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Útdráttur 

Smíði áreiðanlegra hugbúnaðarkerfa er flókin en samt sem áður mikilvæg áskorun 

nútíma hugbúnaðarverkfræði. Grundvallaratriði til að ná fram áreiðanleika er aðferðafræðin 

sem beitt er við að þróa og sannreyna bæði hannanir og útfærslur. Það leikur enginn vafi á 

því að eitt af grundvallarverkefnum tölvunar- og upplýsingafræða er áframhaldandi 

framþróun í aðferðum hugbúnaðarþróunar: Við þurfum betri tæki og tól til þróunar 

áreiðanlegra og fyrirsjáanlegra hugbúnaðarkerfa. 

Á meðan upplýsingakerfi verða sífellt mikilvægari í samfélagi okkar, þá fjölgar 

dreifðum, ólíkum kerfum ört. Dreifð kerfi samanstanda af mörgum samvinnandi einingum 

sem oftast eru samanþjappaðar eða dreifðar yfir netkerfi og eiga samskipti á ósamstilltan 

hátt. 

Í þessu verkefni vinnum við innan viðameira verkefnis sem miðar að því að sýna fram 

á nýstárlegar hugmyndir, aðferðir og verklag við að þróa áreiðanleg og traust dreifð og 

ósamstillt kerfi. 

Með því að vinna með tiltekið tilfelli hugbúnaðarkerfa munum við kynnast 

áskorunum líkanagerðar og sannreyningar þeirra með Rebeca líkanasmiðnum. Við getum þá 

flokkað kosti og ókosti hverrar nálgunar fyrir sig sem mun leiða okkur að betri aðferðum og 

verklagi. 

Í þessu verkefni hönnum við, gerum líkan af og sannreynum dreifðan orrustuskipaleik 

sem dæmi um ferlið við að þróa viðeigandi dreift kerfi og metum áhrif þess miðað við að 

beitast við prófanir eingöngu. Niðurstöður þess eru þær að án líkanagerðar í því tilfelli, hefðu 

villur auðveldlega getað sloppið í gegn. 
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Abstract 

Building reliable software systems is a complex but important challenge of modern 

engineering. A fundamental determiner of software reliability is the methodology used to 

develop and verify both designs and implementations. There is no question that one of the 

fundamental tasks in computer and information science is advancing the state of our 

development methods: We need better techniques and tools for developing correct and 

predictable software systems. 

As information networks are becoming increasingly important in our society, the 

number of distributed heterogeneous software systems is rapidly growing. Distributed 

systems consist of multiple cooperating components where the components are typically 

encapsulated systems or objects spread over a network, interacting via asynchronous 

communication. 

In this project we work within a broader project which aims towards establishing 

novel ideas, methods, and techniques for developing reliable and trustworthy distributed 

and asynchronous systems. 

By working on specific case studies, we will find out the challenges in modeling and 

verifying such systems using the Rebeca model checker. We can then classify the advantages 

and disadvantages of different approaches which will lead us to better methods and 

techniques. 

In this project we design, model and verify a distributed battleship game as an 

example of the process of developing correct distributed systems and evaluate it‘s 

effectiveness vs. using testing alone. Results of which are, that in that particular case study, 

without modeling, bugs might easily have slipped through. 
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1. Concurrency Challenges 

The challenges with concurrency are both varied and many but they all start with the 

race condition [1]. It arises in software when separate processes or threads of execution are 

using some type of shared memory. As an example, consider two threads that access a 

critical section, put a value into register, increment by one and write back into the critical 

section. Sequentially the result is two but concurrently the result is one as shown in Fig. 1-1 

to 1-3. 

 

 

Figure 1-1. Race Condition 

 

 

Figure 1-2. Race Condition 
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Figure 1-3. Race Condition 

 
Problem with this is that, however unlikely, if it happens, it‘s unreproducable. 

This example could be a lot of other concurrent systems as well. It could be two clients 

working on a bank account, a flight reservation system or players playing an online game. 

Same underlying principles still apply and the same concurrency problems arise. 

 

1.1 Mutual exclusion 

One way of resolving this is with mutual exclusion which „locks“ the shared memory 

while it‘s being used by a process [1]. 

 

 
Figure 2-1. Mutual Exclusion 



 

 
8 

 

 

Figure 2-2. Mutual Exclusion 

 

 

Figure 2-3. Mutual Exclusion 
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Figure 2-4. Mutual Exclusion 

 

1.2 Deadlock 

Mutual exclusion introduces deadlocks wherein two or more competing actions are 

each waiting for the other to finish and thus neither ever does. A real world example would 

be something like two trains approach each other at a crossing, both shall come to a full stop 

and neither shall start up again until the other has gone. Figures 3-1 to 3-2 show an example 

with memory and processes. 

 

 

Figure 3-1. Deadlock 
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Figure 3-2. Deadlock 

 
To summarize: having processes use shared memory leads to race conditions. To 

work around race conditions, we use locks which can lead to deadlocks. 

 

To get around these problems, one way is to avoid sharing writable memory and use 

message passing to communicate between threads instead. 

 
 

1.3 Alternative to Shared Memory: Message Passing 

In a message passing system there‘s no shared memory so the processes 

communicate by sending each other messages. The messages are then stored in a message 

buffer or a queue to be later picked up and processed. This means that if a message queue 

fills up, a message may be dropped and the system deadlocks. 

 

Figure 4-1. Queue Overflow 



 

 
11 

 

 

 

Figure 4-2. Queue Overflow 

 
Network reliability is also a problem as a message might get lost on the network. In 

that case we have processes time when they send a message and retransmit if they don‘t 

receive an acknowledgement back [2]. Despite that there are also possible issues with the 

message passing design itself irrespective of the network layer, which we resolve through 

modeling as we shall see. 

 
Sidenote: message passing tends to be less efficient than using threads. One way might be to 

limit the message sizes and doing message passing using the register [8]. 
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2. Modeling 

Scientific modeling is used in a number of different disciplines and usually revolves 

around generating abstract, conceptual, graphical and/or mathematical models. In software 

we can use model checking as a technique for automatically verifying the correctness of 

finite-state systems. If it is either impractical or impossible to create experimental conditions 

to directly measure an outcome, we can create a model and have a model checker 

automatically test whether it meets a given specification. Benefits of which are reducing the 

number of defects in the system, facilitating early evaluation of the system, capturing and 

organizing the understanding of the system, permit early exploration of alternatives and 

increasing the decomposition and modularization as we will see. 

As opposed to a simulation, which means simulating the whole system operating, in 

modeling we model only a specific part of operations or a certain mechanism each time.  

For this, we can use a modeling language which is an artificial language that captures 

the components, information, structure and rules within a system that have to do with 

what‘s being developed, tested, or verified and leave out any irrelevant details. 

 

2.1 Rebeca Model Checker 

In this project we use the Rebeca Model Checker which is actor-based and uses an 

asynchronous message-driven object-based computational model which makes it ideal for 

finding deadlocks and queue overflows. It has a Java-like syntax and is relatively easy to use. 

The model checker creates all the possible states the model can be in and checks 

each state whether there‘s a deadlock or a queue overflow. The process used to achieve that 

is abstracting all the elements of the system that have to do with the message passing layer, 

model and verify before adding all the details of the application layer or the programming 

part. 

The model checker has no concept of time so it has the objects take turns in 

processing messages. An object can send multiple messages but only process one each turn. 

This reduces the state space and makes the model simpler without sacrificing correctness 

[5]. 
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Figure 5. shows the Rebeca Model Checker 

The Rebeca model checker in action. Left shows different projects, upper right is actual code 

and bottom are the verification results. 

 

2.2 Basic Rebeca Model Layout 

A Rebeca model consists of reactive classes or rebecs which contain information on 

known rebecs, its state variables and an initial function that is used to initialize a rebec. 

Following that we set up message servers, which are functions the rebecs use to 

communicate with each other. Once a certain type of message is received, the approriate 

message server is activated. The methods are remotely invoked but it‘s also possible for a 

rebec to invoke one by itself. This does however require it to send a message to itself which 

goes into the message queue. 

 After the reactive classes code comes the main function where their instances are 

created and initialized with their respective known rebecs as parameters. 
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3. Case study: Distributed Battleship Game 

In this case study we model a distributed battleship game with a failover node that 

can take over in case the server goes down and is also capable of handling late joins. The 

game works as such: players, two or more, connect to a server and join a game with a single 

gameboard. On the gameboard ships have been placed in a grid and the object of the 

players is to take turns shooting at the ships in an attempt to sink as many as possible. 

 

 

Figure 6. Distributed Battleship Game Network Architecture 

 

3.1 Distributed Systems Mutual Exclusion Algorithms 

For this to work we need some kind of mutual exclusion or the clients will have to 

face the race condition. In distributed systems three mutual exclusion algorithms have been 

extensively studied. A centralized, distributed and a token ring [2]. 

In a centralized algorithm the clients would send requests to access the critical 

region, wait for response, and then access if possible. The server would be responsible for 

knowing who‘s turn it is to shoot and grant access based on that. This system would 

however require the clients to constantly poll the server for access which would create 
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considerable overhead in message passing. In addition, as the system grows and more 

clients are added, the server might become a performance bottleneck. 

We could also use a distributed algorithm but then we‘d have to introduce certain 

unnecessary complexities such as logical clocks and having all the participants vote on who 

gets access. This would require everyone to stay up to date on who‘s turn it is, which 

increases coupling, and multiple messages being sent across the system to everyone else 

which introduces overhead. Adding or removing clients would need updating everyone 

participating on the changed state of the system so scaling would be a complex problem. 

Third algorithm is a token ring system where each client only needs to know who‘s 

next in line behind him and when done with his turn passes the „token“ to that player. The 

player receiving the token then takes his turn and passes the token along and so forth. This 

way we have less coupling and have decreased the amount of actual messages needed 

within the system. Adding or removing clients also scales better for now only one of the 

clients needs to be updated on the order in which the players take turn. 

 

3.2 Token Ring Model 

To verify a token ring system we need to figure out the systems circular interactions 

protocol or the dataflow [2][3]. In this case it is a series of events where messages are being 

passed: 

 server broadcasts a new game available 

 clients join 

 clients shoot 

 clients pass the token 

 server sends a game over 

 new game is available again.  

What‘s important about these messages is that if any one of them is lost, the system 

deadlocks. This could be due to queue overflows or other reasons. 
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3.2.1 Rebecs used 

This simple model contains a server and two clients. The server rebec has two known 

other rebecs, client0 and client1, and three state variables: how many ships are left, and 

whether the clients have connected or not. 

Initially we set the value of ships left as 5 (for good measure), both clients have not 

connected so their values are false and broadcast a new game available message. The 

message causes both clients to connect by sending a join message to the server. When the 

server receives a join message it sends a message to the clients already connected that a join 

has taken place. No further responses lead on from that point. 

Once both clients have joined, the server broadcasts the current gamestate and 

passes the token to client0 in this case. Client0 then sends a shoot message to the server and 

a token message to the next client. The server responds to the shoot messages by 

broadcasting the updated gamestate to the clients and once all ships have been sunk a 

gameover message is sent. This cycle should then repeat itself with the server sending a new 

game available message. 

 

Code Example 1: Server and Two Clients 

reactiveclass Server(5) 

{ 

 knownrebecs 

 { 

  Client client0; 

  Client client1; 

 } 

 statevars 

 { 

  int nShipsLeft; 

  boolean bClient0Connected; 

  boolean bClient1Connected; 

 } 

 msgsrv initial() 

 { 

  nShipsLeft = 5; 

  bClient0Connected = false; 

  bClient1Connected = false; 

  self.NewGameAvailable(); 

 } 

 msgsrv Join() 

 { 

  if( sender == client0 ) 

  { 

   bClient0Connected = true; 

   if( bClient1Connected == true ) client1.JoinedMessage(); 

  } 

  else if( sender == client1 ) 

  { 

   bClient1Connected = true; 

   if( bClient0Connected == true ) client0.JoinedMessage(); 
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  } 

  if( bClient0Connected == true && bClient1Connected == true ) 

  { 

   client0.Update(); 

   client1.Update(); 

   client0.HasToken(); 

  } 

 } 

 msgsrv ServerShoot() 

 { 

  nShipsLeft = nShipsLeft - 1; 

  if( nShipsLeft == 0 ) 

  { 

   client0.GameOver(); 

   client1.GameOver(); 

   self.initial(); 

  } 

  else 

  { 

   client0.Update(); 

   client1.Update(); 

  } 

 } 

 msgsrv NewGameAvailable() 

 { 

  client0.Connect(); 

  client1.Connect(); 

 } 

} 

 

reactiveclass Client(5) 

{ 

 knownrebecs 

 { 

  Server server; 

  Client clientNext; 

 } 

 statevars 

 { 

 } 

 msgsrv initial() 

 { 

 } 

 msgsrv Connect() 

 { 

  server.Join(); 

 } 

 msgsrv Update() 

 { 

 } 

 msgsrv HasToken() 

 { 

  server.ServerShoot(); 

  clientNext.HasToken(); 

 } 

 msgsrv GameOver() 

 { 

  self.initial(); 

 } 

 msgsrv JoinedMessage() 

 { 

 } 

} 

 

main 

{ 

 Server server( client0, client1 ):(); 

 Client client0( server, client1 ):(); 

 Client client1( server, client0 ):(); 

} 
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Example of Bug 

Bug found by the model checker at this stage of the system was a queue overflow 

that could have been easily missed without using a model checker. If we are supposed to 

make a system where a client shoots and passes a token it would seem intuitive to have an 

operation that simply sends the shoot message to the server and simultaneously passes the 

token to the next client. But as we‘ll see, it could lead to a deadlock. 

 

 

 

In the beginning client1 sends a shoot message to the server and a pass token message to 

the other client leaving the messages in their queues. 

 

 

Server 

Message 

queue 

Client0 

Message 

queue 

Client1 

Message 

queue 

Shoot 

message 

Pass token 

Figure 7-1. Distributed Battleship Game Queue Overflow 
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Immediately after receiving their respective messages the server multicasts messages to the 

clients with an updated gameboard. The client that previously received the token now sends 

a shoot message and passes the token along, which as is seen in Client1‘s message queue 

leads him to receive two messages simultaneously from the server and from Client0. 
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Figure 7-2. Distributed Battleship Game Queue Overflow 
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Client1 shoots and passes the token as before, receives an update message from the server 

but can only process one message at a time so at this rate, the client‘s message queues start 

to slowly fill up. 

 

Bugs resolved 

Once a message queue fills up, one of the messages that effect the circular wait 

condition [3] can be dropped leading to a deadlock. Also, if the client shoots before receiving 

the update message from the server, he will be using an old gamestate and won‘t be making 

proper use of mutual exclusion, leading to a race condition. That means to have the client 

wait for the update message before shooting and passing but a better way is to have the 

client wait after shooting and then passing the token. That way if the shoot message is lost 

due to network or other problems the update message can serve as an „acknowledgement“ 

or „ack“ message increasing the systems reliability. 
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Figure 7-3. Distributed Battleship Game Queue Overflow 
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A message passing model with no queue overflow. The client sends only the shoot message 

to begin with. 
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Figure 8-1. Distributed Battleship Game  with no Queue Overflow 
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After receiving the shoot message the server multicasts the updated gamestate to the clients. 
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Figure 8-2. Distributed Battleship Game  with no Queue Overflow 
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Only after the client receives the update message from the server he passes the token along.  

 

The changes we need to apply to the model to achieve this are adding a boolean 

variable to the clients that tells whether the client is holding the token or not. Once he 

receives the token he sets the variable to true, sends a shoot message to the server and each 

time he receives an update message he checks whether he is holding the token. If so, he sets 

the variable to false and sends a token message to the next client in the token ring, resolved 

with a simple if-statement in the client‘s Shoot message server. 

 

Code Example 2: Fixed Server and Two Clients 

reactiveclass Server(5) 

{ 

 knownrebecs 

 { 

  Client client0; 

  Client client1; 

 } 

 statevars 

 { 

  int nShipsLeft; 

  boolean bClient0Connected; 

  boolean bClient1Connected; 

 } 

 msgsrv initial() 

 { 

  nShipsLeft = 5; 

Server 

Message 

queue 

Client0 

Message 

queue 

Client1 

Message 

queue 

Pass token 

Figure 8-3. Distributed Battleship Game  with no Queue Overflow 
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  bClient0Connected = false; 

  bClient1Connected = false; 

  self.NewGameAvailable(); 

 } 

 msgsrv Join() 

 { 

  if( sender == client0 ) 

  { 

   bClient0Connected = true; 

   if( bClient1Connected == true ) client1.JoinedMessage(); 

  } 

  else if( sender == client1 ) 

  { 

   bClient1Connected = true; 

   if( bClient0Connected == true ) client0.JoinedMessage(); 

  } 

  if( bClient0Connected == true && bClient1Connected == true ) 

  { 

   client0.Update(); 

   client1.Update(); 

   client0.HasToken(); 

  } 

 } 

 msgsrv ServerShoot() 

 { 

  nShipsLeft = nShipsLeft - 1; 

  if( nShipsLeft == 0 ) 

  { 

   client0.GameOver(); 

   client1.GameOver(); 

   self.initial(); 

  } 

  else 

  { 

   client0.Update(); 

   client1.Update(); 

  } 

 } 

 msgsrv NewGameAvailable() 

 { 

  client0.Connect(); 

  client1.Connect(); 

 } 

} 

 

reactiveclass Client(5) 

{ 

 knownrebecs 

 { 

  Server server; 

  Client clientNext; 

 } 

 statevars 

 { 

  boolean bHasToken; 

 } 

 msgsrv initial() 

 { 

  bHasToken = false; 

 } 

 msgsrv Connect() 

 { 

  server.Join(); 

 } 

 msgsrv Update() 

 { 

  if( bHasToken == true ) 

  { 

   bHasToken = false; 

   clientNext.HasToken();   

  } 

 } 

 msgsrv HasToken() 

 { 

  bHasToken = true; 

  server.ServerShoot(); 
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 } 

 msgsrv GameOver() 

 { 

  self.initial(); 

 } 

 msgsrv JoinedMessage() 

 { 

 } 

} 

 

main 

{ 

 Server server( client0, client1 ):(); 

 Client client0( server, client1 ):(); 

 Client client1( server, client0 ):(); 

} 

 

 

3.2.2 Failover 

The key technique for handling failures is redundancy [2]. To increase the reliability of 

the system we can opt to add a failover mechanism in case the server‘s operation halts for 

any reason. 

For this to work we do have a few options: 

What needs to happen is the failover knowing if the server is operational or not. 

Referred to as a „heartbeat“, there is the possibility of sending pulses between the server 

and failover in order to make this work. There is also the option of having the clients figure 

out whether the server is operational or not and have them take care of the problem 

themselves. We do however, introduce all sorts of overhead messages and duplicate 

information in the system that way. A better way is to have the failover take care of those 

elements by itself and leave the clients unchanged regarding heartbeats. 

For a game to continue from the state it was in at the time of the server crash, the 

failover has to keep a copy of that exact state. For that to happen the failover has to 

continually keep track of the current gamestate so the heartbeat can be implemented as the 

update message needed to keep the server and failover in synchrony. 

For the failover to stay updated and to figure out the operational state of the server 

we have two options [2]: 

1. We can use a push-based approach, where updates are propagated to other 

replicas without those replicas even asking for the updates as in Fig-9. 
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Figure 9. Push-based Failover 

 

2. We can also go for a pull-based approach where a server or client requests 

another server to send it any updates it has at that moment as in Fig-10. 

 

 

Figure 10. Pull-based Failover 

 

Comparing these alternatives we can see that if using a push-based approach we 

need the server to contain information on any failover connected to it which increases 

coupling and lowers scalability. The server has to know about the failover and the failover 
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has to know about the server. The failover would need to connect to the server and 

disconnect if needed. If the failover goes down the server also needs a mechanism to handle 

that situation. 

In the pull-based approach on the other hand, the failover only needs to request the 

updates and the server only needs to respond. This possibility therefore has lower coupling 

between the two and also scales better as adding more failovers requires no changes the 

server. 

In both cases the failover still needs a timer waiting for responses to know if the 

server is responding or not. This can be solved by either a normal timestamp in the messages 

or a logical one as in clock synchronization algorithms [2]. 

Using this approach, in case the server does go down, the failover simply sends a 

message to the clients and they switch over to the failover. 

 

 

Figure 11. Failover takes over 

 

The following code models the server going down and failover taking over after five 

heartbeats or update messages. We have added a new rebec named Failover which is 

basically a copy of the server with a few changes: it has a boolean variable for whether the 
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server is down or not, a heartbeat counter to simulate the server not responding at some 

predetermined time, and an update function for handling the communication with the 

server and taking over in case it‘s not responding. 

The only changes required to the server is an update function to communicate the 

gamestate to the failover. 

A few changes are needed to the clients. A boolean variable for whether the server is 

down and if he is down they communicate with the failover node instead. They also need a 

message server to switch between the server and failover in case the server goes down. 

 

Code Example 3: Server, Two Clients and Failover 

reactiveclass Failover(5) 

{ 

 knownrebecs 

 { 

  Client client0; 

  Client client1; 

  Server server; 

 } 

 statevars 

 { 

  int nShipsLeft; 

  boolean bClient0Ready; 

  boolean bClient1Ready; 

  int nHeartBeatCounter; 

  boolean bServerDown; 

 } 

 msgsrv initial() 

 { 

  nShipsLeft = 5; 

  bClient0Ready = false; 

  bClient1Ready = false; 

  nHeartBeatCounter = 5; 

  bServerDown = false; 

  server.Update(); 

 } 

 msgsrv Update( int shipsleft, boolean client0ready, boolean client1ready ) 

 { 

  nShipsLeft = shipsleft; 

  bClient0Ready = client0ready; 

  bClient1Ready = client1ready; 

   

  if( bServerDown == false ) 

  { 

   if( nHeartBeatCounter == 0 ) bServerDown = true; 

   else 

   { 

    nHeartBeatCounter = nHeartBeatCounter - 1; 

    server.Update(); 

   } 

  } 

  else 

  { 

   client0.SwitchServer(); 

   client1.SwitchServer(); 

  } 

 } 

 msgsrv Ready() 

 { 
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  if( sender == client0 ) 

  { 

   bClient0Ready = true; 

   if( bClient1Ready == true ) client1.JoinedMessage(); 

  } 

  else if( sender == client1 ) 

  { 

   bClient1Ready = true; 

   if( bClient0Ready == true ) client0.JoinedMessage(); 

  } 

  if( bClient0Ready == true && bClient1Ready == true ) 

  { 

   client0.Update(); 

   client1.Update(); 

   client1.HasToken(); 

  } 

 } 

 msgsrv Shoot() 

 { 

  nShipsLeft = nShipsLeft - 1; 

  if( nShipsLeft == 0 ) 

  { 

   client0.GameOver(); 

   client1.GameOver(); 

   bClient0Ready = false; 

   bClient1Ready = false; 

   nShipsLeft = 5; 

   self.NewGameAvailable(); 

  } 

  else 

  { 

   client0.Update(); 

   client1.Update(); 

  } 

 } 

 msgsrv NewGameAvailable() 

 { 

  client0.Join(); 

  client1.Join(); 

 } 

} 

 

reactiveclass Server(5) 

{ 

 knownrebecs 

 { 

  Client client0; 

  Client client1; 

  Failover failover; 

 } 

 statevars 

 { 

  int nShipsLeft; 

  boolean bClient0Ready; 

  boolean bClient1Ready; 

 } 

 msgsrv initial() 

 { 

  nShipsLeft = 5; 

  bClient0Ready = false; 

  bClient1Ready = false; 

  self.NewGameAvailable(); 

 } 

 msgsrv Ready() 

 { 

  if( sender == client0 ) 

  { 

   bClient0Ready = true; 

   if( bClient1Ready == true ) client1.JoinedMessage(); 

  } 

  else if( sender == client1 ) 

  { 

   bClient1Ready = true; 

   if( bClient0Ready == true ) client0.JoinedMessage(); 

  } 

  if( bClient0Ready == true && bClient1Ready == true ) 
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  { 

   client0.Update(); 

   client1.Update(); 

   client0.HasToken(); 

  } 

 } 

 msgsrv Shoot() 

 { 

  nShipsLeft = nShipsLeft - 1; 

  if( nShipsLeft == 0 ) 

  { 

   client0.GameOver(); 

   client1.GameOver(); 

   self.initial(); 

  } 

  else 

  { 

   client0.Update(); 

   client1.Update(); 

  } 

 } 

 msgsrv NewGameAvailable() 

 { 

  client0.Join(); 

  client1.Join(); 

 } 

 msgsrv Update() 

 { 

  failover.Update( nShipsLeft, bClient0Ready, bClient1Ready ); 

 } 

} 

 

reactiveclass Client(5) 

{ 

 knownrebecs 

 { 

  Server server; 

  Client clientNext; 

  Failover failover; 

 } 

 statevars 

 { 

  boolean bHasToken; 

  boolean bServerDown; 

 } 

 msgsrv initial() 

 { 

  bServerDown = false; 

 } 

 msgsrv Shoot() 

 { 

  if( bServerDown == false ) server.Shoot(); 

  else failover.Shoot(); 

 } 

 msgsrv HasToken() 

 { 

  bHasToken = true; 

  self.Shoot(); 

 } 

 msgsrv PassToken() 

 { 

  bHasToken = false; 

  clientNext.HasToken(); 

 } 

 msgsrv GameOver() 

 { 

  bHasToken = false; 

 } 

 msgsrv Join() 

 { 

  if( bServerDown == false ) server.Ready(); 

  else failover.Ready(); 

 } 

 msgsrv SwitchServer() 

 { 

  bServerDown = true; 
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 } 

 msgsrv Update() 

 { 

  if( bHasToken == true ) self.PassToken(); 

 } 

 msgsrv JoinedMessage() 

 { 

 } 

} 

 

main 

{ 

 Server server( client0, client1, failover ):(); 

 Failover failover( client0, client1, server ):(); 

 Client client0( server, client1, failover ):(); 

 Client client1( server, client0, failover ):(); 

} 

 

Bugs Found 

No serious bugs found. 

 

3.2.3 Late Join 

Late join can be considered both a feature and as fault tolerance. A player might 

want to simply join a game in progress or a player might drop from the game and be forced 

to reconnect in order to continue playing. In this example we have the failover node take 

care of late joins. 

At this point the logic within the system, such as how the servers and clients should 

behave whether there is a late join or not, starts to get more complex. Example of which is 

the Shoot message function on the server side. Because the failover handles the late joins, 

when the server gets a message from the failover stating there is a late join, the server 

needs to wait for the right moment to add the late join to the token ring. For this it needs a 

boolean state variable and also the normal boolean whether he‘s ready to play or not. The 

server also needs to know which player is the last one in the token ring in order to have that 

player pass his token to the latejoin instead of the first player in the token ring. 

The failover is again a copy of the server with slight changes. It requires a message 

server to handle the late join connecting to it. 

A limitation of the Rebeca model checker is that after a model starts running, it‘s not 

possible to change a rebecs known rebecs so in order to get a late join functionality 

operating we need to hardcode each rebec. That means making a different rebec for client0, 
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client1 and the latejoin so client1 can pass his token to the late join instead of client0 once 

the latejoin has joined. 

Once the game starts the latejoin sends a message to the failover, the failover sends 

a message to the server, the server waits for client1‘s turn and then sends a message to 

client1 to pass his token to latejoin instead of client0. The game then continues from there 

and the cycle continues. 

 

Code Example 4: Server, Two Clients, Failover and Latejoin 

reactiveclass Server(5) 

{ 

 knownrebecs 

 { 

  Failover failover; 

  Client0 client0; 

  Client1 client1; 

  Latejoin latejoin; 

 } 

 statevars 

 { 

  int nShipsLeft; 

  boolean bClient0Ready; 

  boolean bClient1Ready; 

  boolean bLatejoinReady; 

  boolean bLatejoinJoined; 

 } 

 msgsrv initial() 

 { 

  nShipsLeft = 5; 

  bClient0Ready = false; 

  bClient1Ready = false; 

  bLatejoinReady = false; 

  bLatejoinJoined = false; 

  self.NewGameAvailable(); 

 } 

 msgsrv Ready() 

 { 

  if( sender == client0 ) 

  { 

   bClient0Ready = true; 

   if( bClient1Ready == true ) client1.JoinedMessage(); 

  } 

  else if( sender == client1 ) 

  { 

   bClient1Ready = true; 

   if( bClient0Ready == true ) client0.JoinedMessage(); 

  } 

   

  if( bClient0Ready == true && bClient1Ready == true ) 

  { 

   client0.Update(); 

   client1.Update();  

   client0.HasToken(); 

  } 

 } 

 msgsrv Shoot() 

 { 

  nShipsLeft = nShipsLeft - 1; 

  if( sender == client1 && bLatejoinJoined == true && bLatejoinReady == false ) 

  { 

   bLatejoinReady = true; 

   client1.LatejoinJoined(); 

  } 
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  if( bLatejoinReady == false ) 

  { 

   if( nShipsLeft == 0 ) 

   { 

    client0.GameOver(); 

    client1.GameOver(); 

    self.initial(); 

   } 

   else 

   { 

    client0.Update(); 

    client1.Update(); 

   } 

  } 

  else 

  { 

   if( nShipsLeft == 0 ) 

   { 

    client0.GameOver(); 

    client1.GameOver(); 

    latejoin.GameOver(); 

    self.initial(); 

   } 

   else 

   { 

    client0.Update(); 

    client1.Update(); 

    latejoin.Update(); 

   } 

  } 

 } 

 msgsrv NewGameAvailable() 

 { 

  client0.Join(); 

  client1.Join(); 

 } 

 msgsrv Update() 

 { 

  failover.Update( nShipsLeft, bClient0Ready, bClient1Ready, bLatejoinJoined, 

bLatejoinReady ); 

 } 

 msgsrv LatejoinServer() 

 { 

  bLatejoinJoined = true; 

 } 

} 

 

reactiveclass Failover(5) 

{ 

 knownrebecs 

 { 

  Server server; 

  Latejoin latejoin; 

 } 

 statevars 

 { 

  int nShipsLeft; 

  boolean bClient0Ready; 

  boolean bClient1Ready; 

  boolean bLatejoinJoined; 

  boolean bLatejoinReady; 

 } 

 msgsrv initial() 

 { 

  nShipsLeft = 5; 

  bClient0Ready = false; 

  bClient1Ready = false; 

  bLatejoinJoined = false; 

  bLatejoinReady = false; 

  server.Update(); 

 } 

 msgsrv Update( int shipsleft, boolean client0ready, boolean client1ready, boolean 

latejoinJoined, boolean latejoinReady ) 

 { 

  nShipsLeft = shipsleft; 

  bClient0Ready = client0ready; 
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  bClient1Ready = client1ready; 

  bLatejoinJoined = latejoinJoined; 

  bLatejoinReady = latejoinReady; 

 } 

 msgsrv LatejoinFailover() 

 { 

  server.LatejoinServer(); 

 } 

} 

 

reactiveclass Client0(5) 

{ 

 knownrebecs 

 { 

  Server server; 

  Client1 client1; 

 } 

 statevars 

 { 

  boolean bHasToken; 

 } 

 msgsrv initial() 

 { 

  bHasToken = false; 

 } 

 msgsrv Shoot() 

 { 

  server.Shoot(); 

 } 

 msgsrv HasToken() 

 { 

  bHasToken = true; 

  self.Shoot(); 

 } 

 msgsrv PassToken() 

 { 

  bHasToken = false; 

  client1.HasToken(); 

 } 

 msgsrv GameOver() 

 { 

  self.initial(); 

 } 

 msgsrv Join() 

 { 

  server.Ready(); 

 } 

 msgsrv Update() 

 { 

  if( bHasToken == true ) self.PassToken(); 

 } 

 msgsrv JoinedMessage() 

 { 

 } 

} 

 

reactiveclass Client1(5) 

{ 

 knownrebecs 

 { 

  Server server; 

  Client0 client0; 

  Latejoin latejoin; 

 } 

 statevars 

 { 

  boolean bHasToken; 

  boolean bLatejoinJoined; 

 } 

 msgsrv initial() 

 { 

  bHasToken = false; 

  bLatejoinJoined = false; 

 } 

 msgsrv Shoot() 

 { 
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  server.Shoot(); 

 } 

 msgsrv HasToken() 

 { 

  bHasToken = true; 

  self.Shoot(); 

 } 

 msgsrv PassToken() 

 { 

  bHasToken = false; 

  if( bLatejoinJoined == true ) latejoin.HasToken(); 

  else client0.HasToken(); 

 } 

 msgsrv GameOver() 

 { 

  self.initial(); 

 } 

 msgsrv Join() 

 { 

  server.Ready(); 

 } 

 msgsrv Update() 

 { 

  if( bHasToken == true ) self.PassToken(); 

 } 

 msgsrv JoinedMessage() 

 { 

 } 

 msgsrv LatejoinJoined() 

 { 

  bLatejoinJoined = true; 

 } 

} 

 

reactiveclass Latejoin(5) 

{ 

 knownrebecs 

 { 

  Server server; 

  Failover failover; 

  Client0 client0; 

 } 

 statevars 

 { 

  boolean bHasToken; 

 } 

 msgsrv initial() 

 { 

  bHasToken = false; 

  failover.LatejoinFailover(); 

 } 

 msgsrv Shoot() 

 { 

  server.Shoot(); 

 } 

 msgsrv HasToken() 

 { 

  bHasToken = true; 

  self.Shoot(); 

 } 

 msgsrv PassToken() 

 { 

  bHasToken = false; 

  client0.HasToken(); 

 } 

 msgsrv GameOver() 

 { 

  self.initial(); 

 } 

 msgsrv Join() 

 { 

  server.Ready(); 

 } 

 msgsrv Update() 

 { 

  if( bHasToken == true ) self.PassToken(); 
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 } 

 msgsrv Joined() 

 { 

 } 

} 

 

main 

{ 

 Server server( failover, client0, client1, latejoin ):(); 

 Failover failover( server, latejoin ):(); 

 Client0 client0( server, client1 ):(); 

 Client1 client1( server, client0, latejoin ):(); 

 Latejoin latejoin( server, failover, client0 ):(); 

} 

 

Bugs Found 

No serious bugs were found while modeling the late join mechanism. The logic of the 

system did get more complex but working with it on this layer of the abstraction without any 

details getting in the way made it much easier as compared with testing through code. 

 

3.2.4 Rebeca Experiment Results 

Following are the results of the model checker for each of the models. The results are 

printed out below the code window and show whether a model is satisfied, contains a queue 

overflow or a deadlock. 

If there is a problem with the model the model checker prints out the first state it 

checked to begin with. It shows global variables if any, the system information, states of the 

rebecs and its possible to browse through the states to trace the series of events that lead to 

the error. 

The model checker uses a graph search [5] so the first variable for the system 

information is the how deeply it reached into the graph before an error occurred. It also 

shows the maximum reached state which means how many states in the graph were 

checked. It is possible to look for errors using different sets of rules. In our case we used 

Linear Temporal Logic (LTL) as the system‘s default deadlock. The result is then shown as 

either deadlock, queue overflow or satisfied. 

Following the system information comes information regarding the states of the 

rebecs during each state of the system in case an error was detected. It lists the states of 

their variables, the messages in their queues and who sent them in their respective order. 
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Figure 12. Results of Queue Overflow 

A queue overflow with a server and two clients as output by Rebeca. Shows the system as the 

state of the state variables and message queues. In this case, client1‘s message queue has 

overflowed due to too many messages being sent to it each turn. The clients are sending 

shoot and token messages simultaneously. 
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Figure 13. Server and two Clients satisfied 

Verification results of the same system but this time the clients wait for update messages 

from the server before passing tokens. 

 

 

Figure 14. Server, two clients and Failover satisfied 

Verification of a server, two clients and a failover node. Note the size of the state space (Max 

Reached State) as compared with the previous model. 
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Figure 15. Server, two clients, Failover and Latejoin satisfied 

Latejoin verification shows a larger state space and greatly increased depth. Foregoing a 

heartbeatcounter because we‘re only testing the latejoin part greatly reduces the state space 

but more boolean state variables are needed to accomodate the latejoin mechanism. 
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4. Discussion 

By now it should be clear that both because of the state space explosion and the 

complexity of developing a distributed system, without modeling it can result in defects 

slipping through. What‘s missing from the report is that while creating the models, dozens, 

even hundreds of deadlocks and queue overflow‘s were detected by the model checker not 

because of design issues but because of programmer error. These were not documented as 

it would simply have been too much. The alternative would have been to directly do the 

coding and run a test which would have taken a lot more time and effort. Also, due to the 

complexity of that kind of test we might have introduced other errors that might not have 

had anything to do with the message passing layer. That kind of development process 

inherently uses up a lot more time as if there is an error, we might not necessarily know on 

which layer of the abstraction it is taking place. For example, it could be on the network 

layer, transport layer, application layer, message passing layer or simply a typo somewhere. 

By using a model checker we can start eliminating possibilities right away and view the 

system from a standpoint where it‘s easy to see the forest for the trees. 

 

4.1 Patterns 

A pattern noticed while designing and modeling was that whenever there were 

alternative design choices to be made, the decision usually came down to one of three 

factors: number of messages required, coupling between modules and scalability. As more 

messages are being passed around not only does the system become error-prone but the 

complexity increases. With increased coupling the system tended to both scale worse and 

more messages were required. Controlling the number of messages and the coupling 

between the modules tended to scale better and if it scaled well the number of messages 

was usually low and the modules less coupled. Having these factors constantly in check 

controlled the complexity and hence both its efficiency and ease of maintenance. Different 

systems with different requirements might operate differently however. 

Another pattern noticed was incomplete if-else statements. This could result in 

messages being sent that were irrelevant to the current state of the system and therefore do 

nothing except take up space in message queues. Although not introducing much risk by 
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themselves, if a few of these different messages slip through, in which case they would go 

unnoticed during testing because they don‘t effect the current state, they can start effecting 

the systems realiability and efficiency once enough of them are being passed around. The 

model checker fortunately catches these kind of things for us. 

Perhaps the most important pattern though was the passing of multiple messages 

simultaneously as in the case of the shooting and token passing example. By breaking down 

the communication and having the shooter wait for an update message, as a sort of 

acknowledgement message, the problem was resolved. If the system had both these types 

of design flaws and other things such as incomplete if-elses, we can see that right away the 

system starts becoming less and less reliable. As an example from probability theory: If the 

probability of one error happening is two percent, and the probability of some other error is 

three percent, the probability of either one of them taking place is five percent. In our case 

though the difference is that both errors affect the message queues so the combined effect 

is unknown before it actually takes place.  This type of error might however not have been 

discovered through testing alone.  

 

4.2 Integrating into the Development Cycle 

For integrating model checking into the development cycle there are options: it is 

possible to design and verify the whole system before coding, code then verify or model and 

code iteratively. Which way to go may depend on the situation. A system might turn out to 

be so modular no changes are ever required to a module once coded. In that case modeling 

the whole thing and then coding might seem an option. Iteratively it could be possible to 

model a certain mechanism and then code right away. Some might simply be so good at 

making distributed systems they never have a problem. In that case verifying the system 

after coding might seem an option. Depending on how mission-critical a system is, modelling 

might be skipped altogether, but as we have seen, it might actually save more time than it 

takes during the development process, no matter it‘s importance. 

 



 

 
42 

 

5. Conclusion and future work 

Testing can prove the existence of bugs but not that they don‘t exist. Due to the state 

space explosion it becomes virtually impossible to test every single state of the system. We 

could run into a bug somewhere during the testing process but whether all of them were 

found we won‘t know for sure. 

Model checking can prove both the existence of bugs and that they don‘t exist. Used 

in conjuction with testing, results in a more correct, reliable, efficient distributed system. 

As future work we can consider integrating more ack or acknowledgement messages 

into the model. This would require the clients to contain information about the previous 

node in the token ring and pass more messages around which introduces overhead but 

results in higher reliability if done correctly. Many of the messages cannot be lost or the 

system deadlocks so some way of resending messages if needed is required. This also 

introduces the ability for the system to know if a client has dropped or not. 

Having the server capable of handling latejoins would also be a nice feature. 
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Appendix A 

Coffman conditions for deadlock 

For a deadlock to occur there are four necessary conditions [3]: 

1. Mutual exclusion condition: a resource that cannot be used by more than one 

process at a time. 

 

2. Hold and wait condition: processes already holding resources may request 

new resources. 

 

3. No preemption condition: No resource can be forcibly removed from a 

process holding it, resources can be released only by the explicit action of the 

process. 

 

4. Circular wait condition: two or more processes form a circular chain where 

each process waits for a resource that the next process in the chain holds. 
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Appendix B 

Threads 

Examples of thread uses which might and might not be solved with message passing: (Non-

exhaustive.) 

1. „Some applications can very effectively use threads. So-called „embarrassingly 

parallel“ applications (for example, applications that essentially spawn multiple 

independent processes such as build tools, like PVM gmake, or web servers). Because 

of the independence of these applications, programming is relatively easy, and the 

abstraction being used is more like processes that threads (where memory is not 

shared). Where such applications do share data, they do so through database 

abstractions, which manage concurrency through such mechanisms as transactions. 

However, client-side applications are not so simple [4].“ 

 

2. Maintaining a responsive user interface: threads can run time-consuming 

tasks while main UI threads process keyboard and mouse events. 

 

3. Making efficient use of an otherwise blocked CPU: if a thread is blocked or 

waiting for a response from another process or thread, other threads can use 

the CPU in the meantime. 

 

4. Parallel programming: „divide-and-conquer“ algorithms can split up their 

workloads to make better use of multiple processors. 

 

5. Speculative execution: if we don‘t know which algorithm is optimal for a 

certain job, we can execute them in parallel and whoever finishes first wins. 

 

6. Allowing requests to be processed simultanously: a server can receive client 

requests concurrently and process them in parallel. Can also be useful for 

clients in a peer-to-peer network or even handling requests from a user. 
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Non-exhaustive list of common problems with shared memory 

1. Introduces bugs that are hard to replicate. 

2. The state space grows exponentially. 

3. Programs that crash in a critical region. 

4. Programs that spend too much time in the critical region. 

5. Locking too much – can be optimized to use smaller regions of memory. 

6. Distributed shared memory – too complex, single fault tolerant databases used 

instead. 

7. Sharing limits scalability – doesn‘t matter on a single cpu but on a multicore locking 

causes the system to operate serially which defeats the whole purpose of multiple 

cpus and parallelism. 

8. Sharing makes systems error prone and debugging difficult – process A can overwrite 

data from B, problem not in the code for B. 

Items without reference are based on different articles, forum comments, and miscallenous 

Internet searches. 
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Terminology 

Asynchronous vs. synchronous: 

 „Besides being persistent or transient, communication can also be asynchronous or synchronous. The 

characteristic feature of asynchronous communication, is that a sender continues immediately after it 

has submitted its message for transmission. This means that the message is stored in a local buffer at 

the sending host, or otherwise at the first communication server. With synchronous communication, 

the sender is blocked until its message is stored in a local buffer at the receiving host, or actually 

delivered to the receiver. The strongest form of synchronous communication is when the sender is 

blocked until the receiver has processed the message [2].“ Synchronous communication uses locks 

or blocking while asynchronous doesn‘t. Asynchronous systems rely on buffers or queues 

while synchronous don‘t. 

„Hiding communication latencies is applicable in the case of geographical scalability. The basic idea is 

simple: try to avoid waiting for responses to remote service requests as much as possible. For 

example, when a service has been requested at a remote machine, an alternative to waiting for a 

reply from the server is to do other useful work at the requester‘s side. Essentially, this means 

constructing the requesting application in such a way that it uses only asynchronous communication. 

Asynchronous communication can often be used in batch-processing systems and parallel 

applications, in which more or less independent tasks can be scheduled for execution while another 

task is waiting for communication to complete. Alternatively, a new thread of control can be started 

to perform the request. Although it blocks waiting for the reply, other threads in the process can 

continue [2].“ 

Concurrency: A condition that exists when at least two threads are making progress. May or 

may not be executing in parallel. Property of systems in which several computations are 

executing simultaneously and potentially interacting with each other. 

Coupling: or dependency is the degree to which each program module relies on each one of 

the other modules. 

 Critical section/region: The part of the program where the shared memory is accessed is 

called the critical region or critical section. 
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Distributed system: „A distributed system is a collection of independent computers that appears to 

its users as a single coherent system [2].“. Consists of multiple autonomous computers that 

communicate through a computer network. No shared memory. 

Livelock: Two or more processes constantly change their states in regard to one another. A 

real world example of a livelock occurs when two people meet in a narrow corridor, and 

each tries to be polite by moving aside to let the other pass, but they end up swaying from 

side to side without making any progress. 

Model: Set of rebecs as a closed system composed of rebecs, which are concurrently 

executed and are interacting with each other [5]. 

Mutual exclusion: a way of prohibiting more than one process from reading and writing the 

shared data at the same time. Also referred to as „blocking“. 

Mutex: „A variable that can be in one of two states: unlocked or locked [2].“ Sometimes referred 

to as the „lock“. 

Parallel system: A system with at least two processes that use shared memory. Usually 

refers to multicore systems or systems with multiple processors. 

Parallelism: A condition that arises when at least two threads are executing simultaneously 

or in parallel. 

Process: „A process is basically a program in execution [1].“ Instance of a computer program that 

is being executed. Can include multiple threads. 

Reactive object (rebec): Object within a reactive system that has interactions with other 

objects [5]. 

Reactive systems: „Systems which have ongoing interactions with their environments, accepting 

requests and producing responses [5].“  „Computes by reacting to stimuli from its environment [6].“ 

Register: Processor register. Small amount of storage available on the CPU whose contents 

can be accessed more quickly than storage available elsewhere. 

Scalability: A desirable property of a system, a network or a process, which indicates its 

ability to either handle growing amounts of work in a graceful manner or to be enlarged. 
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Shared memory: memory that may be simultaneously accessed by multiple threads. 

Starvation: a process is perpetually denied access to a resource. 

State space explosion: the effect that adding variables to a closed system increases the 

number of possible states within that system exponentially. Example: system with one 

boolean variable has two possible states, true or false. Add another boolean and the state 

space is now two times two or four possible states within the system. Each addition of a 

variable multiplies the current state space by the number of possible values the new variable 

can hold. 

Thread: „In traditional operating systems, each process has an address space and a single thread of 

control. In fact, that is almost the definition of a process. Nevertheless, there are frequently situations 

in which it is desirable to have multiple threads of control in the same address space running in quasi-

parallel, as though they were (almost) separate processes (except for the  shared address space) [1].“ 

Smallest unit of processing that can be scheduled by an operating system. Process with 

multiple threads is referred to as being multithreaded. 
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