good over bad. At first sight this appears
to be a very naive perspective but their argument is sound and is as follows.

First it is necessary to determine what is meant by good and bad and how we evaluate
anything as being either good or bad or some degrees thereof.

We consider the following to be good: pleasure, health, fitness, wealth, skill, knowledge,
virtue, etc. We consider the following to be bad: pain, disease, illness, obesity, ignorance,
poverty, misery, etc. We can define this more explicitly. We consider to be good anything
that results in pleasure either immediate or in the end. We consider bad anything that
results in pain either immediate or in the end. such as eating good food carries immediate
pleasure but can result in obesity and thus pain. Exercise is painful at the start but results
in a fitter body and better health, e.g. pleasure. Now that the words good, bad, pleasure
and pain are explicitly defined we can use them to capture the essence of the rest of the
argument, this will make the argument more concise.

Exercise then is both good and bad. When we decide whether to exercise then we evaluate
the remote pleasure with the immediate pain of starting. If the pain of starting is less than
the remote pleasure then we will exercise. When deciding weather to eat we also compare
the immediate pain or pleasure depending on whether the food has a good or bad taste with
the result which can be pleasure such as better health, satisfying hunger or it can be pain
as in increasing obesity.
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Clearly we choose by evaluating how good and how bad it appears to us at any given time.
We consider something to be good if either the immediate or remote pleasure is greater
than the immediate or remote pain. Good and bad are not absolute off/on values but a
measurement of good and a measurement of bad weighted by their remoteness, such that
if the measurement of good is greater then the measurement of bad then it is a positive
value and when the measurement of bad is greater then the measurement of good then it
is a negative value.

As an example let’s consider two individuals John and Jack who are deciding weather to
exercise. John likes to exercise he is in shape and when he exercises he feels more alert
and at ease. He finds exercising to be refreshing and to reduce stress. He also realizes that
as a consequence of exercising he will be in better shape and health. This remote pleasure
is an added bonus for John.

Jack on the other hand does not like to exercise. He is out of shape and when he exercises
he gets dizzy and tired and most of his muscles complain. He can’t stop thinking of all
kinds of things that would give him greater immediate pleasure. Jack knows though that if
he continuous to exercise then he will gradually get into shape and then the exercise will
start to be more pleasurable. Moreover he knows that if he continuous to exercise then he
will be in better health and most of his other activities will be more pleasant.

It is evident that John considers exercise to be good and so his rational choice is to exer-
cise. Jack on the other hand has a more challenging problem. If Jack considers the pain of
exercising to be greater than the remote pleasure then Jack considers the act of exercising
to be bad. This is despite the fact that he realizes the overall benefits of exercising. If Jack
in this way considers the act of exercising to be bad then it would be irrational of him to
exercise. He has weighted the good and bad and finds exercising to be bad. Now Jack
may very well regret his decision later on and he may very well be in considerable need of
an exercise because of his bad physical health, but Jack himself needs to realize this at the
moment of making his decision for it to be a rational decision for him to exercise.

Moreover there are other things to consider, Jack is hungry and there is a hot dog stand
nearby. Jack sees only the pleasure of eating the hot dog and the remote pleasure of
satisfying his hunger. The good outweighs the bad and so eating a hot dog is good, it is
the rational thing for Jack to do.

Know John looks up from his exercises and sees Jack eating the hot dog. From Johns
perspective then Jack is being very irrational. This is because John has difficulties in
realizing the values that Jack used in his equation.
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From this it follows that we can in fact not expect an optimal outcome based on a rational
decision. We can only assume that it is the optimal decision that this individual calculated
based on his current data and his skills in calculating a rational decision. For to assume
that people will fare better when acting rationally then we also have to assume that they
will have sufficient skills to calculate the overall optimal decision each time and to have
unlimited access to all relevant data. Moreover they would need to have infinite amount
of time to be able to evaluate every possible action in respect to both long term and short
term affect.

Another question needs to be raised and answered in this respect, will a man always
choose the right thing if he knows all the possible outcomes of an action? My answer to
this is that he will choose the right thing if it is the rational thing for him to choose as he
sees it. It does not necessarily hold that what is optimal for an individual is also optimal
for the whole. It may very well be that there is a conflict of interest between the individual
and the community.

let’s also address the formerly proposed irrational actions, namely:

• Parents loosing their temper at their children over trivialities.

• Gamblers loosing all their possessions over night in a game of cards.

• People correcting the clerk in a supermarket when he gives them to much change.

If people are so rational then why will not parents see that a child has limited control
of its movements and body functions and lacks the ability to realize consequences of its
actions. A child is prone to make constant repeated mistakes until it matures sufficiently.
The reason is of course that when the parent is interacting with the child then the parent
frequently lacks the ability to evaluate the bigger picture. The parent is tired and thinking
about many other things than the current noise coming from the child. The parent is thus
liable to consider a few sharp words an optimal way to handle the immediate situation.
Then just a few heartbeats later when the parent sees the reaction of the child and realizes
its error, the parent is liable to wonder how on earth he could ever have even considered
saying such things.
A similar case is with the gambler the momentary thrill and pleasure of gambling greatly
overweights the perceived distant pain of losing a large portion of his possessions and
diminishing his families trust.

A different perspective is needed when looking at the person who corrects a clerk when
he gives him to much change. It is evident that the person does not have immediate gain
from it, he loses money. There must be another gain that he considers to outweigh the
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financial gain. An obvious one is that he does not care to consider himself a thief. It
does not matter if no one else notices, it is his own perception of himself that matters. To
have such values affect our daily decisions and reactions we need to have some princips
or ethical makeup that dictates what will pain or pleasure us in such circumstances. He
could also be thinking of the clerk in question and worry that he would need to take the
blame or he could value correctness over a small financial gain etc.

As can be seen, especially from the last example, is that in determining a rational action
people can have quite a range of values and ways to calculate rationality.

4.2 Computers and rationality

Now we have a definition of good and bad as a measurement of the resulting pleasure
and or pain. The pain and pleasure can be considered to be the prior calculations that a
Bayesian net can do. The Bayesian net needs to have the significant qualifiers of what
yields pleasure and pain. It can then calculate with a degree of certainty both immediate
and remote pains and pleasures of an action. These prior calculations can then be set up
in a game by the terms of Game Theory where each possible action is compared against
each other. The most optimal action is then the action that has the most resulting pleasure
or the least resulting pain. This will be the rational action to play and a character that
chooses an action by these means will be rational. A more explicit discussion of how
the Bayesian net, Game Theory and rationality is used in my MSc thesis is in section
9.4.

The computer today already far surpasses our computing skills but even as fast as it is and
will become it can not calculate every possible outcome it will always have to approximate
and it, just as we, will always have a limited set of data and degrees of certainties to base
its calculations on.

Computers in fact do not act rationally for it is their irrational behavior that makes their
behavior inhuman. The only times that computers act rationally is by chance or when they
have been programmed to do so. They can not act rationally of their own accord until they
have been designed to do so. This is certain to happen in the not to distant future. We
create in our own image.

At present computers lack sufficient knowledge to reason and set things in context to
be able to act rationally. They are in fact unable to perceive pain and pleasure and thus
determine by themselves what is good and what is bad. The computer needs a sense of
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awareness to be able to act rationally such that it needs to evaluate each action as being a
measurement of good or bad and then choose the optimal action.

When computers will act in a fully rational way of their own accord then we will be able
to call them autonomous and to posses a sense of self-awareness and consciousness. Then
computers can be considered to be intelligent.



Chapter 5

Propp’s Morphology

Vladimir Propp (St Petersburg, April 29, 1895 - Leningrad August 22, 1970) was a Rus-
sian structuralist scholar who analyzed the basic plot components of Russian folk tales to
identify their simplest irreducible narrative elements. His Morphology of the Folk Tale
was published in Russian in 1928, but was generally unnoticed in the West until it was
translated in the 1950s.

Propp observed that the Russian fairy tales, classified by Aarne index 300 to 749 (Aarne,
1911), are constructed of repetitive themes where actions and functions stay the same but
the names and attributes of the persons change. In this case a function is defined as an act
of character and viewed for its significance in the course of an action. This means that
each function is independent from the rest of the narration and is only recognized for its
effect on characters each time and for its part in completing an action. From his careful
observations Propp was able to propose the following 4 rules for the makeup of the set of
Russian fairy tales:

1. Functions of characters serve as stable, constant elements in a tale, independent of
how and by whom they are fulfilled. They constitute the fundamental components
of a tale.

2. The number of functions known to a fairy tale is limited.

3. The sequence of functions is always identical.

4. All fairy tales are of one type in regard to their structure.

Propp numbers the functions and states correctly that no function may happen after a
function of a higher number has happened. This is to ensure a coherent time line. Propp
managed in this way to map a sort of unintentional logical time line for the folk tales.
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Some of Propp’s functions are paired such that one will logically follow another. Yet
the functions are not causally dependent such that the former has to have come before the
latter. The latter function can happen independently from the former (Propp, 1968).

Example 1 (The Proppian function.) Fairy tales frequently start with an interdiction

that is addressed to the hero:

• you dare not look into this closet or

• don’t pick the apples

This is followed by a violation, the hero does what he had been warned or forbidden to

do. If there is no prior interdiction then the hero is seen either violating some common

norm, like being late or oversleeping, or he ventures out because of need or because of

the urgings of some other character.

In respect to Propp’s Morphology I implemented the motive for committing a murder as
constraints on the Bayesian net rather than explicit functions. These constraints conform
to the ideology that there is a certain structure necessary to create a mystery story and
that this structure is independent of actual objects or specific individuals. Instead they are
fulfilled by specific roles.

There are three roles defined; victim, murderer and suspect. The murderer has the most
detailed knowledge of the crime and he alone will satisfy the constraints that define a
murderer. These constraints are: all evidence match, has motive, is connected to the
victim and had opportunity. There is only one murderer in the generated plot. The suspect
has less knowledge of the crime than the murderer and a suspect will fail to satisfy one or
more of the constraints that define a murderer. All of the characters are either related to
the victim or have a motive to kill the victim or both.

In order to have a set of probable motives I used some of Agata Christies murder mystery
novels for good ideas. The result from a light review are the following motives.

Swindle. Either the murderer is swindling the victim and the victim threatens to tell or
the victim was swindling the murderer and the murderer wanted revenge. Either way the
swindler should be rich.

Blackmail. Either the murderer was blackmailing the victim and feared that the vic-
tim would reveal it or the victim was blackmailing the murderer. In either case it is
necessary that the one being blackmailed has some dark secret or else he would not be
blackmailed.
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Wedlock. In Agatha Christie’s time it could sometimes be difficult and or bad publicity
to get a divorce. This can also apply today that people do not wish to go through the
divorce process and lose half their belongings and possibly custody of the children. The
constraints in the net for wedlock is that the murderer is the victim’s spouse.

Inheritance. This is self explanatory and has the necessary constraint that the victim
must be rich and the murderer must be an heir.

The victim was having an affair with the murderer’s spouse. This is pure jealousy
and the necessary constraints are that the victim needs to be having an affair with the
murderer’s spouse.

Revenge. The murderer believes that he has just cause for revenge. The victim must
have harmed the murderer in some sense in the past.

Dept. The murderer owed the victim lots of money and could not pay. This has the
necessary constraint that the murderer is not rich.

The first rule of Propp’s Morphology asks for functions that are stable, constant elements
in a tale, independent of how and by whom they are fulfilled. This is what the constraints
above accomplish they are constant elements that are filled by constant roles such as
murderer and victim rather than being filled by specific characters. The constraints are
limited in number as Propp’s second rule asks for. The third rule really sets the feeling of
a past history that one would expect such as; there is a victim because it was murdered
by a murderer that has a motive which is the result from some past interactions with the
victim. Here the time line was just recounted in reverse order. It could never hold that
a murderer murders someone for no reason and then afterwards is swindled by the dead
victim. Finally the net with it constraints is a single structure which all the plots are
generated from and thus the fourth rule also applies.



Chapter 6

Game Theory

In this Section I describe those essentials of game theory that are necessary to understand
the problem domains tackled by this thesis and the solution proposed. When the players
are evaluating what to say then they use game theory to model the problem of finding an
optimal sentence to speak. Then they use game theory to find an equilibrium, that is to
find the sentence that gives them the highest gain.

6.1 Preliminaries

As previously mentioned in Section 2 I will use the terminology found in (Fudenberg
& Tirole, 1991) to describe game theory, which I now introduce by means of an exam-
ple.

Example 2 (Aumann’s example) Here player 1 and 2 want to find an optimal strategy

in a game where they both have identical payoffs.

Player 2

L R

Player 1 U 5,1 0,0

D 4,4 1,5

Each game in Game Theory has at least a set of players, i ∈ I, and a pure strategy space
Si, for each player i ∈ I. In example 2 there are two players and two strategy spaces each
with two pure strategies: S1 = {U,D} and S2 = {L,R}. Strategy space Si is the set of
actions available to player i.
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So player 1 can play pure strategy U or D and player 2 can play pure strategy L or R.
If Player 1 plays U then player 2 may possibly play L. This will give player 1 a pay-
off (also known as utility) of 5, denoted u1(U,L), and player 2 a payoff of 1, denoted
u2(U,L).

Each game has some equilibrium point which is the point that has a higher or equal
payoff to any other point in the game. Such an equilibrium point is defined by the pure
strategies and the probability that they are played. A pure strategy that has 0 probability
of being played is not included in the definition of a point. This means that the marginal
of the probability of any strategy defining a point is strictly positive. This simple fact is
important when defining the Bayesian equilibrium in Subsection 6.3. A proper definition
of equilibrium is given in Subsection 6.2 and Subsection 6.3

Each player has a payoff function for each of the strategy profiles that he can play. There
are two types of strategy profiles: a pure strategy profile and a mixed strategy profile. The
pure strategy profile has a payoff function ui which is the utility ui(s) for each profile s =

(s1, ..., sI) of strategies and is dependent on the probability distribution of the opponents’
strategies. Because the equilibrium in example 2 is to play either pure strategy with equal
probability then the payoff functions are:

u1(U) = 0.5 ∗ 5 + 0.5 ∗ 0 = 2.5 and u1(D) = 0.5 ∗ 4 + 0.5 ∗ 1 = 2.5

u2(L) = 0.5 ∗ 1 + 0.5 ∗ 4 = 2.5 and u2(R) = 0.5 ∗ 0 + 0.5 ∗ 5 = 2.5

A player can also have a set of mixed strategies. A mixed strategy for player iσi is a prob-
ability distribution over the set of pure strategies to which σi assigns positive probability.
I write σi(si) for the probability that σi assigns to si, for the profile s = (s1, ..., sI) of pure
strategies. Then i’s payoff for profile σ = (σ1, ..., σI), using the payoff function ui(s) for
each pure strategy, is the weighted sum over all profiles s ∈ S = S1×S2×· · ·×Sn

ui(σ) =
∑
s∈S

 I∏
j=1

σj(sj)

ui(s) (6.1)

It is best to understand this equation with an example, so we will calculate a mixed strat-
egy for example 2 for Player 1. We assign probability 0.5 to each of player 1’s pure
strategies because I now that the optimal strategy is playing either strategy with the prob-
ability 0.5. So player 1’s mixed strategy σ1 is a vector (σ1(U), σ1(D)). The payoffs for
profiles σ1 = (0.5,0.5) and σ2 = (0.5,0.5) using equation 6.1 are

u1(σ1, σ2) = 0.5(0.5 ∗ 5 + 0.5 ∗ 0) + 0.5(0.5 ∗ 4 + 0.5 ∗ 1)
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= 0.5(u1(U)) + 0.5(u1(D))

= 2.5

Similarly for player 2
u2(σ1, σ2) = 2.5

An opponent in Game Theory is a common denominator for the other players, he can be
a competitor but is not generally viewed in such a light. The opponent is denoted −i ∈ I
where −i 6= i.

Rationality in Game Theory is when a player chooses the strategy that will give him the
optimal payoff no matter what his opponents play, given the information he has at the
time. Every player is considered to be rational and thus to act in a rational manner at all
times. If the player does not act rationally then he is considered to be making a mistake
(for example, that he pushes a wrong button because his hands are trembling).

There are various levels of information that a player can have in any game. Completely

informed player is someone who knows all the possible payoffs and everyone knows that
he is completely informed and he knows that everyone knows that he is completely in-
formed and so on. A game is considered a completely informed game if all the players
are completely informed. If a player lacks information on his opponents’ payoffs then
he is considered to be incompletely informed. If a player that is incompletely informed
can by calculation estimate the payoffs of his opponents then he is considered imper-

fectly informed. This is commonly done when finding Bayesian equilibria. The game
that this thesis deals with is an incomplete information game and a large part of the prob-
lem domain is to convert this incomplete information game into an imperfectly informed
game. The success of that enterprise is essential for solving the problem dilemma of the
thesis.

Non cooperative game is when the players have no prior binding agreements. This holds
true for most real world scenarios that the players in question do not have priorly signed
contracts with their opponents. This means that although some opponents may value some
sort of cooperation, it is not organized and the player can’t depend on it. The game that
this thesis deals with is a non cooperate game. The players may consider that cooperating
with others is beneficial but there will never be a binding agreement.
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6.2 Nash equilibrium

A Nash equilibrium is a profile of strategies such that each player’s strategy is an optimal
response to each of the other players strategies, e.g. there is no incentive to deviate.

Definition 1 (Nash Equilibrium) (Fudenberg & Tirole, 1991).

A mixed-strategy profile σ∗ is a Nash equilibrium if for all players i, and for all strategies

si ∈ Si,

ui(σ
∗
i , σ

∗
−i) ≥ ui(si, σ

∗
−i) (6.2)

Nash equilibrium holds for the extended game. Meaning that Nash equilibrium holds true
when playing repeatedly against the same set of players, as proven by J. Nash (Nash,
1951). It is important to realize that because of this it is sufficient to show that an equi-
librium is equivalent to Nash equilibrium to show that it to will hold for the extended

game.

There are three Nash equilibriums in example 2. Two pure strategies (U,L) and (D,R)
and one mixed strategy ((0.5*U,0.5*D),(0.5*L,0.5*R)). Nash equilibrium is essentially a
maximization of the utilities. By this I mean that to find nash equilibrium you need to find
the set of strategies that has a higher or equal payoff to any other strategy.

Example 3 (Finding Nash Equilibrium) In this example we will find the pure strategy

equilibrium (U,L).

• First, u1(U,L) = 5, this is the highest so far for player 1, so lets ad it a set {(U,L)}
for player 1.

• Second, u1(U,R) = 0, this is < than u1(U,L) so it is not added to player 1 set.

• Third, u2(U,L) = 1, this is highest so far for player 2, so lets ad it a set {(U,L)}
for player 2.

• Finally, u2(U,R) = 0, this is < than u2(U,L) so it is not added to player 2 set.

Now we have effectively found a pure strategy equilibrium point, it is in the intersection

of the two players sets {(U,L)}.

From example 3 it can be seen that it is essential for finding equilibrium to find what
would be the opponents optimal moves. In this example it is easy because both players
happen to have identical payoffs. If player 2 would for instance get u2(U,R) = 2 instead
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of u2(U,R) = 0 then (U,L) would not be an equilibrium because playing L is then not an
optimal strategy for player 2.

6.3 Bayesian equilibrium

The traditional representation of game theory (Fudenberg & Tirole, 1991) is strictly math-
ematical, exact and explicit. The resulting high abstraction does not have a very transpar-
ent connection with real world scenarios. It is a non-trivial endeavor to model even the
simplest of human interactions using game theory. Harsanyi discusses this point in great
detail in (Harsanyi, n.d.-c), (Harsanyi, n.d.-a) and (Harsanyi, n.d.-b). He proposes the
Bayesian equilibrium as a way of calculating Nash equilibrium for incomplete informa-
tion games, where the agents lack complete information about the game world. This
technique is well described by Fudenberg and Tirole (Fudenberg & Tirole, 1991) and
Harsanyi (Harsanyi, 1995) where the type centric approach is especially well discussed.
In J. C. Harsanyi own words (Harsanyi, n.d.-c) p:163:

In our own view it has been a major analytical deficiency of existing game
theory that it has been almost completely restricted to complete information
games, in spite of the fact that in many real-life economic, political, military,
and other social situations the participants often lack full information about
some important aspects of the “game" they are playing.

Let us first consider the dynamics of an incomplete information game, which is a game
where some players lack full information of the game. We will assume that each player
knows his own payoff function and state to keep the complication within reasonable
bounds and we will only look at two player games. Imagine, for instance, two warring
factions; they would know very well their own state but not the state of their opponent.
Still they will not be completely ignorant. They will know what states the opponent could
possibly be in because for all practical purposes one can assume that there are only finitely
many states for the opponent to be in. Examples of such states are that the opponent has a
secret weapon, has depleted its sources of food in an area, has powerful tanks etc. More-
over each warring faction will have an intelligence service that informs it of what states
the opponent most probably is in.

In Game Theory terms this means that the players don’t know the opponents’ current
payoff function but know all payoff functions that the opponent could be using. The latter
is referred to as exogenous data, which means external data that is not derived from the
players status at any given time but is a factor in the equilibrium-calculations. Examples
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of exogenous data are strategy spaces, pay off functions, types, and prior distributions.
This is considered common knowledge among the players. Everybody knows them and
knows that everyone knows them and so on. The exogenous data is so named because it
stands outside the influence of the equilibrium calculations, meaning that it will stay the
same through out the game.

Let us first draw up what the players will need to do to get an equilibrium. Each player’s
first order expectations will be a subjective probability distribution p1

i (u−i) over all pos-
sible payoff functions u−i that the opponent could have. Then each player will have a
second order expectations of p2

i (p
1
−i) over all the first order expectations that the opponent

will have and so on ad infinitum. In general terms, the kth-order expectations of player i
will be a subjective probability distribution pki (p

k−1
−i ) over all alternative (k − 1)th-order

subjective probability distributions pk−1
−i that the opponent may have (Harsanyi, n.d.-c).

The game just described is a player-centered interpretation. The problem with this player-

centered interpretation is that it contains infinite recursion and that one needs fixed point
configuration in order to calculate equilibria.

There is also a type-centered interpretation and the two interpretations are always equiva-
lent from a game theoretic point of view (Harsanyi, 1995). Meaning that they both find an
optimal strategy for the player in an incomplete non cooperative game. The type-centered

approach does not contain an infinite recursion in the same way as the player-centered

approach. Harsanyi argues that the type of a player can represent the character of a player
and his beliefs of other player’s strategies, including their payoff functions. Assume that
there are Θ different possible types that represent every possible makeup of the player.
The type is any prior information that is not common knowledge and that may affect the
player’s payoff function, their decision making and their belief about other player’s strate-
gies and beliefs and so on. Some players may be better informed than others. Each player
is considered to have a finite set of possible types Θi with an objective prior probability
distribution p. I write p(θi) for the probability that player i has type θi.

In the previous example of warring nations, types could be for one of the warring faction
θ1 = “little food, has secret weapon" and then when food convoys have been opened up θ1

= “enough food, has secret weapon". Moreover each player has a conditional probability
about his opponents types p(θ−i|θi) where θ−i = (θ1, ..., θi−1, θi+1, ..., θI). It can also be
assumed that the marginal, that is the lowest value of pi(θi), on each type θi ∈ Θi is strictly
positive. Let σi(θi) be the possible mixed strategy that player i chooses when her type is
θi, as each player can be assumed to choose her strategy dependent on her type. A player
i may be able to compute his expected payoffs by using his beliefs p(θ−i|θi) if he knows
the strategies {σi(·)}j 6=i of the other player’s as a function of their type. This would be
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the intelligence that the warring factions we described above would have acquired about
its enemies.

The exogenous data of the game is then the Θ, the set of all possible types, this includes
all the possible payoff functions contingent to the types. Bayesian equilibrium then uses
prior calculations commonly referred to as ex ante calculations. These ex ante calculations
use Bayes rule to calculate the probability of each possible type θ ∈ Θ that the opponents
could be of, hence the name Bayesian equilibrium. The reason for these fancy names
as exogenous data and ex ante calculations is to define tools that can be used as a means
of valuating incomplete information from the world to use in the explicit calculations of
game theory.

It is important to realize that since Bayesian equilibrium, like Nash equilibrium, is essen-
tially a consistency check, players’ beliefs about others’ beliefs do not enter the definition
– all that matters is each player’s own beliefs about the distribution of types and his oppo-
nents’ type-contingent strategies (Fudenberg & Tirole, 1991). A Bayesian equilibrium is
a Nash equilibrium of the “expanded game" where each player i ∈ I has a space of pure
strategies which is the set SΘi

i of maps from the set of types for each agent Θi to Si and
a utility function that is contingent to the agent’s types each time (Fudenberg & Tirole,
1991).

Definition 2 (Strategy profile) (Fudenberg & Tirole, 1991)

Given a strategy profile s(·), and an s′i(·) ∈ S
Θi
i , let (s′i(·), s−i(·)) denote the profile where

player i plays s′i(·) and the other players, his opponents, play s(·), we let

(s′i(θi), s−i(θ−i)) = (s1(θ1), ..., si−1(θi−1), s′i(θi), si+1(θi+1), ..., si(θi))

• The probability of an opponent being of any given type p−i(θ−i) is strictly positive.

• We use ex ante calculations to find the probability that the opponent is of a given
type p−i(θ−i).

• We use ex ante calculations to find the opponent’s strategy for each of his possible
types s−i(θ−i).

Definition 3 (Bayesian Equilibrium) (Fudenberg & Tirole, 1991)

We find an equilibrium by maximizing the sum of player i’s weighted payoff, conditional

to his type θi, over the opponents’ possible types θ−i, for each of his strategies s′i ∈ Si as

is shown below.
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si(θi) ∈ arg max
s′i∈Si

∑
θ−i

p(θ−i|θi)ui(s′i, s−i(θ−i), (θi, θ−i)) (6.3)

Giving a small example is difficult. In Section 10.4 the algorithm for finding Bayesian
equilibrium is described in detail and each step is explained in respect to its role in the
Bayesian equilibrium.



Chapter 7

Bayesian networks

In this thesis I use Bayesian networks (Jensen, 2001) for three things. First the dynamic
plot generating engine uses a Bayesian net to structure and determine the plot. Second
the players use a Bayesian net to structure their knowledge base, this enables them to
be able to add to the knowledge base and immediately refer new knowledge from the
new addition. Finally Bayesian nets are combined with game theory to find an optimal
sentence for the player to speak.

The graphical models described in this paper were created using the GeNIe modeling
environment (GeNIe modeling environment for graphical probabilistic model, 2007). I
use three types of variables, they are:

• Decision variables, D ∈ D, represented with a square in the diagrams;

• Utility variables, U ∈ U , represented with a diamond in the diagrams. Utility
variables can only have parents, not children;

• Chance variables, X ∈ X , represented with an oval in the diagrams;

Both decision and chance variables have a finite set of states that are mutually exclusive.
Each variable X has a finite set dom(X) of possible values called the domain of the
variable. Decision variables are used to sum up the total cost of making a decision. In my
prototype engine the decision is what sentence is optimal. The sentences are the states of
the decision variable and those sentences that have the highest value are the optimal set
of sentences. The utility variable calculates the value of each decision given the decision
and the value of each factor that affects it. This is determined by setting values in respect
to each of the utilities parents, (see Table 7.3).
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There are other types of variables defined for Bayesian networks that I do not make use
of, for more detail see (Jensen, 2001). I introduce the model by the following example.
The example is an extension of an example that is used in (Jensen, 2001).

Let’s assume that in Iceland the general population has the flu about one fourth of the year.
The flu increases the probability of a fever and having a fever increases the probability of
being sleepy. Moreover taking aspirin is very likely to reduce the fever to normal temper-
ature, 37◦C. Let us also assume that the Icelandic government has taken the initiative to
distribute free aspirin to every Icelandic home in order to increase the productivity of the
small population and that taking aspirin has no side affects.

Figure 7.1: Flu

Table 7.1: Temperature
Aspirin Aspirin No aspirin
Flu Positive Negative Positive Negative
Normal 0.9 0.98 0.4 0.98
Elevated 0.1 0.02 0.6 0.02

Table 7.2: Sleepy
Temperature Normal Elevated
Yes 0.3 0.75
No 0.7 0.25

In Figure 7.1 the Bayesian net showing the causal connections from flu to fever to sleepy
is shown, it has the following sets of variables:

• D = {Aspirin}

• U = {V alue of no fever, V alue of not sleepy}

• X = {Flu, Temperature, Sleepy}

Aspirin has two states: {Aspirin = to take Aspirin},
{No_Aspirin = not to take Aspirin}.
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The flu variable has two states: {Positive} with a probability of 0.25 and {Negative}
with a probability of 0.75.

Table 7.1 shows the table that defines the conditional probabilities of the temperature vari-
able. The Temperature variable is a chance variable and has two states: {Normal = 37◦C},
{Elevated > 37◦C} and two parents, Flu and Aspirin. Reading Table 7.1 we see that
if someone that has the flu takes Aspirin then she will have normal temperature with a
probability of 0.9 and if she does not take Aspirin she will have normal temperature with
a probability of 0.4. The top row in Table 7.1 shows the states of the decision variable
Aspirin, the next row shows the states of the Flu variable and the next two rows show
the states of the temperature variable and the respective conditional probabilities.

Table 7.2 defines the conditional probabilities of the Sleepy variable. In Figure 7.1 we can
see from the two utility variables that the value of taking Aspirin to reduce fever is 9.6
and the value of taking Aspirin to reduce sleepiness is 6.82. The decision to take Aspirin
carries then the gain of 9.6 + 6.82 = 16.42, and to not take Aspirin carries the gain of
8.35 + 6.2575 = 14.6075. The value of the utility variables are defined in respect to its
parents just as the chance variables. The difference is that utility variables calculate value
and the chance variables calculate probability. Each column in Tables 7.1 and 7.2 ads up
to one because each of those columns define how probable the respective state is given
the conditions declared in the rows above. Table 7.3 shows the definition of the utility
variables.

Table 7.3: Utilities
Value of no fever Value of not sleepy

Temperature Elevated Normal Sleepy yes no
value 0 10 value 0 10

Chance and decision variables can be instantiated; this means that the variable has one
of its values set to probability 1. In Figure 7.2 the Flu variable has the value of the state
“Positive" set to probability 1. In Figure 7.3 the Flu variable has the value of the state
“Negative" set to probability 1.

One reason for instantiating variables is to see the exact values when you assume some
fact to be given. In Figure 7.2 the assumption is that the individual has flu and it is then
clearly evident that there is higher gain in taking Aspirin since it yields a higher value,
15.55 to 8.3. In Figure 7.3 the assumption is that the individual does not have any flu
and then there is no greater gain in taking Aspirin than not taking Aspirin. It is clear in
this example that in general the gain in taking Aspirin is higher than in not taking it. It is
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also clear that if taking Aspirin has any cost or negative affects then that would affect the
calculations.

This example is of course naive and has little correlation to reality but it shows how
causalities can be drawn out and how the nets are read.

Figure 7.2: Instantiated to positive

Figure 7.3: Instantiated to negative

7.1 Splitting and aggregating

The Tables that define the variables in the Bayesian nets have an exponential growth in
respect to the number of parents the variable has. Looking again at the flu example, there
can be any number of diseases besides flu that cause fever. If there are for instance 20
possible diseases, each with the two states {positive, negative}, then it results in a table
with 2 ∗ 2 ∗ 220 = 4, 194, 304 entries. If n is the number of disease variables and noe is
the number of entries and s(X) is the number of states for a variable X then:

noe = s(Temperature) ∗ s(Aspirin) ∗ s(diseases)n

There is a way to combat the exponential growth; it is done by splitting up the variables
into many smaller variables. This splitting of variables was not known to me, I simply
realized that it would be practical and necessary when I started to work with the Bayesian



34 Rational Dialog in Interactive Games

nets. This is not a new discovery though it is a well known technique (Jensen, 2006),
although I only discovered that after having developed the splitting algorithm.

We can decide that the Temperature variable never has more than 8 disease variables as
parents. This results in the following equation

noe =

 n mod 8 = 0 =⇒ n/8(2 ∗ 2 ∗ 28)

n mod 8 > 0 =⇒ n/8(2 ∗ 2 ∗ 28) + (2 ∗ 2 ∗ 2n mod 8)

If the number of disease variables is 20 then this results in 3 variables and 2112 en-
tries. When the splitting of the variable is complete it is necessary to aggregate the result
into one variable to get the overall probability of the individual having fever, see Figure
7.4.

Figure 7.4: Fever

Table 7.4: Fever
Temp A Normal Elevated
Temp B Normal Elevated Normal Elevated
Temp C Normal Elevated Normal Elevated Normal Elevated Normal Elevated
Normal 3 2 2 1 2 1 1 0
Elevated 0 1 1 2 1 2 2 3

Table 7.5: Temperature normalized
Temp A Normal Elevated
Temp B Normal Elevated Normal Elevated
Temp C Normal Elevated Normal Elevated Normal Elevated Normal Elevated
Normal 1 0.666667 0.666667 0.333333 0.666667 0.333333 0.333333 0
Elevated 0 0.333333 0.333333 0.666667 0.333333 0.666667 0.666667 1
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To define the Temperature variable in Figure 7.4 it is first necessary to aggregate the states
as is shown in Table 7.4 and then to normalize the column as has been done in Table 7.5
where the values of every column add up to 1.

The result of splitting up the variables and then aggregating into one variable is in this
example 20/8(2 ∗ 2 ∗ 28) + (2 ∗ 2 ∗ 220%8) + (2 ∗ 23) = 2, 128 entries, which is 0.05% of
the 4,194,304 entries and the growth is no longer exponential.

I wrote a general algorithm that aggregates relations in this way, see algorithm 5. This is
in a class Bayes that extends the Network class of the Smile library (DSL, 2007b).

First the algorithm decides whether to split or not based on the number of parents of a
variable. The input to the algorithm is the variable id, an array of parents and maximum

number of parents. If number of parents exceed the limit, set by max number of parent
then the node is split and aggregated.

Algorithm 1: Define and split variable
Input : String id, String[] parents, int maxParents
begin1

# If there are to many parents then split and aggregate.2

if parents.length > maxParents then3

variables = splitVariable( id, maxParents, parents )4

for each ∈ variables do aggregateEqualValues( each )5

else6

# else just add parents and aggregate.7

for each ∈ parents do addArc( each, id )8

aggregateEqualValues( id )9

end10

If the decision is to split the node then algorithm 2 handles the actual splitting. The
Algorithm starts by creating a set of all the variables it needs and then connecting them
and finally aggregating the values. First it checks, by modulus, whether there is need for a
node for leftovers see line 4. If there is then that variable needs to be added to the variable
array at the back just before the main variable that everything will then be aggregated to.
Next the algorithm adds all the variables it will need to the array see line 9. Then, starting
in line 15, all the parents are added to the variables. For each variable the algorithm first
checks in line 16 whether this is a variable that will get maximum number of parents
added to it. If the number of the variable is less than the division of number of parents
by maximum number of parents then it should have a full set of parents, line 17. On the
other hand if the number of the current variable is equal to the same division as before,
see line 21, then this variable is the second last variable in the array and should have the
rest of the parents added to it. The number of parents that the second last variable gets,
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when it applies, is equal to the number of parents modulus maximum number of parents,
line 22. Finally for each variable add it to the main variable, line 26, as long as it is not
the main variable.

Algorithm 2: Split variable
Input : String id, int max, String[] parents, String[] states, String name, String

submodel, coordinates: x, y
Output: String[] variables
begin1

div = parents.length / max2

mod = parents.length mod max3

if mod > 0 then4

#add an extra variable when needed5

addChanceNode(newID, name, states )6

variables[ div, div+1 ] = newID, id7

else variables[div] = id8

for int i = 0; i < div; ++i do9

#add all the new variables needed10

addChanceNode( newID, name, states )11

variables[i] = newID12

end13

count = 014

for int each = 0; each < variables.length; ++each do15

if each < div then16

for int i = 0; i < max; ++i do17

addArc( parents[count], variables[each] )18

++count19

end20

else if each = div then21

for int i = 0; i < mod; ++i do22

addArc( parents[count], variables[each] )23

++count24

end25

if variables[each] != id then addArc( variables[each], id )26

end27

return variables28

end29

The last step of the split and aggregate algorithm is to aggregate equal values in all the
variables. Algorithm 3 takes the id of a variable as input and aggregates the values. It
first queries the number of parents and states and the size of the Table and then calls a
recursive algorithm 4 to set the correct values in the value array before setting the value
array as the defined set of entries for the variable.
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Algorithm 3: Aggregate equal values
Input : String id
begin1

size = getParentIds( id ).length2

states = getOutcomeIds( id )3

d = new double[tableSize(id)]4

aggregateEqualValues( size, d, 0, new String[size], states )5

setNodeDefinition( id, d )6

end7

In order to make the aggregation fully generic then the actual aggregation algorithm is
a recursive function. The algorithm is initialized with the number of parents as pow
and an empty array values for the changeable states that the parents have. Moreover an
array for the defining values, a counter that tells the current position and the states of the
variable.

Algorithm 4: Aggregate equal values
Input : int pow # initially number of parents, double[] d, int count, String[] values #

initially empty, String[] states
Output: int count
begin1

if pow = 0 then2

for state ∈ states do3

for value ∈ values do4

#add 1 when contradiction values match5

if value = state then ++d[count]6

end7

++count8

end9

normalize( d, count, states.length )10

else11

idx = values.length-pow12

- - pow13

for each ∈ states do14

values[idx] = each15

count = aggregateEqualValues( pow, d, count, values, states )16

end17

return count18

end19

First in the else, line 11, of the main if function the pow is decremented until it reaches
0. For each step of the count down of pow a for loop is activated that runs through all
the parents states and sets each of them in the initially empty values array at the current
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level according to pow, see line 15. The recursive call rests inside the for loop so that for
every state of the parent and for every parent the recursive function is called and when the
bottom level is reached, pow = 0 in line 2, then the second face of the algorithm is entered,
that of setting the aggregated value in its place. Then for each of the variables state and
for each of the parents value, if they are equal then increment, see line 6. Finally call a
normalize function that simply adds up all the values in the current column and weighs
each value by dividing it with the total so that the column as a whole sums up to 1.

7.2 Relational aggregation

It is sometimes necessary to aggregate relations between two different parts of the net-
work. As an example, when calculating the level of risk the player takes from lying as is
described in Section 9.3, it is necessary to find the correlation between each reply or sen-

tence and the aggregation of each Risk variable, see Figure 7.7. Each of the Risk variables
are aggregating the risk of each sentence or reply depending on whether this is the reply
or sentence setup. This is shown in example 4

Example 4 (Relational aggregation) Let’s assume that the domains of the Reply vari-

able and the two Risk variables is a result of an aggregation from the net and are as

follows:

• Dom(Reply) = {10%, 90%}.

• Dom(Risk 1) = {40%, 60%}.

• Dom(Risk 2) = {75%, 25%}.

The trick here is to get the conditional probability in respect to each reply by setting 1

in each entry that corresponds to a Reply and the respective Risk variable. Then the

conditional probability of the Reply and the Risk variables has been joined in a single

variable.

Table 7.6: Relational aggregation
Reply Reply_1 Reply_2
Risk 1 True False True False
Risk 2 True False True False True False True False
True 1 1 0 0 1 0 1 0
False 0 0 1 1 0 1 0 1

In Table 7.6 we see that Reply_1 and Risk 1 are joined by setting 1 in the entry corre-

sponding to the states of the Risk 1 variable when the Reply variable is in state Reply_1.
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The same is done for the Risk 2 variable when reply is in state Reply_2. In column 1

state true is set to probability 1 because Risk 1 is true and Reply_1 is the active state. In

column 6 state false is set to probability 1 because Risk 2 is false and the active state is

Reply_2.

It can be seen in Figure 7.5 and 7.6 that when the reply variable is instantiated, to Reply_1

or Reply_2 respectively, then the respective conditional probability is perfectly matched
in the Risk variable. In Figure 7.7 we further see that the resulting variable is effectively
mapping the conditional probability of the replies. The value for Reply_2 is 90% so the
result is much closer to Risk_2 than Risk_1.

Figure 7.5: Reply 1

Figure 7.6: Reply 2

Figure 7.7: Relations

I wrote a general algorithm that aggregates relations in this way, see algorithm 5. This is
again in a class Bayes that extends the Network class of the Smile library (DSL, 2007b).
Algorithm 5 needs the id string of the variable that will handle the relational aggregation
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as input, e.g. the Risk variable in example 4, and aggregates the values in respect to their
relations to the deciding variable, e.g. the reply variable is a deciding variable in example
4. It first queries the number of parents and states and the size of the table and then calls a
recursive Algorithm 6, inside a for loop that loops for the number of states in the deciding
variable. Algorithm 6 sets the correct values in the value array before setting the value
array as the defined set of entries for the variable.

Algorithm 5: Aggregate relations
Input: String id
begin1

parents = getParentIds( id )2

decisionLength = getOutcomeIds( parents[0] ).length3

parentStates = getOutcomeIds( parents[1] )4

states = getOutcomeIds( id )5

d = new double[ tableSize( id ) ]6

count = 07

for int i = 0; i < decisionLength; ++i do8

count = aggregateRelations( decisionLength, d, count, new String[9

decisionLength ], i, parentStates, states )
end10

setNodeDefinition( id, d )11

end12

In order to make the aggregation fully generic then the actual aggregation algorithm is a
recursive function. The algorithm is initialized with the number of parents as pow and an
empty array values for the changeable states that the parents have. Moreover an array

for the defining values, a counter that tells the current position, the sentences, parents and
the states of the variable.

First in the else , line 9, of the main if function the pow is decremented until it reaches
0. For each step of the count down of pow a for loop is activated that runs through all
the parents states and sets each of them in the initially empty values array at the current
level according to pow see line 13. The recursive call rests inside the for loop so that for
every state of the parent and for every parent the recursive function is called and when the
bottom level is reached, pow = 0 in line 2, then the second face of the algorithm is entered,
that of setting the aggregated value in it’s place in respect to the state it should represent.
In the second stage then for each of the variables state and for the current parents state, if
they are equal then set that entry of that sentence to 1, see line 5.
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Algorithm 6: Aggregate relations
Input : int pow, double[] d, int count, String[] values, int sentence, String[] parents,

String[] states
Output: int count
begin1

if pow = 0 then2

for state ∈ states do3

# set 1 when sentence and contradiction value match4

if values[sentence] = state then d[count] = 15

++count6

end7

end8

else9

idx = values.length - pow10

- - pow11

for parent ∈ parents do12

values[idx] = parent13

count = aggregateRelations( pow, d, count, values, sentence, parents, states )14

end15

end16

return count17

end18



Chapter 8

MAID (Multi-Agent Influence
Diagram)

Koller and Milch (Koller & Milch, 2003) propose a very good way to tackle the same
problem as discussed in subsection 6.2 namely dealing with the incomplete information of
every day decision making. They propose a multi-agent influence diagram (MAID). This
MAID is very useful to the prototype engine that I built because it enables the character to
evaluate the sentences in respect to what he expects his opponent to reply. Moreover the
complexity of this approach is linear. A MAID is an extended Bayesian net and is defined
using the following:

• I is the set of agents.

• D is the set of decision variables. Di is the set of decisions variables for each agent
i ∈ I.

• U is the set of utility variables. Ui is the set of utility variables for each agent i ∈ I.

• X is the set of chance variables.

• Each variable X has a finite set dom(X) of possible values, called domain.

• V is the complete set of variables D ∪ U ∪ X .

• Pa(X) ⊂ D ∪ X is the parents of each X ∈ X .

• for X, Y ∈ V there is an edge X→ Y iff X ∈ Pa(Y).

• Pa(D) is the set of variables that the agent i knows when choosing a value for D
for each D ∈ Di.
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• (CPD) is the conditional probability distribution of eachX ∈ U∪X : a distribution
Pr(X|pa) for each instantiation pa of Pa(X).

• for all D ∈ D The CPD for D is σ(D).

• U(pa) denotes the value of variable U that has probability 1 when Pa(U) = pa for
pa ∈ dom(Pa(U)).

• A decision rule to a decision variable D is a function that maps each instantiation
of pa of Pa(D) to a probability distribution over dom(D).

• An assignment of decision rules to every decision D ∈ Di for a particular agent
i ∈ I is called a strategy.

• An assignment σ of decision rules to every decision D ∈ D is called a strategy

profile.

• A partial strategy profile σε is an assignment of decision rules to a subset ε ⊂ D.

• σ−ε is the restriction of σ to those decision rules not in ε.

Now we can define a utility function to calculate the payoff for each i ∈ I for any assign-
ment of decision rules.

Definition 4 (Utility for player i ∈ I) (Koller & Milch, 2003)

If M is a MAID and σ is a strategy profile for M, then the joint distribution over V
defined by the Bayesian net is PM[σ], denoting the joint distribution forM induced by σ.

Suppose that U = {U1, ..., Um}.

EUa(σ) =
∑
U∈Ua

∑
u∈dom(U)

PM[σ](U = u) · u (8.1)

The utility function can now be used to reach an optimized decision.

Definition 5 (Optimize for player i ∈ I) (Koller & Milch, 2003).

We say that σ∗ε is optimal for the strategy profile σ if, in the induced MAIDM [σ−ε], where

the only remaining decisions are in ε, the strategy σ∗ε is optimal, i.e for all strategies σ
′
ε:

EUa((σ−ε, σ
∗
ε)) ≥ EUa((σ−ε, σ

′

ε)) (8.2)

Now that the formal definitions are over it is good to put them into a slightly more general
and less technical light. A MAID is essentially a Bayesian net with two or more decision
variables D where one decision variable needs to consider the decision rule of some
other decision variable D′ in order to optimize its own decision. This is called strategic
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relevance. Such a net is mapping the decision of a player in respect to the decisions of
other players in a non cooperative game. Having defined that there is strategic relevance
it becomes possible to map the strategic relevance with a directed graph called a relevance

graph. It has already been defined that σε is a partial strategy profile where ε is a subset
⊂ D. This partial strategy is used to induce a new MAID M[σε] where each Decision
variable D ∈ ε is a chance variable. This means that the only decision variables in the
induced MAID M[σε] are decision variables D ∈ −ε that is decision variables that are
not in /∈ ε. The restriction of variables /∈ ε is −ε. A MAIDM[σε] such as just described
is created for every decision in the relevance graph. The relevance graph is then used to
evaluate each MAIDM[σε] in a topological order such that the MAIDM[σε] that is first
evaluated is the MAIDM[σε] that does not depend on any other MAIDM[σε]. The results
of an evaluated MAIDM′

[σε] are then inserted into the chance variables that correspond
to the decision variables D ∈ ε that the MAIDM[σε] has and are decision variables D in
theM′

[σε]. This holds true for a single agent decision problem.

This is better explained by the means of an example, such an example is given in section
10 where this method is used to find an optimal sentence for a player to speak.



Chapter 9

NPC Alias Player

In this section the general makeup of the player is described. For clarity it is good to
look at two figures, first Figure 9.1 that shows the sentence setup for the player and then
Figure 9.2 to see how the player envisions his opponents reasoning process in deciding
what would be the optimal reply

Figure 9.1: Overview of the sentence setup

Figure 9.1 shows the sentence setup for the player. There are 9 subnets in the Figure. The
player is speaking to Carlotta and not David which means that the opponent_David subnet
is not connected to the others. There are two important subnets, the speech and sentence
subnet. The sentence subnet contains all the sentences that are currently being evaluated
(see subsection 9.3 for details). The speech subnet contains the variables used to calculate
the value of each sentence (see subsection 9.4 for details). The player’s name is Alice and
her characteristics will influence how she calculates an optimal sentence. The subnet
Alice characteristics is connected directly to the speech subnet so that it can be used in
the calculations; this is described in subsection 9.1. In Figure 9.1 Alice is evaluating what
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to say about her own relations to the victim which means that she takes into account,
amongst others, what she thinks that Charlotta knows or assumes about Alice’s relations
to the victim, thus the opponent_Charlotta subnet is connected to the sentence subnet.
Alice uses the assumption that she herself has of what assumptions Charlotta has of the
world to evaluate sentences. This is explained in detail in subsection 9.3. There are also
four knowledge subnets; these represent the knowledge that Alice has of herself and the
world. The knowledge subnets are explained in subsection 9.2.

Figure 9.2: Overview of the reply setup

Figure 9.2 shows the overview of the reply setup which is used to calculate the optimal re-
ply. All the nodes that are connected to the reply or speech subnet in Figure 9.2 influence
the calculations used for finding the reply. As in Figure 9.1 Alice is talking to Carlotta
and is wondering what Carlotta would reply based on what Alice assumes that Carlotta
knows and on what sentence Alice chooses to say. If the speech and reply subnets are
excluded then there are 3 sets of subnets in Figure 9.2, They are:

• Subnets that describe what Alice assumes is Carlotta’s knowledge and characteris-
tics.
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• Subnets that describe what Alice assumes is Carlotta’s knowledge of Alice’s knowl-
edge and characteristics.

• Subnets that describe what Alice assumes is Carlotta’s knowledge of David’s knowl-
edge and characteristics.

David is not participating in the conversation and thus there are no connections between
subnets starting with Carlotta David and the speech and reply subnets. Moreover Alice
does not need to use what she assumes Carlotta believes of Alice’s characteristics and
thus that subnet is also unconnected. As before the characteristics subnets are described
in subsection 9.1. The Knowledge subnets are described in subsection 9.2. The Reply
subnet is described in subsection 9.3. Finally the speech subnet is described in subsection
9.4.

9.1 Characteristics and emotions

The character subnet consists of all the variables that define the player’s characteristics
such as: Gullible, Honest, Reliable and Integrity. These are an example of a vast variety
of characteristics that might by considered. Gullibility affects how likely the character is
to believe hearsay (see Section 9.2). Honesty affects how willing he is to tell the truth;
an honest character will put a higher value on telling the truth than others. Reliability
reflects how likely he is to be a man of his words; the more reliable he is thought to be
the more likely he is to be believed, (see Sections 9.2 and 9.3). Moreover a reliable player
does not want to be known to be incorrect. Integrity affects how much he values ethical
principles such as honesty and reliability.

As this is a one person project I have needed to pick and choose what to emphasize on.
The goal and research question of this project is whether it is possible to create players
that can make rational decisions using Bayesian nets and game theory. This means that
adding characteristics and emotions to the players’ decision model is a secondary goal
that I did not have time to develop.

9.2 Knowledge

As can be seen in Figures 9.1 and 9.2 there are four distinct types of knowledge subnets,
they are: personal knowledge, crime knowledge, scene knowledge and weapon knowl-
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edge. A player has his own set of knowledge subnets that he uses to evaluate the world
around him.

Personal knowledge is everything that has to do with the individual such as hair color,
shoe size, name, relations to others etc. The player has a personal knowledge subnet where
he maps everything he knows about himself. He also has personal knowledge subnets to
map what he believes is true about his opponents. Moreover he has personal knowledge
subnets to map what he assumes his opponents know of their opponents.

Crime knowledge is everything to deal with the crime such as the victim, murderer, mur-
der weapon, wound etc. It is divided into three main parts: murder weapon knowledge,
murderer knowledge, victim knowledge. The player has a crime knowledge subnet
where he maps everything he knows about the crime. He also has crime knowledge sub-
nets to map what he believes his opponents know of the crime. Moreover he has crime
knowledge subnets to map what he assumes his opponents believe that their opponents
know of the crime.

Scene knowledge is everything to do with each scene in the game such as description
of a room, the furniture in it and possible clues hidden in each scene. The player has a
scene knowledge subnet where he maps everything he knows about the different scenes
in the game. He also has scene knowledge subnets to map what he believes his opponents
know about different scenes. Moreover he has scene knowledge subnets to map what he
assumes his opponents assume their opponents know about the different scenes.

Weapon knowledge is everything to deal with various weapons found in the game and
whether the could be the murder weapon. The player has a weapon knowledge sub-
net where he maps everything he knows about different types of weapons. He also has
weapon knowledge subnets to map what he believes his opponents know about weapons.
Moreover he has weapon knowledge subnets to map what he assumes his opponents as-
sume that their opponents know about weapons.

Figure 9.3: Knowledge



Maria Arinbjarnar 49

Each of the subnets that have just been described above are divided into many small
subnets. Each of these small subnets contain two or more variables that describe the state
of some piece of knowledge. In Figure 9.3 one such subnet is shown. The subnets name
is mother and it belongs to the victim knowledge subnet in the crime knowledge subnet.
This is the piece of knowledge of who, if any, of the suspects is the victim’s mother. Each
of the variables have three states, two possible female names and null. The null represents
the possibility that none of the suspects is the victim’s mother. The two female names are
suspects and possibly the murderer. The top right variable mother prem is connected to
other ...prem variables in the net. Each of these knowledge piece subnets have exactly
one such variable. This is the premises variable that is drawn from the plot generated
at the start. some of these premises variables are instantiated at the start of the game to
represent what each player knows in respect to the generated plot. Each player’s personal
knowledge subnet has for instance all of its premises variable instantiated in respect to the
plot because the player will have complete information about himself. This is described
better in section 10.4 and 10.5 where the process of finding equilibrium is described. This
mother prem variable has wife prem, victim prem and female adulterer prem as parent
variables and murderer prem and parent prem as children variables. The wife, victim and
adulteress variables are needed as parents to make sure that none of these characters gets
also chosen as a mother. The victim’s wife cannot be the victim’s mother etc. The child
nodes check for the murderer and suspect whether they are parents of the victims and thus
draw inference from that knowledge.

The top left variable mother inf is an inference variable. This variable represents the
inferred knowledge of both actual data from the premise variable and information that
the player has been told by an opponent. The Alice hearsay variable shows what the
opponent said. In this example the player was talking to Alice and Alice claims to be
the victims mother. The Alice value variable shows how much value the player puts on
Alice’s claims. The value variables are influenced by the players gullibility and by how
reliable he believes his opponent to be, see the characteristics section 9.1. The hearsay
variable aggregates all hearsay so that the inference is simpler. If the player then talks
to other opponents and these opponents also give information on this piece of knowledge
then that is added in a similar way. Thus the player can receive conflicting evidence from
its opponents and needs to evaluate each hearsay in respect to the characters reliability.
Since some variables may have many states and the opponents can be multiple then the
hearsay variable sometimes needs to be split and aggregated as is described in section
7.1.

The premise and inference variables are used to generate sentences which is described
in section 9.3. There is ample opportunity to play around with possible characteristics
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and emotions when handling the knowledge variables. Intelligence would for instance
influence how much precedence, if any, the inference node would have over the premises
node. This could also be influenced by gullibility and some emotions. Moreover the
hearsay value variable could take more factors into account such as emotions or connec-
tions to the opponent or the type of knowledge being handled. The player might put a
higher value on the opponent’s claim of being the parent than on the opponent’s claim of
not having a dark secret.

9.3 Sentences and replies

Each time the player wants to say something she needs to generate a set of possible sen-
tences. The sentences need to be based on some prior knowledge that the player has and
on her intended purpose for speaking. It is also necessary to generate all the possible
replies of the opponent so that she can evaluate the affect of her intended sentence. This
is discussed in more detail in section 10.3

The sentence and reply subnets contain the sentences that the active character could say
and the replies she would expect from her opponent respective.

It is necessary to calculate the levels of contradiction and risk for each sentence and reply
to get an evaluation of the over all risk of each sentence. First it is good to get a detailed
description of what the contradiction and risk variables measure and then it is possible to
put it in a more general context by an example.

Contradiction is obtained when the knowledge that a sentence or a reply is based on is
at odds with the assumed knowledge of the opponent.

To calculate the contradiction variable of a sentence or reply it is necessary to compare
the knowledge ks,r associated with each sentence s or reply r with each of the respective
opponent’s knowledge denoted ko. Such that ks,r1 is compared to opponent’s ko1.

Contradiction is caused by inequalities between the values of ks,r1 and ko1

ko1 = True 6= False = ks,r1

It may be reasonable to assume that there are degrees of contradiction due to other factors
such as type of knowledge. As an example: if someone tells us he arrived at three o’clock
but we know in fact that he arrived 15 minutes earlier we do not necessarily consider it
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a contradiction, or at least less of a contradiction than if the same person claimed that he
never arrived. Such affects would influence the contradiction variable.

Risk is when the knowledge that a sentence or a reply is based on contradicts the knowl-
edge of the player. The level of risk of a sentence is estimated following the same lines
outlined above for the level of contradiction.

The main contradiction and main risk variables aggregate values from all the contradic-
tion and risk variables respective in the same subnet. They may need to be split first
as described in section 7.1 if there are numerous knowledge variables for any one sen-
tence created. Having the main contradiction and risk variables as intermediate steps is
necessary to simplify the calculations in the speech subnet see section 9.4.

Figure 9.4: Spanner true

As an example look at Figures 9.4 and 9.5 that show two possible replies: reply A “the
murder weapon is spanner" and reply B “the murder weapon is not spanner". In this
example Harry is evaluating what the opponent is likely to reply. Harry believes that
his opponent is absolutely sure that the murder weapon is spanner and that the opponent
believes that Harry is clueless about what the murder weapon is such that Harry has an
equal value set on all states in his respective knowledge subnet. The top variable in
Figure 9.4 has its probability for state spanner set to 1. and all other states set to 0. Since
Harry beliefs that his opponent believes that Harry is clueless, Harry will assume that the
opponent realizes that claiming that the murder weapon is spanner will contradict Harry’s
knowledge by 75% but will be identical to 25% of Harry’s knowledge. On the other hand,
Harry assumes that the opponent assumes that there is no risk involved in claiming that
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the murder weapon is a spanner because the opponent is absolutely sure that the murder
weapon is spanner.

Figure 9.5: Spanner false

In Figure 9.5 Harry evaluates possible replies to the effect that the murder weapon is
not a spanner; so the probability of spanner is set to 0 but all other states have equal
probabilities. Just as in Figure 9.4 the contradiction is 0.75 because there is a contradiction
of 75% essentially. But now the risk is very high because Harry assumes that the opponent
will think that he, the opponent, is lying and will find it a very risky business.

9.4 The value of speech

As can be seen in Figure 9.1 and Figure 9.2 all paths lead to the speech subnet which this
section deals with. To implement the Bayesian net as a MAID, as described in section 8,
we need one net for each decision that would have been in a Bayesian net. In the prototype
system described in this thesis there are two decisions: what the active character is going
to say and what he expects as a reply. The result is two Bayesian nets; the difference
between the two nets is in the sentence and speech subnets. The sentence subnet describes
which knowledge variables affect the contradiction and risk variables.

Each speech subnet has a utility node called payoff which calculates the utility of either
the sentence or reply. All variables that influence the payoff have the same set of states
{True, False}. This is to simplify calculations. True is bad and False is good. Each
value of True gets 100 points. If the values would simply be added up then some of them
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could become really high. Moreover it would be very difficult to get a quick relative
perspective of the payoff. So in order to gain greater transparency the value is divided by
the number of parents. This means that the payoff is always between 0 and 100.

Figure 9.6: Sentence setup

Figure 9.7: Reply setup

The contradiction and risk variables, in Figure 9.6 and 9.7, determine the overall contra-
diction and risk of each sentence or reply and influence the payoff. They aggregate all the
main contradiction and risk variables from the sentence and reply subnets for the sentence
and reply setup respective. The risk and contradiction need to be aggregated in respect
to what sentences and replies they represent. Relational aggregation as is described in
section 7.2 accomplishes this.

The integrity violated variable, in Figure 9.6 and 9.7, calculates how much the sentence
violates the integrity of the player or opponent, in respect to his reliability and hon-
esty.

The sentence setup in Figure 9.6, is used to calculate the payoff of each sentence that the
player is considering.

Reply variable, in the sentence setup in Figure 9.6, lists all the optimal replies that the
player expects to get in respect to the sentence spoken. This is explained in more detail in
section 10.4.
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The caught in lie variable measures whether the reply indicates that the opponent suspects
the player to be lying.

The reply setup in Figure 9.7 is used to calculate the possible payoff of each reply for the
opponent.



Chapter 10

The Engine

This section describes the computational engine of my prototype; i.e. the actual mecha-
nism from creating a new plot and new players to the act of finding a rational sentence to
speak. In order to help readers to understand better what follows, it is best to present first
a general overview of the computational engine.

Figure 10.1: The big picture

The engine is in three parts; each of the parts can be considered as a completely inde-
pendent part. The parts are the DPGE (Dynamic Plot Generating Engine), the decision
mechanism of the player and the game theoretic setup for finding equilibrium, see Figure
10.1.

The DPGE is the first part of the engine. This part creates a new murder mystery plot
complete with one and only one victim, one and only one murderer, one and only one
murder weapon, a set of suspects, a set of possible murder weapons, a murder scene, a set
of other scenes, motives for the murderer and each of the suspects, connections between
the victim and murderer and suspects and of course some clues to connect murderer and
murder weapon to the crime. The resulting plot is consistent and coherent. This means
that the expected causal connections hold such that if the victim was the suspects mother



56 Rational Dialog in Interactive Games

then that suspect will not have some other relations to the victim and that suspect will most
likely be a heir. It then follows that if someone is a heir to a rich victim then that someone
has a motive. This is accomplished by combining a Bayesian net with Proppian functions,
see sections 7 and 5. How this is accomplished is described in section 10.1.

The decision mechanism of the player is created for each new game from the plot that the
DPGE generated. This means that the murderer and each of the suspects are created as
independent players by the engine. Each of these players contain two Bayesian networks
that have the playert’s characteristics and a knowledge base as described in sections 9.1
and 9.2. Moreover each of them has the ability to generate sentences and replies and the
contingent sentence and reply setups respectively. How they are created from the plot is
described in section 10.2.

Finding equilibrium, essentially refers to the player finding an optimal sentence to speak
at all times. In order to find any sentence at all the player first needs to generate a set of
possible sentences. This he does in respect to his knowledge base and a seed that he gets.
The seed is either something that the opponent just said or simply something used to start
the dialog with. Each sentences is then used as a seed to generate all the replies that it is
likely to provoke. The process of generating sentences and replies is explained in section
10.3.

Now that a player has been created with a knowledge base, characteristics and sets of
sentences and replies it is time for that player to decide what, if anything, to say. The
problem he faces is what is called a single player decision problem in a non cooperative
game. This simply means that the player needs to make a decision based on his exogenous

data and ex ante calculations. What matters to him is his beliefs about his opponent and
about his surroundings and not other players beliefs about other players. He wants to find
an optimal sentence in respect to what he believes that his opponent will reply. The player
is trying to find a Bayesian equilibrium and I want to stress again the importance that since
Bayesian equilibrium, like Nash equilibrium, is essentially a consistency check, players’
beliefs about others’ beliefs do not enter the definition – all that matters is each player’s
own beliefs about the distribution of types and his opponents’ type-contingent strategies
(Fudenberg & Tirole, 1991).

What the player will say is dependent upon what he expects as a reply. So we have
two decision variables in a MAID. One for the optimal sentences Ds and another for the
optimal replies Dr. Decision variable Ds is dependent on decision variable Dr. This
means that we can draw a relevance graph such that Ds → Dr. This means that there is
need for two MAIDs to find an equilibrium. One induced by the repliesM[σDr ] and the
other induced by the sentences M[σDs ]. There are then two MAIDs: M[σDr ] where Dr
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is a chance variable andM[σDs ] where Ds is a chance variable. When these two MAIDs
have been constructed the algorithm evaluates the two MAIDs by iterating through them
in reverse order. This means that M[σDr ] is calculated first and M[σDs ] second induced
with the results from Dr. The decision reached in M[σDs ] is then an optimal decision.
This is equivalent to finding a Nash equilibrium.

10.1 The DPGE (Dynamic Plot Generating Engine)

First the engine starts by creating the plot. This is done by first reading two text files.
One of the files lists the identifying strings, names and positions for each of the variables
needed to create the Bayesian net that the DPGE then uses to create the plot. The second
file contains all names of characters that the DPGE will need. The reason for this is so
that it is easier to make changes and to make the DPGE more autonomous. This is also
to prepare for the possibility that a graphical interface could be built on top of the DPGE.
This would be so that non-programmers could add to the plot setup.

The DPGE uses the information that it reads from the files to construct a Bayesian net
and adding all the necessary constraints that are described in Section 5. This newly con-
structed net is then used to set the plot. First a victim is chosen randomly from the set of
available names. Then a murderer is randomly chosen. The constraints in the net make
sure that he satisfies all the necessary constraints. Any names that are left in the set read
from the initial names file are now automatically set as suspects and the constraints of
the net ensure that they will not be able to satisfy all of the constraints needed to be a
murderer.

Finally all variables in the net that have not been instantiated are now one by one instan-
tiated. Each variable is instantiated by finding a random number between 0 and 1 and
instantiating the variable to the state that matches the randomly chosen value. For in-
stance if a variable has two states {True, False} and True is 25% likely then a value of
0.2 would result in the variable being instantiated to True.

10.2 Generating players

The plot that the DPGE creates is a complete description of everything that is needed to
create the knowledge base of a player. First each player is given the basic set of character-
istics that have randomly set values. It is not dependent to the plot whether a character is
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gullible or honest. The plot is then used to create the knowledge base of each of the player.
The knowledge base is in four parts. Each part contains variables with the knowledge that
the player will have in respect to their position in the plot. The four parts are:

• Knowledge of the crimewhich contains knowledge of the murderer, murder weapon
and victim. The murderer will know nearly everything about the crime while the
suspects know very little except about the victim. Still all the players get all the
nodes for the knowledges. The murderer gets his instantiated to what he knows
while the other players just get the nodes as they appear before the plot has been
set.

• Knowledge of weapons, each player gets the knowledge setup for each possible
weapon that can be found in the plot so that he can use it to know the weapons and
their attributes and to deduce which weapon could be the murder weapon

• Knowledge of scenes, each player gets the knowledge setup for each possible scene
to be found in the game. This he uses to be able to know its attributes and how it
connects to other knowledges.

• Personal knowledge, each player gets personal knowledge about himself and also
about each of the other players. He will have his personal knowledge instantiated
to what he knows about himself but he will have fairly little knowledge about other
players except for what is readily apparent. Such as hair color, name and hight.

A more complete explanation of the knowledge base is in section 9.2. When the knowl-
edge base has been created for each player then the knowledge that he “knows" is spe-
cially instantiated. The murderer is then instantiated with murder specific knowledge, that
is the knowledge that only he would know. The suspects, other players, are instantiated
with much more general knowledge such as hight hair color and such, and then of course
everything about them selfs. Finally each player is equipped with tools to generate sen-
tences and replies using his knowledge base which is described in the following section.
Moreover the player is also equipped with tools to create the speech setup for both the
sentence and reply setups which is described in section 10.4.

10.3 Generating sentences and replies

The sentences are generated in the simplest possible manner as is shown in the following
algorithms. First in algorithm 7 a seed is used to find relevant variables, the seed is the
basic identifying string of a variable. The string is joined to the name of the player and
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opponent. First the seed is used to generate sentences and then for each of the generated
sentences the id of the sentence is used to generate replies for that sentence.

Algorithm 7: Generating Sentences and Reply
Input: String seed, String player, String opponent
begin1

# see algorithm 8, Creating the sentences2

sentences = createSentences( player + seed )3

String oldid4

Sentence[] replies5

for each ∈ sentences do6

# First check to see if identical set of replies exists7

if oldid = each.getId() then8

each.setReplies( each, replies )9

continue10

end11

oldid = each.getId()12

seed = each.getId( )13

# see algorithm 8, Creating the sentences14

each.setReplies( createSentences( opponent + seed ) )15

end16

# Update the global graph17

graph.setSentences( sentences )18

end19

Example 5 (Variables id) The seed _s_relation along with the player’s name and the

opponent’s name, e.g. player = Horace, opponent = Pilar, results in the two seeds:

• Horace_s_relation and

• Pilar_s_relation,

where _s_ stands for suspect.

The second step, shown in algorithm 8, is to find the variable that matches the seed and
to find all of its parents’ variables and child variables. Since the net is causal it follows
that those variables are in causal relations to the seed and that humans should find them
relevant.

The third step, shown in algorithm 9, is to create a sentence for each possible state of all
the collected variables. Each of the states of a variable is instantiated as being either true
or false. If a variable has only two states then only one of the states needs to be instan-
tiated because the states are mutually exclusive. This removes some obvious redundancy.
However this methodology of generating sentences is still very brute force and should be
optimized or removed in order to obtain “more intelligent" sentence generating
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Algorithm 8: Creating the sentences
Input : String seed
Output: An array of generated sentences
begin1

String[] ids2

# Append the matching variable3

ids.append( seed )4

for each ∈ net.getChildIds( seed ) do5

ids.append( each ) # Append the children6

end7

for each ∈ net.getParentIds( seed ) do8

ids.append( each ) # Append the parents9

end10

# see algorithm 9, Create each sentence instances11

Return sentenceInstances( ids )12

end13

Algorithm 9: Create each sentence instances
Input : String[] ids
Output: An array of generated sentences
begin1

Sentence[] sentences2

for id ∈ ids do3

states = net.getOutcomeIds( id )4

for state ∈ states do5

sentences.append( id, state, true, states )6

sentences.append( id, state, false, states )7

# Remove obvious redundancy8

if states.length = 2 then break9

end10

end11

return sentences12

end13
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10.4 Finding equilibrium

To find a Nash equilibrium in the game that has been portrayed it is necessary to find
the assumed strategy profiles of the opponent. It is important to realize that the game is
sequential, e.g. the player makes a move and then his opponent makes a move. They do
not make their moves in parallel which simplifies the computation of equilibrium signifi-
cantly.

Recall definition 2 of a strategy profile, that is contingent to the player’s type, where the
player’s strategy profile needs to take into account every strategy profile of the opponent.
Given a strategy profile s(·), and an s′i(·) ∈ S

Θi
i , let (s′i(·), s−i(·)) denote the profile where

player i plays s′i(·) and the other players, his opponents, play s(·), then

(s′i(θi), s−i(θ−i)) = (s1(θ1), ..., si−1(θi−1), s′i(θi), si+1(θi+1), ..., si(θi))

The MAIDs determine types in respect to the decisions that need to be taken to resolve
the game. There are two decisions that need to be made by the player: The assumed
reply and the sentence in respect to the assumed reply. This means that to determine the
opponent’s strategy profiles for each of the player’s strategy profiles it is necessary to gen-
erate all the possible replies to each of the possible sentences that the player contemplates
saying. This is accomplished in section 10.3, where I describe the process of sentence
generating.

Now recall the Bayesian equilibrium, definition 3. That definition states the set of op-
timal strategies is the one that maximizes the accumulated player’s utilities contingent
on the opponent’s strategy profile which in turn is contingent on the opponent’s type.
Formally,

si(θi) ∈ arg max
s′i∈Si

∑
θ−i

p(θ−i|θi)ui(s′i, s−i(θ−i), (θi, θ−i))

To find the players utility ui it is necessary to find the strategy profiles that the opponent
will play contingent to the opponents type, s−i(θ−i), this is accomplished in algorithm 10
and 11.

Algorithm 10 finds the set of optimal replies to each sentence. The replies need to be eval-
uated in subsets of approximately ten for reasons of memory allocation and exponential
growth in computing the net. The memory allocation problem results from the number
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Algorithm 10: Calculating optimal replies per sentence
Input: Sentence[] sentences, Calculate calc, Bayes net, Player p, Player o
# Player o is the opponent1

begin2

for each ∈ sentences do3

max = 104

while each.getReplies.length mod max = 1 do ++max5

repeat6

SentenceGenerator sg = new SentenceGenerator( p, max )7

sg.replySetup( each )8

Speech speech = new Speech( p, o, max )9

speech.reply( each )10

net.updateBeliefs( )11

calc.bestReplies( each, net )12

p.clearSentenceAndSpeech( )13

until !each.incrementRepliesIndexes( max )14

end15

end16

of replies that need to be evaluated. There are a few hundreds of replies that need to be
evaluated and each of them corresponds to one state in a decision variable. A solution
is to distribute the replies to many decision variables. This solves the memory alloca-
tion problem but introduces a different problem of exponential growth in calculating the
net. This growth arises because all of the decision variables are then connected in such
a way that they depend on each others’ result. If there are 9 other variables, each having
10 states, that need to be evaluated, then the strategy function of each decision variable
is 109 (Jensen, 2001), so the complexity for each decision variable is O(nsnv−1) where
ns is the number of states and nv is the number of variables that influence the decision.
There are ways to use an aspect of the Bayesian net called d-separation (Jensen, 2001) to
handle this to some extent but I chose to simply create a completely new reply and speech
setup for each 10 replies evaluated. This is possible because the evaluation of one reply
is not dependent on the evaluation of another reply.

The first step of the algorithm is to set max replies to 10 in line 4. Next it is necessary
to make sure that there is never an attempt to create a variable with less than two states
because a variable must, by definition, have a minimum of two states. This is accom-
plished with simple modulus of number of replies by max replies as is shown in line 5
(see example 6).
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Example 6 (Two states minimum) Assume that max = 10 and number nReplies of replies

is 21. Then

nReplies mod max = 1

This will produce a variable with only one reply and thus only one state to be created,

leading to a failure in the program. To solve this problem I simply increment the variable

max and then repeat the check to make sure that the modulus does not result in 1.

The function in line 14 will return false when it is unable to shift to the next subset of
replies to evaluate. For each subset of replies the variables for those replies need to be
generated and the Speech subnet needs to be repopulated in respect to the current subset
of replies. This is accomplished by function calls in lines 8 and 10 respectively. The
details of populating the subnets are omitted. Then the net is updated in line 11, e.g. all
variables in the net that need to be evaluated are updated. Then, in line 12, the current set
of optimal replies is found as shown in algorithm 11. Finally it is necessary to clear the
sentence and speech subnets for the next round with a function call in line 13.

Algorithm 11: Finding optimal replies
Input: Sentence sentence, Bayes net
begin1

optimal = sentence.getOptimalReplies()2

replies = sentence.getNextReplies( )3

decision = net.getNodeValue( DECISION )4

high = sentence.getHighValue()5

for int i = 0; i < replies.length; ++i do6

if high = decision[i] then7

optimal.append(replies[i])8

continue9

end10

if high > decision[i] then continue;11

if high < decision[i] then12

high = decision[i]13

optimal.clear( )14

optimal.append(replies[i])15

end16

end17

sentence.setHighValue( high )18

sentence.setOptimalReplies( optimal )19

end20

Algorithm 11 is the function that returns the optimal set of replies per sentence. First the
algorithm retrieves the former optimal sentences, decision values and high value. Then,



64 Rational Dialog in Interactive Games

for each reply, it appends the highest ranking reply to the set of optimal replies. If a reply
value is equal to the high value then append it to the set of optimal replies as is shown in
the if block starting in line 7. If a reply value is too low then continue (see line 11). If a
reply value is higher than the current high value then the set of optimal replies is cleared
and the high ranking reply is appended to it; see block starting at line 12. Finally store the
result in the sentence object

The next step is to find the sum of the weighted player’s utility dependent on the opponents
type θ−i, e.g.

∑
θ−i

p(θ−i|θi)ui(s′i, s−i(θ−i), (θi, θ−i)), and then maximize it with each of
the player’s strategy profiles, s′i ∈ Si, as argument. The player knows his type and he
knows all the strategy profiles that he consider viable. What the player needs to find is
which set of his strategy profiles, s′i, is the optimum one, e.g. which subset of s′i ∈ Si

yields the highest payoff. Knowing that the probability that the opponent is of any given
type θ−i is strictly positive and that this is a sequential game then the player can use the
sets of optimal replies, previously acquired in algorithms 10 and 11, to find the optimal
sentence as is now shown in algorithms 12 and 13.

Algorithm 12: Calculating optimal sentences
Input: Calculate calc, Bayes net, Player p, Player o
# Player o is the opponent1

begin2

max = 63

while sentences.length mod max = 1 do - - max4

Speech speech = new Speech( p, o, max )5

SentenceGenerator sg = new SentenceGenerator( p, o, max )6

repeat7

sentences = p.getNextSentences( max )8

sg.sentenceSetup( sentences )9

speech.sentence( sentences )10

calc.equilibria( sentences )11

p.clearSentenceAndSpeech()12

until !p.incrementSentenceIndexes( max )13

end14

Algorithm 12 finds the set of optimal sentences in the following manner. The sentences
need to be evaluated in subsets for the same reason as the replies. First max sentences
is set to 6 in line 3, then just as with the replies it is necessary to make sure that there is
never an attempt to create a variable with less than two states. This is accomplished with
simple modulus of number of sentences by max sentences as is shown in line 4. Next
repeat the following until there are no more sentences to evaluate. The function in line 13
will return false when it is unable to shift to the next subset of sentences to evaluate. For
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each subset of sentences the variables for those sentences need to be generated and the
Speech subnet needs to be repopulated in respect to the current subset of sentences. This
is accomplished by function call in lines 9 and 10 respective. The details of populating
the subnets are omitted. Then, in line 11, the current set of optimal sentences is found
which is shown in algorithm 13. Finally it is necessary to clear the sentence and speech
subnets for the next round with a function call in line 12, details omitted.

Algorithm 13: Finding equilibrium
Input: Player p, Bayes net
begin1

setReplyValue( p, net )2

net.updateBeliefs()3

decision = net.getNodeValue( DECISION )4

optimal = p.getOptimal()5

high = 06

if optimal.length != 0 then high = optimal[0].getValue()7

for int i = 0; i < decision.length; ++i do8

if high = decision[i] then9

optimal.append( sentences[i] )10

continue11

end12

if high > decision[i] then continue13

if high < decision[i] then14

high = decision[i]15

sentences[i].setValue( high )16

optimal.clear( )17

optimal.append( sentences[i] )18

end19

end20

p.setOptimal( optimal )21

end22

Algorithm 13 is the function that ultimately returns the optimal set of sentences. First
the algorithm defines the reply variable with a function call in line 2, as is shown in
example 7 This is really setting the grounds for calculating the weighted payoff, e.g.
p(θ−i|θi)ui(s′i, s−i(θ−i), (θi, θ−i)). The probabilities set in the reply variable represent the
probability of each type and the optimal reply which is contingent to the type. The net
is then updated in line 3 which sums up the weighted utility in the decision variable.
The values of the decision variables are then retrieved together with the former optimal
sentences if there were any. Also, in line 7, retrieve the former high value if there was
one. Then, for each sentence, append the highest ranking sentences to the set of optimal
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sentences. If a sentence value is equal to the high value then append it to the set of optimal
sentences as is shown in the if block starting in line 9. If a sentence value is to low then
continue (see line 14). If a sentence value is higher than the current high value then the
set of optimal sentences is cleared and the high ranking sentence is appended to it, see
block starting in line 13. The end result is a set of optimal sentences.

Example 7 (The reply variable in the sentence speech setup) Assume that there are two

sentences, namely

• sentence S1 that has 1 optimal reply = { S1R1 } and

• sentence S2 that has 2 optimal replies = { S2R1, S2R2 }.

Then S1 will receive the reply S1R1 with probability 1 and S2 will receive replies S2R1,

S2R2 each with probability 0.5. This is defined in the Reply variable in the sentence

speech setup as is shown in table 10.1.

Table 10.1: Reply variable
Sentence S1 S2
S1R1 1 0
S2R1 0 0.5
S2R2 0 0.5

10.5 Example run

In order to exemplify the workings of the engine I described above, I now present an ex-
ample run of my prototype system from the creation of a plot to the choice of a sentence
by the player. The log-file is generated with the log4J library. In order to improve clarity I
remove the log string that informs from where in the program the logging occurs. Instead
I write that information string at the start of each new section. First the DPGE creates the
plot from two text files

INFO main NPC.NPC - Start at Mon Apr 16 08:24:14 GMT 2007

First the DPGE creates the plot from two text files,
(INFO main DPGE.PlotGenerator)

Characters defined

Crime defined
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Weapons defined

Murder scene defined

Suspects defined

Number of nodes: 268

Net created -----------------------------

Net Written

Here the plot has been set and a description of the plot is written out,
(INFO main DPGE.PlotGenerator)

--- Victim is Alice---

The victim is Medium, Female with shoe size Nr_41

Husband = Donald, Wife = Null, Male affair = Null,

Female affair = Null Mother = Linda, Father = Null,

Rich = True, dark secret = False

-----------------------------

--- Weapon is Spanner---

Material = Steal, Marks = Square, wound type = Blunt_wound,

needs strength = True, Hair on victim = True,

hair on weapon = True, blood on weapon = False

-----------------------------

--- murderer is Penny ---

Small, Strong, Female with shoe size Nr_37

Relation = Friends, Heir = False, Rich = True

In debt to victim = False, Has dark secret = False

The murderer has the following as possible motives for murder:

Inheritance = False, Blackmailer = False, Swindler = False,

Adultery = True Wedlock = False, Debt = False,

isSwindled = False, Revenge = True, isBlackmailed = False

-----------------------------

--- suspect 1 is Linda ---

Small, Weak, Female with shoe size Nr_37

Relation = Parent, Heir = False, Rich = True

In debt to victim = False, Has dark secret = False

The suspect has the following as possible motives for murder:

Inheritance = False, Blackmailer = False, Swindler = True,

Adultery = False Wedlock = False, Debt = False,
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isSwindled = True, Revenge = True, isBlackmailed = False

-----------------------------

--- suspect 2 is Donald ---

Tall, Strong, Male with shoe size Nr_43

Relation = Spouce, Heir = True, Rich = True

In debt to victim = False, Has dark secret = False

The suspect has the following as possible motives for murder:

Inheritance = False, Blackmailer = False, Swindler = True,

Adultery = False Wedlock = True, Debt = False,

isSwindled = True, Revenge = True, isBlackmailed = False

-----------------------------

Now that the plot has been created the players are created from the plot,
(INFO main NPC.KnowledgeGenerator)

ADDING CRIME KNOWLEDGE for Linda

ADDING WEAPON KNOWLEDGE for Linda

ADDING SCENE KNOWLEDGE for Linda

ADDING PERSON KNOWLEDGE for Linda

ADDING CRIME KNOWLEDGE for Penny

ADDING CRIME KNOWLEDGE for Pennys opponent Linda

ADDING CRIME KNOWLEDGE for Pennys opponent Donald

ADDING WEAPON KNOWLEDGE for Penny

ADDING WEAPON KNOWLEDGE for Pennys opponent Linda

ADDING WEAPON KNOWLEDGE for Pennys opponent Donald

ADDING SCENE KNOWLEDGE for Penny

ADDING SCENE KNOWLEDGE for Pennys opponent Linda

ADDING SCENE KNOWLEDGE for Pennys opponent Donald

ADDING OPPONENTS PERSON KNOWLEDGE for Penny

ADDING OPPONENTS OPPONENTS PERSON KNOWLEDGE for Pennys opponent

Linda

ADDING OPPONENTS OPPONENTS PERSON KNOWLEDGE for Pennys opponent

Donald

ADDING CRIME KNOWLEDGE for Donald

ADDING CRIME KNOWLEDGE for Donalds opponent Linda

ADDING CRIME KNOWLEDGE for Donalds opponent Penny

ADDING WEAPON KNOWLEDGE for Donald
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ADDING WEAPON KNOWLEDGE for Donalds opponent Linda

ADDING WEAPON KNOWLEDGE for Donalds opponent Penny

ADDING SCENE KNOWLEDGE for Donald

ADDING SCENE KNOWLEDGE for Donalds opponent Linda

ADDING SCENE KNOWLEDGE for Donalds opponent Penny

ADDING OPPONENTS PERSON KNOWLEDGE for Donald

ADDING OPPONENTS OPPONENTS PERSON KNOWLEDGE for Donalds opponent

Linda

ADDING OPPONENTS OPPONENTS PERSON KNOWLEDGE for Donalds opponent

Penny

The number of nodes in the net are: 3.311

--Knowledge generated for Linda--

-.-.- Knowledge is generated for Linda’s reply setup

The number of nodes in the net are: 3.311

--Knowledge generated for Linda--

Written, elapsed time 18563 - 00:00:18

-.-.- Knowledge is generated for Donald’s sentence setup

The number of nodes in the net are: 3.311

--Knowledge generated for Donald--

-.-.- Knowledge is generated for Donald’s reply setup

The number of nodes in the net are: 3.311

--Knowledge generated for Donald--

Written, elapsed time 35157 - 00:00:35

-.-.- Knowledge is generated for Penny’s sentence setup

The number of nodes in the net are: 3.301

--Knowledge generated for Penny--

-.-.- Knowledge is generated for Penny’s reply setup

The number of nodes in the net are: 3.301

--Knowledge generated for Penny--

Written, elapsed time 53391 - 00:00:53

SEED S_name

Linda is talking to Donald, Start by creating sentences and replies,
(INFO main NPC.SentenceGenerator)

5 matches for Linda_S_name_Prem where found, (sentences)

5 matches for Donald_Linda_S_name_Prem where found, (replies)
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5 matches for Donald_Linda_S_sex_Prem where found, (replies)

6 matches for Donald_Linda_S_spouce_Prem where found, (replies)

5 matches for Donald_Linda_S_parent_Prem where found, (replies)

5 matches for Donald_Linda_S_adulterer_Prem where found, (replies)

Now Linda evaluates the replies. The -.-.- represents logging of replies that are not shown,
(INFO main NPC.NPC).

sentence nr 0: 1 optimal replies found of 16 replies evaluated,

elapsed time 61735 - 00:01:01

Linda says that Linda S_adulterer is not True, the value is 100,

→
Linda_Reply_Knowledge_Donald_Linda_S_adulterer_Prem_True_false

-.-.-

sentence nr 8: 3 optimal replies found of 36 replies evaluated,

elapsed time 130985 - 00:02:10

Linda says that Linda S_sex is Male, the value is 66,667, →
Linda_Reply_Knowledge_Donald_Linda_S_sex_Prem_Male_true

Linda says that Linda S_size is Tall, the value is 66,667, →
Linda_Reply_Knowledge_Donald_Linda_S_size_Prem_Tall_true

Linda says that Linda S_name is Donald, the value is 66,667,

→
Linda_Reply_Knowledge_Donald_Linda_S_name_Prem_Donald_true

sentence nr 9: 3 optimal replies found of 36 replies evaluated,

elapsed time 147328 - 00:02:27

Linda says that Linda S_sex is Male, the value is 66,667, →
Linda_Reply_Knowledge_Donald_Linda_S_sex_Prem_Male_true

Linda says that Linda S_size is Tall, the value is 66,667, →
Linda_Reply_Knowledge_Donald_Linda_S_size_Prem_Tall_true

Linda says that Linda S_name is Donald, the value is 66,667,

→
Linda_Reply_Knowledge_Donald_Linda_S_name_Prem_Donald_true

-.-.-

Now an optimal reply has been found for all 16 sentences that the player is evaluating.
Next the player, Linda, evaluates the optimal sentence,
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(INFO main Calculate.Calculate)

MAX_SENT 6, containers.size() 16

Linda is talking to Donald, 0 sentences of 16 have been evaluated,

slot size is 6

Sentences generated, elapsed time 221532 - 00:03:41

Linda says that S_name is Linda, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_name_Prem_Linda_true

Linda is talking to Donald, 6 sentences of 16 have been evaluated,

slot size is 6

Sentences generated, elapsed time 224500 - 00:03:44

Linda says that S_name is Linda, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_name_Prem_Linda_true

Linda says that S_sex is not Male, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_sex_Prem_Male_false

Linda says that S_spouce is not True, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_spouce_Prem_True_false

Linda is talking to Donald, 12 sentences of 16 have been evaluated,

slot size is 4

Sentences generated, elapsed time 227360 - 00:03:47

Linda says that S_name is Linda, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_name_Prem_Linda_true

Linda says that S_sex is not Male, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_sex_Prem_Male_false

Linda says that S_spouce is not True, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_spouce_Prem_True_false

Linda says that S_parent is True, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_parent_Prem_True_true

Linda says that S_adulterer is not True, the value is 90, →
Linda_Sentence_Knowledge_Linda_S_adulterer_Prem_True_false

Sentences have been evaluated. Linda vill randomly choose one of the optimal sentence
and if she has not used it before then she will say it. If Linda has said the equivalent
before then she will randomly pick another of her optimal sentences and check it. She
will do this until she either finds something to say or realizes that she has nothing more to
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say and then the conversation will end.

id Linda_S_name_Prem, state Linda, position true, value 90,

knowledgeID Linda_Sentence_Knowledge_Linda_S_name_Prem_Linda_true

Linda says: “My name is Linda".

The actual calculation of finding the optimal sentence took:
Calculations took: elapsed time 177219 - 00:02:57

Now Donald gets S_name as a seed and starts the process of generating sentences and
replies. This continuous until either of the character has nothing more to say.



Chapter 11

Results

The results are promising; firstly the players are able to calculate an optimal sentence
using game theory and they are able to participate in a dialog. I show below four exam-
ples of dialog that are started by some seed. These dialog are between two suspects and
between the murderer and a suspect. The dialogs are both about known and unknown
knowledge.

Both Alice and Rosamund are suspects so they have only accurate information about
themselves and not the crime. First Alice starts to talk to Rosamund. The seed that Alice
gets is S_name which makes her start searching for all sentences connected to her name.
The name variable has many connections so there are many matches.

Seed S_name, calculation time: 00:02:57,

optimal value = 100,

optimal sentences 5 of 24 sentences:

Alice_Sentence_Knowledge_Alice_S_name_Prem_Alice_true

Alice_Sentence_Knowledge_Alice_S_sex_Prem_Male_false

Alice_Sentence_Knowledge_Alice_S_spouse_Prem_True_false

Alice_Sentence_Knowledge_Alice_S_parent_Prem_True_false

Alice_Sentence_Knowledge_Alice_S_adulterer_Prem_True_true

Alice says: I’m not Horace’s wife.

Seed S_spouse, calculation time: 00:02:06,

optimal value = 100,

optimal sentences 4 of 18 sentences:
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Rosamund_Sentence_Knowledge_Rosamund_S_spouse_Prem_True_false

Rosamund_Sentence_Knowledge_Rosamund_S_spouse_Inf_True_false

Rosamund_Sentence_Knowledge_Rosamund_S_relation_Prem_Parent_true

Rosamund_Sentence_Knowledge_Rosamund_S_wedlock_Prem_True_false

Rosamund says: I’m Horace’s parent.

Seed S_relation, calculation time: 00:02:58,

optimal value = 100,

optimal sentences 1 of 26 sentences:

Alice_Sentence_Knowledge_Alice_S_relation_Prem_Adulterer_true

Alice says: Horace was having an affair with me.

Seed S_relation, calculation time: 00:02:57,

optimal value = 100,

optimal sentences 1 of 26 sentences:

Rosamund_Sentence_Knowledge_Rosamund_S_relation_Prem_Parent_true

Rosamund can’t think of anything to say!

Second example: Rosamund starts to talk to Alice. The seed that Rosamund gets is
M_victim_knows_of_dark_secret which makes her start searching for all sentences
connected to that variable. There are not many connections and not many sentences to
evaluate. Moreover she has no evidence to know whether the murderer had a dark secret
or that the victim knew about it so she just makes an educated guess in respect to the
initial structure of the plot engine. Alice does the same in replying.

Seed M_victim_knows_of_dark_secret, calculation time: 00:00:19,

optimal value = 71,875,

optimal sentences 3 of 6 sentences:

Rosamund_Sentence_Knowledge_Rosamund_M_victim_knows_of_dark_secret_Prem_True_false

Rosamund_Sentence_Knowledge_Rosamund_M_victim_knows_of_dark_secret_Inf_True_false
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Rosamund_Sentence_Knowledge_Rosamund_M_isBlackmailed_Prem_True_false

Rosamund says: "The murderer was probably not being blackmailed

by Horace"

Seed M_isBlackmailed, calculation time: 00:00:13,

optimal value = 71,875,

optimal sentences 2 of 4 sentences:

Alice_Sentence_Knowledge_Alice_M_isBlackmailed_Prem_True_false

Alice_Sentence_Knowledge_Alice_M_isBlackmailed_Inf_True_false

Alice says: "The murderer was probably not being blackmailed

by Horace"

Seed M_isBlackmailed, calculation time: 00:00:13,

optimal value = 71,875,

optimal sentences 2 of 4 sentences:

Rosamund_Sentence_Knowledge_Rosamund_M_isBlackmailed_Prem_True_false

Rosamund_Sentence_Knowledge_Rosamund_M_isBlackmailed_Inf_True_false

Rosamund can’t think of anything to say!

Third example: Now Rosamund and Linda the murderer and the victim’s wife are talk-
ing together. Rosamund gets seed S_parent.

Seed S_parent, calculation time: 00:02:31,

optimal value = 100,

optimal sentences 2 of 16 sentences:

Rosamund_Sentence_Knowledge_Rosamund_S_parent_Inf_True_true

Rosamund_Sentence_Knowledge_Rosamund_S_relation_Prem_Parent_true

Rosamund says: I’m Horace’s parent.
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Seed S_parent, calculation time: 00:00:19,

optimal value = 100,

optimal sentences 2 of 4 sentences:

Linda_Sentence_Knowledge_Linda_S_parent_Prem_True_false

Linda says: I’m not Horace’s parent.

Seed S_parent, calculation time: 00:02:32,

optimal value = 100,

optimal sentences 2 of 16 sentences:

Rosamund_Sentence_Knowledge_Rosamund_S_parent_Inf_True_true

Rosamund_Sentence_Knowledge_Rosamund_S_relation_Prem_Parent_true

Rosamund says: I’m Horace’s parent.

Seed S_relation, calculation time: 00:03:13,

optimal value = 100,

optimal sentences 2 of 24 sentences:

Linda_Sentence_Knowledge_Linda_S_relation_Prem_Spouse_true

Linda_Sentence_Knowledge_Linda_S_relation_Inf_Spouse_true

Linda says: I’m Horace’s spouse.

Seed S_relation, calculation time: 00:03:14,

optimal value = 100,

optimal sentences 2 of 26 sentences:

Rosamund_Sentence_Knowledge_Rosamund_S_relation_Prem_Parent_true

Rosamund can’t think of anything to say!

Final example: Now Rosamund gets seed M_revenge and having now knowledge
of the actual motive believes that revenge is a probable motive. Linda knows better
and contradicts Rosamund even though she knows it will contradict Rosamund’s knowl-
edge. Note that when both Linda and Rosamund have heard hearsay that contradicts their
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premises then their inferred knowledge stops having equal value to their premises and it
is no longer in the set of optimal sentences.

Seed M_revenge, calculation time: 00:00:15,

optimal value = 84,375,

optimal sentences 2 of 4 sentences:

Rosamund_Sentence_Knowledge_Rosamund_M_revenge_Prem_True_true

Rosamund_Sentence_Knowledge_Rosamund_M_revenge_Inf_True_true

Rosamund says: The murderers motive was probably revenge.

Seed M_revenge, calculation time: 00:00:14,

optimal value = 81,25,

optimal sentences 1 of 4 sentences:

Linda_Sentence_Knowledge_Linda_M_revenge_Prem_True_false

Linda says: The murderers motive was probably not revenge.

Seed M_revenge, calculation time: 00:00:16,

optimal value = 84,375,

optimal sentences 2 of 4 sentences:

Rosamund_Sentence_Knowledge_Rosamund_M_revenge_Prem_True_true

Rosamund can’t think of anything to say!

Computing time. The computing times are impressive. Note that there was no specific
optimization applied. Still over 75% of the sentences are computed within 3 minutes and
more than 50% in less than 1 minute as can be seen in the boxplot in Figure 11.1. It helps
that most of the time there were not that many senteces generated. Moreover in the plot
in Figure 11.2 it can be clearly seen that the growth is roughly linear. The variations are
due to irregular number of replies generated.



78 Rational Dialog in Interactive Games

Figure 11.1: Sentences and Time in minutes
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Figure 11.2: Time to calculating sentences



Chapter 12

Discussion and conclusion

In this Section I first discuss briefly the conclusions and then point out possible future
work.

12.1 Conclusion

The specific problem investigated in the thesis is whether a computer generated player
will interact with other players in a rational and goal driven way when given a past life
and a decision support mechanism based on a causal network like a Bayesian network.
Will the player adopt a strategy that will maximize its payoff?

The prototype engine that I have built successfully creates new murder mystery plots that
are used to give the players past lives and connections with each other. It then uses the
knowledge base of the player to generate sentences and replies and calculates an equilib-
rium by the terms of game theory. These results support the view that it is possible to
have computer characters decide what to say in a rational way. This also means that they
are able to evaluate the set of possible sentences not only by what they themselves think
but also by how they expect their opponent may think and reply. Moreover the players are
able to adapt to what they hear from their opponents. This they do by adding the hearsay
nodes in respect to their opponent’s input. Although this is only a prototype it is clear that
there is basis to create in this way characters that can participate in a dialog and calculate
on the fly a rational sentence to speak each time.

A very pleasant result is that they are able to evaluate the sentences and replies in a
surprisingly little time. Even without many possible optimizations the time needed to
calculate more than 75% of the sentence is within 3 minutes and more than half of the
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sentences are calculated in less than 1 minute. There are several possible optimizations
possible and I mention the most obvious ones, such as in Section 12.2. Such as dynamic
programming and optimizing sentence generation in Section 10.3.

Another pleasing property of the proposed solution is that the MAIDs have a linear growth
and thus the complexity is linear in respect to number of sentences.

Finally this is a solution that uses inference and causality along with game theory to find
an optimal sentence instead of the common approach of using a lookahead or the popular
search techniques. This approach is more abstract and it is not dependent on as detailed
prior descriptions of search spaces as for instance search techniques are. Moreover it does
not have the computational problems of the search techniques or techniques that apply a
lookahead.

12.2 Future work

There is considerable room for improving the engine and for extending it, here I will point
out some of the most prominent directions.

Maturing the DPGE (Dynamic Plot Generating Engine). Although the plot generat-
ing engine is able to create complete plots it is still fairly limited. The reason being that it
is still small and has fairly few options. At present only the most prominent motives are
connected. There is very little supportive evidence to enrich the plot. A sophisticated way
to improve the DPGE would be to take a set of murder mystery novels from a prominent
murder mystery writer and analyze them in the same way as Vladimir Propp analyzed
the Russian folk tales (Propp, 1968). This should result in a complete morphology of
the murder mystery that then would complete the DPGE. The works of either Agatha
Christie or Arthur Conan Doyle would be suitable for the task. The reason being that they
are complete, the authors are deceased and will not add to the collection. Moreover the
plots are well known and have been used as the basis for many other mystery novels, they
are still highly popular and well regarded and have thus proven their worth.

Such work would of course require someone with considerable literary skills to correctly
analyze the plots and all the relevant intricate details. Moreover this work would need to
be done with the aid of someone with sufficient structural knowledge such that a proper
morphology would result. This could be a MA project in Literature or even a Ph.D.
thesis.
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Generating sentences in a more logical and optimized way. At present the sentences
are generated in a brute force way and this can of course be improved. The complexity
of the algorithm for finding equilibrium is linear in respect to number of sentences evalu-
ated. This means that refining the sentence generation process should significantly reduce
computing time. One important refinement is to not generate sentences that are “equiv-
alent" to previously spoken sentences if there is no added value in the restatement. Here
“equivalent" means that the player’s knowledge base has not changed in this respect in the
meantime. For example player Donald should not say “My name is Donald" more than
once to the same opponent unless he gets information that the opponent did not hear him
correctly or has forgotten his name. Another important thing is to not generate sentences
that are stating the obvious or that are just not said. An example of this is for instant
that player David should not consider saying “I am male" or “I am not my own father".
These are examples of actual connections in the net that will need to be excluded from
sentence generation. These connections are necessary for causal integrity of the plot but
are such commonly known parameters to humans that it is idiotic to state them in most
scenarios. A simple way to resolve this is to mark the variables in the plot with whether
they are appropriate to include in sentence generation. The limitations to that method is
that sometimes we do need to state the obvious, for instance when filling out forms we are
frequently asked whether we are male or female. A more sophisticated way would be to
have a separate logical net to decide which sentences are relevant given the current state.
All of this applies also to the generation of possible replies that the player expects from
the opponent.

The player’s decision mechanism. The knowledge base of the player can be greatly
improved. The work was concentrated into areas that show the use of calculating Nash
equilibrium using MAIDs, which means that the current variables considered by the
player are whether to lie and whether the reply indicates that he has been caught ly-
ing. The players are currently influenced by hearsay but in a primitive way. That element
needs to be developed especially in respect to how to evaluate hearsay from other players.
By this I mean that there can be many aspects inferred from what the opponent says such
as his apparent lack of knowledge or his surprisingly detailed knowledge. For instance
if the opponent is assuming simple common knowledge about the murder weapon then
that indicates that he is fairly ignorant of the crime but if he describes details that are not
common knowledge then that should raise suspicion as to why he is so knowledgeable.
Additionally the decision mechanism should be matured to take into account that there are
many things that can affect the choice of what the player would want to say. The player
may want to increase the opponent’s opinion of himself or secure a trusted relationship.
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He may want to offer the opponent something or request something from the opponent.
All of this would make him interested in a different set of variables that deal with whether
the opponent will be offended, impressed, disgusted, humored etc. Moreover the effect
of characteristics and emotions needs to be improved. At present only characteristics that
have to do with gullibility, honesty and integrity are in effect.

Optimizing calculations. There are a few fairly obvious optimizations that can be done
to speed up the calculations.

First, dynamic programming can be applied by storing the value of each sentence in a
hash-table by its premises so that it could be easily retrieved instead of recalculated when
it is again relevant. It is highly likely that the stored value would still be perfectly valid
which would make this a very efficient optimization, especially within a conversation
when the player has not had any indication that the opponent’s relevant knowledge has
changed. When running the engine it becomes fairly clear that a large number of sentences
are unnecessarily recalculated.

Secondly, it is not always appropriate to find an equilibrium. It is in fact only appropriate
if the decision is dependent on the optimal reply. For instance introducing oneself is
not dependent on the reply. It is somewhat dependent on the circumstances, whether
one needs to be formal or not, but the opponent’s reply will not influence the player’s
payoff. So some method should be developed for the player to decide whether finding an
equilibrium is at all necessary.

Finally, if the player believes that his opponent is indecisive in some area then he can
really just maximize his payoff from his own net assuming that the opponents reply is
very predictable. For instance if the player beliefs that his opponents knowledge of the
murder weapon is very general then he can simply use his own general knowledge of a
weapon to decide what to say instead of finding an equilibrium for that group of sentences.
This is because the player has then no reason to expect that what he says about the murder
weapon would in any way challenge his opponent.

Add natural language generation and processing. If these characters will ever be
implemented in a computer game then they need to be able to understand a human player
and to be able to have a human player understand them. It is thus an interesting and
necessary project to have the players generate natural language from the first order logic
that they use to make sentences, and to be able to understand natural language.
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Courtesy mode. In addition to adding natural language processing it would also be
a good idea to add a module or modules that handle other aspects of speech, such as
intonation and how to phrase the sentence. Does the character want to be demanding,
polite or questioning? Example: “Close the window", “Please close the window" or “Isn’t
it cold in here?" For graphical display it would also be necessary to add some modules for
facial expressions and body language.
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