
M.Sc. Thesis

Reykjavík University - Department of Computer Science

Supervisor:
Gísli Hjálmtýsson

Professor

Daði Ármannsson
Master of Science

January 2007

Controlling the Effects of Anomalous ARP
Behaviour on Ethernet Networks

CONTROLLING THE EFFECTS OF ANOMALOUS ARP
BEHAVIOUR ON ETHERNET NETWORKS

by

Daði Ármannsson

Thesis submitted to the Department of Computer Science at Reykjavík
University in partial ful�llment of the requirements for the degree of

Master of Science

January 2007

Thesis Committee:

Dr. Gísli Hjálmtýsson, Supervisor
Professor, Reykjavik University, Iceland

Dr. Laurent Mathy
Assistant Professor, Lancaster University, UK

Björn Brynjúlfsson
System Architect, Cadec Global LLC, USA

Copyright
Daði Ármannsson

January 2007

Abstract

There is a growing interest in large-scale Ethernet-based local and metropolitan area net-
works. A signi�cant reason for their proliferation is the relatively simple manner in which
they can be con�gured and deployed. An elementary service on these networks is the Ad-
dress Resolution Protocol (ARP). This protocol is used to determine the link-layer address
of a host given its network-layer identi�er, and uses the broadcast capability of Ethernet
to determine these mappings.

In this thesis, we present a thorough analysis of three sizable Ethernet-based local area
networks that are representative of current Ethernet usage. In particular, we investigated
scalability issues associated with the use of broadcast based control channel protocols on
these networks, e.g. ARP. We �nd that under normal circumstances, the use of these pro-
tocols does not impose scalability limitations on Ethernet networks, especially not as the
available bandwidth on those networks increases. However, due to poorly con�gured or
malicious software, ARP could cause performance issues to arise. We propose a scheme
that limits the effects of these issues, further enabling the scalability of Ethernet-networks
under these extreme circumstances. The scheme extends the functionality of link-layer
switches, such that they probabilistically drop ARP requests from hosts that generate an
unusually large amount of broadcast messages. We evaluate the scheme through the use
of simulation and an actual implementation on the Intel IXP1200 network processor plat-
form.

Útdráttur

Nýlega hefur áhugi á stórum staðarnetum byggðum a Ethernet-tækni aukist til muna. Ein
megin ástæðan fyrir velgengni þeirra er það hversu auðvelt það er að byggja slík net. Ein
af undirstöðuþjónustum þessara neta er ARP prótókollurinn, sem notaður er til að varpa
IP-vistföngum y�r í vélbúnaðar vistföng. Notast ARP við útvarpsstuðning Etherneta til
að nálgast þessar varpanir.

Í þessari rigerð fjöllum við um ýtarlega rannsókn á þremur stórum netum byggðum á
Ethernet-tækni sem við teljum vera einkennandi fyrir þau Ethernet sem nú eru í notkun.
Sérstaklega beinum við athygli okkar að áhyggjum af skalanleika Etherneta, tengdum
prótókollum sem byggja á notkun Ethernet-útkasts (t.d. ARP). Niðurstöður okkar benda
til þess að við eðlilegar kringumstæður sé ekki ástæða til að hafa áhyggjur af notkun út-
varps á Ethernetum, sérstaklega í ljósi þess að framboð bandvíddar er stöðugt að aukast.
Ákveðnar tegundir hugbúnaðar geta þó ollið minnkuðum afköstum Etherneta, t.d. ne-
tormar. Við kynnum aðferðir til að minnka áhrif þessa hugbúnaðar. Með notkun þes-
sara aðferða aukum við skalanleika Etherneta enn frekar. Aðferðirnar útvíkka virkni
hefðbundins Ethernet búnaðar, þannig að hann hendir ARP fyrirspurnum með ákveðnum
líkum. Líkur þess að ARP fyrirspurn sé hent eru háðar því hversu ört sendandi fyrir-
spurnarinnar sendir ARP fyrirspurnir. Við höfum mælt aðferðirnar með notkun her-
milíkana, auk þess sem við höfum útfært þær og mælt á IXP1200 netörgjörvanum frá
Intel.

To my parents, for without their encouragement and support, I would never have had the
chance to write this thesis.

Acknowledgements

The work presented in this thesis was in part funded by E-NEXT European Network of
Excellence and the Iceland's National Research Council. The work on the ARP manage-
ment scheme was done in cooperation with Dr. Paul Smith and Dr. Laurent Mathy of
Lancaster University's InfoLab21. I would like to thank Andy Myers of Carnegie Mellon
University for his help and my friend and colleague, Gunnar Kristjánsson, for his valu-
able input and help with resolving technical issues. Finally, I would like to thank my
supervisor for his guidance and the members of the thesis committee for their valuable
comments.

Publications

Some of the material presented in this thesis has appeared in other publications. In Con-
trolling the Effects of Anomalous ARP Behaviour on Ethernet Networks (Ármannsson,
Smith, Hjálmtýsson, & Mathy, 2005), we present parts of the ARP behavior analysis, as
well as an initial version of the ARP management scheme. A further paper focusing on
the additional ARP management approaches presented in this thesis is in progress. The
work presented in (Hjálmtýsson & Ármannsson, 2005) focuses on network analysis and
is part of a broader research topic which this paper is a contribution to.

Contents

1 Introduction 1

2 Background 5
2.1 The Address Resolution Protocol . 6

2.1.1 Operation of ARP . 6
2.1.2 ARP Table . 8
2.1.3 Other ARP Uses . 8
2.1.4 Malicious Uses of ARP . 9

2.2 Internet Worms . 10
2.2.1 History . 10
2.2.2 Purposes and Effects . 12
2.2.3 Mitigation . 12

3 Network Analysis 15
3.1 ARP Broadcast Distribution . 16
3.2 ARP Traf�c Patterns . 19
3.3 The Effect of Malicious and Miscon�gured Devices 20

4 Managing Anomalous Behavior 25
4.1 Probabilistic Dropping Scheme . 26
4.2 Scopes . 28
4.3 Stream Identi�ers . 29
4.4 Permutations . 30

5 Evaluation 33
5.1 ARP Throttling . 34
5.2 Rate of dropped requests . 34
5.3 Normal vs. anomalous requests . 39
5.4 Retransmissions . 42

6 Implementation on the Intel IXP1200 Network Processor 47
6.1 Intel IXP1200 . 47
6.2 Evaluation . 48

7 Conclusions 51

Bibliography 53

CONTENTS ix

A Design 55

List of Figures

2.1 Address resolution performed by host s for the protocol address of host t. Fur-
thermore, host u receives the request and updates its address mapping for the
protocol address of host s. 7

2.2 A) A host performs address resolution by broadcasting an ARP request. The
switch in the center of the topology copies the frame to three ports and three
end-systems process the request. B) The target replies using unicast. The switch
forwards the reply frame on a single port and only the originator of the process
processes the reply. 7

3.1 The number of devices broadcasting ARP requests at a given second over one
day, taken from N3 . 16

3.2 The number of ARP request broadcast at a given second over one day, taken from
N3 . 17

3.3 Burstiness characteristics of ARP traf�c . 18
3.4 Traf�c patterns showing the relationship between ARP sources and targets. This

graph plots data from network N1 with the axes representing device identi�ers. . 20
3.5 The increase in request rate for hosts infected with a worm scanning the local

network for vulnerable machines. 21
3.6 The infection dissemination and ARP volume caused by infected devices for

0 <= i <= 40 . 22

4.1 Different scheme scopes. The number of end-systems that affect each other is
dependent on the size of the scope. 26

5.1 Number of received requests and forwarded requests per second on network N2
using approach SP . 35

5.2 Number of received requests and forwarded requests per second on network N2
using approach SH . 35

5.3 Number of received requests and forwarded requests per second on network N2
using approach PH . 36

5.4 Number of received requests and forwarded requests per second on network N2
using approach PN . 36

5.5 For switch SP on network N2, the percentage of requests dropped against the
maximum instantaneous request rate for each host on network 37

5.6 For switch SH on network N2, the percentage of requests dropped against the
maximum instantaneous request rate for each host on network 38

LIST OF FIGURES xi

5.7 For switch PH on network N2, the percentage of requests dropped against the
maximum instantaneous request rate for each host on network 38

5.8 For switch PN on network N2, the percentage of requests dropped against the
maximum instantaneous request rate for each host on network 39

5.9 Percentage of the normal and anomalous ARP requests dropped for network N2
with different threshold values. 40

5.10 Percentage of the normal and anomalous ARP requests dropped for network N3
with different threshold values. 40

5.11 Percentage of the normal and anomalous ARP requests dropped for network N3
with synthesised scans with different threshold values. 41

5.12 CDF of the number of drop requests across all three networks for various thresh-
old values. 43

5.13 Percentage of the normal requests and retransmissions that are dropped for net-
work N2 . 43

5.14 Percentage of the normal requests and retransmissions that are dropped for net-
work N3 . 44

5.15 Percentage of the normal requests and retransmissions that are dropped for net-
work N3 with synthesised scans . 44

6.1 The cost of forwarding packets using the fast path increases as a function of their
size. 49

A.1 Overview of the switch design. 56

List of Tables

3.1 The number of devices and type of each of the three test networks. 15

4.1 Probabilistic dropping scheme approaches. In the big-O notation, n is the
number of hosts in a network and p the number of ports on a switch. . . . 31

5.1 Network information for traces used in simulations 33

Chapter 1

Introduction

Implementing large-scale local and metropolitan area networks using Ethernet technology
is becoming increasingly attractive. The self-con�guring properties of such networks and
the increasing capabilities of current and emerging switching devices, together with the
relatively low cost of Ethernet equipment, has led to Ethernet networks growing signi�-
cantly in size. With current technology it is viable to construct switched Ethernet networks
that serve in the order of thousands of systems with relative ease. System administrators
can continuously increase the size of their networks without investing in much engineer-
ing effort. Already, service providers have started offering metropolitan-area and wide-are
Ethernet-based networks (BellSouth Metro Ethernet, 2006)(Yipes, 2006). One example of
a project to create a new large scale Ethernet-based network is the 100x100 project (The
100x100 Clean Slate Project, 2003). The goal of that project is to provide a network that
supplies bandwidth of 100 Mbps to 100 million households.

The designers of the 100x100 network opt for a clean slate approach when designing
their network. One of the reasons is that they believe that traditional Ethernet networks
are not scalable enough to serve a network of the required size, and their worries are
shared by many researchers. One of the reasons for why researchers doubt the scalability
of Ethernet networks is the use of broadcast based protocols, and their excessive resource
consumption, i.e. bandwidth and processing power on network infrastructure and end-
systems. However, the simplicity of broadcast based protocols, and lack of requirement
for dedicated infrastructure, make such protocols very appealing. Other causes of worry
include the spanning-tree construction process and the nature of address learning in Eth-
ernet switches. Because of the increased interest in very large-scale Ethernet networks,
we believe it is important to research these issues.

In this thesis we investigate the claim of limited Ethernet scalability due to the reliance
on broadcast based control protocols. To that means we analyze traf�c generated by a
well-known broadcast based protocol on three sizeable Ethernet networks that are repre-
sentative of current usage of the Ethernet technology in large domains. The protocol in
question is the Address Resolution Protocol (ARP)(Plummer, 1982), used to obtain link-
layer addresses for particular network layer addresses in the IP model. The results of that
analysis are presented in Chapter 3.

2 Introduction

We �nd that under normal operation the broadcast nature of ARP does not impose any
scalability limitations on Ethernet networks. A few issues with the nature of ARP exist,
that if left unhandled might be a cause for concern. However, we identify simple solu-
tions to these problems, e.g. introducing black hole routers to networks and employing
opportunistic ARP cache population. Further, the severity of these problems decreases
with increased bandwidth and forwarding capacity of network infrastructure devices. We
infer that in general, under normal operation, control protocols based on broadcast com-
munication are not a scalability threat to Ethernet networks, as long as reasonable steps
are taken in the protocols design and utilization.

One problem, however, is worthy of a closer look. Our analysis shows that serious per-
formance issues can arise in the presence of miscon�gured or malicious devices, such
as Internet worms or viruses. More speci�cally, miscon�gured or malicious devices can
generate a large stream of ARP requests that are broadcast by every network switch and
processed by every network end-system. In the case of Internet worms, infected devices
perform network scans in search of vulnerable targets. These network scans result in
a huge amount of ARP request traf�c. As the propagation of the worm increases, so
does the number of devices performing concurrent network scans. Assuming that the
number of addresses on an Ethernet network is proportional to the number of vulnerable
end-systems, the amount of ARP request load grows exponentially with the number of
end-systems on the network. Our data shows that during the propagation of a well-known
Internet worm, a large network was not operational for prolonged periods of time, due to
heavy ARP request loads.

We propose a family of schemes to address the problems caused by miscon�gured and
malicious devices. The schemes are described in Chapter 4. The scheme limits the re-
sources used for ARP request forwarding on a switch to a prede�ned threshold, de�ned
as a portion of the switch's total forwarding capacity. The schemes drop requests exceed-
ing the switch threshold, favoring requests broadcast by devices with high request rates.
The schemes are extensions to standard Ethernet switches, and are completely local to
each switch. As shown in Chapter 5, the schemes ensure that network switches do not
become overloaded by ARP requests during these request storms, keeping the network
operational under these extreme conditions. Further, as the schemes favor requests from
well-behaving hosts for forwarding, the scheme's effect on normally operating hosts is
minimal. The bene�ts of the using the schemes easily out-weight these minimal effects.
An full blown implementation of one of the schemes on the Intel IXP1200 network pro-
cessor platform suggests that the cost of running the schemes is minimal.

We will show that even problems caused by extreme behavior of broadcast based control
channel protocol such as ARP can be mitigated by simple mechanisms in the network.
We believe that the problem of miscon�gured and malicious devices is representative to a
larger set of problems associated with broadcast based protocols, and those problems can
also be solved using similar approaches. We believe that both from a network theoretic
and practical deployment standpoint, the cost of abandoning the current Ethernet service
model, and sacri�cing the simplicity of broadcast based protocols, is more than the effort
required to solve scalability limiting problems caused by broadcasting protocols in a local
manner in the network infrastructure.

3

The rest of this thesis is organized as follows. In Chapter 2 we introduce the necessary
background for what follows in this thesis and what others have contributed to related
topics. In Chapter 3 we present a thorough analysis of ARP behavior on three large local
area networks, some of which have been the target of extensive worm propagation. In
Chapter 4 we propose a family of methods to limit the effects of anomalous ARP be-
havior. Each family member's effectiveness and performance are evaluated in Chapter 5.
In Chapter 6, we describe an implementation of the ARP management scheme on the
IXP1200 network processor from Intel, and analyze and evaluate its performance. We
conclude in Chapter 7. Finally, Appendix A contains a details description of the ARP
managing switch design for the Intel IXP1200 network processor.

4 Introduction

Chapter 2

Background

Inspired by the previously described attractiveness of large Ethernet-based networks,
some research effort has gone into understanding their scalability. Some claim that the
spanning-tree construction carried out on Ethernet switches is the main bottleneck on Eth-
ernet scalability. This is because the extraction of a single spanning-tree from the switched
mesh removes redundant links, preventing their utilization and decreasing fault-tolerance.
Further, this prevents load-balancing and increases end-to-end latency as some of the
shortest end-to-end paths may have included links that were removed by the spanning-
tree protocol. These are well-known effects of the use of spanning-trees, and have re-
ceived some research attention, e.g. in (Sharma, Gopalan, Nanda, & Chiueh, 2004)(IEEE,
2002)(Perlman, 2004)(García, Duato, & Silla, 2003). Similarly, worries of large forward-
ing tables due to lack of hierarchy in Ethernet addresses have been alleviated by improve-
ments in hardware technology. However, the alleged threat of broadcast based protocols
remains virtually unaddressed.

In (Myers, Ng, & Zhang, 2004), radical changes are proposed to the Ethernet service
model. It is proposed that link-layer broadcast support should be removed and a directory
service be used to obtain address mappings and locate services, such as DHCP. A link-
state protocol is used to exchange host position information and enable unicast routing.
These proposals are made on the assumption that broadcast imposes signi�cant scalabil-
ity limitations on Ethernet networks. The authors present a short survey based on ARP to
support that claim. In contrast, in this thesis we show that ARP is not a scalability threat
under normal circumstances, and extreme scenarios can be dealt with using simple mech-
anisms. We believe that it is desirable to keep native support for broadcast on Ethernets.
Further, introducing a new service model would be very hard, considering the ubiquitous-
ness of Ethernet-based networks, while our scheme could be deployed in an incremental,
on-demand manner.

As described in Chapter 2.2, worms use scanning techniques to locate new targets for
worm infection. Some worms scan entire subnetworks in sequential manner. Our traf�c
analysis shows that a large amount of ARP broadcasts are caused by the gateway trying
to �nd the MAC addresses of unbound IP address, in response to receiving scan messages
from external machines. Black hole routers/sink holes (Greene & McPherson, n.d.) are an
elegant solution to deal with external scans. A black hole router is a router inside the LAN

6 Background

that advertises, to the gateway, routes to the �dark IP space� (i.e. unbound/unallocated
addresses and pre�xes), and that drops, as well as possibly logs, any traf�c it receives.
The default gateway will cache the address mapping of the black hole router, eliminating
the need for excessive ARP broadcasts caused by external scans. As a result, the vast
majority of malicious traf�c is ��ltered out� of the ARP requests broadcast by the gateway
(whose volume is therefore drastically reduced). Although our proposed scheme is less
effective at managing (and reducing) malicious ARP broadcast from the gateway, it is
easier to deploy and con�gure. Furthermore, black hole routers are powerless to defend
against, and control, internal malicious ARP traf�c emitted by local machines � a situation
where our scheme excels. For that reason, our proposed scheme and black hole routers
are complementary solutions.

2.1 The Address Resolution Protocol

When devices on an Ethernet network transmit an IP packet to another network device,
they frame the packet in an Ethernet frame and put the receiving device's Ethernet address
in the frame's header. The address resolution protocol (ARP) is the primary means by
which network devices discover the hardware addresses associated with IP addresses for
other local network devices.

2.1.1 Operation of ARP

The ARP protocol per se is address independent at both network and link-layer, it does
not assume a particular link-layer protocol or network protocol. Instead, it is specialized
for each protocol pair through the use of address length �elds in the ARP header. We are
only interested in the most common pairing, i.e. Ethernet and IPv4.

The beauty of ARP lies in its simplicity. If a device s needs an address mapping for
protocol address pt it simply broadcasts an ARP request message asking: What device
has address pt? Tell ps. This message reaches all the devices on the local area network,
including the target device t. Upon receiving a request, device t will send (unicast) a reply
stating, I have address pt and my hardware address is mact. This process is depicted
in Figure 2.1. In the case where a device does not receive an ARP reply following the
transmission of an ARP request, the device will retransmit the request, typically up to
three times.

Note that the main resource consumption of ARP takes place during the �rst phase of
address resolution, i.e. the propagation of the ARP request. Each switch in the network
has to perform expensive memory copy operations while transmitting the request on every
port, and each network end-system has to use resources to receive and process the request.
The ARP reply, however, is sent directly to the requesting system, and does not consume
any more resources than other unicast frames. This is depicted in Figure 2.2.

2.1 The Address Resolution Protocol 7Host s Host tUpdate ARP entry for p(s) Update ARP entry for p(s)Host uARP request for p(t) ARP request for p(t)ARP reply
...

Figure 2.1: Address resolution performed by host s for the protocol address of host t. Further-
more, host u receives the request and updates its address mapping for the protocol address of host
s. A B
Figure 2.2: A) A host performs address resolution by broadcasting an ARP request. The switch
in the center of the topology copies the frame to three ports and three end-systems process the
request. B) The target replies using unicast. The switch forwards the reply frame on a single port
and only the originator of the process processes the reply.

8 Background

2.1.2 ARP Table

As an optimization, all devices maintain an ARP table where they cache results of address
resolution requests. When an outgoing IP packet reaches the link-layer the host checks
the ARP table to see if the required address mapping has been cached. Since hosts usually
send a burst of packets to other hosts, as opposed to a single packet, the cache ensures
that the host doesn't transmit duplicate ARP requests for every single packet in the burst.
It is especially useful for network nodes to cache the addresses of frequently used nodes,
e.g. the network egress points and local servers.

According to the protocol speci�cation, devices targeted by ARP requests should store
the address mappings of the requests' originators in their ARP tables. This is done on
the assumption that communication is bidirectional, and eliminates the need for targets to
immediately broadcast ARP requests for the originator of requests targeted at them.

To prevent outdated information from appearing in the ARP table a timer is associated
with each entry in the table. Periodically, the ARP service deletes entries from the table
who's timer has expired. This process is also performed when the table becomes full and
new entries need to be inserted, i.e. the least recently used entries are removed to accom-
modate for new ones. The ARP RFC (Plummer, 1982) does not de�ne how the aging of
ARP entries should be performed or how large the ARP table should be. Therefore, these
parameters vary greatly among operating system implementations.1

2.1.3 Other ARP Uses

ARP is used in a few cases other than the normal resolution of protocol addresses to
hardware addresses. Some of those will be explored now.

Gratuitous ARP

Sometimes network devices broadcast ARP requests targeted at their own protocol ad-
dresses. This is called gratuitous ARP. Gratuitous ARP is generally used to update ARP
table entries located at other hosts, e.g. when a new device obtains a protocol address
previously held by another device. Devices that have an ARP table entry mapping the
protocol address to the old hardware address update the entry with the new hardware
address.

Gratuitous ARP requests are also used by some operating system network stacks to carry
out duplicate address detection. According to -microsoft support ref-, this is done as
follows in Microsoft Windows XXX operating systems:

• Statically addressed computers perform a gratuitous ARP when the TCP/IP stack is
initialized. Up to two more ARP requests are broadcast if no replies are received.

1 The maximum cache size for computers running Microsoft Windows NT 4 is 512 entries and 256
entries for Linux machines. This can be compensated for by running a userspace ARP daemon.

2.1 The Address Resolution Protocol 9

• Dynamically con�gured computers (DHCP) perform a gratuitous ARP following a
DHCP lease. If a reply is received a DHCPDECLINE message is sent to the DHCP
server and a new address requested2 (Droms, 1997).

Proxy ARP

In some cases hosts, usually routers, reply to ARP requests targeted at other devices.
By this process the replying host becomes the receiver of packets destined at the device
targeted by the request and accepts the responsibility of routing packets to the actual
destination. This can help hosts reach hosts at other subnets without con�guring routing
or a default gateway (Carl-Mitchell & Quarterman, 1987).

Proxy ARP is also used in Mobile-IP. With Mobile-IP local and remote hosts are able to
reach a mobile node, i.e. a node that has moved from its original LAN and attached to
another LAN. In Mobile-IP a home agent, located at the original home network, acts as an
ARP proxy for the mobile node. Initially, the home agent broadcasts an unsolicited ARP
to update ARP table entries for the mobile node. The home agent also replies to ARP
requests targeted at the mobile node. Packets destined at the mobile node are received
by the home agent and dropped into a tunnel terminated at a foreign agent, located at the
mobile node's current network. The foreign agent delivers tunneled packets to the mobile
node.

Finally, proxy ARP can also be used to implement a single IP subnet across two physically
separate broadcast segments. As an example, a Demilitarized Zone can be implemented
on one segment and made to appear to be a part of the public segment by the use of proxy
ARP.

2.1.4 Malicious Uses of ARP

As mentioned before the main advantage of ARP is its simplicity. This simplicity, how-
ever, comes at the cost of major security vulnerabilities. The address resolution protocol
does not contain any authentication mechanisms, i.e. when ARP replies are received ARP
daemons simply trust that they came from targeted device. Further, most implementations
of ARP accept ARP replies that do not correspond to any previously sent requests.

In this subsection we will take a look at some of the major security issues associated with
ARP. These include:

• Denial of Service

• Man in the Middle

• Broadcast Storms

A malicious individual can very easily carry out a denial of service attacks on local-area
networks by the use of ARP. By broadcasting a single ARP reply packet on the network

2 This could very easily be exploited by malicious individuals to perform DoS.

10 Background

mapping an operationally important protocol address to a false hardware address a hacker
can make hosts on the network use incorrect addresses when framing IP packets in link-
layer frames. This results in the frames being dropped by the network infrastructure. By
spoo�ng an ARP reply for a gateway to the Internet a hacker can cut the LAN from the
Internet, a spoofed reply for a �le-server cuts of data access for hosts, etc.

A closely related attack is the man in the middle attack. In this kind of an attack a hacker
inserts himself in the path between hosts and is therefore in a position to listen to all
traf�c sent between these two hosts. For example malicious device M wants to intercept
communication between hosts A and B. M begins by sending an ARP reply to B mapping
A's protocol address to M 's hardware address. This leads B to send frames destined at A
to M . M does the same for A. M may optionally forward packets along towards A and
B, making them unaware of the interception.

Finally, by broadcasting an ARP request, or replying to ARP requests, mapping IP ad-
dresses to the Ethernet broadcast address, a host can cause traf�c that would otherwise be
unicast to the recipient to be broadcast on the local-area network. This can lead to high
traf�c volumes and enable traf�c snif�ng. Imagine, for example, if the IP address of a
network's default gateway was bound to the Ethernet broadcast address. Fortunately, this
threat can be alleviated by preventing IP addresses to be bound to the Ethernet broadcast
address.

These examples demonstrate how the insecurity of protocols so critical to the operation of
local-area networks make the network extremely vulnerable to attacks. One bright spot is
that these vulnerabilities can only be exploited by individuals with physical access to the
network. Today's Ethernet-networks are mostly deployed in enterprises and institutions
where users have a common interest. This may not hold on Ethernet-networks deployed in
different environments, e.g. a metro-area network and other public access networks.

2.2 Internet Worms

In this section, we focus on Internet worms. As we will show, Internet worms and similar
software is the single largest threat to the performance of large Ethernet networks. We
will now introduce worms and their history, different kinds of worms and what we can do
to protect our computer networks against Internet worms.

2.2.1 History

The term Internet worm refers to a piece of code that automatically or semi-automatically
propagates itself from one machine to another. It then uses the new host as a base for
further propagation. Worms are not to be confused with computer viruses. Viruses attach
themselves to other executable �les and rely on external mechanisms for propagation (e.g.
users), whereas worms generally require no external mechanisms. The �rst worms3 were

3 The term "worm" itself has its origins in a science �ction story called The Shockwave Rider written by
John Brunner in 1975.

2.2 Internet Worms 11

designed in 1982 by researchers at Xerox's Palo Alto Research Center. These worms
were supposed to carry out useful tasks at their host computers. Their destructive char-
acteristics soon became apparent when a bug in one of the worms rendered the network
unserviceable. The �rst Internet wide worm outbreak, and probably the best-known, took
place on November 2nd, 1988, when Robert T. Morris released his Internet Worm4. Origi-
nally, the worm was supposed to be a proof of concept. Due to a bug in the code, however,
the worm overloaded many of the systems it invaded. The worm infected several thousand
machines in the �rst 24 hours of the outbreak.

Melissa is generally recognized as the �rst email worm. The worm propagates semi-
automatically, i.e. it needs the recipient of the email message containing the worm to
open an email attachment to trigger further propagation and any other tasks the worm
may perform. Targets are generally selected from the hosts address book and message
boxes. Many of the more recent worms use this form of propagation. The effects of such
worms are generally limited to email servers, i.e. the network load caused by these worms
is not signi�cant.

On July 12th, 2001, the next big completely automatic worm, called Code-Red, started
causing great problems on the Internet by attacking unpatched Microsoft IIS web-servers.
The worm used the �rst 20 days of the month to propagate itself, followed by eight days
of distributed denial-of-service attacks on the Whitehouse's web-server.5 The worm per-
formed a form of scanning to locate new victims, i.e. the worm generated a random list
of IP addresses and tried to invade the corresponding machines. However, the worm used
a static seed for the random number generator, therefore limiting the pool of IP addresses
scanned by various instances of the worm. This limited propagation considerably. A
new version of the worm was released a week later, this time with a dynamically seeded
random number generator. Needless to say, this approach dramatically sped up propaga-
tion.

A few days later, on August 4th, a completely unrelated worm named CodeRedII spread
on the Internet. This worm used the same buffer over�ow bug in IIS to install a backdoor
to the system. The worm then laid dormant for 24 hours before starting probing for new
victims. CodeRedII used a far more intelligent scanning technique than its predecessors,
i.e. when generating random IP address to probe, it preferred IP addresses that shared
a pre�x with the current host's IP address. 12.5% of the time, the worm generated a
completely random IP address, 50% of the time the generated address shared the �rst eight
bits with the host's address, and 37.5% the generated address will share the �rst 16 bits
with the host's address. This technique has been adopted by recent worms. Some worms
even scan the entire local network in which the reside. The rational for preferring systems
with similar IP addresses is that these systems are likely to be maintained by the same
persons, and therefore share the same security holes. Secondly, once a single instance
of a worm manages to breach a network �rewall, an attack from the inside is easy. A
byproduct of a worm's scanning process is the generation and transmission of an excessive
amount of ARP requests, i.e. each opportunistic probe performed by a worm has a very
low probability of an ARP cache hit, resulting in an ARP request to be broadcast. As

4 Also known as the Morris Worm.
5 Since the worm didn't use DNS, changing the IP address of the web-server proved to be enough.

12 Background

demonstrated later, this can result in a large volume of ARP broadcast traf�c, especially
as the number of scanning worms on a network increases.

2.2.2 Purposes and Effects

The purpose of Internet worms vary greatly. However, the techniques used to carry out a
worms purpose generally fall in one of the following categories:

• Installing backdoors for future use.

• Enlisting the host in a population of zombies.

• Distributed denial of service (DDoS).

• Personal data collection.

• Propaganda.

• Spaming.

A worm may install a backdoor that the programmer of the worm (or anybody that is
aware of the backdoor) can use in the future to gain control of the host machine. This
can be useful to hide one's tracks when participating in illegal activities, e.g. hacking a
third system. Another common technique is to enlist the host system in a population of
zombies, i.e. install a backdoor-like software on the host system and report the IP address
of the host to the programmer of the worm, or the owner of the zombie population. The
zombies then lie asleep (or dead) until the controller signals the zombie population to
perform a particular task, e.g. send out spam messages or participate in a distributed
denial-of-service attacks. Often, the purpose of a worm is determined beforehand, e.g.
participate in DDoS, like Code-Red, or send out spam. Other purposes of worms include
the collection and reporting of personal data, e.g. credit card information and usernames
and passwords, and propaganda, e.g. defacing web-sites to display propaganda, or other
information the worm programmer consider humorous.

The effect of Internet worms may often be far more serious than the programmer intended.
Poorly written code often unintendedly overloads or crashes the host computer, consumes
excessive network resources due to aggressive probing, rendering networks unserviceable,
overloads mail-servers, etc. This often limits the propagation of the worm. Worms don't
generally cause any permanent harm on their host computers, whereas computer viruses'
goal is often to erase or corrupt �les, ruining valuable personal data.

2.2.3 Mitigation

The increased frequency of new worm spreads, and societies increased reliance on com-
puter networks, has brought increased research focus on limiting the effects of network
worms. These resulting approaches can be categorized as pro-active prevention, e.g. au-
tomatic operating system and services patch systems (e.g. Microsoft Windows Update

2.2 Internet Worms 13

(Microsoft Windows Update, n.d.)), �rewalls, etc., and reactive techniques. Reactive tech-
niques can react in any number of ways. Further, they can reside on different places in the
network, e.g. on the hosts on the network's edge, or in the network itself, i.e. on network
infrastructure devices.

Snort (Roesch, 1999) and Network Security Monitor (Heberleid, Dias, Levitt K, Wood,
& Wolber, 1990) are two examples of network-based worm containment approaches. The
schemes presented in Chapter 4 are similar in nature to network-based worm containment
approaches. While it is not a direct goal of ours to detect and contain Internet worms, our
schemes could be used to reduce their rate of proliferation. As such, we believe the our
schemes are complimentary to these approaches.

Virus Throttling ((Williamson, 2002)(Twycross & Williamson, 2003)) is an end-system
based system designed to slow down the propagation of Internet worms. The system
is an extension to the end-system network stack, and works by limiting the rate of new
connections initiated by the host machine. The fact that the system relies on end-systems
means deployment is dif�cult. Additionally, it is not clear that malicious software cannot
bypass the mechanism and transmit messages directly to the network.

14 Background

Chapter 3

Network Analysis

I never could make out what those damn dots meant.
- Lord Randolph Churchill, 1849-1895

To gain an increased understanding of ARP behaviour on large local area networks, we
carried out extensive measurements and data analysis of ARP traf�c on three local area
networks. The data included ARP request traf�c collected across three relatively large
networks that serve our respective institutions and a student residential network. The data
included periods of extensive ARP �ooding where several network devices infected by
an Internet worm (Symantec, n.d.) scanned the local network for machines vulnerable to
infection.

Network #Devices Type
N1 ca. 700 University Network -

Computer Facilities,
Private Workstations

N2 ca. 2900 Residential Area Network
- Private Workstations

N3 ca. 3800 University Network -
Computer Facilities,
Private Workstations

Table 3.1: The number of devices and type of each of the three test networks.

The three networks (summarized in Table 3.1) are all similar in structure. The smallest
network (N1) consists of approximately 700 end systems, most of which are workstations
of students and faculty members. Additionally, the network contains gateways to the In-
ternet, a wireless local area network, and local research laboratories. Finally, the network
contains local servers, such as storage, web, domain, print, name, and DHCP servers. The
second network (N2) is a student residential network. It contains about 2900 hosts with
a single gateway to the Internet and a few local servers. The majority of the machines are
the private workstations of residents. The third network (N3) consists of approximately
3800 hosts interconnected by a 100 Mbps switched network. One egress point to the In-
ternet exists on the network, along with a number of devices providing key services such
as those on N1.

16 Network Analysis

The broadcast nature of ARP requests make the collection of ARP traf�c data on a net-
work trivial. This was done on a single machine attached to each network, using tcpdump
to store the ARP requests in �les. The ARP replies, however, are delivered using unicast,
therefore making their collection very dif�cult, due to the switched nature of modern Eth-
ernet networks. Consequently, our data only includes the ARP requests. This does not
limit our measurements and analysis since the unicast nature of replies is unlikely to im-
pose signi�cant overheads on Ethernet networks. To aid our analysis, a set of tools have
been written to extract and process the collected ARP request traf�c.

In the following sections, we present the results of this analysis. The aim is to identify
what constitutes normal ARP behavior. With an understanding of normal ARP behavior,
we will point out and quantify the anomalous behavior that is caused by miscon�gured
and malicious devices.

3.1 ARP Broadcast Distribution

The data presented in Figure 3.1 shows that the number of devices broadcasting ARP
requests at any given moment is fairly low. There are, however, fairly frequent spikes
where a substantially larger number of devices �ood the entire network with mapping
requests. We also note that ARP request spikes observed on N1 are as high as one third
of the number of nodes on the network.

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000 70000 80000

N
um

be
r

of
 D

ev
ic

es

Time (s)

Broadcasting devices

Figure 3.1: The number of devices broadcasting ARP requests at a given second over one day,
taken from N3

These spikes were found to correspond to events where a large set of devices broadcast
ARP requests for a single device. A closer look at a short period before and during the
spikes reveals that almost every host that broadcasts requests during the peak times lacks

3.1 ARP Broadcast Distribution 17

a mapping for the same IP address. This kind of behavior can only be caused by an event
triggered by the end system holding the IP address targeted by the wave of ARP requests.
A look at other (non-ARP) broadcast traf�c reveals that the target of the ARP requests had
broadcast a higher-layer protocol message, such as a NetBIOS name query, that required a
subset of the network's devices to respond. The respondents, lacking an address mapping
for the originator, each broadcast an ARP request.

Figure 3.2 displays the number of ARP requests broadcast on the N3 for a single day.
There are a lot of spikes, some of which correspond to the spikes mentioned earlier. Others
spikes correspond to a single or a small subset of devices broadcasting a large number of
requests in a short period of time.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10000 20000 30000 40000 50000 60000 70000 80000

N
um

be
r

of
 A

R
P

 R
eq

ue
st

s

Time (s)

Broadcast requests

Figure 3.2: The number of ARP request broadcast at a given second over one day, taken from
N3

The latter class of spikes can be explained by two forms of behavior. The �rst form of
behavior relates to servers that keep a list of their clients. The clients are contacted, either
periodically or as an effect of a higher layer event, and triggers the need for an address
mapping. If the interval between these contacts is larger than the ARP table timeout, or
the number of clients is larger than the ARP table size, this results in an ARP request for
each client.

The second form of behavior observed that causes these spikes, relates to devices scan-
ning the network, thus triggering ARP requests for every address in the network's address
range. One of our data traces was taken at a network (N2) heavily infected with scanning
worms. Scanning can also be performed by an external node, in which case for example,
the external node issues an ICMP echo request for IP addresses on the network1. In the
latter case, the gateway router of the network is the initiator of the ARP requests. Scan-
ning is generally performed by malicious software, for example Internet worms (Weaver,

1 This only applies to networks where the hosts have public IP addresses, i.e. not behind NAT.

18 Network Analysis

Paxson, Staniford, & Cunningham, 2003) looking for machines vulnerable to infection
(see Chapter 3.2). Today, no attempt is made to limit the effects scanning worms have on
the performance of Ethernet networks.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70

#D
ev

ic
es

Burstiness

Distribution of ARP burstiness

Figure 3.3: Burstiness characteristics of ARP traf�c

An interesting characteristic of ARP request broadcast per device is its burstiness. If we
de�ne the maximum instantaneous ARP request rate for a device to be the inverse of the
shortest observed inter-request time between two consecutive requests from that device,
and the average ARP request rate to be the overall number of requests divided by the
length of time over which these were observed, we can then de�ne burstiness as the ratio
of the maximum request rate to the average rate. Figure 3.3 plots the number of devices
whose burstiness is greater than the corresponding value along the x-axis for one of our
test networks, but is representative of all our observations.

In Figure 3.3, we see that most devices in normal operation do not send ARP request
broadcasts in bursts. In other words, it is not normal for a device to broadcast a substan-
tially larger number of requests over a short period than on average. Small bursts may
occur when hosts start up and duplicate address detection (described in Chapter 3.2) is
performed, and the host acquires the address mappings for critical services such as DNS
servers and gateways.

A key observation is that the traf�c volume generated by ARP requests is very low on
average. On the largest studied network (N3), the average number of broadcast ARP
requests per second is 85, which corresponds to approximately 43 kbps. If we assume
linear growth, a network of 85000 devices would generate a volume of about 1 Mbps: 1%
of the capacity of standard fast Ethernet networks today. During the dissemination of an
Internet worm, however, the volume increases dramatically.

3.2 ARP Traf�c Patterns 19

3.2 ARP Traf�c Patterns

The ARP data analysis reveals an interesting characteristic of the hosts on the network:
their traf�c patterns. The data shows that the ARP requests broadcast are almost symmet-
ric. In other words, a small subset of devices are targeted by a large subset and, likewise,
the few devices broadcast many requests for the large subset. Expectedly, it turns out
that the few heavily hit devices are the network's gateway routers and servers. Almost
every single workstation needs to communicate with the local servers and with non-local
servers/peers through the gateway. Therefore, a lot of ARP requests broadcast by work-
stations target these devices.

Perhaps more surprisingly, a lot of requests broadcast by the servers and gateways were
observed that targeted the local workstations. In the initial address mapping acquirement
phase, performed when workstations boot and start communicating with other network
devices, the workstations learn the hardware addresses of the gateways and servers. Since
the targets of ARP requests should add the source of the request to their ARP tables, a
single ARP request should suf�ce for each pair of communicating devices. From that
point forward, the ARP table entries at the two devices should be refreshed at roughly the
same time, assuming communication is generally bidirectional (e.g. data and acknowl-
edgements in a TCP connection). The fact that servers and gateways frequently request
address mappings for workstations does not conform to this line of reasoning.

One reason for the large number of requests broadcast by servers and gateways seems to
be caused by the fact that the ARP table on these devices is not large enough to contain
the entire set of active clients, i.e. address mappings are removed from the ARP table pre-
maturely to accommodate for new ARP table entries. Shortly after prematurely removing
an address mapping from the table, a device broadcasts an ARP request for the recently
removed address mapping, removing another entry prematurely when storing the result
in the already full ARP table and triggering yet another ARP request. This chain reaction
greatly reduces the effectiveness of the ARP cache.

Another reason for high request rates of gateways is externally sourced address-range
scans. When external network devices perform scans, packets enter the local area network
through a network's gateway. At that point the gateway needs to map the destination IP
address to its associated link-layer address. This causes the gateway to check its ARP
table for an entry containing the correct address mapping. If no entry is found, the gateway
broadcasts an ARP request packet.

Since the device performing the scan does not know what IP addresses have been allo-
cated to devices on the network, many of the probe packets will be destined to unbound
addresses. Each packet will trigger an ARP request which will not yield a reply. The data
from N3 shows that about 81% of requests sent by its gateway are for unbound addresses,
which suggests a signi�cant number of external scans.

Finally, some operating systems implement the ARP timeout mechanism such that it ver-
i�es the validity of timed-out entries, instead of just removing them. This is done directly
by using unicasting and ARP request. If the target doesn't respond ARP broadcasts
an ARP request for the IP address, potentially discovering a new address mapping for

20 Network Analysis

the target address. Since the set of hosts is more dynamic than the set of gateways and
servers, and communication tends to be between devices in these sets, rather than within
the sets, ARP requests due to address mapping veri�cation are mainly sent by gateways
and servers.

Figure 3.4 highlights an interesting application of ARP. Some network devices broadcast
ARP requests targeted at the protocol address they currently hold. This is called gratuitous
ARP and can be seen as a diagonal line on the �gure. Some operating system network
stacks use self-targeted ARP requests to perform duplicate address detection. This behav-
ior is not of signi�cant concern in the context of the scalability of ARP, since the number
of requests generated is of O(n) and only occurs when hosts boot.

Finally, workstations do not communicate directly with each other very often. Most com-
munication seems to be originated by workstations and destined for local and external
servers.

172.20.8.152

172.20.4.201

172.20.0.250
172.20.8.152172.20.4.201172.20.0.250

T
ar

ge
t

Source

Figure 3.4: Traf�c patterns showing the relationship between ARP sources and targets. This
graph plots data from network N1 with the axes representing device identi�ers.

3.3 The Effect of Malicious and Miscon�gured Devices

As mentioned earlier, one of the data sets used in our ARP analysis was taken during
a period when a number of local devices were infected with a scanning Internet worm.
Although the worm infection on that network reached its heights several weeks earlier
and most of the devices had been patched, the data still contains some useful information
about the ARP behavior of malicious software. This particular worm scans the local
subnet for vulnerable machines in a sequential order before probing for vulnerable non-
local machines. Some other worms may use selective random scan, i.e. probe targets are

3.3 The Effect of Malicious and Miscon�gured Devices 21

chosen at random with a bias for local machines. The reason for the complete sequential
scan or the bias for local addresses is twofold. First a single �rewall breach allows a worm
to infect the whole protected subnet. Second, machines on a local area network are likely
to be managed by the same individuals and be fairly homogeneous, therefore sharing the
same vulnerabilities.

Each local probe by a worm results in an ARP request broadcast by the infected machine.
For the worm to speed up its dissemination, it aims to probe as many potential victims as
possible in the shortest period of time. This results in a sudden increase in ARP requests
rates on infected machines. When the student residential network (N2) got infected by the
Internet worm, several of the devices connected to the network began scanning for vulner-
able machines to infect. These devices, previously broadcasting only the occasional ARP
request, suddenly started to broadcast at 120 requests/second. This behavior is demon-
strated in Figure 3.5. One particular day saw about 120 separate devices performing scans
repeatedly. It should be noted that the data were taken several weeks after the time of the
initial worm dissemination when the network became saturated by ARP scans.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

N
um

be
r

of
 r

eq
ue

st
s

5 second intervals

Requests per five seconds

Figure 3.5: The increase in request rate for hosts infected with a worm scanning the local network
for vulnerable machines.

To get an idea of how worms effect the performance of Ethernet LANs it is useful to
get a sense of the dissemination of worms. In (Chen, Gao, & Kwiat, 2003) a model for
calculating the spread of worms is put forward. We have extended that model so that
devices stop scanning after sending a probe to every address on the local area network.
The equations for the spread of scanning worms are:

mi =
i∑

j=0

nj si+1 =
i∑

k=i−T
s

nk

ni+1 = [N −mi][1− (1− 1

T
)rsi+1] (3.1)

where N is the total number of vulnerable devices, T is the size of the address range from
which probe targets are chosen at random, r is the scan rate. mi, si and ni represents the

22 Network Analysis

number of devices infected, the number of scanning worm instances and the number of
new infections at the end of time slot i, respectively. We ignore the death and patch rates
of vulnerable devices.

A hypothetical example, based on what we have seen at the residential network, assumes
a single initial infection (n0 = 0), a B-address local network (T = 216) and a scan rate
of 120 request/s (r = 120). The network has about 3000 devices, 10% of which are
assumed to be vulnerable (N = 300). Figure 3.6 shows the dissemination and ARP
request volume for the �rst 40 seconds. The spread is alarmingly fast; the worm reaches
complete infection in about 25 seconds. Interestingly, and perhaps counter-intuitively, a
smaller vulnerable set slows down the infection rate. If we have 30 vulnerable devices,
other things being equal, it takes the worm about 140 seconds to reach complete infection.
This is due to the fact that the larger the vulnerable set the more likely a probe will hit a
vulnerable device. The infected device immediately starts scanning, increasing the rate of
infection. This perhaps promotes the case for smaller subnets.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

#I
nf

ec
tio

ns

R
eq

ue
st

s/
s

Time (s)

New Infections
Scanning Devices

ARP Volume

Figure 3.6: The infection dissemination and ARP volume caused by infected devices for 0 <=
i <= 40

ARP requests are minimum-sized Ethernet frames of 64 bytes. As these ARP requests
need to be broadcast on the network, a n-port switch must replicate these on n − 1 of
its output ports. Most switches use a slow path for broadcast forwarding where the CPU
has to copy the frame to all output ports. This will reduce the performance of many
switches dramatically. On a network with m infected devices, each of which broadcasts r
probes/s, the switch has to forward O(mnr) requests. Consequently, a few infected hosts
can quickly consume a large amount of the forwarding capacity of a switch. In the above
example we have about 300 devices broadcasting 120 request/s each. A 24 port switch
would have to serve about 828.000 requests/s using the slow path.

Even more serious, though, is the effect it has on the performance of end-stations, each
of which has to serve an interrupt, copy the packet to main memory and have a look at
its internals. DMA is rarely used for packets this small. A ball-park estimate of 6 µs per
interrupt, context switch and packet copy, and 36.000 requests/s results in a workstation

3.3 The Effect of Malicious and Miscon�gured Devices 23

wasting about 22% of its CPU cycles2. Interrupt coalescing, were implemented, will
reduce the interrupt overhead somewhat, though. Additionally, the requests take up some
precious bandwidth on downlinks to end-stations, or about 18% of 100Mbps links.

Unusually high ARP request rates are an identifying characteristic of machines infected
with Internet worms. As seen earlier in this analysis, it is also typical for gateway routers
to exhibit higher request rates than normal hosts. This point highlights the dif�culty in
distinguishing between non-malicious devices such as gateway routers and those infected
with Internet worms, for example. Perhaps a more effective approach for detecting Inter-
net worms may be to monitor the relative increase in rates at a given host.

Another characteristic that is typical for machines infected with a worm is the ratio of the
requests targeted at a host to the requests broadcast by the host. This ratio is very low for
machines performing address range scans while it is close to one for other hosts. This can
be seen in Figure 3.4, where the vertical lines representing scans do not have correspond-
ing horizontal lines, representing requests targeted at the scanning machines.

The number of broadcast requests targeted at unbound IP addresses is also an identify-
ing characteristic of devices infected with malicious software. Malicious software, not
knowing what IP addresses are in use on the local network, broadcast requests blindly in
a sequential or random manner. On a network where address utilization is low, only a
small set of requests result in a reply. This behavior is also typical of incorrectly con�g-
ured devices. During the time of our observations, one of the test networks contained an
incorrectly con�gured print server that constantly broadcast ARP requests for an unbound
IP address that used to belong to a printer.

2 The numbers are loosely based on (Zec, Mikuc, & Zagar, 2002) and analysis of Linux data path
performance.

24 Network Analysis

Chapter 4

Managing Anomalous Behavior

There is a �ne line between helping administrators protect their systems
and providing a cookbook for bad guys.

- Grampp and Morris, "UNIX Operating System Security"

As seen in Chapter 3, a small subset of devices on a local area network that are either
infected with malicious software or incorrectly con�gured, may generate bursts or consis-
tently large amounts of ARP request frames. If left unmanaged, this behavior could cause
an unacceptably signi�cant quantity of network resources to be consumed that could cause
a network to become unserviceable. In this section, we describe a strategy that can be used
to ensure such devices do not consume an unacceptable quantity of network resources due
to this behavior.

When designing the ARP managing mechanism, we had multiple design requirements in
mind. Different design decisions/options were evaluated against those requirements. We
now list those requirements, roughly from the most important to the least important.

The basic requirement is that the scheme should prevent anomalous ARP traf�c from ren-
dering the network unserviceable. Further, to ease deployment, the mechanism should be
completely transparent to end-system devices and other network devices. As an optimiza-
tion on the basic design requirement, the effect malicious and/or miscon�gured software
has on behaving hosts should be limited. As resources are scarce, and performance is a
huge issue when designing critical network components, the scheme's resource consump-
tion should be kept to a minimum. This applies to processing power, memory, and band-
width. To limit the managerial overhead, and ease deployment, the mechanism should
be completely autonomous and self-con�guring. Yet, if possible, the scheme should be
able to be as �exible as possible, e.g. be aware of network semantics when managing
ARP request traf�c. Finally, as a low priority optimization, the scheme should minimize
the resources consumed by anomalous behavior, hence limiting the spreading of Inter-
net worms. This prevents other hosts from being infected, limiting future ARP request
traf�c.

So that anomalous ARP request traf�c cannot cause a degradation of service on a network,
we extend the functionality of networked switches. In short, if an observed ARP request
rate exceeds a threshold (speci�ed in requests per second, for example), we invoke an
algorithm that monitors the rate of ARP request streams and performs probabilistic drop-

26 Managing Anomalous Behavior

ping of requests based upon the observed stream rates. The probabilistic dropping mecha-
nism is designed such that the streams with higher rates have a greater probability of their
requests being dropped. This scheme continues until the ARP request rate falls below the
threshold, when the scheme is reset and �unmanaged� ARP forwarding resumes.

The observed rate of an ARP stream can be monitored from a number of different scopes
� for example, host, port, switch, or network. The granularity of a scope determines to
what extent devices effect each other. Therefore the �ner the granularity of a scope, the
fewer devices affect each other. For example, in Figure 4.1, if using a host scope, host A
does not affect any other hosts. However, if port or switch scopes are used, the number of
hosts affected by host A increases. When a scope's threshold is reached, the probabilistic
dropping algorithm is run for that scope only. HostPortSwitchScopes:

A switch running an ARP management scheme. Host A – The number of hosts affected by A depends on the scheme’s scope.

Figure 4.1: Different scheme scopes. The number of end-systems that affect each other is depen-
dent on the size of the scope.

There are a number of factors that in�uence the most suitable way to identify ARP
streams. In our scheme, ARP streams are identi�ed either by the switch port or host
from which they originate. When identifying ARP streams by the port on which they are
received, the observed rate is the aggregate of the request rates of all hosts connected to
that port (directly or through another switch/hub).

4.1 Probabilistic Dropping Scheme

We now go on to describe the general probabilistic ARP request dropping mechanism.
A networked switch de�nes a threshold for each of its scopes. If the observed rate of
received requests exceeds the threshold, the dropping mechanism is engaged for the cor-
responding scope. Each ARP stream (identi�ed by a stream identi�er as described above)
observed in the scope is allocated a share of the available resources allowed for request
forwarding (the threshold). If a stream exceeds its share, ARP requests belonging to the
stream are probabilistically dropped. This dropping is carried out in such a way that

4.1 Probabilistic Dropping Scheme 27

streams that attempt to consume larger amounts of a scope's resources will suffer an
increased probability of having their requests dropped. The mechanism runs until the
aggregated ARP request rate in the scope falls below the threshold, at which point the
�scheme� is reset and normal ARP forwarding resumes.

Data: v - a switch wide moving average request rate. Initialized to 0.
Data: table - a table containing devices seen and timestamp of last request seen.
begin1

foreach incoming requests req do2
s ←− 1

now−last request arrival3

v ←− (1− α)× v + α× s4
if v >= threshold then5

add (table, req)6

f = threshold
size-of(table)7

if allow-request (req, f) then forward-request (req)8

end9
else forward-request (req)10

end11

end12
Algorithm 1: Control ARP

input : Request req and the fair share f .
output: Boolean indicating if the request should be dropped or forwarded.
begin1

l = get-update-timestamp (table, sender-of (req))2
r = 1

now−l3

p = max(0, r−f
r

)4
return throw-coin (p)5

end6
Algorithm 2: Allow Request

To be more speci�c, the probability pi that a stream i will have an ARP request dropped
becomes higher as the request rate for i (ri) increases relative to its share of the resources
allocated to ARP request forwarding (f). This relationship is de�ned in Equation 4.1,
where the value ri is the request rate for host i. The rate is calculated in different manners
depending on the type of ARP stream identi�ers used (see Section 4.3). Here, li repre-
sents the time at which the previous request of stream i was received. The rate and drop
probability are calculated in Algorithm 2.

pi = max(0,
ri − fi

ri

) (4.1)

f =
t

n
(4.2)

v = (1− α)× v + α× s, with 1 ≥ α ≥ 0 (4.3)

28 Managing Anomalous Behavior

s =
1

now −max
i

li
(4.4)

As mentioned earlier, the f value represents the share of the scope's ARP request forward-
ing resources that are allocated to an individual request stream. This value is determined
using Equation 4.2, where the value t (given in requests/sec) represents the scope's max-
imum desired ARP request forwarding rate (threshold), and n is the number of streams
observed in the scope since the dropping scheme was invoked.

The streams known to the dropping scheme are forgotten and not used to calculate the
share of the scope's available resources after a timeout period. This is so that the share
of the available resources (f) is not effected by streams that have not been active for
extended periods. A separate maintenance algorithm removes stale entries, such that
they are removed when now − li > D, where D is the timeout value for device entries.
Forgetting of streams in this way has two consequences � one is to decrease the likelihood
of dropping requests belonging to streams with low request rates, and the other is to
increase the fair share f , which allows malicious software to send at a higher rate. This
is only a minor problem as the aim of the scheme is to limit the resources used on ARP
request broadcasting to t, therefore limiting the effects of malicious and malfunctioning
devices, while limiting the resource consumption of individual devices or slowing down
worm propagation is a low priority design requirement.

The observed rate in a scope (v) is computed as a moving weighted average of request rate
samples, as in Equation 4.3, because the combination of non-bursty ARP traf�c streams
from hosts can result in some burstiness in a scope. This prevents the dropping scheme
from starting up unnecessarily in case of transient spikes, i.e., the scheme only starts
dropping requests when a high request rate has been experienced for a sustained period
of time. This average is calculated in Algorithm 1.

4.2 Scopes

As demonstrated before, the dropping scheme can run in any of multiple different scopes
(host, port, switch, network). Each of the scopes has its advantages and disadvantages.
The two main approaches we have used are the port and switch scopes.

In a switch scope, a single threshold value is de�ned for the entire switch and a single
switch-wide average request rate is monitored. If the observed request rate exceeds the
switch's threshold the dropping scheme is engaged and all ARP requests received are
subject to probabilistic dropping. A request's drop probability is equal to its associated
stream's pi value as described in Equation 4.1. This approach has the advantage that its
computational resource consumption is relatively limited compared to the other scopes,
i.e. a single threshold is de�ned and a single average rate is calculated for the entire
switch. However, it has some potential drawbacks. Because the scope is unnecessar-
ily wide, once the scheme is invoked, requests generated by a larger number of hosts
than strictly necessary are subject to dropping. Further, rate state is maintained for every
observed stream on a switch, increasing memory requirements. As a large threshold is

4.3 Stream Identi�ers 29

needed to accommodate for the ARP request traf�c generated by every network device,
malicious software has increased room to misbehave. Finally, a switch scope scheme
is totally unaware of network semantics and its �exibility limited, i.e. different devices
cannot be allowed to send larger volumes of ARP requests.

In a port scope, a threshold value is de�ned for each port on a network switch. Further,
the average request rate is monitored at each port. If the observed request rate reaches a
port's threshold the scheme is engaged on that port only and only the ARP requests that
are received at that port are subject to probabilistic dropping. This approach eliminates
many of the shortcomings of the switch scope approach. As the granularity of a port scope
is �ner than that of a switch scope, the number of normally operating hosts affected by a
single (or few) anomalous streams is reduced. For the same reason, the state maintained
by the scheme while it is engaged is signi�cantly smaller than in a switch scope. The
thresholds for port scopes can be de�ned as a portion of a switch-wide threshold, or
otherwise con�gured. The only requirement is that the sum of the port thresholds does not
exceed the switch's forwarding capacity. Thus, a port scope gives anomalous streams less
room to affect other devices, and increases the schemes �exibility. The only disadvantage
of the port scope approach is that the implementation complexity is increased, especially
with regard to threshold value de�nition.

We could have also considered host and network scopes. When a scheme's scope is indi-
vidual hosts, the scheme has to constantly monitor the ARP request rates of all observed
hosts. This has the advantage of being unforgiving to hosts running malicious or mis-
con�gured software. Different devices, however, have different ARP forwarding needs,
which makes the division of a switch's total ARP forwarding capacity among all scopes
running on the switch dif�cult. Further, the memory and state maintenance requirements
of such a scope design are excessive and the calculations are more complex. Finally, this
design would mean that the switch was constantly monitoring the ARP request rates of
every host on the network. This breaks our requirement that the processing power re-
source consumption be kept minimal. Instead, the scheme should only run occasionally
to limit the effects of malicious or miscon�gured software, such as when a new Internet
worm outbreak takes place, and otherwise leave the switch to carry on with its usual re-
sponsibilities. A scheme having a scope of the entire local area network would require
a complex distributed algorithm and causes a considerable communication overhead. As
stated before, one of our design requirements was that the mechanism would be fully
autonomous, robust, self-contained, and transparent to the networks end-system devices.
This effectively rules out a network-wide coordination of switches to manage ARP traf-
�c.

4.3 Stream Identi�ers

ARP request streams can be identi�ed using one of two methods, i.e. using the source
address of received requests, or the port number on which requests are received.

When identifying streams on a per-host basis, the current request rate has to be maintained
for each host that is transmitting ARP requests when the dropping scheme is invoked.

30 Managing Anomalous Behavior

This state needs to be maintained only on a per-port basis if streams are identi�ed by the
incoming port number. When per-port identi�cation is used, well behaved hosts may be
penalized if they share the same port as a misbehaving host (i.e., one with a particularly
high request rate). Clearly, if a host is connected directly to a switch's port, as is becoming
the most widespread scenario, the two identi�cation schemes are equivalent.

When using the per-host identi�cation scheme, a problem could occur if a misbehaving
host masquerades the MAC address of another host. A malicious host could generate
spurious ARP requests pertaining to another host, which could be used as a DOS attack.
The effect is a reduced fair share for all hosts in the corresponding scope (caused by an
increased number of observed hosts), except for the malicious host which would receive
an increased fair share (multiple slices of the total threshold).

The method used to calculate the observed request rates (ri) are dependent upon what
stream identi�ers are used. In the case of per-host identi�ers, the request rate is the
instantaneous rate of received ARP requests (Equation 4.5) while a scheme using per-port
identi�ers uses a weighted moving average request rate (Equation 4.6). The reason for this
is that while the requests generated by a well-behaved host are not bursty (see Chapter 3),
transient bursts can occur for multiple hosts connected to the same port.

ri =
1

now − li
(4.5)

ri = (1− α)× ri + α× 1

now − li
, with 1 ≥ α ≥ 0 (4.6)

Identifying streams based on their source hosts is applicable in scenarios where a large
number of hosts a connected through one or more of a switch's ports. This translates to the
internal switches of a hierarchical topology. Per-port identi�ers, however, are applicable
if only a single or few hosts are connected to each port, i.e. at the edge of a network.

When used in combination with a switch scope, not identifying streams is not an option
unless resources (e.g. memory) are particularly scarce, as this causes an unacceptable
amount of legitimate ARP requests to be dropped. It should be noted, though, that this
would still be better than not managing ARP request traf�c at all, since resources allo-
cated to ARP broadcasting are limited, preventing the network from becoming totally
unserviceable for nodes sharing the scope of the anomalous ARP request stream sources.
Omitting stream identi�cation is attractive in some scenarios though, especially when
used in port scopes on devices deployed on the edge of the network.

4.4 Permutations

We now go on to list the possible permutations of scheme scopes and stream identi�ers
to introduce the different approaches of managing anomalous ARP behavior. The ap-
proaches all share the common general dropping scheme described in subsection 4.1.
Each of the approaches have different strengths and weaknesses, require different amounts
of resources, are unequally equipped to discriminate between legitimate and anomalous

4.4 Permutations 31

ARP requests, and are applicable in different scenarios. The proposed approaches are
listed in Table 4.1. The table clearly shows the tradeoff between complexity and resource
consumption on one hand and accuracy and effectiveness on the other.

Acronym Scope Str. IDs Mem Complexity Accuracy Effectiveness
SN Switch N/A O(1) * * *
SP Switch Port O(p) * * * * * *
SH Switch Host O(n) * * * * * * * * * *
PN Port N/A O(p) * * * * * * * * *
PH Port Host O(n

p
) * * * * * * * * * * * * *

Table 4.1: Probabilistic dropping scheme approaches. In the big-O notation, n is the
number of hosts in a network and p the number of ports on a switch.

The �rst approach (SN) is the simplest. It also drops ARP requests in the least intelligent
manner of all the approaches. As mentioned in subsection 4.3, this scheme is not a viable
option except in severely constrained environments. The combination of a switch scope
and a per-port stream identi�ers, however, also requires very little resources and does a
much better job of dropping requests belonging to anomalous ARP streams in favor of
those belonging to normal streams. The reason is that requests arriving on ports with re-
quest rates lower than the port's fair share are not subject to being dropped. This approach
is most effectively deployed on the edge of networks, i.e. where only a single host is con-
nected to each of the switch's port. Even in this scenario, however, the approach requires
the switch's ARP forwarding resources to be allocated to ports in an intelligent manner,
so that hosts connected through the uplink port will not have a signi�cant number of their
messages dropped. This will be discussed further in the Discussion section at the end of
the paper.

A scheme that uses a switch scope in combination with per-host stream identi�ers (scheme
SH) will require more resources, as the instantaneous request rate has to be stored for each
host. The scheme will do a good job of dropping anomalous ARP traf�c in favor of normal
traf�c. It is, however, vulnerable to the security attacks described in the 4.3. It is most
effectively deployed at the center switch of a star-like network topology.

A scheme that uses a port scope and drops ARP requests regardless of the stream iden-
ti�ers (PN) is similar to scheme SP. However, the scheme is more effective, because
the port thresholds are generally smaller than switch-wide thresholds. The scheme is
applicable in similar situations as SP, i.e. on the network's edge. Perhaps the most ac-
curate, effective, and versatile approach is the combination of port scopes and per-host
stream identi�ers (PH). The state maintained by this scheme is less than in the switch-
scoped approach, because the number of hosts sharing a port is smaller than the number
of hosts sharing a switch (i.e. all hosts in a network). The port scope approach makes
the scheme effective, as it starts dropping traf�c sooner than a switch-scoped approach.
Further, the combination of port scopes and per-host stream identi�ers makes the drop-
ping accuracy optimal among all the approaches. Like SH the scheme can be deployed
in a star-topology's center. Finally, it can be deployed on the edge like SP and PN. For
ports connected to a single host, the accuracy of the switch becomes the same as in those
approaches. However, the accuracy for the uplink port is increased signi�cantly because

32 Managing Anomalous Behavior

of this approach's ability to discriminate between different hosts. The same is true if the
presence of layer 1 hubs prevents the deployment of an ARP managing scheme directly
on the edge. The state maintained in this scheme on one-host ports is minimal. The
advantages of this scheme easily out-weight the extra overall state maintained, and the
schemes relative complexity.

The statements made in this section will be con�rmed in Chapter 5, using simulation and
measurement results.

Chapter 5

Evaluation

If the facts don't �t the theory, change the facts.
- Albert Einstein, 1879-1955

To give an indication of the effectiveness of the approaches described in Chapter 4 for
managing anomalous ARP behavior, and con�rm claims made in that section regarding
the relative strengths and weaknesses of the various approaches, we carried out a series
of simulations.

A network switch was modeled and extended with the probabilistic dropping strategies.
Three million ARP requests, that were taken from the traces acquired from networks
N2 and N3 during our network analysis, were passed to the modi�ed switch. We also
ran simulations that included a further twenty �ve hosts generating synthesised network
scans for network N3. Information regarding the traces used is presented in Table 5.1.
Note that the average request rate for network N2 is considerably higher than N3 � this is
because the trace for N2 was taken two weeks after the breakout of an Internet worm, with
some hosts still being infected. The simulations were run multiple times for each of the
ARP request traf�c management schemes, with different random number generator seeds,
and for different α and threshold values. Entries in the table of time-stamps were set to
timeout after 30 seconds. Results presented are averages of those runs. Various network
topologies were simulated, including single-switch topologies and star-like topologies for
each of the switch types.

Network Average Maximum Number
(req/sec) (req/sec) of hosts

N2 1639 2958 887
N3 95 2207 3061

N3 + 25 142 2393 3086

Table 5.1: Network information for traces used in simulations

34 Evaluation

5.1 ARP Throttling

To determine if the ARP management strategy correctly carries out its most fundamental
role, i.e. that of limiting ARP request traf�c volume to a certain prede�ned value repre-
senting a switch's available ARP request forwarding resources, we looked at the number
of requests received and requests forwarded per second. Figures 5.1, 5.2, 5.3, and 5.4,
plot these for single-switch topologies for each of the ARP management schemes and a
threshold value of 128 requests/sec.

The graphs clearly show that the maximum number of forwarded ARP requests is severely
limited, therefore limiting the resource consumption of ARP requests sent by malicious
and miscon�gured software, both on a network's end-systems and internal devices. As
a consequence, the network remains operational under those extreme circumstances, e.g.
when new Internet worms are propagated. In Figure 5.1 (scheme SP) there are several
spikes in the number of received requests. During the periods of increased ARP traf�c,
our switch forwards approximately the same number of requests as before. The same can
be seen in Figure 5.2 (scheme SH). This con�rms that these schemes are successful in
limiting the resource consumption of ARP broadcasts. For the schemes with port scopes,
however, we see a slight increase in the number of forwarded messages for sustained
periods of high request rates. This is because the port where the schemes are running (i.e.
threshold has been reached) are using their entire amount of resources allocated for ARP
forwarding, increasing the overall forward rate somewhat.

In the graph for the scheme with switch scope and per-host stream identi�ers (Figure
5.2), the same decrease in forwarded messages can be seen. However, for more transient
spikes, the number of forwarded messages closely follows that of received messages.
This is due to transient spikes being caused by a large number of hosts broadcasting ARP
requests towards a single destination at the same time. This behavior was described in
Chapter 3. Each of the broadcasting hosts has a very low instantaneous request rate, and
therefore a high probability of having its requests forwarded. For example, at roughly
the 34000th second, 1471 requests are received, 1353 of which were sent towards the
same destination. Only 120 of the 1471 requests had high instantaneous rates, causing
63 of them to be dropped (about 53%). For the graph for scheme PH (Figure 5.3), the
same transient spikes occur. When comparing this with the schemes PN and SP , we
see that those schemes do not forward the legitimate requests during transient spikes.
This supports our claim that per-host stream identi�ers are more suitable to distinguish
between legitimate and anomalous ARP requests.

5.2 Rate of dropped requests

To determine if the ARP management strategy correctly drops ARP requests from hosts
that have the highest request rates, we looked at the percentage of requests dropped for
a host against its maximum instantaneous request rate. Recall that the instantaneous re-
quest rate for a host is used to determine the probability that an ARP request will be
dropped (see Equation 4.1). Figures 5.5, 5.6, 5.7, and 5.8 plot these values for all the

5.2 Rate of dropped requests 35

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000 35000

A
R

P
 r

eq
ue

st
s/

s

Time (s)

Received messages
Forwarded messages

Threshold

Figure 5.1: Number of received requests and forwarded requests per second on network N2 using
approach SP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000 35000

A
R

P
 r

eq
ue

st
s/

s

Time (s)

Received messages
Forwarded messages

Threshold

Figure 5.2: Number of received requests and forwarded requests per second on network N2 using
approach SH

36 Evaluation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000 35000

A
R

P
 r

eq
ue

st
s/

s

Time (s)

Received messages
Forwarded messages

Threshold

Figure 5.3: Number of received requests and forwarded requests per second on network N2 using
approach PH

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000 35000

A
R

P
 r

eq
ue

st
s/

s

Time (s)

Received messages
Forwarded messages

Threshold

Figure 5.4: Number of received requests and forwarded requests per second on network N2 using
approach PN

5.2 Rate of dropped requests 37

 0

 20

 40

 60

 80

 100

 1e-05 1e-04 0.001 0.01 0.1 1 10 100 1000 10000 100000

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

D
ro

pp
ed

Maximum Instantaneous Request Rate (requests/second)

Figure 5.5: For switch SP on network N2, the percentage of requests dropped against the maxi-
mum instantaneous request rate for each host on network

schemes with traces taken from network N2. The threshold value t was set to 512 re-
quests/second.

These �gures suggest there is a signi�cant difference in the schemes' performance. The
schemes that use host stream identi�ers drop a relatively low percentage of low-rate ARP
requests, while the schemes that use port stream identi�ers in the switch scope scheme,
or do not identify streams in the port scope scheme, do not distinguish between low-rate
and high-rate requests, i.e the probability of these requests being dropped is equal.

Figures 5.6 and 5.7 show that for high request rates, some hosts have a relatively low
percentage of their requests dropped. There are a number of causes of this. For example,
over an prolonged period a host may generate requests when the management scheme is
not invoked (i.e. during periods when the aggregate request rate at the switch is below the
threshold), therefore causing a relatively small percentage of its total number of requests
to be dropped. Additionally, a host may have a high maximum request rate, while trans-
mitting most of its ARP requests at a low rate. The above graphs indicate that schemes
SH and PH are biased towards dropping requests from high rate request streams, while
the rate of the generating host is not a factor in the other schemes, resulting in a lot of
legitimate requests being dropped. However, this does not mean that these schemes are
useless, as the last section showed they were effective in performing their most basic task,
i.e. limiting the resources used in ARP forwarding.

38 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-05 1e-04 0.001 0.01 0.1 1 10 100 1000 10000 100000

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

D
ro

pp
ed

Maximum Instantaneous Request Rate (requests/second)

Figure 5.6: For switch SH on network N2, the percentage of requests dropped against the max-
imum instantaneous request rate for each host on network

 0

 20

 40

 60

 80

 100

 1e-05 1e-04 0.001 0.01 0.1 1 10 100 1000 10000 100000

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

D
ro

pp
ed

Maximum Instantaneous Request Rate (requests/second)

Figure 5.7: For switch PH on network N2, the percentage of requests dropped against the
maximum instantaneous request rate for each host on network

5.3 Normal vs. anomalous requests 39

 0

 20

 40

 60

 80

 100

 1e-05 1e-04 0.001 0.01 0.1 1 10 100 1000 10000 100000

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

D
ro

pp
ed

Maximum Instantaneous Request Rate (requests/second)

Figure 5.8: For switch PN on network N2, the percentage of requests dropped against the
maximum instantaneous request rate for each host on network

5.3 Normal vs. anomalous requests

The probabilistic dropping scheme could discard normal ARP traf�c. To understand to
what extent this could occur, we conducted simulations that categorised requests as ei-
ther normal or anomalous, and looked at the percentage of requests dropped for each
category. There are two behaviours we used to determine whether an ARP request was
anomalous:

1. A request was part of a sequential network scan. In other words, a request was
part of a series with the same source address and a sequentially increasing target
address.

2. A request was targeted at an unbound network address. This form of request was
found to be generated by network N3's gateway router caused by external network
scans, and incorrectly con�gured devices.

Note that while the likelihood is very high that ARP requests tagged as anomalous by this
categorization are indeed anomalous, many anomalous requests could still be categorized
as normal (for example, abnormally high request rates towards bound addresses).

Figures 5.9, 5.10, and 5.11 show the percentage of normal and anomalous ARP traf�c
that was dropped over the length of the simulation with different threshold values for
the three network traces used. For network N2 (shown in Figure 5.9), it can be seen
that the dropping scheme discards a signi�cant percentage (almost 100%) of the requests
classi�ed as anomalous and approximately 30% of the network traf�c that is classi�ed as
normal, for threshold values of 128 through to 1024 requests/second. A 30% drop rate of
normal traf�c appears unacceptably high.

40 Evaluation

 1

 10

 100

20481024512256128

P
er

ce
nt

 R
eq

ue
st

s
D

ro
pp

ed

Threshold

Normal Traffic
Anomalous Traffic

Figure 5.9: Percentage of the normal and anomalous ARP requests dropped for network N2 with
different threshold values.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

20481024512256128

P
er

ce
nt

 R
eq

ue
st

s
D

ro
pp

ed

Threshold

Normal Traffic
Anomalous Traffic

Figure 5.10: Percentage of the normal and anomalous ARP requests dropped for network N3
with different threshold values.

5.3 Normal vs. anomalous requests 41

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

20481024512256128

P
er

ce
nt

 R
eq

ue
st

s
D

ro
pp

ed

Threshold

Normal Traffic
Anomalous Traffic

Figure 5.11: Percentage of the normal and anomalous ARP requests dropped for network N3
with synthesised scans with different threshold values.

To understand this result further, we looked at the percentage of dropped normal ARP
requests that were sent by hosts whose ARP request stream only contains requests cat-
egorised as normal � we found that none of these requests were dropped. Sources of
�purely� normal ARP request streams are very likely to be hosts that only engage in
normal communication patterns resulting in low ARP request rates. The zero drop obser-
vation for such hosts is very signi�cant because it shows that our scheme is very good at
discriminating positively for well behaved hosts. We can therefore be con�dent that the
normal traf�c dropped by our scheme is either anomalous requests that have been mis-
classi�ed by our simple categorisation, or normal requests from hosts that also generate
anomalous ones.

This is another piece of evidence that our proposed scheme is biased against ARP request
streams from hosts that contain anomalous traf�c. This is, in most cases, a very good
property because their normal communications would be hindered, providing both an
incentive to quickly patch a host infected by malicious scanning software and an indicator
of the infection in the �rst place.

Unfortunately, this could be problematic for the ARP request stream sent by the gateway
router, as this request stream can contain a signi�cant amount of anomalous requests (see
Chapter 3.2). However, in Chapter 2, we discuss simple methods to reduce the ARP re-
quest rate caused by external scans through the gateway. The use of such methods, along
with appropriate con�guration of the gateway (e.g., ARP table size large enough to con-
tain most, if not all, address bindings for the hosts in the LAN, ARP table entry expiration
timers large enough and/or the use of ARP table entry veri�cation on expiration) as well
as opportunistic ARP cache population on receiving requests, can ensure that the ARP re-

42 Evaluation

quest rate generated by the gateway is �normalised�, so that both inbound and outbound
communications can occur unhindered by our proposed scheme.

Another observation from Figures 5.10 and 5.11, is that for some thresholds the scheme
drops a higher percentage of normal requests than anomalous � this appears to be worse
than just dropping a random proportion of all the requests. For these thresholds, the
scheme is dropping a relatively small number of requests that are from hosts that have a
high request rate. For example, for a threshold of 512 for network N3 (shown in Fig-
ure 5.10), the scheme is dropping approximately 0.1% (811 requests) of the total number
of normal requests and the average instantaneous request rate for hosts that generate these
normal requests is 933 requests/second. Again, this suggests that our de�nition of normal
ARP requests is not strong enough and includes ARP requests generated at an abnormally
high rate.

The effect of different threshold values can be seen in Figures 5.9, 5.10, and 5.11. For
network N3, whose average request rate is 95 requests/second, the percentage of dropped
requests falls as the threshold becomes greater than the average request rate. This is to
be expected, as the scheme will be invoked less often and dropping will be less aggres-
sive when it is executing. For network N2, when the threshold is well below the average
request rate (1639 requests/second), the percentage of requests dropped remains approx-
imately constant. This is due to the threshold being so low that each host has a very
small fair share of the switch's resources, so that those generating requests at high rate are
aggressively controlled by the scheme.

Figure 5.12 shows the cumulative distribution function (CDF) of the number of dropped
requests as a function of the instantaneous request rate of their ARP request streams when
they were dropped. Keeping in mind that a sustained ARP request rate of 1 request/second
per individual host can already be considered as a high rate, we see that over 90% of all
request drops occur at high and very high rates, while the dropping of requests that are
part of ARP request streams with a low (normal) rate is well below 1 request/second and
is an extremely rare event.

5.4 Retransmissions

As mentioned in Chapter 2.1, if a host does not receive a response to an ARP request it
has broadcast, it will retransmit the request after a timeout period. Retransmissions may
be sent a number of times if there continues to be no response. We implemented this
behaviour for our simulations. More speci�cally, the behaviour we implemented, which
was observed on a Linux-based host, was to retransmit up to three requests at one second
intervals. Our aim was to determine to what extent a host will have a request dropped
and any subsequent retransmissions. If all requests are dropped, this will render the host
unable to send frames to the targeted host.

Figures 5.13, 5.14, and 5.15 show both the percentage of normal ARP requests and the
subsequent retransmissions that were dropped. We observed that if a normal packet is
dropped, there is a high probability that subsequent retransmissions will suffer the same

5.4 Retransmissions 43

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

Request rate (request/sec)

C
D

F

128
256
512
1024
2048

Figure 5.12: CDF of the number of drop requests across all three networks for various threshold
values.

 0

 20

 40

 60

 80

 100

20481024512256128

D
ro

p
P

er
ce

nt
ag

e

Threshold

Normal Requests
1st Retransmission

2nd Retransmission
3rd Retransmission

Figure 5.13: Percentage of the normal requests and retransmissions that are dropped for network
N2

44 Evaluation

 0

 20

 40

 60

 80

 100

20481024512256128

D
ro

p
P

er
ce

nt
ag

e

Threshold

Normal Requests
1st Retransmission

2nd Retransmission
3rd Retransmission

Figure 5.14: Percentage of the normal requests and retransmissions that are dropped for network
N3

 0

 20

 40

 60

 80

 100

20481024512256128

D
ro

p
P

er
ce

nt
ag

e

Threshold

Normal Requests
1st Retransmission

2nd Retransmission
3rd Retransmission

Figure 5.15: Percentage of the normal requests and retransmissions that are dropped for network
N3 with synthesised scans

5.4 Retransmissions 45

fate. Again, we believe this is largely due to the fact that normal requests are being trans-
mitted by hosts that are sending at abnormally high rates. If this were not the case, the
instantaneous request rate for these hosts would be approximately 1 request/second � con-
siderably lower than the 933 requests/second average mentioned earlier � and would have
a low drop probability.

Our evaluation demonstrates that the ARP management scheme is effective at dropping
anomalous requests that exhibit a sustained high rate. Although our results show that
in some cases a signi�cant percentage of normal traf�c is being dropped, our analysis
shows that these are either part of an overall anomalous request stream or that these re-
quests have been misclassi�ed by our rather simple categorisation. We conclude that non-
malicious and correctly con�gured hosts will have an extremely low probability of their
ARP requests being dropped by our scheme, while anomalous requests are effectively
controlled.

46 Evaluation

Chapter 6

Implementation on the Intel IXP1200
Network Processor

When �rst programming on the IXP12xx, accomplishing seemingly trivial
tasks such as receiving or transmitting packets has been known to invoke an
all-out engineer's victory dance.

- Johnson and Kunze, "IXP1200 Programming"

As part of this project, we have designed and implemented the ARP management scheme
on the Intel IXP1200 network processor. This serves as a proof of concept of our pro-
posed scheme, as well as to give the student a valuable experience in designing and pro-
gramming embedded applications in an environment where concurrency, robustness, and
performance are of extreme importance. Finally, to understand the cost of running the
scheme, what effects the scheme has on non-ARP traf�c, both under light ARP load and
high ARP load, etc. This process included designing and implementing a standard layer
two switch, and then extending the switch with our ARP management facilities.

6.1 Intel IXP1200

Network processors are a special piece of hardware that enable network service providers
to add, through software, cutting edge services while maintaining a high throughput and
low latency. Further, network processors allow providers to deploy new services more
quickly than if the service was to be implemented in hardware. Intel's Internet eXchange
network Processor (IXP) is a family of such network processors.

The IXP12xx contains a variety of hardware units and co-processors speci�cally tuned
to network programming. Further, the IXP12xx contains a general-purpose core proces-
sor. In the case of the IXP1200, there are six co-processors, so called micro engines, in
addition to a StrongARM core processor. Each of the micro engines supports four hard-
ware threads, i.e. can run up to four threads with zero cost context switches. This is
accomplished by using four sets of registers. Additionally, the IXP1200 contains units to

48 Implementation on the Intel IXP1200 Network Processor

perform common tasks in network service development, such as generating hash values.
Finally, the IXP1200 contains three memory banks, each varying in size and speed.

This specialization allows network service providers to separate responsibilities into self-
contained components, each designed and run on a speci�c part of the platform. For ex-
ample, the most commonly executed fast data path through the network processor might
be implemented using the very fast micro engines, while exceptional slow data path pro-
cessing is performed using the general-purpose core processor. The fast data path could
be further split among the micro engines, thus controlling the resources spent on each
component precisely. This all enables the service provider to develop new services more
ef�ciently and gain higher performance than might be expected with a general-purpose
processor. Coincidentally, this is the approach we have chosen in our design of an ARP
managing switch for the IXP1200 platform (see Appendix A).

6.2 Evaluation

As stated earlier, we have developed an IXP1200 version of our ARP management scheme.
The design is similar to what is described in Chapter 6.1, i.e. a standard link-layer switch
is implemented on �ve micro engines, while the slow data path ARP management scheme
is run in the StrongARM core processor. The design is described in more detail in Ap-
pendix A. In this section we evaluate the ARP-managing, IXP-based network switch, both
analytically and through measurements.

First, let us adopt an analytical approach. When inspecting the design and code we see that
the only place where normal traf�c is affected is in the start of the data path where the path
branches to the bridging unit as part of the fast path on one hand, and the ARP managing
scheme on the other. This is achieved using a single conditional that checks whether the
frame in question is an ARP request frame. From then on, normal traf�c is unaffected
by the presence of the ARP managing scheme. Further, since the ARP managing scheme
is run entirely on the core processor, it is not using up processing resources that would
otherwise be used for fast data path processing. As the core processor uses the same
memory unit as the micro engines, the extra memory copy of the ARP request frame
handle required uses a limited amount of common resources.

All ARP requests, however, suffer a penalty hit by going through the management scheme
on the core processor. While the scheme is not running, this consists of a single extra copy
of the frame handle (from the management scheme to the bridge queue) and updating the
scheme-wide average request rate. Considering that ARP requests are broadcast, and
therefore copied to each transmit queue, a single extra copy is relatively cheap, and more
so as the number of ports grows. The calculations required for rate calculation are rela-
tively expensive, as the core RISC processor does not contain a �oating-point arithmetic
unit. We have developed an approximation of the calculation presented in Chapter 4, that
uses integer multiplication and bit-shifting, making the calculation cheap enough so that
only the memory copy matters.

6.2 Evaluation 49

When the scheme is running, however, the cost is increased by the cost of a hash-map
lookup, rate update for the stream identi�er, and a random number generation. This cost
is small compared to what we gain compared to not managing ARP traf�c.

We have measured all the previously mentioned parts of the data path. The experimental
setup consisted of a machine running a packet generator connected to one of the IXP's
ports, a second machine running a traf�c collector on another port, and traf�c sinks con-
nected to the remaining six ports. Packets were timestamped as they entered the switch
and again when they had been copied to hardware queues on the outgoing ports. Steps
have been taken to correct the measurement results to remove the effects of timestamping
forwarded packets. Packets of various sizes were sent through the switch, enabling us to
estimate the relative costs compared to packet sizes.

To obtain a baseline necessary for comparison and estimating the relative cost of the ARP
management scheme, we measured fast data path forwarding using our switch implemen-
tation. The results for various packet sizes are presented in Figure 6.1. The graph shows
that forwarding cost increases in steps with increasing packet size, where a linear growth
is perhaps expected. This is because the IXP architecture copies 64 byte of packet data
at a time from and to port hardware queues, and more such copy operations are required
for larger packets. The most important measurement for comparison purposes is the cost
of forwarding a minimum sized packet on the fast path, or about 1700 clock cycles on
average.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600

C
os

t (
cl

oc
k

cy
cl

es
)

Packet Size (bytes)

Forwarding cost/packet size

Figure 6.1: The cost of forwarding packets using the fast path increases as a function of their
size.

To obtain an understanding of the cost data path branching incurs on normal traf�c, we
timestamped packets before and after the conditional branching statement. The results
show that branching a single message costs about 70 clock cycles on average. When this
is compared to the costs of forwarding data packets on the fast path, the cost ranges from
4.11% for minimum sized packets, to 0.53% for maximum sized packets.

To measure the extra cost of running the ARP management scheme under normal con-
ditions, i.e. no malicious or miscon�gured software is exposing abnormal behavior, we
measured ARP packets, at exactly the same places in the code as the fast path forwarding
measurements, i.e. before the branch point and after the ARP requests had joined the fast
path. Our measurement show that the extra cost incurred on the ARP requests is about

50 Implementation on the Intel IXP1200 Network Processor

700 clock cycles, or about 41% of fast data path forwarding of minimum size packets. It
should be noted though that ARP requests would receive broadcast treatment on the fast
data path, so that the extra cost of sending ARP requests through the management scheme
is considerably less than 41%. We have determined that of the roughly 1700 cycles that
fast path uses to forward a single minimum size packet, about 740 of those are spent on
transmitting the packet on a single queue. Broadcasting on all but the incoming port on
a eight port switch therefore costs about 5180. The cost of processing a single minimum
sized packet is therefore about 6140 clock cycles. The extra cost associated with the ARP
management scheme compared to that cost is about 11%. This percentage decreases as
the number of ports increases. On a 32 port switch, the extra cost is less than 3%. It may
be argued that the ARP management scheme somewhat reduces the ARP throughput of a
switch, but it is our claim that excessive ARP traf�c is undesirable and the threshold of
the scheme should be con�gured so that the resources used for ARP forwarding are only
a fraction of the switches total ARP forwarding capacity.

Chapter 7

Conclusions

I feel that if a person has problems communicating the very least he can
do is to shut up.

- Tom Lehrer

In this thesis, we set out to investigate the claim that broadcast based protocols imposed
scalability limitations to Ethernet networks. We studied broadcast traf�c on three sizeable
Ethernet networks, in particular traf�c generated by the Address Resolution Protocol. In
summary, we found that under normal conditions ARP did not generate an excessive
amount of network load and is not a scalability concern.

However, the presence of malicious software and external network scans can cause seri-
ous performance problems, and easily render a network non-usable. We have presented a
family of simple, yet very effective schemes to control the amount of ARP traf�c present
in the network. Our schemes ef�ciently isolate anomalous ARP traf�c, while leaving
normal ARP traf�c unaffected, which is a very desirable property. It should also be
noted that thanks to the opportunistic ARP mapping and cache population advised by
the ARP standard, a node generating normal ARP traf�c will be able to instantiate com-
munication unhindered with a host or gateway router generating anomalous ARP request
patterns.

As stated earlier, our schemes are complimentary to other approaches that try to limit
the effects of scanning worms located outside the local-area network, such as black-hole
routers and �rewalls. However, so far as we know, our solution is the only proposed
defense against performance threats of malicious software, once it is inside the local-area
network.

Our family of ARP management schemes contains multiple variants, each requiring dif-
ferent amount of memory and processing resources from the hosting network switch, as
well as varying in its performance in �ltering out anomalous ARP traf�c while leaving
normal traf�c unaffected. Each member of the family of schemes is applicable in different
scenarios, and can be combined in a single network topology to get an optimal balance of
performance vs. cost.

From an implementation point of view, it is important to note that our scheme operates on
the ARP request traf�c only. In switches that adopt a store-and-forward architecture, the

52 Conclusions

frame-type of Ethernet frames can be used to easily ��lter out� ARP requests. For those
that implement a cut-through forwarding strategy, all broadcast traf�c can be �ltered off
the fast-path for further processing. As broadcast traf�c on a LAN is typically used for
control purposes, our scheme should have no impact on the forwarding capabilities of
switches for data traf�c.

Furthermore, we believe the additional state required at a switch to implement the strategy
proposed here is not prohibitively large. On a per host basis, only the time-stamp of the
previous ARP request received from a host is necessary. A small addition to a switch's
forwarding table. For the entire switch, we need only to maintain state regarding the
threshold value (a weighted moving average) for the whole switch and a counter to help
compute a fair share. With a ball-park �gure of approximately $10 per megabyte of
memory, state for several millions of hosts can be accommodated cheaply, as a time-
stamp can be implemented using very few bytes.

A positive side-effect of our proposed scheme is the role it plays in slowing the propa-
gation of viruses by capping their probing rate. Also, the approaches that use per-source
stream identi�ers discourage the use of MAC address masquerading while probing, as it
maintains a record of the number of sources seen to compute a fair ARP rate.

Although this thesis addresses a real potential issue in very large-scale wired Ethernet
networks, it can �nd applications in improving performance of other types of Ethernet-
based networks, e.g. to guarantee a fair forwarding resource consumption in wireless
multi-hop networks.

We believe that our results on the analysis of ARP traf�c can be projected onto other
broadcast based control channel protocols, i.e. that such protocols can in general be de-
signed such that they do not impose scalability limitations on Ethernet networks. Further,
that similar randomized local network-resident approaches can be used to alleviate similar
performance issues caused by these protocols.

Future research on the ARP management schemes includes studying the composition of
multiple scheme types in a single topology, the effect of the α-value on the algorithms
performance, and the application of similar approaches on other similar problems in the
Ethernet domain and in similar networks, e.g. multi-hop WiFi networks. Finally, further
work is need to formally establish that ARP is representative of control channel broadcast
protocols in general, and to generalize the schemes to manage all such protocols.

Bibliography

The 100x100 clean slate project. (2003, March). http://www.100x100network.org/.
100x100 Research Group.

Ármannsson, D., Smith, P., Hjálmtýsson, G., & Mathy, L. (2005, October). Controlling
the effects of anomalous ARP behaviour on ethernet networks. In Conext 2005.
Toulouse, France.

BellSouth Metro Ethernet. (2006, December). http://www.bellsouthlargebusiness.com.
BellSouth.

Carl-Mitchell, S., & Quarterman, J. S. (1987, October). RFC 1027: Using ARP to
implement transparent subnet gateways.

Chen, Z., Gao, L., & Kwiat, K. (2003). Modeling the Spread of Active Worms. In IEEE
Infocom 2003.

Droms, R. (1997, March). RFC 2131: Dynamic Host Con�guration Protocol.

García, R., Duato, J., & Silla, F. (2003). LSOM: A link state protocol over mac addresses
for metropolitan backbones using optical ethernet switches. In Nca (p. 315-321).

Greene, B., & McPherson, D. (n.d.). Sink holes: A Swiss army knife isp security tool.
http://www.arbornetworks.com/downloads/research36/
Sinkhole_Tutorial_June03.pdf.

Heberleid, L. T., Dias, G., Levitt K, B. M., Wood, J., & Wolber, D. (1990). A Network
Security Monitor. In Proceedings of the IEEE Symposium on Research in Privacy.

Hjálmtýsson, G., & Ármannsson, D. (2005, June). CLIP: A CLI Parsing Tool for Parsing
and Analyzing Router Con�guration Files.

IEEE. (2002). IEEE 802.1s Multiple Spanning Trees. http://www.ieee802.org.

Microsoft Windows Update. (n.d.). http://windowsupdate.microsoft.com.

Myers, A., Ng, E., & Zhang, H. (2004, November). Rethinking the Service: Scaling
Ethernet to a Million Nodes. In ACM SIGCOMM HotNets 2004. San Diego, CA,
USA.

Perlman, R. J. (2004). Rbridges: Transparent Routing. In Infocom.

54 Bibliography

Plummer, D. C. (1982, November). RFC 826: Ethernet Address Resolution Protocol: Or
converting network protocol addresses to 48.bit Ethernet address for transmission
on Ethernet hardware. http://www.ietf.org.

Roesch, M. (1999, November). Snort: Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th conference on system administration.

Sharma, S., Gopalan, K., Nanda, S., & Chiueh, T. (2004, March). Viking: A Multi-
Spanningtree Ethernet Architecture for Metropolitan Area and Cluster Networks.
In Ieee infocom 2004. Hong Kong, China.

Symantec. (n.d.). W32.Blaster Worm. http://securityresponse.symantec.com/avcenter/
venc/data/w32.blaster.worm.html.

Twycross, J., & Williamson, M. (2003). Implementing and testing a virus throttle.

Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003, October). A Taxonomy
of Computer Worms. In In the �rst ACM Workshop on Rapid Malcode (WORM).
Washington DC, USA.

Williamson, M. (2002). Throttling viruses: Restricting propagation to defeat malicious
mobile code.

Yipes. (2006, September). http://www.yipes.com. Yipes Enterprise Services, Inc.

Zec, M., Mikuc, M., & Zagar, M. (2002). Estimating the Impact of Interrupts Coalescing
Delays on Steady State TCP Throughput. In Proceedings of the 10th softcom 2002.

Appendix A

Design of a ARP Managing Switch for
the IXP Network Processor

The ARP managing link-layer switch has been implemented using the Intel IXP1200
network processor platform. As described in Chapter 6.1, the platform contains six micro
engines, each capable of running four hardware threads, and a general-purpose core RISC
processor. Our design runs the fast data path forwarding, i.e. the normal operations of a
link-layer switch, on the micro engines, while running the ARP management code on the
core processor. An overview of the design is given in Figure A.1.

Communication between any two of the micro engines, and between a micro engine and
the core processor, go through shared memory. In addition, signals are used for synchro-
nization. Each of the micro engine threads can send and receive signals. The core can
signal the micro engine threads, but is unable to receive such signals.

Two micro engines run code that receive frames from the hardware ports. The use of
the eight hardware threads of the two micro engines allow us hide latencies associated
with IO operations, such as memory access, i.e. while one thread waits for the mem-
ory unit to signal the completion of an IO operation, another thread can run, maximizing
processing power utilization. The receive-engines copy incoming frames from the port
hardware queue into SDRAM memory, which is the largest, and slowest, memory bank
on the platform. A handle of the frame is then stored in one of two queues in SRAM
memory. ARP request handles are stored in the ARP queue, serviced by the ARP man-
agement code running on the StrongARM, while other frame handles are stored in the
bridge queue.

A bridge micro engine services the bridge queue. It dequeues frame handles from the
queue, performs address learning and looks up the outgoing port for the destination MAC
address speci�ed in the frame in a hash-table stored in SRAM memory. Address learning
consists of adding new entries to that table as new source MAC addresses are discov-
ered. Following the lookup, the bridge engine enqueues the frame handle in one of eight
transmit queues corresponding to the switches ports. The transmit queues also reside in
SRAM memory. If the destination MAC address is not contained in the hash-table, the
frame handle in enqueued in each of the transmit queues, i.e. the frame is broadcast on the

56 Appendix A: Design

Transmitters Each transmit thread is assign
ed a particular transmit queue, corresponding to an output por
t. Threads poll queues, dequeue

handles, and copy frames from
 SDRAM to hardware output queueus.

Bridging Unit Dequeues handles from bridge queue; performs address-to-port learning; looks up output port; if found, place handle in corresponding transmit queue, else place in all transmit queues except the incoming port queue.Receivers Poll ports for frames; copy fram
e

to SDRAM; if ARP place handl
e

in ARP queue, else place hand
le in bridge queue.01

23
4

ARP Queue
Bridge Queue

Transmit Queue 1Transmit Queue 0 Transmit Queue 7Transmit Queue 6Transmit Queue 5Transmit Queue 4 Transmit Queue 2 Transmit Queue 3
Not ARPARP Management Scheme

Drop 0
7654321

Figure A.1: Overview of the switch design.

57

Ethernet network. The same is done for frames containing the Ethernet broadcast address
in the destination address �eld.

Of the bridge engines four hardwaare threads, one acts as a supervisor, i.e. it dequeues
handles from the bridge queue and delegates the work of performing the actual bridging
to one of the four worker threads. This minimizes the required synchronization when
dequeuing from the bridge queue, as there is no contention between threads.

Two micro engines service the transmit engines. Each of the eight hardware threads is
responsible for one of the transmit queues. The threads dequeue frame handles from the
queues and copy the frame referenced by the each handle to port corresponding to the
queue.

The ARP management scheme is implemented as a user-space process on a Linux op-
erating system running on the StrongARM processor. The process creates an instance
of a ARP management scheme class using a ARP scheme factory. The type of scheme
is determined by a command line option. The process initialized the scheme using pa-
rameters from the command line, such as the scheme wide threshold and the alpha value
used in average rate calculation. After initialization, normal operation starts. The process
polls the ARP queue, dequeues the ARP request frame handles enqueued by the receive-
engines, updates the scheme's average rate, determines if the rate breaches the prede�ned
threshold, and is so, makes the request subject to probabilistic dropping. If the random
coin-�ip determines that the request should be forwarded, or if the scheme is not engages
because the average rate is suf�ciently low, the process enqueues the request's frame han-
dle in the bridge queue. At that point, the slow path merges with the fast data path. If
the ARP management scheme determines that the request should not be forwarded, the
process frees the memory buffer occupied by the ARP request.

Department of Computer Science

Reykjavík University

Ofanleiti 2, IS-103 Reykjavík, Iceland

Tel: +354 599 6200

Fax: +354 599 6201

http://www.ru.is

