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Abstract

Single Nucleotide Polymorphisms (SNPs) are the most common form of variations in
the human genome. Collection of SNP variants on a single chromosome copy are called
haplotypes. Humans are diploid organisms, implying that they possess two nearly iden-
tical copies of each chromosome, and therefore the haplotypes come in pairs. Conflated
(mixed) data from the two haplotypes is called a genotype of an individual. Minimum
parsimony haplotyping (MPH) is an abstraction of haplotype finding problem arising in
genetics, which tries to find the minimum set of haplotypes needed to explain a given set
of genotypes. The MPH problem is known to be NP-Hard, meaning that finding compu-
tationally efficient solutions is unlikely in the general case. Here, we give novel efficient
algorithms for sub-instances of the problem. In addition, a practical heuristic for MPH
are implemented, solving problem instances for the general case.
Experiments are done on real genotype data from the HapMap project [10] and heuris-
tics developed from these experiments are used to speed up the implementation. These
improvements result in a algorithm that solves MPH several times faster than previously
described methods
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Chapter 1

Introduction

More than 99% of the human DNA sequence is the same between individuals. Genetic
studies focus on the variation, Single Nucleotide Polymorphisms (SNPs) are the most
common form of variation in the human genome and thus are notably studied. Humans
are diploid organisms, implying that they possess two nearly identical copies of each
chromosome, and therefore the haplotypes come in pairs. Conflated (mixed) data from the
two haplotypes is called a genotype of an individual. Haplotypes are valuable data since
it is assumed that genetic basis of important traits can be best understood by assessing
the association between the occurrence of particular haplotypes and particular traits [9].
Projects such as HapMap [10] are making a haplotype map for the human genome which
could be great help to locate haplotypes that are related to particular traits. Therefore
there is a great need to develop methods that can detect haplotypes in the human genome
which are computationally solvable.

The problem considered here is called Haplotype Inference (HI) problem, is to infer
haplotypes from genomic data, this problem is computationally expensive due to large
amount of data. One approach to the HI problem is to find the smallest set of haplotypes
to explain a set of genotypes, called the minimum parsimony haplotyping (MPH) first in-
troduced by Gusfield [5]. The motivation for this approach is that there are fewer distinct
haplotypes in populations than possible haplotypes because of the bottleneck effect in
evolution.

There are two types of models used to solve the HI problem, statistical and combinatorial
models. Statistical methods are mainly based on statistics assessments and analysis of
genetic variation, where as the combinatorial methods focus on methods commonly used
by computer scientists. MPH is a combinatorial and is quick and effective to solve the
HI problem. Also solving the HI problem with statistical methods is not feasible because
of the nature of our data, as we have a larger number of SNPs compared to individuals,
therefore MPH was chosen for this project.

As MPH is a NP-Hard problem the goal of this project is to solve MPH for restricted
cases of genotype data in polynomial time, and suggest ways to improve existing methods
that solve MPH for general cases. The first model that we focused on are tree search
models. Naive implementation of tree search algorithms can only solve the MPH for
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small sets of genotypes, as the trees grow exponentially and tree search algorithms have
exponentially worst case guarantee. For those reasons we present heuristic to improve
the efficiency of the tree search. Several other methods exist that solve MPH, that exploit
restrictions on problem instances for efficiency. Graph based models have been applied
to restricted sets of the MPH problem, and here we review previous work on restricted
problem instances and present a novel efficient graph algorithm for restrictions of problem
instances. The last model that we review is a boolean satisfiability formulation [15] of
the MPH problem that solves larger problem instances than the other two models. The
satisfiability algorithm is implemented and experiments done on genotype data from the
HapMap project [10]. The heuristics learnt from those experiments were used to speed
up the implementation resulting in an implementation that runs several times faster than
existing methods. In the end computational results for the improvements are presented,
followed by discussions and conclusions.



Chapter 2

Background

2.1 SNPs

The human genome consist of 46 chromosomes that are in 23 almost identical pairs.
Chromosomes are made of Deoxyribonucleic acid (DNA). DNA can be considered to be
a collection of long strings, or sequences, taken from the alphabet {A,C,G,T}, where each
element of the alphabet encodes one of four possible nucleotides. Approximately 3 billion
base pair are arranged into these 23 pairs. More than 99% of the human genome is the
same between populations, hence genetic studies focus on the variation. Single Nucleotide
Polymorphisms or SNPs constitute a large class of these variations. A SNP is a single
base pair position in genomic DNA at which different nucleotide variants exist in some
populations, each variant is called an allele. For example, two sequenced DNA fragments
from different individuals, AAGCCTA to AGGCCTA, contain a difference in a single
nucleotide in the second position in the sequence. In human, SNPs are almost always
biallelic, that is, there are two variants at the SNP site, with the most common variant
referred to as the major allele, and the less common variant as the minor allele. Each
variant must be represented in a significant portion of the population to be useful.

2.2 Haplotypes and Genotypes

Humans are diploid organisms, that means humans possess two nearly identical copies of
each chromosome, one inherited from the father and the other inherited from the mother.
Collection of SNP variants on a single chromosome copy are called haplotype. Thus, for
a given set of SNPs, an individual possesses two haplotypes, one from each chromosome
copy. A SNP site where both haplotypes have the same allele is called a homozygous site,
a SNP site where the haplotypes have different alleles is called a heterozygous site. The
conflated (mixed) data from the two haplotypes is called a genotype. See Figure 2.1 for
further explanation.

Haplotypes are valuable data since it is assumed that genetic basis of important traits can
be best understood by assessing the association between the occurrence of particular hap-
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lotypes and particular traits (e.g disease) [9]. Projects such as HapMap [10] are making a
haplotype map for the human genome which could be great help to locate haplotypes that
affect health, disease, and individual responses to medications and environmental factors.
Therefore it is important to develop efficient algorithms that can detect haplotypes in the
human genome.

Figure 2.1: In this example two SNPs are highlighted. The first SNP site is homozygous, and the
the second SNP site is heterozygous. The individual has the two haplotypes that are shown and
the genotype is CTG{A,C}{A,C}{G, A}{T,G}A.



2.2 Haplotypes and Genotypes 5

2.2.1 Haplotype Inference

We use the notation of Gusfield [5] were SNP (in a haplotype) are labeled 0 or 1 meaning
haplotypes are represents as set of values from {0,1}. Two haplotypes h and h′ represent
a genotype g. For each site j in h and h′ the following applies for site j in g, if h and h′

both have value 0, g has value 0, if h and h′ both have value 1, g has value 1 and if h and
h′ have opposite values, g has value 2. Thus g has value 0 and 1 in homozygous sites and
value 2 in heterozygous sites. Haplotypes h and h′ said to be a haplotype pair belonging
to g.

For a given genotype g, resolving haplotypes h and h′ by using the information above,
is called haplotype inferring. As mentioned before, regarding the information on a het-
erozygous sites in a genotype g, it is not known which of the haplotype h and h′ has value
1 or which one has value 0. Both possibilities are correct and that is why the number of
possible haplotype pairs for each genotype depend on the number of 2’s. For genotype
with p number of 2’s there are 2p−1 haplotype pair that can be inferred. See example in
Figure 2.2 for further explanation.

Figure 2.2: In this example two different genotypes are inferred
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2.3 Minimum Parsimony Haplotyping

Minimum Parsimony Haplotyping, MPH, is one approach to solve the HI problem. MPH
finds the the smallest set of haplotypes to explain a set of genotypes. This method was
first required by Gusfield [5]. By finding the smallest set, H , of haplotypes to explain
a given genotype set, G, is the same as assuming a low diversity of haplotypes for a
set G. The motivation behind this method is that there are fewer distinct haplotypes in
populations than possible haplotypes because of the bottleneck effect in evolution [12].
For example Patil et al. report that within short genomic regions, typically some 70-90%
of the haplotypes belong to very few (2-5) common haplotypes [12].

In addition MPH can be used to locate recombination hotspots by finding parts of chro-
mosomes that have high recombination rate. Recombination takes place during meiosis,
a process involved in the formation of reproductive cells (or gametes) in the parents. Dur-
ing recombination, portions of the paternal and maternal chromosomes are exchanged.
Recombination can result in haplotypes in offsprings that are different from those in the
parents. The site on the chromosome where a recombination occurs is called a recom-
bination site. Regions of high recombination site frequency are called recombination
hotspots. Recombination hotspots can by located by finding parts in the same chromo-
some for a set of individuals that have high frequency of haplotypes. These recombination
hotspots can be useful for other studies such as learning more about the recombination
process and also possibly map the position of alleles that cause diseases.
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2.3.1 Different methods to solve MPH

There are two main approaches for solving the HI problem, statistical methods and com-
binatorial methods. This project is focused on solving the HI with Minimum Parsimony
Haplotyping that is a combinatorial method. Many methods focus on parsimonious solu-
tions [6] and number of combinatorial methods are used to solve them.

Still there are though other methods like statistical methods that are focused on the data in
biological view. Statistical methods are mainly based on researches in population genetics
and statistics assessments and analysis of genetic variation. One of the statistical methods
that is commonly used is Maximum Likelihood [4]. Maximum Likelihood, estimates hap-
lotype frequencies from a underlying genotype frequencies. The method assumes HWE 1

and a uniform prior on the haplotype probabilities. It then uses the haplotype frequencies
to find most probable haplotype pairs that can explain any given genotype, by finding
frequencies of the haplotypes that maximize the value that certain haplotype pairs can
explain a given genotype set. There are several issues that arise with this method con-
cerning the reliability of the results. There is another method that uses more informative
probabilities which is the widely used PHASE method [14]. The PHASE method is an
statistical method that includes population priors. It works on genotype data at linked loci
from a population sample. It has several advantages over other haplotype reconstruction
methods and many use PHASE in their studies since it has very accurate results.

These different approaches have different application, the combinatorial methods are very
efficient and appropriate for large datasets when the number of SNPs is large compared
to the number of genotypes, as is the case for genotype set used in this project. Every
method for solving the HI problem has their advantages. It is important to continue to
use different approaches to solve HI problem since new things can be learnt from having
a variety of approaches.

1 Hardy-Weinberg equilibrium (HWE) is the condition that the probability of observing a genotype is
equal to the product of the probabilities of observing its constituent haplotypes (see [7]).



Chapter 3

Algorithms

In this project three different models that can solve MPH are described, with the aim of
finding the most efficient model. Reviewing different methods can help with finding what
complications of the problem needs to be solved.

This chapter describes the algorithms that were constructed and improved in this project.
For each method it is stated how they are used for solving MPH and what can be done to
improve their efficiency.

3.1 Tree search model

One way to solve Minimum Parsimony Haplotyping is to use tree search model. Trees are
frequently used in computer science to solve different kind of optimization problems and
therefore there exist several methods that search for a optimal solutions. Some of these
methods can be used to solve the minimum parsimony haplotyping (MPH).

First we have to represent our optimization problem as a tree model. For a given genotype
set, G with n number of genotypes, we construct tree T with an empty root node on depth
0. For each genotype gi ∈ G, where 1 < i < n, nodes are created on depth i in T
that represent distinct haplotype pairs that can explain genotype gi. Successors of nodes
on level i are distinct haplotype pairs belonging to genotype gi+1. Nodes belonging to
genotype gn in G are called terminal nodes.

Given the tree model for genotype set G, the next step is to find a method that finds the
minimum number of haplotypes to explain G. We can use Depth First Search (DFS) [17]
to search the tree for optimal solution. In addition we can use Branch and Bound [17] to
limit the search space. We then suggest heuristic to improve the search even further.

Algorithms 1 and 2 are top-level description for solving MPH for genotype set G with
DFS and Branch and bound [17]. The generation of successors will be described later.
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Algorithm 1 Initialize DFS search
Input: Genotype set G
Output: Set H with of minimum number of haplotypes

1: Remove duplicate genotypes in G
2: upperBound← 2*size(G)
3: Create tree T , with empty node as root node g0

4: H ← DFS(g0, T , upperBound)
5: return H

Algorithm 2 DFS search with branch and bound
Input: Haplotype pair belonging to gi, Path in T , upperBound
Output: Set H with of minimum number of haplotypes

1: Successors← Generate all haplotype pairs belonging to gi+1

2: if Successors 6= ∅ then
3: for each succ ∈ Successors do
4: Add succ as a successor to the path in T .
5: Count← number of different haplotypes in the path in T .
6: if count < upperBound then
7: Do DFS(succ, path in T , upperbound)
8: else
9: Go to next succ

10: end if
11: end for
12: else
13: if number of different haplotypes in path < upperBound then
14: upperBound← number of different haplotypes in path in T
15: Empty H
16: H← Nodes in the path in T
17: end if
18: end if
19: return H
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All unique genotypes in G have to be considered when finding the minimum number
of haplotypes needed to explain G. Therefore to find the minimum solution, we have
to search the tree T until we reach a terminal node. DFS [17] is a recursive greedy
algorithm that expands the first successor of each node until it reaches a terminal node.
At the terminal node it starts backtracking up the tree towards the root node. The first time
DFS reaches a terminal node, the number of different haplotypes in the path becomes the
upper bound.

Branch and Bound is a tree pruning technique that uses a given upper bound to limit
the number of nodes that needs to be constructed. Using Branch and Bound with DFS
prevents it from expanding unnecessary nodes, that will always result in a less optimal
solution than the one that is already found. This is achieved by bounding (See Line 6 in
Algorithm 2) and by that reducing the nodes that DFS has to consider. If a more optimal
solution is found, the upper bound is updated (See Line 13 in Algorithm 2). By this DFS
is finding different combinations of haplotype sets H that can explain G, and Branch and
bound can prevent it from considering all possible combination of H .

The complexity of the algorithm depends on the number of genotypes and the branching
factor (number of successor) for each node. For a tree with branching factor b and n num-
ber of genotypes, the time complexity for DFS becomes O(bn) and the space complexity
is O(bn). As the number of genotypes is fixed after duplicates have been removed, the
only way to reduce the complexity is to reduce the branching factor or prune the search
tree. Therefore we suggest heuristic that can improve the search with pruning. The com-
plexity of counting different genotypes (see Line 5 in Algorithm 2) is O(mn), if m is the
number of sites of the genotypes and n is the number of genotypes, is not considered to
affect the complexity of the algorithm. Heuristic to improve the time and complexity of
the algorithm will be given.
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3.1.1 Branch on all possible haplotype pairs

One way to branch in the tree is to branch on all possible haplotype pairs for a given a
genotype. The number of possible haplotypes pairs depends on number of heterozygous
sites (2’s), as mentioned before number of possible haplotype pairs for, genotype g, is
2p−1 where p is the number of 2’s in the genotype g. Algorithm 3 generates successors by
creating all possible haplotype pairs for each genotype g. The complexity of generating
all possible haplotype pairs for a genotype g with p number of 2’s is O(m2p−1) where m
is the number of SNP’s in g. See Algorithm 3.

Algorithm 3 Generate all possible Haplotype pairs
Input: Genotype g
Output: Set HP of haplotype pairs.

1: Create a haplotype set H with one empty haplotype
2: for each site j ∈ g do
3: for each haplotype k ∈ H do
4: if gj = 0 then
5: Set hkj = 0
6: else if gj = 1 then
7: Set hkj = 1
8: else if gj = 2 and number of 2’s found < 1 then
9: Set hkj = 0

10: else if gj = 2 and number of 2’s found ≥ 1 then
11: Create two copies of hkj , hkj and h′

kj .
12: Set hkj = 0 and h′

kj = 1
13: end if
14: end for
15: end for
16: Create empty set HP
17: for each haplotype h ∈ H do
18: Make another haplotype h′ so h, h′ explain g
19: Create haplotype pair for h and h′

20: Add haplotype pair to HP
21: end for
22: return HP
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When constructing tree T with DFS and branching on all possible haplotype pairs for

a given genotype set g, the space complexity is O(
n∑

i=1

2(pi−1)) 1 and time complexity is

O(2

n∑
i=1

(pi − 1)
) 2 , if n is the number of genotypes and p is the number of 2′s for each

genotype.

1 When nodes in tree T have a different branching factor the average branching is found, in this case
n∑

i=1

2(pi−1)/n

2 Time complexity is equal to multiplication of number of nodes on each depth in T , in this case

n∏
i=1

2(pi−1) which is equal to 2

n∑
i=1

(pi − 1)
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3.1.2 Branch on all possible haplotype pairs with ordered haplotype
pairs

The previously described branching algorithm has high time and space complexity, this
can be improved by ordering the nodes in a way where it is more likely that sub opti-
mal upper bound is found sooner in the DFS and hence bigger parts of the tree can be
pruned away with bounding. This can be achieved by ordering the haplotypes pairs for
each successors, and for a given node hp, if possible we branch first on successors that
have haplotypes in the same group as haplotypes in hp. This way we begin by branch-
ing on haplotype pairs that have common haplotypes an are more likely to be closer to
the optimal solution. When constructing the tree with DFS and branching on common
haplotypes, the space complexity is and time complexity is the same as branching on all
possible haplotypes pairs.

3.1.3 Summary of Tree models

The are many ways to try to improve the time and space complexity for the DFS but in
this project, it will not be investigated further. The tree model can also be used to branch
large genotype sets into smaller ones that is more easily solved. That is why we want to
investigate models that solve MPH in polynomial time for restricted genotype set.
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3.2 Graph based model

By having pre-defined restrictions on the input genotype set, algorithms can be con-
structed that solve minimum parsimony haplotyping (MPH) in polynomial time. These
restriction have to do with the number of heterozygous sites that genotypes can have, or
that subset of genotypes have to share a haplotype. We first review previously described
methods as a introduction to these data models. We then give novel algorithms that solve,
in polynomial time, sub-instances that have not been solved before.

3.2.1 PH(k,l) bound data model

We begin by describing what pre-defined restriction are set on the input genotype set.
PH(k, l) bound data models addresses the minimum parsimony haplotyping by looking at
instances where the genotypes have special structure and focus on the haplotypes that they
share. The input for these methods are a genotype matrix G, where rows in G represents
genotypes and the columns represent a site in the genotypes. PH(k, l) sets boundaries on
how many number of heterozygous sites (2’s) can be at most in each row and each column
in the genotype matrix G where k is the maximum number of heterozygous sites in a row
and l is the maximum number of heterozygous sites in a column.

With these restriction we can construct algorithms that solve the minimum parsimony
haplotyping in polynomial time. The PH(k, l) data models start by constructing Clark
consistency graphs for the input matrix G, where the nodes represent genotypes and edges
represents haplotypes that two genotypes share. The structure of the graph depends on
the type of (k, l)-bounds; the algorithms exploit the structure of the graphs and are able to
solve MPH polynomial time. The output is haplotype matrix H with minimum number
of rows resolving G. The rows in H represent haplotypes and each column represents a
site in the haplotypes.
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Before describing different types of (k, l) bound data models, we introduce definitions for
a the main concept in these model and the algorithm for constructing a Clark consistency
graph for a genotype matrix G.

Definition 1 Two genotypes g1 and g2 are said to be compatible if there is no site j where
one genotype is 0 and the other is 1. Else g1 and g2 are said to be incompatible. For
example g1 = 210 and g2 = 110 are compatible whereas g1 = 210 and g2 = 111 are
incompatible. If two genotypes are compatible they share a haplotype.

Compatibility can be detected by comparing SNPs sites in two genotypes, and if there is
know site where one genotype is 0 and the other is 1 these genotypes are compatible.

Definition 2 Clique in a Clark consistency graph is a set of genotypes that all share a
haplotype, thus are all connected.

Algorithm 4 is a top-level description on how the Clark consistency graph is created. The
complexity of the algorithm for constructing a Clark consistency graph is O(g2m) where
g is the number of genotypes in the set and m is the number of sites in the genotype.

Algorithm 4 Constructing a Clark consistency graph
Input: Genotype set G
Output: Clark consistency graph, C

1: Create empty graph C
2: for all g ∈ G do
3: Add node g to graph C
4: for each node g′ ∈ C do
5: if g compatible with g′ && g′ 6= g then
6: Add an edge between g and g′

7: end if
8: end for
9: end for

10: Return C
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3.2.2 PH(*,1) data model

We describe this simple data model as a motivation for further expansion to these data
models. This structure is restricted to genotype sets where there can only be single het-
erozygous site in each column. The ∗ means that the number of heterozygous sites in
each row/genotype is not restricted. The (∗, 1) structure means that the Clark consistency
graph for this set of genotypes is a 1-sum of cliques meaning that in each clique there is
one vertex that connects to another clique [13]. From this it can also be stated that the
compatibility graph is chordal meaning that all cycles contain triangles. In every chordal
graph there is a simplicial vertex v, a vertex where the neighborhood of v is a closed
clique. Removing a simplicial vertex from a graph gives again a chordal graph. Hence
if all vertex are removed from a chordal graph, one by one, all non simplicial vertex in
a chordal graph must at some point become simplicial vertex since the graph is always
chordal. Simplicial vertex is used as a starting vertex in the algorithm that finds the mini-
mum set of haplotypes in polynomial time [13]. The algorithm always selects a simplicial
vertex since those vertex can only be consistent with one clique and can therefore only
share haplotypes with one clique in the graph. The correctness of the algorithm has been
proven by Iersel et al [13] and the complexity of the algorithm is O(n3m) where n is the
number of genotypes and m number of sites in the genotypes. See Algorithm 5. Let hc be
the unique haplotype consistent with with any genotype in closed neighborhood clique of
genotype g

Algorithm 5 PH(*,1)
Input: PH(∗, 1) Clark consistency graph G
Output: Haplotype set H with minimum number of haplotypes for G

1: while G 6= ∅ do
2: Find g that is simplicial
3: if g has no 2’s then
4: Add h = g to H and remove g from G
5: else if there exist haplotypes h1, h2 ∈ H such that h1, h2 explain g then
6: Remove g from G
7: else if there exist haplotype h1 ∈ H such h1, hc explain g then
8: Add hc to H and remove g from G
9: else if there exist haplotypes h1 ∈ H and h2 6∈ H such that h1, h2 explain g then

10: Add h2 to H and remove g from G
11: else if g is not a isolated node in G find h1 so that h1, hc explain g then
12: Add h1 and hc to H and remove g from G
13: else
14: Find h1, h2 that explain g, add h1 and h2 to H and remove g from G
15: end if
16: end while
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3.2.3 PH(*,2) data model

PH(∗, 1) data model is polynomial time solvable, but works only on very simple genotype
sets. If we want to handle more complicated genotype sets we have to investigate other re-
striction. It has been proven that PH(4, 3) problem is NP-Hard [16], therefore we work on
a problem instances between these two models. PH(∗, 2) is a borderline open complexity
problem and the border have been pushed slightly further by adding another restriction,
that states how many cliques there should be in the Clark consistency graph. That are the
PH(∗, 2)Cq problems were q is the number of cliques in the graph. PH(∗, 2)Cq states that
genotype set G can be divided into q subsets where all genotypes in each subset share
haplotype that is not the same as the haplotypes for the other subsets. Definition for a
clique the PH(∗, 2)Cq instances is the following.

Definition 3 In the PH(∗, 2) graph a clique is a group of genotypes greater than two in a
Clark consistency graph, that all share a haplotype.

Sharan et al. gave polynomial time solvable algorithm for PH(∗, 2)C1 and in this work it
was expand [16]. First we give polynomial time solvable algorithm for PH(∗, 2)C2 prob-
lems instances, and used similar idea to construct a polynomial time solvable algorithm
that solves PH(∗, 2)Cq problems. Both novel algorithms will be given later, but first we
describe simplest PH(∗, 2)C1 problem.

3.2.3.1 PH(∗, 2)C1 data model

In the PH(∗, 2)C1 problem the Clark consistency graph must be a clique (q=1), meaning
for all genotype sets G there is one haplotype that is shared by all genotypes in G and
the Clark consistency graph for the genotypes is a one clique graph. One way to fulfill
restriction like this is to state that every row/genotype in the input set can only contain
two values from {0,1,2} and one has to be 2. If we choose 0 to be the other value we have
genotypes that only contain 0’s and 2’s and then at least the trivial haplotype (all 0’s) can
be shared with all the genotypes and then every two genotypes in G share a haplotype. The
trivial haplotype is all 1’s if 1 is chosen as the other value. The PH(∗, 2)C1 algorithm with
these constraints has been proven to be polynomial time solvable [16]. First note that these
clique instance imposes some constraints on the sharing among the genotypes [16]; these
constraint make it possible to create a clique inference path for every haplotype h that is
not the trivial haplotypes and genotypes g and g′ that share h (only for h and g if g does
not share h with any other genotype). Clique inference path can be considered as a path
in the PH(∗, 2)C1 Clark consistency graph or a independent path that is created outside
the graph. In this project the clique inference path is a independent path that contains
nodes that represent haplotypes and edges that represent genotypes. The path starts from
some non-trivial haplotype h and genotypes g and g′ that share h, and terminates when
the trivial haplotype is encountered. Edges in the path that belong to haplotype haplotype
h′ represent genotypes in G, that h′ can explain. Non-trivial haplotypes in PH(∗, 2)C1 can
only be shared by two genotypes, hence each node in clique inference path can only have
out-degree of two [16]. If the clique inference path is a cycle of length k it has been proven
that only k haplotypes are needed to explain genotypes in the clique inference path [16].
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It has also been proven that for a clique inference path of length k, that is not a cycle, most
k + 1 haplotypes are needed to explain genotypes in the path [16]. Clique inference path
is the backbone behind the polynomial solvability of PH(*,2)C1. Algorithm 6 describes
how the clique inference path is constructed and Algorithm 7 describes the PH(*,2)C1.

Algorithm 6 Constructing a inference path
Input: Haplotype h genotype g, and inference path IP
Output: Inference path IP

1: if h is trivial haplotype then
2: return IP
3: else
4: Create another haplotype h′ where h, h′ explain g
5: if h′ is already in IP then
6: return IP
7: end if
8: Add h′ to IP
9: Create edge between h and h′, that represent genotype g

10: Find genotype g′ that h′ can explain
11: if there is no g′ || g′ ∈ IP then
12: return IP
13: else
14: Continue inference path for h′ and g′

15: end if
16: end if
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Algorithm 7 PH(*,2)C1
Input: Clark consistency graph G
Output: Set H with minimum number of haplotypes

1: for each node g1 ∈ G do
2: neighbors← Get all neighbors of g1

3: for each neighbor g2 ∈ neighbors do
4: Find haplotype h that is compatible with g1 and g2

5: if h is the trivial haplotype then
6: Continue with next neighbor
7: else
8: Add h to inference path IP
9: Continue a inference path IP for h, g1 and h,g2

10: if IP is a cycle then
11: Add all haplotypes in IP to H and remove all genotypes in IP from G
12: end if
13: end if
14: end for
15: end for
16: if G 6= ∅ then
17: for each node g ∈ G do
18: Find h′and h where h′, h explain g
19: if h and h′ 6∈ H then
20: Add h′ and h to H
21: end if
22: end for
23: end if
24: return H
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3.2.3.2 PH(∗, 2)C2 data model

To be able to solve MPH for more general data set, we constructed PH(∗, 2)C2 algorithm
that solves MPH in polynomial time. In the PH(∗, 2)C2 problem the Clark consistency
graph has two cliques (q=2). In PH(∗, 2)C2 problem instances there is no one haplotype
that can be shared by all the genotypes in genotype set G, there are two haplotypes, each
shared by a subset of G. These haplotypes are called the clique haplotypes hc

1 and hc
2. The

genotypes in the set can contain any of the values from {0,1,2}, not only two different
values as in PH(∗, 2)C1.

Definition 4 All genotype sets that fulfill the PH(∗, 2)C2 constraints can be divided into
three subsets G1,G2 and G12 where

• G12 = {genotypes that are compatible with genotypes in G1,G2 and G12}

• G1 = {genotypes that are only compatible with genotypes in G1 and G12, and all
share hc

1}

• G2 = {genotypes that are only compatible with genotypes in G2 and G12, and all
share hc

2}

The Clark consistency graph for genotype set G that fulfills the PH(∗, 2)C2 bound, has
two cliques, G1 and G2 and nodes in G12 connecting the cliques. PH(∗, 2)C2 can be
solved by solving PH(*,2)C1 for each clique and then combine the solutions so it will
give minimum set of haplotypes H . The decision lies in choosing the optimal haplotype
inferring for genotypes in G12. If G12 is empty it means there are no nodes that connect
the two cliques and there for it is just two separate PH(*,2)C1 problems that can be solved
and then combined. But if G12 is not empty the following lemma puts constraint on the
number of genotypes in it.

Lemma 1 There can be at most two genotypes in G12

Proof According to Definition 4, genotypes in G1 are incompatible with genotypes in G2.
Therefore according to Definition 1 there must exist a site j where some genotypes from
one clique have 0’s and some genotypes in the other clique have 1’s. Since genotypes in
G12 are compatible with all genotypes in G1 and G2, those genotypes can neither have
value 0 or value 1 at site j. Hence all genotypes in G12 must have value 2 at site j, and
therefore there can only be at most two genotypes in G12 otherwise there would be more
than two 2’s in one site.

In addition the following applies for cliques G1 and G2 in PH(∗, 2)C2 problem instances.

Lemma 2 Two genotypes in a clique can only share a non-clique haplotype if they have
2 in the same site.

Proof According Definition 4 all genotypes in clique share a clique haplotype hc. A
non-clique haplotype hnc is haplotype that can shared by genotypes in a clique and has
at least one site j where hc and hnc have different values, otherwise they would be the
same haplotype. Genotypes that share hnc, must have a value at site j that is compatible
with both hc and hnc and the only value possible is 2. Therefore genotypes that share a
non-clique haplotype must have value 2 in the same site.
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Lemma 3 Every non-clique haplotype can only be shared by two genotypes

Proof According to the Lemma 2 a non-clique haplotype can only be shared by genotypes
that have 2’s in the same site so there can only be two genotypes that share the same non-
clique haplotype without breaking the (∗, 2) bound.

Before describing the algorithm for solving PH(∗, 2)C2 we consider how cliques in a
PH(∗, 2)C2 Clark consistency graph can be found. Lemma 1 states that in PH(∗, 2)Cq
Clark consistency graph two cliques can share at most two nodes. Hence if there are
only two cliques, then there are only two nodes that are shared by the cliques and they
are in set G12. All other genotypes are in exactly one clique. Therefore the algorithm
finds genotype g that are not in G12 and the neighborhood of g is declared as a clique
in PH(∗, 2)C2 Clark consistency graph. One way to find nodes that are not in G12 is to
identify nodes that have equal or fewer number of neighbors than their neighbors, since
genotype in G12 would always have larger number of neighbors since the are connected
to genotypes in two cliques. Algorithm 8 demonstrates how cliques in a PH(∗, 2)C2 Clark
consistency graph are found.

Algorithm 8 Finding cliques in PH(*,2)C2 graph
Input: Clark consistency graph C
Output: Set of two cliques

1: Create set cliques for cliques
2: for each node g ∈ C do
3: minsize← degree of node g
4: minode← g
5: neighbors← find neighbors of g
6: for each node g′ ∈ neighbors do
7: if g’ is already in clique then
8: continue
9: end if

10: neighnode size← degree of node g′

11: if neighnode size < minsize then
12: minsize=neighnode, minnode=neighnode
13: end if
14: end for
15: minneighbor← find neighbors of minneighbors
16: clique← minode and minneighbor
17: Add clique to cliques
18: end for
19: return cliques
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In [16] it was proofed that in a PH(∗, 2)C1 bounded clique instances non-trivial genotypes
(contain at least one heterozygous site) can only be in one clique inference cycle. Further
it can be proofed that nodes in G12 can only be on one clique inference path that contains
haplotypes from two cliques. This can be proofed by Lemma 4

Lemma 4 In a (*,2) bounded clique instances, any node in G12 genotype belongs to at
most one clique inference path that contains genotypes from two cliques

Proof Assume the contrary that g ∈ G12 can be explained by four haplotypes such that
g = ha + hb = hc + hd, where ha and hc are compatible with genotypes in G1 and hb

and hd are compatible with genotypes in G2. ha and hc are two distinct haplotypes, hence
there must be one site j where ha and hc have opposite values. Then w.l.o.g. we can
assume that ha

j = 0 and hc
j = 1, since g can be explained by either of these haplotypes,

gj = 2. There are genotype g′ in G1 that share ha with g and genotype g′′ that share hc

with g. Obviously g′ and g′′ must have different value at site j. According to Definition
1, g′j and g′′j can not have opposite values, so one genotype has to have value 2 at site j.
For haplotypes hb and hd they also have to have opposite values at site j, and since there
genotypes that are compatible with both hb and hd it means the one genotype in G2 must
have 2 in site j for same reason described earlier. That is a contradiction, since there can
only be two heterozygous value in each site because of the (∗, 2) constraint.

Given the constraints in Lemma 1, Lemma 4 and Algorithm 8, Algorithm 9 for solving
PH(*,2)C2 can be given.
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Algorithm 9 PH(*,2)C2
G1, G2 and G12 are as defined in Definition 4
Input: Clark consistency graph C
Output: Haplotype matrix H with minimum number haplotypes

1: Create empty set, solutions
2: if g1 or g2 in G12 can be inferred with haplotypes from cliques G1 and G2 in the same

haplotype pair then
3: Construct inference path for gi ∈ G12, that has haplotypes that is compatible with

genotypes in both clique cliques, until the trivial haplotype is encountered in either
clique.

4: Solve PH(∗, 2)C1 for genotypes that are not in the other inference path
5: Add solution to solutions
6: end if
7: for each clique c do
8: Solve PH(∗, 2)C1 for c, with no genotypes from G12. Add solution to solutions
9: for each genotype gi ∈ G12 do

10: Solve PH(∗, 2)C1 for c, include gi ∈ G12. Add solution to solutions
11: end for
12: if G12 contains two genotypes then
13: Solve PH(∗, 2)C1 for c, and include g1, g2 ∈ G12. Add solution to solutions.
14: end if
15: end for
16: Create set minHap with size equal to 2*size(G)
17: for each sol ∈ solutions do
18: for each sol′ ∈ solutions do
19: tmpHap← combine sol and sol′, if the explain all genotypes in G
20: if tmpMin < minHap then
21: minHap← tmpMin
22: end if
23: Empty tmpMin
24: end for
25: end for
26: return minHap
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Theorem 1 Parsimony can be solved in polynomial time on a PH(∗, 2)C2 instances

Proof If we assume we have genotype set G that fulfills the PH(∗, 2)C2 clique bound.
The genotype set can be divided into G1, G2 and G12 in the same manner as described in
Definition 4.

If G12 = ∅ then G1 and G2 don’t share any genotypes and the graph is just two sepa-
rate cliques that can be solved in. Then PH(∗, 2)C1 solves MPH for each clique in in
polynomial time since PH(∗, 2)C1 is polynomial solvable [16]. The haplotypes sets for
each solutions are then combined as a set H of minimum number of haplotypes needed to
resolve G.

If we assume that G12 is not empty, it can contain most two genotypes g1 and g2. The
PH(∗, 2)C2 algorithm can then either solve PH(∗, 2)C1 for different combination of these
sets of genotypes (See Lines 7 to 15 in Algorithm 9).

1. G1

2. G1 ∪ g1

3. If G12 has more than one genotype

(a) G1 ∪ g2

(b) G1 ∪G12

The same thing is done for G2.

PH(∗, 2)C1 finds the most parsimonious solutions for the clique that is solving for. More
then one solution can give equally parsimonious solution for that clique, but one solution
can be more optimal when the solutions for the two cliques are combined. This only
applies when genotypes in G12 can be inferred with haplotypes from both cliques in the
same haplotype pair.

If genotypes in G12 can be inferred with haplotypes from clique G1 and G2 in the same
haplotype pair, we start by constructing the clique inference where genotypes in G12 are
inferred with haplotypes from both cliques. We continue to construct the inference path
in both direction until we encounter a trivial haplotype in either clique, or a haplotype
that no other genotype shares. When reaching a trivial haplotype in either G1 and G2, it
means for that clique all other genotypes that are not in the path, phasing them with the
trivial haplotype will give the most parsimonious solution since we would only have to
add one haplotype for each genotype. There is no other path that is possible for genotypes
in G12 and for genotypes that are not in the path so it is always the most parsimonious
solution for them. By constructing this path we can get a solution for each clique that is
equal to a parsimonious solution that would be found for each clique if they were solved
separately, but the solutions would share some haplotypes and therefore we have fewer
haplotypes. We also check if there is another way to inference haplotypes by including
the trivial haplotype in the path. This way we make sure we check all possible solution
and are therefore guaranteed a parsimonious solution

PH(∗, 2)C1 correctness has been proven [16] and therefore we know we are getting the
most parsimonious solution for all genotypes in G1 and G2. For genotypes in G12 we



3.2 Graph based model 25

have to make sure that the PH(∗, 2)C1 algorithm returns the most parsimonious solution.
If genotypes in G12 can only be explained by haplotypes from one clique at a time, then
inferring each genotype with each clique and then both together in each clique separately
will find the most parsimonious solution, but if genotypes in G12 can be explained by hap-
lotypes from both cliques in the same haplotype pair, then it can give more parsimonious
solution to infer them in that way since we could be reusing two haplotypes. Hence if
genotypes in G12 can be inferred in that way and Algorithm 9 does that. From Lemma
4 we known that there can only be one inference path that found for genotypes in G12

that has haplotypes form G1 and G2. Therefore we get the most parsimonious solution
inferring them in that way and all possibilities for inferring genotypes in G1 and G2 are
tried so we find the most parsimonious for them two.

Since PH(∗, 2)C1 is polynomial solvable[16] this part of the algorithm must also be poly-
nomial solvable since it is solving PH(∗, 2)C1 in cases that are independent of each other.

The next step is to find all permutation for the PH(∗, 2)C1 solutions for G1 and G2 in a
way that haplotypes inference for all genotypes in G are included.

Algorithm 9 then chooses the solutions with the minimum number of haplotypes to be
the minimum set H that resolves G. (See Lines 17 to 25 in Algorithm 9). The smallest
solution contains either two parsimonious solution for PH(∗, 2)C1 solution for G1 and
G2 or a the most parsimonious solution for the whole graph. Therefore it can not exist a
more optimal solution than the one that is chosen here. That proofs the correctness of the
algorithm.

Combing these solutions takes polynomial time that depends on number of genotypes in
G12. This gives us two separate task that are polynomial solvable and that leads to show
that PH(∗, 2)C2 is polynomial solvable and finds the minimum solution.

3.2.4 Summary of Graph based models

The novel algorithms described in this chapter, bring us closer to solving the PH(∗, 2)
problem. But having these restriction on the input genotype set limits the problem in-
stances that can be solved and therefore it is also necessary to have model that solves
MPH for the general case. In the next chapter we will describe such a model.
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3.3 Boolean Satisfiability model

To be able to handle more general problem instances, and solve real life problems, we
need a different model than the two previously mentioned. The boolean satisfiability
model that solves MPH is more efficient than any other exiting models. We give a de-
scription of the boolean satisfiability model proposed by Lynce et al. [8], and describe the
improvements we made to the model, that resulted in several times faster solution time.
Boolean Satisfiability (SAT) problem is a decision problem, consisting of

• A set X of n variables x1, x2, ...., xn

• A set C of m clauses/constraints. Where each clause consist of variables or negation
of variables from X and are combined by logical or (∨)
C1 = (x1 ∨ x2)...

• A Conjunctive normal form (CNF) formula which consist of the clauses from C
combined with logical and (∧)
C1 ∧ .... ∧ Cm [17]

The goal of the SAT problem is to decide whether the variables in X can be given logical
values (True, False) that makes the formula result in true. If there exists an assignment of
logical values that makes the formula true, then the formula is said to be satisfiable. SAT
is used to solve many problems in various areas of computer science, including theoretical
computer science, algorithmics, artificial intelligence, hardware design and verification.
Solving SAT is a NP-complete problem and was one of the first decision problem proven
to be NP-complete. NP-complete problem are known to be important to many areas in
science and finding polynomial solution to one NP-complete problem would mean finding
solution for every other NP-complete problem. Great effort has been made to construct
algorithms to solve the SAT problem and it has involved variety of different methods.
In this project the SAT-problem was solved with a publicly available SAT-solver called
MiniSAT [3].

3.3.1 The basic SAT Model

Lynce et al.[8] proposed a SAT formulation of the haplotype inference, (HI), problem and
in this project the a SAT basic model was constructed based on their description.

The MPH SAT model is similar to another parsimony model that uses Integer Program-
ming [16]. The input to the model is a genotype set G and the output is the minimum
number of haplotypes needed to explain G. The SAT-based models, formulates whether
there exists a set H, of distinct haplotypes with r = |H| haplotypes such that for all geno-
types gi ∈ G they are explained by a pair of haplotypes (can be the same haplotype) in H.
The algorithm solves it with increasing size of H from lower bound lb to an upper bound
ub. The algorithm terminates when it reaches a size of H which there exists r = |H|
haplotypes such that every genotype gi ∈ G is explained by a pair of haplotypes in H .
Algorithm 10 summarizes the top-level operation of the SAT Model suggested by Lynce
et al. MPH[8].
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Algorithm 10 Base MPH SAT model
Input: Genotype set G
Output: Minimum number of haplotypes, r

1: G← simplify(G)
2: ICG← createIncompatibleGraph(G)
3: r← calculateLowerBound(ICG)
4: ub← 2 * size(G)
5: while r < ub do
6: do Generate CNF form given G and r
7: if SAT(CNF)==true then
8: return r
9: else

10: r← r + 1
11: end if
12: end while
13: return r

Before the SAT formulation for MPH is created the MPH SAT model starts by simplifying
the genotype set G. It removes repeated genotypes and duplicate sites, which are sites
where all the genotypes have the same value. It also removes all complimented sites,
which are two sites where the homozygous values are complemented. This simplification
reduces the size of the problem resulting in fewer variables and clauses in the proposition
formula. The algorithm iterates from a given lb to some ub to find the value r. A trivial
value for the lb is 1 and the ub is guaranteed to be 2∗n where n is the number of genotypes
in G because each genotype can be explained by most two haplotypes.



28 Algorithms

The model needs to create all necessary variables and combine them in essential con-
straints/clauses to make the boolean satisfiability formula for a given G and r. The re-
sulting formula is on conjunctive normal form (CNF) formula since the SAT-solver [3]
that is used expects the input formula to be in CNF [17]. The formula is then sent to the
SAT-solver [3] and if the formula is satisfiable the algorithm returns r as the least number
of haplotypes, otherwise it increases r by one and creates a new formula for G and the up-
dated r. For the basic model there are indexes i, j used for genotypes such that 1 ≤ i ≤ n
and 1 ≤ j ≤ m where n is the number of genotypes and m is the number of sites in the
genotype. In addition there is index k for the haplotypes such that 1 ≤ k ≤ r. For a given
r and each genotype gi the model creates haplotype variables hik for all j = 1, ...,m and
k = 1, ..., r.

The model creates selector variables for selecting which haplotypes are used to explain
genotype gi. Since each genotype is explained by two haplotypes (can be the same hap-
lotype), the model uses two sets of selector variables, a and b, of r selector variables, re-
spectively sa

ki and sb
ki. Hence genotype gi is explained by haplotypes h1 and h2 if sa

1i = 1
and sb

2i = 1. Obviously, gi is explained by the same haplotypes if sa
2i = 1 and sb

1i = 1.
The boolean satisfiability formula is created in the following way:

If site gij = 0, then the model requires that, for k = 1, ..., r:

(¬hkj ∨ ¬sa
ki) ∧ (¬hkj ∨ ¬sb

ki) (3.1)

Hence, if haplotype hk is selected to explain genotype gi, either by sa or sb, then hk has to
have value 0 at site j. If site gij = 1, then the model requires that for, k = 1, ..., r:

(hkj ∨ ¬sa
ki) ∧ (hkj ∨ ¬sb

ki) (3.2)

Hence, if haplotype hk is selected to explain genotype gi, either by sa or sb, then hk has
to have value 1 at site j

Otherwise site gij = 2 and then the haplotypes needed to explain gi must have opposing
values at site j. This can be done by creating a new set of variables tij ∈ {0, 1} such
that site j of the haplotype selected by the selector variable sa assumes the same value as
tij and the site j of the haplotype that is selected by the selector variable sb assumes the
complemented value of tij . This forces the haplotype selected by sa to have value 1 at site
j and the haplotype selected by sb to have value 0 at site j. As a result the model require,
for k = 1, ..., r:

(hkj ∨ ¬tij ∨ ¬sa
ki) ∧ (¬hkj ∨ tij ∨ ¬sa

ki) ∧ (3.3)
(hkj ∨ tij ∨ ¬sb

ki) ∧ (¬hkj ∨ ¬tij ∨ ¬sb
ki)

It is necessary to ensure that for each genotype gi exactly one haplotype is selected by sa

and exactly one haplotype is selected by sb. That can be done by requiring that for each
k and i, the added values of sa

ki equals 1 and the same for sb
ki. The solution is to create a

CNF representation of an adder circuit. This can be done by adding variables va
ki and vb

ki.
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va
ki are defined as follows, for k = 1, .., r:

(¬va
1i) ∧

(¬va
ki ∨ ¬sa

ki) ∧ (3.4)
va

k+1i ←→ (va
ki ∨ sa

ki) ∧
(va

r+1i)

The va
ki variables are true if and only if sa

k−1i is true, the model then makes sure that no
other sa

ki is true for that i. The last condition states that there must have been some sa
ki

that was true. This way it is ensured that exactly one sa is selected for each gi. The adder
circuit for sb is exactly the same.

Algorithm 11 is a top-level description of how the CNF formulation for a given G and r is
created. When the formulation of the condition have been created it is sent to a SAT solver
called MiniSAT [3] that checks if the formulation is satisfiable or not. If it is satisfiable
it returns one solution that has boolean values for all the variables that satisfies the for-
mulation. Retrieving the haplotypes them self would only require retrieving the boolean
values given to haplotype variables. In this project the least number of haplotypes, r, is
the only information considered in the MPH SAT Model.

Algorithm 11 Create SAT formula
Input: Genotype set G and lower bound r
Output: Boolean value for the CNF formula

1: for each genotype gi ∈ G do
2: for each site j in gi do
3: if gi==0 then
4: Create condition for gij = 0
5: else if gi=1 then
6: Create condition for gij = 1
7: else
8: Create condition for gij = 2
9: end if

10: end for
11: Create Adder circuit for sa

12: Create Adder circuit for sb

13: end for
14: Create condition to improve the model



30 Algorithms

Several key improvements were developed by Lynce et.al [8] to speed up the algorithm.
These improvements were the following.

3.3.1.1 Lower bound

One way to calculate lower bound is by making a incompatible graph for the genotypes.
After the genotype set has been simplified the model creates a incompatible graph for the
genotype set where the nodes represent genotypes and nodes have an edge between them
if they do not share a haplotype. It then searches for the biggest clique in the graph. Since
finding a the biggest clique is NP-hard it is done with a greedy procedure that finds the
node with most neighbors and adds it to a clique, and then goes through each neighbor and
adds it to the clique if it is incompatible with all other nodes in the clique. The genotypes
in the biggest clique do not share any haplotype, so it is know that each genotype has at
least two haplotypes associated with it that no other genotype in the clique shares. Then
the number of haplotypes has to be at least lb = 2 ∗ k − α, where k is the size of the
clique and α is the number of homozygous haplotypes since there is only one haplotype
associated with them.

3.3.1.2 h variables symmetries

Pruning the search space can be done by observing symmetries in the problem formu-
lation. For example for two haplotypes h1 and h2 and the selector variables s1

1i, sa
2i, sb

1i

and sb
2i. Then s1

1is
a
2is

b
1is

b
2i = 1001 corresponds to s1

1i,s
a
2is

b
1is

b
2i = 0110 and one of the

assignment can be eliminated. Elimination of redundant assignments can be achieved by
enforcing ordering of the boolean valuation to the haplotypes:

h1 < h2 < ... < hr

The ordering can be achieved by CNF representation of a boolean comparator circuit
between hk and hk+1, with 1 ≤ k < r and requiring hk < hk+1. One possible solution
is to use additional variables ltkj and lttkj . The ltkj and lttkj are defined as follows, for
k = 1, .., r:

(¬ltk0) ∧
lttkj ←→ (¬hkj ∨ hk+1j) ∧
ltkj ←→ (lttkj ∨ lttkj−1) ∧ (3.5)

(ltkm) ∧
(¬hkj ∨ hk+1j ∨ ltkj)

3.3.1.3 s variables symmetries

It is also possible to eliminate symmetries on the s variables by requiring that only one
arrangement of the s variables can be used to explain each genotype gi. One solution
for this is to require that the haplotype selected by the sa

ki variables always has an index
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smaller than the the haplotype selected by the sb
ki. This requirement is captured by the

following conditions, for k = 1, .., r

(sa
ki ←→

k−1∧
k2=1

¬sb
ki) ∧ (sb

ki ←→
r∧

k1=k+1

¬sa
k1i) (3.6)

3.3.1.4 Constraining the s variables of incompatible genotypes

The s variables can be constrained further due to the fact that the haplotypes that can
explain a given genotype gi1 can not be used to explain genotype gi2 , if gi1 and gi2 are
incompatible genotypes. The model requires that for two incompatible genotype gi1 and
gi2 and for k = 1, ..., r:

(¬sa
ki1 ∨ ¬sa

ki2) ∧ (¬sa
ki1 ∨ ¬sb

ki2) ∧ (¬sb
ki1 ∨ ¬sa

ki2) ∧ (¬sb
ki1 ∨ ¬sb

ki2) (3.7)

Hence for incompatible genotypes gi1 and gi2 , if either sa
ki1 or sb

ki1 are true, meaning hk

is used for explaining genotype gi1 , then haplotype hk can not be used for explaining gi2

and therefore sa
ki2 and sa

ki2 may not be true.

3.3.2 Improvements to the basic SAT Model

One reason for reconstructing the MPH SAT-based model was to be able to improve the
model. After doing experiments on real genotype data from the HapMap project [10],
observations were made that gave an ideas to improve the model even further. They were
the following.

3.3.2.1 Handle unknown SNPs

In real genotype data some SNPs are unknown. In cases like that, the SNPs are labeled
with a value other than {0,1,2}. In the Lynce et al. model genotypes sets with unknown
SNP can not be solved, which is great limitation for the model. In real genotype data
there are often unknown SNPs and therefore it is of great importance to handle them. In
our model these unknown SNPs are handled. In the preprocessing part for the genotype
set the number of unknown SNPs is reduced. For two genotypes that only differ in the
sites where one of them has an unknown SNPs are merged. This is done by replacing the
unknown SNPs by the known values from the other genotype. The motivation behind this
is that there are fewer distinct haplotypes in populations than possible haplotypes because
of bottleneck effect in evolution, hence it is more likely that two genotypes that only differ
in the unknown SNPs are the same genotype. In addition, in the problem formulation the
unknown SNPs are handled. Each unknown SNP can be any of the values from {0,1,2}
thus in our model they are handled in a way that they don’t affect the solution. In the SAT
problem formulation no Constraints like 3.1, 3.2 and 3.3 are created for sites that contain
unknown SNPs. The only constraints created for these sites in Constraint 3.5 and then
the SAT-solver can always assign true to the those variable since there are no pervious
constraints to it. Hence variables of unknown SNPs don’t affect the solution
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3.3.2.2 More accurate lower bound

Another way of calculating lower bound is to find the rank of the genotype matrix as
suggested by Kalpakis et al.[11]. Kalpakis et al.[11] have proved that the rank of the
genotype matrix is the lower bound on the size of the solution for solving MPH for a
given genotype set. Rank of a genotype matrix G that is of size nxm is the number of
linear independent rows in G and rank(G) ≤ min(n, m). The rank lower bound returns
more accurate lower bound in most cases, though there are some cases that the greedy
procedure returns a more optimal lower bound. Therefore, it is better to calculate lower
bound with both procedures and return max(clique, rank) since it quick to calculate either
one.

3.3.2.3 s variables symmetries

The s variable symmetry breaking suggested by Lynce et. al [8] requires additional vari-
ables and clauses, and makes the SAT formulation more complicated. These constraints
can be simplified. Constraint 3.6 makes sure that the haplotype selected by the sa

ki has
an index smaller than the haplotype selected by the sb

ki. The same requirement can be
captured by creating simpler constraints.

(va
ki ∨ ¬vb

ki) (3.8)

Lemma 5 If va
ki is false then every sa

k2i is false for k2 < k

Proof According to equation 3.4 va
ki is true if and only if sa

k−1i is true, and then all va
k1i

are true for k1 > k, hence if va
ki is false then every sa

k2i is false for k2 < k

According to Lemma 5 if va
ki is false then every sa

k2i is false for all k2 ≤ k and the same
applies to vb

ki. Constraint 3.8 states that vb
ki can only be true if va

ki is true. Hence if va
ki is

true, vb
k1i can only be true for k1 ≥ k and hence sb

k1i can only be true for k1 ≥ k. That
way Constraint 3.8 enforces the sa

ki variables to have smaller index than the sb
ki variables.

This reduces the number of clauses and results in a much simpler solution.

3.3.2.4 Ordering haplotypes

Lynce et al. [8] suggest using lexicographic order to observe the symmetries in the h
variables, meaning haplotype such as 000 would considered first and 111 last. If number
of genotypes in the genotype set G share a haplotype h it is likely that many of these
genotypes will be explained by h. If this haplotype h is late in the lexicographic order it
will be considered late as a possible haplotype for these genotype. This is not feasible if
large portion of the genotypes share this haplotype. This can avoided by preprocessing the
genotypes so that more common haplotypes will land early in the lexicographic order, and
hence we don not have to add any new constraints to the model. In the preprocessing it is
checked if the major allele is 1 at some site j. Implying that the haplotype the genotypes
share is later in the order rather than if the major allele would is 0. This can be changed
by flipping the SNPs in sites when the major allele is 1.
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This is though not enough because it is also important to reorder SNPs sites that have
minor allele 1 in a way that they are not affecting the order of the haplotypes.

Obviously flipping and reordering SNPs in a genotype set G results in a different genotype
set G′. Hence the haplotype set H ′ needed to explain G′ is different from the haplotype set
H needed to explain G. It can though be proven that H and H ′ contain the same number
of haplotypes according to Lemma 6

Lemma 6 Flipping and reordering SNPs will result in the same minimum number of
haplotypes needed to explain G′ as the original G

Proof Two genotypes gi and gj share a haplotype if there does not exist a site in the
genotypes where one has the value 1 and the other 0. When flipping the SNPs every 0 is
flipped to 1 and 1 is flipped to 0 for every genotype in G when flipping a SNPs means that
for all genotypes gi and gj that share a haplotype there still does not exit a site ,where one
has the value 1 and the other 0. For genotypes gi and gk that do not share haplotypes there
must exist a site where one has the value 1 and the other 0 and after the SNPs have been
flipped this sites still have opposite values.

When reordering the SNP, all SNPs at same site in the genotypes are moved to some other
site, so for all genotypes gi and gj that share haplotypes and for all genotypes gi and gk

that do not share nothing has changed except the order of the haplotypes.

Therefore the flipping and the reordering of the SNPs does not increase or decrease the
number of haplotypes needed to solve G.

This the same idea described in Section 3.1.2.

3.3.2.5 Trivial genotypes

If G contains a genotype g that only has homozygous sites, then there is exactly one
haplotype h that can explain g (h = g). It is similar for genotypes that have only one
heterozygous site, then there is exactly two haplotypes that can explain that genotype.
These genotypes are trivial because their haplotypes have to be in the minimum solution
and there is no need to create constraints for these genotypes in each iteration. This
genotypes can therefore be removed from the genotype set G. When solving the MPH
for the rest of the genotypes, constraints are put on genotypes so that genotypes that
are compatible with the trivial genotypes are forced to be explained by the haplotype
they share. That is done by making constraints that state that the haplotypes selected to
explain those genotypes have to be one or two of the haplotypes that are necessary to be
apart of the minimum solution. This way these haplotypes are taken into account in the
solution. If some of the haplotypes are not shared by any of the other genotypes they
can be counted and added to r in the end to get the least number of haplotypes needed to
explain G. This reduces the number of possibles solution for the formula, since there can
be fewer haplotypes considered in the solution.
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3.3.3 Summary of the SAT model for MPH

The SAT model is a satisfiability formulation of the MPH problem [8]. The model consist
of set of constraints represented in Conjunctive normal form [17]. The basic model works
on a general problem instances and is faster than previous models. Improvements can
be made to the basic SAT model using heuristic learned from doing experiments on real
genotype data, that speed up the implementation even further.



Chapter 4

Computational results

Following experiments were done on genotype data for chromosome 22, taken from the
Caucasian population (CEU) in the HapMap project [10]. All experiments were run on
Intel(R) Xeon(TM) CPU 3.20GHz with 2GB in RAM running on GNU/Linux

4.1 SAT algorithm

We made improvements to the basic SAT model and they are described in detail in Chapter
3.3. In this section we will demonstrate the performance gains in the SAT based model
after each improvement. Each experiment shows an average running time over 1000
running times for random indexes in the chromosome. This gives a more accurate running
time since the solution complexity is different between parts in the chromosome.

4.1.1 The order of haplotypes

After running the base SAT Model on real genotype data it was obvious that the solution
time increases with number of individuals. Thus we made an improvement to the model
that should decrease the solution time and especially for large number of individuals.
Figure 4.1 shows the effect of preprocessing the genotypes in a way that the lexicographic
order reflects the communality of the haplotypes, which results in significant performance
gain for the model. This is because in the base model, the lexicographic order can be
inefficient if haplotypes that are selected to explain many genotypes are considered late
in the order and hence the model has to iterate through bigger part of the haplotype list
before finding the right haplotypes. The benefit of this improvements increases as the
size number of haplotypes increases. That is consistent with what Figure 4.1 that is the
difference gets more significant as the number or individuals grows and hence the number
of haplotypes. This improvements is 4 times faster than the base model.
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Figure 4.1: The average time over 1000 experiments with genotype length 10 SNPs

4.1.2 Trivial genotypes

From the first improvement it showed affecting the order of the haplotypes resulted in
extremely fast solution, thus we decided to do another improvement that affected the
haplotypes. Genotypes that have only homozygous sites or only one heterozygous can
only be explained by one haplotype pair and the haplotypes that explain them have to
be in the minimum solution. Therefore there is no need to include them in the problem
formulation. Since it is more likely that there are fewer distinct haplotypes that explain a
given genotype set it is safe to assume that some of the haplotypes belonging to the trivial
genotypes can explain some of the genotypes that are still in the set. Therefore constraints
can be added to the problem formulation that force these haplotypes to explain those
genotypes that they can. This way the number of possible haplotype pairs are reduced
for some genotypes. Figure 4.2 shows that this improvement also results in significant
performance gain. This improvements is 3 times faster than the base model.
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Figure 4.2: The average time over 1000 experiments with genotype length 10 SNPs

4.1.3 Combining the improvements

Individual experiments for both improvements showed performance gain. They do not
preform equally well though (see Figure 4.3), which was not to be expected since the
order of the haplotypes improvement benefits when the size of the solution grows but the
trivial genotype improvement is more focused on the structure of the genotypes. But both
improvements are several times faster than the base model so the rational next step was
to use them simultaneously. Both these improvements were added to the basic model the
result showed that the improved model was 4 times faster than the base model. See Figure
4.4
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Figure 4.3: The average time over 1000 experiments with genotype length 10 SNPs

The box plot in Figure 4.5 shows that for the improved model quartiles and median are
significant lower, even for large number of SNPs, such as 30 and 40 SNPs.
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Figure 4.4: The average time over 1000 experiments with genotype length 10 SNPs

4.1.4 More accurate lower bound

In the Chapter 3.3, another method to calculate lower bound was described. In Table 4.1
it is shown how many times each of the two methods that gave more optimal lower bound
for different number of runs. It is obvious that the calculating the lower bound by finding
the rank of the matrix gives more frequently more accurate lower bound. Using greedy
procedure is inconvenient for finding cliques, the order of the nodes we look at has great
effect. The rank calculation is more consistent and seems to be closer to the optimal value.
Although it can not be ignored that the greedy procedure is more accurate in significant
number of instances, hence the best way is to calculate lower bound with both methods
and return the maximum value of the two method as a lower bound.

Table 4.1: Number of times one has more accurate lower bound
Number of runs 50 100
Rank 26 45
Greedy procedure 9 23
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Figure 4.5: The time is in log2 of the time



Chapter 5

Discussion

5.1 Discussion about the computational results

These result show that we can speed up the solution a lot with improvements that benefit
more as the number of individual increases. That means that we have found efficient
heuristic to handle the large number of individual. For the improved model it took on
average 40 msec to solve MPH for 90 individuals and 10 SNP. The HapMap data [10]
consist of 3 million SNPs and most sets contain 90 individuals. Therefore we could run
our algorithm on the HapMap data in 3 hours which is extremely fast. This implies that the
implementation can be use as highly efficient genetic tool, by computing recombination
rate.

There is room for more improvements for the model since there are still maximum out-
liers with extremely high solution times. Next sections will discuss further improve-
ments.

5.2 Future Work

5.2.1 More ideas for improvement

Further heuristics can be learned from the experiments that were done on the real genotype
data. As can be seen Figure 4.5 there are still maximal outliers have high solution time.
What can be observed when looking at genotype set that have high solution time is that
these are sets with genotypes that have large number of heterozygous sites. Number of
heterozygous sites has great affect on the complexity of the problem and therefore one so-
lution could be to divide these complicated problems into smaller problems and solve the
separately. One idea is to try to divide them into PH(∗, 2)Cq problems where each prob-
lem contains genotypes that is not compatible with genotypes in any other problem. That
way each clique can be solved independently of the genotype in the other cliques.
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In addition if we want to have larger number SNPs than 40, the likelihood of finding
compatible genotypes between the individuals would be come really low, meaning we
could solve the problem as separate problems independent of each other. That would
imply that the size of the genotypes could be increased without increasing the complexity
of the solution.

5.2.2 Different models

5.2.2.1 More simpler SAT Model

The SAT-based model described in this project was similar to another parsimony model,
suggest by Gusfield [5] that uses Integer Programming to solve MPH. Sharan et al. [16]
came up with similar Integer Programming formulation that is more precise than the for-
mer one and eliminates some of the variables and the constraints. It would be beneficiary
to implement a SAT-based model for that second formulation, since fewer variables and
constraint result in a smaller problem formulation to solve.

5.2.2.2 Solving MPH with BDD

A binary decision diagram (BDD) is a data structure that is used to represent a boolean
function. BDDs are a rooted, directed acyclic graph (DAG). BDDs are binary decision
tree where all the redundancies have been removed. They consists of decision nodes and
one or two terminal nodes labeled 0 (false) and 1 (true). Each of this decision nodes
represents a Boolean variable in the Boolean function represented by BDD and have two
child nodes. The two outgoing edges from the decision nodes assign 0 (false) and 1 (true)
to the Boolean variable that the child nodes represent. Even though BDDs are reduced
binary decision trees BDD rules can be applied to reduce them even further [1].

BDD have been known to improve the performance of a genetic linkage analysis tools
which resulted in surprisingly good results [9]. Since the nature of the genetic linkage
analysis is not different from the MPH problem there is a valid reason to assume BDD
would work for the MPH problem also. Since BDD have not been used before to solve
the MPH problem we need to find a way formulate the problem in way that BDD can
solve it. That is not a problem since have already implement method that formulates the
MPH problem as a SAT problem. One way to solve SAT problems to use Binary Decision
Diagram (BDD) [2]. The BDD is constructed for a given SAT problem and the problem
is said to be satisfiable if a BDD is different from the 0 terminal. BDDs should be more
efficient to solve the SAT formulation of the MPH problem , than using a SAT-solver,
since the success of BDDs is mostly due tho the fact that BDDs removes symmetries
that occur in the formulation. Therefore the SAT based model could be made simpler by
removing the symmetry breaking constraints mentioned in Section 3.3.1.2 and Section
3.3.1.3 since they would be unnecessary. Another possibility is to construct a different
SAT formulation which is more suitable to be solved with BDD’s. That is formulate the
problem in a way that other symmetries in the problem solution can be eliminated. To be
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to do that it requires more research on BDD’s and satisfiability problems which will have
to bee done in continuing work on this project.



Chapter 6

Conclusion

Each of the model discussed in this project has its advantages and disadvantages. Using a
tree search model to solve MPH did not require complicated formulation of the problem,
but is only solvable for small problem instances. The graph based solution had a more
complicated formulation and solves larger problem instances, but only for restricted sets
of genotypes. The last model, boolean satisfiability problem, was the most complicated
model and improving it is not a trivial task since each change affects the whole formula-
tion of the problem. The boolean satisfiability model is however able to solve MPH for
large problem instances on real genotype data, which were several order magnitude faster
than previously described methods, and still leaving room for improvements. Research-
ing these different methods gives a good overview of what the complications of the MPH
problem are, with each model not only giving new ideas of heuristics that can be used to
improve the model but also the other models. It is therefore important to develop differ-
ent models for solving MPH, even though they can only handle restricted instances of the
problem, as every new idea can be crucial in coming up with an algorithm in the rapidly
growing field of genetics, where it is important to solve as much as we can as soon as we
can.
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