
M.Sc. Thesis

Reykjavík University - Department of Computer Science

Supervisor:
Yngvi Björnsson

Associate Professor

Sverrir Sigmundarson
Master of Science

June 2006

Backtracking and Value Back-Propagation
in Real-Time Search

BACKTRACKING AND VALUE BACK-PROPAGATION
IN REAL-TIME SEARCH

by

Sverrir Sigmundarson

Thesis submitted to the Department of Computer Science at Reykjavík
University in partial fulfillment of the requirements for the degree of

Master of Science

June 2006

Thesis Committee:

Dr. Yngvi Björnsson, Supervisor
Associate Professor, Reykjavik University, Iceland

Dr. Vadim Bulitko
Assistant Professor, University of Alberta, Canada

Dr. Anna Ingólfsdóttir
Associate Professor, Reykjavik University, Iceland

Copyright
Sverrir Sigmundarson

June 2006

Dr. Yngvi Björnsson, Supervisor
Associate Professor, Reykjavik University,
Iceland

Dr. Vadim Bulitko
Assistant Professor, University of Alberta,
Canada

Dr. Anna Ingólfsdóttir
Associate Professor, Reykjavik University,
Iceland

Date

The undersigned hereby certify that they recommend to the Department of
Computer Science at Reykjavík University for acceptance this thesis entitled
Backtracking and Value Back-Propagation in Real-Time Search submit-
ted by Sverrir Sigmundarson in partial fulfillment of the requirements for the
degree of Master of Science.

Sverrir Sigmundarson
Master of Science

Date

The undersigned hereby grants permission to the Reykjavík University
Library to reproduce single copies of this thesis entitled Backtracking and
Value Back-Propagation in Real-Time Search and to lend or sell such
copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatsoever without the author’s prior written
permission.

Abstract

Learning real-time search allows intelligent agents to improve their performance by learn-
ing from experience. By interleaving their planning and execution steps they can, in con-
stant time, decide on which action to take from their current state based on limited or
incomplete information. This thesis focuses primarily on real-time algorithms that con-
verge to optimal solutions through repeated trials. This work concentrates on two things,
firstly it provides an extensive evaluation of established real-time algorithms that seek op-
timal solutions. While validating earlier research, this evaluation sheds new light on cer-
tain behavioral aspects of the algorithms and summarizes their most important properties.
Secondly, the thesis examines in detail two types of real-time search enhancements, back-
tracking and value back-propagation. Based on this analysis, these two enhancements
are re-formulated and avenues for their integration into the original LRTA* algorithm
are presented. The new search enhancements are shown to improve significantly upon
other real-time algorithms and provide a better combination of value back-propagating
and backtracking than previous backtracking algorithms.

Útdráttur

Rauntíma lærdómsaðferðir gera greindum forritum kleift að bæta afköst sín með því
að læra af reynslu. Með samtvinnaðri áætlunargerð og framkvæmd þá geta forritin,
innan skildgreinds tíma, ákvarðað áætlaða bestu ákvörðun frá núverandi stöðu. Þessa
ákvörðun geta þau tekið þó einungis liggi fyrir takmarkaðar eða ófullkomnar upplýsin-
gar um umhverfi og stöðu þeirra. Í þessari ritgerð er sjónum eingöngu beint að rauntíma
aðferðum sem tryggja að bestu lausnir á vandamálum finnist með ítruðum prófunaraðfer-
ðum. Efni ritgerðarinnar skiptist í tvennt, annars vegar er kynnt víðtæk samanburðar-
rannsókn á rauntímaaðferðum sem tryggja bestu lausnir. Um leið og niðurstöður þessarar
samanburðarrannsóknar staðfestir niðurstöður fyrri rannsakenda, þá varpar rannsóknin
nýju ljósi á ákveðin hegðunarmynstur aðferðanna og gefur yfirlit yfir afköst og helstu
eiginleika þeirra. Hins vegar skoðum við í ritgerðinni ítarlega tvær tegundir betrumbóta á
rauntíma aðferðum, þ.e. rakningu og upplýsingaútbreiðslu. Við umbreytum framsetningu
þeirra lítillega og kynnum hvernig mögulegt er að nýta breyttu aðferðirnar sem hluta af
LRTA* reikniritinu. Við birtum niðurstöður sem sýna að betrumbætur okkar auka um-
talsvert afköst eldri rauntímaleitaraðferða ásamt því að sameina betur en áður hefur verið
mögulegt, notkun rakningar og upplýsingaútbreiðslu í rauntímaleitum.

To my parents

Acknowledgements

First and foremost, I would like to address special thanks to my advisor, Dr. Yngvi
Björnsson for his patient guidance, insightful comments and unending support during
my research work.

My deepest love and affection go to my fiancée Rannveig. She has been an unfailing
source of strength during my university studies.

I am also very grateful for my family’s encouragement and invaluable moral support dur-
ing my academic work.

I thank Gunnar Kristjánsson for his help during coding and debugging of the testing soft-
ware and throughout the experiments sessions.

I am also deeply grateful to all the people that spent countless hours helping me proofread
this text and for their comments and advice. You were more helpful than you may think.

Finally, I would like to thank the members of my thesis committee for reading this thesis
and providing me with valuable suggestions and comments.

This research was supported by grants from The Icelandic Centre for Research (RANNÍS)
and by a Marie Curie Fellowship of the European Community programme Structuring the
ERA under contract number MIRG-CT-2005-017284.

Publications

A part of the material in this thesis was published as “Value Back-Propagation versus
Backtracking in Real-Time Heuristic Search” to be presented at the twenty-first national
conference on Artificial Intelligence (AAAI06), in the workshop Learning for Search to
be held July 16, 2006 in Boston, Massachusetts, USA.

Contents

1 Introduction 1

2 Real-Time Search Algorithms 4
2.1 Principles of Real-Time Search . 4
2.2 Real-Time A* . 6
2.3 Learning Real-Time A* . 7
2.4 Bounded LRTA* . 8
2.5 FALCONS . 10
2.6 Search and Learning Algorithm . 11
2.7 Other methods . 13
2.8 Combining Extensions . 14

3 Comparison of Algorithms 16
3.1 Experimental Setup . 16
3.2 Travel Cost . 17

3.2.1 Total Travel Cost . 18
3.2.2 First-Trial Travel Cost . 18
3.2.3 Pathology of SLA*T . 19

3.3 Learning Quality . 20
3.4 Convergence Speed . 23
3.5 Search Stability . 25
3.6 Memory Usage . 27

3.6.1 Impact of Auxiliary Heuristic Functions 28
3.7 Summary . 29

4 Back-Propagation 31
4.1 Introduction . 31
4.2 Value Back-Propagation . 32
4.3 Experimental Results . 34
4.4 Bounding the Back-Propagation . 36
4.5 Summary . 37

5 Backtracking 39
5.1 Introduction . 39
5.2 Enhanced Backtracking . 40
5.3 Experimental Results . 42

CONTENTS ix

5.4 Bounding EB-LRTA*’s Back-Propagation 45
5.5 Summary . 46

6 Conclusions 48
6.1 Conclusion . 48
6.2 Future Work . 49

Bibliography 51

A Test Domains 54
A.1 Sliding-Tile Puzzle . 54
A.2 Random Gridworld . 56
A.3 Baldur’s Gate Game-Maps . 56

B Experimental Data 58
B.1 Learning Quality . 58

C A Maze Problem For Your Enjoyment 61

List of Figures

2.1 RTA* update rule . 6
2.2 LRTA* update rule . 7

3.1 Effects of solution path loop elimination in the 8-puzzle. 21
3.2 FALCONS, δLRTA*(δ = 2), LRTA* and SLA*T(100) learning performance on

the 8-puzzle domain. 22
3.3 Travel cost until convergence in the Baldur’s Gate domain. 24
3.4 The memory usage of δLRTA* in the 8-puzzle domain 29

4.1 Back-propagation stopping criteria example 33

5.1 Trade-off when selecting a backtrack state 41
5.2 EB-LRTA* learning performance in the 8-puzzle 43
5.3 EB-LRTA* learning performance in the 15-puzzle 44

A.1 Examples of start and goal positions in the sliding-tile puzzle 55
A.2 Examples of both Gridworld and Baldur’s Gate pathfinding maps 57

B.1 FALCONS, SLA*, SLA*T and LRTA*’s learning quality in the test domains 59
B.2 Bounded LRTA*’s learning quality in the test domains 60

List of Tables

3.1 Average Travel Cost to Convergence . 18
3.2 First-Trial Travel Cost . 19
3.3 Backtracking Statistics . 20
3.4 First-Trial Solution Length . 21
3.5 Average Trials Until Convergence . 23
3.6 The Travel Cost Stability During Convergence 26
3.7 Average Total Memory Usage . 27
3.8 Average First-Trial Memory Usage . 28
3.9 Average Memory Overhead of Auxiliary Heuristic Functions 28

4.1 Results from the pathfinding domains 35
4.2 Results from the sliding-tile domains . 35
4.3 Bounding the back-propgation phase of FBP-LRTA* and PBP-LRTA*. . . 36
4.4 Total Time to Convergence . 37

5.1 Results from the sliding-tile domains . 42
5.2 Results from the pathfinding domains 44
5.3 Stability of Travel Cost During Convergence for EB-LRTA* 45
5.4 Bounding the back-propgation phase of EB-LRTA*. 46

List of Algorithms

1 Real-Time A* . 6
2 LRTA* . 8
3 Bounded LRTA* . 9
4 FALCONS . 11
5 SLA* . 12
6 SLA*T . 12
7 PBP-LRTA* . 33
8 EB-LRTA* . 40

Chapter 1

Introduction

Imagine yourself stranded in an unfamiliar maze, left with only a compass, a blank piece
of paper, pencil and a vague idea that the maze has an exit somewhere to the east. What
do you do? More importantly, how can you exit the maze?

A variety of pathfinding algorithms exist, such as A* (P. E. Hart, Nilsson, & Raphael,
1968), depth-first search or breadth-first search, that can help you find a path through the
maze you have so unfortunately got yourself into. However soon you would discover
that running an algorithm such as A* is more problematic than simply keeping track of
the utility of visited areas. A* belongs to a class of algorithms referred to as off-line,
indicating their dependency on a completion of an exhaustive planning phase prior to
instructing you on what your first action should be. Off-line algorithms are specially
designed to find solutions in environments that are fully known beforehand. Many of
them, for example A*, are guaranteed to find the best possible solution to the problem.
Therefore these algorithms are not only interested in finding a solution to their problem
but also in finding the best solution. This perfectionism unfortunately contributes to one
of their major weakness; an exponential running time (Dechter & Pearl, 1985). This
severe resource restriction hinders these algorithms in solving very large problems, and
problems that have restricted running time (e.g. computer games). Since the maze you
are stuck in is unfamiliar to you and your main goal is to find an exit as soon as possible
you are pretty much stranded.

But do not fret. These types of problems are exactly what real-time algorithms aim
to solve. Namely problems where you have little or no initial knowledge of your sur-
roundings and a limited set of available resources. In Richard Korf’s pioneering work
on real-time search he observed these limitations and the obvious disadvantages of cur-
rent single-agent search algorithms (Korf, 1990). He brought attention to the extensive
research previously done in the area of two-player heuristic search, which contrary to
their off-line single-agent counterparts, operate almost exclusively in extremely large or
resource restricted environments. These algorithms include methods such as the clas-
sic minimax search (Shannon, 1950) and its αβ-minimax extension (T. Hart & Edwards,
1963). The most interesting real-time aspect of two-player algorithms is that they must be
ready to take actions based on a limited lookahead search within a certain resource limit.
Consequently, two-player search research is mainly focused on finding the currently best

2 Introduction

action available in each state given the search’s limiting factors. Two-player search meth-
ods make this possible by interleaving their planning and execution phase, enabling them
to commit to actions based on only initial or learned assumptions rather than complete
information of their end result.

Korf proposed two new types of algorithms to deal with real-time problems, Real-time
A* (RTA*) and Learning-RTA* (LRTA*), both of which are based on principles adopted
from two-player search. These algorithms (and their descendants) can be classified as
online as they interleave their planning and execution phase based on available resources.
Contrary to their off-line counterparts, they are intended to operate in environments that,
as an example, have a limited search horizon, bounded resources, or must commit to
actions in constant time. These types of online algorithms are a special case of Agent-
Centered Search (Koenig, 2001). Offline algorithms, such as A*, are not bound by the
same restrictions as agent-centered searches and can evaluate states in a non-continuous
fashion during planning. While the intertwining of the planning and execution phase
restricts the planning phase of online algorithms to the part of the problem domain that
surrounds the current state of the agent, this limited lookahead search however enables
them to commit to actions which can be immediately executed from the agents current
state, although a complete path from the start state to the goal state may still be unknown.
As a result the fundamental design principles of online algorithms (hereon after referred
to as real-time) are vastly different from those of A* and other off-line algorithms.

The problem solving approach of real-time algorithms is in many ways similar to hu-
mans. We humans mainly rely on experimental problem solving, approaching the final
solution through a series of small experiments. At the conclusion of each experiment we
perform an evaluation to determine whether or not the experiment brought us closer to
solving the larger problem. This is basically what real-time algorithms do, they perform
a limited planning phase to decide on what experiment (action) they should perform next,
execute it and finally evaluate their resulting state. This approach of discovery through
experimentation allows real-time algorithms to operate in environments that are unknown
beforehand. This technique also enables real-time algorithms to find solutions to very
large and complex problems where finding optimal solutions is intractable due to con-
straints or limitations in resource usage.

The motivations for this thesis are mainly the need for an unified comparison study of the
current real-time algorithms and their performance in a variety of testbeds. In the light of
recent research, backtracking and value back-propagation in real-time search can be re-
formulated and presented in a slightly modified form. Finally to facilitate the discovery
of new search extensions and further development of current ones, a better understand-
ing is needed of how certain domain properties influence the performance of real-time
algorithms.

The main contributions of this thesis are a detailed dissection of backtracking and its
accompanying value back-propagation phase in real-time search. Followed by a formu-
lation of a simple real-time back-propagation extension. Also the introduction of a new
real-time algorithm using this new value back-propagation extension augmented with an
optional backtracking phase. This algorithm utilizes information gained from its back-
propagation phase to make more intelligent backtracking decisions. An extensive evalua-

3

tion of current real-time algorithms is also presented which focuses primarily on real-time
algorithms that find optimal solutions. The main contribution of this evaluation is that it
uses the same implementation of test domains and identical problem instances to provide
a fair basis for comparison.

This thesis is structured as follows; Chapter 2 details the main principles of real-time algo-
rithms and presents a brief overview of previous research in the field of real-time search.
Then Chapter 3 presents an evaluation of several well established real-time methods. A
detailed dissection of backtracking and value back-propagation techniques in real-time
algorithms are found in Chapter 4. In Chapter 5 the new back-propagating and backtrack-
ing real-time algorithm is introduced. Finally Capter 6 concludes the work presented here
with a summary of findings and means of future work.

Chapter 2

Real-Time Search Algorithms

The purpose of this chapter is to introduce the design concepts of real-time search and
familiarize the reader with the body of work done in real-time research to this day. Section
2.1 begins by outlining the four real-time principles mentioned in the previous chapter and
how they apply to real-time search. The chapter then details the seminal work done by
Korf, while using the opportunity to introduce the notation used throughout this thesis. It
then goes on, offering an overview of the main enhancements made to real-time search
methods since Korf’s initial work. Finally, Section 2.8 offers a brief description of the
work done in combining aspects of prior research to form new methods.

2.1 Principles of Real-Time Search

What makes the design principles of real-time algorithms different from their off-line
counterparts is the fact that real-time algorithms must make an informed and deliberate
decision in constant time. These constant time constraints may include a limited search
time, restricted number of expanded states, bounded number of CPU cycles or frames-per-
second, or in the case of our maze predicament the endurance, thirst, hunger or patience
of its captive. Consequently real-time algorithms should strife to reduce unnecessary
resource consumption while those resources that they do use they should use as efficiently
as possible. This means that for any additional memory allocated, new area explored or
CPU time reserved the search must draw as much learning as possible from the associated
expenses. This results in a slightly different set of principles for real-time algorithms.
These principles are as follows (listed in no particular order):

• Economical propagation of new information. Since propagation of learned infor-
mation is in most cases expensive (requires revisiting or re-expansion of previously
visited areas) it should be limited only to states where new information is likely
to provide the search with the most improvements. Consequently timing the oc-
currence of learning is crucial. Intuitively learning should only occur where the
least amount of effort is wasted or when the newly learned information potentially
improves the search performance.

2.1 Principles of Real-Time Search 5

• Minimizing delays and maximizing responsiveness. While the search should try
to optimize its overall efficiency, it should also strife to minimize its move delay.
Move delay is the amount of planning time the agent needs before it is able to
commit to an action from its current state. The delay of each trial1 as well as the
delay of the first-trial are also important metrics. The trial delay is the amount of
traveling the agent does before it is able to return a complete solution from its initial
start position to a goal position (also termed solution delay). The first-trial delay is
the time span from when the search started searching with only initial knowledge
of the environment until it first returns a complete solution path from the start to the
goal. In many real-time environments shorter solution delays are preferable than
long delays, although delaying longer may result in solutions closer to optimal.

• Iterative solution refinement process. Real-time algorithms should also be con-
sidered any-time algorithms. As such they should balance their execution time to
present a solution to the user as quickly as possible. Any remaining time should
then be utilized to improve upon that solution. These improvements should be per-
formed in short iterations each improving its prior solution. As a result all real-time
algorithms should distribute their costs equally or as efficiently as possible across
their consecutive trials.

• Stable Convergence Process. As learning progresses the search must explore new
areas. The increased travel cost that results from such exploration should be kept
to a minimum between trials. Consequently the algorithm should perform explo-
ration in controlled steps and aim to detect and terminate extensive and unnecessary
exploration as soon as possible (Shimbo & Ishida, 2003).

Any real-time algorithm should satisfy as many of these four basic principles as possi-
ble. To this day balancing these real-time principles has been the main focus of real-time
research. Identifying how environmental properties interact with individual search en-
hancements is crucial to discovering how to best balance these principles. In the context
of the prior maze example, this equals best to the interest that its captive would have in
knowing exactly how successful drawing a map is compared to continually retracing steps
to chalking out directional arrows.

Before presenting the algorithms, a formal definition of the search problem is needed.
A learning real-time search problem is defined as a 5-tuple: (S, A, c, s0, Sg) where S is a
finite set of states; A is a finite set of actions; c : S×A→ (0,∞) describes the transitional
cost of moving from one state to the next, with c(s, a) being the cost of taking action a in
state s; s0 is the initial start state and Sg is the set of goal sets where Sg ⊂ S. Additionally
every action is reversible in every state and there exists a goal state in Sg that is reachable
from the initial start state s0.

Now the rest of this chapter will concentrate on describing the main body of research done
in real-time search today.

1 A trial is defined as a single run of the algorithm from its initial start state s0 to a goal.

6 Real-Time Search Algorithms

2.2 Real-Time A* (RTA*)

Real-Time A* (RTA*) introduced by Korf operates using a basic greedy successor selec-
tion policy (Korf, 1990). The policy is simple; in each state, select an action leading to a
neighboring state that has the lowest estimated cost of solving the problem plus the cost
of traversing to that state. Pseudo-code of RTA* is shown as Algorithm 1; s represents
the state the algorithm is currently exploring, succ(s) retrieves all the successor states of
state s, and c(s1, s2) is the transitional cost of moving from state s1 to state s2. At the
beginning s is initialized to the start state s0, and the algorithm then iterates until a goal
state is reached (Sg is the set of all goal states). The variable solutionpath keeps the so-
lution found during the trial, which in RTA* case is the same path as traveled (see further
discussion in Section 3.3). The algorithm breaks ties arbitrarily.

Algorithm 1 Real-Time A*
1: s← initial start state s0

2: solutionpath←< empty >
3: while s /∈ Sg do
4: smin ← argmins′∈succ(s)(c(s, s

′) + h(s′))
5: update h(s)← secondmins′∈succ(s)(c(s, s

′) + h(s′))
6: push s onto solutionpath
7: s← smin

8: end while

For each state the search visits it performs a limited lookahead search of its successor
states (line 4) and uses this information to decide which state it traverses to next. To find a
path RTA* only requires that the heuristic values be admissible, a bidirectional state-space
and there exists a traversable path from the start state to the goal state. However since the
heuristic values may underestimate the travel cost to the goal the search must update
their values when a more accurate estimate becomes available (line 5). Each time RTA*
decides on an action to take, it updates the h-value of its current state with the second
lowest successor h-value. Figure 2.1 shows an example of RTA*’s update rule.

S0
h=3

11

S2
h=3

S1
h=1

h=4

S3
h=5

1

Figure 2.1: While RTA* is traversing the search space it constantly updates its knowledge by
recording updated heuristic values for states it visits. Due to RTA*’s update policy it must update
the heuristic value of its current state with that of its second best successor to avoid entering and
getting stuck in an infinite loop.

2.3 Learning Real-Time A* 7

By updating the heuristic values this way, RTA* guarantees that it does not enter infinite
loops and that it makes, in each state, locally optimal decisions. That is RTA* will not
select a successor that it has already traversed to unless the second lowest heuristic value
of that node is the current lowest cost. Although RTA* makes optimal choices based on
the information immediately available to it, it is not guaranteed to make globally optimal
decisions (therefore it cannot guarantee finding an optimal solution).

Another problem with RTA* is that when using this heuristic update scheme, RTA* does
not preserve the admissibility of its heuristic values, thus making it impossible to reuse
the learned values should the same problem be re-encountered at a later time.

2.3 Learning Real-Time A* (LRTA*)

Korf introduced, in addition to RTA*, an algorithm which he termed Learning Real-Time
A*, LRTA* for short (Korf, 1990). LRTA* extends the RTA* algorithm onto an iterative
solution approach, where the agent is allowed to run repeatedly on the same problem
instance using the same start-goal state pair. The agent is run in multiple consecutive
trials continually storing and using updated heuristic values from previous trials. Using
this technique combined with admissible heuristic values, LRTA* hopes to eventually
obtain a globally optimal path through the search space, termed convergence.

The LRTA* algorithm, shown as Algorithm 2, is almost identical to that of RTA* apart
from its heuristic update function. Figure 2.2 illustrates the update rule for the LRTA*
algorithm. As previously mentioned, RTA* updates its heuristic in such a way that after it
has finished running, the heuristic values are not guaranteed to retain their admissibility.
Therefore RTA* can not guarantee convergence to optimal solutions through repeated
trials. However the LRTA* algorithm guarantees convergence through repeated runs on
the same problem, therefore its update function must guarantee that the heuristic stays
admissible between trials. Consequently it updates the heuristic value of the current state
using the heuristic value of its minimum successor state plus the traversal cost (lines 4 to
7). Korf proved that this update scheme retains the admissibility of the h-values while still

S0
h=2

S2
h=3

S1
h=2

h=3

S3
h=5

Figure 2.2: LRTA* updates the heuristic value of its current state using the heuristic value of its
minimum successor. Using this policy LRTA* retains the admissibility of its heuristic values and
is therefore able to re-use them in future trials. This allows LRTA* to eventually make globally
optimal decisions, it however hinders it from making locally optimal ones.

8 Real-Time Search Algorithms

enabling them eventually to converge to their exact values (h∗). After convergence has
been achieved the search is guaranteed to traverse the optimal path (Korf, 1990).2

Algorithm 2 LRTA*
1: s← initial start state s0

2: solutionpath←< empty >
3: while s /∈ Sg do
4: h′(s)← mins′∈succ(s)(c(s, s

′) + h(s′))
5: if h′(s) > h(s) then
6: update h(s)← h′(s)
7: end if
8: push s onto solutionpath
9: s← argmins′∈succ(s)(c(s, s

′) + h(s′))
10: end while

Apart from LRTA*’s constant move-delay, its guaranteed solution optimality is one of its
strongest attributes. However this attribute directly contributes to one of LRTA*’s major
flaws. Due to its optimality seeking nature, LRTA* is destined to suffer similar problems
as its optimal off-line counterparts, namely their excessive running times. The core of the
problem being that while the search is seeking the optimal path it must first visit all states
that have estimated cost lower or equal to the cost of the optimal path. Therefore LRTA* is
prone to excessive wandering within the search space during its convergence process, re-
sulting in considerable fluctuations in travel cost between trials (Ishida & Shimbo, 1996).
Another more subtle flaw in LRTA*’s convergence process is that after the search has
converged, finding an optimal solution, it has in-fact found all the optimal paths (Ishida
& Shimbo, 1996). Computing all optimal solutions is obviously a wasted effort since
returning only the first optimal solution suffices. This is however impossible to prevent
when guaranteeing optimality.

Due to these limitations inherent to the original LRTA* algorithm, a wide variety of
LRTA*-based algorithms have been proposed that provide solutions to these flaws while
still retaining some or all of its better qualities.

2.4 Bounded LRTA* (δLRTA*)

Though LRTA* maintains estimated lower bounds on the solution cost in the form of a
heuristic function it is not informed of any upper-bounds to the current solution cost. This
may cause the search to wander and explore states that do not belong to the optimal solu-
tion path, thus causing the excessive fluctuations in the execution cost observed between
trials in LRTA*.

Shimbo and Ishida proposed a bounded version of the LRTA* algorithm, which they
termed δLRTA*, to address this problem (Ishida & Shimbo, 1996). The pseudo-code for
δLRTA* is shown as Algorithm 3. The idea is that if an upper-bound can be posed on the

2 LRTA* is said to have converged when it updates no heuristic values during a trial.

2.4 Bounded LRTA* 9

solution cost then the search could narrow its search window even further, enabling it to
eliminate states that exceed the bound. δLRTA* achieves this by maintaining a second
heuristic function for the upper-bound of each state in the search space (termed hu(s)).
The δ factor controls how wide these upper-bounds on exploration are allowed to be;
higher the values of δ the wider the bounds.3

Algorithm 3 Bounded LRTA*
1: s← initial start state s0

2: solutionpath←< empty >
3: Θ← (1 + δ) ∗ hu(s0)
4: while s /∈ Sg do
5: for all s′ ∈ succ(s) do
6: hu(s

′)← min[hu(s
′), (hu(s) + c(s′, s))]

7: end for
8: update h(s)← max[h(s), mins′∈succ(s)(c(s, s

′) + h(s′))]
9: update hu(s)← min[hu(s), mins′∈succ(s)(c(s, s

′) + hu(s
′))]

10: push s onto solutionpath
11: s← argmin{s′∈succ(s)∧hu(s′)≤Θ}(c(s, s

′) + h(s′))
12: end while
13: for all states s′ in a LIFO order from solutionpath do
14: update hu(s

′)← min(hu(s
′), hu(sg))

15: end for

The behavior of δLRTA* is similar to that of LRTA*. However when it selects the lowest
estimated successor it does not do so from the set of all successors of state s. Instead it
calculates a safe list (Safe(s)) containing all successor states that fall within the current
state’s estimated upper-bound. The Safe(s) set consists of all successor states of state s,
where each successor state s′ satisfies the currently calculated upper-bound, denoted by
Θ, or hu(s

′) ≤ Θ, where Θ = (1 + δ)hu(s0). After computing this set of safe successors
the search selects the minimum successor from it, which it then moves to. To ensure these
upper-bounds reflect correct information from the previous trial, each trial must end with
the back-propagation of new upper-bound values through all the states on the solution
path (lines 5 to 7).

Besides the added overhead of storing and maintaining the upper-bound heuristic func-
tion, obtaining the initial upper-bound values is far from trivial. Since hu(s) ≥ h∗(s) must
be kept, great care must be taken when providing and maintaining these limits. A simple
solution is to initially assign the upper-bound values of all states to a predefined infinity
value (i.e., a very large number). While this is a relatively cost-free implementation it
results in the first trial of δLRTA* being identical to that of LRTA*.

δLRTA* maintains its upper-bound values in two ways:

1. At the end of each trial new upper-bound values are back-propagated from the
goal state back to the start state, updating all states that lie on the current trial
solutionpath (lines 13 to 15).

3 δLRTA* can be viewed as a special case of the LRTA* algorithm, since for a fixed value of δ = ∞ it
behaves just as LRTA*.

10 Real-Time Search Algorithms

2. Before the successor selection policy is invoked, upper-bound values of the current
state are propagated towards the successors of the current state (lines 5 to 7).

The latter propagation is done to ensure the explorative nature of the algorithm after the
upper-bound values become finite. As pointed out by the algorithm’s authors, the lat-
ter update is not valid in directed domains thus limiting the current implementation of
δLRTA* to bidirectional domains.

When Shimbo and Ishida later proved the completeness of the δLRTA* algorithm (Shimbo
& Ishida, 2003) they proved that the δLRTA* algorithm converges to an optimal path only
if δ ≥ 2, whereas all δ values lower than 2 converge to suboptimal paths. This could be ex-
plained by the fact that values lower than 2 reduce the amount of exploration that δLRTA*
is allowed to perform to such an extent that the search can never explore other paths than
those explored during its early trials.

2.5 FALCONS

Furcy and Koenig argued, contrary to prior remarks made by Shimbo and Ishida (Shimbo
& Ishida, 2003), that speeding up convergence could be attained without sacrificing the
optimality of the final solution (Furcy & Koenig, 2000). They introduced a LRTA* variant
they termed FALCONS (FAst Learning and CONverging Search). FALCONS is shown as
Algorithm 4. It employs a different successor selection policy than the traditional greedy
policy of LRTA* (lines 4 and 5). FALCONS alternatively uses the f() cost value function
similar to the traditional A* search, where f(s) = g(s) + h(s) and g(s) is the best known
cost of traveling to the current state s from the initial start state s0. As a result FALCONS
not only tries to minimize the path to the goal from its current state but also seeks to
minimize the distance traveled so far from the start. By this, FALCONS attempts to focus
the search more on states that lie in the vicinity of the optimal path.

Furcy and Koenig showed that FALCONS does indeed converge in fewer trials than
LRTA* and with a slightly lower total travel cost. FALCONS first-trial travel cost is
however significantly higher than that of LRTA*. The authors explain that this could
be a result of FALCONS requiring additional travel cost to correct for the error in its
g-values.

The FALCONS algorithm requires a second heuristic table to store its estimated g() values
(similar to that of δLRTA* discussed in section 2.4). This causes the algorithm to double
its memory requirement over that of traditional LRTA* (this additional memory increase
is evaluated in Section 3.6). The implementation of the algorithm is also more complex
than LRTA*’s since special consideration must be taken to preserve the admissibility of
both heuristic functions when updating (lines 6 to 11 in Algorithm 4).

The authors also note that, although applicable, FALCONS is likely to perform very
poorly in domains with non-uniform state transitional cost and even converge with a
higher travel cost than LRTA*. This is due to the fact that the successor selection rule
f(s) chooses to expand successors even though their transitional cost is very high (when

2.6 Search and Learning Algorithm 11

Algorithm 4 FALCONS
1: s← initial start state s0

2: solutionpath←< empty >
3: while s /∈ Sg do
4: S ′ ← argmins′′∈succ(s)(max[g(s′′) + h(s′′), h(s0)])
5: s′ ← argmins′′∈S′(c(s, s′′) + h(s′′))
6: if s /∈ Sg then

7:
h(s)← max[h(s),

mins′′∈succ(s)(h(s′′) + c(s, s′′)),
maxs′′∈pred(s)(h(s′′)− c(s′′, s))]

8: end if
9: if s 6= s0 then

10:
g(s)← max[g(s),

maxs′′∈succ(s)(g(s′′)− c(s, s′′)),
mins′′∈pred(s)(g(s′′) + c(s′′, s))]

11: end if
12: push s onto solutionpath
13: s← s′

14: end while

their corresponding h-value is very low). Thus theoretically taking a much more expen-
sive route than necessary.

2.6 Search and Learning Algorithm (SLA*)

Shue and Zamani introduced a LRTA* variant which they termed Search and Learning
Algorithm (SLA*) (Shue & Zamani, 1993). SLA* was the first real-time algorithm that
brought the notion of backtracking to the field of real-time search. Backtracking is sim-
ply the act of retracing your steps and reevaluate your previous options based on newly
discovered information. Backtracking has been successfully utilized to a large extent in
the field constraint satisfaction problems (Dechter & Frost, 1998).

The SLA* algorithm, shown as Algorithm 5, is similar to LRTA*. Their difference is
only apparent after a heuristic update occurs in state s (line 6). In that case SLA* does
not move to the minimum successor of state s but rather backtracks immediately to the
state it previously came from (lines 7 and 8). SLA* continues backtracking as long as
it encounters updates to the current state’s heuristic value. There are two reasons for
this backtracking; first to back-propagate newly discovered information (in the form of
updated h-values) as far back as possible and second to offer the search the chance to
re-evaluate its previous actions given new information.

A result of the aggressive nature of SLA*’s backtracking is that it effectively performs
all of its learning during the first trial and immediately converges to an optimal path.
This excessive backtracking results in an extremely high travel cost during the first-trial.
Although the overall travel cost of the algorithm is sometimes faster than LRTA*, this

12 Real-Time Search Algorithms

Algorithm 5 SLA*
1: s← initial start state s0

2: solutionpath←< empty >
3: while s /∈ Sg do
4: h′(s)← mins′∈succ(s)(c(s, s

′) + h(s′))
5: if h′(s) > h(s) then
6: update h(s)← h′(s)
7: s← top state of solutionpath
8: pop the top most state off solutionpath
9: else

10: push s onto solutionpath
11: s← argmins′∈succ(s)(c(s, s

′) + h(s′))
12: end if
13: end while

poor first-trial performance is considered SLA* most serious flaw; largely since most
real-time environments would prefer a suboptimal solution returned as early as possible
rather than an optimal solution that takes an excessively long time to converge to. This is
especially relevant in vast state spaces where optimal solutions are unattainable.

SLA*T (Shue & Zamani, 1999), shown as Algorithm 6, addresses the single-trial conver-
gence problem of SLA* by introducing a user-definable learning threshold. The threshold,
T , is a cumulative parameter which controls the amount of heuristic updates that occur
before backtracking is allowed. That is, SLA*T only backtracks after it has overflowed
its T parameter.

Algorithm 6 SLA*T
1: s← initial start state s0

2: solutionpath←< empty >
3: t = 0
4: while s /∈ Sg do
5: h′(s)← mins′∈succ(s)(c(s, s

′) + h(s′))
6: if h′(s) > h(s) then
7: update h(s)← h′(s)
8: t← t + ∆h(s)
9: end if

10: if t ≥ T then
11: t← T
12: s← top state of solutionpath
13: pop the top most state off solutionpath
14: else
15: push s onto solutionpath
16: s← argmins′∈succ(s)(c(s, s

′) + h(s′))
17: end if
18: end while

2.7 Other methods 13

It can be observed that SLA*T with a threshold T =∞ behaves exactly as the LRTA* al-
gorithm with a lookahead of one. With T set to∞ the algorithm never performs the back-
tracking step and thus strictly follows the LRTA* greedy function. However a threshold
value of T = 0 is identical to the SLA* algorithm since the threshold condition is al-
ways true. The search then performs SLA*’s aggressive backtracking policy each time
the heuristic value is updated.

SLA*T suffers from two serious flaws; first, that the most effective value of the T pa-
rameter is highly dependent on the domain and its structure (the length of the solution
path, the error of the heuristic etc.). This makes it necessary to tune the SLA*T algo-
rithm specifically to each problem that it is made to solve. Second, the SLA*T algorithm
does not form a pure hybrid method from both LRTA* and SLA* but instead uses the T
parameter to control which is active at any given time. Therefore at the same time that
SLA*T draws on LRTA* to provide it with its much needed iterative convergence process
it makes itself susceptible to all of LRTA*s flaws. SLA*T consequently suffers from the
combined flaws and limitations of both SLA* and LRTA*.

2.7 Other methods

Several other methods have been proposed for agent navigation in resource bounded en-
vironments. Among them several methods deal with increased planning efficiency by
re-using learned information over a number of consecutive trials. CRTA* and SLRTA*
(Edelkamp & Eckerle, 1997) apply to navigation through unknown domains. CRTA* ex-
tends RTA* such that it can be used iteratively when problem solving (similar to LRTA*).
CRTA* achieves this by back-propagation of correct heuristic information through its en-
tire solution path at the end of each trial, correcting inadmissible heuristic values. As
the authors mention then CRTA*’s update procedure is rather costly since it requires the
agent to physically revisit each state during the update procedure. SLRTA* uses the same
technique but attempts to improve upon CRTA* by delaying the updating until the search
re-encounters a state.

Recently a method termed LRTA*(k) (Hernández & Meseguer, 2005b, 2005a) was pro-
posed; it is closely related to the LCM algorithm (Pemberton & Korf, 1992). LRTA*(k)
improves upon LRTA* by using back-propagation techniques to update already visited
states. In its most simple form when the algorithm discovers under-estimated heuristic
values it starts an update procedure that updates heuristic values of all states in a fixed
radius around the current state. The size of the update radius is limited by the algorithm’s
k parameter. Three variants of LRTA*(k) were proposed, each varying in what and how
states are considered for updating. Koenig proposed a version of LRTA* that uses a lim-
ited A* search in its local search space (LSS) to determine what action should be taken
(Koenig, 2004). It then updates all the states expanded during its limited A* search using
a form of the Dijkstra algorithm, a computationally expensive step. Due to the limited
A* search the algorithm is easily distracted and mislead if given an error prone heuristic.
Koenig’s algorithm is strongly influenced by the early observations of Russell and We-
fald (Russell & Wefald, 1991) that updating of all values in the LSS are more beneficial
than just the updating of the current state. Recently a version of LRTA* that prioritizes

14 Real-Time Search Algorithms

the updating of heuristic values was proposed. When Prioritized-LRTA*, P-LRTA* for
short, (Rayner, Davison, Bulitko, & Lu, 2006) updates the h-value of state s it stores in
a priority queue each of the successors of s along with the ∆h of state s. For each state
expanded the algorithm then systematically updates the states from the priority queue (in
descending order of ∆h) up to a maximum of n states (where n is a user-definable pa-
rameter). A drawback of P-LRTA* is that because its state-update function updates states
in a non-continuous fashion, it consequently assumes knowing successor information of
unexplored states. Additionally, although not addressed by the authors, P-LRTA* with
n =∞ likely performs all its learning during its first trial.

Shimbo and Ishida, in addition to their δLRTA* algorithm, also introduced a weighted
version of the LRTA* algorithm. This version, termed εLRTA*, scales the initial heuristic
by a constant factor ε (where ε > 0), thus trying to reduce the under-estimation error in the
heuristic values. However by scaling the heuristic the search also sacrifices its optimality
attribute. Results showed that by increasing the scaling factor travel cost could be reduced
but at the cost of increased sub-optimality of the solutions.

2.8 Combining Extensions

eFALCONS In a later paper Furcy and Koenig created a hybrid version of their FAL-
CONS called eFALCONS (Furcy & Koenig, 2001). This new version addresses the orig-
inal FALCONS poor performance during its early trials (notably its first-trial). Their
reported improvement to the total travel cost was on average only around 2-6%. The
eFALCONS algorithm not only uses its original g-value estimates but introduces two
new estimates, consequently increasing its memory requirement two-fold to accommo-
date their storage. Unfortunately this added memory requirement completely dwarfs the
negligible travel cost improvements.

εδ-LRTA* Ishida and Shimbo also noted that their weighted and bounded LRTA* en-
hancement could be combined to create an even stronger algorithm (Shimbo & Ishida,
2003). The algorithm, termed εδ-LRTA*, is identical to δLRTA* but uses an initial heuris-
tic function scaled by the ε factor. They provided a small example of how this algorithm,
while stabilizing the convergence process, reduces the overall learning time at the cost of
sacrificing optimality.

γ-Trap (Gamma-Trap) Bulitko proposed an algorithm in (Bulitko, 2004) termed γ-Trap.
This algorithm combines the sub-optimality element from εLRTA* and the backtracking
technique from SLA*. The algorithms γ parameter is user definable and is equivalent to
the ε parameter of the weighted LRTA* algorithm. It uses a variable lookahead during
its planning phase to detect (and subsequently avoid) minima in the heuristic function,
termed traps. The algorithm, by using variable lookahead, updates its heuristic value in a
more aggressive manner than the LRTA* algorithm, termed max-of-min. Additionally the
algorithm intuitively executes (and backtracks) multiple actions at once, to a maximum
length equal to its lookahead depth. Like the weighted LRTA* it sacrifices optimality to

2.8 Combining Extensions 15

speed up convergence using its γ parameter. However as both the SLA* and FALCONS
algorithm, the γ-Trap exhibits more expensive travel costs during its early trials.

The LRTS Framework The Learning Real-Time Search (LRTS) (Bulitko & Lee, 2006)
builds on the LRTA* algorithm and formally combines it with: SLA*’s backtracking,
SLA*T’s threshold control and εLRTA*’s idea of heuristic scaling; forming a single co-
herent algorithm. Additionally it utilizes the variable lookahead element coupled with the
max-of-min heuristic updating introduced in the γ-Trap algorithm. By a careful selection
of values for each of LRTS’s three parameters (γ, d and T) it achieves better convergence
performance than both FALCONS and LRTA* on the 15-puzzle, achieving up to 50%
convergence (albeit to sub-optimal solutions). Selecting the optimal set of parameter val-
ues is however far from trivial. An evaluation demonstrating that the LRTS algorithm
indeed performs better than its extensions would individually, was not provided by the
authors. Due to LRTS inclusion of the thresholding control parameter T , it is suspected
to suffer from the same problem specific value selection as the SLA*T algorithm. In a re-
cent study of lookahead pathologies the LRTS framework was augmented with a dynamic
selection of lookahead depths from pre-computed data (Luštrek & Bulitko, 2006).

Chapter 3

Comparison of Algorithms

In earlier research on real-time algorithms comparisons were done on several real-time
algorithms in disjoint sets of test domains (Shimbo & Ishida, 2003; Bulitko & Lee, 2006).
Due to the implementation difference of both the algorithms and the test domains used,
the results obtained from these researches are not entirely comparable. A clear and unified
overview is needed that covers all the previous independent research results. To ensure
fair comparison, such comparison must be based on a unified implementation of both the
algorithms themselves and a diverse set of testbeds. The algorithms must then all be tested
using the same initial problem instances. This chapter presents such a research and while
primarily confirming the findings of prior research it sheds new light on a few previously
unknown algorithm properties.

3.1 Experimental Setup

In this chapter the methods described in Chapter 2: LRTA*, δLRTA*, FALCONS, SLA*
and SLA*T, will be empirically evaluated and compared using three different application
domains. The performance of the LRTA* algorithm will be used as a baseline for all
comparisons. For simplicity and fair comparison all the algorithms were run with a fixed
lookahead of one (see Appendix A). The SLA*T algorithm used T values of 100, 1,000
and 10,000 respectively and δLRTA* was run with δ set to 2, 4 and 10. The values for
δLRTA* were selected to provide comparisons with previous research (Shimbo & Ishida,
2003). δLRTA* is omitted from all tables showing first-trial performance throughout this
chapter. This is due to the fact that since the ∞-heuristic is used as the initial upper-
bound heuristic, δLRTA*’s first-trial is identical to that of LRTA*. All the algorithms
were implemented using a constant access-time hash-table to manage updated heuristic
values.

The first domain used was pathfinding in the Gridworld (Shimbo & Ishida, 2003). All grid
instances were of size 100x100. Three different obstacle ratios were used: 20%, 30% and
40%. One hundred instances and start-goal state pairs were randomly generated for each
obstacle ratio. The second domain was also a pathfinding problem, but on eight game
maps from the commercial computer game Baldur’s Gate. This domain was specifically

3.2 Travel Cost 17

chosen to provide a more realistic evaluation (Björnsson, Enzenberger, Holte, Schaeffer,
& Yap, 2003). For each of the eight game maps a set of 400 randomly chosen start-goal
state pairs were chosen. Both pathfinding domains used the Manhattan-distance heuristic
defined as the sum of difference between the current state’s and the goal state’s horizontal
and vertical positions.1 The third domain was the sliding-tile puzzle (Korf, 1990); 100
unique start configurations of both the 8- and 15-piece versions of this puzzle were used.
The 8-puzzle instances were randomly created but Korf’s 100 instances were used in the
15-piece version (Korf, 1985). The admissible Manhattan-distance heuristic was used
as the initial heuristic in the sliding-tile puzzle. It is defined as the sum, for all tiles, of
their horizontal and vertical distances from their respective goal positions. All problem
domains utilized the 4-way tile-based movement when generating successor states and all
actions were unit-cost. A more detailed description and discussion of the test domains
can be found in Appendix A.

Neither LRTA*, FALCONS nor SLA*T were observed to converge on any of the 15-
puzzle instances provided by Korf within a travel cost of 50 million states. Therefore only
the first-trial information from the 15-puzzle is used for comparison. The only algorithm
that converges on any of the 15-puzzle instances is SLA*. It converged on 95 instances
(out of 100) incurring an average travel cost of 32,754,655 states while on average storing
only 12,432,457 states in memory. On several 15-puzzle instances both SLA* and SLA*T
exceeded their resource limit of 50 million states traveled during their first-trial. Therefore
comparison of the 15-puzzle had to be limited to only 82 out of Korf’s 100 instances,
which all algorithms were able to find a solution to during their first trial.

3.2 Travel Cost

Real-time search algorithms are most commonly compared on the basis of their travel
cost (also known as execution cost, solution cost or running time). Travel cost, as the
name indicates, is the total cost per trial that the search incurs while traveling through the
problem domain in the search of a solution. In the experiments presented in this chapter
the lookahead is limited to a fixed depth of one, therefore in all cases the search travel
cost equals the number of states expanded by the search. Since real-time algorithms do
not have complete information of their environment they must perform physical actions
to discover new information. In this thesis it is assumed that, since deliberation cost per
move is upper-bounded by a constant, the cost of physical travel outweighs the cost of
internal computation. Consequently travel cost incurred by the algorithms is considered
their dominant cost-factor.

This section will start by evaluating the average total travel cost of the algorithms and then
comparing their first-trial travel cost. Finally a special section will discuss a pathological
anomaly discovered in the SLA*T algorithm.

1 The FALCONS algorithm uses the same equation when estimating its g-values. The only difference is
that it substitutes the goal state for its initial start state.

18 Comparison of Algorithms

Table 3.1: Average Travel Cost to Convergence
Baldur’s Gate Gridworld 8-puzzle

Algorithm Travel Cost % of LRTA* Travel Cost % of LRTA* Travel Cost % of LRTA*

FALCONS 25,112 41.9% 16,999 57.1% 29,346 40.0%
LRTA* 59,916 100.0% 29,760 100.0% 73,360 100.0%
SLA* 17,374 29.0% 11,030 37.1% 2,226 3.0%
SLA*T(100) 29,518 49.3% 17,705 59.5% 149,646 204.0%
SLA*T(1,000) 51,559 86.1% 24,495 82.3% 77,662 105.9%
SLA*T(10,000) 59,691 99.6% 28,426 95.5% 73,357 100,0%
δLRTA*-2 62,236 103.9% 28,734 96.6% 28,330 38.6%
δLRTA*-4 59,144 98.7% 27,871 93.7% 42,105 57.4%
δLRTA*-10 58,917 98.3% 28,840 96.9% 60,079 81.9%

3.2.1 Total Travel Cost

Table 3.1 shows the average travel cost of the real-time algorithms. For each algorithm
their total travel cost and its relative cost compared to LRTA* is reported. The table
shows that SLA* outperforms LRTA* in all domains, requiring only a fraction of LRTA*’s
total travel cost. In the most extreme case, in the 8-puzzle domain, SLA*’s travel cost
is only 3% of that reported by LRTA*. SLA* performs the best of all the algorithms.
This is most clearly demonstrated in the sliding-tile domain. There, while only reporting
travel costs a fraction of what is needed by the second lowest method, SLA* is also
the only optimal seeking algorithm that converges to optimal solutions on any of the 15-
puzzle problems. Though the other methods are roughly equal in the pathfinding domains,
FALCONS performs noticably better than both LRTA* and the SLA*T variants in the
sliding-tile puzzle. FALCONS however harbors hidden costs since maintain its g-values,
it requires twice the memory of LRTA*. Memory usage is evaluated in more detail in
Section 3.6.

The 8-puzzle results reported for δLRTA* in Table 3.1 are consistent with previous re-
search (Shimbo & Ishida, 2003). However the results from both pathfinding domains
somewhat contradict previous findings. Earlier Shimbo and Ishida reported that their
δLRTA* algorithm decreased its travel cost in the Gridworld for lower values of δ. While
the Gridworld results reported here indicate only a marginal increase in travel cost when
δ is decreased from 4 to a value of 2, the extent of the discrepancy is most obvious in the
Baldur’s Gate domain. There δLRTA* reports a 60% higher travel costs than FALCONS,
resulting in a travel cost close to that of LRTA*. No solid explanation for this behavior can
be offered at this time. This however indicates that the values chosen for the δ parameter
are to some degree domain dependent.

3.2.2 First-Trial Travel Cost

Table 3.2 shows the first-trial travel cost of the algorithms presented in Table 3.1. As al-
ready mentioned, the aggressive backtracking of SLA* concentrates the whole of its travel
cost into the first trial. This is clearly evident as SLA* has by far the highest first-trial
travel cost in all domains. By this SLA* clearly violates two of the four real-time princi-
ples of Chapter 2, namely: a short trial delay and an iterative solution refinement process.

3.2 Travel Cost 19

Table 3.2: First-Trial Travel Cost
δLRTA* is omitted since its first-trial is identical to that of LRTA* when using the initial ∞heuristic.

Baldur’s Gate Gridworld
Algorithm Travel Cost % of LRTA* Travel Cost % of LRTA*

FALCONS 14,102 390.6% 3,058 136.7%
LRTA* 3,610 100.0% 2,237 100.0%
SLA* 17,308 479.4% 10,947 489.4%
SLA*T(100) 15,621 432.7% 9,223 412.3%
SLA*T(1,000) 14,026 388.5% 8,404 375.7%
SLA*T(10,000) 10,470 290.0% 7,329 327.6%

8-puzzle 15-puzzle
Algorithm Travel Cost % of LRTA* Travel Cost % of LRTA*

FALCONS 680 178.9% 479,187 1,731.5%
LRTA* 380 100.0% 27,674 100.0%
SLA* 2,205 580.3% 31,498,532 113,819.9%
SLA*T(100) 651 171.3% 5,469,369 19,763.6%
SLA*T(1,000) 380 100.0% 1,730,754 6,254.1%
SLA*T(10,000) 380 100.0% 268,745 971.1%

By incurring all its travel cost during the first-trial SLA* uses unacceptable amounts of re-
sources while it, during its entire convergence process, is unable to produce any solutions.
Although SLA* still clearly satisfies the basic real-time requirements, namely movement
in constant time given a limited search horizon, SLA* does however violate two of the
four real-time principles discussed in Chapter 2. It is therefore debatable whether or not
SLA* can be considered a fully qualified real-time algorithm. For algorithms that do ful-
fill the real-time principles, the first-trial performance of LRTA* is notably the best of
all the algorithms. This is most obvious in the 15-puzzle where LRTA* has a 10 times
shorter first-trial travel cost than the second lowest, SLA*T(10,000).

3.2.3 Pathology of SLA*T

As previously mentioned, poorly chosen values for SLA*T’s T parameter can have a
detrimental impact on its performance. This can be observed in Table 3.1, where the
results in the 8-puzzle domain give the best indication of how serious this impact can be.
While SLA*T(1,000) performs close to that of LRTA*, SLA*T(100) has by far the worst
performance of all the algorithms in the sliding-tile puzzle. One possible cause is that by
backtracking the search effectively doubles its LRTA* travel cost.

This can occur when the LRTA* phase of SLA*T is very close to convergence when the
T parameter overflows. As a result, when SLA*T shifts to its backtracking SLA* phase
it effectively backtracks the entire length of LRTA*’s excessively long traveled path dou-
bling the travel cost of the search in the process. This is supported by the backtrack-
ing information presented in Table 3.3. The table shows, for each domain, the average
number of backtracking decisions made and the total average number of actions back-
tracked for both SLA* and SLA*T. While the numbers of actions that SLA*T(1,000)
backtracks in the 8-puzzle domain stays relatively comparable with the other domains the
SLA*T(100) backtracks significantly more. SLA*T(100) backtracks on average roughly
as many actions as the average LRTA* travel cost. This supports the suspicion that the

20 Comparison of Algorithms

Table 3.3: Backtracking Statistics
Domain Algorithm Backtrack Actions Backtracked

Baldur’s Gate

SLA* 666.5 8,615.2
SLA*T(100) 1,152.0 11,648.7
SLA*T(1,000) 1,204.1 15,093.4
SLA*T(10,000) 610.2 9,270.2

Gridworld

SLA* 1,548.9 5,428.3
SLA*T(100) 1,857.8 6,346.2
SLA*T(1,000) 2,000.5 6,896.7
SLA*T(10,000) 1,128.8 3,902.4

8-puzzle

SLA* 354.5 1,090.5
SLA*T(100) 21,620.8 64,379.0
SLA*T(1,000) 1,149.7 3,437.8
SLA*T(10,000) 0.0 0.0

T parameter is overflowing at a crucial time during the search, causing the performance
degradation.

The travel cost of the algorithms varies greatly. SLA* and FALCONS were shown to
provide the overall shortest travel cost in all the test domains. The travel cost during
their first-trial is however significantly worse than that of LRTA*. In all domains the
LRTA* algorithm was shown to have by far the lowest first-trial travel cost of all the
algorithms. The importance of the trial cost metric for real-time algorithms is significant,
mostly due to the fact that while these algorithms are searching they require a certain
degree of exploration. In most cases this exploration results in the execution of a relatively
costly travel actions. As a result comparing real-time algorithms foremost on the basis
of their travel cost ensures a clear understanding of how efficiently they use their most
costly resource. Due to the importance of this metric when evaluating real-time search,
it will from now on form the basis of the comparison from here on after (unless stated
otherwise). Further discussion about the importance of travel cost and how it should be
used to evaluate an algorithms learning quality is detailed in the next section.

3.3 Learning Quality

When evaluating the performance of a real-time search algorithm it is important to mea-
sure both its computational efficiency and the quality of the solutions it produces. Dif-
ferent real-time algorithms may produce solutions of different cost. Solution quality can
be measured by their relative cost compared to an optimal solution. As interesting as the
algorithms efficiency, is the quality of its produced solutions both after the first and the
final trial. All the algorithms experimented with in this thesis use an admissible heuristic
and are guaranteed to converge to an optimal solution. Consequently their final solution
quality is the same. However, the intermediate solution quality may differ significantly
from one algorithm to the next. The cost of the path traveled in a trial is not a good met-
ric of the quality of the solution found in that trial. One reason for this is that real-time
algorithms may wander in loops and repeatedly re-expand the same states (Korf, 1990;
Shimbo & Ishida, 2003). Whereas the cost of traversing these loops rightfully count to-

3.3 Learning Quality 21

Table 3.4: First-Trial Solution Length
Baldur’s Gate Gridworld

With Loops No Loops % of Length With Loops No Loops % of Length
FALCONS 14,102 91 0.6% 3,058 105 3.4%
LRTA* 3,610 90 2.5% 2,237 102 4.6%
SLA* 71 71 100.0% 82 82 100.0%
SLA*T(100) 110 80 72.7% 132 91 68.9%
SLA*T(1,000) 314 85 27.1% 372 97 26.1%
SLA*T(10,000) 1,073 87 8.1% 1,133 100 8.8%

8-puzzle 15-puzzle
With Loops No Loops % of Length With Loops No Loops % of Length

FALCONS 680 112 16.5% 479,187 4,567 1.0%
LRTA* 380 61 16.1% 27,674 986 3.6%
SLA* 20 20 100.0% 52 52 100.0%
SLA*T(100) 96 41 42.7% 136 76 55.9%
SLA*T(1,000) 380 61 16.1% 1,033 206 19.9%
SLA*T(10,000) 380 61 16.1% 8,067 679 8.4%

wards the travel cost, the loops themselves are clearly superfluous in the solution path
and should be removed. Not all algorithms are affected equally by loops. For example,
the SLA* algorithm is immune because of its backtracking scheme, whereas LRTA* and
FALCONS are particularly prone. As a result when comparing solution quality of differ-
ent algorithms it is important to eliminate loops from the solution path to ensure a fair
comparison. This can either be done online2 or as a post-processing step after each trial.

Table 3.4 shows how profound the effect of loop elimination can be. The extreme case
in our experiments was FALCONS pathfinding game maps. After eliminating loops from
the first-trial solutions, the remaining solution path length became only 0.6% of the path
traveled. The resulting paths were then on average only sub-optimal by 28%. Similar
results can be observed for LRTA* in the same domain. In this domain the true first-

2 This however comes at a cost of increased move-delay of the algorithm which could possibly break
the movement in constant-time requirement of the algorithm.

Solution Quality of the LRTA* algorithm (8-Puzzle)

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Trials

S
o

lu
ti

o
n

 L
e
n

g
th With Loops

Without

Loops

Minimum

So Far

Figure 3.1: Effects of solution path loop elimination in the 8-puzzle.

22 Comparison of Algorithms

Learning Performance
(8-Puzzle)

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Thousands

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

FALCONS

LRTA*

SLA*T (T=100)

bLRTA(2)*

Figure 3.2: FALCONS, δLRTA*(δ = 2), LRTA* and SLA*T(100) learning performance on the
8-puzzle domain.

trial solution quality of both LRTA* and FALCONS is clearly much better than it has
previously been reported in the literature.

Figure 3.1 illustrates how profound loop elimination is on the performance of LRTA* in
the 8-puzzle domain. In early trials there is a large difference in solution costs depending
on whether loops are eliminated or not, although on later trials the two gradually converge
to the same optimal path. For comparison, a line is included showing the best solution
found so far. If the algorithm’s execution was stopped before convergence this would be
the best solution path it could return at any given moment.

A direct performance comparison of different algorithms can be problematic, even when
run on the same problem set. For example, some algorithm may produce sub-optimal so-
lutions, either because they are inadmissible or they do not converge in time. Because the
final solution quality may then differ, one cannot look at the travel cost in isolation – there
is a trade-off. The same applies if one wants to compare the relative efficiency of different
algorithms during intermediate trials. To make comparison possible, the solution length
is considered as a function of the accumulated travel cost. This learning performance
metric is useful for relative comparison of different algorithms and is an indicator of the
algorithms’ real-time nature. For example, in Figure 3.2 the SLA* T(100) algorithm
quickly establishes a good solution but then converges slowly, whereas both LRTA* and
FALCONS although starting off worse, in the end learn faster given the same amount of
traveling. The figure also shows that FALCONS makes a better use of its learned values
than LRTA* (the steep decent in its solution length is a clear indication). The figure also
shows that δLRTA* does indeed offer a stable learning quality but uses its learned values
more inefficiently than FALCONS (indicated by its long-tailed convergence).

Further analysis and discussion of the learning quality of the algorithms is found in Ap-
pendix B.1.

3.4 Convergence Speed 23

Table 3.5: Average Trials Until Convergence
Baldur’s Gate Gridworld 8-puzzle

Algorithm Trials % of LRTA* Trials % of LRTA* Trials % of LRTA*

FALCONS 33.5 20.0% 32.2 35.6% 72.8 28.4%
LRTA* 167.1 100.0% 90.7 100.0% 256.4 100.0%
SLA* 1.8 1.1% 2.0 2.2% 2.0 0.8%
SLA*T(100) 49.1 29.4% 46.7 51.5% 202.8 79.1%
SLA*T(1,000) 109.6 65.6% 69.9 77.1% 254.0 99.0%
SLA*T(10,000) 152.0 91.0% 83.7 92.3% 256.3 100.0%
δLRTA*-2 190.0 113.7% 109.4 120.6% 262.9 102.5%
δLRTA*-4 176.6 105.7% 97.8 107.8% 280.4 109.3%
δLRTA*-10 169.7 101.6% 92.5 102.0% 266.4 103.9%

This section discussed the importance of eliminating loops from solution paths prior to
comparing different algorithms and quantified the effect of loop elimination in the three
test domains. When removing loops algorithms including LRTA* and FALCONS are
shown to find much better solutions than previously reported in the literature. A new
metric for measuring the learning performance of real-time algorithms was introduced.
This metric, termed learning quality, gives new insights into evaluating real-time algo-
rithms during intermediate trials. It uses the solution length as a function of accumulated
travel cost. Graphs indicating the learning performance of the real-time algorithms where
presented. The relative simplicity of the graphs visual representation gives a better evalu-
ation of how the real-time algorithms utilize available resources during their convergence
process to improve their solution quality.

3.4 Convergence Speed

According to the real-time principles a real-time algorithm should offer a reasonably short
trial delay as well as a good distribution of its learning across available trials. This can
be simply presented by using the number of trials needed for the algorithm to converge.
Table 3.5 shows the number of trials needed until convergence was achieved by the real-
time algorithms. All tables show the number of trials needed for convergence by each
algorithm and its percentage compared to those needed by LRTA*.

The SLA* algorithm converges during its first trial.3 However as previously mentioned
this comes at the cost of compressing the search’s entire travel cost into that one trial.
Apart from SLA*, FALCONS exhibits, for all domains, the shortest convergence process
requiring only 20% to 36% of the trials needed by LRTA*. It is immediately obvious that
δLRTA* requires the most trials until convergence and tighter upper-bounds only serve to
increase that requirement. While the trials needed for the 8-puzzle stay comparable with
previous findings by Shimbo and Ishida the pathfinding results indicate a much higher
trial requirements of δLRTA* compared to LRTA* than previously reported.

3 Convergence is defined as when no h-updates occur during a trial, consequently a second trial is
sometimes needed to formally detect SLA* convergence.

24 Comparison of Algorithms

Convergence Speed
(Baldur's Gate)

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140

H
u
n
d
r
e
d
s

Thousands

Travel Cost

N
u

m
b

e
r
 o

f
I
n

s
ta

n
c
e
s
 C

o
n

v
e
r
g

e
d

SLA* LRTA* SLA*T(100) SLA*T(1000) FALCONS

LRTA*

SLA*

SLA*T(1,000)

SLA*T(100)

FALCONS

Figure 3.3: Travel cost until convergence in the Baldur’s Gate domain.
The graph shows the number of problem instances converged compared to travel cost. SLA*
superiority can be clearly observed as it solves all its instances by the time LRTA* and FALCONS
have barely solved 2,000 instances.

The values in Table 3.5 coupled with the number of instances converged per travel cost
(Figure 3.3) allow for a more precise evaluation of the overall convergence performance
of the algorithms. The graph in Figure 3.3 shows how the first-trial delay of FALCONS
assists with its overall convergence process. However by the time FALCONS solves its
first instances LRTA* has already optimally solved close to 1,700 (although after that
FALCONS takes a significant lead in convergence). Consequently during its earlier trials
LRTA* far outperforms FALCONS when compared on the basis of the real-time prin-
ciples. However after an average travel cost of 17,000, LRTA* slows its convergence
process significantly while FALCONS increases its convergence speed (this is due to
FALCONS high early trial travel costs, after which it utilizes its learned values in a much
more effective way than LRTA*).

This section confirmed earlier research stating that the FALCONS algorithm converges
fastest in terms of number of trials than any of the other real-time algorithms. The section
introduced the number of trials needed for convergence as an important metric when eval-
uating the algorithms ability to distribute learning across trials. The convergence speed
of the algorithms was also depicted using the number of instances converged as a func-
tion of accumulated travel cost. This revealed that although FALCONS requires fewer
trials to convergence in the Baldur’s Gate domain, it has a substantially worse real-time
performance in earlier trials than LRTA*.

3.5 Search Stability 25

3.5 Search Stability

An aspect of real-time search performance that has not been addressed in previous sec-
tions is how stable their convergence process is. The search stability indicates if any
fluctuations occur in its travel cost and, if they do, how severe they are. In this section
five different indices previously adapted (Shimbo & Ishida, 2003) are used to measure
the stability of the convergence process. Four of the indices are adapted from Optimal
Control Theory (Dorf, 1988); the integral of absolute error (IAE), integral of square error
(ISE) and weighted variants for each (ITAE and ITSE). Additionally the sum of one-sided
difference (SOD) is used. Both the IAE and ISE metrics measure the overall excess trav-
eling performed by the search. While these metrics both indicate the overall fluctuations
in travel cost by an algorithm they give no hint to if and then how well the algorithm is
able to improve its required travel cost over consecutive trials. The notion being that each
algorithm should, as the search progresses, reduce its need for exploration by utilizing al-
ready learned values; therefore reducing travel cost fluctuations in later trials. To measure
this the time weighted versions of both metrics are used (ITAE and ITSE). By punishing
fluctuations in later trials more severely than those that happen earlier on these metrics the
time weighted indices also favor shorter convergence runs.4 The equations used to calcu-
late the metrics are shown below. The travelcost(i) function returns the travel cost of the
ith trial, h∗(s) returns the optimal travel cost and N is the number of trials the algorithm
was allowed.

IAE =
N∑

i=1

∣∣∣travelcost(i)− h∗(s)
∣∣∣,

ITAE =
N∑

i=1

i ∗
∣∣∣travelcost(i)− h∗(s)

∣∣∣,
ISE =

N∑
i=1

(
travelcost(i)− h∗(s)

)2

,

ITSE =
N∑

i=1

i ∗
(
travelcost(i)− h∗(s)

)2

,

SOD indicates whether or not the travel cost worsens and then by how much. If the
travel cost is non-increasing between trials this variable only takes its default value of 0,
indicating a steady non-increase in travel cost. However increasing travel cost adds to this
value.

SOD =
N∑

i=1

max
[
0, travelcost(i + 1)− travelcost(i)

]
4 It should be noted that assumptions should not be based solely on the results of these time weighted

variants. By design they hide excessive travel costs during earlier trials and punish later ones severely.
Therefore aggressive search variants such as SLA* significantly skew their reported results.

26 Comparison of Algorithms

Table 3.6: The Travel Cost Stability During Convergence
IAE (x103) ISE (x109) ITAE (x106) ITSE (x109) SOD (x103)

Baldur’s Gate

FALCONS 19.8 5.281 0.723 11.567 3.1
LRTA* 28.9 0.524 12.555 22.414 10.1
SLA* 17.2 7.324 0.017 7.324 0.0
SLA*T(100) 24.0 7.624 0.530 28.140 4.8
SLA*T(1,000) 35.2 11.578 3.466 719.681 12.3
SLA*T(10,000) 32.8 7.788 8.008 392.798 12.1
δLRTA*-2 26.7 0.375 18.427 7.728 3.2
δLRTA*-4 26.3 0.383 14.318 7.996 4.5
δLRTA*-10 27.5 0.407 12.944 11.062 6.7

Gridworld

FALCONS 13.3 0.131 0.265 1.019 4.7
LRTA* 19.8 0.108 1.081 1.986 7.9
SLA* 10.9 1.304 0.011 1.304 0.0
SLA*T(100) 13.6 1.265 0.114 1.401 1.8
SLA*T(1,000) 18.0 1.461 0.296 2.831 5.3
SLA*T(10,000) 20.0 1.351 0.772 12.940 6.1
δLRTA*-2 15.6 0.073 1.921 0.804 2.4
δLRTA*-4 16.8 0.077 1.360 0.903 4.1
δLRTA*-10 18.6 0.088 1.145 1.188 6.5

8-puzzle

FALCONS 27.6 0.023 2.311 1.502 12.7
LRTA* 67.2 0.036 15.622 7.096 32.7
SLA* 2.2 0.013 0.002 0.013 0.0
SLA*T(100) 144.8 0.446 21.999 58.209 95.2
SLA*T(1,000) 71.6 0.068 16.061 12.026 37.3
SLA*T(10,000) 67.2 0.036 15.622 7.096 32.7
δLRTA*-2 22.0 0.002 6.399 0.519 2.0
δLRTA*-4 35.3 0.006 10.230 1.340 6.6
δLRTA*-10 53.7 0.016 13.962 3.578 18.7

Table 3.6 shows the stability data for the real-time algorithms. Both the ISE and ITSE
values reported for SLA* in the pathfinding domains indicate the instability of its conver-
gence process compared to LRTA*. In the Baldur’s Gate domain, this is most apparent
when punishing harder for excessive traveling later during the convergence process, as the
ITSE metric does and in the Gridworld the ISE value shows the more overall fluctuations
(due to SLA*’s first-trial). In the Baldur’s Gate domain the ISE value for LRTA* is by far
the lowest of all the algorithms. This indicates that LRTA* has the most stable overall trial
cost during its convergence process, however when penalizing more for later fluctuations,
seen in ITSE, LRTA* suffers for its longer convergence run. The ITSE values illustrate
clearly how SLA* is benefitting from its excessive first-trial traveling. Interesting is to
notice the SOD values for SLA*T(100) in the 8-puzzle domain. There it reports by far
the worst value of all the methods indicating severe fluctuations in its travel cost. Further
supporting our previous discussion regarding its excessive travel cost in this domain due
to problem dependent T values.

Although most of the indices presented here still indicate that δLRTA* has a more stable
travel cost between trials than LRTA*, these values do not indicate that the difference
is as distinct as prior findings indicated. Taking the ITSE index in the Gridworld as an
example, previously LRTA* was reported to have close to 6 times higher ITSE value
than δLRTA*(2). Here however this difference is only 2.5 times higher. Corresponding
difference can be observed throughout the pathfinding domains. However the results from
the experiments on the 8-puzzle domain still report similar findings.

Contrary to the learning quality metric, the indices provide a way to represent numerically
the amount of excess travel cost that each algorithm incurs during its search process. By
punishing excess traveling in later trials such a value can be used to evaluate how much

3.6 Memory Usage 27

Table 3.7: Average Total Memory Usage
Baldur’s Gate Gridworld 8-puzzle

Algorithm Used % of LRTA* Used % of LRTA* Used % of LRTA*

SLA* 608 55.1% 517 50.7% 725 2.6%
SLA*T(100) 826 74.8% 705 69.0% 36,789 131.3%
SLA*T(1,000) 988 89.4% 845 82.8% 25,002 89.3%
SLA*T(10,000) 1,030 93.2% 931 91.3% 24,266 86.6%
LRTA* 1,105 100.0% 1,020 100.0% 28,013 100.0%
FALCONS 1,529 138.4% 1,528 149.7% 27,314 97.5%

added travel cost improves the search process. These values should however be contrasted
with the previously discussed metrics of learning quality and trials until convergence to
provide the most accurate results. A serious drawback of these metrics is that they require
the optimal solution (or a very accurate estimate) to be known. As a result the use of
these measurement indices is limited to problems where obtaining an optimal solution is
possible.

3.6 Memory Usage

The LRTA* based approach to solving real-time problems is based on the notion of storing
and retriving updated heuristic values. To accommodate this a table is needed for admin-
istration of updated heuristic values. This table must also be stored in memory to maintain
reasonable access times. Consequently the memory usage of real-time algorithms is very
important and must be measured and managed closely.

Table 3.7 shows the average total memory usage of the real-time algorithms across all
domains. Memory Usage is measured and presented here as the number of states stored
in the algorithms heuristic table. In the case of algorithms that use additional tables their
size is added to the algorithms final usage (these methods are discussed separately later
in this section). Overall the memory usage of the algorithms in the pathfinding domains
are negligible, indicating a low error-rate in heuristic values for these two domains. The
memory usage in the sliding-tile puzzle is however more interesting. The SLA* algorithm
has a small total memory footprint in both the 8- and 15-puzzle domains, using only a
fraction of the memory required by LRTA* and other algorithms. It is also surprising
is that even though FALCONS maintains a second table in memory its requirement is
still 2.5% lower than that of LRTA* in the 8-puzzle. Indicating that the added g-values
are indeed successful in helping the algorithm reduce wandering. This is especially
interesting since FALCONS, in the 8-puzzle, stores only roughly half the number of h-
values that LRTA* stores and the rest is used to store better g-value estimates. This shows
that by storing extra g-values, FALCONS explores fewer states and improves its overall
convergence process.5 The first-trial table shown as Table 3.8 gives a better insight into the
memory usage for the algorithms on a per-trial basis. The SLA*T algorithms outperform

5 This indicates that by utilizing FALCONS way of minimizing its travel distance from the initial start
state or SLA* backtracking technique the search stays relatively close to its initial start state. This clearly
benefits the search considering that the optimal solution for the 8-puzzle domain is on average only 20
moves away from the start.

28 Comparison of Algorithms

Table 3.8: Average First-Trial Memory Usage
Baldur’s Gate Gridworld

Algorithm Used % of LRTA* Used % of LRTA*

FALCONS 1,102 364.9% 741 311.3%
LRTA* 302 100.0% 238 100.0%
SLA* 608 201.3% 517 217.2%
SLA*T(100) 397 131.5% 304 127.7%
SLA*T(1,000) 290 96.0% 230 96.6%
SLA*T(10,000) 256 84.8% 207 87.0%

8-puzzle 15-puzzle
Algorithm Used % of LRTA* Used % of LRTA*

FALCONS 827 409.4% 645,249 4,597.4%
LRTA* 202 100.0% 14,035 100.0%
SLA* 724 358.4% 11,945,144 85,109.7%
SLA*T(100) 193 95.5% 1,971,970 14,050.4%
SLA*T(1,000) 159 78.7% 580,378 4,135.2%
SLA*T(10,000) 159 78.7% 86,289 614.8%

all other algorithms including LRTA* in the pathfinding domains. This holds also in the
8-puzzle, however the memory usage of SLA*T in the 15-puzzle is considerably higher
than that of LRTA*. However when contrasting this with the solution lengths reported
in Table 3.4 then the SLA*T algorithms while only using a fraction of the memory of
LRTA* (except in the 15-puzzle) return much superior solutions overall.

3.6.1 Impact of Auxiliary Heuristic Functions

Table 3.9 shows the impact that secondary heuristic tables, used by both FALCONS and
δLRTA*, have on their total memory usage. The table shows each algorithms heuristic
table size, their total memory requirement and the increase in memory these tables have.
The table reveals that increasing the δ bounds results in an increased exploration and
consequently more memory usage. However, while FALCONS g-values only strictly
double its memory usage the the same is not true for the δLRTA* algorithm. Previously
δLRTA* was reported only doubling its memory requirement, however the numbers in
Table 3.9 indicate that the increase is in-fact 5%-25% more in the 8-puzzle domain.

The additional memory usage suffered by δLRTA*, shown in Table 3.9, is used for storing
its upper-bound values. Figure 3.4 shows this average memory usage over the algorithms
entire convergence process. Although similar at the very beginning (around 2000 states
traveled) the g-values quickly start consuming more memory than their h-value counter-

Table 3.9: Average Memory Overhead of Auxiliary Heuristic Functions
Baldur’s Gate Gridworld The 8-puzzle

Algorithm h-values Total Ratio h-values Total Ratio h-values Total Ratio
δLRTA*-2 984 2,078 2.1 873 1,834 2.1 7,409 18,074 2.4
δLRTA*-4 1,024 2,161 2.1 938 1,965 2.1 14,100 33,437 2.4
δLRTA*-10 1,066 2,247 2.1 999 2,087 2.1 22,266 51,663 2.3
FALCONS 765 1,529 2.0 764 1,528 2.0 13,657 27,314 2.0
LRTA* 1,105 1,105 1.0 1,020 1,020 1.0 28,013 28,013 1.0

3.7 Summary 29

Bounded-LRTA* Memory Usage
(8-Puzzle)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

T
h
o
u
s
a
n
d
s

Thousands

Travel Cost

S
ta

te
s
 S

to
r
e
d

 I
n

 M
e
m

o
r
y

Total Usage
U-Values

H-Values

Figure 3.4: The memory usage of δLRTA* in the 8-puzzle domain
A comparison between the memory consumption of the δLRTA* method. The h-value
and u-value usage is displayed separately along with the total memory usage.

parts. Although no explanation of this can be provided, one possible reason could be that
the forward-propagation of upper-bounds that the algorithm performs (see Algorithm 3,
lines 5 to 7), is forcing it to store updated upper-bound values for states that it never needs
to visit. Although this increase in memory is only minimal for δLRTA* in the sliding-tile
domain, this could have a more severe impact on memory usage when δLRTA* is run
in domains with higher branching factors and less frequent transpositions (e.g. in Go).

In the past memory usage has not been considered a limiting factor in real-time search and
rarely reported to any extent. This section showed that memory usage should however not
be overlooked in circumstances where real-time algorithms are storing potentially large
secondary data structures. Memory usage of real-time algorithms is clearly dependent on
certain properties of the problem domains used, e.g. its branching factor, frequency of
transpositions or the error-rate of its heuristic function. δLRTA* for example, was shown
only to double its memory requirement in the pathfinding domains but in the 8-puzzle
domain it uses more. This was partly explained as a result of the domain’s branching
factor coupled with low frequency of transpositions. As a result various domain factors
must be carefully evaluated before storing additional state information.

3.7 Summary

This chapter presented empirical evaluation of the real-time algorithms discussed in the
previous chapter. The chapter began by evaluating the most dominant factor of real-
time search efficiency, travel cost, and ended with a discussion on their previously most
overlooked one, namely memory usage.

30 Comparison of Algorithms

Although the chapter primarily confirms previously reported findings it also presents sev-
eral new interesting findings. For the first time, algorithms such as δLRTA* and FAL-
CONS were empirically tested in a more realistic pathfinding environment such as the
Baldur’s Gate. There the δLRTA* algorithm exhibited significantly worse performance
than FALCONS requiring close to 60% more travel cost. This contradicts the prior find-
ings reported by Shimbo and Ishida. Also for the Gridworld the δLRTA* algorithm did
not show as obvious travel cost improvements over FALCONS as previously reported.
The FALCONS algorithm was for the first time contrasted with the performance of the
SLA* and SLA*T algorithms. Although it did not match the performance of SLA*, it
was shown to significantly improve upon the overall performance of the SLA*T variants
in all test domains. A previously unobserved pathological problem inherent to SLA*T
was illustrated and discussed. It was shown that the performance of SLA*T is highly de-
pendent on domain specific values chosen for its T parameter. It can be argued that with
highly tuned domain specific values of T SLA*T would do quite well, however finding
these values is far from trivial.

The importance of loop elimination when comparing the solution quality of real-time
algorithms was quantified. By eliminating loops, established algorithms are shown to
provide significantly shorter and more stable solutions than previously reported. A new
visual evaluation of the learning quality of intermediate algorithm trials was made possi-
ble by using the solution length as a function of the accumulated travel cost. By plotting
this learning quality metric a better understanding of algorithm behavior was made possi-
ble. The number of trials to convergence was discussed as a way of enhancing the learning
quality metric by giving an idea of how successful the algorithm is in distributing its learn-
ing process across consecutive trials. It was confirmed that, apart from SLA*, FALCONS
converges in the fewest trials. However the performance of FALCONS during its earlier
trials was show to be relatively poor compared to LRTA*’s. The five stability indices first
used by Ishida and Shimbo where presented as a way of compressing the learning quality
graphs into a single numerical value. Similar results, albeit less detailed, where shown to
be readable from these indices as the learning quality graphs. In all domains the indices
confirmed that δLRTA* is less prone to large fluctuations in its travel cost (indicated by its
low ISE value) it however incurs more overall excess traveling due to its longer conver-
gence process (indicated by its IAE value). Interesting to note is that in the Baldur’s Gate
domain δLRTA* incurs most of its excessive travel cost during the earlier trials (indicated
by its ITSE value). Finally results contradicting prior research on the memory usage of
δLRTA* were presented. They indicate that there is a correlation between the memory
usage of δLRTA* in exponential domains such as the sliding-tile puzzle and the domain’s
branching factor. Higher branching factors coupled with restrictive bounds result in more
excess memory usage.

A more detailed analysis of how these real-time algorithms perform in more varied and
larger problem domains is needed. Further research is also needed to determine how
different domain properties influence the properties and enhancements provided by the
real-time algorithms.

Chapter 4

Back-Propagation

One of the main drawbacks of the LRTA* real-time heuristic search algorithm is slow
convergence. Backtracking as introduced by SLA* is one way of speeding up the con-
vergence, although at the cost of sacrificing first-trial performance. The backtracking
mechanism of SLA* consists of back-propagating updated heuristic values to previously
visited states while the algorithm retracts its steps. In this chapter these hitherto inter-
twined aspects are separated, and the benefits of each investigated independently. Two
back-propagating search variants are presented that do value back-propagation without
retracting their steps. Empirical evaluation shows that in some domains the value back-
propagation is the key to improved efficiency while in others the retracting role is the
main contributor.

4.1 Introduction

Learning Real-Time A* (Korf, 1990), or LRTA* for short, is probably the most widely
known real-time search algorithm. A nice property of the algorithm is that it guarantees
convergence to an optimal solution over repeated trials on the same problem instance
(given an admissible heuristic). However, in practice, convergence to an optimal solu-
tion may be slow, both in terms of the number of trials required and the total traveling
cost. Over the years researchers have proposed various enhancements aimed at overcom-
ing this drawback. These improvements include: doing deeper lookahead (Russell &
Wefald, 1991; Bulitko, 2004; Koenig, 2004), using non-admissible heuristics, although
at the cost of forsaking optimality (Shimbo & Ishida, 2003; Bulitko, 2004), using more
elaborate successor-selection criteria (Furcy & Koenig, 2000), or incorporating a back-
tracking mechanism (Shue & Zamani, 1993, 1999).

Backtracking affects the search in two ways. Firstly, backtracking algorithms may choose
to retract to states visited previously on the current trial instead of continuing further
along the current path, resulting in an exploration strategy that differs substantially from
LRTA*’s. Secondly, during this retracting phase, changes in heuristic value estimates
(h-values) get propagated further up the solution path (back-propagated). As these two
aspects of backtracking have traditionally been closely intertwined in the real-time search

32 Back-Propagation

literature, the importance of the role each plays is not clear. Back-propagation of learned
values have previously been observed to improve the convergence of various real-time
reinforcement learning algorithms (Lin, 1992; Sutton & Barto, 1998). Only recently
has the propagation of heuristic values been studied in real-time search as a stand-alone
procedure (Koenig, 2004; Hernández & Meseguer, 2005b, 2005a; Rayner et al., 2006),
building in part on earlier observations by Russell and Wefald (Russell & Wefald, 1991)
and the CRTA* and SLRTA* algorithms (Edelkamp & Eckerle, 1997).

It can be argued that in some application domains, value back-propagation cannot easily
be separated from backtracking, since one must physically reside in a state to update
its value. However, this argument does not apply to most agent-centered search tasks.
For example, a typical application of real-time search is agent navigation in unknown
environments. Besides the heuristic function used for guiding the search, the agent has
initially only limited knowledge of its environment: knowing only the current state and
its immediate successor states. However, as the agent proceeds with navigating the world
it gradually learns more about its environment and builds an internal model of it. Because
this model is kept in the agent’s memory it is perfectly reasonable to assume that the agent
may update the model as new information become available without having to physically
travel to these states, for example to update the states’ h-value. Consequently during the
back-propagation, great care must be taken not to assume knowing successor information
about states not visited before.

This chapter takes a closer look at the benefits of value back-propagation in real-time
single-agent search. The main contributions of this chapter are:

1. New insights into the relative effectiveness of back-propagation versus backtrack-
ing in real-time search; in particular, in selected domains the effectiveness of back-
tracking algorithms is largely a side-effect of the heuristic value update, whereas
in other domains their more elaborate successor-selection criterion is the primary
contributor.

2. An algorithmic formulation of back-propagating LRTA* that assumes knowledge
of only previously visited states; it outperforms LRTA* as well as its backtracking
variants in selected application domains.

In the next section LRTA* is briefly explained and its most popular backtracking variants,
using the opportunity to re-introduce the notation used throughout this thesis. The sub-
sequent section provides a formulation of value back-propagating LRTA* variants that
use information of only previously seen states. The result of evaluating these and other
back-propagating and backtracking real-time search algorithms are reported in the em-
pirical evaluation section. Finally the chapter is concluded and future work is briefly
discussed.

4.2 Value Back-Propagation

SLA*’s backtracking mechanism serves two roles: firstly to back-propagate newly dis-
covered information (in the form of updated h-values) as far back as possible and secondly

4.2 Value Back-Propagation 33

Algorithm 7 PBP-LRTA*
1: s← initial start state s0

2: solutionpath←< empty >
3: while s /∈ Sg do
4: h′(s)← mins′∈succ(s)(c(s, s

′) + h(s′))
5: if h′(s) > h(s) then
6: update h(s)← h′(s)
7: for all states sb in LIFO order from the solutionpath do
8: h′(sb)← mins′∈succ(sb)(c(sb, s

′) + h(s′))
9: if h(sb) >= h′(sb) then

10: break for all loop
11: end if
12: h(sb)← h′(sb)
13: end for
14: end if
15: push s onto solutionpath
16: s← argmins′∈succ(s)(c(s, s

′) + h(s′))
17: end while

to offer the search the chance to reevaluate its previous actions given the new information.
A natural question to ask is how important part each of the two roles plays in reducing the
overall traveling cost. An algorithm that only performs the value back-propagation role

S1 S2 S3 S4

Initial h: 5 4 5 6
Expand s2: 7 6
Expand s3: 7 8 7
Expand s4: 9 8* 9 8

This last update is only
performed by FBP-LRTA*

Figure 4.1: Back-propagation stopping criteria example
The search starts in state s1 and travels through to state s4, the initial heuristic for each state is given in the
first line below the image. Edges imply connectivity between states, all edges have unit-cost. (1) When state
s2 is first expanded its h-value is updated from 4 to 6. This update is then back-propagated and s1 updated
to 7. (2) Next s3 is expanded, its h-value gets updated from 5 to 7 and back-propagation is again triggered.
An important thing happens now when the back-propagation updates s1 since the estimated h-value of s4

determines that the h-value of s1 becomes 7. (3) When the search finally expands state s4 its h-value is
updated to 8, the back-propagation phase then updates s3 to 9. However s2 does not require an update since
it uses s1 estimate and keeps its value of 8. Here our PBP-LRTA* terminates its back-propagation (the point
is marked with an asterisks). However since s1 h-value was based on a now outdated h-estimate of state s4

it still needs updating. When running FBP-LRTA*, state s1 however gets updated to a more correct value
of 9.

34 Back-Propagation

of SLA*, not the backtracking itself, is illustrated as Algorithm 7. The algorithm, termed
partial back-propagating LRTA* (PBP-LRTA*), is identical to LRTA* except with addi-
tional code for back-propagating changes in heuristic values (lines 5 to 14). This code is
invoked when a heuristic value is updated in the current state s. It back-propagates the
heuristic values as far up the solution path as needed, before continuing exploration from
state s in the same fashion as LRTA* does.

PBP-LRTA* stops the back-propagation once it reaches a state on the solutionpath where
the heuristic value does not improve. This may, however, be misguided in view of trans-
positions in the state space. It could be beneficial to continue the back-propagation further
up the solution path even though no update takes place in a given state; an update might
occur further up the path (Figure 4.1 shows an example illustrating this). An algorithm
for doing full back-propagation is identical to PBP-LRTA* except that lines 9 to 11 are
removed. We call such a search variant full back-propagating LRTA*, or FBP-LRTA* for
short. Since both PBP-LRTA* and FBP-LRTA* use the original LRTA* policies both
for successor selection and heuristic value updating, they are expected to retain the same
properties as LRTA* regarding completeness and optimality.

Although formulated very differently the FBP-LRTA* algorithm is closely related to the
recently published LRTA*(∞) algorithm (Hernández & Meseguer, 2005b). For the spe-
cial case of undirected state spaces both algorithms would update heuristic values in the
same set of states. To retain the real-time requirement that FBP-LRTA* moves in con-
stant time, the FBP-LRTA* algorithm could similarly be parameterized to be bounded by
a constant.

4.3 Experimental Results

To investigate the relative importance of backtracking versus value back-propagation the
PBP-LRTA* and FBP-LRTA* algorithms were empirically evaluated and contrasted with
LRTA*, SLA* and SLA*T in three different domains. The domains and algorithm set-
tings used for the experiments are the same as those previously described in Chapter 3.

Table 4.1 shows how the real-time search algorithms perform in the two path-finding
domains. Reported for each algorithm are: their total travel cost, number of trials to con-
vergence, first-trial travel cost, and solution length (with loops removed). Each number is
the average over all test instances of the respective domain.

Both value back-propagation algorithms outperform LRTA* significantly in the pathfind-
ing domains, converging faster in terms of both trials and travel cost. For example,
FBP-LRTA* reduces the average number of trials to convergence on the Baldur’s Gate
maps by more than 100 (reduction of 62%). Its first-trial performance is also much bet-
ter than LRTA*’s; an equally good solution is found on average using only a fraction
of the search effort. Overall the FBP-LRTA* total traveling cost is roughly the same as
SLA*’s, which is somewhat surprising because in the literature SLA* has been shown to
consistently outperform LRTA*. The results indicate that the back-propagation of heuris-
tic values, as opposed to backtracking, is largely responsible for improved performance

4.3 Experimental Results 35

Table 4.1: Results from the pathfinding domains
Baldur’s Gate Maps

Averaged Totals First-trial
Travel Cost Trials Conv. Travel Cost Sol. Len.

SLA* 17,374 1.81 17,308 71
FBP-LRTA* 19,695 63.40 508 89
SLA*T(100) 29,518 49.10 15,621 80
PBP-LRTA* 32,724 69.93 3,139 97
SLA*T(1000) 51,559 109.63 14,026 85
LRTA* 59,916 167.10 3,610 90

Gridworld with random obstacles
Averaged Totals First-trial

Travel Cost Trials Conv. Travel Cost Sol. Len.
FBP-LRTA* 8,325 35.32 389 102
SLA* 11,030 1.98 10,947 82
PBP-LRTA* 17,055 43.87 1,384 103
SLA*T(100) 17,705 46.67 9,223 91
SLA*T(1000) 24,495 69.90 8,404 97
LRTA* 29,760 90.67 2,237 102

Table 4.2: Results from the sliding-tile domains
8-puzzle

Averaged Totals First-trial
Travel Cost Trials Conv. Travel Cost Sol. Len.

SLA* 2,226 1.95 2,205 20
FBP-LRTA* 39,457 141.61 388 111
PBP-LRTA* 40,633 146.71 275 81
LRTA* 73,360 256.44 380 61
SLA*T(1000) 77,662 253.99 380 61
SLA*T(100) 149,646 202.77 651 41

in pathfinding domains. Furthermore, FBP-LRTA* achieves this, unlike SLA*, while
keeping its real-time characteristics by amortizing the learning over many trials. The
value back-propagation algorithms successfully combine the good properties of SLA*
and LRTA*: SLA*’s short travel cost and fast convergence and LRTA*’s short first-trial
delay and iterative solution approach.

Table 4.2 gives the same information for both sliding-tile puzzles. In the 8-puzzle domain
SLA* is clearly superior to the other algorithms when evaluated by total travel cost. This
result is consistent with what has been reported in the literature (Bulitko & Lee, 2006). In
this domain backtracking, as opposed to only doing value back-propagation, is clearly ad-
vantageous. Also of interest is that FBP-LRTA* and PBP-LRTA* perform almost equally
well, contrary to the pathfinding domains where FBP-LRTA* was superior. This can be
explained by the fact that there are relatively few transpositions in the sliding-tile-puzzle
domain. Thus, the benefit of continuing the back-propagation is minimal. Also, some-
what surprisingly the first-trial cost of PBP-LRTA* is superior to FBP-LRTA*. No solid
explanation for this is available at this time. Results from the 15-puzzle domain show that

36 Back-Propagation

Table 4.3: Bounding the back-propgation phase of FBP-LRTA* and PBP-LRTA*.
Gridworld

Bound (k) k=5 k=10 k=50 k=100 k=200 k=500 Unbounded

Travel Cost
FBP-LRTA* 16,492 14,493 12,070 11,305 10,536 9,499 8,325
PBP-LRTA* 17,055
LRTA* 29,760

Ave. Move Delay
FBP-LRTA* 0.0049 0.0077 0.0280 0.0488 0.0855 0.1726 0.4275
PBP-LRTA* 0.0036
LRTA* 0.0013

8-Puzzle
Bound (k) k=5 k=10 k=50 k=100 k=200 k=500 Unbounded

Travel Cost
FBP-LRTA* 43,466 40,046 38,964 39,041 38,946 39,139 39,457
PBP-LRTA* 40,633
LRTA* 73,360

Ave. Move Delay
FBP-LRTA* 0.0146 0.0215 0.0746 0.1323 0.2198 0.4170 0.6077
PBP-LRTA* 0.0110
LRTA* 0.0061

the overall benefits of value back-propagation are relatively small. SLA* was the only
algorithm that was successful for that puzzle size. It converged in 95 out of the 100 15-
puzzle instances using a limit of 50 million states traveled, whereas the other algorithms
all failed to converge even on a single problem.

4.4 Bounding the Back-Propagation

The evaluation of both the FBP-LRTA* and the PBP-LRTA* algorithms in this chapter
has focused on showing how much the back-propagation of heuristic values can improve
performance. However, to ensure that the algorithms retain their real-time property, of
constant deliberation time, the back-propagation phase must be upper-bounded by a con-
stant k. The k parameter defines the distance (in number of states) from the current state
that values will be back-propagated. Only states on the current trial’s solution path lead-
ing away from the current state are considered for updating. The implementation of a
constant k into the back-propagation extensions previously presented in this chapter is
relatively simple.

Table 4.3 presents data for the bounded versions of both the FBP-LRTA* and PBP-LRTA*
algorithms. Both algorithms were run with 6 different values of k: 5, 10, 50, 100, 200
and 500 respectively, in addition to the unbounded version. The PBP-LRTA* algorithm
never hit the lowest upper-bound limit, therefore only the value of the unbounded version
of PBP-LRTA* is presented. Two metrics are presented for each testbed: the total average
travel cost and the average move delay. Travel cost is measured as the number of states
expanded and the move delay is measured in milliseconds. All times were taken on a
cluster of Dual Intel P4 Xeon 3GHz CPU machines, the program was compiled using the
Linux gcc 4.0 compiler. The results from the Baldur’s Gate domain were similar to that
from the Gridworld, therefore only the Gridworld is presented in Table 4.3. The only no-

4.5 Summary 37

Table 4.4: Total Time to Convergence
(All times are in milliseconds)

8-puzzle % of LRTA* Gridworld % of LRTA* Baldur’s Gate % of LRTA*

LRTA* 378.3 100.0% 101.1 100.0% 1,148.6 100.0%
PBP-LRTA* 425.0 112.3% 90.6 89.7% 810.6 70.6%
FBP-LRTA* 12,682.4 3,352.6% 1,587.5 1,570.7% 9,545.1 831.0%

table difference is that the move-delay metrics for the unbounded FBP-LRTA* algorithm
are slightly higher in the Baldur’s Gate due to longer solution paths.

The data confirms that any additional back-propagation results in lower overall travel
cost but at a cost of increased deliberation time. In the Gridworld the FBP-LRTA* al-
gorithm steadily improves its performance over that of PBP-LRTA* as k is increased.
The resulting increase in move delay is close to linear in the increase of k. Consequently
back-propagating further results in lower overall travel costs while increasing the algo-
rithms deliberation time. The 8-puzzle shows however that PBP-LRTA* which never
back-propagates more than 2 states performs better overall than FBP-LRTA* with a k = 5
which is consistent with previous statements that back-propagation seems to be far less
effective in this domain. Additionally the 8-puzzle exhibits much higher move delays than
the pathfinding domains for the same values of k. This likely due to the search performing
more heuristic updates in the 8-puzzle than in the Gridworld (saving and updating values
requires more instructions than just comparing).

Table 4.4 shows the total time (in milliseconds) that it took the unbounded versions of the
algorithms to converge. Here the advantage that back-propagation has in the pathfinding
domains can be observed. There the PBP-LRTA* algorithm, which never reaches the low-
est back-propagation limit of 5, has considerable advantage over the LRTA* algorithm,
requiring 10%-30% less total time until convergence.

4.5 Summary

This chapter studied the effectiveness of backtracking versus back-propagation in se-
lected single-agent search domains. The good performance of backtracking algorithms
like SLA* has often been contributed to their more elaborate successor-selection criteria.
This was shown not to be true in general. For example, in pathfinding domains the perfor-
mance improvement is mainly due to the effects of back-propagating updated heuristics,
not the backtracking. The FBP-LRTA* search variant exhibited the best overall perfor-
mance of all the real-time search algorithms experimented with (not counting the SLA*
algorithm). Furthermore, in this domain the back-propagation variants successfully com-
bine the nice properties of SLA* and LRTA*: SLA*’s low travel cost and LRTA*’s short
first-trial delay and iterative solution approach.

On the other hand, contrary to the pathfinding domains, back-propagation is much less
effective in the sliding tile puzzle. It showed some benefits on the 8-puzzle, but results
on the 15-puzzle show diminishing contribution. The different exploration criterion used
by backtracking seems to be have far more impact than value updating. This poses an

38 Back-Propagation

interesting research question of what properties of a problem domain favor backtrack-
ing versus value back-propagation. The complexity of the domain and the frequency of
transpositions is suspected to be in part responsible, but based on the available evidence
it is too premature to speculate much at this stage and this is therefore left for future
research.

There is still additional work that needs to be done to understand the mutual and separate
benefits of back-propagation and backtracking better. Such investigation opens up many
new interesting questions. There is clearly scope for new search variants that better uti-
lize the benefits of both approaches by adapting to different problem domains. The next
chapter introduces one such variant, built on the FBP-LRTA* algorithm but attempting to
augment it with an optional backtracking stage.

Chapter 5

Backtracking

This chapter introduces a new real-time search variant based on the FBP-LRTA* algo-
rithm introduced in the previous chapter. The new algorithm augments its value back-
propagation phase with an optional backtracking mechanism. The new algorithm is a
hybrid method between the LRTA* and SLA* algorithms. The new method is able to
make better decisions than the current SLA*T hybrid, regarding whether backtracking is
more efficient than continuing forward from the current state. The new hybrid method
successfully improves the poor performance of FBP-LRTA* in the sliding-tile puzzle.
However the backtracking phase is shown to have counter-productive effects on the algo-
rithms performance in the pathfinding domains.

5.1 Introduction

Backtracking was first introduced to the field of real-time search with the SLA* algorithm
(Shue & Zamani, 1993). The SLA* algorithm and its SLA*T variant are the only strictly
optimal seeking real-time methods that include a backtracking extension. However, as
previously witnessed, they both have serious real-time flaws: SLA* with its extremely
poor first-trial performance and SLA*T’s parameterization being highly problem depen-
dent.

As shown in the previous chapter, to facilitate a change in the successor selection then
backtracking must be coincided with value back-propagation. However the chapter showed
how back-propagation can be done independently of backtracking. This chapter on the
other hand, shows how an independent back-propagation technique can be used to enable
a more informed backtracking. Therefore the new backtracking algorithm introduced in
this chapter will augment the previously described FBP-LRTA* algorithm with an op-
tional backtracking phase. This new algorithm is able to make more intelligent choices
regarding whether and then how far it should backtrack. By separating these two phases
the algorithm improves the stability of the search process from that of the other backtrack-
ing variants and boosts the performance of FBP-LRTA* in exponential domains such as
the sliding-tile puzzle.

40 Backtracking

The main contributions of this chapter are:

1. New insights into how information learned through back-propagation can be uti-
lized to make better backtracking choices.

2. An algorithmic formulation of backtracking FBP-LRTA*, that clearly separates its
value back-propagation and bactracking

3. An improved way of amortizing backtracking over consecutive trials; eliminating
the need for a user-definable control parameter.

Section 5.2 provides a formulation of the enhanced backtracking LRTA* variant. Its eval-
uation results are contrasted with other common backtracking real-time search algorithms
in Section 5.3. Finally the chapter is concluded and future work discussed in Section
5.5.

5.2 Enhanced Backtracking

Algorithm 8 EB-LRTA*
1: s← initial start state s0

2: solutionpath←< empty >
3: while s /∈ Sg do
4: Sbt ← ∅
5: h′(s)← mins′∈succ(s)(c(s, s

′) + h(s′))
6: if h′(s) > h(s) then
7: update h(s)← h′(s)
8: sprev ← s
9: for all states sb taken in LIFO order from the solutionpath do

10: scurr ← argmins′∈succ(sb)(c(sb, s
′) + h(s′))

11: h(sb)← h(scurr) + c(sb, scurr)
12: if sprev ∈ succ(sb) and sprev 6= scurr then
13: Sbt ← Sbt ∪ {sb}
14: end if
15: sprev ← sb

16: end for
17: end if
18: push s onto solutionpath
19: Sbt ← Sbt ∪ {argmins′∈succ(s)(c(s, s

′) + h(s′))}
20: s← argmins′∈Sbt

(h(s′)) – breaking ties towards the lowest c(s, s′)
21: end while

The new backtracking version of the FBP-LRTA* algorithm is presented as Algorithm 8.
The algorithm, termed Enhanced Backtracking LRTA* (EB-LRTA* for short), uses the
value back-propagation method of FBP-LRTA* but enhances it with an optional back-
tracking phase. The backtracking phase of the algorithm requires, as SLA*, a bi-directional
state space (i.e. that all actions are retractable) however the back-propagation phase only

5.2 Enhanced Backtracking 41

requires that all reachable states from the initial start state s0 lie on a path to one of its
goal states (i.e. that the algorithm never enters dead-ends).

The algorithm has two main facets:

1. When an heuristic update occurs it back-propagates the update through all the states
on its current solutionpath. (lines 9 to 16).

2. While back-propagating, the algorithm stores information on states where updated
heuristic values cause a different successor selection than before (lines 12 to 14).

When an h-value update occurs in state s (line 7) the algorithm starts its back-propagation
phase. It cycles through all traversed states during the current trial updating under-
estimated h-values. The algorithm additionally checks if the updated heuristic value
causes a change in the earlier successor selection (line 12). If such a change occurs the
state is stored in Sbt as a backtrack candidate (line 13).

The algorithm is now given a choice of backtracking to a previous state (chosen from
the backtrack set Sbt) or continuing forward from its current state. Then the algorithm
greedily selects which state to move to from this set based on the state’s heuristic value

X

S3
h=2

Y

S2
h=4

Z S0
h=2

S1
h=3

A
h=6

B
h=5

(a) Available Backtracking Op-
tions

Y

S2
h=4

Z S0
h=2

S1
h=3

A
h=6

B
h=1

(b) No Forced Backtrack-
ing

Z S0
h=2

S1
h=3

A
h=6

Sg
h=0

(c) No Unnecessary
Backtracking

Figure 5.1: Trade-off when selecting a backtrack state
The figures above each show a part of an EB-LRTA* state-tree after the back-propagation phase has concluded. In all the figures S0 is

the current state, dotted border indicate a previously visited state where a heuristic update caused a change in its successor selection,

a dashed state indicates a current minimum successor.

In Figure 5.1(a) state S2 did not get updated during the back-propagation phase. In this case the SLA* algorithm would backtrack

to S2 where it would stop and continue its LRTA* search from there on. EB-LRTA* could however choose to backtrack to state S3

because it has the lowest heuristic value.

In Figure 5.1(b) none of the Sn states changed their successor selection choices after updating. Therefore EB-LRTA* is not offered

any backtracking states and it immediately continues forward to its successor B. Here SLA* would be forced to backtrack all the way

up to state S2 and then revisit state S1 and S0.

Figure 5.1(c) demonstrates a case where EB-LRTA* decides to continue forward despite having detected possible backtrack states.

In this case the goal state is the next current successor and has the lowest heuristic value. Therefore EB-LRTA* will decide to move

forward although it is presented with S1 as a possible backtrack state.

42 Backtracking

Table 5.1: Results from the sliding-tile domains
8-puzzle

Averaged Totals First-trial
Travel Cost Trials Conv. Travel Cost Sol. Len.

SLA* 2,226 2.0 2,205 20
EB-LRTA* 26,300 107.1 413 58
FBP-LRTA* 39,457 141.6 388 111
LRTA* 73,360 256.4 380 61
SLA*T(1,000) 77,662 254.0 380 61

15-puzzle
Averaged Totals First-trial

Travel Cost Trials Conv. Travel Cost Sol. Len.
SLA* 29,705,920 2.0 29,705,867 52
FBP-LRTA* >50,000,000 n/a 3,914 687
EB-LRTA* >50,000,000 n/a 4,725 235
LRTA* >50,000,000 n/a 22,779 813
SLA*T(1,000) >50,000,000 n/a 1,228,778 209

(line 20) breaking ties toward the state closest to its current residing state. If tied, the
algorithm favors the lowest cost successor of the current state. The actions performed
when backtracking are all counted towards the algorithms travel cost. The algorithm, by
adding the current state’s lowest cost successor to the Sbt set or favoring it when breaking
ties, tempers the aggressiveness of the search’s backtracking, by allowing the search to
continue forward from its current state instead of forcing it to backtrack. This policy
is illustrated as Figure 5.1. For the same reasons that SLA*’s backtracking phase is not
applicable in directed domains, the EB-LRTA* algorithm is not fully applicable there
either. On the other hand, contrary to SLA*, when the EB-LRTA* algorithm is unable to
backtrack it is still able to back-propagate heuristic information, reverting completely to
its FBP-LRTA* ancestor.

Intuitively backtracking is only needed when different choices are present from its previ-
ously traversed path. By only considering states for backtracking where back-propagation
resulted in a successor selection change, EB-LRTA* only considers backtracking when
faced with different choices. Otherwise the search reverts to its default LRTA* succes-
sor selection policy. Not only does this result in a more effective backtracking strategy
but also eliminates the need for an user-definable backtracking control parameter such
as SLA*T’s T parameter. Consequently EB-LRTA* forms a better combination of back-
tracking and value back-propagation than previous hybrid methods such as the SLA*T
algorithm.

5.3 Experimental Results

The EB-LRTA* algorithm was empirically evaluated and contrasted with FBP-LRTA*,
LRTA*, SLA* and SLA*T (with T value of 100, 1,000 and 10,000; For each domain the
T value that performed the best was chosen for comparison). All algorithm settings and
domains used for the experiments are otherwise the same as in Chapter 3.

Table 5.1 reports the algorithm’s performance in the sliding-tile domain. For each al-
gorithm its total travel cost, number of trials to convergence, first-trial travel cost, and
solution length (with loops removed) is reported. Each number is the average over all

5.3 Experimental Results 43

Learning Performance
(The 8-Puzzle domain)

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

Thousands

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

EB-LRTA*

FBP-LRTA*

LRTA*

SLA*T (T=100)

SLA*

Figure 5.2: Learning Performance of EB-LRTA* compared to FBP-LRTA*, LRTA*, SLA* and
SLA*T(100) in the 8-piece version of the sliding-tile puzzle.

test instances of the respective domain. Since none of the comparison algorithms, except
SLA*, converged on any of the 15-puzzle problems within a travel cost of 50 million
states only the first-trial statistics are provided for that domain.

The data shows that when solving the 8-puzzle EB-LRTA* significantly improves the
performance of the FBP-LRTA* algorithm, having both less total travel cost and fewer
trials to convergence. During its first-trial EB-LRTA* has a marginally higher travel cost
than FBP-LRTA*, but produces much better solutions. This is even more evident in the
15-puzzle, where EB-LRTA* finds a first-trial solution that is only a third of that found
by FBP-LRTA*. EB-LRTA* achives this while only requiring a relatively small overhead
in travel cost.

Figure 5.2 shows the learning performance of the EB-LRTA* algorithm in the 8-puzzle
domain. The graph demonstrates clearly EB-LRTA*’s lower travel cost requirement.
More importantly, the graph shows EB-LRTA*’s excellent real-time nature. Namely how
quick it is to produce a relatively good first-trial solution and then effectively utilizes addi-
tional travel to further improve its solution. EB-LRTA* short trial delay is also evident in
this graph, illustrated by the compactness of the plotted line. Similarly Figure 5.3 shows
EB-LRTA* learning performance in the 15-puzzle domain. Although each algorithm was
restricted to only 500 trials, the results give a good indication of their overall performance.
The graph in the figure shows that EB-LRTA* has a shorter trial delay than the other al-
gorithms (closely comparable to LRTA*) and is able to produce a fair first-trial solution
relatively fast. Its short trial delay is clearly evident since it has performed close to 350
trials (out of 500) before SLA*T(1,000) is able to return an initial solution.

Table 5.2 shows the same information as presented Table 5.1 only now for the pathfinding
domains. In these domains, FBP-LRTA* previously exhibited a much better performance
than any of the other algorithms, both during its first-trial and in total. Table 5.2 shows
however that the backtracking phase of EB-LRTA* is counterproductive to the search’s

44 Backtracking

Table 5.2: Results from the pathfinding domains
Baldur’s Gate Maps
Averaged Totals First-trial

Travel Cost Trials Conv. Travel Cost Sol. Len.
SLA* 17,374 1.8 17,308 71
FBP-LRTA* 19,695 63.4 508 89
EB-LRTA* 26,669 62.7 3,158 89
SLA*T(100) 29,518 49.1 15,621 80
LRTA* 59,916 167.1 3,610 90

Gridworld with random obstacles
Averaged Totals First-trial

Travel Cost Trials Conv. Travel Cost Sol. Len.
FBP-LRTA* 8,325 35.3 389 102
SLA* 11,030 2.0 10,947 82
EB-LRTA* 11,332 35.6 1,146 97
SLA*T(100) 17,705 46.7 9,223 91
LRTA* 29,760 90.7 2,237 102

success when compared to FBP-LRTA*, since EB-LRTA* increases both its total and
first-trial travel cost. As expected, value back-propagation is by far the best search exten-
sion for pathfinding domains.

The stability of the travel cost incurred by EB-LRTA* during its convergence process
is presented in Table 5.3. This table lists the convergence stability indices formerly de-
scribed in Section 3.5. They confirm that EB-LRTA* significantly improves the travel
cost stability of FBP-LRTA* in the 8-puzzle domain. While both the IAE and ISE in-
dices for EB-LRTA* indicate a much milder over-shots in travel cost its SOD value
shows how effectively EB-LRTA* reduces wandering. Although EB-LRTA* shows an
overall improved performance over the comparison algorithms in the pathfinding do-
mains, its backtracking phase clearly causes an increase in excess travel cost from that
of FBP-LRTA*.

Learning Performance
(The 15-Puzzle Domain, limited to 500 iterations)

0

5

10

15

20

25

30

0 1 2 3 4 5 6

H
u
n
d
re

d
s

Millions

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

EB-LRTA* SLA*T (T=1000)

LRTA*

Note: SLA*T (T=100) Only returns a

solution after traveling more than 10

Million states and SLA* after 30 Million.

Figure 5.3: Learning Performance of EB-LRTA* compared to LRTA* and SLA*T(1,000) in the 15-puzzle.
The algorithms were limited to only 500 trials each (due to difference in travel cost per trial the algorithms
incur different total travel costs during the 500 trials). FBP-LRTA* was excluded to improve readability, its
performance nearly identical to that of LRTA*.

5.4 Bounding EB-LRTA*’s Back-Propagation 45

Table 5.3: Stability of Travel Cost During Convergence for EB-LRTA*
IAE (x103) ISE (x109) ITAE (x106) ITSE (x109) SOD (x103)

Baldur’s Gate

FBP-LRTA* 8.1 0.018 2.103 1.138 3.4
EB-LRTA* 15.4 0.342 2.447 4.382 6.2
LRTA* 28.9 0.524 12.555 22.414 10.1
SLA* 17.2 7.324 0.017 7.324 0.0
SLA*T(100) 24.0 7.624 0.530 28.140 4.8

Gridworld

FBP-LRTA* 4.5 0.005 0.112 0.067 2.0
EB-LRTA* 7.4 0.032 0.183 0.246 3.0
LRTA* 19.8 0.108 1.081 1.986 7.9
SLA* 10.9 1.304 0.011 1.304 0.0
SLA*T(100) 13.6 1.265 0.114 1.401 1.8

8-puzzle

FBP-LRTA* 36.1 0.019 4.778 2.181 17.6
EB-LRTA* 23.7 0.010 2.435 0.875 10.7
LRTA* 67.2 0.036 15.622 7.096 32.7
SLA* 2.2 0.013 0.002 0.013 0.0
SLA*T(1,000) 71.6 0.068 16.061 12.026 37.3

When developing the original idea behind the EB-LRTA* algorithm it was intended to
greedily select a state from the backtrack set (see Algorithm 8, line 20) using the sum
of the backtrack state’s heuristic value and the cost of backtracking to that state from
the current state or argmins′∈Sbt

(h(s′) + c(s, s′)). However in environments that have
uniform state-transition costs, this cost function results in no backtracking actions being
performed. Adapting the EB-LRTA* algorithm to domains with variable state-transition
costs is left for future work.

Experimentation in using alternative tie-breaking rules during the backtracking phase,
resulted in no significant performance improvements. When breaking ties towards the
backtrack state furthest away from the current state, e.g. the highest c(s, s′) (see Algo-
rithm 8 line 20) no noteworthy improvements could be observed, neither in total travel
cost nor in convergence stability. Primarily the experiments indicate that backtracking
further away from the current state results in a reduction in trials required until conver-
gence and somewhat shorter solutions. This however comes at the cost of a significant
increase in trial delay (particularly during the first-trial).

5.4 Bounding EB-LRTA*’s Back-Propagation

As previously discussed in Chapter 4, the back-propagation phase of the FBP-LRTA*
algorithm must be bounded to ensure constant deliberation time. Since EB-LRTA* builds
on the FBP-LRTA* algorithm, similar back-propagation bounds can be put in place.

Table 5.4 presents data for the bounded versions of EB-LRTA*. The algorithm was run
with 6 different values of k: 5, 10, 50, 100, 200 and 500 respectively, in addition to
the unbounded version. Two metrics are presented for each testbed: the total average
travel cost and the average move delay. Travel cost is measured as the number of states
expanded and the move delay is measured in milliseconds. The experiments were run on
a Dual Intel P4 Xeon 3GHz CPU machine and the code was compiled using the Linux
gcc 4.0 compiler. The results from the Baldur’s Gate domain are omitted from Table 5.4,
since they provide similar information as the Gridworld. The only significant difference

46 Backtracking

Table 5.4: Bounding the back-propgation phase of EB-LRTA*.
Gridworld

Bound (k) k=5 k=10 k=50 k=100 k=200 k=500 Unbounded

Travel Cost
FBP-LRTA* 16,492 14,493 12,070 11,305 10,536 9,499 8,325
EB-LRTA* 15,043 12,567 11,334 11,333 11,333 11,333 11,333
LRTA* 29,760

Ave. Move Delay
FBP-LRTA* 0.0049 0.0077 0.0280 0.0488 0.0855 0.1726 0.4275
EB-LRTA* 0.0048 0.0073 0.0248 0.0401 0.0503 0.0552 0.0507
LRTA* 0.0013

8-Puzzle
Bound (k) k=5 k=10 k=50 k=100 k=200 k=500 Unbounded

Travel Cost
FBP-LRTA* 43,466 40,046 38,964 39,041 38,946 39,139 39,457
EB-LRTA* 29,937 26,896 26,310 26,310 26,300 26,300 26,300
LRTA* 73,360

Ave. Move Delay
FBP-LRTA* 0.0146 0.0215 0.0746 0.1323 0.2198 0.4170 0.6077
EB-LRTA* 0.0098 0.0158 0.0464 0.0570 0.0586 0.0605 0.0565
LRTA* 0.0061

is that the move-delay for the unbounded FBP-LRTA* algorithm is higher in the Baldur’s
Gate due to longer solution paths.

EB-LRTA* shows diminishing travel cost improvements beyond a bound of k = 10 in
both the Gridworld and the 8-puzzle domain. EB-LRTA* has a noticeably good first-
move delay and average total move-delay in both domains compared to FBP-LRTA*.
While FBP-LRTA* has a move-delay of roughly a factor of 100 compared to LRTA*, the
move-delay of the EB-LRTA* compared to LRTA* is only around a factor of 10. This
difference is most obvious in the 8-puzzle domain, though it is also clearly noticeable in
both pathfinding domains. A reason for this is that while FBP-LRTA*’s solutionpath
strictly grows in length as the search travels through the problem space, resulting in in-
creasingly longer back-propagation, the EB-LRTA* algorithm regularly removes states
from its solutionpath decreasing its length, thus requiring shorter back-propagation than
FBP-LRTA*. Interesting to note is that Table 5.4 indicates that the EB-LRTA* algorithm
has no noticeable travel cost improvements beyond a bound of k = 10. Also, when
k >= 50 the algorithm does not exhibit any significant increase in either its first-move
delay or its average move delay.

Even when bounded by low k-values the EB-LRTA* algorithm maintains most of the
efficiency of its unbounded counterpart. This makes the EB-LRTA* a good practical real-
time algorithm.

5.5 Summary

This chapter demonstrated the performance improvement gained through backtracking
in certain domains. It built on the findings on value back-propagation obtained from
Chapter 4 to illustrate how backtracking can be used to improve both the overall and first-
trial performance for problems where pure value back-propagation is less effective.

5.5 Summary 47

The EB-LRTA* algorithm was introduced which extends the FBP-LRTA* algorithm by
augmenting it with an optional backtracking step. By clearly separating the value back-
propagation and action backtracking the algorithm is able to intelligently decide to back-
track only when it is likely to yield a better result.

The algorithm was shown to perform very well in the sliding-tile domain, significantly im-
proving upon the performance of FBP-LRTA* in that domain. The algorithm achieved an
excellent overall first-trial and total performance, requiring lower travel cost and showing
more stable convergence process. On the other hand, the results from the pathfinding do-
mains show that while back-propagation does very well, the introduction of a backtrack-
ing step can have a detrimental impact on the algorithm performance. This somewhat
indicates that backtracking and value back-propagation are, in some domains, counter-
productive to each other. Although not conclusive, there is a strong indication that the
structure of the problem domain determines which of them is appropriate. Therefore
while augmenting value back-propagation with backtracking for exponential domains
such as the sliding-tile puzzle is clearly beneficial, the same is not true for domains such
as the pathfinding domains that have a high amount of state transpositions.

Compared to the SLA*T algorithm, EB-LRTA* shows both better performance and real-
time nature and forms a more successful hybrid algorithm of the greedy LRTA* successor
selection and the backtracking of SLA*. Future work include a more detailed evaluation
of alternative tie-breaking policies during the backtracking phase and a more refined con-
trol of how and when backtracking is performed. The performance of EB-LRTA* in
variable cost environments is also largely unknown and how different state transitional
costs affect the selection of backtrack states. There is still much work to be done in ex-
tracting information from the backtracking and back-propagation search extensions. Such
research opens up many new interesting questions regarding what information other real-
time search extension have to offer each other.

Chapter 6

Conclusions

This chapter summarizes the main contributions of this thesis and describes several av-
enues for future work.

6.1 Conclusion

The main contributions of the research presented in this thesis are threefold: exten-
sive comparison of optimal seeking real-time algorithms, the separation of value back-
propagation from backtracking, and the introduction of the enhanced backtracking real-
time search algorithm. This section summarizes the individual contributions of each of
these three parts.

The comparison research presented in Chapter 3 sheds new light on the real-time nature
of several popular algorithms and their relative performance in a diverse set of testbeds.
It unified earlier comparison research on disjoint set of real-time algorithms (Shimbo &
Ishida, 2003; Bulitko & Lee, 2006). The comparisons were based on a unified implemen-
tation of both the algorithms themselves and in a varied set of testbeds. All the algorithms
were tested using the same initial problem instances. The research while primarily con-
firming earlier results also shed new light on various unknown algorithm properties. The
chapter introduced a new simple visual method of evaluating the learning performance of
real-time algorithms during their convergence process. This method of evaluation makes
it easier to judge the real-time nature of algorithms and the stability and effectiveness of
their convergence process. The chapter also quantified the effect that loop elimination has
on the reported solution quality of real-time algorithms and advocated for loop removal
to ensure fair comparisons.

Chapter 4 demonstrates that the good performance of backtracking algorithms, such as
SLA*, in certain domains is not primarily due to their different successor selection pol-
icy. In-fact the value back-propagation phase contributes significantly more in certain
domain types (such as the pathfinding domains used in this thesis). A simple extension
to the LRTA* algorithm that only performs value back-propagation was introduced. An
important design element of the new algorithm is that it does not assume knowledge of

6.2 Future Work 49

unexplored successor states during updating of heuristic values. The algorithm, termed
FBP-LRTA*, was empirically evaluated and its performance contrasted with other real-
time algorithms. FBP-LRTA* exhibited excellent performance in the pathfinding domains
and demonstrated that back-propagation clearly outperforms backtracking in those do-
mains. However, while improving the performance of LRTA*, FBP-LRTA* did not show
the same effectiveness in the sliding-tile domain.

EB-LRTA* is the first real-time algorithm that utilizes backtracking but clearly sepa-
rates it from its back-propagation of heuristic values. The algorithm is based on the
FBP-LRTA* algorithm. The separation of back-propagation and backtracking enables
EB-LRTA* to do more informed backtracking. It significantly improves upon the overall
performance of LRTA* and the SLA*T algorithms in all the test domains. More impor-
tantly it was more successful in improving the trial delay (especially the first-trial) than
previous backtracking algorithms. EB-LRTA* was intended to improve the relative poor
performance of the FBP-LRTA* algorithm in domains such as the sliding-tile puzzle.
While successfully attaining its goal the additional backtracking phase however degrades
the performance of the FBP-LRTA* algorithm in the pathfinding domains. This finding
shows that combining backtracking and back-propagation are to some extent counter-
productive to each other.

6.2 Future Work

During the experimental investigation of this thesis, some interesting phenomena were ob-
served that need to be addressed. Below possible avenues for future work are listed.

An interesting research topic would be to expand the comparison research of Chapter 3
onto more varied and complex testbeds. Especially experimenting with real-time algo-
rithms in testbeds that have considerably higher branching factors and different state-
space properties.

To complement the comparisons done in Chapter 3 a similar performance comparison is
needed for the real-time algorithms that sacrifice the optimality of their final solutions.
A detailed evaluation of the performance improvements that these algorithm gain by sac-
rificing optimality compared to their optimal seeking counterparts. For algorithms such
as εLRTA* and γ-Trap a study of the most effective parameter values is needed as well
as contrasting the performance of the sub-optimal real-time algorithms against the com-
parisons presented in this thesis. Experiments with εLRTA* not included in this thesis,
indicated that if any sizable reduction in resource consumption is to be gained the sub-
optimality sacrifice had to be considerable. An evaluation is needed of the relative gain
of sacrificing optimality opposed to the evaluation of the optimal algorithms presented
in Chapter 3. Further research is also needed of other ways to sacrifice optimality in the
hopes of an improved real-time performance.

The efficiency of back-propagation in the pathfinding domains contrasted with its rela-
tive poor performance in the sliding-tile puzzle raise further questions. Identifying what
domain properties are causing back-propagation to excel and backtracking to fail (and

50 Conclusions

vice versa) is important to the development of new and more improved algorithm exten-
sions.

The current knowledge of the FBP-LRTA* and the EB-LRTA* algorithms behavior is
solely based on empirical testing. Although both algorithms are strongly believed to retain
all of LRTA* properties related to convergence and completeness, currently no theoretical
proofs can be provided. Formulation of such theoretical work could be advantageous for
further understanding the properties of these algorithms.

Bibliography

Björnsson, Y., Enzenberger, M., Holte, R., Schaeffer, J., & Yap, P. (2003). Comparison
of different abstractions for pathfinding on maps. Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI 03), 1511-1512.

Bulitko, V. (2003). Lookahead pathologies and meta-level control in real-time heuristic
search. In Proceedings of the 15th euromicro conference on real-time systems (pp.
13–16). Porto, Portugal.

Bulitko, V. (2004). Learning for adaptive real-time search (Tech. Rep.). Computer
Science Research Repository (CoRR).

Bulitko, V., & Lee, G. (2006). Learning in real time search: A unifying framework.
Journal of Artificial Intelligence Research, 25, 119 – 157.

Bulitko, V., Li, L., Greiner, R., & Levner, I. (2003). Lookahead pathologies for sin-
gle agent search. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), poster section (pp. 1531–1533). Acapulco, Mexico.

Dechter, R., & Frost, D. (1998). Backtracking algorithms for constraint satisfaction
problems; A Survey (Tech. Rep.). School of Information and Computer Science,
University of California, Irvine, CA 92697-3425.

Dechter, R., & Pearl, J. (1985). Generalized Best-First Search Strategies and the Opti-
mality of A*. Journal of the ACM, 32(3), 505-536.

Dorf, R. C. (1988). Modern control systems. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc.

Edelkamp, S., & Eckerle, J. (1997). New strategies in learning real time heuristic search.
In On-line Search: Papers from AAAI Workshop, Providence, RI (pp. 30–35). AAAI
Press.

Furcy, D., & Koenig, S. (2000). Speeding up the convergence of real-time search. In
Proceedings of the national conference on artificial intelligence (AAAI/IAAI) (pp.
891–897).

Furcy, D., & Koenig, S. (2001). Combining two fast-learning real-time search algorithms
yields even faster learning. In Proceedings of the Sixth European Conference on
Planning (ECP-01), Toledo, Spain, 2001.

52 Bibliography

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, SSC-4(2), 100–107.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1972). Correction to "a formal basis for the
heuristic determination of minimum cost paths". SIGART Bull., 37, 28–29.

Hart, T., & Edwards, D. (1963). The alpha-beta heuristic (Tech. Rep.). Cambridge, MA,
USA.

Hernández, C., & Meseguer, P. (2005a). Improving convergence of LRTA*(k). In In Pro-
ceedings of Workshop on Planning and Learning in A Priori Unknown or Dynamic
Domains IJCAI-05.

Hernández, C., & Meseguer, P. (2005b). LRTA*(k). In In Proceedings of the 19th
International Joint Conference on Artificial Intelligence, IJCAI-05.

Ishida, T. (1997). Realtime search for learning autonomous agents. Kluwer Academic
Publishers.

Ishida, T., & Shimbo, M. (1996). Improving the learning efficiencies of realtime search.
In National conference on artificial intelligence (AAAI-96) (AAAI/IAAI) (Vol. 1, pp.
305–310).

Koenig, S. (2001). Agent-centered search. Artificial Intelligence Magazine, 22(4), 109-
132.

Koenig, S. (2004). A comparison of fast search methods for real-time situated agents. In
Aamas ’04: Proceedings of the third international joint conference on autonomous
agents and multiagent systems (pp. 864–871). Washington, DC, USA: IEEE Com-
puter Society.

Korf, R. E. (1985). Depth-first iterative-deepening: an optimal admissible tree search.
Artificial Intelligence, 27(1), 97–109.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence Magazine, 42(2-3),
189–211.

Lin, L.-J. (1992, May). Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8(3-4), 293–321.

Luštrek, M., & Bulitko, V. (2006). Lookahead pathology in real-time path-finding. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), Workshop
on Learning For Search. Boston, Massachusetts.

Pemberton, J., & Korf, R. (1992). Making locally optimal decisions on graphs with
cycles (Tech. Rep.). Computer Science Department, University of California at Los
Angeles.

Bibliography 53

Rayner, D. C., Davison, K., Bulitko, V., & Lu, J. (2006). Prioritized-LRTA*: Speeding
up learning via prioritized updates. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), Workshop on Learning For Search. Boston, Mas-
sachusetts.

Russell, S., & Wefald, E. (1991). Do the right thing: studies in limited rationality.
Cambridge, MA, USA: MIT Press.

Shannon, C. E. (1950, March). Programming a computer for playing chess. Philosophical
Magazine, 41, 256–275.

Shimbo, M., & Ishida, T. (2003, May). Controlling the learning process of real-time
heuristic search. Artificial Intelligence Archive, 146(1), 1–41.

Shue, L.-Y., & Zamani, R. (1993). An admissible heuristic search algorithm. In J. Ko-
morowski & Z. W. Ras (Eds.), Methodologies for Intelligent Systems: In Proceed-
ings of the 7th International Symposium (ISMIS-93) (pp. 69–75). Berlin, Heidel-
berg: Springer.

Shue, L.-Y., & Zamani, R. (1999, Sep). An intelligent search method for project schedul-
ing problems. Journal of Intelligent Manufacturing, 10, 279–288.

Sigmundarson, S., & Björnsson, Y. (2006, July). Value Back-Propagation vs. Backtrack-
ing in Real-Time Search. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), Workshop on Learning For Search. Boston, Massachusetts,
USA: AAAI Press.

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press.

Wikipedia. (2006). N-puzzle — wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=N-puzzle&oldid=
41723281. ([Online; accessed 8-March-2006])

Appendix A

Test Domains

Researchers in the field of Artificial Intelligence have used a vide variety of problem do-
mains to test and showcase their research. In most cases these domains have been closely
related to each researcher’s interest or research area, some are even specially designed to
highlight certain nice algorithm properties. Few examples include: the sliding-tile puz-
zle (Korf, 1990; Furcy & Koenig, 2000), Gridworld with random obstacles (Shimbo &
Ishida, 2003), wireless network routing (Bulitko & Lee, 2006), robot navigation simula-
tor (Ishida, 1997) and commercial RTS1 game-maps (Björnsson et al., 2003; Bulitko &
Lee, 2006).

A few of these problem domains were selected to use for comparison in this thesis. They
are described in more detail below. These domains can be categorized into two main
groups:

1. Domains that have become well established in the artificial literature.

2. Domains that emulate a realistic real-world domain.

All domains use the four-way (quartic) heuristic function and action generation. Several
popular test domains (including the sliding-tile puzzle and several pathfinding domains)
have been shown to exhibit inherent pathological problems (Bulitko, 2003; Bulitko, Li,
Greiner, & Levner, 2003; Luštrek & Bulitko, 2006). These problems have been shown to
skew results when using certain lookahead depths. In light of this research the lookahead
depth of all algorithms experimented with in this thesis have a fixed value of one to reduce
the impact of these domain specific problems. This is similar to what has been done by
previously referenced researchers.

A.1 Sliding-Tile Puzzle

The sliding-tile puzzle, also known as the n-puzzle, has been a popular test-bed for Arti-
ficial Intelligence research for years. The puzzle and its rules are simple:

1 Real-Time Strategic

A.1 Sliding-Tile Puzzle 55

[The] sliding-tile puzzle consists of a grid of numbered squares with one
square missing, and the labels on the squares jumbled up. [...]The goal of the
puzzle is to un-jumble the squares by only making moves which slide squares
into the empty space, in turn revealing another empty space in the position of
the moved piece. (Wikipedia, 2006)

Examples of sliding-tile puzzle configurations are shown in Figure A.1. In real-time
search research this testbed was first used by Korf (Korf, 1990) where it was set up with
the 15-puzzle configuration for demonstration. Since then researchers have used this
testbed (both 8 and 15 piece versions) extensively throughout their experiments. The
puzzle provides a good testbed since it has an exponential state space and thus poses a
rather hard problem to solve for many common off-line searches. This is especially true
for the larger versions of this puzzle, e.g. the 15, 24, 99 piece puzzles. Also, unlike
most pathfinding domains, the sliding-tile puzzle has a relatively low frequency of state
transpositions (Koenig, 2001).

Korf presented 100 optimally solved instances of the 15-puzzle used for his evaluation
(Korf, 1985). In this thesis the same 100 instances are used for all 15-puzzle experiments.
Since such a set is not available for the 8-puzzle, a set of 100 random solvable instances of
the 8-puzzle were generated. These 100 8-puzzle instances are available for download2.
The 8-puzzle instances generated for the experiments in this thesis all have solutions of

8 6 7
2 5
3 1 4

(a) A 8-puzzle random
start position

1 2 3
4 5 6
7 8

(b) The 8-puzzle goal
position

10 2 12 4
8 5 13
6 9 1 14
3 11 7 15

(c) A 15-puzzle ran-
dom start position

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

(d) The 15-puzzle goal
position

Figure A.1: Examples of the 8- and 15 piece Sliding-Tile Puzzle. Each puzzle consists of a
set of numbered sliding tiles and a blank location (indicated by the shaded square) into which
the horizontally or vertically adjacent tiles may move. The goal location shown is the one used
throughout this thesis.

2 http://nemendur.ru.is/sverrirs01/thesis/

56 Appendix A: Test Domains

variable length. The shortest 8-puzzle solution is 6 moves and the longest 28. On average
the solution length of the 100 instances is 20 moves.

A.2 Random Gridworld

Shimbo and Ishida (Shimbo & Ishida, 2003) used a simple gridworld pathfinding domain
in their research. The domain can be configured with a variable amount of obstacles
(obstacle ratio) which is user controllable. It was noted by the authors that a certain range
of obstacle ratio is preferred to ensure that the problem poses an interesting research
problem. For comparisons in this thesis obstacles of three different ratios, 20%, 30%
and 40% were randomly generated for each grid. Empirically this has shown to result in
neither overly simple paths, i.e. a straight line (ratio lower than 10%) nor in unsolvable
problem instances (ratio higher than 50%). The length of the paths also varied between
maps (shortest being 5 moves and the longest 327 with a mean of 82 moves).

The Gridworld domain using this random obstacle generation has however an inherent
problem relating to the random distribution of the obstacles. A true random function
exhibits an equal distribution of its values across the domain. This fact makes cluster-
ing of obstacles unlikely, resulting in the forming of relatively straight paths from the
start to the goal. Therefore this random obstacle generation does not generate realistic
domains, namely systematic room structures, which makes the Gridworld a particularly
poor domain to use. The Gridworld is however a part of the experimental section to pro-
vide comparisons with previously reported work. Figures A.2(a) and A.2(b) show two
examples of the maps used.

A.3 Baldur’s Gate Game-Maps

The third domain used is also a pathfinding domain, but now using eight maps taken from
the commercial computer game Baldur’s Gate I. These maps were deliberately chosen
to provide a more realistic evaluation of the search performance in pathfinding domains.
Each game map has a logical room structure, hallways, corridors, doorways and large
open spaces. For each map 400 random start-goal state pairs were generated. The result-
ing 3,200 paths had an average length of 71 moves, with the shortest being only 2 moves
and the longest 407. This same set of maps was first used by Björnsson in 2003 (Björns-
son et al., 2003) and then later as a part of Bulitko’s 2005 research (Bulitko & Lee, 2006).
Two of the eight Baldur’s Gate game maps are shown in Figures A.2(c) and A.2(d).

A.3 Baldur’s Gate Game-Maps 57

(a) Gridworld with 20% obstacles (b) Gridworld with 40% obstacles

(c) A large open-space Baldur’s Gate map (d) A corridor-room based Baldur’s Gate
map

Figure A.2: A sample of the maps used for the pathfinding domains. Above is a sample of the
Gridworld domain, below two of the eight Baldur’s Gate maps used. The black areas represent
obstacles in both map types.

Appendix B

Experimental Data

B.1 Learning Quality

The graphs in Figures B.1 and B.2 are similar to the graph in Figure 3.2. To improve read-
ability the minimum true solution cost is plotted on the y-axis instead of the algorithms
true solution cost. This has no effect on the accuracy of the graphs.

Figure B.1 shows graphs for the learning performance of LRTA*, FALCONS, SLA* and
the SLA*T variants in all domains. Overall FALCONS has the fastest convergence rate of
any of the iterative algorithms, however it has a considerably worse first-trial performance
than LRTA* in all domains. In both pathfinding domains the SLA*T algorithms perform
exceptionally bad compared to their SLA* predecessor reporting first-trial travel costs
close to that of SLA* while finding worse solutions.

The graphs for δLRTA* are shown in Figure B.2. The performance of the δLRTA* algo-
rithm is only marginally better than LRTA* for the pathfinding domains. However in the
8-puzzle (Figure B.2(c)) δLRTA* performs significantly better than LRTA* and a clear
distinction between δ values is apparent (apart from their identical first-trial performance).
The performance of δLRTA*(1) in the Baldur’s Gate domain (Figure B.2(a)) compared
to the 8-puzzle is somewhat interesting. When δLRTA* is run with δ = 1 it converges
to significantly inferior solutions in the Baldur’s Gate domain, however it behaves quite
differently in the 8-puzzle domain. Running δLRTA*(1) in the 8-puzzle returns far better
solutions than δLRTA*(2) for more than 3 quarters of their total total travel cost. However
as expected, eventually δLRTA*(1) performance worsens as it converges to sub-optimal
solutions.

B.1 Learning Quality 59

Learning Performance
(Baldur's Gate)

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90 100

Thousands

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

 (
#

 o
f

N
o

d
e
s
)

LRTA* SLA*T(100) FALCONS SLA* SLA*T(1000)

FALCONS

SLA*T(1,000)

LRTA*

SLA*T(100)

SLA*

(a) Baldur’s Gate Domain

Learning Performance
(Gridworld)

80

85

90

95

100

105

110

0 5 10 15 20 25 30 35 40

Thousands

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

 (
#

 o
f

N
o

d
e
s
)

LRTA* SLA*T(100) FALCONS SLA* SLA*T(1000)

SLA*

FALCONS

LRTA*

SLA*T(1,000)

SLA*T(100)

(b) Gridworld Domain

Learning Performance
(8-Puzzle)

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

Thousands

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

 (
#

 o
f

N
o

d
e
s
)

LRTA* SLA*T(100) FALCONS SLA* SLA*T(1000)

FALCONS

SLA*T(1,000)

SLA*T(100)

SLA*

LRTA*

(c) 8-puzzle

Figure B.1: FALCONS, SLA*, SLA*T and LRTA*’s learning quality in the test domains

60 Appendix B: Experimental Data

Learning Performance
(Baldur's Gate)

71

76

81

86

91

0 50 100 150 200 250

Thousands

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

 (
#

 o
f

s
ta

te
s
)

LRTA* bLRTA*(1) bLRTA*(2) bLRTA*(4) bLRTA*(10)

bLRTA*(1)

bLRTA*(2)

bLRTA*(10)

bLRTA*(4)

LRTA*

(a) Baldur’s Gate Domain

Learning Performance
(Gridworld)

81

86

91

96

101

106

0 10 20 30 40 50 60 70 80 90 100

Thousands

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

 (
#

 o
f

s
ta

te
s
)

LRTA* bLRTA*(1) bLRTA*(2) bLRTA*(4) bLRTA*(10)

LRTA*

bLRTA*(10)

bLRTA*(4)

bLRTA*(1)

bLRTA*(2)

(b) Gridworld Domain

Learning Performance
(8-Puzzle)

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

Thousands

Travel Cost

S
o

lu
ti

o
n

 L
e
n

g
th

 (
#

 o
f

s
ta

te
s
)

LRTA* bLRTA*(1) bLRTA*(2) bLRTA*(4) bLRTA*(10)

LRTA*
bLRTA*(10)

bLRTA*(4)

bLRTA*(2)

bLRTA*(1)

(c) 8-puzzle

Figure B.2: Bounded LRTA*’s learning quality in the test domains

Appendix C

A Maze Problem For Your
Enjoyment

Department of Computer Science

Reykjavík University

Ofanleiti 2, IS-103 Reykjavík, Iceland

Tel: +354 599 6200

Fax: +354 599 6201

http://www.ru.is

