
1

Meta-Heuristics in Multi-core Environments

Ragnar M. Ragnarsson

2010
MSc thesis in Decision Engineering

Author: Ragnar M. Ragnarsson

Id no:

Supervisors: Dr. Eyjólfur Ingi Ásgeirson and Dr. Hlynur Stefánsson

Tækni- og verkfræðideild

School of Science and Engineering.

2

Upplýstar Leitaraðferðir í Fjölkjarna Umhverfum

Útdráttur
Mörg raunveruleg vandamál eru stór NP-hard vandamál og fyrir öll stærri tilvik er nánast ógerlegt að

finna bestu lausnina á þeim á ásættanlegum tíma. Upplýstar leitaraðferðir eru oft notaðar til að fá

góða lausn á vandamálum á ásættanlegum tíma en þau gefa ekki endilega bestu lausn. Í þessari grein

verður farið yfir það hvernig má auka afköst upplýstra leitaraðferða með fjölkjarna vélum og finna út

hvað ber að varast. Til að gera það voru valin þrjú reiknirit og þrjú vandamál. Reikniritin eru

Aimulated Annealing, Ant Colony og Tabu Search en vandamálin eru Ackley fallið, Traveling Salesman

vandamálið og Vehicle Routing vandamálið.

Með því að keyra Simulated Annealing reikniritið á hverjum kjarna sem eyju fengum við út að hraðinn

jókst um 1.6 þátt við hvern kjarna sem var bætt við.

Einnig kom í ljós, að með því að skipta verkefninu upp í hluta sem tekur langan tíma að reikna og ekki

þarf að nota mikið af sameiginlegum auðlindum er góð útfærsla fyrir fjölkjarna umhverfi, gefið að

örgjörvin sé hraður. Með þess konar reikniriti fyrir Ant Colony fengum við hraðaaukningu upp á 3.7

þætti fyrir vél með fjóra kjarna.

Aftur á móti kom í ljós að með því að skipta verkefninu upp í hluta sem tekur stuttan tíma að reikna

og nota mikið sameiginlegar auðlindir milli reikninga, er ekki góð útfærsla fyrir fjölkjarna umhverfi.

Það á sérstaklega við um hraða örgjörva. Með þess konar reikniriti fyrir Tabu Search minkaði hraðinn

um 1.4 þátt fyrir vél með fjóra kjarna.

Það má bæta hraða upplýstra leitaraðferða með því að forrita sérstaklega fyrir fjölkjarna umhverfi án

mikilla vandræða. Hversu mikla hraðaaukningu má vænta fer algjörlega eftir reikniritinu, útfærslunni

(hvort notaðar séu sameiginlegar auðlindir eða lásar) og tölvunni sem notast skal við. Til að fá nokkuð

örugga hraðaaukningu má keyra reikniritin sem eyju á hverjum kjarna en best er að velja rétt reiknirit

og vélbúnað fyrir hvert vandamál fyrir sig.

3

Meta-Heuristics in Multi-core Environments

Abstract
Many real life problems are large NP-hard problems and thus for nontrivial instances it is almost

impossible to find the best solution in a reasonable amount of time. Meta-heuristic algorithms are

often used to get a good solution in a decent amount of time but they do not guarantee an optimal

solution. In this paper we will take a look at how to increase the performance of meta-heuristic

algorithms using multi core architectures and try to identify potential pitfalls along the way, to do

that we will use three meta-heuristic algorithms and three different problems. The algorithms are

Simulated Annealing, Ant Colony and Tabu Search and the problems are the Ackley function,

Traveling Salesman problem and the Vehicle Routing problem.

We found that by using a delightfully parallel algorithm, where the whole algorithm can be run on a

single thread with no dependence on other threads, for Simulated Annealing the average gain for a

new core is a factor of 1.6.

We found that an implementation characterized by heavy calculations on each core with heavy

reading and light writing in a shared memory is an ideal implementation for the multi core

environment given that the CPU is both fast and has a large integrated cache memory. With such an

algorithm we got a performance increase by a factor of around 3.7 for a quad core system using Ant

colony meta-heuristics.

We found that an implementation characterized by relatively light computations on each core and

the use of shared resources between computations is not a good implementation for the multi core

environment. This was especially evident with a fast CPU. With such an algorithm we got a

performance decrease by a factor of around 1.4 for a quad core system using Tabu search meta-

heuristics.

By programming especially for multi core processors the performance of meta-heuristic algorithms

can be improved without much additional cost or effort. The results depend on the algorithm

chosen, the implementation (sharing memory structures, locks) and the system architecture. To get a

solid performance gain, a delightfully parallel implementation is a very good choice but ideally one

should select the correct algorithm and hardware for each problem and tune the algorithm for the

selected hardware.

Key words: Meta-heuristics, multi-core, Simulated Annealing, Ant Colony, Tabu Search

4

The undersigned hereby certify that they recommend to the School of Science and Engineering at

Reykjavík University for acceptance this thesis entitled “Meta-Heuristics in Multi-core environments”

submitted by Ragnar M. Ragnarsson in partial fulfillment of the requirements for the degree of

Master of Science.

Supervisor, Dr. Eyjólfur Ingi Ásgeirsson

Supervisor, Dr. Hlynur Stefánsson

Examiner, Dr. Slawomir Marcin Koziel

5

Table of Contents
Útdráttur ... 2

Abstract ... 3

List of Tables .. 7

List of Figures ... 8

1 Introduction .. 9

2 Methods and algorithms .. 11

2.1 Simulated Annealing and the Ackley Function .. 12

2.2 Ant Colony and the Traveling Salesman Problem ... 13

2.3 Tabu Search and the Vehicle Routing Problem ... 14

2.4 Implementation ... 15

3 Experiments and analysis ... 15

3.1 Simulated Annealing and the Ackley Function .. 15

3.2 Ant Colony and the Traveling Salesman Problem ... 16

3.3 Tabu Search and the Vehicle Routing Problem ... 16

4 Overall results ... 17

4.1 Simulated Annealing and the Ackley Function .. 17

4.2 Ant Colony and the Traveling Salesman Problem ... 20

4.3 Tabu Search and the Vehicle Routing Problem ... 21

4.4 Multi core implementations .. 23

5 Conclusions and future work .. 24

6 References .. 24

Appendix A .. 26

A.1 Computer A ... 26

A.2 Computer B ... 26

Appendix B .. 26

B.1 The Simulated Annealing code .. 26

B.2 Single core implementation .. 28

B.3 Multi core implementation ... 29

Appendix C... 30

C.1 The Ant Colony code ... 30

C.2 Multi core implementation ... 34

C.3 Single core implementation .. 34

Appendix D .. 35

6

D.1 The Tabu Search code ... 35

D.2 Multi core implementation ... 39

D.3 Single core implementation .. 40

Appendix E ... 41

E.1 Common objects .. 41

E.1.1 Interfaces .. 41

E.1.2 Objects .. 41

7

List of Tables page

Table 1: Results for computer A and B for the Simulated Annealing algorithm running the

Ackley function. 16

Table 2: Results for computer A and B for the Ant Colony algorithm running on both

single- and multi core implementations. 16

Table 3: Results for computer A and B for the Tabu Search algorithm running on both

single- and multi core implementations. 16

8

List of Figures page

Figure 1: A SMP diagram 10

Figure 2: A Beowulf cluster diagram 10

Figure 3: A multi core CPU diagram 11

Figure 4: The Ackley function 12

Figure 5: The 200 largest cities in the USA 14

Figure 6: A typical search path for the Simulated Annealing algorithm over the

Ackley function. 17

Figure 7: Single core implementation 18

Figure 8: Multi core Implementation 18

Figure 9: Simulated Annealing comparison 19

Figure 10: Simulated Annealing scaled comparison 20

Figure 11: Ant Colony scaled comparison 21

Figure 12: Ant Colony comparison 21

Figure 13: Tabu Search scaled comparison 22

Figure 14: Tabu Search comparison 23

9

1 Introduction
The roots of OR (Operation Research) can be traced back to the Second World War when the allied

forces needed to run military operations on scarce resources. The allied military called upon teams of

scientists to try to apply scientific methods to the problem. These teams were quite successful and

turned out to be an important factor in winning the Air Battle of Britain and the Battle of the North

Atlantic [28].

Many of the scientists continued their research into OR after the war and its success triggered

interest in the field outside of the military. By 1950 many of the tools and methods still used today

were already developed, such as linear- and dynamic programming, queuing theory and inventory

theory.

There was a major growth spurt in the OR world with the computer revolution. A large amount of

computation is required to solve most OR problems and computers can be used to solve

computational problems much faster than humans, especially repetitive calculations as is often the

case in OR. With growing popularity of personal computers, OR has been put into the hands of more

people than ever before [8].

Many real life problems are large NP-hard1 problems and thus for nontrivial instances it is almost

impossible to find the best solution in a reasonable amount of time. Meta-heuristic algorithms are

often used to get a good solution in a decent amount of time but they do not guarantee an optimal

solution. Meta-heuristic algorithms have become ever more popular during the recent years, in part

due to the computer revolution [7].

Meta-heuristic algorithms are fairly easy to implement in a single core environment, i.e. one CPU

(Central Processing Unit) using integrated cache memory and random access memory (RAM). The

cache memory is integrated in the CPU and is faster than the RAM memory which is connected to the

CPU through a bus (a high speed channel) which is much slower than the CPU. Though meta-heuristic

algorithms are easy to implement on single core computers they run rather slow, especially on

personal computers, though modern PCs are more powerful than many supercomputers through the

years. To get better performance, more focus has been put into parallel computing. Parallel

computing is where a problem is broken up into smaller entities and two or more entities are worked

on at the same time. In parallel computing there are two prevailing inter-processor communication

methods; shared and distributed memory models [3]. In shared memory systems a collection of

homogenous processors share the same main memory through busses (or crossbar for more than

four processors). Symmetric multi-processors, SMP, are an example of a shared memory model and

many consider chip-level multi core processors to belong to this model, Figure 1 shows a simple

diagram of a SMP and Figure 3 shows a simple diagram of a quad-core processor. Distributed

memory systems are on the other hand comprised of more than one heterogeneous stand-alone

machines, each with its own central processor unit and memory set, connected together through a

high speed network. Good examples of distributed memory systems are Beowulf clusters [4], Figure

2 shows a simple diagram of a Beowulf cluster. The two main APIs (Application Programming

Interfaces) for the shared memory model are POSIX threads [26] and OpenMP [6], for the distributed

model the MPI (Message Passing Interface) is by far the most commonly used [5].

1
 non-deterministic polynomial-time hard

10

Figure 1 A diagram of a SMP with eight CPUs connected to a shared memory through a high speed bus or a crossbar.

Both the shared memory and the distributed memory models have their advantages and

disadvantages. When porting a sequential code to a shared memory model, parallelizable code needs

to be identified and written again in APIs such as OpenMP. This can introduce complications such as

race conditions, deadlocks or other problems often accompanied with shared memory models. It is

even more complicated to write code for distributed memory models, since it usually involves writing

efficient algorithms to divide tasks among processor and memory sets and synchronizing the results.

The distributed model is often limited by slow network speeds and thus each task needs to be large

enough to overcome the network latency. On the other hand, distributed systems are more scalable;

adding more processors to such a system often simply involves adding another node (computer) to

the current environment whereas doing so on shared memory systems increases the bus traffic and

slows down memory access. In some cases it even requires expensive and complex hardware

changes, maybe involving investing in a completely new system with room for more processors.

Figure 2 A diagram of a Beowulf cluster where both the master and the nodes are normal PCs connected through high
speed networks. The master computer delegates the work, gathers the results from each node and compiles it to one
final solution. The network can be anything from Ethernet to InfiniBand.

11

In 1965 Gordon Moore wrote an article for Electronics magazine titled “Cramming more components

onto integrated circuits” [10] where he predicted, often called Moore’s Law, that the number of

transistors on a chip would double each year into the foreseeing future. His prediction has, more or

less, come true over the years. Around the year 2005 chip makers were having trouble with

increasing the performance of chips; the small size of the transistors were causing heat and power

issues. The answer was adding more cores on the same die, which gives a significantly better

performance while only increasing power usage by a small percentage. This essentially threw the

problem of ever increasing speed on to the software engineers but so far not many programmers

have been utilizing this technology to any extent. In recent years, tools and support for parallel

programming have been added to many software languages, such as Java, C++ and C#, giving

programmers better opportunities to use the full power of the modern CPU without spending too

much time in training and/or refactoring [1][2]. Since increasing speed is on software vendors,

operating systems have to be scalable and use multi core technologies, today many operating

systems are not optimized for multi core CPUs which can have an effect when writing multi core

algorithm implementations [29].

Figure 3 A diagram of a quad-core CPU where there are four cores, each with a dedicated cache memory. All the cores
use the same main memory which is connected to the CPU with a high speed bus. Multi core CPUs can have different
architectures as well, for example shared cache memory.

There are not many meta-heuristics papers focusing on the multi core architecture. Bui, Nguyen and

Rizzo Jr. [9] showed results where the running times of an Ant Colony algorithm improved by around

40% with a dual core system and by a factor of up to 6 on eight core systems. In this paper we will

take a look at how to increase performance with multi core architectures and try to identify potential

pitfalls along the way.

2 Methods and algorithms
We selected three different meta-heuristic algorithms along with three different problems. When

selecting problems and algorithms for this paper many candidates came to mind and some

12

interesting algorithms are being left out, such as Particle Swarm and Evolution algorithms which

were left out due to insufficient time. Simulated Annealing was selected mainly because of its

simplicity and popularity while both Ant Colony and Tabu Search have features, such as shared

memory structures, that are interesting to implement in multi core environments.

2.1 Simulated Annealing and the Ackley Function
Simulated Annealing was described by Scott Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi in 1983

[18] and by Vlado Černý in 1985 [19]. The method is inspired by annealing in metallurgy which is a

technique involving heating and controlled cooling of a material. Simulated Annealing is an iterative

search method where the current solution is replaced by a random solution from the neighborhood

of the current solution. The random solution is accepted with a probability that is based both on the

relative values of the object function between the current solution and the objective value of the

next solution, and a global parameter T, often called temperature, which is gradually decreasing

during the process. The function for temperature decrease was very simple; the temperature value

times an alpha value, where alpha is close to one, τ = T * α, .

The problem we used for the Simulated Annealing method is called the Ackley function, the objective

is to find a minimum value of the Ackley function. For this paper the main focus is on comparing the

single- and multi core implementations and not necessarily finding the absolute minimum of the

function. Formally, the Ackley function can be described as a vector where

 that minimizes the following equation.

 (1)

where n stands for the number of parameters used. In this problem only two parameters were used;

x1 and x2 [11].

The function can be seen in Figure 4, it resembles a giant egg tray with a steep egg tray shaped

Figure 4 The Ackley function resembles a giant egg tray with a steep egg tray shaped vortex around the zero
point. This figure shows only a small portion of the function around the zero point.

13

vortex around the zero point. The solution of the function as used in this paper is two dimensional.

The neighborhood is defined as a small square with the current solution in the middle.

2.2 Ant Colony and the Traveling Salesman Problem
Ant colony optimization has been popular in recent years. The ant colony algorithm is based on the

idea of mimicking ant colony behavior, and was first proposed by Marco Dorigo in 1992 in his Ph.D.

thesis [12][13]. At the time it was called Ant System and was the result of research into

computational intelligence approaches to combinatorial optimization.

We can look at the behavior of ants as follows. When searching for food ants start to wander around

randomly until they find a food source. Once they have found a food source they return to the colony

and on the way back they leave behind a pheromone trace. Other ants who stumble onto such a

pheromone trail are likely to follow it. If the ants find the food source they will also return to the

colony and thereby reinforce the pheromone trail. With time the pheromone trace will evaporate,

that will lead to shorter trails having more pheromone than longer ones. Evaporations can also help

avoid convergence to local optima.

Ant colony optimization tries to mimic this behavior by using artificial ants to travel through a graph

updating the pheromone trail between iterations. Attractiveness and pheromones are then used to

select the most attractive route [15][17]. In the implementation used in this paper the inverse of the

distance is used as the attractiveness parameter and only the best route from given iteration is used

to update the pheromone. The following equation is then used to calculate the probability of

selecting an edge.

 (2)

where pi,j is the probability of selecting route (or edge) (i,j), τi,j is the amount of pheromone on edge

(i,j) and vi,j is the attractiveness or visibility of edge (i,j). Here vi,j is 1/di,j where is the distance

between node i and j. The α and β are parameters to control the influence of τi,j and vi,j respectably.

The TSP (Traveling Salesman Problem) was first formulated in 1930 as a mathematical problem

although the problem itself is considerably older [14]. It is a very popular problem of finding the

shortest route between a set of cities by only visiting each city once. The TSP is used as a benchmark

for many optimization methods [19]. In the traveling salesman problem we are given a complete

undirected graph with a nonnegative cost associated with each edge . The goal

is to find a tour (or a Hamiltonian cycle) of G with minimum cost. A mathematical formulation of the

TSP is given in the following equation.

 (3)

The ant colony case of the TSP has a fixed number of ants in each city per iteration. A starting city is

chosen and each ant from that city will traverse the grid creating a path along the way, to select a

city to visit next, equation 2 is used. When all ants have completed their routes the pheromone is

updated, and only the shortest route is used to update the pheromone table. The TSP instance used

14

in this paper was an instance based on the shortest Euclidian distance between the 200 largest cities

in the USA as shown in Figure 5.

Figure 5 The 200 largest cities in the United States of America.

2.3 Tabu Search and the Vehicle Routing Problem
Tabu search is attributed to Fred W. Glover; it is a mathematical optimization method involving a

memory structure. Tabu search belongs in the class of local search techniques, after finding local

optima the solution is marked as tabu (taboo) so that the algorithm does not visit that possibility in

the near future [27]. Tabu search is an iterative search method where the current solution is replaced

by a random solution from the neighborhood of the current solution. The solutions in the

neighborhood are selected by a memory structure, i.e. the tabu list.

The vehicle routing problem was first introduced by Dantzig and Ramser in 1959 [20]. It often

involves delivering goods from a central location to customers; the goal is to minimize the cost of

distributing the goods. In this paper a slightly different version is used, where there is no central

depot so the routes are not overlapping. The vehicle routing problem is related to the traveling

salesman problem, but instead of having only one salesman, we have multiple vehicles that must

visit all the customers (or cities). Since we do not have any depots, the goal is to split the vertices (or

customers) between the vehicles and minimize the length of the maximum cost tour over all the

vehicles. The input is a complete undirected graph with a nonnegative cost associated

with each edge . Let be a partition of the vertices in V,
 and ,

where k is the number of vehicles, and let be the subgraph induced by the subset of the

vertices . The objective of the vehicle routing problem is to find a partition of the

vertices, find a tour (or a Hamiltonian cycle) for each induced subgraph and minimize

the total maximum tour length over the tours for each subgraph:

 (4)

15

This paper uses no central depot for the vehicle routing problem; consequently each route is totally

independent and in many ways similar to the traveling salesman problem. The number of routes is

determined beforehand and the objective is to minimize the length of the longest route. The

neighborhood was computed by taking a random part of the current route and inverting it. There

was also a small probability of a city from one route switching places with a city in another route and

a small probability for a city to be removed from one route and inserted into another route. After

evaluating the neighborhood the best route was selected from the neighborhood and added to a

shared tabu list. For the VR problem we used the same instance as for the TS problem and can be

seen in Figure 5.

2.4 Implementation
Although multi core processors have been mainstream for quite some time, not many software

developers are programming to use their full power. In recent years companies like Intel, Microsoft

and the Java open community have been creating tools to make it easier for the everyday

programmer to start programming for the multi core CPUs [21][22][23].

The .NET4 platform from Microsoft comes with a set of tools for parallel programming, in this paper

the .NET4 platform is used to program both the single- and multi core implementations for all the

algorithms. Using such a high level language may not give the best performance but it makes the

coding easier.

3 Experiments and analysis
To get a good comparison for all algorithms two computers were used, they will be called computer

A and B in this paper. Computer A runs a dual core AMD CPU and computer B runs a quad core Intel

CPU. Both computers are fairly basic although the CPUs come from two different vendors and

computer B is considerably more powerful. These two systems have very different architectures and

one of the key differences is that the AMD processor has integrated cache memory for each core

while the Intel processor has one shared cache memory for all cores [24][25]. This key difference

between the CPUs may have a significant effect on the results depending on which algorithm is being

used. A more detailed description for both computers can be found in Appendix A. Computer A with

a dual core CPU will be used to generate results for both the single core implementations and the

dual core implementations. Computer B with a quad core CPU will be used to generate results for

both the single core and the quad core implementations. To get accurate results, each algorithm is

run as often as possible in a reasonable timeframe, the number of iterations for each algorithm

depends on the running time of the algorithm. Also, more iterations were run on computer B since it

was considerably faster than computer A.

3.1 Simulated Annealing and the Ackley Function
Simulated Annealing was selected because of its popularity and simplicity. It can be implemented in a

delightfully parallel manner which means that the whole algorithm can be run on a single thread with

no dependence on other threads [16]. The Ackley function was selected to test the algorithm

because of its relative simplicity and scalability. To get a good comparison the algorithm was run for

16

15000 iterations on computer A and 100000 iterations on computer B. Table 1 gives an overview of

the end results, according to the results the average gain for a new core is a factor of 1.6. A statistical

test, so called t-Test, was performed; it concluded that there is not a statistical difference in the

quality of the solution in the two implementations, i.e. single or multi core.

Table 1 Results for computer A and B for the Simulated Annealing algorithm running the Ackley function. According to
the results the average gain for a new core is a factor of 1.6.

Computer A Single core Multi core

Time for 15000 iterations 7h 51m 4h 39m

Average running time pr. iteration 1,9s 1,1s

Computer B

Time for 100000 iterations 28h 47m 9h 9m

Average running time pr. iteration 1,0s 0,3s

3.2 Ant Colony and the Traveling Salesman Problem
While the Simulated Annealing algorithm was implemented as delightfully parallel, the Ant Colony

algorithm was implemented more as a true parallel algorithm with shared memory structures. The

work is divided into chunks which takes a relatively long time to calculate followed by a short use of

shared resources. The Ant Colony algorithm was run for 100 iterations for Computer A and 1000

iterations for Computer B. Table 2 gives an overview of the overall results for the Ant Colony

algorithm.

Table 2 Results for computer A and B for the Ant Colony algorithm running on both single- and multi core
implementations.

Computer A Single core Multi core

Time for 100 iterations 2h 5m 1h 51m

Average running time pr. iteration 1m 15s 1m 7s

Computer B

Time for 1000 iterations 7h 32m 2h

Average running time pr. iteration 27,1s 7,2s

3.3 Tabu Search and the Vehicle Routing Problem
The last algorithm selected for this paper is Tabu Search which was implemented with a shared tabu

list. The work is divided into chunks which takes a relatively short time to calculate followed by a high

use of shared resources. The Tabu Search algorithm was run for 100 iterations for Computer A and

1000 iterations for Computer B. Table 3 gives an overview of the overall results for the Tabu Search

algorithm.

Table 3 Results for computer A and B for the Tabu Search algorithm running on both single- and multi core
implementations.

Computer A Single core Multi core

Time for 100 iterations 1h 3m 51m

Average running time pr. iteration 38s 31s

Computer B

Time for 1000 iterations 4h 57m 6h 56m

Average running time pr. iteration 17,8s 25,0s

17

4 Overall results

4.1 Simulated Annealing and the Ackley Function
The Simulated Annealing algorithm is delightfully parallel, often called embarrassingly parallel, which

means that the whole algorithm can be run on a single thread with no dependence on other threads

[16]. This is in fact the best way to implement the algorithm in parallel. The only difference between

the single core and the multi core implementation was that only one core was used to run the

algorithm in the single core implementation but as many cores as are available are used in the multi

core. A typical search path can be viewed in Figure 6, as can be seen it spans a good portion of the

search space leaving few areas unsearched. The Simulated Annealing algorithm had to be very

thorough in order to get sufficient workload on the CPU to get a good comparison between the

single- and multi core implementations.

Figure 6 This is a typical search path for the Simulated Annealing algorithm over the Ackley function. The image zooms in
around the zero point.

Running this example on computer A (see appendix A) gives a clear indication of how much

performance gain can be realized by using multi core processors. By using Visual Studio to get a

visualization of the behavior of both the multi and single core implementations we get the images

given in Figure 7 and 8. Each figure is of 100 iterations.

18

Figure 7 In this figure one can see how one core is almost completely used for the single core implementation of the
Simulated Annealing algorithm while the other is mostly idle.

Figure 8 In this figure one can see how both cores are used to run the multi core implementation of the Simulated
Annealing algorithm and the idle process is run much less than in Figure 4.

Figures 7 and 8 show clearly how the computer utilizes each core both in the single- and multi core

implementations. The yellow part depicts other processes of which Visual Studio plays the biggest

part; Visual Studio had to run to generate the Figures. System processes are shown as red but whose

importance is negligible. The two most interesting processes are the idle process and the simulated

annealing program depict with gray and green respectably.

As was to be expected with the single core implementation one core is almost completely devoted to

the simulated annealing program while the other is not used at all. At the same time the other core is

19

used to completely carry other processes although they do not count for much. One interesting point

is the 48% usage of the processor for the single core implementation as opposed to 79% in the multi

core, this account for the percentage the simulated annealing program uses. The number is not

doubled mainly because of the Visual Studio process and other processes, although the processor

could have been better utilized as the amount of the idle process in Figure 7 gives evidence to.

 It is obvious by the numbers given in Table 1 that computer B is much faster than computer A, which

does not come as a surprise, but it is also obvious that the multi core version is much faster in both

cases. Figure 9 shows the average running time of iteration in milliseconds for both the single- and

multi core implementations of the Simulated Annealing algorithm on both computer A and B.

Figure 9 The average running time of an iteration in milliseconds for both the single- and multi core implementations of
the Simulated Annealing algorithm on computers A and B.

The two computers used to test the algorithms are very different which makes it difficult to compare

the result for the single core, dual core and the quad core implementations. To do so the results for

the single core implementations were scaled to one and the multi core implementation for each

machine was scaled accordingly, as shown in Figure 10. According to the scaled result the dual core

implementation is just about 1.7 times as fast as the single core; the quad core on the other hand is

about 3.14 times as fast as the single core.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Computer A Computer B

Single core

Multi core

20

Figure 10 The scaled running time for the single- dual- and quad core implementations of the Simulated Annealing
algorithm. According to the scaled result the dual core implementation is just about 1.7 times as fast as the single core;
the quad core on the other hand is about 3.14 times as fast as the single core.

4.2 Ant Colony and the Traveling Salesman Problem
The Ant Colony algorithm can effectively be parallelized in many ways. The implementation used in

this paper runs each ant in parallel as opposed to just running an independent instance on each core.

All cores use the same pheromone table which means that shared resources are used. When using

shared resources there is a greater risk of conflicts between the threads, such as one thread waiting

for another, which is why such an algorithm is trickier to implement.

As can be seen in Table 2 the dual core implementation does not give the same performance

improvements as the Simulated Annealing implementation, but the quad core implementation is if

anything, even faster. In either case this is a solid improvement. The difference between the systems

can be seen in Figure 11 as a scaled comparison. Figure 12 gives an even better view of the difference

between the single- and the multi core implementations on each computer. The big speed difference

between the dual core and quad core CPU’s is most likely something to do with their design and

clock speed.

0

0,2

0,4

0,6

0,8

1

1,2

Single core Dual core Quad core

21

Figure 11 The scaled running time for the single- dual- and quad core implementations of the Ant Colony algorithm.

Figure 12 The average running time of an iteration in milliseconds for both the single- and multi core implementations of
the Ant Colony algorithm on both computer A and B.

4.3 Tabu Search and the Vehicle Routing Problem
Tabu Search can be implemented as delightfully parallel just as well but for this paper the parallel

implementation shared one tabu list with all cores to test the multi core use of a shared memory.

As Table 3 gives evidence to, there is a clear speed difference on the single- and multi core

implementation but in contrast to the other two problems we have looked at the multi core

0

0,2

0,4

0,6

0,8

1

1,2

Single core Dual core Quad core

0

10000

20000

30000

40000

50000

60000

70000

80000

Computer A Computer B

Single core

Multi core

22

implementation is slower on computer B. Since all cores are using the same memory structure both

to read and write, some sort of locking mechanism needs to be in place. Locking works by allowing

only one thread to use a block of code at a time. Locking is always time consuming and in this case it

is one of the reasons why the multi core implementation is so much slower. To get a clear picture of

how much impact the locking mechanism has, an implementation with no locking mechanism was

tried as can be seen in Figure 14.

The speed difference is quite startling, as can be seen in Figure 13 where both single core

implementations have been scaled to 1 for each computer. The dual core implementation on

computer A is about 20% faster than the single core implementation but the quad core

implementation on computer B is about 40% slower.

Figure 13 The scaled running time for the single- dual- and quad core implementations of the Tabu Search algorithm. The
dual core implementation is about 20% faster than the single core implementation but the quad core implementation is
about 40% slower. These results are very interesting; one would expect the quad core implementation to be much faster
than the single core implementation.

As can be seen in Figure 14 computer B is much faster than computer A, while there is some speed

increase in the multi core implementation on computer A there is actually a speed decrease on

computer B. One reason for this is as mentioned earlier due to the locking mechanism, but the same

type of locking mechanism is also used in the multi core implementation on computer A, it is in fact

the same code. As mentioned earlier there is a key difference between the two CPUs, the CPU on

computer A has a cache memory for each core while the CPU for computer B has a shared cache

memory for all cores, this may be causing more locks on computer B which slows the process down.

This may also be causing computer B to use the main memory. If for example the tabu list is too large

to fit into cache memory, the main memory will be used, that might be one reason behind the

performance decrease on computer B. The tabu list was connected to the size of the CPU, thus the

tabu list on computer B was larger than the tabu list on computer A, it might even have been too

large for the cache memory on computer B. A very important point is that the CPUs are from rival

competitors and have a very different architecture and instruction sets.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Single core Dual core Quad core

23

Figure 14 The average running time of an iteration in milliseconds for both the single- and multi core implementations of
the Tabu Search algorithm on both computer A and B. To get a better comparison the algorithm was also tried without
the locking mechanism.

4.4 Multi core implementations
There is a considerable difference between systems for the Ant Colony algorithm, although there is a

performance increase on both computer A and B, computer B shows a considerably more increase

than computer A. This means this implementation is much better suited for the kind of system

represented by computer B. The implementation is characterized by heavy calculations on each core

with heavy reading and light writing in a shared memory. This implementation is ideal for the multi

core environment given that the CPU is both fast and has a large integrated cache memory, which

computer B has.

Both the Simulated Annealing and the Ant Colony multi core implementations give a solid

improvement over their single core counterpart but the Tabu Search implementation on the other

hand does not, the reason being the relatively light computations on each core and uses shared

resources between computations. There was a difference between computer A and B, while there

were some performance gain on computer A, computer B was considerably slower for the multi core

implementation, the reason being that computer B was faster with the computations and had to

spend more time waiting for the locking mechanism. This implementation is not good for the multi

core environment and the delightfully parallel implementation would most likely have performed

better for the Tabu Search algorithm.

To get a better understanding of the problem the Tabu Search algorithm was implemented without

the locking mechanism as well. As Figure 14 clearly shows there was some speed increase but not

enough to explain the poor performance of the algorithm. There are some possible reasons for the

poor performance of the algorithm, one being the relatively small amount of work being done on

each core compared to the time it takes to work on the tabu list. Another reason might be related to

the hardware architecture but that is beyond the scope of this text.

0

5000

10000

15000

20000

25000

30000

35000

40000

Computer A Computer B

Single core

Multi core

Multi core no lock

24

5 Conclusions and future work
In this paper we looked at three different algorithms and three different multi core implementations.

First we looked at the delightfully parallel implementation which means that the whole algorithm can

run on a single core with no dependencies to other cores, this design pattern gives a solid

performance gain as long as the computations being performed are relatively time consuming. The

second multi core implementation can be described as a shared memory implementation with

almost no locking mechanisms but with time consuming computations on each core. Finally third

implementation that was looked at can be described as a shared memory implementation depending

heavily on locking mechanisms and relatively little computations on each core. The third algorithm

was also implemented without the locking mechanism; it was for the most part the same algorithm

apart from the locking mechanism.

After writing and testing the three algorithms it is quite evident that using the parallel toolkits

available in the high level languages can give a drastic performance increase. In many cases it does

not take much work to implement the parallel code but it has to be done correctly and the CPU

architecture does matter a great deal as can be seen in both the Ant Colony and Tabu Search

algorithms. One must be careful when using locking mechanisms; both AC and TS algorithms use one

memory structure between cores but where no locking mechanism was required for the AC

implementation it had considerable effect on the TS parallel implementation on computer B.

By programming especially for multi core processors the performance of meta-heuristic algorithms

can be improved without much additional cost or effort. The results depend on the algorithm

chosen, the implementation (sharing memory structures, locks) and the system architecture. To get a

solid performance gain, a delightfully parallel implementation is a very good choice but ideally one

should select the correct algorithm and hardware for each problem and tune the algorithm for the

selected hardware.

Interesting future work would be to compare algorithm performance to hardware and find out the

right combinations for popular problems. Intuitively one tabu list for all cores should give better

solutions and be faster, this was not the case for this paper. It would be interesting work to find the

reason why better solutions were not realized and optimize the algorithm for multi core architecture.

6 References
[1+ D. Geer, “Chip Makers Turn to Multicore Processors,” Computer, Vol. 38, No. 5, May 2005, pp.

11–13.

[2+ J. Parkhurst, J. Darringer, and B. Grundmann, “From Single Core to Multi-Core: Preparing for a

New Exponential,” Proc. of the 2006 IEEE/ACM International Conference on Computer-Aided Design,

2006, pp. 67–72.

[3] D. Patterson and J. Hennessy, “Computer Organization and Design (2nd Edition),” Morgan

Kaufmann Publishers, 1998.

[4] The Beowulf Project. http://www.beowulf.org. Last accessed March 2009.

[5] MPI - The Message Passing Interface Standard. http://www-unix.mcs.anl.gov/mpi/. Last accessed

March 2009.

[6] OpenMP Architecture Review Board. http://www.openmp.org/specs/. Last accessed March

2009.

25

*7+ Z. Michalewicz and D. B. Fogel, “How to Solve It: Modern Heuristics (2nd Edition),” Springer, 2004.

[8] F. S. Hillier and G. J. Lieberman, “Introduction to Operations Research (8th Edition),” McGraw-Hill,

2005.

[9] T. N. Bui, T. Nguyen, and J. R. Rizzo Jr., “Parallel Shared Memory Strategies for Ant-Based

Optimization Algorithms,” Proc. of the 2009 Genetic And Evolutionary Computation Conference,

2009, pp. 1–8.

[10+ G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, 1965.

[11] The TRACKER Project. http://tracer.lcc.uma.es/problems/ackley/ackley.com. Last accessed

February 23 2010.

*12+ A. Colorni, M. Doringo, and V. Maniezzo, “Distributed Optimization by Ant Colonies,” European

Conference on Artificial Life, Elsevier Publishing 1992, pp. 134–142.

*13+ M. Doringo, V. Maniezzo and A. Colorni, “Ant System: An Autocatalytic Optimizing Process,”

Technical Report, Politecnico di Milano, Italy, 1992

[14] History of the TSP. http://www.tsp.gatech.edu/history/index.html. Last accessed august 24

2010.

[15] About Ant colony optimization. http://iridia.ulb.ac.be/~mdorigo/ACO/about.html. Last accessed

May 11 2010.

*16+ S. Toub, “Patterns of Parallel Programming,” Microsoft Corporation, 2009.

[17] V. Maniezzo, L. M. Gambardella, F. de Luigi, “Ant Colony Optimization,” New optimization

techniques in engineering, Springer, pp. 102–121.

*18+ S. Kirkpatrick, C. D. Gelatt, M. P. Vecci, “Optimization by Simulated Annealing,” Science. New

Series 220, American Association for the Advancement of Science 1983, pp. 671-680.

*19+ V. Černý, “A Thermodynamical Approach to the Travelling Salesman Problem: an efficient

simulation algorithm,” Journal of Optimization Theory and Applications 1985, pp. 41-51.

[20] G. B. Dantzig, J. H. Ramser, “The Truck Dispatching Problem,” Management Science 6, INFORMS

1959, pp. 80-91.

[21] Intel Parallel Studio. http://software.intel.com/en-us/intel-parallel-studio-home/. Last accessed

July 5 2010.

[22] Java Parallel Processing Framework. http://www.jppf.org/. Last accessed July 5 2010.

[23] .NET Parallel Computing. http://msdn.microsoft.com/en-us/concurrency/default.aspx. Last

accessed July 5 2010.

[24] Softpedia. http://news.softpedia.com/news/AMD-Unveils-Energy-Efficient-Athlon-X2-4850e-

Dual-Core-CPU-80170.shtml. Last accessed July 15 2010.

[25] Intel processors. http://ark.intel.com/Product.aspx?id=41447. Last accessed September 04 2010.

[26] POSIX threads explained. http://www.ibm.com/developerworks/linux/library/l-posix1.html. Last

accessed august 22 2010.

[27] An introduction to Tabu Search.

http://www.ifi.uio.no/infheur/Bakgrunn/Intro_to_TS_Gendreau.htm. Last accessed August 25 2010.

[28] The history of Operations Research.

http://www.britannica.com/EBchecked/topic/682073/operations-research/68171/History#ref22348.

Last accessed September 13 2010.

[29] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,

M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich, “An Analysis of Linux Scalability to Many

Cores,” MIT CSAIL 2010

26

Appendix A

A.1 Computer A
Computer A has the following parameters:

Processor: AMD Athlon™ Dual Core Processor 4850e 2.50 GHz

Installed memory (RAM): 2.00 GB

Operating System: Microsoft Windows 7 Enterprise

System type: 32-bit Operating System

A.2 Computer B
Computer B has the following parameters:

Processor: Intel® Core™ i7 Quad Core Processor 2.8 GHz

Installed memory (RAM): 4.00 GB

Operating System: Microsoft Windows 7 Professional

System type: 64-bit Operating System

Appendix B

B.1 The Simulated Annealing code
public class SA
 {
 #region Data field

 Random rnd = new Random(DateTime.Now.Millisecond);
 BestSolution bestSolution;
 int nRepetativeIterationCounter = 0;
 int nIterationCounter = 0;
 double proba;
 double delta;
 double solution;

 #endregion

 #region Public stuff

 public List<List<double>> parameterPath = new List<List<double>>();
 public List<double> solutionPath = new List<double>();

 #endregion

 #region Methods

 public CommonObjects.Result StartAnnealingParam(List<double> parameterList, CommonObjects.Interface.IData
Data)
 {
 return AnnealingParam(parameterList, Data, 0.999, 1000.0, 0.001, true);
 }

 public CommonObjects.Result StartAnnealingParam(List<double> parameterList, CommonObjects.Interface.IData
Data, double alpha, double temperature, double epsilon, bool getParamList)
 {
 return AnnealingParam(parameterList, Data, alpha, temperature, epsilon, getParamList);
 }

27

 private CommonObjects.Result AnnealingParam(List<double> parameterList, CommonObjects.Interface.IData
Data, double alpha, double temperature, double epsilon, bool getParamList)
 {
 if (Data == null) throw new ArgumentNullException("Data not initialized!");

 List<double> currentParameters = parameterList;
 List<double> nextParameters;

 solution = Data.ComputeSolution(currentParameters);
 bestSolution = new BestSolution(solution, currentParameters[0], currentParameters[1]);
 Stopwatch sw = new Stopwatch();

 sw.Start();
 //while the temperature didnt reach epsilon
 while (temperature > epsilon)
 {
 ++nIterationCounter;
 if (getParamList)
 {
 //keep track of the param path
 parameterPath.Add(new List<double>(currentParameters));
 }
 //get the a random neighbour
 nextParameters = Data.ComputeNextNeighbour(currentParameters);
 //compute the distance of the new permuted configuration
 delta = Data.ComputeSolution(nextParameters) - solution;
 //if the new solution is better accept it and assign it
 if (delta < 0)
 {
 currentParameters = new List<double>(nextParameters);
 solution = delta + solution;
 }

 else
 {
 proba = rnd.NextDouble();
 //if the new solution is worse accept it but with a probability level
 //if the probability is less than E to the power -delta/temperature.
 //otherwise the old value is kept
 if (proba < Math.Exp(-delta / temperature))
 {
 currentParameters = new List<double>(nextParameters);
 solution = delta + solution;
 }
 }

 //cooling proces on every iteration
 temperature = Data.ComputeTemperature(temperature, alpha, nIterationCounter);

 //if same distance is five times in a row stop
 if (Math.Abs(bestSolution.solution - solution) < epsilon)
 nRepetativeIterationCounter++;
 else
 {
 nRepetativeIterationCounter = 0;

 if (bestSolution.solution > solution)
 bestSolution = new BestSolution(solution, currentParameters[0], currentParameters[1]);
 }

 if (nRepetativeIterationCounter == 1000)
 {
 sw.Stop();
 return new CommonObjects.Result(bestSolution.solution, new List<double>(new double[]
{bestSolution.x1,bestSolution.x2}), parameterPath, sw.Elapsed);
 }

28

 }

 sw.Stop();
 return new CommonObjects.Result(bestSolution.solution, new List<double>(new double[] { bestSolution.x1,
bestSolution.x2 }), parameterPath, sw.Elapsed);
 }

 #endregion
 }

 public class BestSolution
 {
 public double solution;
 public double x1;
 public double x2;

 public BestSolution(double nSolution, double nX1, double nX2)
 {
 solution = nSolution;
 x1 = nX1;
 x2 = nX2;
 }
 }

B.2 Single core implementation
static void Main(string[] args)
 {
 int SIZE = 10;
 bool WriteParamPath = false;
 bool WriteReport = false;
 bool WriteFullReport = false;
 string ParamPath = string.Empty;
 string ReportPath = string.Empty;
 Stopwatch sw = new Stopwatch();
 Random rand = new Random(DateTime.Now.Millisecond);
 List<double> initialSolution = new List<double>(new double[] { 32264, 27800 });

 if (!CommonObjects.CommunicationManager.StartProgram("Singlecore implementation", out SIZE, out
WriteReport, out ReportPath, out WriteFullReport, out WriteParamPath, out ParamPath))
 return;

 List<CommonObjects.Result> resultList = new List<CommonObjects.Result>(SIZE);

 sw.Start();
 for (int i = 0; i < SIZE; i++)
 {
 SimulatedAnnealing.SA annealing = new SimulatedAnnealing.SA();
 CommonObjects.Ackley data = new CommonObjects.Ackley();

 CommonObjects.Result result = annealing.StartAnnealingParam(initialSolution, data, 0.99999, 100000,
0.0000001, WriteParamPath);
 if (!WriteParamPath) result.ParameterList = null;
 resultList.Add(result);

 if (WriteParamPath)
 {
 StreamWriter writer = new StreamWriter(string.Format("{0}\\solutionPath{1}.txt", ParamPath, i));
 foreach (var item in resultList[i].ParameterList)
 {
 writer.WriteLine(string.Concat(item[0].ToString().Replace(",", ".").Replace("E", "e"), " ",
item[1].ToString().Replace(",", ".").Replace("E", "e")));
 }
 writer.Flush();

29

 writer.Close(); writer.Dispose();
 }

 annealing = null;
 data = null;
 result = null;
 }
 sw.Stop();

 Console.WriteLine(string.Format("Time to compute: {0}ms", sw.ElapsedMilliseconds));

 if (WriteReport)
 {
 CommonObjects.CommunicationManager.WriteReport(WriteFullReport, ReportPath, resultList, sw);
 }

B.3 Multi core implementation
static void Main(string[] args)
 {
 int SIZE = 10;
 bool WriteParamPath = false;
 bool WriteReport = false;
 bool WriteFullReport = false;
 string ParamPath = string.Empty;
 string ReportPath = string.Empty;
 Stopwatch sw = new Stopwatch();
 Random rand = new Random(DateTime.Now.Millisecond);
 List<double> initialSolution = new List<double>(new double[] { 32264, 27800 });

 if (!CommonObjects.CommunicationManager.StartProgram("Multicore implementation", out SIZE, out
WriteReport, out ReportPath, out WriteFullReport, out WriteParamPath, out ParamPath))
 return;

 List<CommonObjects.Result> resultList = new List<CommonObjects.Result>(SIZE);
 Task[] tasks = new Task[SIZE];

 sw.Start();
 for (int n = 0; n < SIZE; n++)
 {
 int i = n;
 tasks[n] = Task.Factory.StartNew(() =>
 {
 SimulatedAnnealing.SA annealing = new SimulatedAnnealing.SA();
 CommonObjects.Ackley data = new CommonObjects.Ackley();

 CommonObjects.Result result = annealing.StartAnnealingParam(initialSolution, data, 0.99999, 100000,
0.0000001, WriteParamPath);
 if (!WriteParamPath) result.ParameterList = null;
 resultList.Add(result);

 if (WriteParamPath)
 {
 StreamWriter writer = new StreamWriter(string.Format("solutionPath{0}.txt", i));
 foreach (var item in resultList[i].ParameterList)
 {
 writer.WriteLine(string.Concat(item[0].ToString().Replace(",", ".").Replace("E", "e"), " ",
item[1].ToString().Replace(",", ".").Replace("E", "e")));
 }
 writer.Flush();
 writer.Close(); writer.Dispose();
 }

 annealing = null;

30

 data = null;
 result = null;
 });
 }

 Task.WaitAll(tasks);
 sw.Stop();

Console.WriteLine(string.Format("Time to compute: {0}ms", sw.ElapsedMilliseconds));

 if (WriteReport)
 {
 CommonObjects.CommunicationManager.WriteReport(WriteFullReport, ReportPath, resultList, sw);

 }

 }
 }

Appendix C

C.1 The Ant Colony code
public class AC
 {
 #region Datafeild

 int nNumberOfCities = 0;
 double[,] nPheremones;
 double[,] nVisibility;
 int nTotalNumberOfAnts = 0;
 int[,] nAntTours;
 CommonObjects.AntTour[] nAntTourLenght;
 int nIterationCounter = 0;
 int[] nStartingCities;
 double PheromoneConstant = 10;
 CommonObjects.AntTour[] BestSolutions;

 #endregion

 #region Properties

 public int NumberOfIterations { get; set; }

 public int AntsPerCity { get; set; }

 public double Alpha { get; set; }

 public double Beta { get; set; }

 public double RateOfEvaporation { get; set; }

 #endregion

 public AC(int nNumberOfIterations, int nAntsPerCity, double nAlpha, double nBeta, double nRateOfEvaporation,
double nPheromoneConstant)
 {
 NumberOfIterations = nNumberOfIterations;
 AntsPerCity = nAntsPerCity;
 Alpha = nAlpha;
 Beta = nBeta;
 RateOfEvaporation = nRateOfEvaporation;
 PheromoneConstant = nPheromoneConstant;

31

 }

 public CommonObjects.AntTour[] StartAntColony(double nInitialPheromone, double[,] nDistances)
 {
 nNumberOfCities = nDistances.GetLength(1);
 nPheremones = new double[nNumberOfCities, nNumberOfCities]; for (int counti = 0; counti <
nPheremones.GetLength(1); counti++) { for (int countj = 0; countj < nPheremones.GetLength(1); countj++) {
nPheremones[counti, countj] = nInitialPheromone; } }
 nVisibility = new double[nNumberOfCities, nNumberOfCities]; for (int counti = 0; counti <
nVisibility.GetLength(1); counti++) { for (int countj = 0; countj < nVisibility.GetLength(1); countj++) {
nVisibility[counti, countj] = 1.0 / nDistances[counti, countj]; } }
 nTotalNumberOfAnts = AntsPerCity * nNumberOfCities;
 nAntTourLenght = new CommonObjects.AntTour[nTotalNumberOfAnts];
 nStartingCities = new int[nTotalNumberOfAnts]; for (int i = 0; i < nTotalNumberOfAnts; i++) { nStartingCities[i]
= Convert.ToInt32(Math.Floor(Convert.ToDouble(i) / AntsPerCity)); }
 BestSolutions = new CommonObjects.AntTour[NumberOfIterations];

 while (nIterationCounter < NumberOfIterations)
 {
 nAntTours = new int[nTotalNumberOfAnts, nNumberOfCities];
 for (int i = 0; i < nTotalNumberOfAnts; i++)
 {
 // Find a tour for ant i
 int[] nCities = new int[nNumberOfCities]; for (int j = 0; j < nNumberOfCities; j++) { nCities[j] = j; }
 nCities[nStartingCities[i]] = -1;

 nAntTours[i, 0] = nStartingCities[i];
 for (int j = 1; j < nNumberOfCities; j++)
 {
 int nNextCity = FindNextCityForAntColony(nAntTours[i, j], nCities);
 nAntTours[i, j] = nNextCity;
 nCities[nNextCity] = -1;
 }

 nAntTourLenght[i] = GetTotalPath(nDistances, i);
 }

 double tempShortestTour = nAntTourLenght[0].Length;
 int tempQuickestAnt = 0;
 for (int i = 1; i < nAntTourLenght.Length; i++)
 {
 if (tempShortestTour > nAntTourLenght[i].Length)
 {
 tempShortestTour = nAntTourLenght[i].Length;
 tempQuickestAnt = i;
 }
 }

 BestSolutions[nIterationCounter] = nAntTourLenght[tempQuickestAnt];
 BestSolutions[nIterationCounter].Iteration = nIterationCounter;

 // Update pheremone
 UpdatePheromones(nAntTourLenght[tempQuickestAnt]);
 //UpdatePheromones();
 nIterationCounter++;
 }

 return BestSolutions;
 }

 public CommonObjects.AntTour[] StartAntColonyMC(double nInitialPheromone, double[,] nDistances)
 {
 nNumberOfCities = nDistances.GetLength(1);
 nPheremones = new double[nNumberOfCities, nNumberOfCities]; for (int counti = 0; counti <
nPheremones.GetLength(1); counti++) { for (int countj = 0; countj < nPheremones.GetLength(1); countj++) {
nPheremones[counti, countj] = nInitialPheromone; } }

32

 nVisibility = new double[nNumberOfCities, nNumberOfCities]; for (int counti = 0; counti <
nVisibility.GetLength(1); counti++) { for (int countj = 0; countj < nVisibility.GetLength(1); countj++) {
nVisibility[counti, countj] = 1.0 / nDistances[counti, countj]; } }
 nTotalNumberOfAnts = AntsPerCity * nNumberOfCities;
 nAntTourLenght = new CommonObjects.AntTour[nTotalNumberOfAnts];
 nStartingCities = new int[nTotalNumberOfAnts]; for (int i = 0; i < nTotalNumberOfAnts; i++) { nStartingCities[i]
= Convert.ToInt32(Math.Floor(Convert.ToDouble(i) / AntsPerCity)); }
 BestSolutions = new CommonObjects.AntTour[NumberOfIterations];

 while (nIterationCounter < NumberOfIterations)
 {
 nAntTours = new int[nTotalNumberOfAnts, nNumberOfCities];
 Parallel.For(0, nTotalNumberOfAnts, i =>
 {
 // Find a tour for ant i
 int[] nCities = new int[nNumberOfCities]; for (int j = 0; j < nNumberOfCities; j++) { nCities[j] = j; }
 nCities[nStartingCities[i]] = -1;

 nAntTours[i, 0] = nStartingCities[i];
 for (int j = 1; j < nNumberOfCities; j++)
 {
 int nNextCity = FindNextCityForAntColony(nAntTours[i, j], nCities);
 nAntTours[i, j] = nNextCity;
 nCities[nNextCity] = -1;
 }

 nAntTourLenght[i] = GetTotalPath(nDistances, i);
 });

 double tempShortestTour = nAntTourLenght[0].Length;
 int tempQuickestAnt = 0;
 for (int i = 1; i < nAntTourLenght.Length; i++)
 {
 if (tempShortestTour > nAntTourLenght[i].Length)
 {
 tempShortestTour = nAntTourLenght[i].Length;
 tempQuickestAnt = i;
 }
 }

 BestSolutions[nIterationCounter] = nAntTourLenght[tempQuickestAnt];
 BestSolutions[nIterationCounter].Iteration = nIterationCounter;

 // Update pheremone
 UpdatePheromones(nAntTourLenght[tempQuickestAnt]);
 nIterationCounter++;
 }

 return BestSolutions;
 }

 private void UpdatePheromones(CommonObjects.AntTour bestSolution)
 {
 int nPheremonLength = nPheremones.GetLength(1);
 for (int i = 0; i < nPheremonLength; i++)
 {
 for (int j = 0; j < nPheremonLength; j++)
 {
 nPheremones[i, j] = (1 - RateOfEvaporation) * nPheremones[i, j];
 }
 }

 int c1;
 int c2;
 int ant = bestSolution.Ant;
 for (int j = 0; j < bestSolution.VisitCityOrder.Count - 1; j++)

33

 {
 c1 = nAntTours[ant, bestSolution.VisitCityOrder[j]];
 c2 = nAntTours[ant, bestSolution.VisitCityOrder[j + 1]];
 nPheremones[c1, c2] = nPheremones[c1, c2] + PheromoneConstant / nAntTourLenght[ant].Length;
 nPheremones[c2, c1] = nPheremones[c1, c2];
 }

 c1 = nAntTours[ant, bestSolution.VisitCityOrder[bestSolution.VisitCityOrder.Count - 1]];
 c2 = nAntTours[ant, bestSolution.VisitCityOrder[0]];
 nPheremones[c1, c2] = nPheremones[c1, c2] + PheromoneConstant / nAntTourLenght[ant].Length;
 nPheremones[c2, c1] = nPheremones[c1, c2];
 }

 private CommonObjects.AntTour GetTotalPath(double[,] nDistances, int index)
 {
 int[] nTempAntTour = new int[nNumberOfCities];
 for (int i = 0; i < nNumberOfCities; i++)
 {
 nTempAntTour[i] = nAntTours[index, i];
 }

 List<int> nAntPath = new List<int>(nNumberOfCities);
 double nTotalPathLength = nDistances[nTempAntTour[nNumberOfCities - 1], nTempAntTour[0]];
 for (int i = 0; i < nNumberOfCities - 1; i++)
 {
 nTotalPathLength += nDistances[nTempAntTour[i], nTempAntTour[i + 1]];
 nAntPath.Add(nTempAntTour[i]);
 }
 nAntPath.Add(nTempAntTour[nNumberOfCities - 1]);

 return new CommonObjects.AntTour(index, nTotalPathLength, nAntPath);
 }

 private int FindNextCityForAntColony(int nCurrentCity, int[] nCities)
 {
 var AvailableCitiesTemp = from ac in nCities where ac >= 0 select ac;
 int AvailableCitiesCount = AvailableCitiesTemp.Count();
 int[] AvailableCities = AvailableCitiesTemp.ToList<int>().ToArray();

 // Extract the visibility and pheromone for the cities that we haven't visited.
 double[] v = new double[AvailableCitiesCount];
 double[] p = new double[AvailableCitiesCount];
 for (int i = 0; i < AvailableCitiesCount; i++)
 {
 v[i] = nVisibility[nCurrentCity, AvailableCities[i]];
 }
 for (int i = 0; i < AvailableCitiesCount; i++)
 {
 p[i] = nPheremones[nCurrentCity, AvailableCities[i]];
 }

 // Calculate the probability vector and scale it.
 double[] x = new double[AvailableCitiesCount];
 double sumX = 0;
 for (int i = 0; i < AvailableCitiesCount; i++)
 {
 x[i] = Math.Pow(v[i], Alpha) * Math.Pow(p[i], Beta);
 sumX += x[i];
 }

 for (int i = 0; i < AvailableCitiesCount; i++)
 {
 x[i] = (x[i] / sumX);
 }

 double rand = (new Random(DateTime.Now.Millisecond)).NextDouble();

34

 int index = 0;

 if (x.Length == 0)
 throw new Exception("The vector x should not be empty.");

 while (x[index] < rand)
 {
 rand = rand - x[index];
 index++;
 }

 return nCities[AvailableCities[index]];
 }
 }

C.2 Multi core implementation
static void Main(string[] args)
 {
 int SIZE = 25000;
 int AntsPerCity = 20;
 double Alpha = 1;
 double Beta = 2;
 double RateOfEvaporation = 0.1;
 double InitialPheromone = 20;
 double PheromoneConstant = 1;
 string InputPath = @"C:\TSP_50.csv";
 string ReportPath = @"C:\Solutions\AntColony\TSP_AC_MC_25000_20.txt";
 Stopwatch sw = new Stopwatch();

 for (int i = 0; i < 10; i++)
 {
 double[,] DistanceMatrix = CommonObjects.CommunicationManager.ReadTSP(InputPath);
 CommonObjects.AntTour[] tours;

 sw.Start();
 AntColony.AC ant_colony = new AntColony.AC(SIZE, AntsPerCity, Alpha, Beta, RateOfEvaporation,
PheromoneConstant);
 tours = ant_colony.StartAntColonyMC(InitialPheromone, DistanceMatrix);
 sw.Stop();

CommonObjects.CommunicationManager.WriteTSPSolution(string.Format(@"C:\Solutions\AntColony\TSP_AC_MC_2
5000_20_{0}.txt", i), tours, sw);

 Console.WriteLine(string.Format("Time to compute: {0}ms", sw.ElapsedMilliseconds));
 }
 }

C.3 Single core implementation
static void Main(string[] args)
 {
 int SIZE = 300;
 int AntsPerCity = 200;
 double Alpha = 1;
 double Beta = 2;
 double RateOfEvaporation = 0.1;
 double InitialPheromone = 10;
 double PheromoneConstant = 1;
 string InputPath = @"C: \TSP_25.csv";
 string ReportPath = @"C: \Solutions\tempTSP_solution_25_300_200.txt";
 Stopwatch sw = new Stopwatch();

35

 if (!CommonObjects.CommunicationManager.StartTSPProgram("Single-core implementation", out SIZE, out
AntsPerCity, out Alpha, out Beta, out RateOfEvaporation, out InitialPheromone, out PheromoneConstant, out
InputPath, out ReportPath))
 return;

 double[,] DistanceMatrix = CommonObjects.CommunicationManager.ReadTSP(InputPath);
 CommonObjects.AntTour[] tours;

 sw.Start();
 AntColony.AC ant_colony = new AntColony.AC(SIZE, AntsPerCity, Alpha, Beta, RateOfEvaporation,
PheromoneConstant);
 tours = ant_colony.StartAntColony(InitialPheromone, DistanceMatrix);
 sw.Stop();

 CommonObjects.CommunicationManager.WriteTSPSolution(ReportPath, tours, sw);

 Console.WriteLine(string.Format("Time to compute: {0}ms", sw.ElapsedMilliseconds));
 }

Appendix D

D.1 The Tabu Search code
public class TS
 {
 public CommonObjects.TS_Result TabuSearch(List<int> parameterList, CommonObjects.Interface.IDataTS Data,
int numberOfVehicles)
 {
 if (Data == null) throw new ArgumentNullException("Data not initialized!");

 List<List<int>> currentParameters = CreateVRP(parameterList, numberOfVehicles);
 List<CommonObjects.BestSolution> solutionList = new List<CommonObjects.BestSolution>();
 Random rand = new Random((int)DateTime.Now.Ticks);

 double solution = Data.ComputeSolution(currentParameters);
 CommonObjects.BestSolution bestSolution = new CommonObjects.BestSolution(solution,
GetCurrentCityOrder(currentParameters), 0);
 solutionList.Add(new CommonObjects.BestSolution(bestSolution.solution, bestSolution.solutionList,
bestSolution.iteration));
 Stopwatch sw = new Stopwatch();

 int solutionCounter = 0;
 int iterationCounter = 1;

 sw.Start();
 while(true)
 {
 currentParameters = new List<List<int>>(Data.ComputeNextNeighbour(currentParameters));
 solution = Data.ComputeSolution(currentParameters);
 if (solution < bestSolution.solution)
 {
 solutionCounter = 0;
 bestSolution = new CommonObjects.BestSolution(solution, GetCurrentCityOrder(currentParameters),
iterationCounter);
 solutionList.Add(new CommonObjects.BestSolution(bestSolution.solution, bestSolution.solutionList,
bestSolution.iteration));
 }

 solutionCounter++;

 if (solutionCounter % 100000 == 0)
 {

36

 List<int> randomParameterList = new List<int>(parameterList);
 int index = 0;

 for (int i = 0; i < 10; i++)
 {
 index = rand.Next(randomParameterList.Count - 2);
 randomParameterList.Reverse(index, randomParameterList.Count - index);
 }

 currentParameters = CreateVRP(randomParameterList, numberOfVehicles);
 }

 if (solutionCounter > 1000000) break;

 iterationCounter++;
 }
 sw.Stop();

 return new CommonObjects.TS_Result(solutionList, sw.ElapsedMilliseconds);
 }

 private List<List<int>> CreateVRP(List<int> currentCityOrder, int numberOfVehicles)
 {
 List<List<int>> vrp = new List<List<int>>(numberOfVehicles);
 int numberOfCities = (int)Math.Ceiling((double)currentCityOrder.Count / (double)numberOfVehicles);
 for (int i = 0; i < numberOfVehicles; i++)
 {
 int startIndex = i * numberOfCities;
 int endIndex = (startIndex + numberOfCities) < currentCityOrder.Count ? startIndex + numberOfCities :
currentCityOrder.Count;
 List<int> path = new List<int>(endIndex - startIndex);

 for (int j = startIndex; j < endIndex; j++)
 {
 path.Add(currentCityOrder[j]);
 }

 vrp.Add(path);
 }

 return vrp;
 }

 private List<int> GetCurrentCityOrder(List<List<int>> vrp)
 {
 //Just iterate throug all the vrp vectors in order and
 //put them all in one vector. This creates one vector
 //representing all routes partitioned by -1
 List<int> currentCityOrder = new List<int>();
 foreach (List<int> list in vrp)
 {
 foreach (int item in list)
 {
 currentCityOrder.Add(item);
 }

 currentCityOrder.Add(-1);
 }

 currentCityOrder.RemoveAt(currentCityOrder.Count -1);
 return currentCityOrder;
 }
 }

public class DataTS : CommonObjects.Interface.IDataTS
 {

37

 public double[,] Distances;
 Queue<List<List<int>>> TabuList;
 Random rand = new Random((int)DateTime.Now.Ticks);
 int CAPACITY = 10;

 public DataTS(double[,] nDistances, ref Queue<List<List<int>>> nTabuList)
 {
 Distances = nDistances;
 CAPACITY = Convert.ToInt32(Math.Pow(Distances.GetLength(1), 2)) * 2;
 TabuList = nTabuList;
 }

 public double ComputeSolution(List<List<int>> vrp)
 {
 double result = 0;
 double totalPath = 0;
 foreach (List<int> path in vrp)
 {
 totalPath = GetTotalPath(path);
 if (result < totalPath) { result = totalPath; }
 }

 return result;
 }

 public List<List<int>> ComputeNextNeighbour(List<List<int>> vrp)
 {
 List<List<int>> bestCityOrder = new List<List<int>>(vrp);
 List<List<int>> tempCityOrder = new List<List<int>>(vrp);
 double bestSolution = ComputeSolution(bestCityOrder);
 double tempSolution = 0;

 if (rand.NextDouble() > 0.999)
 {
 for (int i = 0; i < tempCityOrder.Count - 1; i++)
 {
 int indexA = rand.Next(tempCityOrder[i].Count);
 int indexB = rand.Next(tempCityOrder[i + 1].Count);
 int temp = tempCityOrder[i][indexA];
 tempCityOrder[i][indexA] = tempCityOrder[i + 1][indexB];
 tempCityOrder[i + 1][indexB] = temp;
 }
 }

 if (rand.NextDouble() > 0.999)
 {
 int routeToAddTo = rand.Next(tempCityOrder.Count);

 if (tempCityOrder[(routeToAddTo + 1) % tempCityOrder.Count].Count > 3)
 {
 int cityToAdd = rand.Next(tempCityOrder[(routeToAddTo + 1) % tempCityOrder.Count].Count);
 tempCityOrder[routeToAddTo].Add(tempCityOrder[(routeToAddTo + 1) %
tempCityOrder.Count][cityToAdd]);
 tempCityOrder[(routeToAddTo + 1) % tempCityOrder.Count].RemoveAt(cityToAdd);
 }
 }

 for (int i = 0; i < tempCityOrder.Count; i++)
 {
 for (int counter = 0; counter < Math.Pow(tempCityOrder.Count,2); counter++)
 {
 List<int> tempCityRoute = new List<int>(tempCityOrder[i]);
 int indexA = rand.Next(tempCityRoute.Count);
 int indexB = rand.Next(tempCityRoute.Count);
 if (indexA > indexB)
 {

38

 int temp = indexA;
 indexA = indexB;
 indexB = temp;
 }
 int k = indexA;
 if (vrp[i].Count > 0 && tempCityRoute.Count > 0)
 {
 for (int j = indexB; j >= indexA; j--)
 {
 tempCityRoute[j] = tempCityOrder[i][k];
 k++;
 }
 }

 tempCityOrder[i] = tempCityRoute;
 bool isTabu = true;
 bool tabuListContains = false;
 foreach (List<int> list in tempCityOrder)
 {
 lock (TabuList)
 {
 tabuListContains = TabuListContains(list);
 }
 if (!tabuListContains)
 {
 isTabu = false;
 }
 }

 if (!isTabu)
 {
 tempSolution = ComputeSolution(tempCityOrder);

 if (tempSolution < bestSolution)
 {
 bestSolution = tempSolution;
 bestCityOrder = new List<List<int>>(tempCityOrder);
 }

 lock (TabuList)
 {
 if (TabuList.Count == CAPACITY)
 TabuList.Dequeue();
 TabuList.Enqueue(new List<List<int>>(tempCityOrder));
 }
 }
 }
 }

 return bestCityOrder;
 }

 private double GetTotalPath(List<int> currentCityOrder)
 {
 int nNumberOfCities = currentCityOrder.Count;
 double nTotalPathLength = 0;

 if (nNumberOfCities > 0)
 {
 nTotalPathLength = Distances[currentCityOrder[nNumberOfCities - 1], currentCityOrder[0]];
 for (int i = 0; i < nNumberOfCities - 1; i++)
 {
 nTotalPathLength += Distances[currentCityOrder[i], currentCityOrder[i + 1]];
 }
 }

39

 return nTotalPathLength;
 }

 private bool TabuListContains(List<int> vrpList)
 {
 int size = vrpList.Count;
 if (size <= 0)
 throw new ArgumentNullException(); //There must be a list to compare to the Tabu list

 int index = 0;
 bool contains = false;
 //Check all vrp lists in the tabu list
 foreach (List<List<int>> tabuVrp in TabuList)
 {
 if (tabuVrp != null)
 {
 foreach (List<int> tabuList in tabuVrp)
 {
 if (vrpList.Count != tabuList.Count) return false;

 contains = true;
 index = tabuList.IndexOf(vrpList[0]);

 if (index == -1) return false; //This is not the same route

 for (int i = 0; i < size; i++)
 {
 if (vrpList[i] != tabuList[(i + index) % size])
 {
 contains = false;
 continue;
 }
 }

 if (contains)
 return true;
 }
 }
 }

 return false;
 }
 }

D.2 Multi core implementation
static void Main(string[] args)
 {
 int SIZE = 50;
 string InputPath = @"C \TSP_25.csv";
 string ReportPath = @"C: \tempTSP_TabuSC_solution_10.txt";
 Stopwatch sw = new Stopwatch();

 double[,] DistanceMatrix = CommonObjects.CommunicationManager.ReadTSP(InputPath);

 List<int> cities = new List<int>(DistanceMatrix.GetLength(1));
 for (int i = 0; i < cities.Capacity; i++)
 {
 cities.Add(i);
 }

 Queue<List<List<int>>> TabuList = new
Queue<List<List<int>>>(Convert.ToInt32(Math.Pow(DistanceMatrix.GetLength(1), 2)) * 10000);
 List<CommonObjects.BestSolution> solutionList = new List<CommonObjects.BestSolution>();

40

 Parallel.For(0, SIZE, i =>
 {
 TabuSearch.TS ts = new TabuSearch.TS();
 TabuSearch.DataTS data = new TabuSearch.DataTS(DistanceMatrix, ref TabuList);
 solutionList = ts.TabuSearch(cities, data, 2).SolutionList;
 });

 CommonObjects.BestSolution theBestSolution = null;
 foreach (CommonObjects.BestSolution solution in solutionList)
 {
 if (theBestSolution == null || theBestSolution.solution > solution.solution)
 theBestSolution = solution;

 Console.WriteLine(solution.ToString());
 Console.WriteLine();
 }

 Console.WriteLine("The best solution!!");
 Console.WriteLine(theBestSolution.ToString());
 Console.WriteLine();
 }

D.3 Single core implementation
static void Main(string[] args)
 {
 int SIZE = 10;
 string InputPath = @"C:\TSP_25.csv";
 string ReportPath = @"C:\tempTSP_TabuSC_solution_10.txt";
 Stopwatch sw = new Stopwatch();

 double[,] DistanceMatrix = CommonObjects.CommunicationManager.ReadTSP(InputPath);

 List<int> cities = new List<int>(DistanceMatrix.GetLength(1));
 for (int i = 0; i < cities.Capacity; i++)
 {
 cities.Add(i);
 }

 List<CommonObjects.BestSolution> solutionList = new List<CommonObjects.BestSolution>();
 for (int i = 0; i < SIZE; i++)
 {
 TabuSearch.TS ts = new TabuSearch.TS();
 Queue<List<List<int>>> TabuList = new
Queue<List<List<int>>>(Convert.ToInt32(Math.Pow(DistanceMatrix.GetLength(1), 2)) * 2);
 TabuSearch.DataTS data = new TabuSearch.DataTS(DistanceMatrix, ref TabuList);
 solutionList = ts.TabuSearch(cities, data, 2).SolutionList;
 }

 CommonObjects.BestSolution theBestSolution = null;
 foreach (CommonObjects.BestSolution solution in solutionList)
 {
 if (theBestSolution == null || theBestSolution.solution > solution.solution)
 theBestSolution = solution;

 Console.WriteLine(solution.ToString());
 Console.WriteLine();
 }

 Console.WriteLine("The best solution!!");
 Console.WriteLine(theBestSolution.ToString());
 Console.WriteLine();
 }

41

Appendix E

E.1 Common objects

E.1.1 Interfaces
public interface IData
 {
 double ComputeSolution(List<double> argument);

 List<double> ComputeNextNeighbour(List<double> currentSolution);

 double ComputeTemperature(double temperature, double alpha, int iteration);
 }

public interface IDataAC
 {
 decimal ComputeSolution(decimal[] argument);

 decimal[] ComputeNextNeighbour(decimal[] currentSolution);
 }

public interface IDataTS
 {
 double ComputeSolution(List<List<int>> currentCityOrder);

 List<List<int>> ComputeNextNeighbour(List<List<int>> currentCityOrder);
 }

E.1.2 Objects
public class Ackley : Interface.IData
 {
 private const int n = 2;
 private const double a = 20;
 private const double b = 0.2;
 private const double c = 2 * Math.PI;
 public const double SEARCHSPACE = 32768;
 public const double STEPSIZE = 200;
 Random rand = new Random(DateTime.Now.Millisecond);

 public double ComputeSolution(List<double> argument)
 {
 double sum1 = 0;
 for (int i = 0; i < n; i++)
 {
 double temp = argument[i];
 sum1 += Math.Pow(argument[i], 2);
 }

 double sum2 = 0;
 for (int i = 0; i < n; i++)
 {
 double temp = argument[i];
 sum2 += Math.Cos(c * argument[i]);
 }

 return ((-a) * Math.Exp((-b) * Math.Sqrt(sum1 / n))) - Math.Exp(sum2 / n) + a + Math.E;
 }

 public List<double> ComputeNextNeighbour(List<double> currentParameters)

42

 {
 for (int i = 0; i < currentParameters.Count; i++)
 {
 int des = 1;
 if (rand.NextDouble() > 0.5)
 des = -1;

 double temp = STEPSIZE * des * rand.NextDouble();

 currentParameters[i] += temp;

 if (currentParameters[i] > SEARCHSPACE) { currentParameters[i] = SEARCHSPACE; }
 if (currentParameters[i] < -SEARCHSPACE) { currentParameters[i] = -SEARCHSPACE; }
 }

 return currentParameters;
 }

 public double ComputeTemperature(double temperature, double alpha, int iteration)
 {
 return temperature *= alpha;
 }
 }

public class AntTour
 {
 public AntTour(int nAnt, double nLength)
 {
 Ant = nAnt;
 Length = nLength;
 VisitCityOrder = new List<int>(1000);
 }

 public AntTour(int nAnt, double nLength, List<int> nVisitCityOrder)
 {
 Ant = nAnt;
 Length = nLength;
 VisitCityOrder = nVisitCityOrder;
 }

 public int Ant { get; set; }
 public int Iteration { get; set; }
 public double Length { get; set; }
 public List<int> VisitCityOrder { get; set; }
 }

public class BestSolution
 {
 public double solution;
 public List<int> solutionList;
 public int iteration;

 public BestSolution(double nSolution, List<int> nSolutionList, int nIteration)
 {
 solution = nSolution;
 solutionList = new List<int>(nSolutionList);
 iteration = nIteration;
 }

 public override string ToString()
 {
 StringBuilder builder = new StringBuilder();
 foreach (int item in solutionList)

43

 {
 builder.AppendFormat("{0} ", item);
 }
 return string.Format("Solution = {0}\nIteration number {1}\n{2}", solution, iteration, builder.ToString());
 }
 }

public class Result
 {
 public Result(double bestResult, List<double> bestParameters, List<List<double>> parameterlist, TimeSpan
elapsedTime)
 {
 BestResult = bestResult;
 BestParameters = bestParameters;
 ParameterList = parameterlist;
 ElapsedTime = elapsedTime;
 }

 public double BestResult { get; set; }

 public List<double> BestParameters { get; set; }

 public List<List<double>> ParameterList { get; set; }

 public TimeSpan ElapsedTime { get; set; }
 }

public class TS_Result
 {
 public TS_Result(List<BestSolution> solutionlist, long timeElapsedMilliSecond)
 {
 SolutionList = solutionlist;
 TimeElepsedMillisecond = timeElapsedMilliSecond;
 }

 public BestSolution Bestsolution
 {
 get
 {
 BestSolution theBestSolution = null;
 foreach (BestSolution solution in SolutionList)
 {
 if (theBestSolution == null || theBestSolution.solution > solution.solution)
 theBestSolution = solution;
 }

 return theBestSolution;
 }
 }
 public List<BestSolution> SolutionList { get; set; }
 public long TimeElepsedMillisecond { get; set; }
 }

public class CommunicationManager
 {
 public static bool StartProgram(string sMessage, out int nSize, out bool bReport, out string sReportPath, out bool
bFullReport, out bool bParamPath, out string sParamPath)
 {
 nSize = 0;
 bReport = false;
 sReportPath = string.Empty;
 bParamPath = false;
 sParamPath = string.Empty;
 bFullReport = false;

 Console.WriteLine(string.Format("******** {0} ********", sMessage));

44

 Console.WriteLine();

 Console.WriteLine("-Set the number of iterations by using the command SIZE=<some arbritrary number>");
 Console.WriteLine("-To write parameterpath use the command PARAMPATH=<the folder where to write the
parameter paths>");
 Console.WriteLine("-To write a report use the command REPORT=<the folder where to write the report>");
 Console.WriteLine("-To write a full report use the command FULLREPORT instead of the REPORT command");
 string commandString = Console.ReadLine();

 try
 {
 string[] commands = commandString.Split(' ');
 foreach (string command in commands)
 {
 string[] commandParts = command.Split('=');

 switch (commandParts[0].Trim().ToUpper())
 {
 case "SIZE":
 nSize = Convert.ToInt32(commandParts[1].Trim());
 break;
 case "PARAMPATH":
 bParamPath = true;
 sParamPath = commandParts[1].Trim();
 break;
 case "REPORT":
 bReport = true;
 sReportPath = commandParts[1].Trim();
 break;
 case "FULLREPORT":
 bReport = true;
 bFullReport = true;
 sReportPath = commandParts[1].Trim();
 break;
 default:
 break;
 }
 }
 }
 catch (Exception ex)
 {
 return false;
 }

 Console.WriteLine();
 Console.WriteLine(string.Format("Number of iterations: {0}", nSize));
 Console.WriteLine();

 return true;
 }

 public static void WriteReport(bool bFullreport, string sReportPath, List<CommonObjects.Result> resultList,
Stopwatch sw)
 {
 StreamWriter writer = new StreamWriter(sReportPath);
 writer.WriteLine(string.Format("Total time to compute: {0}ms", sw.ElapsedMilliseconds));
 CommonObjects.Ackley data = new CommonObjects.Ackley();
 writer.WriteLine(string.Format("Best possible solution: {0}", data.ComputeSolution(new List<double>(new
double[] { 0, 0 }))));
 writer.WriteLine();
 writer.WriteLine("__");
 writer.WriteLine();

 CommonObjects.Result bestResult = null;
 foreach (var item in resultList)
 {

45

 if (bestResult == null || bestResult.BestResult > item.BestResult)
 bestResult = item;
 }

 writer.WriteLine(string.Format("Best solution found: {0}", bestResult.BestResult));
 writer.WriteLine(string.Format("Best params X:{0} Y:{1}", bestResult.BestParameters[0],
bestResult.BestParameters[1]));
 writer.WriteLine(string.Format("Time: {0}ms", bestResult.ElapsedTime.Milliseconds));
 writer.WriteLine();
 writer.WriteLine("__");
 writer.WriteLine();

 if (bFullreport)
 {
 writer.WriteLine("Best_solution X_param Y_param Time");
 foreach (var item in resultList)
 {
 writer.WriteLine(string.Format("{0} {1} {2} {3}", item.BestResult, item.BestParameters[0],
item.BestParameters[1], item.ElapsedTime.Milliseconds));
 }
 }
 writer.Flush();
 writer.Close(); writer.Dispose();
 }

 public static bool StartTSPProgram(string sMessage, out int nNumberOfIterations, out int nAntsPerCity, out
double nAlpha, out double nBeta, out double nRate, out double nInitialPheromon, out double nConstant, out string
sInputPath, out string sReportPath)
 {
 nNumberOfIterations = 0;
 nAntsPerCity = 0;
 nAlpha = 0;
 nBeta = 0;
 nRate = 0;
 nInitialPheromon = 0;
 nConstant = 0;
 sReportPath = string.Empty;
 sInputPath = string.Empty;

 Console.WriteLine(string.Format("******** {0} ********", sMessage));
 Console.WriteLine();

 Console.WriteLine("-Set the number of iterations by using the command SIZE=<some arbritrary number>");
 Console.WriteLine("-Set the number of ants per city by using the command ANTS=<some arbritrary number>");
 Console.WriteLine("-Set the value of alpha by using the command ALPHA=<some arbritrary number>");
 Console.WriteLine("-Set the value of beta by using the command BETA=<some arbritrary number>");
 Console.WriteLine("-Set the value of rate of evaporation by using the command RATE=<some arbritrary
number>");
 Console.WriteLine("-Set the value of initial pheromon by using the command INIT=<some arbritrary
number>");
 Console.WriteLine("-Set the value of pheromon constant by using the command CONSTANT=<some arbritrary
number>");
 Console.WriteLine("-Use the command INPUTPATH=<the path to the input file>");
 Console.WriteLine("-Use the command REPORT=<the folder where to write the report>");
 string commandString = Console.ReadLine();

 try
 {
 string[] commands = commandString.Split(' ');
 foreach (string command in commands)
 {
 string[] commandParts = command.Split('=');

 switch (commandParts[0].Trim().ToUpper())
 {
 case "SIZE":

46

 nNumberOfIterations = Convert.ToInt32(commandParts[1].Trim());
 break;
 case "INPUTPATH":
 sInputPath = commandParts[1].Trim();
 break;
 case "REPORT":
 sReportPath = commandParts[1].Trim();
 break;
 case "ANTS":
 nAntsPerCity = Convert.ToInt32(commandParts[1].Trim());
 break;
 case "ALPHA":
 nAlpha = Convert.ToDouble(commandParts[1].Trim());
 break;
 case "BETA":
 nBeta = Convert.ToDouble(commandParts[1].Trim());
 break;
 case "RATE":
 nRate = Convert.ToDouble(commandParts[1].Trim());
 break;
 case "INIT":
 nInitialPheromon = Convert.ToDouble(commandParts[1].Trim());
 break;
 case "CONSTANT":
 nConstant = Convert.ToDouble(commandParts[1].Trim());
 break;
 default:
 break;
 }
 }
 }
 catch (Exception ex)
 {
 return false;
 }

 Console.WriteLine();
 Console.WriteLine(string.Format("Number of iterations: {0}", nNumberOfIterations));
 Console.WriteLine();

 return true;
 }

 public static double[,] ReadTSP(string sUrl)
 {
 StreamReader reader = new StreamReader(sUrl);

 List<string> lines = new List<string>(1000);
 while (!reader.EndOfStream)
 {
 lines.Add(reader.ReadLine());
 }

 double[,] matrix = new double[lines.Count, lines.Count];
 string[] tempItems; int lineIndex = 0; string tempLine;
 foreach (string line in lines)
 {
 tempLine = line.Replace(".", ",");
 tempItems = tempLine.Split(new string[] { ";" }, StringSplitOptions.RemoveEmptyEntries);
 for (int i = 0; i < lines.Count; i++)
 {
 matrix[lineIndex, i] = Convert.ToDouble(tempItems[i]);
 }

 lineIndex++;
 }

47

 return matrix;
 }

 public static void WriteTSPSolution(string sPath, AntTour[] antTours, Stopwatch sw)
 {
 StreamWriter writer = new StreamWriter(sPath);
 int index = 0;
 double bestLength = antTours[index].Length;
 for (int i = 1; i < antTours.Length; i++)
 {
 if (antTours[i].Length < bestLength)
 {
 bestLength = antTours[i].Length;
 index = i;
 }
 }

 writer.WriteLine(string.Format("Total time to compute: {0}ms", sw.ElapsedMilliseconds));
 writer.WriteLine(string.Format("Best possible solution: {0}", bestLength));
 writer.WriteLine(string.Format("That was ant number: {0}", antTours[index].Ant));
 writer.WriteLine(string.Format("That was iteration number: {0}", antTours[index].Iteration));
 writer.WriteLine("__");
 foreach (int city in antTours[index].VisitCityOrder)
 {
 writer.WriteLine(city);
 }

 writer.Flush();
 writer.Close(); writer.Dispose();
 }

 public static void WriteTSPSolution(string sPath, AntTour[] antTours, double[,] Pheromons, Stopwatch sw)
 {
 StreamWriter writer = new StreamWriter(sPath);
 int index = 0;
 double bestLength = antTours[index].Length;
 for (int i = 1; i < antTours.Length; i++)
 {
 if (antTours[i].Length < bestLength)
 {
 bestLength = antTours[i].Length;
 index = i;
 }
 }

 writer.WriteLine(string.Format("Total time to compute: {0}ms", sw.ElapsedMilliseconds));
 writer.WriteLine(string.Format("Best possible solution: {0}", bestLength));
 writer.WriteLine(string.Format("That was ant number: {0}", antTours[index].Ant));
 writer.WriteLine(string.Format("That was iteration number: {0}", antTours[index].Iteration));
 writer.WriteLine("__");
 foreach (int city in antTours[index].VisitCityOrder)
 {
 writer.WriteLine(city);
 }
 writer.WriteLine("__");
 writer.WriteLine("Pheromons");
 for (int i = 0; i < Pheromons.GetLength(1); i++)
 {
 for (int j = 0; j < Pheromons.GetLength(1); j++)
 {
 writer.Write(string.Format("{0}\t", Pheromons[i, j]));
 }
 writer.WriteLine();
 }

48

 writer.Flush();
 writer.Close(); writer.Dispose();
 }

 public static void WriteVRPSolution(string sPath, TS_Result result)
 {
 StringBuilder builder = new StringBuilder();
 foreach (int item in result.Bestsolution.solutionList)
 {
 builder.AppendFormat("{0} ", item);
 }

 StreamWriter writer = new StreamWriter(sPath);

 writer.WriteLine(string.Format("Total time to compute: {0}ms", result.TimeElepsedMillisecond));
 writer.WriteLine(string.Format("Solution = {0}", result.Bestsolution.solution));
 writer.WriteLine(string.Format("Iteration number {0}", result.Bestsolution.iteration));
 writer.WriteLine("__");
 writer.WriteLine();
 writer.WriteLine();
 writer.WriteLine(builder.ToString());
 writer.Flush();
 writer.Close(); writer.Dispose();
 }
 }

49

