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Abstract

Tuning weights coefficients in Heuristic Evaluation Function is a non-trivial task, of-
ten done by hand by game-playing program developers. The time and effort required
to achieve good results has recently driven developers to utilize Reinforcement Learn-
ing techniques to tune these weight coefficients automatically. In this masters project,
we have developed an general framework for automatic weight tuning. Secondly, we
used the framework to conduct a comparisons study between the two main methods of
learning from game data, TD(λ) and TD-Leaf(λ). A world-class chess program called
Fruit was modified to enable learning within the framework, and then used to perform
the experiments. The results from the study are interesting, as they show that although
TD-Leaf(λ) is generally believed to be superior and is indeed more robust in respect to
different parameter settings, TD(λ) can be just as effective when given proper parameter
settings.



Útdráttur

Þetta verkefnið snérist um að læra betri vigtir fyrir matsföll (e. Heuristic Evaluation Func-
tions), sem notuð eru í forritum sem spila borðleiki eins og t.d. skák, en til þess var notað
skilyrt viðbragð (e. Reinforcement Learning). Verkefnið var tvíþætt; annars vegar að búa
til almennt forritasafn til að auðvelda ferlið og umstangið í kringum það að læra vigtir fyrir
matsföll. Hinsvegar var forritasafn þetta svo notað til að læra vigtir fyrir mjög sterkt skák-
forrit sem heitir Fruit-Chess með tveimur mismunandi lærdóms aðferðum sem eru nefn-
dar TD(λ) og TD-Leaf(λ). Lýsingu á hönnun forritasafnsins er að finna í þessari skýrslu
eftir að lesendum hefur verið kynnt nauðsynlegt bakgrunnsefni. Niðurstöður tilrauna og
samanburð milli aðferðanna er svo að finna í niðurstöðukafla þessarar skýrslu.
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Chapter 1

Introduction

The history of computer chess is as old as the history of computing science itself, as
the innovators of the field were already speculating on the success of chess programs in
the beginning of the computing age. For example, Alan Turing who is often considered
the father of computer science designed the first chess program in 1947 for his Turing
Machine model of a computer. Claude Elwood Shannon, the father of information theory,
wrote an influential paper on creating chess programs back in the 1950s [15] which along
with John von Neumann’s Minimax theorem [22] laid the groundwork for all modern
chess playing programs.

Even though modern chess programs are still built on the same basic principles, they have
come a long way since Shannon and Turing introduced their ideas. Computers started
gaining the upper hand on humans at board games, ranging from backgammon and check-
ers to even more complex games such as chess towards the end of the last century. Today,
there are numerous different chess programs that are unbeatable for most humans, requir-
ing only the hardware of normal personal computers. The competition of the strongest
chess entities is therefore shifting into the virtual world of programs, as the computer
players are getting gradually stronger each year. In that virtual world there are two things
that matter the most: (1) how fast the programs are, resulting in how many different games
they can explore, and (2) how accurately the programs can predict the true outcome of the
game using a heuristic evaluation function.

Writing a heuristic evaluation function however is a non-trivial task. Many different board
configurations must be considered to decide which features of the chess board are impor-
tant enough to be a part of the function and then their relative importance weights must be
decided, which by itself is a difficult task. The weights are therefore often estimated by the
programs developers and then tuned through months of playing experience against other
programs. Having to rely on human intuition and months of tediously benchmarking their
programs has driven developers into applying machine learning methods to automatically
tune the weights of their evaluation functions.

Reinforcement Learning techniques have been applied to this problem successfully, mainly
using two different learning methods called TD(λ) [16] and TD-Leaf(λ) [1]. In this
project we develop a framework for automatic weight tuning and then use this frame-
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work to do a comparison of these learning methods. The contributions of this project are
twofold: first, a general framework for solving the tedious task of hand tuning heuristic
evaluation functions is developed, and secondly a comparison study of the two previously
mentioned learning methods is performed. The main result of the comparison study is
that TD(λ) does perform just as well as the more complex TD-Leaf(λ) algorithm given
the right λ parameter settings. This a bit surprising given that the latter algorithm was
developed to overcome the inefficiencies of TD(λ).

The report is structured as follows. After this short introduction, Chapter 2 covers the nec-
essary background material. In Chapter 3 we describe the design of the learning frame-
work. In Chapter 4, the results of the comparison study is presented. Chapter 5 contains
conclusions and discussions on some of the implementation issues and ideas that arose
during the work on this project.



Chapter 2

Background

This Chapter covers the background material for this project. Chapter 2.1 describes how
games are modeled as game trees and how these trees can be searched for the best move
at each point in the game. Chapter 2.2 will then go on to explain how different game
positions can be rated and given a numeric value by an evaluation function. This value is
then used in the search to choose which move is the best at some given point in the game.
Chapter 2.3 will explain how these evaluation functions are best viewed as functional
approximation of the state space1 of the game and how the weight coefficients of the
evaluation function can be automatically tuned by using Reinforcement Learning.

2.1 Two Player Search

The board games where artificial intelligence has beens the most successful all fall into
the same game theoretic category: perfect information two-player zero-sum games. These
games, such as Chess, Othello and Checkers, have no stochastic elements such a dice
rolls or hidden variables and they all have two players that are competing for a win,
where one players gain are the others loss. This is why all high performance game-
playing programs can all rely on search algorithms that make practical use of the Minimax
theorem introduced by John von Neumann in 1928 [22].

To enable search algorithms to find good moves in a board game, the game must be
explicitly modeled as a graph representing the state space of the game. This state space,
sometimes referred to as search space, is the collection of all possible board configuration,
or states, that can arise in that type of board game. Every state is represented by a node
in the graph, where all the possible moves in each state are represented by edges to the
successive nodes. The number of possible moves at a given node is called the branching
factor. These graphs are then treated as search trees by the search algorithms, where the
current state of the game becomes the root node of the tree, which is then expanded to
each level by traversing the edges to each of the node’s siblings.

1 A state space in games is the collection of all the possible legal board configuration in a game
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Figure 2.1: A backup diagram for a Minimax search, showing the Principal Variation (PV) in
red, and the PV-Leaf. Note that the as the opponent is minimizing the values, he is in practice
maximizing his own values as one players gain is a loss for the other.

2.1.1 The Minimax Theorem

Minimax search finds the best move possible at a given state by searching the whole
game tree. A Minimax search tree, as shown in Figure 2.1, is constructed by the player
that is about to move, expanding all nodes and their siblings recursively until it reaches a
terminal node where no moves are possible. At a terminal node the game is over and the
true outcome of the game can be observed and converted to a numerical value, such as -1
for losing, 0 for draws and 1 for winning. This value is then used to perform a backup on
the tree, selecting the maximum value for the player that is performing the search but the
minimum value for its opponent. The two players are therefore often called Min and Max,
which stems from the name and nature of the Minimax theorem. The colored nodes in
Figure 2.1 is the principal variation (PV), or the sequence of moves from the root node to
the terminal leaf that is responsible for the root value after the backup has been performed.
The PV is then the strongest line of play known at that point of the game, and the terminal
of the PV is called the PV-Leaf.

Each Minimax search returns the indisputable result of the game, as every possible out-
come of the game is explored. As the search is exhaustive, it follows that if the player is
playing a perfect game then any mistakes made by the opponent can only lead to equal or
better values. Constructing the whole game tree is only achievable in games with small
state spaces as the game trees grow by a factor of bd where b is the branching factor of the
game and d is the depth of the search tree. Exhaustive search can solve simple games like
Tic-Tac-Toe but will never return a value in more complex games, such as chess that has
1050 possible legal game positions with game length averaging 40 moves and an average
branching factor around 35 [11].
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Our move
(Root node)
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Figure 2.2: The pruned version of the Minimax tree in figure 2.1. On the left side, notice that
when MIN has to minimize from 4 and a value that will not be smaller then 6, then there is no
reason to expand the last node on the left branch. On the right branch we have an example of a
deep pruning, as MIN can already choose the value 3 giving us no reason to explore that branch
further as MAX will always choose the value 4 from the left branch. The colored nodes in the
backup tree is the principal variation as described in Figure 2.1

2.1.2 AlphaBeta Pruning

AlphaBeta [8] search is a pruning version of a Minimax search, meaning that it does not
search the entire game tree but only the parts that the players will be able to reach. Pruning
is a technique that is made possible by the fact that a large proportion of the game tree
are moves that are so beneficial for either of the player that the opponent will never allow
those moves to be made, if there is a better alternative. For example; in chess, Black will
never let White capture the queen unless faced with only worse options, so given that
the black player has a better alternative then there is no reason to look deeper into that
move.

This pruning technique cuts the search tree from bd to bd/2 =
√

bd in the best case, by
only pruning unnecessary parts of the game tree and without sacrificing any certainty of
correctness of the backed up value. The search algorithms utilizing this pruning tech-
nique have been closing in on the theoretical best case running times [10] of the pruning
technique, leaving little room for improvement in search techniques without sacrificing
certainty and optimality by using probabilistic methods.
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2.2 Heuristic Evaluation Functions

Search on its own is not enough to play any non-trivial board games because of the vast-
ness of their state spaces. Therefore Minimax based search algorithms are typically cou-
pled with a heuristic evaluation function to approximate the goodness of any non-terminal
state. That allows the search to evaluate the merit of any node within the search tree, en-
abling search of partial game trees by using the evaluation values for the backup process.
As the evaluation function provides the value for the backup process in the search, it
has become responsible for what parts of the game tree are cut off by AlphaBeta prun-
ing. It is therefore vital that the evaluation function returns a reliable and good heuristic
that consistently reflects the true outcome of the game. Because of that, developers of
game-playing programs often spend majority of their time on designing and tuning the
evaluation function.

These heuristic evaluation functions serve as approximations of the state space, as learn-
ing a value for each state of the game is impossible as the number of states is too large.
Evaluation functions are most often implemented using linear combinations which is ex-
plained later in this section. The approximation is composed of features of the game
that the program designer believes to be relevant, and weight coefficients for each feature
which indicates how much that feature should contribute to the total evaluation of the
state. These features can be simple, such as number of pawns on a chess board, or differ-
ence of the sums of each player’s piece values. But in some cases higher level features are
used, such as analysis of the pawn structure, safety of the king or measurements of which
player controls the center of the board.

2.2.1 Linear Combination

The previously described combination of features and weights is called linear combina-
tion, and is a simple yet powerful functional approximation technique commonly used in
game-playing programs because of how efficient it is to compute. Given a set of features
~φ and weights, ~w, for each of the feature it can be calculated as follows:

f(~φ, ~w) =
N∑

n=1

φnwn (2.1)

The value of a state is calculated as the sum of the numeric value of each feature φ,
multiplied by its weight coefficient w. The gradient of linear combinations can be easily
computed as it is simply the feature vector as shown in Equation 2.2. Another good
feature of linear combinations is locality, meaning that only the features that contribute to
the evaluation of of states will have a value in the gradient of the function.

∇f(~φ, ~w) =
(

∂φ1

∂w1
, ..., ∂φn−1

∂wn−1
, ∂φn

∂wn

)
= ~φ (2.2)



2.3 Reinforcement Learning 7

2.2.2 Gradient Descent

Gradient Descent is an optimization technique used to minimize the prediction error of
a given weight vector ~w. By use of calculus we can find the slope of the error for each
dimension, called the gradient vector or simply the gradient, and minimize the error by
traversing down the negative gradient slope of the error. The size of the step along the
negative gradient is controlled by the prediction error δ of the function that is being min-
imized, in proportion to the step size parameter α which is set to a small number so the
steps along the gradient do not overshoot the minima but kept big enough for the algorithm
to converge at some point. The weights are updates as follows in each iteration;

~wt = ~w + αδ(−∇f(~φ, ~w)) (2.3)

This optimization method allows us to start out with some arbitrary vector ~w, to approxi-
mate a state space, which is then gradually improved with each iteration until reaching a
local minima. As Gradient Decent is a very efficient optimization algorithm, it serves as a
the perfect companion for linear combination functions which have an easily computable
gradient.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a field of research within AI where an agent learns by
interacting with an environment. An agent can choose which actions to take, which will
move him from one state to another. The agent receives a reward from the environment at
any given point during its exploration though the environment, which indicates how well
the agent is doing. The rewards are used by the agents to learn to predict its future payoffs,
and in turn create a policy to maximize its future payoffs. This reevaluation of the policy
which is performed by constantly updating the values of each action is the central idea of
Reinforcement Learning. By that, RL is essentially trying to solve the Credit Assignment
Problem [17] or the problem of identifying which state/actions should be given credit for
the received rewards.

What makes Reinforcement Learning unique is that it does not require constant feedback
during its training phase, as a periodic reward signal from the environment suffices for
learning. This is why episodic problems, or problems that naturally break down into finite
episodes with observable outcomes, can be easily modeled as Reinforcement Learning
problems. For example: a particular board configuration in chess can be viewed as a
state within the chess board environment. All the possible moves at that state are then the
actions, and after each game we receive the reward value, which can be used to reevaluate
the moves performed during the game. That reevaluation process is called a backup and
should gradually improve the predicted final outcome of the game with more experience
within the environment.

Reinforcement Learning can either be done in an online fashion, where the agent updates
the value function at each step during the episode, or in an offline fashion where the agent
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updates its values after each episode or even using large batches of episodes. Also, the
process of constant reevaluation of the policy, called policy iteration, can be performed as
on policy learning, where the agent uses its own episodes to improve its decisions, or as
off policy learning where the agent uses external data to learn how to improve its policy
by observing how other policies perform within the environment, e.g. learning off some
external policy.

2.3.1 TD(λ)

Temporal Difference Learning, or TD(λ), is one of the fundamental Reinforcement Learn-
ing algorithm and was first used by Arthur Samuel in his checkers playing program in the
year 1959 [12], but later formalized as a class of algorithms ranging from Dynamic Pro-
gramming to Monte Carlo methods by Richard Sutton [16]. TD(λ)’s use in games took
off with Tesauros TD-Gammon [20], which in 1995 became the strongest backgammon
player in the world and even taught the strongest human players at the time new and
better openings. TD-Gammons success sprang series of optimistic predictions for AI in
games and drew attention to the use of Reinforcement Learning for the learning part of
the game-playing programs.

TD(λ) learns how to improve its predictions of future rewards using the temporal differ-
ences between two subsequent states, often noted as the greek symbol δ. This is most
usually done in an online fashion, but as the focus of this project is on the offline case of
TD learning it will be demonstrated here in an offline fashion. In case of off-line learning,
the prediction errors δ between subsequent states can be calculated for a whole episode
and stored in a vector ~δ as follows:

~δt ← f(~φt+1, ~w)− f(~φt, ~w), t ∈ {1..N} (2.4)

In this equation, f(~φt, ~w) denotes the approximation function for the current state at time
t, calculated using the feature vector ~φ and the weight vector ~w. In the update process,
the δ value for each state is propagated back to the history of previously visited states in
proportion to the recency factor λ. This way of utilizing the temporal differences between
subsequent states is then coupled with the gradient descent optimization technique in
TD(λ) update algorithm;

~w ← ~w + α
N−1∑
t=1

∇f(~φt, ~w)

N−1∑
j=t

λj−tδj

 (2.5)

In the update equation, the weight vector is updated in proportion to the learning param-
eter α of the two sums. The first sum is multiplying the latter with the gradient of each
state traversed during the episode, while the inner sum is propagating the prediction error
(δ) of previous states scaled by the recency factor λ, which gets smaller as the difference
between t and j increases. When λ is set to 0, then the prediction error of only the next
state is used during the update, as done in Dynamic Programming algorithms. With λ
set to 1, then updates are performed to the whole trajectory of states visited, as in Monte
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Carlo methods. Setting λ to some value between 0 and 1 gives us an opportunity to use
updating strategies ranging between these two classes of algorithms.

2.3.2 TD-Leaf(λ)

D.F. Beal and M.C. Smith experimented with learning piece values by using Temporal
Difference Learning in 1997 [4], where they learnt piece values which were at least as
good as those used in standard elementary chess books. One of the most interesting as-
pects of their work is that they use the features of the principal variation leaves rather
than using the the features of the root nodes of each search made during the game. Inde-
pendently, Jonathan Baxter et al [2] came up with the same strategy of applying temporal
difference learning to game trees and coined the method as TD-Leaf(λ).

The strategy is that for every move in the sequence of moves made during the game,
x1, x2, ..., xn−1, xn, we have a leaf node denoted xl

n which is the node that was rated by
the evaluation function f(~φl

n, ~w) using the features of the leaf x and the weight vector
~w. When each game finishes we can view the true outcome and compare it with how
this evaluation was predicting the outcome, and calculate the prediction errors (~δ) in an
offline manner like described in Equation 2.4. The weights are then updated as described
in Equation 2.5. Instead of using the temporal differences and features of the root nodes
of each search like TD(λ) would normally do, TD-Leaf(λ) uses the features and temporal
differences of the PV-Leafs.

Neither Beal and Smith nor Baxter et al give an explanation of why they decided on
using the features of the PV-Leaves in the learning process, but a plausible reason is that
the search engines are often designed to use a stable node for evaluation so that there
are for example no capture moves unexplored at the PV-Leaves. Using the features of
the PV-Leaf can therefore be viewed as a strategy to improve the quality of the learning
data.

2.4 Related Studies

As previously mentioned, Samuel’s Checker player was the first major success of using
Reinforcement Learning for learning in board games. Since then, the Reinforcement
Learning techniques have formalized better and the algorithms have matured. There have
been numerous successful attempts of applying these techniques to weight learning in
numerous games. This section discusses the work that is relevant to this project.

2.4.1 KnightCap

KnightCap is the chess-playing program that Jonathan Baxter et al used when they im-
plemented TD-Leaf(λ) [2]. It went from being an average rated player to a human master
level in 308 games by playing against gradually stronger human players via Internet play,
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which according to the authors was one of the key element of its success. KnightCap’s
use of TD-Leaf(λ) enabled it to learn from the features of the Principal Variation Leaves,
instead of using the features of the positions that arose on the chess board during the game
as would be the normal strategy when using TD(λ).

The importance of each of KnighCap’s feature is different depending on what phase of
the game it is, e.g. in the beginning and mid game we might care more about king safety
while in the end we want the king to participate in the game. Therefore a weight is not
a single number that can be learnt, but should rather be viewed as a set of vectors to be
used in different phases of the game. This is done in KnighCap by dividing the game
into a number of phases and learning different weights for each of them. TD-Leaf(λ)
authors propose not to update the weights if their program does not predict the opponents
move, unless they are certain that the opponent is a stronger player than the program.
This is especially important against human players, because they are more likely to make
dreadful mistakes in their games which would make the learner think it has found a good
way to win.

They compared TD-Leaf(λ) to TD(λ) with λ = 0.70 where each method had equally deep
searches for each move in the training data. They concluded that TD-Leaf(λ) learned
faster than TD(λ), but the values learnt by both methods should be as efficient.

2.4.2 Weight Learning in Chinook

Chinook [14] started out as a research project in 1989 for a better understanding of heuris-
tic search, but quickly became one of the strongest Checkers player in the work. It was
created by Jonathan Scaeffer and his colleagues at the University of Alberta and it be-
came the first computer program to hold a world championship in a board game in the
year 1994. Since then it has been withdrawn from all competitions and is currently being
used to solve the game of checkers.2 As the strongest Checkers player in the world, with
weights that had been manually tuned for a period of over five years, Chinook served as
the perfect platform for testing how the weights that are learnt by Temporal Difference
Learning perform compared to those tuned by experts.

Schaeffer and his colleagues implemented a TD-Learner [13] for Chinook that automat-
ically tuned the weights by using self play against the tournament version of Chinook,
where both versions used a six piece endgame database. To minimize the modifications
to Chinook, they implemented the TD Learner as a separate program and kept all commu-
nications between Chinook and the TD Learner at a text file level. An opening book was
used to prevent the programs from replaying the same game over and over again.

They concluded that the weights learnt in a few days by the TD Learner for Chinook were
at least as good as those hand tuned for years by experts. The weights were learnt from
no previous knowledge, using fixed depth search of 5, 9 and 13 plies. They also found
that weights learnt from training data from shallow searches, such as 5 ply searches, did
not work well when used for deeper searches, such as the 13 ply search.

2 Solving a game means that for every possible state in the game the true outcome of the game will be
known given that both players are playing a perfect game
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Framework

The purpose of the framework is to allow automatic tuning of evaluation functions as
well as to serve as a platform for our comparison study. For the sake of generality, the
framework was split into three different modules:

• Game-playing program which generates a log of the moves that it performs during
the game. The program uses the learnt weights in its evaluation function.

• Learning-data extractor module that takes the logged games generated by the
game-playing program, and creates learning data by replaying the games and ex-
tracting the relevant features of the evaluated nodes. This process is highly depen-
dent on the game-playing program.

• TD-Learner, or Temporal-Difference learning module, that performs the tuning of
the weights used in the evaluation function given the information extracted from the
game logs.

The separation of modules into a game-playing program, learning-data extraction and the
learning agent enables easy experiments with new learning algorithms or new means of
learning-data extraction just by rewriting that module. The separation of the game-playing
program and the learning data generation allows us to change learning strategies, from i.e.
TD(λ) to TD-Leaf(λ), without having to modify the game engine. The communications
between the modules is shown in Figure 3.1. It is done via files so the learning can be per-
formed in either an iterative fashion, where the weights for the program are updated after
each game, or in large batches where the learner goes though a number of games using
the same weight vector and the new weight vector can be calculated from the batch.

3.1 Game-Playing Program

Chapter 2 already covered the workings of game-playing program, which can be sum-
marized as a search engine that is heavily dependent on a reliable heuristic evaluation
function. The main differences between game-playing programs for different kinds of
games are their evaluation functions as many search engine techniques apply to different
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Figure 3.1: How the modules communicate via files: the game-playing program generates game
logs in PGN format, which are converted to learning data for the TD-Learner, which creates better
weights for the game-playing program.

[Date "2006.10.16"]
[Round "1755"]
[White "Learning"]
[Black "Fruit"]
[Result "1-0"]

1. Nf3 {(Ng1f3 Nb8c6 Nb1c3 Ng8f6 d2d4 d7d5 Nf3e5 Bc8f5 Ne5xc6
b7xc6 Bc1f4 Ra8b8 b2b3)} Nc6 {(Nb8c6 Nb1c3 Ng8f6 d2d4 d7d5
e2e3 Bc8g4 h2h3 Bg4f5 g2g4 Bf5e4 Bf1d3)} 2. d4 {(d2d4 d7d5
e2e3 Ng8f6 Bf1b5 e7e6 Nf3e5 Bc8d7 Bb5xc6 b7xc6 Ne5xd7 Qd8xd7
00 Bf8b4 Nb1d2)} d5 ...

Figure 3.2: This figure shows the format of PGN files used in the Framework, showing the first
two and a half move of the game. Each move is numbered and followed by the Principal Variation
inside comments.

board games. Because these programs follow the same basic principles, this framework
can be utilized for weight learning in any of them.

There are a two of requirements that the programs must fulfill to enable the use of the
framework:

First of all the game-playing program must be able to read in the learnt weights from files,
to be able to utilize the updated weights from the TD-Learning module.

Secondly, they have to log their games in a standard format that can be read by the module
that extracts the learning data. For example, chess playing programs typically use Portable
Game Notation. Portable Game Notation (PGN) is a standardized notation for storing
chess game data. It contains both game specific properties such as the players in the game,
their ELO points, but more importantly it contains the moves that were made during the
game. Each move is logged in algebraic chess notation, with an optional comment within
braces after each move. The game specific information it needs, besides the moves during
the game, are the names of the players to know if the outcome of the episode was a win
or a loose for the learning agent, and also the result of the game which is used for sanity
check during parsing. To enable TD-Leaf(λ) learning, the principle variation for each
move must be logged as a comment by the learning player.
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3.2 Learning Data Extraction

This module extracts the learning data from the game logs created by the game-playing
program, to a file which contains each game as an learning episode for the TD-Learning
module. The process of extracting data is dependent on the functionalities of the game-
playing program, as game positions have to be recreated within the game-playing program
to extract the features of nodes for that are used by its evaluation function.

The data extraction module replays the games from the logs, and polls the game-playing
program for the features of the state that it is interested in. This is done by handing
the game-playing program the state in some standard notation, like the Forsyth-Edwards
Notation (FEN) notation in chess. It returns the features of the state as a numeric vector,
where each element is the value of a particular feature. It does, however, mean that the
data extraction module has to include an implementation of the game logic for the game
which is being learnt in order to perform these replays from log files.

# Comment which will be discarded
# Values that are printed out;
# Mat - PawnStr - PiAct - KiSty - PP - Patt - PST
# w - weights that were used in the evaluation function
w -0.01 0.02 0.04 -0.02 0.05 0.03 0.1
# f - features of the nodes evaluated
# ’w’ or ’b’ tells us which player was evaluated
# followed by the values of each feature
f w -967.5 0 -37.75 -69.75 0 -37.5 -15.25
f w -1000 0 0.328125 -42.4336 0 0 -29.5273
f w -2021.64 12.0898 94.625 0 -15.8203 0 31.0078
f w -2694.14 34.5703 -1.42969 -159.633 -22.8555 0 66.2813
f w -3186.72 -22.5391 81.1211 -97.7813 -24.7773 0 101.086
# r - result of the game
r -1

Figure 3.3: The format of the Learning Data output by the Log2LearningData module.

The module can both create data for ordinary Temporal Difference(λ) learning by writing
out the features of the root nodes of the search, or it can create data for TD-Leaf(λ)
learning by outputting the features of the terminal nodes of the principal variation for
each move. The Principal Variation must then be included in the comments after each
move in the PGN file.

One delicate part of creating the learning data is squashing the evaluation of states to a
number in the range between [−1..1]. This has be done because the data generator uses -1
as penalty for loosing, 0 for a draw, and +1 in reward for winning. The squashing of the
evaluation value has to be consistent with the outcome of the game, e.g. it can not always
be close to 1 when the player has the upper hand but has to land somewhere on the interval
in proportion to how good the state is. As the temporal differences are calculated using
the squashed evaluation, then it is very important that this part is given some attention.
This is best done in the game-playing program when it is polled for the features, as only
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the developer of the evaluation function known the range of the values it can return and
how the function really behaves.

3.3 TD-Learner

The TD-Learner is the Reinforcement Learning part of the framework, which takes the
learning data that the Learning-data extractor produces as input and outputs a set of up-
dated weights indicating the relative importance of each feature. The TD-Learning mod-
ule has some adjustable parameters: the discount parameter γ that had to be included in
testing the learner, the learning rate parameter α and the backup parameter λ, which can
all be set in a configuration file that is read each time the learner starts. That enables a
schedule for the parameters, allowing them to change over time, like lowering the learning
rate parameter α after each episode so it converges to more stable values or starting off
with a high λ backup parameter to generalize more when learning is starting off.

To ensure that the TD Learner was working as expected, it was given a set of simple
standard testbeds to solve. These included Random Walk, a simple Grid World as a path
finding domain and also the Windy World from Sutton’s and Barto’s book [17]. There
were numerous refinements added to the learner during this process, such as enabling
discounting, intermediate rewards and continuous tasks. The learner solved all these tasks
and converged to the correct solution in all domains.
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Experiments

We used the framework for comparing the performance of two reinforcement learning
methods used for learning heuristic evaluations functions in game-playing programs. The
former, TD(λ), is a standard temporal-difference approach that learns from episodes gen-
erated from game positions occurring in played games. The latter method, TD-Leaf(λ),
is based on an improvement proposed to the standard approach as especially suitable for
learning in games. Essentially, instead of creating the learning episodes from the game
positions occurring in the game, the episodes are instead generated from the position rep-
resenting the leaf of the principal-variations from the game program’s search process.
Such episodes are considered to provide a more robust training data, because they are free
from temporary imbalances that inevitably show up during a game. As an example, if one
player sacrifices a knight seeing that it can be regained in a few moves, then that will not
show up as a material imbalance in a principal variation episode, whereas it will in a game
log episode. On the other hand, the drawback of TD-Leaf(λ) is that it can only learn from
games where the principal variation information are available. Several experiments were
performed, contrasting the two learning approaches.

4.1 Experimental setup

Use of the framework described in the previous chapter for conducting these experiments
was straightforward, as the learning methods differ only in how the learning data is ex-
tracted by the Learning-data extraction module. Both methods use the same game-playing
program and the same TD-Learner implementation. We test two different values for the
generalization parameter λ. This parameter can take a value in the range [0..1]; the closer
the value is to zero the more shortsighted the learning becomes, in the one extreme of
zero the value of the current state is updated by looking only at the next state occurring in
the learning episode. On the other hand, the closer the value is to one the more farsighted
the learning becomes as more subsequent states one the episode are used for estimating
the value of the current state.

As the framework is general, we had to find a game-playing program module suitable for
these experiments. We decided on using Fruit, which is a high performance chess program
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written by Fabien Letouzey [9]. The program finished second in the world championship
of chess programs in 2005, which was held at Reykjavik University. Fruit was open
source until version 2.2 when the author decided to close the source in order to prevent
clones in tournaments and also to turn Fruit into a commercial product. Fruit 2.1, which
was used in this project, is the last open source version released and works on both Unix
and Windows. Its UCI compliant, which stands for Universal Chess Interface, so it can
be used with many different chess GUIs.

In each experiment a learning version of Fruit, modified as described in Chapter 4.1.1,
played against an unmodified Fruit 2.1. The chess engines were run within Arena which
is a GUI for UCI compatible chess engines [6]. The programs were given 5 minutes of
thinking time for each game, playing without any opening book nor endgame databases.
The hardware used were Dell machines with 2.4GHz Pentium4 processors, 1GB of mem-
ory, and running Windows XP SP2.

Initial weights for the learning versions were set to zero, except for the weight value of the
Material Difference feature which was fixed at the value 1 to ensure that all learnt values
would be proportional to it. The learning parameter α was kept fixed at the value 0.01
while learning was performed in an incremental fashion, meaning that the weights were
updated after each game to be used by the game-playing program in the next game.

To set a baseline for these experiments the modified version of Fruit, using the same
weights as the original version, competed against the original version of Fruit. The mod-
ified version achieved 42% winning ratio in a series of couple hundred games which was
an expected performance hit, as the modified evaluation function uses floating point num-
bers and has been somewhat simplified. Fruit 2.1 also competed against the modified
version with all of its weights set to zero except the weight for material difference which
was set to 1, where the modified version did not manage to win a single game. These
results highlight that the performance of Fruit is affected by the modifications to the eval-
uation function that were necessary to enable learning. It also shows that its performance
is greatly influenced by how the weights are tuned.

The searches are to a variable depth, where the computer is given 5 minutes of thinking
time for each game. Similar projects using Reinforcement Learning for learning weights
have been using a fixed depth and the results are reported to be only applicable to search
to that fixed depth. Using variable search depth represents a more realistic scenario of
learnt weights, as the search depths have to be variable in tournaments.

Endgame situations get a little cumbersome at times, where some situations that should
have been a win for one side end up in a draw either because of the 50 move rule or
the threefold repletion rule, which are both situations that the features in the evaluation
function have no means of predicting. Because of this, learning is not performed when
50 move rule of threefold repetition arise as including those games as training data would
only contribute noise to the learning experience. This can be solved using the Namilov
endgame database, which is sadly not supported in Fruit 2.1.
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4.1.1 Game-playing program: Fruit

There are several tunable parameters in Fruit which can be used to adjust the programs
playing style. These are:

• Material difference: sum of the standard piece values; 1 for pawn, 3 for rook and
bishop, 5 for castle, and 9 for the queen, subtracted with the piece values of the
opponent, including a bonus for a bishop pairs.

• King safety: mixed features related to the king.

• Pawn structure: static pawn structure evaluation.

• Passed pawns: A pawn on a line with no opponents pawns in front of it, making it
more likely to promoted.

• Piece activity: piece mobility and placement.

• PST:1 piece on square table, an extension to material difference to rate pieces by
their placement on the board.

• Pattern:1 a feature trying to detect blocked or trapped rooks or bishops, to prevent
that from happening.

Modifications to Fruit

First to fulfill its part as the game-playing program module in the framework, it was
changed to use the user supplied weights which were read from file at startup. The evalu-
ation function was also simplified slightly so that we could represent it as a linear function
of the feature vector. The precision of Fruits evaluation function was also increased by us-
ing double values instead of integers. Fruits evaluation function calculates the features of
the opening part of the game and the endgame separately, and then phases between those
by calculating a phase factor which indicates how much has elapsed of the game. These
features had different weights in original fruit, but now share the same learnt weights in
the modified version. These modifications result in a modified version of Fruit that does
not perform as well as the original version.

The second modifications was to enable the use of Fruit for extracting learning data in the
Log2LearningData module. These modifications included replaying games from PGN
logs, in order to reconstruct the exact chessboard configuration of the node that was eval-
uated by the heuristic evaluation function, so the features of the evaluation function of
those states could be extracted from Fruit. The evaluation value of the state also had to be
squashed to the range between [−1..1], which was done by using tanh(0.0025 ∗x) where
x is the evaluation. The constant 0.0025 was estimated from the outcome of the evaluation
function of some board positions where one player was surely gaining the upper hand. So

1 These two parameters are not directly adjustable though the UCI interface, but are coefficients which
can be found in its Evaluation Function
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the evaluation function comes to:

tanh ∗ (0.0025
N∑
n

~φn ~wn) (4.1)

Where N ∈ {Material Difference, King Safety, Passed Pawns, Piece Activity, Piece on
Square Table, Pattern}, and ~W are the learnt weight coefficients for each of the fea-
tures.

Fruit seems to have a bug in its use of Forsyth-Edwards Notation (FEN) notation, as some
of the states handed to Fruit in FEN were not consistent with the states reconstructed by
using the PGN logs. This hindered the use of FEN notation in the implementation of the
learning data extraction module.
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4.2 Experiments with λ = 0.70

Baxter et al [3] used the λ value of 0.70 in the paper where they introduced the TD-
Leaf(λ) method, giving no explanation other than it was a arbitrary chosen value. We
performed similar experiments in our framework using TD(λ) and TD-Leaf(λ) methods
with a λ value of 0.70. Our learning version of Fruit played a series of 2000 games against
an unmodified Fruit 2.1.

The results for TD(λ = 0.70) is shown in Figure 4.1. The figure shows that learning
starts off slowly, but the winning ratio gradually improves as more games are played. The
parameter weights are still increasing towards the end of the 2000 game series, indicating
that the program is still learning although slowly. The agent achieves a 27% winning aver-
age for the 2000 games. The average winning ratio for the last 1000 games is 32%.

The results for TD-Leaf(λ = 0.70) is shown in Figure 4.2. The figure shows that weights
rise quickly during the first 300 games but then stabilize. The program achieves a 39%
average for the 2000 games series. For the last 1000 games, these settings achieve a
42% winning ratio, which is equal to the baseline that was set for these experiments.
Essentially, the program is able to learn just as effective parameters weights as the hand-
tuned ones.

The TD-Leaf(λ) method is clearly a superior of the two, as it both learns faster and
achieves considerable higher winning ratio. The parameter weights learned differ be-
tween the methods, which in part may be explained by how slowly TD(λ) is learning, not
having converged yet. The order of the importance of each feature is however similar be-
tween the methods, with passed pawns rated the most important feature followed by piece
activity. The conclusion here is that TD(λ) learns less effective weights in a much slower
fashion, which is consistent with the results reported by TD-Leaf(λ) authors.
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Figure 4.1: Winning ratio and weights learnt by TD(λ = 0.70). Material difference is fixed at 1.
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Figure 4.2: Winning ratio and weights learnt by TD-Leaf(λ = 0.70). Material difference is fixed
at 1.
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4.3 Experiments with λ = 0.95

When using TD-Leaf(λ) to learn weights automatically for the checkers world champion
Chinook, Schaeffer et al [13] used the λ value of 0.95, but left the optimal setting of
the parameter as an open question. To see how TD(λ) and TD-Leaf(λ) perform with this
different λ value, we repeated the previous set of experiments with that setting of λ.

The results for the TD(λ = 0.95) method are shown in Figure 4.3. The weights rise
quickly for the first 400 games, but then stop improving. Each weight then fluctuates
around the same value without quite converging. The reason for this is that higher λ
values result in more course adjustment of the weights after each game. The winning
ratio rises rapidly, reaching its overall winning ration 41% average in only 200 games, the
same as for the last 1000 games.

The results for the TD-Leaf(λ = 0.95) method are shown in Figure 4.4. The weights
and the winning ratio rise quickly, achieving 37% average for the whole 2000 games
(same for the last 1000 games). There is also high fluctuation of the weight values during
learning.

With these settings there is no clear winning method as the learned weights, speed of
learning, and the winning ratios are all quite similar. The weights learnt by the two meth-
ods have very similar relative weights and internal ordering of importance.
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Figure 4.3: Winning ratio and weights learnt by TD(λ = 0.95). Material difference is fixed at 1.
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Figure 4.4: Winning ratio and weights learnt by TD-Leaf(λ = 0.95). Material difference is fixed
at 1.
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4.4 TD(λ) vs. TD-Leaf(λ)

The aforementioned experiments show that there is a substantial difference between the
two learning methods and how well they perform with different values of the general-
ization parameter λ. TD-Leaf(λ) seems to be more robust with respect to that parameter
setting, whereas the performance of the ordinary TD(λ) is more sensitive to the setting
of the λ value. The difference in performance between the two TD(λ) learners, where
TD(λ = 0.70) performs considerably worse than TD(λ = 0.95), is interesting and sheds
light on how the two learning methods, TD(λ) and TD-Leaf(λ), differ in learning.

These different effects of higher λ values within the TD(λ) method is the result of how
the method is applied to the root nodes of searches, using the temporal differences be-
tween each move that was made during the game. As the players can be in the midst
of swapping queens or other kinds of piece scarifices yielding long term gains, some of
these subsequent nodes can have different evaluation values that result in a high predic-
tion error. TD-Leaf(λ) on the other hand is guaranteed be be using stable nodes in its
learning process, as it is performed on the PV-Leafs which are guaranteed to be stable
by the search engines which search deeper in case of instability of nodes that are to be
evaluated.

Figure 4.5 brings more detail on the performance difference between TD(λ) with the two
different λ values, as it shows just how differently the value of λ decreases. High values of
λ cause the temporal differences of more states in the trajectory to be used in each update,
while low values only utilizes the closest neighboring states and even to a lesser extent
as λ drops off very quickly. The results of the experiments show that high generalization
is vital for the TD(λ) method when it is applied to search trees, in order to minimize
the effects of instability between subsequent nodes. In practice, greater generalization
minimizes the effects of these inconsistencies in the update process. Therefore, high
values of λ are necessary factor when using the roots of the search trees as the training
data as ordinary TD learning does.

It is also interesting to see that even though TD(λ = 0.70) performs considerably worse
than its counterpart, the same λ value for TD-Leaf(λ) only starts off more slowly than
λ = 0.95 but then achieves better overall winning ratio. This indicates that high levels of
generalization is good to begin with, but should be lowered as learning progresses as it
leads to more stable weights and stronger values given that the learning data is consistent.
This is logical for an episodic task like chess, as some features may only be observed
early in the game and can not be easily rated without propagating the prediction error
for the endgame states back to the early stages of the game. This indicates that setting a
schedule for λ where it decreases slowly over time may be good practice, as it allows the
learning to attain decent values quickly and then minimize the fluctuation with lower λ
values.

The winning percentage of the different learning variants against Fruit 2.1 are summa-
rized in Table 4.1. We used the Students t-test to test how statistically significant the
performance of the last 1000 games for the learning players differs from the 42% that our
baseline version scored against Fruit 2.1. Essentially, we can state with over 95% statisti-
cal significance that TD(λ = 0.95) and TD-Leaf(λ = 0.70) perform as well as the baseline,
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Figure 4.5: This figure shows how λ decreases for the two values: λ = 0.95 and λ = 0.7. Its
value controls how much of the prediction error is propagated to the previous moves. With a value
as high as 0.70, the speed of the drop off is still very fast so that neighboring states have almost
no impact on the update value of states. However, with λ = 0.95 the prediction error of the
neighboring states has a significantly more impact on the update value, minimizing the impact of
unstable nodes in the learning experience.

Table 4.1: Average Winning Ratio for the whole 2000 episode of both learning methods with the
different λ values.

λ / Method TD(λ) TD-Leaf(λ) Difference
λ = 0.70 27% 39% 12%
λ = 0.95 41% 37% 4%
Difference 14% 2%



4.4 TD(λ) vs. TD-Leaf(λ) 27

indicating that equally effective weights were learned. We cannot state the same for TD(λ
= 0.70) and TD-Leaf(λ = 0.95) with the same significance level.
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Conclusions

5.1 Conclusions

The experiments in the previous chapter contrasted two reinforcement learning variants,
and showed that there is a real difference between the two learning methods and how
they perform with different settings of the generalization parameter λ. TD-Leaf(λ) yields
good results with both settings of λ, while the performance of ordinary TD(λ) is highly
dependent on having a high value of λ to even out the effects of inconsistencies between
unstable subsequent nodes.

These are interesting results in view of the fact that TD-Leaf(λ) is generally considered
to be superior. However, we have showed that this is not necessarily the case. Given
that TD(λ) can perform as well as TD-Leaf with careful parameter setting it may be
advantageous to use it instead, because it can learn form game records that do not have
principal variation information embedded.

This work leaves many questions unanswered. For example, the highlighted difference
between TD-Leaf(λ) and TD(λ) shows that the learning is quite sensitive to the λ param-
eter. That raises the question if it is possible to detect how reliable the training data is and
tune the λ parameter and/or the learning rate parameter α in proportion to the certainty,
as an extension to the work introduced by Sutton and Singh [18].

It is desirable to be able to use all of the currently available chess games that have been
recorded through the history and are available in archives on the Internet. To be able
to do this, we would need do off policy learning using other players policies instead of
performing on policy learning like done in this project. These games however do not
usually have the PV recorded in the game data, especially in the case of human players,
so we have to use ordinary TD(λ) learning. This project indicates that off policy learning
should be possible with good results, as the winning ratio of the TD(λ) version of the
learner is as good as the TD-Leaf(λ), and that using good training data is sufficient to
achieve good results.

To be able to use external training data, we would have to modify an off policy learning
algorithm such as Q-Learning to fit the Minimax search learning domain. This would
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probably mean that we would only update the values when our search engine agrees with
the data which moves should have been made in, similar to how KnightCap only updates
when it agrees with the opponent moves unless it is competing against a stronger player.
Another idea would be to set our λ and α parameters according to how certain we are that
the move is correct based on results from the search engine, ELO points of the player and
etc.

5.2 Discussion

Automatic tuning of heuristics evaluation functions is a difficult task. The generic frame-
work developed for this task using reinforcement learning techniques was able to tune
such functions to perform just as well as carefully hand tuned ones. This is by it self
an achievement. At the time of this writing the chess playing program Deep Fritz has
just won the reigning human chess world champion Vladimir Kramnik in a six game
match [7], running on standard computer hardware. The success of the program can
largely be credited to years of hard work by its developers, adding new chess knowledge
and carefully tuning the program. It is interesting to see whether machine learning tech-
niques can totally automate this process in the future, both with parameter tuning and
maybe more importantly by automatic discovery of features.

Weight tuning has however not reach its full potentials, as automating the process opens
up new possibilities. When weight tuning is done automatically, there is no reason to use
just one or two weight vectors for the game when we can learn weights for much finer
granularity. I experimented with learning a set of 128 vectors each for a different parts
of the game, but after a week of training I decided that the results were not promising
enough to keep on learning as the winning ratio was still under 10%. I still think that this
is a good idea, that was probably crushed by the curse of dimensionality [5]. As this was
done in the late part of the project there was not enough time to refine the idea, but I am
however certain that this will become possible with better learning techniques.
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