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Abstract

We present a method of manipulating electrons in a metal slab to simulate an
electrochemical cell using an applied voltage in planewave DFT calculations. Pe-
riodic boundary conditions are used to simulate an infinite crystal slab. By setting
the top and bottom layer of a slab at different potentials, electrons are pushed
from one side to the other; creating two oppositely charged surfaces. This effect
depends on the electric field that is produced in the vacuum between periodic
cells. We compare this method to applying a saw tooth potential, previously
used by others, and discover that our method gives a better description of the
electron transfer.

We also briefly discuss the development of our method to include a potential
profile similar to the electrical double layer near the metal surface. With our
method we get the right features of the potential profile when electrons have
been transferred to the surface, while the sow tooth potential gives exactly the
opposite direction of the potential profile with regards to the electron transfer.
We believe this could be a useful method when calculating adsorption energies of
different species as a function of bias.

We also discuss the usage of a potential energy surface based on the single center
multipole expansion in a QM/MM context with DFT calculations. This opens
the possibility of using DFT calculations for the active region at the interface,
while the bulk water phase is described with the less computationally demanding
potential energy surface.
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Ágrip

Við setjum fram aðferð til að eiga rafeindir málmfilmu með ytra mætti í DFT
reikningum með planbylgjum. Lotubundin jaðarskilyrði eru notuð til að líkja eftir
óendanlegum kristal. Með því að hafa efsta lag filmunnar með lægra mætti en það
neðsta má þvinga rafeindir í efra lagið. Þannig myndast tveir fletir með mótstæða
heðslu. Þessi rafeindafærsla er háð rafsviðinu sem myndast í tómarúminu á milli
lotubundnu ímynda filmunnar. Þessi aðferð er borin saman við leggja á kerfið
jafnt rafsvið, líkt og aðrir hafa gert, og í ljós kemur að okkar aðferð gefur betri
lýsingu á rafeindaflutningnum.

Stuttlega verður fjallað um þróun ytra mættisins til að líkja eftir mætti tvílags
nærri málmyfirborðinu. Þessi aðferð getur gefið mætti sem lítur rétt út. Til
samanburðar gefur jafna rafsviðið mætti sem lítur öfugt út miðað við rafeindaflut-
ninginn. Við höfum trú á að þetta mætti okkar geti verið mjög gagnlegt þegar
ásogsorkur eru reiknaðar við mismunandi svið.

Einnig verða rædd not mættisyfirborða sem byggð eru á einmiðju fjölpóla röðinni
í QM/MM samhengi við DFT reikninga. Þetta opnar á möguleika að lýsa virka
svæðinu við skilin með DFT reikningum en lýsa vatninu með mættisyfirborðinu
sem er ekki eins þungt í reikningum.
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Chapter 1

Introduction

Electro-catalysis play a fundamental role in modern society, as they are used in
batteries for various applications and in today’s industry, e.g. in the production of
aluminum, to name a few of their uses. Recently they have become quite an active
research topic as plans are in the works to exchange fossil fuels for something more
environmentally friendly, e.g. hydrogen, as an energy carrier. For that we would
need to split water electrochemically to make oxygen and hydrogen, the latter of
which would then be used in a fuel cell to make electricity.

A catalyst is a substance which reduces the activation energy of a given reaction
and therefore changes the kinetics of that reaction. Heat and pressure are often
used at the industrial scale to speed up reactions. Typically, most electro-catalytic
reactions take place at ambient conditions. A solid catalyst is used as before, to
reduce the activation energy, but electrons are now fed into the electrode or
removed from it, to change the thermochemistry of the reaction or to make the
reaction more favorable.

Modeling catalysis taking place in an electrochemical cell can be very computa-
tionally demanding. It requires the calculation of the charged metal surface, the
solution with its solvated ions and the charge-transfer taking place at the solid-
liquid interface during the reaction. Certain sacrifices can be made to increase
the speed of the calculations. The metal can be represented by a thin film of only
a few layers of crystal, the solution can be modelled using only a few molecules
and so forth.

With recent advances in computing power, both with ever increasing speed and
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capacity of the hardware in question and with advances in parallel computing,
heavy calculations of chemical systems have become much more viable than be-
fore.

Plane-wave Density Functional Theory (DFT) calculations have aided surface
science calculations greatly as entire crystals can be represented by a unit cell
that is repeated to simulate an infinite crystal. Another boon of DFT calculations
is their scaling, N3, while still maintaining the accuracy of a quantum mechanical
method. DFT calculations are thus quite useful in getting a better understanding
of an electrochemical system and are used by many research groups around the
world.

Electrochemical reactions take place at the interface between the electrode and the
electrolyte. It is therefore important to understand the structure of this charged
metal-liquid interface; the environment in which the reactions take place, both
spatially and electrostatically.

This work discusses the solid-liquid interface in two ways. Firstly by mixing quan-
tum mechanical calculational methods with less computationally intense calcula-
tions to better simulate the effect of bulk water near the metal surface, see chapter
3. Secondly by investigating the electrode potential profiles that are present at
the metal-liquid interface, see chapter 4.
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Chapter 2

Methods

2.1 Density Functional Theory

With the advances in computing power in recent years, both with more power-
ful computers and parallel computing, intensive calculations have become more
viable. One such method is Density Functional Theory (DFT), which can be
used to approximate a solution to the Scrödinger equation (section 2.1.1) for
many-electron systems using ab initio (from the beginning) methods.

What is, perhaps, most remarkable about DFT is the fact that it is founded in
ab initio methods and as such has not been fitted to any experimental results on
chemical bonding.

The founding father of DFT is Walter Kohn who received the Nobel Prize in
chemistry for his development of the density functional theory [1] in 1998 along
with John Pople who received the prize for his development of computational
methods in quantum chemistry [2].

2.1.1 The Schrödinger equation

A system of N electrons can be described by the Schrödinger equation,

ĤΨ = EΨ, (2.1)
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where Ψ = Ψ(r1, r2, ..., rN) is the wave function, depending on the spatial coordi-
nates, ri, of each electron, E is the electronic energy of the system and Ĥ is the
hamiltonian,

Ĥ = K̂ + Û + v̂, (2.2)

with
K̂ =

∑
i

−1

2
∇2
i , (2.3)

Û =
∑
i

∑
j>i

1

rij
, (2.4)

and
v̂ =

∑
i

∑
A

1

riA
+ Vext (2.5)

where K̂ is the kinetic part, Û is the interaction between electron pairs and v̂

is the interaction between electrons and the environment, called the ionic and
external part. In equation 2.4 rij is the distance from electron j to electron i. In
equation 2.5 the 1

riA
term is the interaction between the electrons and the nucleus

while Vext is any other external influence.

2.1.2 The Hohenberg-Kohn Theorem

According to the Hohenberg-Kohn (H-K) theorem there is a one-to-one correspon-
dence between the wavefunction and the electron density of the ground state.
Once this has been established, it is simple to see that the total energy is a
unique functional of the electron density, ρ(r), which is an observable while the
wavefunction is not,

E[ρ] = 〈Ψ[ρ]|Ĥ|Ψ[ρ]〉. (2.6)

The Raleigh-Ritz variational principle is used to minimize the energy and find
the ground state and density,

E0 = min
ρ(r)

(E[ρ(r)]) . (2.7)

This is the basis of DFT, developed by Hohenberg and Kohn [3] in 1964.
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2.1.3 The Kohn-Sham Equations

Currently there is no known way to perform the one-to-one mapping suggested by
the H-K theorem. However in 1965 Kohn and Sham (K-S) published an indirect
approach for calculating the energy functional E[ρ] [4]. They showed that the
interacting many-electron system can be mapped, approximately, onto a non-
interacting system of single electron states, {φi}, where each electron is subject
to the effective potential veff (r) due to all other particles. These one electron
wavefunctions can be produced by solving the K-S equations,{

−1

2
∇2 + veff(r)

}
φi(r) = εiφi(r). (2.8)

Since both the effective potential and the wavefunctions are unknown these equa-
tions must be solved self-consistently. The electron density can then be produced
using the square of the wavefunctions,

ρ(r) =
N∑
i=1

|φi(r)|2 . (2.9)

The effective potential can be written as

veff(r) = v(r) + vH(r) + vXC(r) (2.10)

where v(r) is the sum of the potential due to the kinetic and ionic parts in equation
2.2, vH(r) is the Hartree potential,

vH(r) =

∫
d3r

ρ(r′)

|r− r|
, (2.11)

and
vXC(r) =

δEXC [ρ]

δρ(r)
(2.12)

is the potential due to the exchange-correlation functional, EXC [ρ], which will be
discussed in section 2.1.4

2.1.4 The Exchange-Correlation Functional

The Kohn-Sham equations are in principle exact, however the exchange-correlation
functional, EXC [ρ], is generally not known and has to be approximated. The ac-
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curacy of the approximation becomes a major issue in solving the Kohn-Sham
equations.

The exchange-correlation functional is a local functional which describes the
electron-electron interaction,

EXC [ρ] =

∫
d3r εXC(ρ, r)ρ(r) (2.13)

where εXC(ρ, r) is the exchange-correlation energy density.

The approximations used in our work are based on the so-called Generalized
Gradient Approach (GGA). The GGA uses the the exchange-correlation energy
of a homogeneous electron gas at point r like the Local Density Approximation
(LDA) [4] but also uses the gradient of the density to account for inhomogeneity.
This, however, is not a good choice by itself so a reduced density gradient, s(r),
is used, as suggested by Langreth and Perdew [5]. The exchange-correlation
functional then becomes

EGGA
XC [ρ] =

∫
d3r εGGAXC (ρ(r), s(r))ρ(r) (2.14)

with
s(r) =

|∇ρ(r)|
2 3
√

3π2ρ(r)ρ(r)
. (2.15)

The calculations in chapter 3 use GGA based on the PBE functional [6] while the
calculations in chapter 4 use GGA based on the RPBE functional [7].

2.1.5 The Plane Wave Basis Set

In implementing DFT calculations, the Kohn-Sham wavefunctions are expanded
in a particular basis set. In our work plane waves are used under periodic bound-
ary conditions in accordance with Bloch’s theorem,

ψmk (r) =
∑
G

cmk+G e
i(k+G)·r (2.16)

where G are the reciprocal lattice vectors. For an exact solution, an infinite
number of plane waves is needed. Fortunately the plane waves at the lower
end of the kinetic energy range are the most important, so the number of plane
waves can be reduced by defining a cutoff, Gcut, where the solution becomes good
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enough: (
h̄2

2m

)
|k + Gcut|2 ≤ Ecut. (2.17)

This leads to one of the main advantages of plane waves. By increasing the cutoff
the accuracy of the calculation can be systematically increased.

A disadvantage of plane waves is their inefficiency to deal with high curvature re-
gions, such as the atomic core. To overcome this pseudopotentials can be used. In
the core, pseudopotentials are an average of the potential due to the core electrons
and the nucleus felt by the valence electrons inside a given sphere but outside the
sphere the pseudopotential becomes identical to the all-electron potential. The
plane-wave cutoff can be lowered even further when using pseudopotentials while
generally giving results of good accuracy, especially the so-called ultrasoft pseu-
dopotential with non-local components [8].

2.2 The Single Center Multipole Expansion

The single center multipole expansion represents a molecule as a multipole at
its center of mass. Interactions between the molecules are then based on these
multipoles.

In the case of water for which this expansion is used in the current work, it
has been shown that in order to reach convergence in the electric field at short
distances the expansion must be carried out up to and including the hexadecapole
[9, 10].

2.2.1 The Multipole Expansion

The potential, at a point r, outside a given sphere due to a charge density ρ(r′)

localized within the sphere can be written as an expansion in spherical harmonics,
Ylm(θ, φ),

V (r) =
∞∑
l=0

l∑
m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1
. (2.18)
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To find the coefficients, qlm, we look at the more common description of the
charge-potential relationship,

V (r) =

∫
ρ(r′)

|r− r′|
d3r′ (2.19)

where the integration is over all electrons in the universe. We now expand 1/|r−r′|
in spherical harmonics [11]:

V (r) = 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

[∫
Y ∗lm(θ′, φ′)(r′)lρ(r′)d3r′

]
Ylm(θ, φ)

rl+1
. (2.20)

By comparing equations 2.20 and 2.18 an expression for the coefficients, qlm, in
the latter can be devised:

qlm =

∫
Y ∗lm(θ′, φ′)(r′)lρ(r′)d3r′. (2.21)

These coefficients are called the multipole moments and can be easily calculated.

The multipole expansion can also be derived using the Taylor expansion and
cartesian coordinates but it becomes much more cumbersome to write out.

2.3 Bader analysis

In our work partial charges are of particular interest. To analyze partial charges a
partitioning scheme must be assumed. We utilize a scheme based on charge den-
sity, since it is readily available from the calculations, Bader’s “atoms in molecules”
approach [12]. Each “Bader atom” is enclosed in a zero-flux surface on which the
gradient of the electron density vanishes normal to the surface. All charge within
each surface is then attributed to that Bader atom.

Henkelman et al. [13] have developed an efficient algorithm for partitioning charge
density using Bader’s method. This algorithm lays a grid over the whole volume
of the system and calculates from each grid point a steepest ascent along the
direction that maximizes the charge density gradient. This is repeated until a
maximum in the charge density is found. All grid points then get assigned to
a charge density maximum and thereby the Bader volume associated with that
maximum. If a point is found to lead to an old trajectory that point is assigned to
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the same maximum as the trajectory. This way no point has to be passed twice
and therefore the work needed to calculate the charge density partition scales
linearly with the number of grid points.

9



Chapter 3

Implementing a potential energy

surface in a DFT program

3.1 Introduction

Computers have improved greatly recently, both in processing power and in their
ability to utilize paralellism through hardware and software development. Even
with this increase in power, current computers are only able to handle a relatively
small number of atoms in quantum mechanical (QM) calculations. Even DFT,
which scales better than most other QM methods, N3, is not able to handle more
than 100-200 atoms in any reasonable amount of time. It is quite easy to think
of a system that exceeds this limitation, e.g. proteins or bulk water.

To avoid this limitation different, less computationally demanding methods can be
used to simulate most of the system while QM methods are used for the portion
of the system where the important chemistry is happening, e.g. the reaction
site of a protein or the surface of a metal that is submerged in water. These
computationally less demanding methods can be implemented in many different
ways but most are in some way based on newtonian dynamics, often referred to
as molecular mechanics (MM).

The interaction between the two methods can be split into two categories; long
range electrostatic interaction and short range spatial interactions which are only
relevant over small distances.

As one can imagine with the abundance of QM methods available, the possibilities
10



are numerous when combining with one of the, also, abundant MMmethods. Such
combined methods are collectively called QM/MM methods. Many QM/MM
implementations exist and can be devided into roughly 3 categories.

• Extension of a QM program, e.g.

– ONIOM in Gaussian031

– GAMESS-UK2

• Extension of a MM program, e.g.

– AMBER3

– CHARMM4

• A control program interfacing QM programs and MM programs, e.g.

– CHEMSHELL5

– QMMM6

Lin and Truhlar [14] review the most popular QM/MM methods in use today.

Our current work focuses on the long range interaction between the QM and
the MM calculations. Potential due to each calculation is included in the other
to achieve this long range interaction. The short range interaction will not be
considered in this work.

A potential energy surface based on the single center multipole expansion of water
to simulate bulk water is used as the MM part and plane-wave DFT as the QM
part.

1http://www.gaussian.com
2http://www.cfs.dl.ac.uk
3http://ambermd.org/
4http://www.charmm.org/
5http://www.chemshell.org/
6http://comp.chem.umn.edu/qmmm/
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3.2 Software Detail

3.2.1 DFT - STATE

STATE or “Simulation Tool for Atom TEchnology” is a program that performs
DFT calculations and has been developed by Morikawa et al. [15]. The choice
of this program came natural due to a cooperation formed between prof. Hannes
Jónsson of the University of Iceland and associate prof. Yoshitada Morikawa of
Osaka University. This meant that access to STATE’s developers was easy.

Even though the methods used in this chapter were designed to be used with
STATE, they should be easily transferable to most other DFT programs.

3.2.2 PES - SCME

SCME is a potential energy surface, PES, for bulk water based on the Single
Center Multipole Expansion [16], developed by Vila et al.

SCME was also mostly chosen out of convenience as access to its developers was
readily available.

3.2.3 Compilation issues

Compiling SCME did not take much effort on all the clusters used, Itanium7,
Bjólfur8 and Jötunn9.

STATE was already available at Itaninum but not on the Icelandic clusters, Bjólf-
ur and Jötunn. It proved quite problematic to compile STATE and was very time
consuming.

At first the difference in architecture compared with Itanium, which is 64 bit
while Bjólfur is only 32 bit, was suspected to be the culprit. This was, however,
not the problem since we had the same problems on the newer cluster, Jötunn
which is 64 bit.

7A computer cluster run by Yoshida lab at the University of Osaka,
http://www.cmp.sanken.osaka-u.ac.jp

8http://hartree.raunvis.hi.is/̃ vidar/Bjolfur
9A computer cluster run by Reiknistofnun Háskóla Íslands, http://www.rhi.hi.is
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After considerable attempts of replacing libraries and compilers we managed to
compile STATE using ifort10/mkl11.

There were still problems using this setup since test cases of more than 1 atom
would crash once they reached the heavier calculational parts of STATE. After
much thinking and debugging a solution was stumbled upon which worked for
both clusters. The stack size of the linux shell had to be set to unlimited to
handle the calculations.

3.3 Long Range Potential Interaction

3.3.1 Including an external potential in DFT calculations

DFT Unit Cells

Figure 3.1: A 2D diagram of a unit cell.
The dark area is the main unit cell and
the lighter areas are periodic images of the
main cell. The coordinates show how the
grid values of the unit cell are repeated in
its images.

In DFT calculations which are ex-
panded in plane waves the system is
sets up defined by a bounding box.
This is called a unit cell. The unit
cell is then repeated identically in each
of the three directions infinitely often.
Because of this the unit cell must have
periodic boundary conditions, other-
wise values could go to infinity as the
unit cell is reapeated.

Any variable, A, that is defined cell
wide, must have the same value at the
edges of the cell,

A(0) = A(L) (3.1)

where L is the length of the cell in a
given direction. This one dimensional constraint must hold for all edges of the

10http://www.intel.com/cd/software/products/asmo-na/eng/282048.htm
11http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
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unit cell and all cell wide values. Furthermore the first derivative must also be
the same at these edges.

DFT grids

Since it is impossible to store continuous values in computers, grids of discrete
values must be used. In DFT calculations the information is stored discretely on 3
dimensional grids. This means that the unit cell is broken into small subsections.
One point in the grid then represents each subsection. The grid must also satisfy
equation 3.1. See figure 3.1 for a visual explanation.

Implementation

To include an external potential in the Kohn-Sham equations, equation 2.8, and
thereby in the self-consistent electronic structure calculations, the external po-
tential must be available on a unit cell of the same size as the DFT unit cell.
The external potential must be on a grid with the same density as the effective
potential veff in equation 2.10. Once this is the case it is quite simple to add the
two. The external potential is thereafter included in the electronic calculations.
This can either be done in real space or in Fourier space, where the grids might
be more accessible. Note that this fails to take into account the contribution to
the total energy of the nucleus due to the external potential,

ETotal = EElectron +
∑
A

ZAvext(rA) (3.2)

where vext is the external potential, ZA is the charge of the nucleus and rA is the
location of each nucleus.

If Newtonian dynamics are to be preformed, it is important to realize that the
above only gives the forces on the nuclei due to the electrons and their interaction
with the external potential. Since DFT operates under the Born-Oppenheimer
approximation the effect of the external potential on the nuclei must also be
considered. To get a correction to the force provided by the electron calculations
the force due to the external potential on each nucleus must be added:

FTotal = FElectron + FExtPot (3.3)
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where
FExtPot = ZA

∂vext

∂r

∣∣∣∣
r=rA

. (3.4)

3.3.2 Including an external potential in multipole potential

surface calculations

To see the effects of external potentials in calculations based on multipoles, it
must be realized that the actual potential only affects the monopole and in the
case of SCME the monopole is not included. Hence we only use derivatives of the
potential. The dipole is affected by the electric field, the first derivative of the
potential, and so on until the hexadecapole, the last multipole used in SCME,
which is affected by the fifth derivative of the potential.

To include these effects in SCME, the appropriate derivative of the external po-
tential is added to the corresponding internal derivative. This must be done in
two places, first in the self-consistent induction calculations and secondly to the
main self-consistent energy and force calculations.

The Induction Calculations

SCME consideres the polarizability of each molecule by calculating the induced
dipole-dipole interactions, dipole-quadrupole interactions and quadrupole-quadrupole
interactions. As such, the environment of each molecule is to some extent ac-
counted for [10].

For each molecule, the components of the induced dipole, ∆P , and induced
quadrupole, ∆Q, are defined as follows:

∆Pi =
∑
j

αijEj +
1

3

∑
j,k

Ai,jk
∂Ej
∂rk

(3.5)

∆Qij =
∑
k

Ak,ijEk +
∑
k,l

Cij,kl
∂Ek
∂rl

(3.6)

where E is the electric field (the first derivative of the potential), αij is the
dipole polarizability, Ai,jk is the dipole-quadrupole polarizability and Cij,kl is the
quadrupole-quadrupole polarizability. All the polarizabilities are tunable con-
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stants. The indices; i, j, k and l, all represent each axial component; x, y and
z.

To add the external potential to the induction calculations, the appropriate
derivatives thereof, first and second respectively, are added to the Ei and ∂Ei/∂rj
elements respectively in equations 3.5 and 3.6. This must be done for each step
of the self-consistent calculations since a new internal electric field is generated
every step according to the change in dipoles and quadrupoles.

The Main Energy and Force Calculations

After the dipoles and quadrupoles have been induced it is simple to add each
derivative of the external potential to the corresponding internal derivative since
the internal values will not be recalculated hereafter.

3.3.3 Exporting the potential from the DFT calculation

In order to calculate the energy and the force on the water molecules described by
SCME, every derivative of the potential up to and including the fifth is needed,
as shown in section 3.3.2, at the centers of mass of each water molecule in the
SCME region of the calculation. With the potential from the DFT calculation, the
derivatives can be obtained quite easily. Calculating these derivatives, especially
the higher ones, in real space can be quite cumbersome and inaccurate since
numerical methods do not consider gridpoints that lie far away from the point
at which the potential is being calculated. Therefore it is better to produce the
derivatives in Fourier space, where every point in the grid is included and the
calculations are reduced to simple multiplications.

Given the electrostatic potential, which is readily available from the K-S equations
2.8, the derivatives can be produced for each cartesian coordinate (x, y and z),
labelled j,

∂V (r)

∂rj
=
∑
G

(iGj)V (G)eiG·r

...

∂5V (r)

∂rj1∂rj2∂rj3∂rj4∂rj5
=
∑
G

(iGj1)(iGj2)(iGj3)(iGj4)(iGj5)V (G)eiG·r.

(3.7)
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Using these derivatives, it is possible to either construct a grid in the SCME
region and interpolate for the centers of mass or calculate for each center of mass
directly.

When producing so many high level derivatives it most likely becomes necessary
to maintain an unusually dense potential grid to get accurate results.

3.3.4 Exporting the potential from the multipole calcula-

tion

To produce the potential at location r due to the water molecules calculated by
the multipole calculations, the contribution of each multipole is summed up,

V m
P (r) =

∑
i

PiRi

|r− r′|3

V m
Q (r) =

∑
i,j

Qi,jRiRj

3 |r− r′|5

V m
O (r) =

∑
i,j,k

Oi,j,kRiRjRk

15 |r− r′|7

V m
H (r) =

∑
i,j,k,l

Hi,j,k,lRiRjRkRl

105 |r− r′|9

(3.8)

where VP(r), VQ(r), VO(r) and VH(r) are the contributions to the potential at
r due to the dipole, quadrupole, octopole and hexadecapole, respectively, of a
single water molecule, m, whose center of mass is at r′. The indices; i, j, k and l
represent each axial component; x, y and z. Ri = (ri−r′i) is used for simplification
of the formulas.

To get the total potential at location r, the contributions of all the multipoles
in equation 3.8 are summed up and then the contribution of each molecule is
summed over,

V (r) =
N∑
m=1

[
V m
P (r) + V m

Q (r) + V m
O (r) + V m

H (r)
]

(3.9)

where N is the number of water molecules.

Using equations 3.8 and 3.9, the potential due to the water molecules in the SCME
calculations can be produced at any location, in particular a grid of potential
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values that is of the same size and density as the grid used in the DFT calculations.

3.4 Combined Calculations

The long range interactions between the two calculations are done by having the
potential due to one system act on the other and then vice versa.

Both calculations, DFT and PES, are done using periodic unit cells, see figure
3.1. When setting up the unit cell for one of the calculations the other system
must be taken into account. A vacuum must be included in each unit cell to
account for the other calculation and minimize unwanted interaction of periodic
images.

It should be stressed that no actual calculations were carried out and this section
is only an analysis of what might happen.

3.4.1 Slab Calculations

A metal surface in water is a simple example of a setup that this method could
simulate.

A thin layer of metal atoms, a slab, is set up and water placed on top of it in the
DFT calculation, the remaining bulk water is then treated by the PES. Interac-
tions between the slab/water and bulk water are then done via the potential due
to each system.

When setting this up, a vacuum in the direction normal to the surface of the slab
must be included in the DFT calculation and in the PES calculation a vacuum
which accounts for the slab from the DFT calculation. Since this vacuum is
different for each calculation the choice of unit cell becomes important.

Equal Size Cells

Choosing the unit cell of both calculations to be the same is useful in a number
of ways but has its disadvantages as well.
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Using equal size unit cells results in a total system that is easy to visualize.
Each cell can be superimposed on the other to produce a complete image of the
complete system.

The calculation of potential and derivatives thereof in the PES region becomes
easy since the DFT grids extend over the whole PES cell. However, this poses the
problem that large cells in DFT calculations can be calculationally very heavy.

Different Size Cells

By choosing different cell sizes some advantages appear as well as some disadvan-
tages.

The cell sizes are independant and can therefore be optimized seperately. The
cell size can generally be chosen smaller than with the equal size cell which results
in easier calculation.

Since the DFT grids will not extend to the entire PES region a different method
for evaluating the potential and derivatives must be employed. A good candidate
is the multipole expansion.

3.5 Short Range Interactions

Generally there will be a zone where the interaction needs to be described more
fully than by potential interaction. This zone is at the interface between the 2
calculations.

A method that might seem straight forward is to have both codes calculate the
atoms at the interface. The forces on the interface atoms can then be calculated
as a linear combination of the two calculations. One or both programs might
impose some restrictions on the molecules so these restricitions might need to
be considered. In the case of SCME the water molecules are rigid. The linear
combination of forces would have to consider this when calculating the total force.

Our work did not cover these short range interactions at all and therefore we shall
not discuss them further.
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3.6 Summary

We have presented the basis of a method to extend DFT calculations using a
potential energy surface. In particular we have included the necessary formulas
to extend STATE [15], a DFT program, with SCME [16], a PES that employs
the single center multipole expansion. The methods in this chapter only cover
the long range interactions which are done by having the potential due to one
calculation interact with the other as described in section 3.3. The short range
interactions are outside the scope of the current work.

The compilation troubles described in section 3.2.3 had profound influence on
this project. They along with various other reasons resulted in the abandonment
of the project in favor of the work described in chapter 4. The experience in
dealing with external potentials within the DFT framework was, however, not
lost since the later work deals directly with the effect of external potentials in
DFT calculations.
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Chapter 4

Mimicking the Electrode Potential

Profile of a Charged Solid-Liquid

Interface with External Potentials

4.1 Introduction

Understanding the charged solid-liquid interface of electrochemical systems has
been an active field for over 150 years, dating back to Hermann von Helmholtz
in 1853 [17]. Ever since then, models of the interface have been formulated, e.g.
[18, 19, 20, 21, 22].

The ion distribution and the effective potential, i.e. electrode potential profile, of
an electrochemical system are schematically shown in figure 4.1.

When the potential bias is tuned in an electrochemical cell, the electrons are
forced to move from one electrode to the other, making the electrodes oppositely
charged. The charged surfaces form a double layer [23] with the ions coming from
the electrolyte and thereby screening the electrode’s charge from the rest of the
liquid. At first the effective potential changes rapidly since most of the ions are
located near the surface. However, as distance from the surface becomes greater
and fewer ions exist in the electrolyte the potential changes with an exponential
decay.

The methods of ab initio calculations, which have been very important for the
present understanding of the gas-solid interface, have only been applied recently
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Figure 4.1: A real electrochemical system with 2 electrodes and an electrolyte in-
between. Below the effective potential in the cell is shown. Printed with permission
[24].

for the charged solid-liquid interface [25, 26, 27, 28, 29]. These recent models
consist of periodic DFT or molecular dynamics calculations in the attempt to
mimic the double layer. Taylor et al. review some of these recent models in their
article from 2006 [26].

Sugino et al. [28], see figure 4.2(a), remove charge from the system and then
re-insert it slowly while performing dynamics. This results in a charge buildup
in the metal while the countercharge resides in an effective screening medium
(ESM) [27]. As can be seen the effective potential rises quickly near the two
charged layers of the electrode-water and the water-ESM interfaces. This is due
to a rearrangement of the water molecules, not because the countercharge is
located at the right place in the solid-liquid interface. In addition there is a small
electric field throughout the water.

Skúlason et al. [29], see figure 4.2(b), insert a hydrogen atom in the water bilayer
at the surface. When solving the electronic structure it forms a hydronium ion
(H3O+) and surrenders most of its charge to the metal surface. This creates a
double layer with the right features. However, as the counter ions are explic-
itly right outside the metal, the double layer dies out too quickly and lacks the
exponential decay that should be present further away.

Filhol et al. [25], see figure 4.2(c), insert extra charge into the system which
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gathers in the metal. A homogeneous countercharge is then applied to the whole
system to maintain charge neutrality. This results in a smeared out double layer.

(a) Sugino et al. [28]. (b) Skulason et al. [29].

(c) Filhol et al. [25].

Figure 4.2: Setups and effective potentials for recent electrochemical systems.
Printed with permission [24].

4.1.1 Electrochemical cells

An electrochemical cell consists of 2 half-cells, an ion bridge and a wire. Each
half cell consists of an electrode and an electrolyte which surrounds the electrode.
Surrounding the charged electrodes the electrolyte reacts to form a double layer
by bringing particles of the opposide charge close to the electrode and thereby
screening the charge of the electrode somewhat to the rest of the electrolyte.
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The electrodes are connected with the wire through which the electrons flow while
the electrolytes are connected with the ion bridge to allow for free flow of ions
between the 2 half-cells [30]. See figure 4.3(a) for a graphic representation.

(a) A classical electrochemical cell. (b) Our electrochemical cell model which has a one-
to-one correspondence to the classical electrochem-
ical cell shown in (a).

Figure 4.3: Our model shown in comparison to a classical electrochemical cell.

We suggest this system can be simulated using only a thin film of metal atoms
(a slab) and an external potential to manipulate the electrons. By having the
top layer of the slab with less potential than the bottom layer, electrons should
migrate from the bottom layer to the top layer. With this setup the top layer
acts as the negatively charged electrode, the bottom layer as positively charged
electrode, the layers in-between as the wire and the external potential as the po-
tential difference of the classical electrochemical cell. Compare figures 4.3(a) and
4.3(b) for a graphic explanation. Since the DFT cell is periodic in the direction
normal to the slab surface, as well as the other directions, the space between the
slab and its virtual image in the direction normal to the electrode surface can be
filled to represent the electrolytes and the ion bridge.

By applying this external potential to a full system of a slab and water, the water
should re-align to form a double layer with the slab that looks similar to the real
one as seen in figure 4.1.

Our model offers a one-to-one correspondence of each part of the real system and
is therefore easy to understand and could be used to simulate a whole electro-
chemical cell in one DFT calculation.
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4.2 Software & Calculational Details

4.2.1 DFT

Dacapo1 is a DFT calculator that plugs into the ASE22 python interface. This
setup was chosen for the DFT calculations due to previous familiarity with its
capabilities. In particular it was known that external potentials could be included
in the calculations. The method of inclusion is similar to the method described
in chapter 3.

The electronic structure problem is solved using density functional theory in a
plane wave pseudopotential implementation [31, 32], employing ultrasoft pseu-
dopotentials [8] to represent the ionic cores. All calculations were performed
using the RPBE exchange-correlation functional [7] unless otherwise stated. The
self-consistent electron density is determined by iterative diagonalization of the
Kohn-Sham hamiltonian, with the occupation of the Kohn-Sham states being
smeared according to a Fermi-Dirac distribution with a smearing parameter of
kBT = 0.1eV . In general a dipole correction [33] is not used, however, its effect
will be discussed in section 4.3.4. In all the calculations the planewave cutoff is
set at 26Ry and the density cutoff at 26Ry, however, for caluclations that were
Bader analysed the density cutoff was set to 86Ry to obtain a denser grid. When
structures were relaxed the force tolerance was set to 0.01eV/Å unless otherwise
stated.

4.2.2 Compilation of Dacapo

As with the work in chapter 3, severe compilation problems plagued this part
of the project. Both Dacapo’s fortran code and ASE’s python code were prob-
lematic. Problems with libraries and external python modules were prominent
as well as the stability of the fortran code. We needed to be particularly careful
regarding stability and network traffic as a previous installation of Dacapo had
been prone to crash the entire cluster it was running on, Bjólfur3. Such a crash
would leave the cluster inoperable for a day or even a few days due to possible
data corruption on the data server.

1An open source code, available at http://wiki.fysik.dtu.dk/dacapo
2An open source code, available at http://wiki.fysik.dtu.dk/ase2
3http://hartree.raunvis.hi.is/̃ vidar/Bjolfur
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The probelm with network traffic seemed to be unique to Bjólfur and could be
circumvented by only writing the huge binary data file4 to a scratch disk during
the calculation while writing trajectories to the main data server. This method
has the drawback that the binary data files are lost and to display things such as
electron density, effective potential, etc. one needs to converge the electron cal-
culations from the last postitions in the trajectory again, starting from a random
wavefunction, now with the binary data file written to the main data server.

As for compiling, ifort5 was our first choice, along with its libraries, MKL (Math
Kernel Library)6. However, after running into problems with ifort when compil-
ing the NetCDF libraries4, we were forced to try GNU compilers7 instead.

GotoBLAS8 with GNU compilers have been shown to perform better than basic
BLAS and even close to the performance of ifort/mkl [34], so they were a natural
choice for BLAS(Basic Linear Algebra Subprograms) libraries [35]. However,
after considerable difficulty in compiling GotoBLAS, we reverted to a more basic
BLAS9.

This compromise might have slowed the program down but no such tests were
conducted and the program used as such.

4.2.3 Differentiable External Potential Function

We have written a module to produce external potentials on a grid in the Python
programming language. The Python language was the obvious choice since the
DFT program uses a Python interface, ASE. Our calculations require us to use a
potential which is static in 2 directions (x and y) but tunable in the last direction
(z). In effect our python program produces a 1 dimensional potential grid which
is then extended to the other 2 dimensions.

The 1D potential is a combination of 4 polynomials, 2 of which are of the first
degree and 2 of which are of the third degree in alternating order. The external

4http://www.unidata.ucar.edu/software/netcdf
5http://www.intel.com/cd/software/products/asmo-na/eng/282048.htm
6http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
7http://gcc.gnu.org/fortran
8http://www.tacc.utexas.edu/resources/software
9http://www.netlib.org/blas/index.html
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potential in whole obeys the same boundary conditions as the DFT calculations
and is differentiable in all points.
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Figure 4.4: A sample polynomial showing the control points and different parts
of the polynomial. This 1 dimensional potential can then easily be extended to be
invariant in the directions parallel to the metal surface.

The parameters that control the potential are the 4 points where different poly-
nomials meet.

The 1◦ polynomials are created simply by making a straight line between the
control points while the 3◦ polynomials are defined by the following equations:

3PII(z1) = 1PI(z1)

3PII(z2) = 1PIII(z2)

d3PII
dz

∣∣∣∣
z=z1

=
d1PI
dz

∣∣∣∣
z=z1

d3PII
dz

∣∣∣∣
z=z3

=
d1PIII
dz

∣∣∣∣
z=z3

(4.1)

where 3PII , 1PI and 1PIII are the 3◦ polynomial in interval II, 1◦ polynomial
in interval I and 1◦ polynomial in interval III respectively. See figure 4.4 for a
graphic explanation.

With equations 4.1, P 3
II = aIIz

3 + bIIz
2 + cIIz + dII can be easily solved for aII ,

bII , cII and dII using equations 4.1 as constraints for a system of 4 equations.
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P 3
IV is created in a similar manner.

We now define half the length of each 3◦ polynomial as its smearing. This term
becomes important when applying the potential on an actual system as we will
show in section 4.3.3.

4.2.4 Calculational Setup

Our system is composed of a platinum 111 slab, using a lattice constant of 4.02Å,
with varying number of atoms. Each layer is in a 3x2 configuration, while the
number of layers is variable. The number of layers will be discussed further in
section 4.3.3. We then have an external potential act on the slab in such a way
that each side of the slab has a different potential with a drop in potential in
the middle of the slab and a rise in the vacuum. Outside of the drop and rise
the potential is constant. This potential setup will hereafter be referred to as the
U-potential. For a graphic explanation see figure 4.5.

Figure 4.5: A diagram showing how the U-potential is set up.

On each side of the slab we then add what is needed for each particular calculation.
In the case where there is nothing but the slab in the calculation we use a perfect
crystal structure for the entire slab. When water is included in the system, the
top layer of the slab has been relaxed along with the water.
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4.3 Results and Discussions

4.3.1 Terminology

A concept that will be used a lot in this section is electron density difference,
∆ρxy(z). This concept describes the electron density, ρ(r) of a system, compared
to a different system, averaged over the x- and y- directions. In general a system
that has external potential applied to it will be compared to a system that has
no external potential applied to it. The atomic configuration of both systems is
the same so the effect of the external potential can be extracted.

All the values that DFT deals with are discrete so the math becomes quite simple:

∆ρ(r) = ρExtPot(r)− ρNeutral(r) (4.2)

and
∆ρxy(z) =

∑
x,y ∆ρ(r)

nxny
(4.3)

where nx and ny are the number of grid points in the x- and y- directions respec-
tively.

Another concept used is the effective potential, ∆Vxy(z), which represents the
change in electrostatic potential compared with a system without external poten-
tial applied. This is defined in the same manner as above

∆V (r) = VExtPot(r)− VNeutral(r) (4.4)

and
∆Vxy(z) =

∑
x,y ∆V (r)

nxny
(4.5)

4.3.2 Electron Transfer

Initial tests confirmed the presence of an electron transfer effect. Using a simple
setup, a 3 layer platinum slab that is subject to the U-potential, electrons move
from the side which has higher potential to the lower potential side. This effect
can be seen in figure 4.6.

It is also interesting to see that the effective potential is quite different from the
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external potential in the areas without electrons. Instead of correcting for the
periodicity of the cell deep in the vacuum in a abrupt change, this change is
smoothed out over the whole region that is void of electrons and thereby forms
an electric field in the vacuum.
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Figure 4.6: The setup of the system, the external potential that is applied (the
U-potential), the effective potential and the difference in electron density compared
with a system without an external potential applied. The potential profiles have been
shifted upwards by 3.5V and 5.0V respetively and the electron density difference has
been magnified by 1000x.

Three main electron transfer effects are seen.

• The most obvious effect is the electron transfer which happens within the
slab, two anti-symmetric tops, one representing deficiency of electrons and
the other abundance of electrons. This effect will hereafter be referred to
as the in-slab transfer.

• The second effect is the one we are most interested in, two anti-symmetric
tops, one above the slab and one below. These represent the transfer of
electrons from one side of the slab to the other. This effect will hereafter
be referred to as the side-to-side transfer.

• The last effect is oscillations in the electron density between the previous
two effects. This is not very visible when using such a thin slab but will be
seen more clearly in section 4.3.3.
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We believe the in-slab transfer is produced by the drop of the potential in the slab
and is therefore purely an artifact of the calculational method. This is further
discussed in section 4.3.4. On the other hand the side-to-side effect is due to the
different potentail of each side of the slab which is what our method predicts.
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Figure 4.7: The difference in electron density between a system that is subject
to various potential drops in the slab compared to a system without any external
potential applied, always using a 2.0Å smearing.

By applying different potential differences between the top and bottom slab lay-
ers, one can increase or decrease the electron transfer. Bader analysis, figure
4.7(b), shows this for the side-to-side transfer more clearly then simply plotting
the difference in electron density, figure 4.7(a), and furthermore shows that the
potential drop and the electron transfer are linearly dependant. Note that that
Bader analysis cancels out the in-slab transfer completely for symmetric systems
because symmetric systems produce anti-symmetric electron density difference.
However if the system is not completely symmetric this anti-symmetry is broken.
If the layers over which the potential drops are symmetric, as they are in our
calculations for the most parts, the in-slab transfer is still almost anti-symmetric.

4.3.3 The Effect of Smearing and the Slab Size

After seeing the huge in-slab transfer within the slab in section 4.3.2, it is safe to
assume that it might interfere with the main side-to-side transfer if the smearing
is too large or the slab too thin.

If we look at the electron density of a given 3 platinum layer system which is
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Figure 4.9: The electron density differ-
ence, closely above the slab. The top layer
is set at 0.0Å. The smearing is set at 2.0Å
for all slabs and the drop is 2.0V .

subject to the U-potential with varying smearing and compare with the same
system without an external potential applied, we see that the side-to-side transfer
is similar for different smearings while the electron density in the inner layer is
quite different for different smearings.

When the number of platinum layers is increased to 5, the above effect seen more
clearly, see figure 4.8. There is considerable electron transfer within the slab
but with a small enough smearing the effect outside the slab is the same for all
smearings. Larger smearings decrease the in-slab transfer so it becomes apparent
that one must strike a balance between large in-slab transfer and convergence in
the side-to-side transfer. Bader analysis confirms that the side-to-side transfer is
the same for all smearings that are sufficiently small.

We choose to use 5 layers with the potential dropping over slightly less than the
inner 3 layers, using a smearing of 2Å, for the bulk of our calculations. With this
setup we manage to limit the severity of the in-slab transfer while still being quite
sure that the side-to-side transfer is not affected. There seems to be no reason to
use a larger slab as can be seen in figure 4.9.
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4.3.4 Dipole Correction and the Effect of Cell Size

By exposing a slab to the U-potential we are making the slab asymmetric by
manipulating its electrons. Due to this an electric field is produced in the vacuum.
A dipole correction [33] is a cell wide saw shaped potential that can be employed
to counter this electric field.
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Figure 4.10: The U-potential is applied and we compare a normal setup to one with
the dipole correction applied.

As figure 4.10 shows the dipole correction removes the side-to-side transfer by
applying a saw potential that counters the electric field in the vaccum. The dipole
correction, however, leaves the in-slab transfer intact which is consistent with our
claim that the in-slab transfer is only due to the potential drop in the slab, since
a simple saw potential would not even out the comparatively abrupt drop in
potential that takes place in the slab. Figure 4.10(b) shows that the electrostatic
potential changes dramatically in the vacuum when a dipole correction is applied.
The electric field in the vacuum is removed by making the potential flat except
in the middle of the vacuum where the potential changes abruptly to maintain
periodicity.

Adding a dipole correction somewhat simulates a cell with an infinitly large vac-
cum, at least when considering the electric field. Then, how is the side-to-side
transfer dependant on the size of the vacuum and thereby the electric field therein?

As figure 4.11(a) clearly shows, the side-to-side transfer depends on the size of the
cell. Furthermore, Bader analysis of the data, figure 4.11(b), shows that the side-
to-side transfer depends linearly on the electric field in the vacuum. Therefore
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Figure 4.11: The same potential drop is applied to different size cells, by only varying
the vacuum length but keeping the potential drop at 2V and smearing at 2.0Å.

it is clear that if the electric field is constant while varying the vacuum size and
potential drop the side-to-side transfer will remain constant. We discuss this
further in section 4.3.5.

It should be noted that vacuum size does not change the in-slab transfer at all.
This is consistent with our previous observations regarding the dipole correction.

4.3.5 Comparison to a Saw Tooth Potential

Saw Tooth Potential Setup

A saw tooth potential (sometimes called a ramp potential) is a constant and even
drop in potential with an abrupt rise at a given location to ensure periodicity.
The main identity of a saw tooth potential is its uniform decrease (or increase) in
potential. This creates an even electric field everywhere in the cell except where
the abrupt rise is. This drop is generally placed in the middle of the vacuum and
therefore doesn’t affect the system in question if the vacuum is large enough.

The saw tooth potential has been used to simulate the Helmholtz layer[18] in a
metal/water system, e.g. by Karlsberg et al. [36]. In this case the saw potential
is set up to approximate the Helmholtz layer formed by the surface of the metal
and the water by setting up an even electric field in the whole cell. The field
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Figure 4.12: The saw tooth potential setup. The Helmholtz layer is displayed and
the abrupt potential rise in the vacuum.

in the Helmholtz layer can be quite large, up to 0.5V/Å [37]. Even though the
actual Helmholtz layer should only be small, approximately 3Å [37], the saw tooth
potential does not allow this and sets up the electric field in the whole cell. This
leads to a very large change in the vacuum where the periodicity is enforced.

Besides simulating the Helmholtz layer, this electric field produces a similar effect
as our U-potential by transporting electrons from the slab side that has the higher
potential to the lower potential slab side. This is problematic when using the
saw tooth potential since the electrons will be transferred away from the surface
that should be negatively charged according to the setup of the Helmholtz layer.
This is a serious problems that the saw tooth potential suffers when used in
electrochemical applications.

Simple slab

Once again we use a simple platinum slab that consists of 5 layers. We com-
pare the application of 2 different external potentials; our U-potential and the
saw potential described above. Both employ an abrupt change in the middle of
the vacuum to maintain periodicity. This abrupt change is the same for both
potentials in every system we compare.

We see from figure 4.13(a) that the electron transfer is quite similar in between the
two methods outside the slab. On the other hand within the slab the situation is
quite different. For this reason, Bader analysis shows slightly less electron transfer
to the top layer under the saw tooth potential. However, as figure 4.13(a) shows
the main side-to-side transfer, outside the slab, is almost identical in between
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Figure 4.13: A comparison of the U-potential and the saw tooth potential.

both methods.

As we showed in section 4.3.4, it is the electric field in the vacuum that controls
the side-to-side transfer. Therefore it is quite interesting to see how completely
different electric fields, see figure 4.13(b), produce very similar side-to-side elec-
tron transfer.
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Figure 4.14: Comparison of the charge change in the top layer of the slab using
Bader analysis. The dependance of the charge transfer on the electric field in the
vacuum of each method is explored.

In figure 4.14, we compare the effect of keeping the electric field in the vacuum
constant while modifying the cell size and potential change in the vacuum. When
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the electric field of the U-potential is kept constant and those parameters applied
to both the saw tooth potential and the U-potential, the electron transfer is
constant for different cell sizes, as seen in figure 4.14(a). On the other hand if the
parameters from when the saw tooth’s electric field is kept constant, are used the
electron transfer changes for both methods, as seen in figure 4.14(b).

It is, therefore, clear from figure 4.14, that the side-to-side electron transfer for
both potential setups depends on the potential change in the vacuum and the
vacuum size. These sizes are characerized in the effective electric field in the
vacuum of the U-potential calculation. This is peculiar in the case of the saw
tooth potential since the effective electric field in the vacuum is very different
from that of the U-potential, see figure 4.13(b). In this way the U-potential
describes what is happening more clearly than the saw tooth potential.

Slab with one water molecule on top

As the surface of a slab gets more negatively charged, a water molecule on top of
that slab turns the oxygen’s lone pairs away from the slab and towards it when the
surface gets more positively charged. We can use this effect to further compare
the saw potential to our U-potential by using both to transfer electrons from the
bottom layer of the slab to the top and comparing the angle of the water molecule
for each method.

It should be noted that the calculations of this system are done using the PBE
functional [6] instead of RPBE like elsewhere in this chapter. This is due to the
fact that the water molecule did not form any sort of bonding to the surface
using the RPBE functional. We also used lower force tolerance, 0.005eV/Å, for
the relaxation, since the effect being measured is so delicate.

Figure 4.15(a) shows even further that the side-to-side transfer is the same for
the saw potential and the U-potential when using the same potential drop in the
vacuum. Only slight differences are to be found in the angle between the water
molecule and the surface and they can easily be explained by either calculation
not being as completely relaxed as the other.

There is a slight, but consistent, difference in the binding energies of the water
molecule to the surface. As the surface becomes more negatively charged the saw
tooth potential offers slightly less bonding, 1.5 × 10−3eV for −4.0V difference
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Figure 4.15: Comparison of the angles between a water molecule and a platinum
slab under the U-potential and the saw tooth potential. The angle shown in (a) is an
average of the α and β angles shown in (b). Due to the setup of the system the top
layer becomes more negatively charged as the voltage is more positive.

in the vacuum, than the U-potential. For a more positively charged surface the
difference is the same but in favour of the saw potential. To measure such small
energy differences, even lower force tolerances might be needed, larger external
potential drops would be helpful and more points essential. However, the differ-
ence was consistent and linear, albeit small, for all measured values of the external
potential drops.

4.4 Further Applications

Towards the end of this project an idea surfaced to extend our model beyond the
manipulation of the metal’s electrons. We saw prospect in imitating the actual
effective potential profiles using external potentials.

One example of this is to mimic the double layer more fully than with the saw
tooth potential. Both by forcing electrons into the correct slab side instead of
out of it and also by giving a more full description of the double layer than the
simple Helmholtz layer.

A few simple tests were performed using work by Rossmeisl et al. [38] as a rough
guideline for the shape of the potential. Still using the function described in

38



Figure 4.16: A diagram showing how the U-potential can be modified to produce an
external potential that looks like a double layer close to the slab’s surface. The saw
tooth potential is shown in comparison and the potential change in each is defined.
Note that the definition of the saw potential has changed.

section 4.2.3 to produce the external potential we simply moved the rise that
used to happen deep in the vacuum to just above the surface of the metal. We
then set it to look similar to their double layer by setting the smearing at 2.5Å.
See figure 4.16.
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Figure 4.17: Comparison of the angles
between a water molecule and a platinum
slab using the modified U-potential and the
saw tooth potential. The angle shown is
the average of the angles show in figure
4.15(b). A more positive voltage gives a
steeper electric field in the double layer.

As a test case we repeated calculations
from section 4.3.5 but using the mod-
ified U-potential. Figure 4.17 shows
that with increasingly steep electric
fields in the double layer region the an-
gle is affect in the same way with both
the modified U-potential and the saw
potential. However, change is more
with the modified U-potential. This
is to be expected since by definition
of the external potentials, the same
voltage value does not give the same
change in potential in the double layer
region.

If the size of the cell and the smearing
of the double layer are compared it can
be seen that a modified U-potential
value of 0.5V is roughly equivalent to a saw tooth potential value of 3.5V . This
comparison seems to approximately match up. However, since this test was only
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a primitive one, not too much significance should be put into the magnitude of
the effect.
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Figure 4.18: Comparison of a system that is affected by the modified U-potential
and the system which was used to form the rough shape of the external potential.

In figure 4.18, the effective potential of the above system is shown in comparison to
the work done by Rossmeisl et al. [38]. Even though these are not completely alike
certain similarities are apparent. The most important similarities are between the
slab and the water molecule where the effective potential rises almost identically.
However, as we move further away from the slab and less electrons are present
the potential forms an electric field to maintain periodicity.

Even though no exhaustive tests using this setup were performed we see great
potential in its use. Simulation of surface chemistry with little water while the
double layer is simulated using an external potential is perhaps the most obvious
application, however, more testing of that setup is certainly needed.

To form a potential that better simulates the double layer, the external potential
function from section 4.2.3 must be extended to allow more flexibility. In particu-
lar using a 3◦ polynomial in the double layer area will probably not be sufficient.
In fact to produce a proper looking double layer, a large system that includes
a double layer should be calculated without external potential and the external
potential then fitted to the effective potential of that system.
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4.5 Conclusions

We have presented a method to manipulate electrons near a metal slab. Setting
the bottom and top layers of a slab at different potentials, by having the external
potential change rapidly in the slab, pushes electrons to the lower potential side.
This is useful to realistically simulate electrodes as they are in general either
negatively or positively charged. Each side of the slab can then represent one
electrode.

We have shown that charge is indeed pushed from one side of the slab to the other.
Most importantly from just outside the higher potential side to just outside the
lower potential side, we call this effect the side-to-side transfer. There is also
charge transfer within the slab which we call the in-slab transfer.

We have shown that side-to-side transfer is directly dependant on the electric field
in the vacuum. This field is formed to connect the unit cell to its mirror image
and maintain periodicity in the potential. In a cell that only contains a slab, this
field is characterized by the length of the vacuum and the potential difference. If
the electric field is removed, e.g. by applying a dipole correction, the side-to-side
electron transfer disappeares. To further study this behaviour a large system with
a lot of water is needed. The water is used to screen out the effect of the electric
field on the slab. However, such calculations were not carried out.

The in-slab transfer remains identical when exposed to various conditions un-
der which the side-to-side transfer is affected. As long as the external potential
changes over the same length, the in-slab transfer remains the same and is scaled
with the potential drop in the slab. In particular the vacuum size has no effect on
this in-slab transfer. After comparison with the saw tooth potential where there
is no in-slab transfer but almost identical transfer from one side of the slab to the
other, we believe it is safe to say that the in-slab transfer of the U-potential is
purely an artifact of the calculation and as long as the external potential changes
over a wide enough area and the slab is large enough to accomodate this, it will
not affect the main side-to-side electron transfer.

In our comparison to the saw tooth potential an unexpected flaw in the saw tooth
potential was discovered as the side-to-side transfer was dependent on the height
of its periodic correction which happens deep in the vacuum and the size of the
vacuum. This dependance turns out to be expressed in the effective electric field
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of the U-potential and not the effective electric field of the saw tooth potential.
This leads us to claim that the U-potential explains more clearly the side-to-side
electron transfer of both methods.

The saw tooth potential is often used to simulate an electric double layer using
a Helmholtz layer. By doing so, electrons are pushed away from the side that
should be negatively charged. This is not a problem with the U-potential since it
first moves the electrons to the correct side and then has the electrolyte react to
form a double layer. Furthermore, the U-potential can be expanded to directly
simulate the double layer by fitting an external potential to an actual double layer
and thereby decreasing the need for heavy calculations using large quantities of
water. This last setup was only suggested in this work and briefly looked at. It,
therefore, needs more work to form a working method.
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