

SURROGATE MODELING TECHNIQUES APPLIED
TO ENERGY SYSTEMS

Anna Ściążko

__

SURROGATE MODELING TECHNIQUES APPLIED
TO ENERGY SYSTEMS

The Master Thesis was supported by a grant from Iceland, Liechtenstein and

Norway through the EEA Financial Mechanism - Project PL0460.

Anna Ściążko

A 30 ECTS credit units Master´s thesis

Supervisors

Dr. Francois Marechal

PhD student Mr. Matthias Dubuis

Dr. Adam Roman

A Master´s thesis done at

RES | The School for Renewable Energy Science

in affiliation with

University of Iceland &

University of Akureyri

Akureyri, January 2011

Surrogate Modeling Techniques Applied To Energy Systems

A 30 ECTS credit units Master´s thesis

© Anna Ściążko, 2011

RES | The School for Renewable Energy Science

Solborg at Nordurslod

IS600 Akureyri, Iceland

Telephone + 354 464 0100

www.res.is

Printed in 2011

at Stell Printing in Akureyri, Iceland

i

ABSTRACT

This Master Thesis investigates the possibility of using the surrogate modeling techniques
in the complex energy system modeling problems. The different mathematical (nearest-
neighbor, linear, spline, cubic Hermite and polynomial interpolation as well as polynomial
fitting) and artificial intelligence (neural network) methods were introduced and
implemented.

Prepared paper includes information from many different fields of science: energy science,
mathematics and computer science. All of them were used to prepare multi-science
analysis of surrogate modeling problem.

Several different surrogate models were created for two different energy systems. First of
them was gas turbine with recirculation, syngas production and CO2 capture; second
system was the steam network. The energy system descriptions were provided in the
Thesis.

Implemented models were analyzed and their errors were found. The results helped in
generalizing the features of surrogate models of each type. The conclusion are focused on
the following topics: methods of choosing the best initial sets of points, method of
elimination errors in the training process, validity space of the model and possibilities of
connecting two algorithms: genetic optimization and creation of surrogate model. Gathered
information will be used in the second part of the project – implementing the generic tool
to create surrogate models for any energy system model. The second part of the project
will be realized in Poland at Jagiellonian University in cooperation with École
Polytechnique Fédérale De Lausanne. In the Thesis, the process of creating the automotive
computer tool is designed. Moreover the possible positive influence, not only for Poland,
but for any problem examined by this tool, is described.

ii

PREFACE

Today many problems are solved with computer simulations. They help us to model very
complicated systems in relatively short time. Run so complex analysis and optimization
would not be possible in any other way. But nowadays we need better and better solutions
which allows for working with bigger speed and effectiveness. One of method to achieve
that is to use better computers, but it is not always possible.

Other way of finding the more effective way of computer computations is introducing the
surrogate models of complex energy systems. In this paper a several surrogate modeling
techniques are investigated and implemented in the real life problem.

The Thesis is good example of merging a various fields of science (energy science,
mathematics and computer science) in order to obtain the best results.

All of the analyzed problems are strictly connected with energy science, but the methods
used to model and analyze them are more connected with terms as interpolation, error
analysis or artificial intelligence, neural networks, genetic algorithms and surrogate
models. This paper shows how important it is to find a connection between seemingly
unrelated brands of science.

iii

TABLE OF CONTENTS

1 Theory part .. 11

1.1 Modeling and optimization techniques .. 11

1.1.1 Motivation ... 11

1.1.2 Energy integration ... 11

1.1.3 Optimization.. 12

1.2 Surrogate models – introduction ... 16

1.3 Models evaluation methods .. 16

1.3.1 Norm of residual.. 17

1.3.2 Correlation coefficient r ... 17

1.3.3 Mean square error .. 18

1.4 Mathematical models .. 18

1.4.1 Interpolation problem definition .. 18

1.4.2 Nearest-neighbor interpolation... 19

1.4.3 Linear interpolation ... 20

1.4.4 Polynomial interpolation.. 22

1.4.5 Spline interpolation ... 26

1.4.6 Cubic Hermite interpolation .. 28

1.4.7 Polynom fitting .. 30

1.5 Artificial intelligence models .. 32

1.6 Neural networks ... 32

1.6.1 Introduction ... 32

1.6.2 Simple neuron ... 33

1.6.3 Transfer functions.. 34

1.6.4 Neuron with vector input ... 35

1.6.5 Multilayer neural network ... 35

1.6.6 Back propagation algorithm ... 37

1.7 Genetic programming ... 38

2 One Decision variable model ... 40

2.1 Flow sheet and model description ... 40

2.2 Problem description .. 44

2.3 Modeling problem description .. 45

iv

2.4 Results .. 50

2.4.1 Results for one output (times, errors, graphs) ... 50

2.4.2 Results for selected methods for all output parameters 67

2.4.3 Interpretation of results .. 73

3 Multi decision variable model.. 75

3.1 Flow sheet and model description ... 75

3.2 Problem description .. 80

3.3 Modeling problem description .. 80

3.4 Results .. 84

4 Generalization ... 103

4.1 Points choosing .. 103

4.2 Model training methods – errors elimination ... 104

4.3 Surrogate model errors – validity .. 105

4.4 Connection with optimization genetic algorithm ... 105

5 Surrogate model – project developing in Poland .. 107

6 Conclusions ... 109

References ... 111

Appendix A ... 1

v

LIST OF FIGURES

Figure 1.1 Pinch point technology – rules... 12

Figure 1.2 Genetic algorithm schema (Genetic algorithms - Introduction) 13

Figure 1.3 Crossover operator in genetic algorithm ... 14

Figure 1.4 Mutation operator in genetic algorithm .. 14

Figure 1.5 Mutation types (Stranz & Martin, 1997) .. 15

Figure 1.6 The role of crossover and mutation operators in genetic algorithm (Genetic
Algorithms : General Idea) ... 15

Figure 1.7 Nearest-neighbour interpolation of function cos(x) based on 10 equidistant
nodes in the interval [0,10]. .. 20

Figure 1.8 Linear interpolation between two given points P1 and P2.................................. 21

Figure 1.9 Linear interpolation of function cos(x) based on 10 equidistant nodes in the
interval [0,10]. .. 22

Figure 1.10 Interpolation polynoms of function �� = ���0,1 − � in interval [-4,4] based
on different types of nodes: equidistant(A,C) and Chebyshev(B,D) and different
number of nodes: 5 nodes (A, B) and 33 nodes (C,D). .. 25

Figure 1.11 Cubic spline interpolation of function cos(x) based on 10 equidistant nodes in
the interval [0,10]. .. 28

Figure 1.12 Cubic Hermite interpolation of function cos(x) based on 10 equidistant nodes
in the interval [0,10]. .. 29

Figure 1.13 Cubic Spline Interpolation (spline) versus Cubic Hermite Interpolation (pchip)
(MATLAB documentation, pchip command) ... 30

Figure 1.14 Polynomial fitting for function
��� - red line – in the interval [0,12] by
polynoms of different degree: blue – fist degree, green – second degree, yellow – third
degree, violet – fourth degree. .. 31

Figure 1.15 Simple neuron (Beale, Hagan, & Demuth, 2010) ... 33

Figure 1.16 Transfer functions used in Neural Network (Beale, Hagan, & Demuth, 2010)34

Figure 1.17 Neuron with vector input (Beale, Hagan, & Demuth, 2010) 35

Figure 1.18 Neuron with vector input: abbreviated notation (Beale, Hagan, & Demuth,
2010) .. 35

Figure 1.19 Simple representation of multilayer Network (Stergiou & Siganos) 36

Figure 1.20 One layer of a neural network in normal and abbreviated notation (Beale,
Hagan, & Demuth, 2010) ... 36

Figure 1.21 Multilayer network (Beale, Hagan, & Demuth, 2010) 37

Figure 1.22 Approximation network with one hidden layer(Beale, Hagan, & Demuth,
2010) .. 37

vi

Figure 1.23 Genetic programs in tree structure for one decision variable model
(Sreekanth & Datta, 2010) .. 39

Figure 2.1 Gas turbine with recirculation schema – GT_SEQ .. 40

Figure 2.2 The amount of H2 to be added to improve flame stability 41

Figure 2.3 Syngas production schema – REACT .. 42

Figure 2.4 CO2 capture black box model for chemical absorption with monoethanolamines
(Dubuis & Tock, 2010)... 43

Figure 2.5 Flow-sheeting model which can be use to simulate multi-pressure, split-fraction
CO 2 capture (Bernier, Marechal, & Samson, 2009) ... 43

Figure 2.6 The multi-objective problem (gas turbine power plant with CO2 capture with
Flue Gas Recirculation). A - program schema, B simplified problem. 44

Figure 2.7 Nearest-neighbor interpolation for different number of nodes for Power Output
 ... 51

Figure 2.8 Linear interpolation for different number of nodes for Power Output.............. 52

Figure 2.9 Spline interpolation for different number of nodes for Power Output 53

Figure 2.10 Cubic Hermite interpolation for different number of nodes for Power Output 54

Figure 2.11 Polynomial interpolation for different number of nodes (and different degree
of interpolation polynom) for Power Output ... 56

Figure 2.12 Polynomial fitting of polynom degree 5 for different number of nodes for
Power Output ... 57

Figure 2.13 Polynomial fitting of polynom degree 10 for different number of nodes for
Power Output ... 58

Figure 2.14 Design of the neural Network with 2 neurons (experiment 1,2,3) and with 10
neurons (experiment 4) in hidden layer (from MATLAB interface) 59

Figure 2.15 Fit graph for Experiment 1 .. 60

Figure 2.16 Regression graph for Experiment 1 .. 61

Figure 2.17 Performance and Training State graphs for Experiment 1 62

Figure 2.18 Fit graph for Experiment 2 .. 62

Figure 2.19 Regression graph for Experiment 2 .. 63

Figure 2.20 Performance and Training State graphs for Experiment 2 64

Figure 2.21 Fit graph for Experiment 3 .. 64

Figure 2.22 Regression graph for Experiment 3 .. 65

Figure 2.23 Performance and Training State graphs for Experiment 3 65

Figure 2.24 Fit graph for Experiment 4 .. 66

Figure 2.25 Regression graph for Experiment 4 .. 66

Figure 2.26 Performance and Training State graphs for Experiment 4 67

Figure 2.27 Surrogate model on basis of 4 knots for F_421_T .. 68

Figure 2.28 Surrogate model on basis of 6 knots for F_421_T .. 68

vii

Figure 2.29 Surrogate model on basis of 11 knots for F_421_T .. 69

Figure 2.30 R values for spline surrogate model based on 4 knots for all output parameters
(ordered from smallest one) .. 69

Figure 2.31 R values for spline surrogate model based on 6 knots for all output
parameters(ordered from smallest one) ... 70

Figure 2.32 R values for spline surrogate model based on 11 knots for all output
parameters(ordered from smallest one) ... 70

Figure 2.33 Design of the neural Network for one input, many output problem (from
MATLAB interface) ... 71

Figure 2.34 Regression graph for one input, many output problem 72

Figure 2.35 Performance and Training State graphs for one input, many output problem . 72

Figure 2.36 Regression graph for additional test set.. 73

Figure 3.1 Superstructure of gas turbine power plant with CO 2 capture (Dubuis & Tock,
2010) .. 75

Figure 3.2 Superstructure of a steam network with one expansion level and heat
consumption and rejection (Girardin, Dubuis, & Marechal) 76

Figure 3.3 Bad example of Steam Network Configuration (Dubuis & Tock, 2010) 78

Figure 3.4 Good example of Steam Network Configuration (Dubuis & Tock, 2010) 79

Figure 3.5 Pareto Curve for Power Output – Investment Cost for different configurations of
Steam Network (Girardin, Dubuis, & Marechal) ... 79

Figure 3.6 Pareto Curve for Power Output – Levelized Electricity Cost for different
configurations of Steam Network (Girardin, Dubuis, & Marechal) 80

Figure 3.7 Schema of data preparation for surrogate model creation. 82

Figure 3.8 The schema of surrogate model ... 83

Figure 3.9 Confusion matrix for neural network surrogate models – classifying part –
bigger testing set .. 86

Figure 3.10 Performance and Training State graphs for neural network surrogate models –
classifying part – bigger testing set ... 87

Figure 3.11 Regression graph for neural network surrogate models – power fitting part –
bigger testing set .. 88

Figure 3.12 Performance and Training State graphs for neural network surrogate models –
power fitting part – bigger testing set .. 89

Figure 3.13 Regression graph for neural network surrogate models – cost fitting part –
bigger testing set .. 90

Figure 3.14 Performance and Training State graphs for neural network surrogate models –
cost fitting part – bigger testing set ... 90

Figure 3.15 Regression graph for neural network surrogate models – power fitting part –
bigger testing set, version 2 .. 92

Figure 3.16 Regression graph for neural network surrogate models – cost fitting part –
bigger testing set, version 2, training .. 93

viii

Figure 3.17 Regression graph for neural network surrogate models – cost fitting part –
bigger testing set, version 2, retraining 1 .. 94

Figure 3.18 Regression graph for neural network surrogate models – cost fitting part –
bigger testing set, version 2, retraining 2 .. 95

Figure 3.19 Confusion matrix for neural network surrogate models – classifying part –
smaller testing set ... 96

Figure 3.20 Regression graph for neural network surrogate models – power fitting part –
smaller testing set ... 97

Figure 3.21 Regression graph for neural network surrogate models – cost fitting part –
smaller testing set ... 98

Figure 3.22 Confusion matrix for neural network surrogate models – classifying part –
complex problem .. 100

Figure 3.23 Regression graph for neural network surrogate models – power fitting part –
complex case; 25 neurons in the hidden layer ... 101

Figure 3.24 Regression graph for neural network surrogate models – power fitting part –
complex case; 25 neurons in the hidden layer ... 102

Figure 4.1 Surrogate modeling with optimization algorithm (Sreekanth & Datta, 2010) . 106

ix

LIST OF TABLES

Table 1.1 Rest of interpolations for different interpolation conditions............................... 26

Table 1.2 Comparison of brain and computer (Orr, 1999)... 32

Table 2.1 All input and output variables in the surrogate model with example of values. .. 45

Table 2.2 Properties of different neural network surrogate models 59

Table 2.3 Neural network surrogate models: MSE and Regression R values 60

Table 2.4 Properties of neural network surrogate models for one input, many output
problem .. 71

Table 2.5 Neural network surrogate models for one input, many output problem: MSE and
Regression R values ... 71

Table 3.1 Input parameters of the simple Steam Network model 81

Table 3.2 Input parameters of the simple Steam Network model 84

Table 3.3 Properties of neural network surrogate models – classifying part – bigger testing
set .. 85

Table 3.4 Neural network surrogate models – classifying part – bigger testing set: MSE
and Regression R values ... 85

Table 3.5 Properties of neural network surrogate models – power fitting part – bigger
testing set ... 87

Table 3.6 Neural network surrogate models – power fitting part – bigger testing set: MSE
and Regression R values ... 87

Table 3.7 Properties of neural network surrogate models – cost fitting part – bigger testing
set .. 89

Table 3.8 Neural network surrogate models –cost fitting part – bigger testing set: MSE and
Regression R values ... 89

Table 3.9 Properties of neural network surrogate models – power fitting part – bigger
testing set, version 2 ... 91

Table 3.10 Neural network surrogate models – power fitting part – bigger testing set,
version 2: MSE and Regression R values .. 91

Table 3.11 Properties of neural network surrogate models – cost fitting part – bigger
testing set, version 2 ... 92

Table 3.12 Neural network surrogate models – cost fitting part – bigger testing set, version
2: MSE and Regression R values .. 92

Table 3.13 Properties of neural network surrogate models – classifying part – smaller
testing set ... 95

Table 3.14 Neural network surrogate models – classifying part – smaller testing set: MSE
and Regression R values ... 96

x

Table 3.15 Properties of neural network surrogate models – power fitting part – smaller
testing set ... 96

Table 3.16 Neural network surrogate models – power fitting part – smaller testing set:
MSE and Regression R values .. 97

Table 3.17 Properties of neural network surrogate models – cost fitting part – smaller
testing set ... 98

Table 3.18 Neural network surrogate models – cost fitting part – smaller testing set: MSE
and Regression R values ... 98

Table 3.19 Properties of neural network surrogate models – classifying part – complex
problem .. 99

Table 3.20 Neural network surrogate models – classifying part – complex problem: MSE
and Regression R values ... 99

11

1 THEORY PART

In the first part of the Master Thesis several important information used in the practical
problems are introduced. In this chapter several mathematical and artificial intelligence
techniques connected with modeling problems are presented. This work lies on the
crossroads of different disciplines. Presented topics are connected with energy science,
computer science and mathematics.

1.1 Modeling and optimization techniques

There are many modeling and optimization techniques used in energy engineering
software. To introduce some of them: the different methods of building the models and
solving them, energy integration techniques or optimization algorithms. Some of those
methods are described below. The greatest emphasis is placed on the genetic optimization
algorithms, because they are used in the existing software and they can be correlated with
the surrogate modelling algorithms.

1.1.1 Motivation

In many cases we need computer models to solve complicated problems in the topic of
energy engineering. Real model preparation is not always possible because of time, money
and physical possibilities.

Moreover in many cases we consider very complex systems. There is huge number of
possibilities for designing such problem. Often we have several competitive objective
functions in the system (like for example cost of the system and its environmental
influence). Computer models let for many problem evaluations. We can use them in the
optimization problems to find the best system design.

1.1.2 Energy integration

The energy integration technique is also called the pinch technology or heat integration.
This method helps in optimal designing of energy systems. It helps in minimizing energy
consumption and maximizing the internal heat recovery. The detailed description of this
methodology can be found for example in (Linhoff & Townsend, 1982) and (Kemp, 2007).
In the theory part only the main idea of pinch point technology is shown.

The pinch point technology allows for calculating the thermodynamically attainable energy
targets for a process and helps in identification methods to achieve them.

One of the most important things is pinch temperature, which is the most constrained point
in the process. There are three most important rules of pinch point technology presented in
the Figure 1.1:

• Do not transfer heat through pinch point;

• Do not cool the process above the pinch point;

• Do not heat the process below the pinch point.

12

Figure 1.1 Pinch point technology – rules

1.1.3 Optimization

Optimization is the method of finding the best solution for given problem. Problem is
evaluated by special objective functions. Optimization can be understood as searching the
function extremums (minimums or maximums, depending of problem formulation). There
is two type of optimization: mono-objective or multi-objectives. Multi-objective
optimization helps in finding the best decision in case of several competing targets (for
example it can be finding a compromise between production cost and quality).
Optimization results can be shown in the Pareto curve, which shows the connection
between different objective functions.

To optimize a function we can use many different algorithms. One of them is genetic
algorithm. We will introduce a basic theory about this method. Genetic algorithm can be
also used in the building a surrogate model (this concept will be explain in the separate
chapter). Genetic algorithms are used in the LENI software (MOO – the tool implementing
multi-objective optimization). Good understanding of genetic algorithm is especially
important - the next step of this Master Thesis will be incorporating surrogate modeling
into the LENI software and combination surrogate models with optimization algorithms (to
make the process of learning the surrogate model more efficient).

The genetic and evolutionary algorithms were invented by John Holland in 60. and 70.XX.
These kinds of algorithms try to mimetic the natural evolution process and to solve
problems in the similar way as evolution do. They use the biological evolutionary
mechanisms, such as natural selection, survival of the fittest, inheritance, reproduction and
mutation. They can be understood as the compromise between the stochastic solution
searching and working on the basis of previous results. There is many publications on this
subject, more details can be found in (Goldberg, 1989).

Basic concepts connected with genetic algorithms are:

• Method of saving the parameters of each individual – chromosome;

• Method to rating the individuals - the fitness function ;

• Random selection of initial population;
• Selection operator;

13

• Crossover operator;
• Mutation operator.

The basic genetic algorithm schema is shown in the Figure 1.2. Of course there is many
methods to improve the basic algorithm, but the most important stages are following: first
step is initialization of the population of chromosomes - they are generated randomly. Then
for all chromosomes the cost function (fitness function) is evaluated. On the basis of this
information the parent chromosomes are selected. Then the crossover and mutation
operator makes the children population. The new population is created from new children
population and selected individuals (best ones) of the old population. If the good enough
individual is found (if the problem is solved) algorithm ends. If not, the algorithm goes
back to the point 2 (cost function evaluation) (Dideková, 2009).

Figure 1.2 Genetic algorithm schema (Genetic algorithms - Introduction)

Let’s take a closer look for each element of genetic algorithm.

Each individual (the description of problem solution) is modeled in computer memory –
this description is called the chromosome. In all of practical problems used in the practical
part of the Thesis the individuals can be seen as energy system’s models (in fact the input
parameters which defines models). Descriptions of individuals, as well as descriptions of
cost functions which can be used, will be introduced in each case. The fitness function has
to be chosen appropriately to the given problem. The function does not evaluate the
chromosomes directly, but the phenotype of each individual. This grade is saved as the
feature of each individual.

14

The initial population is built with n points from problem parameters space X. For genetic
algorithm we are choosing the number of individuals and then, selecting them randomly.
The next important step is checking the correctness of creating individuals.

Selection operator is used when the stop condition is not fulfilled – it means that the good
enough individual was not found and the number of algorithm iteration is smaller than the
established one. As a result of selection the new population is created from parents
population. The most popular selection methods are:

• Fitness proportionate selection (roulette-wheel selection);

• Tournament selection;

• Truncation selection.

Crossover is a genetic operator which makes new generation from previous one. It uses
two individuals from parent population to create two offspring individuals. There are many
types of crossover operator, for example single point crossover or two point crossover,
which are presented in the
Figure 1.3.

Figure 1.3 Crossover operator in genetic algorithm

Mutation is uncommon phenomena, but it is very important part of algorithm. It enters
diversity into the solution set. The mutation operator changes value of randomly chosen
part of chromosome. In many cases results are quite bad, but sometimes the output
chromosome is suited better to environment – it gives better problem solution. Mutation
helps when algorithm stops in the local extremums (it helps in finding global one). The
main idea of mutation operator is shown in the Figure 1.4. Figure 1.5 presents the different
types of mutation.

Figure 1.4 Mutation operator in genetic algorithm

15

Figure 1.5 Mutation types (Stranz & Martin, 1997)

The main idea about working of crossover and mutation operators is presented in the
Figure 1.6. The crossover improves the solutions which were found previously – it is
process similar to climbing at the top a hill that is not the highest (local maximum). On the
other hand mutation lets for trying random solutions from the problem space. Most
mutation will be bad and individuals will die. However occasionally a higher peak may be
found.

Figure 1.6 The role of crossover and mutation operators in genetic algorithm (Genetic

Algorithms : General Idea)

16

1.2 Surrogate models – introduction

Optimization of energy systems is a field in continuous development, and one which
requires a lot of computation time and memory. Moreover, recent research in this domain
demonstrates that new methods that include uncertainties in the design of such systems are
needed. This means sampling of uncertain parameters and increasing the necessary
computational resources. The role of surrogate models may be a way to include uncertainty
in the analysis of energy systems. Surrogate models possess the following crucial
properties:

• They can provide a more efficient model, allowing more iteration in optimization

and uncertainty analysis.
• Depending on the methods used, they can provide even analytical formulation what

would open the door to uncertainty propagation.

It should be noted that the word ‘model’ will be assigned to the original pre-existing
model, which was developed based on flow sheeting and integration software. The
expression ‘surrogate model’ will represent the model that will be developed in this study.

Today, many energy system evaluation projects perform costly and lengthy laboratory
experiments and/or complex computer models are used. Due to their complexity, a single
evaluation of the model can require several hours of CPU processing time on a high-
performance computer. Because of this, many modern engineering designs use surrogate
models: (Tenne & Armfield, 2008) and (Won & Ray, 2005)

As the examples show, great results can be achieved when surrogate models are used
(Fernandes, 2006)

There are several books and articles connected with surrogate methods theory (Caballero &
Grossmann, 2008). There are mathematical (Kincaid & Chene, 2002) and artificial
intelligence theory (Sivanandam, Sumathi, & Deepa, 2006). The real challenge is to apply
the theory to a real life project. For each project the methodology has to be studied and the
best method has to be chosen.

There are also several MATLAB Toolboxes available for surrogate models and for neural
networks. The manual for them will be studied and used during model development for
this project (Beale, Hagan, & Demuth, 2010).

1.3 Models evaluation methods

We have to introduce the methods of evaluating the quality of surrogate model.

To evaluate the model we normally use the additional auxiliary testing set.

In the mathematical models we can distinguish two different set of points: training set
(nodes of interpolation) and testing set. In the case of artificial intelligence model (we will
focus on the neural network model) we have three different sets: training, validation and
testing set. Training and validation set will be described in the next chapters.

The testing set should cover the whole decision variable space (we should have a
possibility to test all variants of the problem). However, in many cases the testing set is

17

chosen randomly – it is caused by a big complexity of the considered problem. In each of
practical problems the detailed information about used testing set will be given.

There are several different measurements which can be used to grade the surrogate model.
Some of them (used in this Master Thesis) are introduced below.

1.3.1 Norm of residual

The norm of residuals is often used as a measure of the goodness of fit. It is especially
useful when we have to compare different fits.

The residuals � are the difference between the real data value �� and the output of the
surrogate model in given point ����,�, ��,�, … , ��,��:

 � = �� − ����,� , ��,� , … , ��,��.

The norm (in this context the L2-norm) of the vector z:

� = �����⋮��
�,

can be expressed as:

 ||�||� = �|��|� + |��|� + ⋯ + |��|� � �! .

So the norm of the residuals is the square root of the sum of squared � values. It can be
calculated from:

"�#� = $%|�|��
�&� '� �! = (%)�� − ����,�, ��,� , … , ��,��)��

�&� .

Generally the smaller norm of residuals means, the fit is better.

1.3.2 Correlation coefficient r

Another common measurement of the “goodness” of a correlation is the correlation
coefficient r. The square of r is the fraction of the variance in the dependent variables that
is explained by the correlation. The mathematical form to express the correlation
coefficient is following:

18

#� = 1 − "�#���" − 1 �� ;

where � is the standard deviation:

� = +∑�����,� , ��,� , … , ��,�� − ��̅" − 1 ,

And � ̅is the mean (average) of all output values.

The closer to 1 is the correlation coefficient, the better surrogate model fits the original
function.

1.3.3 Mean square error

The mean squared error is default performance function of the feedforward neural network.
This is the averaged squared error between the real values and output of the surrogate
model.

The mean squared error is defined in the following way:

./0 = 1" %)�� − ����,�, ��,�, … , ��,��)��
�&� .

This measurement is similar to the norm of residuals.

1.4 Mathematical models

In this chapter several mathematical techniques will be described. Mathematical formulas
can be useful in building surrogate models. Although in many cases they are very
complicated and it takes a lot of memory and time to find a satisfactory solution by them.

In this chapter, we will focus on one dimension approximation problem - the aim of the
theory part is to present the main ideas and methods which can be used in surrogate
modeling. The precise mathematical theory which is behind the used methods can be found
in Numerical Analysis books (Kincaid & Chene, 2002).Some of the presented methods can
be generalized for higher dimension problems. Although finding the smooth interpolants
for multivariable functions is a difficult problem because of some unusual features of the
multivariate problems. This features shows even in the bivariaite cases (two independent
variables).

1.4.1 Interpolation problem definition

One of the way in which we can build a surrogate model is using the mathematical
solution. There are several methods which can be used but this work is focusing on the

19

interpolation methods. They are a good example of the mathematical surrogate modeling.
There are different methods of interpolation like, for example, linear, polynom or spline
interpolation. Chosen methods will be presented and implemented in one of the analyzed
real life problems.

The interpolation problem is one of the basic problems of Numerical Mathematics and
interpolation has also many engineering usages. The simplest explanation of the term
interpolation is imagining the process of interpolation like an inverse of tabularizing a
function. When we discretize a function we have an analytical form of a function and then
we can use this form, build a table of values of this function in concrete points. On the
other hand, when we interpolate, we know only values of the function in some, certain
points, and using them we can find an analytical form of this function. This definition of
the interpolation is consistent with the description of the surrogate modeling problem (we
can generate only finite number of real examples but we would like to know the model
values for different decision variable sets).

The formal definition of the interpolation problem is following:

For given ()jixxxxNn jn ≠≠∈ for x ,...,, , i10 and function f defined in points

{ }nxxx ,...,, 10 find a function nI satisfying the following conditions:

() () ()n0,1,...,i , == iin xfxI .

Points ,...,, 10 nxxx are called interpolation nodes and the function nI is called an

interpolation function.

The examples of solution for interpolation problem are shown below.

Another very important problem connected with interpolation is the interpolation error.
The interpolation function has the same value as function f only in the nodes. In other
points of interval in which we interpolate, there could be differences between interpolation
function and the relevant function. This error of interpolation is called the rest of
interpolation.

1.4.2 Nearest-neighbor interpolation

Nearest-neighbor interpolation is the one of the simplest method of interpolation.
Sometimes it is called point sampling or proximal interpolation. This method can be used
in one dimension problems as well as in the more complicated ones. Easy to implement
algorithm selects the closest point and just assign its value like a solution of interpolation
problem. Algorithm in the basic version does not include the values of other points in the
neighborhood to the final solution so as a result we have piecewise-constant interpolation
function instead of the continuous one.

The nearest-neighbor algorithm as well as its modifications (k-nearest-neighbor
algorithms) are often use in the pattern recognition problems and are classified as the
simplest of the machine learning algorithms. Simplicity of this solution is connected with

20

rather big interpolation error in case of fitting the functions. The example of the use of this
method can be seen in the Figure 1.7 .

This method is rarely used in the one dimension problems. We can use other interpolation
methods, like for example linear interpolation, which is not more difficult and almost
always gives better results. On the other hand in multi dimension problems we can
consider nearest-neighbor interpolation because of its simplicity and speed. But if we
would like to have good results with this method we need many samples – interpolation
nodes. However problems considered in the next part of the Thesis need more precise and
faster methods (the nodes generation is connected with time) so the different surrogate
techniques have to be applied.

Figure 1.7 Nearest-neighbour interpolation of function cos(x) based on 10 equidistant

nodes in the interval [0,10].

1.4.3 Linear interpolation

Second simple method of interpolation is the linear interpolation (sometimes it is called
lerp). It is old and often used method – it has been used since antiquity in Mesopotamia
and Greek in mathematical and astronomical computations.

In case of two interpolation nodes 1����, �� and 1����, �� the linear interpolant is the
straight line between them. This situation is illustrated in the Figure 1.8. We can easily
notice that the following proportion is true (geometrical derivation):

 � − ��� − �� = �� − ���� − ��.

From this equation we have the linear interpolation formula. The � value of the
interpolated point 1��, � , where � is in the interval ���, �� , is equal:

0 1 2 3 4 5 6 7 8 9 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

21

� = �� + �� − �� ∙ �� − ���� − ��.

Figure 1.8 Linear interpolation between two given points P1 and P2

The interpolation of bigger set of data points is presented in the Figure 1.9. The
interpolation is concatenation of linear interpolants build for each pair of consecutive
points. The final form of interpolation function has the following features:

• Continuous curve;
• Discontinuous derivative;
• Differentiability class C0

.

Linear interpolation is simple in comparison to other methods, but we have to remember
about the interpolation error. The error of approximation 34 is defined as:

 34 = ��� − 5�� ,
where:

5�� = ���� + ���� − ���� �� − �� �� − ��

is linear interpolation polynom. We can prove be using Rolle’s theorem that the following
expression is true:

 |34| ≤ ��� − �� �8 max;<=;=;>|�??�� |,

if original function � has continuous second derivative. The error of linear interpolation
depends on the maximum value of second derivative of original function and the length of

22

interpolation interval – for longer interval and “curvier” function we have worse
extrapolation.

Figure 1.9 Linear interpolation of function cos(x) based on 10 equidistant nodes in the

interval [0,10].

1.4.4 Polynomial interpolation

Linear interpolation for two nodes is the simple case of polynomial interpolation.
Polynomial interpolation is more complicated method than previous forms of interpolation.
We can obtain relatively good results with it, however, certain conditions must be satisfied.

Interpolation polynom definition is following:

By interpolation polynom we mean polynom degree at most n, which takes values

nwww ,...,, 10 in pair wise different points nxxx ,...,, 10 . Numbers nxxx ,...,, 10 we

called interpolation nodes.

This definition is consistent with Interpolation problem. There is several ways of
construction the interpolation polynoms. We will show two basic methods of constructing
the polynom, which satisfy the interpolation problem conditions, to prove that the problem
have the polynom solution.

We will start from the Lagrange form of interpolation polynom. Using this form we can in
the simplest way show how the interpolation polynom works. We have to think about the
following polynom ()xLn :

() () () () () () () () ()∑
=

=+++=
n

k

kknnn xxfxxfxxfxxfxL
0

1100 ... λλλλ ,

0 1 2 3 4 5 6 7 8 9 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

23

where:

()
()() ()() ()

()() ()() ()nkkkkkkk

nkk
k

xxxxxxxxxx

xxxxxxxxxx
x

−−−−−

−−−−−
=

+−

+−

......

......

1110

1110λ .

The polynom ()xLn is built with using values of function f in given points and auxiliary

polynoms ()xkλ . We can notice that polynom ()xkλ is equal to 1, for x equals ix , when i is

k and ()xkλ is 0, when i is not equal to k :

()

=

≠
=

ki

ki
xik for 1

for 0
λ , ni ,...,1,0=

So we can see that value of interpolation polynom nL in points 10 , xx …, is the same as

value of the function � in those points. In this way we have shown that the Lagrange
problem has a solution. What’s more it is very easy to prove from Fundamental Theorem
of Algebra that this solution is unambiguous.

Computing a coefficient of interpolation polynom or its value in a concrete point is rather
complicated and laborious. Of course we can find algorithms which help us to do it, but the
whole process of computing still will be very time-consuming. For this reason we
introduce the Newton form of interpolation polynom. Each polynom can be presented in
the Newton form, which means the sum of the products of auxiliary polynoms 5��� and
suitable coefficients @� . We can also write an interpolation polynom in the Newton form:

() ()∑
=

=
n

k

kkn xpbxL
0

,

where:

()() () ().,...2,1 ...)(

1)(

110

0

=−−−=

≡

− kxxxxxxxp

xp

kk

In this case, we call coefficient @� differential ratios of function f with nodes nxxx ,...,, 10 .

The simplest way to compute each differential ratio is using the following recursive
formula:

[] ()ll xfxf = , nl ,...,1,0=

We can notice that to compute a differential ratio rank k we need two differential ratios
rank k-1 with other nodes. When we know how we can find coefficients@� , we can write
the final form of the Newton interpolation polynom:

[]
[] []

lkl

klllklll
klll

xx

xxxfxxxf
xxxf

−

−
=

+

−+++++
++

1121
1

,...,,...,,
,...,,

24

() [] []()() ()110
1

10,...,, −

=

−−−+= ∑ i

k

i

ion xxxxxxxxxfxfxL .

We can see that it is built from polynoms 5��� and differential ratios. Finding the
coefficients of polynom in this form is easier than in case of the Lagrange form. To make it
in the simplest way we can use the algorithm of building the table of differential ratios.
When we interpolate on the basis of equidistant nodes the interpolation process is even
easier (in case of Lagrange form of interpolation polynom) – instead of differential ration
we are using finite differences and the formulas are simplify.

Another important problem of polynomial interpolation is the polynomial interpolation rest 3�� . For any continuous function ()xf and any pairwise points kxxx ,...,, 10 the

following formula holds:

() () ()xRxLxf n =− ,

() []()() ()nn xxxxxxxxxfxR −−−= ...,...,, 100 .

Precise calculating the interpolation error is rather complicated and we have to look for
other methods of finding the rest of interpolation. Especially when it comes to practical
solutions, we only have to know an approximate maximum of error.

The second important problem of interpolation is the following: how should we choose
nodes if we want to have the minimal rest of interpolation? Until now, we didn’t give any
special conditions to interpolation nodes. There was only one important thing – when we
interpolate function on the interval <a,b> all nodes also have to belong to that interval. For
other nodes we have other interpolation polynoms, which approximate a given function
more or less precisely. We have to find nodes which give us the best approximation. In
other words we want to find a polynom which is closest to given function. As a matter of
fact, those conditions are satisfied by polynom based on the nodes which are roots of the
Chebyshev polynom. The Chebyshev polynom can be defined by trigonometric identity:

 A��� = cos�" ∙ arccos � = cosh�" ∙ arcosh� .

 We can introduce also a formula, which helps us to find needed nodes:

() 212

12
cos

2

ba

n

kab
xk

+
+

+

+
⋅

−
= π .

The differences between polynomial interpolation in different cases can be seen in the
Figure 1.10. Four different situations are presented:

25

A. Polynomial interpolation based on the 5 equidistant nodes;
B. Polynomial interpolation based on the 5 Chebyshev nodes;
C. Polynomial interpolation based on the 33 equidistant nodes;
D. Polynomial interpolation based on the 33 Chebyshev nodes.

Figure 1.10 Interpolation polynoms of function ��� = ���G0,1 − �H in interval [-4,4]

based on different types of nodes: equidistant(A,C) and Chebyshev(B,D) and different

number of nodes: 5 nodes (A, B) and 33 nodes (C,D).

For 5 nodes the results are similar for both cases: equidistant and Chebyshev ones. For 33
Chebyshev nodes we have very good results with minimal rest of interpolation. On the
other hand in the case of 33 equidistant nodes the interpolation error is huge. This is a good
illustration of the Runge Phenomenon. It is the situation when with growing values of n
(that is growing number of interpolation nodes), the maximum error of interpolation grows
infinitely. The rest of interpolations are shown in the Table 1.1 Rest of interpolations for
different interpolation conditions.

-1

0

1

2

3

4

5

6

-5 -4 -3 -2 -1 0 1 2 3 4 5

x
-1

0

1

2

3

4

5

6

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-12
-10

-8
-6
-4
-2
0
2
4
6
8

10
12

-5 -4 -3 -2 -1 0 1 2 3 4 5 x

-1

0

1

2

3

4

5

6

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

A B

C D

26

Table 1.1 Rest of interpolations for different interpolation conditions.

 Type of nodes Number of nodes Error maximum

A 5 Equidistant 0,34

B 5 Chebyshev 0,37

C 33 Equidistant 101216

D 33 Chebyshev 0,042

To sum up, the smaller rather than bigger number of equidistant nodes gives better results.
With the Chebyshev nodes, on the other hand, it is the other way around, that is the more
nodes, the better results.

1.4.5 Spline interpolation

The next method of numerical mathematics is spline interpolation. This type of
interpolation is in some details similar to linear interpolation and in other to polynomial
one. In this case the interpolation function is special type of piecewise low degree polynom
– spline (but the polynom pieces fits smoothly together). There are several advantages of
this type of interpolation over the standard polynomial interpolation:

• Interpolation error can be minimized with using low degree polynoms for the

spline. The rest of interpolation is smaller than in case of linear interpolation;
• The Runge effect is not present in this case;

• Interpolant is smooth;
• It is easier to find a value of the interpolating function (evaluate it) than in case of

high degree polynoms.

Formal definition of spline according to (Kincaid & Chene, 2002):

A spline function consists of polynomial pieces on subintervals joined together with
certain continuity conditions. Formally, suppose that n+1 points �0, �1, … , �" have been
specified and satisfy �0 ≤ �1 ≤ ⋯ ≤ �". These points are often called knots in case of
spline interpolation. Suppose also that an integer I ≥ 0 has been prescribed. A spline
function of degree I having knots �0, �1, … , �" is a function / such that:

• On each interval [xLM�, xL , S is a polynomial of degree ≤ k;
• S has a continuous �k − 1 st derivative on [xP, xQ].

So we are looking for a spline of degree " function in following form:

27

/�� = S /P�� �T[�P, ��]/��� �T[��, ��]⋮/�M��� �T[��M�, ��]U.
 /V�� is a polynom of degree I.

The spline interpolation of degree 0 has the same principals as nearest-neighbor
interpolation. Linear spline interpolation (spline of degree 1), on the other hand, is
consistent with linear interpolation process, which was described earlier.

Now let focus on the spline interpolation of degree 3 (cubic spline interpolation). This
method will be presented in practical usages in the next part of the Thesis.

For cubic splines we have following requirements:

• /��V = ���V - standard condition for interpolation

• Continuously differentiable condition for W = 1, … , " − 1:
 /VM���V = /V��V , /?VM���V = /?V��V , /VM�′′��V = /V′′��V .

Moreover we have to remember about the conditions for first and last knot. We can give
them as: /?��P = Y and /?��� = Z - the result is clamped cubic spline. The second
possibility is: /??��P = 0 and /?′��� = 0 - the natural cubic spline .

In the case of cubic spline interpolant has the form of separate cubic polynoms for each
interval with the different coefficient for each of them (�T[�V, �V[�]):
 /V�� = �V�� − �V \ + @V�� − �V � +
V�� − �V + V .

The ex ample of the cubic spline interpolation can be seen in the Figure 1.12. We can
observe, that in the case of interpolation of function
���� based on 10 equidistant nodes
in the interval [1,10] it gave great results. The functions are almost identical.

28

Figure 1.11 Cubic spline interpolation of function cos(x) based on 10 equidistant nodes in

the interval [0,10].

To sum up – the spline interpolation has many advantages and is popular in practical
solutions. It is easy to implement, fast and produce smooth curves (for example in case of
cubic spline). In case of polynomial interpolation we have continuous solution but in many
cases for high degree polynoms there are big interpolation errors next to the ends of
interpolation intervals. In case of cubic spline those problems are not present. But on the
other hand it is only piecewise continuous – when the problem is sensitive for changes in
the higher derivatives (for cubic splines higher than second) the interpolation errors can
occur.

1.4.6 Cubic Hermite interpolation

The cubic Hermite interpolation find an interpolant 1�� in each interval on the basis of
the given value and slopes at the two endpoints. The values in the knots of interpolant and
the function are the same: 1��V = ���V . The second condition is that the first derivative 1′�� is continous (but the second one 1′′�� is not). The second important thing is
choosing the slopes in the knots. 1�� shape is compatible with the shape and
monotonicity of the data. It can be observed especially in the local extremums – the
interpolant act as the original function (it preserves function monotonicity and
extremums)(MATLAB documentation, pchip command). The example of cubic Hermite
interpolation can be seen in the Figure 1.12

0 1 2 3 4 5 6 7 8 9 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

29

Figure 1.12 Cubic Hermite interpolation of function cos(x) based on 10 equidistant nodes

in the interval [0,10].

The cubic Hermite interpolation is in many aspects similar to cubic spline interpolation.
They construct interpolants in very similar way. The difference is in the way in which the
slopes at the knots are chosen (in case of cubic spline the second derivative is continuous).
The results of this behavior are following:

• It is easier to build Hermite interpolant than cubic spline one;
• The evaluation time of both of them is very similar;
• Spline interpolation gives smoother results because / ′′�� is continuous;
• Spline is better solution in situation when we interpolate a smooth function;
• When the interpolated function is not smooth (when it has a point of a non-

continuity) it is better to choose Hermite interpolation because it do not have so
big effect of overshoots and oscillation. (MATLAB documentation, pchip
command)

The Figure 1.13 shows the differences between cubic spline interpolation and cubic
Hermite interpolation.

0 1 2 3 4 5 6 7 8 9 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

30

Figure 1.13 Cubic Spline Interpolation (spline) versus Cubic Hermite Interpolation (pchip)

(MATLAB documentation, pchip command)

1.4.7 Polynom fitting

Interpolation is a part of the wider brand of mathematic called curve fitting (or regression
analysis). When we interpolate we would like to find a function which exactly fits the data
points. In case of the curve fitting we are looking for the function which closely fits the
data, for example in a least squares sense. Last squares sense means the minimization the
sum of squared residuals (residual is the difference between a real value in a point and
value of fitted function in that point)

The curve fitting involves interpolation as well as smoothing – process of finding a smooth
function which approximates the data points. Another important term connected with
regression analysis is extrapolation. Extrapolation is using the approximated function
beyond the interval in which the beginning data points was situated. The uncertainty and
errors are in this case much bigger than in the case of standard situation.

The example of regression analysis is shown in the Figure 1.14. We can notice that the
worst error is in the case of first degree polynom (it is straight line). From the other hand in
case of fourth degree polynom we can observe big rest on the ends of approximation
interval.

31

Figure 1.14 Polynomial fitting for function
���� - red line – in the interval [0,12] by

polynoms of different degree: blue – fist degree, green – second degree, yellow – third

degree, violet – fourth degree.

There are several reasons to choose curve fitting instead of polynomial interpolation. When
we have many nodes it is better to use regression analysis (instead of high dimension
polynomial interpolation) because of:

• The Runge Phenomena – situation in which high order polynoms can have
oscillatory character and the rest of interpolation grows infinitely;

• The high dimension polynoms can fit the data precisely but in many cases more
important is the effect of averaging the results (what can be done by fitting the
smaller degree polynom);

• The exact interpolation of high dimension polynom can be hard and time
consuming. In many cases we need only approximate solution which can be good
enough to practical problems;

• The high order polynoms are less smooth than simpler one (they have more
inflection points).

Two situations were discussed: when we have more nodes than degree of interpolation and
when those two numbers are the same. The situation when we would like to fit the
polynom which degree is higher than number of nodes is the most complicate one. Imagine
that we would like to fit the straight line (first degree polynom) to one point. There is
infinite number of possible solutions. So finding a good method of evaluating solutions and
choosing one is hard.

Finding the best degree of polynom (which fits the data the best) has to be done
experimentally, but we can assume that we should choose the smallest possible degree,
which gives us a satisfying result.

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

2

32

1.5 Artificial intelligence models

The second very important techniques of surrogate modeling is artificial intelligence
approach. When we are talking about artificial intelligence we think about computer
programming methods which imitate the real biology organisms or processes.

The methods which can be used in the surrogate modeling are neural networks, supported
vector machines, machine learning and genetic programming.

Below the basic concepts of neural networks and genetic programming will be introduced.

The main part of the Thesis – description of the surrogate model for complicated energy
system will be connected with neural networks problems.

1.6 Neural networks

1.6.1 Introduction

Many scientists have a big interest in neural networks. They are the great instrument to
solve problems from different brands of science. We can understand neural networks as the
modern computing systems, which architecture and method of processing information is
similar to the biological prototype – human brain. In the Table 1.2 the differences between
human brain and computer are presented. Neural networks are a way in which computer
try to imitate brain processes. Information processed by the network has the form of the
numerical data and because of that the neural networks can be used to model many
different types of systems.

The first neural network – perception – was invented by Frank Rosenblatt in 1957 at the
Cornell Aeronautical Laboratory. It can be seen as a simple linear classifier build on the
basis of the biological model, which was able to learn.

Table 1.2 Comparison of brain and computer (Orr, 1999)

Processing
element

Element
size

Energy
use

Processing
speed

Style of
computation

Fault
tolerant

Learns Intelligent,
conscious

Brain 1014
synapses

10-6 m 30 W 100 Hz Parallel,
distributed

Yes Yes Usually

Computer 108
transistors

10-6 m 30 W
(CPU)

109 Hz Serial,
centralized

No A
little

Not (yet)

There are seven main parts in the process of creating the Neural Network:

• Data collecting;

• Network creation;
• Network configuration;

• Initializing weights and biases;

• Network training;

• Network validating

33

• Network using.

In the practical part of the Master Thesis all of this step will be used and demonstrated. To
understand good all of those steps we have to look into the theory behind neural networks.

1.6.2 Simple neuron

The simplest and most important element of neural network is simple, single input neuron.
The schema of the neuron is presented in the Figure 1.15.

Figure 1.15 Simple neuron (Beale, Hagan, & Demuth, 2010)

There are several important values presented in the graph: input p, weight w, bias b, net
input n, transfer function f and output a.

The values of bias and weight are adjustable. The training network process is in fact a
process of finding the appropriate values of this two parameters.

Now we will take a closer look on the mathematical operations which take place in the
neuron. Firstly the scalar input is multiplied by a weight. The product of this operation is
added to the bias value – as a result we get a net input. We can understand a bias value like
an additional weight for input equals 1. The next operation is finding the value of transfer
function for the net input - the result of this operation is output value. So we can write:

 � = ��" = ��5 ∙] + @ .

The names of described processes are respectively: the weighting function, the net input
function and the transfer function.

The most popular weighting function is multiplying the input value by a weight, however
sometimes different function are used. As a net input function we use normally the
summation of weighted inputs with the bias. Transfer function depends from the type of
the considered problem.

34

1.6.3 Transfer functions

There are many different transfer functions used in the design of neural networks. Two of
them are presented in the Figure 1.16. Those transfer functions – linear and log sigmoid
transfer function - are commonly used in the practical solutions, especially in the problems
connected with fitting the functions.

Figure 1.16 Transfer functions used in Neural Network (Beale, Hagan, & Demuth, 2010)

First example is linear transfer function. This type of the neuron is often used in the last
layer of the multilayer approximation network.

The second example – sigmoid transfer function (log-sigmoid function, also known as a
logistic function) – is commonly used in the hidden layers of multilayer networks. This
function takes the input (any value between plus and minus infinity) and give the output
value in the range �0,1 . Sigmoid function is prized because its derivative is easy to
calculate. This fact is helpful in calculating and updating the weights in the process of
training.

The sigmoid transfer function is represented by the following formula:

^�_ = 11 + `Mab .

For c = 1 the derivative of this function can be calculated from:

 ^�_ _ = ^�_ [1 − ^�_].

And for c ≠ 1, using ^�c, _ = ��[efgh, we have the following formulation:

 ^�c, _ _ = c[^�c, _ [1 − ^�c, _]].

35

1.6.4 Neuron with vector input

In this subchapter the neuron with many inputs values is presented. The individual input
elements: 51, 52, … , 53 are multiplied by weights:]�,�,]�,�, … ,]�,j . Their sum is kl

(the dot product of the single row matrix k and the vector l). The schema of the single
neuron with many inputs is presented in the Figure 1.17.

Figure 1.17 Neuron with vector input (Beale, Hagan, & Demuth, 2010)

Additional value in the neuron is the bias – it is summed with the weighted inputs to form
the net input ". Then to get the value of output we have to use the transfer function:

 � = ��" = ��k ∙ l + @ = ��]�,� ∙ 5� +]�,� ∙ 5� + ⋯ +]�,j ∙ 5j + @�.

The presented form of notation is quite complicated and detailed. Because of that simpler
form is introduced – it is shown in the Figure 1.18. This abbreciated notation is especially
useful when we have to represent complicated multilayer networks.

Figure 1.18 Neuron with vector input: abbreviated notation (Beale, Hagan, & Demuth,

2010)

1.6.5 Multilayer neural network

The very simple idea of multilayer network is presented in the Figure 1.19. It shows a
neural network with one input layer, one hidden layer and one output layer.

36

Figure 1.19 Simple representation of multilayer Network (Stergiou & Siganos)

Now we will explain more precisely the concept of layer and multilayer network.

Generally, two or more neurons can be connected to create a layer. A network can contain
one or more layers. A layer of network includes the weights, the multiplication and
summation operations, the bias @ and the transfer function �. The array of inputs - vector l
- is not included in or called a layer.

First we will focus on the single layer of neurons. An examples of different notations of
one-layer network with R input elements and S neurons follows are presented in the Figure
1.20.

Figure 1.20 One layer of a neural network in normal and abbreviated notation (Beale,

Hagan, & Demuth, 2010)

In this network, each element of the input vector p is connected to each neuron input
through the weight matrix W.

The multilayer network schema a is presented in the Figure 1.21.

37

Figure 1.21 Multilayer network (Beale, Hagan, & Demuth, 2010)

The next figure, Figure 1.22, shows the basic neural network model used in the practical
problems in the Master Thesis. As it is said in the (Beale, Hagan, & Demuth, 2010) this
network can be used as a general function approximator. It can arbitrarily well approximate
any function with a finite number of discontinuities (of course we have to remember about
sufficient neurons in the hidden layer).

Figure 1.22 Approximation network with one hidden layer(Beale, Hagan, & Demuth,

2010)

1.6.6 Back propagation algorithm

The back propagation training is one of the most popular methods of training neural
networks. The first step in this problem is to prepare the appropriate sets of the data:
training and validating one. Training set should precisely characterize investigated problem

38

(it is the best situation). The training set has two parts: the vectors of input data (values
which are taken by the network) and the vectors of target data (the values which should be
given by a network).

The initial values of weights and biases are chosen randomly.

The back propagation algorithm can be described in the following way:

The chosen input vector is transformed by the network. After that the network output value
is compared with the target vector for this input. We have to check if the answer of the
network is correct, and if not how big is the error. Next, this error is propagated in the
network but in the reverse direction than the input vector (from output to the input layer).
On the basis of this error the weights in each neuron are corrected to decrease the error of
the answer in the next iteration. This procedure is repeated until the error of the network is
smaller than assumed earlier value.

The same procedure has to be done for all of the input vectors from training set.
Processing of the whole training set is called an epoch. After each epoch the error in
validation set is calculated. The minimum value of validation error from all epoch is saved.
If during six (this number was used in the practical part of the Thesis) consecutive epochs
the error in validation set does not decrease, the training process is stopped.

Good and detailed description of back propagation algorithm can be find in (Bernacki,
Włodarczyk, & Gołda, 2004)

1.7 Genetic programming

Genetic programming can be used not only to optimize a model but also to build a
surrogate model. As it was mentioned before the genetic algorithms apply the Darwin
Evolution Theory to the regression model over a series of generations(Sreekanth & Datta,
2010). All genetic algorithms need specific input data. In this case each individual is a
specified surrogate model – in other words it is a syntactically correct computer programs
which behave as a conventional model. All of those individuals are built with parametric
constants, specified inputs, operators (addiction, subtraction, multiplication, etc.) and
function (ex. trigonometric function). The example of individuals can be seen in the Figure
1.23.

To evaluate individuals we have to prepare the testing set of input points for original model
and the values of output in this point of the real model. Then we examine each individual
by checking the difference (error) between the individual output (it is program – surrogate
model so we can find its output for input point) and real output for all points from testing
set.

The genetic algorithm works in the standard way: cross-over, mutation, duplication and
delete operators are used to prepare next population. This action leads to finding the best
suited individuals – the best surrogate models which have the smallest error. Figure 1.23
shows how the children population (Figure 1.23 c, d) is created from parent population
(Figure 1.23 a, b): they are created as a result of cross-over and mutation operators applied
to the two individuals from parent population. In the Figure 1.23 d is presented interesting
situation: variable y is eliminated from the equation, so this individual gives the constant
output for any input point.

39

The children population is tested with the previously described way and reproduced
according to the results. After many iterations of the algorithm the functions evaluate and
the good surrogate model can be found.

Figure 1.23 Genetic programs in tree structure for one decision variable model

(Sreekanth & Datta, 2010)

40

2 ONE DECISION VARIABLE MODEL

The second chapter of the Thesis consist the analysis of the relatively simple real life
problem (with only one decision variable). In this part the theoretical assumptions used in
model are described. Also the surrogate model is prepared and evaluated. Different model
techniques are introduced into the practical problem and differences in those methods are
pointed.

2.1 Flow sheet and model description

In this part of the Thesis the energy system with installed gas turbines will be considered.
There are several ways to reduce CO2 from such system. One of them is to capture and
sequester CO2 by using monoethanolamine (MEA). To make this process efficient we need
high concentration of CO2. To make the CO2 concentration high in exhaust gases (they are
going to sorbent process) we can re-inject a part of flue gases in the compressor.

Gas turbine model with recirculation

The first part of the system which we should analyze is gas turbine model with
recirculation. The schema of this system is shown in the Figure 2.1.

Figure 2.1 Gas turbine with recirculation schema – GT_SEQ

All details about the streams and other elements in the system are given in the reports
according the computer models used in the practical part of the Thesis (Dubuis & Tock,
2010).

Modeling an recirculation in the system as similarly to reality as possible is not a simple
task. Several assumptions were made in order to prepare a model of an recirculation
impacts in the system. All of the assumptions were made on the basis of nominal condition
presented in (Dubuis & Tock, 2010). The assumptions are following:

41

• Volumetric flow rate is constant - it is equal to 400 �\ �! . This assumption is made

due to maintain velocity triangle in the compressor;
• Split fraction of the streams after LP and HP compressors are constant and equal

respectively /� = 0.77 and /� = 0.61 (this assumption is made to avoid detailed
simulation; the splitting fraction of these flows are given by the geometry and
the type of fuid);

• The temperatures of streams before the turbines are maximally equal to A� =1100°q (LP turbine) and A� = 1300°q (HP turbine). This assumption is made
because the capacity of the blade cooling system. Those temperatures are controlled
by the air excess in the combustor

Moreover, we should remember that volumetric flow rate is not constant in the turbines. It
is because the inlet temperatures are maintained constant. The velocity triangles in the
turbines will change.

It is also assumed that isentropic efficiency of the turbines is constant, but in fact, it should
decreases because of non-optimal flow conditions connected with recirculation. Also the
work produced by the turbines is overestimated.

The turbine models, as well as compressor models are built on the basis of mass and
energy balances and isentropic efficiencies.

To improve the flame stability we need to add H2 inlet streams. The amount of H2 to be
added as a function of the excess O2 left after combustion is shown in the Figure 2.2.

Figure 2.2 The amount of H2 to be added to improve flame stability

The blue curve is for adding pure H2 and red one represents adding of a syngas (60% of H2

and 40% of CO). In case of syngas it is mixed with natural gas. The syngas is more
available as the product of autothermal reforming of natural gas, so this situation will be
considered.

42

Syngas production

As it was mentioned, to maintain flame stability, it is necessary to add H2 to the fuel and
the hydrogen is introduced by producing syngas. The unit to produce syngas was also
modeled and its schema is presented in the Figure 2.3.

Figure 2.3 Syngas production schema – REACT

The syngas production is modeled as synthesis in the membrane reactor. The oxygen for
partial oxidation process is provided from the air. The main process reactions are:

• Steam methane reforming SMR(molkJhr /206
0~

−=∆):
CH4 + H2O ↔ CO + 3H2

• Partial oxidation POX (molkJhr /36
0~

=∆):
CH4 +1/2 O2 ↔ CO + 2H2

• Auto-thermal reforming where the heat for the endothermic reforming is
satisfied by the exothermic partial oxidation.

These reactions are followed by a one or two step water-gas shift reaction to convert CO to

CO2 and additional H2 (WGS: CO + H2O ↔ CO2 + H2 , molkJhr /41
0~

=∆).

The overall reaction is autothermal and it is assumed that there is no oxygen at the reactor
outlet. The reactions are operated at 950 °C and 30 bar with a steam to carbon ratio initially
set to 2.

The natural gas combustion and recovering heat from H2 streams leaving the reactor at
high temperature help in satisfy heat demands of H2 production. Moreover we have to
remember, that the temperature of the H2 entering the combustion chamber can not be

43

higher than 200 – 2500C. So there can be used heat exchanger to preheat the reactants in
those streams.

The MEA unit

The last part of the system to be modeled is MEA unit. In used model is was assumed as a
black box. The schema is represented in the Figure 2.4.

Figure 2.4 CO2 capture black box model for chemical absorption with

monoethanolamines (Dubuis & Tock, 2010)

In fact, this problem can be modeled in much more complicated way presented in the
Figure 2.5.

Figure 2.5 Flow-sheeting model which can be use to simulate multi-pressure, split-fraction

CO 2 capture (Bernier, Marechal, & Samson, 2009)

The model which is based on flowsheeting software is very time and memory-consuming.
A simpler model is based on the following assumptions. First of all the amount of CO2

captured is equal to 90% (it is the data basis on the literature). The heat and mechanical
power consumption have the following values:

44

• Thermal heat need at 150: 3.7 MJ/kg CO2 captured;

• Thermal heat demand at 110: 3.7 MJ/kg CO2 captured;

• Mechanical power: 1 MJ/kg CO2 captured.

2.2 Problem description

The first problem which was analyzed in the Thesis is simple model with only one decision
variable. The modeled system is gas turbine power plants designs with CO 2 capture with
Flue Gas Recirculation (FGR). The decision variable in this case is the Recirculation
Fraction and all output values depend on this parameter.

In the next chapters different surrogate models will be introduced and evaluated. This
simple problem is an excellent example of techniques used in surrogate modeling.
Moreover it is a good introduction to the more complicated cases which can be solved by
using similar methodology. The surrogate models of the simple system will show
differences between mathematical and artificial intelligence approaches. Also the methods
of finding interpolation error and evaluating the surrogate model will be introduced.

We have to remember about one more big advantage of one decision variable surrogate
models. In practical problems we often prepare the sensitivity analysis – we want to know
the influence of one decision variable for the output function. So even simple mathematical
or artificial intelligence models can help in preparing this curves. After generating very
small number of points and building a surrogate model we can have very precise sensitivity
analysis data.

Moreover the prepared surrogate model can be used in real life problem. The existing
model is used to optimize the gas turbine power plant system in LENI EPFL laboratory.
The optimization process is complicated especially because the computer model is built
with several parts. The main optimization program uses data from two separate models. In
the Figure 2.6.A the schema of this system is presented. The VALI model as well as
ASPEN model are both flowsheet software. The main part of the system, gas turbine power
plant, is modeled in VALI software. The CO2 storage module is build in ASPEN
technology. Figure 2.1.B presents the simplified problem model which was used to prepare
the surrogate model.

Figure 2.6 The multi-objective problem (gas turbine power plant with CO2 capture with

Flue Gas Recirculation). A - program schema, B simplified problem.

45

Generating data by both parts of the model is very laborious and time consuming. For
example, generation output values from one decision variable point with OSMOSE
procedure and VALI model takes approximately 7 seconds. So for 100 points we need
about 700 seconds – it mean over 11 minutes. And the optimization algorithm calculates
thousands of points in both VALI and/or ASPEN modules.

The surrogate model will be prepared for the gas turbine power plant (originally modeled
in VALI). This should make the optimization process much faster. It will be possible to
analyze more points and run more iteration of optimization algorithm. So also the results of
the optimization should be more precise.

2.3 Modeling problem description

In this part of the Master Thesis the system with only one input parameter was considered.
All output parameters are the function of one variable: recirculation ratio.

In the first part of the modeling process only one output value was considered. It was the
power output from the turbine. The different methods of building surrogate model were
implemented for this problem. The mathematical models (nearest-neighbor interpolation,
linear interpolation, cubic spline interpolation, cubic Hermite interpolation and polynom
fitting) as well as artificial intelligence models (neural network with one neuron in input
layer and one neuron in output layer) were prepared. Also the different numbers of nodes
of interpolation was checked. All of this method was evaluated and the precision of the
different surrogate models was compared.

After the method’s evaluation the best one from mathematical methods – spline
interpolation - was chosen to use in more complicate model. The second model had the
same input value like simpler one: recirculation ratio, but it had many more output
parameters. These parameters are needed by energy integration and performance
evaluation (hot and cold stream definition, energy stream…). The output parameters
analyzed in the problem are shown in the Table 2.1. Table 2.1 presents also the example of
values of all output variables for recirculation ratio equals 30%. For the same problem
data (input and output variables) the second surrogate model was prepared. The second
model was based on the neural network with one neuron in input layer and 79 neurons in
output layer.

Table 2.1 All input and output variables in the surrogate model with example of values.

Model Tag name Output variable Unit Value

INPUT

GT_SEQ RECY_FRAC Recirculation fraction - 0,3

OUTPUT

GT_SEQ TURB2_OUT_T Temperature after HP
turbine

K 926,14

GT_SEQ TURB2_OUT_HFLOWTOT Total enthalpy flow after
HP turbine

kW 425595

46

GT_SEQ COOL_OUT_T Temperature before
separator

K 298,15

GT_SEQ COOL_OUT_HFLOWTOT Total enthalpy flow before
separator

kW 22325,1

REACT F_1_002O2_T Temperature after
compressor and N2

separation

K 855,2

REACT F_1_002O2_HFLOWTOT Total enthalpy after
compressor and N2

separation

kW 205,66

REACT F_1_003_T Temperature of oxygen
before reactor

K 1223,15

REACT F_1_003_HFLOWTOT Total enthalpy of oxygen
before reactor

kW 354,18

REACT F_420_T Temperature after pump K 298,19

REACT F_420_HFLOWTOT Total enthalpy after pump kW 2,86

REACT F_421_T Temperature of water
before reactor

K 1223,15

REACT F_421_HFLOWTOT Total enthalpy of water
before reactor

kW 4413,33

REACT F_410_T Temperature of input NG K 298

REACT F_410_HFLOWTOT Total enthalpy of input NG kW 24752,1

REACT F_411_T Temperature of NG before
reactor

K 1223,15

REACT F_411_HFLOWTOT Total enthalpy of NG
before reactor

kW 26264

GT_SEQ H21_T Temperature of SNGfor HP
combustor before

preheating

K 1223,15

GT_SEQ H21_HFLOWTOT Total enthalpy of SNGfor
HP combustor before

preheating

kW 8061,34

GT_SEQ H21A_T Temperature of SNGfor HP
combustor after preheating

K 473,15

GT_SEQ H21A_HFLOWTOT Total enthalpy of SNGfor
HP combustor after

preheating

kW 7123,4

GT_SEQ H22_T Temperature of SNGfor
reheat combustor before

preheating

K 1223,15

GT_SEQ H22_HFLOWTOT Total enthalpy of SNGfor kW 22970,2

47

reheat combustor before
preheating

GT_SEQ H22A_T Temperature of SNGfor
reheat combustor after

preheating

K 523,15

GT_SEQ H22A_HFLOWTOT Total enthalpy of SNGfor
reheat combustor after

preheating

kW 20468,5

GT_SEQ STORAGE_WRCO2 Partial mass flow rate of
CO2 to storage

kg/s 124370

GT_SEQ STORAGE_WRH2O Partial mass flow rate of
H2O to storage

kg/s 23056,8

GT_SEQ STORAGE_WRN2 Partial mass flow rate of N2
to storage

kg/s 908493

GT_SEQ STORAGE_WRO2 Partial mass flow rate of O2
to storage

kg/s 115366

GT_SEQ NGAS_TOT_MASSF Mass flowrate of NG for
both combustors

kg/s 11,32

GT_SEQ NGAS_TOT_LHVWT Mass low heat value of NG
for both combustors

kJ/kg 49195,2

REACT F_410_MASSF Mass flowrate of NG kg/s 0,45

REACT F_410_LHVWT Mass low heat value of NG kJ/kg 50001,2

REACT H2_TOT_MASSF Mass flowrate in SNG from
reactor

kg/s 1,82

REACT H2_TOT_LHVWT Mass low heat value in
SNG from reactor

kJ/kg 11003,5

GT_SEQ COMB1_IN_MRO2 O2 partial flow rate before
HP combustor

kmol/s 1,34

GT_SEQ COMB1_OUT_MRO2 O2 partial flow rate after HP
combustor

kmol/s 0,69

GT_SEQ TURB1_OUT_MRO2 O2 partial flow rate after LP
turbine

kmol/s 1,55

GT_SEQ COMB2_OUT_MRO2 O2 partial flow rate after
reheat combustor

kmol/s 0,78

REACT W_401_POWER Power input for pump kW 3,49

REACT W_1_001_POWER Power input for compressor kW 953,25

GT_SEQ W_1_POWER Power input for LP
compressor

kW 225348

GT_SEQ W_2_POWER Power for HP compressor kW 37908,1

GT_SEQ W_3_POWER Power output from LP
turbine

kW 76719,8

48

GT_SEQ W_4_POWER Power output from HP
turbine

kW 411485

GT_SEQ W_5_POWER Total power output kW 224948

GT_SEQ NGAS_TOT_MRC1 SNGinput partial flow rate
of methane

kmol/s 0,48

GT_SEQ NGAS_TOT_MRC2 SNGinput partial flow rate
of ethane

kmol/s 0,12

REACT F_410_MOLF Molar flowrate of NG kmol/s 0,028

GT_SEQ SEP_OUT_WRCO2 O2 partial mass flow rate
from separator

kg/s 49,35

GT_SEQ SEP_OUT_MRCO2 O2 partial flow rate from
separator

kmol/s 1,12

GT_SEQ RECIRC_MRCO2 CO2 partial flow rate in
recirculation stream

kmol/s 0,34

GT_SEQ STORAGE_WRCO2 CO2 partial mass flow rate
to storage

kg/s 124370

GT_SEQ STORAGE_MRCO2 CO2 partial flow rate to
storage

kmol/s 0,78

MEA FUMEES_WFCO2 CO2 compound weight
fraction in fumes

- 0,12

MEA FUMEES_MASSF Mass flow rate of fumes kg/h 1171290

MEA CO2_CAPT
Ratio of CO2 captured by

MEA process
- 0,9

MEA CO2_CAPTE_MASSF CO2 mass flow rate from
MEA

kg/s 31,093

MEA CO2_CAPTE_MOLF CO2 molar flow rate from
MEA

kmol/s 0,71

REACT F_1_001_MASSF Mass flow rate of air to
compressor

kg/s 1,59

REACT F_1_002_P Pressure after compressor bar 30

REACT F_411_MRC1 Partial flow rate of methane
in NG before reactor

kmol/s 0,028

REACT H2_TOT_MRC1 Partial flow rate of methane
in SNG from reactor

kmol/s 0,0014

REACT H2_TOT_P Pressure of SNG from
reactor

bar 30

REACT H2_TOT_T Temperature of SNG from
reactor

K 1223,15

REACT H2_TOT_MOLF Molar flow rate of SNG
from reactor

kmol/s 0,14

49

REACT F_420_P Pressure after pump Bar 30

REACT F_1_003_VOLF Volumetric flow rate of
oxygen before reactor

m3/s 2356,23

GT_SEQ COMB1_IN_MASSF Mass flow rate before HP
combustor

kg/s 224,68

GT_SEQ COMB1_OUT_T Temperature after HP
combustor

0C 1425,05

GT_SEQ TURB1_OUT_MRN2 N2 partial flow rate after LP
turbine

kmol/s 9,94

GT_SEQ COMB2_OUT_T Temperature after reheat
combustor

0C 1518,72

GT_SEQ COMP1_OUT_P Pressure after LP
compressor

bar 20

GT_SEQ COMP1_IN_P Pressure before LP
compressor

bar 1

GT_SEQ COMP1_IN_MASSF Mass flow rate before LP
compressor

kg/s 479,47

GT_SEQ C1_EFFIC Efficiency of LP
compressor

- 0,83

GT_SEQ COMP2_OUT_P Pressure after HP
compressor

Bar 30

GT_SEQ COMP2_IN_P Pressure before HP
compressor

bar 20

GT_SEQ COMP2_IN_MASSF Mass flow rate before HP
compressor

kg/s 370,15

GT_SEQ C2_EFFIC Efficiency of HP
compressor

- 0,88

To evaluate the methods for many outputs the set of 200 random points was generated. All
correlation coefficients r were calculated on the basis of this set. The interpolation nodes
was generated as equidistant point in the interval of interpolation (actually the set of 100
equidistant points was generated in the beginning and then needed number of nodes was
chosen from the whole set). The one output models (in the first part of modeling process)
were evaluated on the basis of the 100 equidistant points.

In this part of Master Thesis several MATLAB files was generated: beginning from point
generation scripts and functions to create the surrogate models, ending on the analysis and
results plotting functions. Moreover the intuition function to find the value of surrogate
model for given input was prepared (it can be used to incorporate surrogate model into the
more complicated optimization program).

All the mathematical methods was implemented on the basis of MATLAB function. Such
function as:

50

• pp = interp1(x,Y,method,'pp') with different values of paramether
method:

o 'nearest' – nearest-neighbor interpolation
o 'linear' - Linear interpolation (default)
o 'spline' - Cubic spline interpolation
o 'cubic' - Piecewise cubic Hermite interpolation

This function was used to perform the nearest-neighbor interpolation, linear
interpolation, cubic spline interpolation and cubic Hermite interpolation;

• p = polyfit(x,y,n)

This function was used to perform the polynomial interpolation and
polynomial fitting.

The neural network used to prepare artificial intelligence surrogate model was
implemented with Neural Network Toolbox 7. Detailed description of this Toolbox and all
the functions can be found in (Beale, Hagan, & Demuth, 2010).

2.4 Results

This chapter presents the results of surrogate modeling of one variable problem.

2.4.1 Results for one output (times, errors, graphs)

The first analyzed situation was the problem with one input and one output. Our aim was
to predict the value of the tag W_5_POWER on the basis of tag RECY_FRAC. There were
several methods used to find the surrogate model: mathematical ones as well as artificial
intelligence ones.

Mathematical models

The mathematical methods, which were introduced previously, were implemented to find
the surrogate models for analyzed system. Below the results are described and also the
graphs are shown. Those graphs are excellent example of all dependences and features of
mathematical interpolation described in the theoretical section.

On the graphs it can be seen that with growing value of recirculation fraction, the value of
power output of the system also grows. Some of the physical dependences will be
explained in the next subchapter. However, all of them can not be explained due to model
complexity. This underlines the advantage of surrogate model being to represent
tendencies without having to model all relations between variables.

All the results will be presented in the graphs. For each method the several options for
number of nodes was investigated. In cases of nearest-neighbor interpolation, linear
interpolation the interpolation functions was prepared for 2 and 11 equidistant nodes.
Cubic spline interpolation and cubic Hermite interpolation was prepared for 2, 5, 8 and 11
equidistant nodes. For polynomial interpolation 6 different interpolation polynoms are

51

presented (in this case the degree of the polynom depends on the number of nodes). The
last method is polynomial fitting. Two different polynoms (polynom of the degree 5 and
degree 10) were fitted to the data points (in different situations it was 5, 10, 15 or 20
equidistant nodes).

All the graphs have the similar outlook. On the upper graph the real data and interpolation
function are presented. Also the interpolation nodes are pointed. The second graph (lower
one) shows the interpolation error – the graph presents the residuals in function of
recirculation fraction. The residuals are the difference between the real data and data
interpolated by the surrogate model. The graph shows also the value of norm of residuals
and the correlation coefficient between data and surrogate model.

The first built model was nearest-neighbour interpolation model. The results can be seen in
the Figure 2.7. The interpolation function is built with the horizontal lines with the middle
point in the nodes. The biggest interpolation error can be seen in the middle of interval
between neighboring nodes (this is caused by the shape of the function – it is
monotonically; if there would be any local extrema this property changed). The bigger
slope of the original function causes the bigger interpolation error. This feature of nearest-
neighbor interpolation can be seen on the each of the graph. The interpolation errors are
bigger in the right side of interpolation interval than in the left side and the slope of the
function is also steeper there. Moreover it can be seen that in the nodes the residuals are
equal to 0. On the right side of the node the residuals are positive and on the left side they
are negative (this is caused by the original data shape).

It can be seen also that the bigger number of interpolation nodes makes the interpolation
error smaller. The norms of residuals are smaller and the correlation coefficients are bigger
with the growing number of nodes. When there are more parts of interpolation function
they interpolate data with bigger precision.

The value of norm of residuals for shown example of 11 nodes is over 2022. The
correlation coefficient for this case is 0.99434.

Figure 2.7 Nearest-neighbor interpolation for different number of nodes for Power Output

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Nearest interpolation on the basis of 2 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-5000

0

5000
Norm of residuals: 20365.6302; correlation coefficient: 0.78291

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Nearest interpolation on the basis of 11 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1000

-500

0

500
Norm of residuals: 2022.3988; correlation coefficient: 0.99434

Rec frac

R
e

s
id

u
a

l

52

The next analyzed mathematical interpolation method was linear interpolation. The graphs
illustrating this method are shown in the Figure 2.8. The interpolation function is also built
with the linear parts (as in the nearest – neighbor interpolation method), but in this case the
lines connect the neighboring nodes.

As previously the biggest interpolation errors can be seen in the middle of interval of
interpolation (this is caused by the shape of the original data). The interpolation errors are
smaller when the interpolation intervals are shorter. The error distribution (shape of the
residual graphs) is different than in the nearest-neighbor method. All of the residuals are
smaller than 0 (and this feature is also connected with shape of original data function).

The value of norm of residuals we are getting in the case of 11 nodes is equal to 76.4. In
the same case the correlation coefficient is 0.99999.

Figure 2.8 Linear interpolation for different number of nodes for Power Output

The cubic spline interpolation results are shown in the Figure 2.9. We can get really good
results with this method (the best from all analyzed mathematical methods).

In case of 2 nodes the interpolation function is the same as in the case of linear
interpolation. Because of that we will focus on the more complicated cases. For more
nodes the errors distribution is less uniform. The interpolation function is continuous (the
first and second derivatives are constant in the nodes for both neighboring functions). In
the each interval the function has the form of the polynom degree 3. This explains non-
uniformly distribution of errors.

The best interpolation results we are getting in the case of 11 modes. The norm of residuals
is equal to 3.3 and correlation coefficient is 1.

This interpolation method was chosen to use in the next part of the problem (modeling
many inputs problem). It gives the best and the most predictable results from all of the
discussed mathematical methods. It is also better choose than cubic Hermite interpolation,
because the interpolation real data has the shape of continuous functions and cubic spline
interpolation takes care of second derivative in the nodes (cubic Hermite interpolation does
not).

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Linear interpolation on the basis of 2 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1000

-500

0
Norm of residuals: 6403.6406; correlation coefficient: 0.94206

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Linear interpolation on the basis of 11 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-20

-15

-10

-5

0
Norm of residuals: 76.4054; correlation coefficient: 0.99999

Rec frac

R
e

s
id

u
a

l

53

Figure 2.9 Spline interpolation for different number of nodes for Power Output

The next described method is cubic Hermite interpolation. The result of this method are
shown in the Figure 2.10. As it was mentioned earlier this method is similar to the cubic
spline interpolation, but it does not take care of second derivative in the nodes. Analyzed
original data function is continuous in the whole interval, so we are getting slightly worse
results than for spline interpolation.

The best results we are getting for 11 nodes. The norm of residuals in this case is 4 and the
correlation coefficient is equal to 1.

Moreover on the graphs we can notice that the biggest interpolation errors occur next to the
ends of interpolation interval (it can be seen especially well in the case of small number of
nodes). It is caused because there is any other data to compare for the extreme points.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Spline interpolation on the basis of 2 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1000

-500

0
Norm of residuals: 6403.6406; correlation coefficient: 0.94206

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Spline interpolation on the basis of 5 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-4

-2

0

2
Norm of residuals: 12.6843; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Spline interpolation on the basis of 8 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1
Norm of residuals: 3.4496; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Spline interpolation on the basis of 11 nodes
P

o
w

e
r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1
Norm of residuals: 3.3161; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

54

Figure 2.10 Cubic Hermite interpolation for different number of nodes for Power Output

Another method of interpolation is polynomial interpolation. In this case we have
continuous function in the whole interval. But in this case a polynom’s degree depends on
the number of nodes: if we have many nodes, we need also high polynom degree. This is
resulting in the big error of interpolation in case of many nodes (it can be seen like an over
fitting). We have to find a compromise between precision of interpolation and the
possibility of Runge effect.

The polynomial interpolation examples are shown in the Figure 2.11. There is six different
interpolation polynoms presented:

• 3 nodes (square polynom);

• 7 nodes (6th degree polynom);
• 11 nodes (10th degree polynom);

• 15 nodes (14th degree polynom);

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Cubic interpolation on the basis of 2 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1000

-500

0
Norm of residuals: 6403.6406; correlation coefficient: 0.94206

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Cubic interpolation on the basis of 5 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-20

-10

0

10
Norm of residuals: 57.0753; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Cubic interpolation on the basis of 8 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-4

-2

0

2
Norm of residuals: 9.1355; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Cubic interpolation on the basis of 11 nodes
P

o
w

e
r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2

-1

0

1
Norm of residuals: 4.0004; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

55

• 19 nodes (18th degree polynom);

• 23 nodes (12nd degree polynom).

Firstly the interpolation error is getting smaller with the number of nodes. We are getting
very good results for the polynom based on 11 nodes. The norm of residuals is 4.23 and
correlation coefficient is 1. But from this moment, with growing number of nodes the
interpolation error grows fast. Especially big errors can be seen near ends of interval of
interpolation. It is good illustration of Runge effect.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 2 on the basis of 3 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-200

-100

0

100
Norm of residuals: 743.5148; correlation coefficient: 0.99926

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 6 on the basis of 7 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

0

1

2
Norm of residuals: 4.2768; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 10 on the basis of 11 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

0

1

2
Norm of residuals: 4.2348; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 14 on the basis of 15 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-5

0

5

10
Norm of residuals: 16.2276; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

56

Figure 2.11 Polynomial interpolation for different number of nodes (and different degree

of interpolation polynom) for Power Output

The last mathematical method is polynom fitting. The biggest difference between this
method and previous ones is that the polynom does not have to have the same value as
original function in the nodes. The example of interpolating data with polynom degree 5
can be seen in the Figure 2.12.

As we can observe on the graphs below the polynomial fitting is giving really good results.
The interpolation for 15 nodes is almost as good as spline interpolation (the norm of
residuals is 3.41 and correlation coefficient is equal to 1). On the other hand we have to
remember that a process of finding interpolation polynom in this case is much more
complicated than in the case of spline interpolation. In spline interpolation we are looking
for small degree polynoms for each interval. When we fit a polynom we have high degree
polynom and we try to fit it closely to the data to minimize the error in the least square
sense. Finding the appropriate polynom is more time-consuming and moreover the
polynom evaluation for given points is also more complicated.

One more thing should be noticed – when the 5th degree polynom is fitted to 5 nodes it is
ambiguous. To fit this kind of polynom unambiguously we need at least 6 interpolation
nodes.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 18 on the basis of 19 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

0

100

200

300
Norm of residuals: 416.8094; correlation coefficient: 0.99975

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.15

2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 22 on the basis of 23 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2000

0

2000

4000

6000
Norm of residuals: 6910.358; correlation coefficient: 0.92682

Rec frac

R
e

s
id

u
a

l

57

Figure 2.12 Polynomial fitting of polynom degree 5 for different number of nodes for

Power Output

The fitting of polynom degree 10 is presented in the Figure 2.13. This situation is
analogical to the previous one. As before the best results can be observed for 11 nodes (the
norm of residuals is 3.4 and correlation coefficient is equal to 1). This results are slightly
better than for 5th degree polynom, but the difference is really small. On the other hand the
10th degree polynom is even more complicated in using that previous one.

In this case the fitting result is not unambiguous for 5 and for 10 nodes.

For 5 and for 10 nodes fitting we can observe on the residual graph some tendencies. This
tendencies shows us the approximate shape of a interpolation polynom in comparison to
the original function. For bigger number of nodes the residuals are more irregular. It is like
that because the more nodes were incorporated into the process of creating the
interpolation polynom.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 5 on the basis of 5 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

0

1

2
Norm of residuals: 5.8311; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 5 on the basis of 10 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

0

1

2
Norm of residuals: 4.0673; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 5 on the basis of 15 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1
Norm of residuals: 3.4123; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 5 on the basis of 20 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1
Norm of residuals: 3.5591; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

58

Figure 2.13 Polynomial fitting of polynom degree 10 for different number of nodes for

Power Output

Neural network

Second type of surrogate modeling is artificial intelligence modeling. As it was mentioned
previously this Thesis is focused on the neural network models. The neural network
surrogate solution was implemented for simple problem with one input and one output. As
it was shown there are many basic mathematical methods which can be used to model this
problem with very good results. The neural network seems to be too complex and
complicated tool to use is such easy case. In the real life problems in fact it is better
solution to use the mathematical model in case like this one (it is faster and easier to
implement).

However, in this Thesis, the neural network model was implemented, tested and analyzed
in details. Below the description of different experiments is presented. It is much easier to
show many features of neural network on the example of simple problem with one input
and one output. In this case those features can be understood by intuition – for more

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 10 on the basis of 5 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

0

1

2
Norm of residuals: 5.8311; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 10 on the basis of 10 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-4

-2

0

2

4
Norm of residuals: 7.9771; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 10 on the basis of 15 nodes

P
o

w
e

r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1
Norm of residuals: 3.4023; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 10 on the basis of 20 nodes
P

o
w

e
r

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1
Norm of residuals: 4.049; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

59

complicated cases they are not so obvious. This subchapter is an introduction to more
complex problems, which will be presented in the next chapters.

There was many experiments done, but below only 4 of them are presented in the details.

For all of the presented experiments there was 5 points in the training set, 2 points in the
validation set and 93 points in testing set. All of them were randomly chosen from set of
100 equidistant points generated in the beginning. The experiment with other division for
different set was also done and their results will be briefly described at the end of
subchapter. For all of the experiments the maximum number of iteration was equal 1000.

The design of the used neural networks is presented in the Figure 2.14. In three first
experiments the neural network was built from one input, 2 neurons in hidden layer, 1
neuron in output layer and one output. In the fourth experiment the hidden layer had 10
neurons.

Figure 2.14 Design of the neural Network with 2 neurons (experiment 1,2,3) and with 10

neurons (experiment 4) in hidden layer (from MATLAB interface)

The results of four experiments are listed in the

Table 2.2. The most import ant data are norm of residuals and correlation coefficient which
allows for evaluation of each model and also for comparison neural network models with
mathematical ones.

Table 2.2 Properties of different neural network surrogate models

Experiment
Neurons in

hidden layer

Iteration

number
Time [s]

Norm of

residuals

Correlation

coefficient

1 2 1000 22 12.37 1

2 2 10 1 2511.23 0.989

3 2 7 1 9124.22 0.743

4 10 6 1 12972.21 0.844

Table 2.3 contains data for each of sets of points (training, validation, test and all). There
are presented the values of mean squared error MSE and Regression value R.

60

Table 2.3 Neural network surrogate models: MSE and Regression R values

Experiment Training Validation Test All

 Points 5 2 93 100

1
MSE 0.94 0.62 1.58 1.58

Regression R 1 1 1 1

2
MSE 2519.41 307.872 67667.61 67667.61

Regression R 1 1 0.997 0.997

3
MSE 1330765 4456,54 823533,8 823533,8

Regression R 0.997 1 0.902 0.896

4
MSE 0 6101841 1678220 1678220

Regression R 1 1 0.889 0.889

Now we will focus on the individual experiments. Each of them lets for illustrating some
interesting features of neural network.

The first experiment gives the best results. It shows that with appropriate neural network
and the good chosen training and validation set we can built a good model. During the
experiments sometimes even better results was achieved, but this example is representative
one. We have to remember that the quality of neural network is in part a random value. It
strongly depends from the staring weights in network, as well as from the distribution of
the points from each set among the whole interval.

Figure 2.15 shows the real point and results from neural network surrogate model. We can
notice that there is almost no difference between those two sets. The norm of residuals for
this case is equal 12.37 and the correlation coefficient is 1. On the graph we can also
observe the distribution of the training and validation points. As it can be seen the training
points cover the whole interval. If we would choose better training points (for example
equidistant ones) the final results would be even better.

Figure 2.15 Fit graph for Experiment 1

61

The regression graphs for the Experiment 1 are shown in the Figure 2.16. They show
differences between real results (targets) and output of the neural network. The graph
presents also the regression line for each data set. If this line connects left down and right
upper edges of the graph, it means that the network gives good results. If the point lies in
the distance of that line it means that there are mistakes in the surrogate model (for a
perfect fit, the data should fall along a 45 degree line, where the network outputs are equal
to the targets).

If we want to improve the results given by the neural network we should retrain the
existing one. The new training process starts with the weights from previous one. So the
better results can be achieved. It can help especially in the situation when the training
process ended as a result of achieving maximum number of iterations (not because of
validation checking).

Figure 2.16 Regression graph for Experiment 1

The last two graphs presents details about training process – they are shown in the Figure
2.17 The first graph shows performance of the training, validation, and test sets. The
second graph presents the details of network parameters in each epoch. In first experiment
there was 1000 epochs (maximum allowed number). It means that the stop condition was
not reached (the MSE for validation set should be constant or bigger than best value
during 6 consecutive epochs). There is one more thing which should be noticed. The
difference of MSE for all point in first and last epoch – it changed from about 108 to 1.

The accuracy for this network is very good, but the training process took 22 seconds, what
is very big number for such a simple problem like this one. The good think is that the time

62

of training does not depends linearly from the complexity of the problem (sometimes we
can get really good results for complicated models in relatively short time).

Figure 2.17 Performance and Training State graphs for Experiment 1

In the next experiment the training set did not cover the whole interval. There is no training
point in the left end as it can be seen in the Figure 2.18. It can be noticed also that in left
part the differences between real data and network output are the biggest. In the process of
learning the network was basis on the connection between training points, which does not
corresponds to the relation between points in the left part of interval.

The smallest value of MSE is achieved for validation set, but the value for training set is
also small in relation to MSE of test set.

Figure 2.18 Fit graph for Experiment 2

63

In the Figure 2.19 we can see that test set the regression line does not cover the 450 line. It
means that there are mistakes in the surrogate model. The same situation can be observed
on the regression graph for all points.

To achieve better results we should check which points gives us the worst results and add
the points from their neighborhood to the training set.

Figure 2.19 Regression graph for Experiment 2

Figure 2.20 shows detail information about the training process. There were only 10
iterations of training algorithm. The validation error started growing in 4th epoch. This
behavior could be changed by adding more points to training set as by adding points to
validation set.

64

Figure 2.20 Performance and Training State graphs for Experiment 2

The next analyzed case is presented in the Figure 2.21. The training points are focused in
the middle of interval. In this case two factors had an influence for big surrogate model’s
error: bad training points distribution and bad starting weights.

Figure 2.21 Fit graph for Experiment 3

Any of the regression graphs presented in the Figure 2.22 does not have appropriate shape.
Big errors can be seen in each parth of the interval.

65

Figure 2.22 Regression graph for Experiment 3

In this case there were only 7 epochs and the detailed information about each of them are
presented in the Figure 2.23.

Figure 2.23 Performance and Training State graphs for Experiment 3

The interesting results can be observed in the last experiment. In this case there was bigger
number of neurons in the hidden layer (10). It is a big number in comparison to only one
input value. The results show that neural network is overfitted. It gives great results for
training set, but for other points MSE values are huge. The fit graph for this experiment is
presented in the Figure 2.24.

66

Figure 2.24 Fit graph for Experiment 4

Figure 2.25 shows the regression graphs for the last experiment. As it was Said before in
the training set the points lay on the perfect fit line. For other sets there are big
fluctuations.

Figure 2.25 Regression graph for Experiment 4

67

The last graph in this paragraph, Figure 2.26, shows the details of training process for
fourth experiment. It is significant that the training error decreases very fast and validation
error is constant. Because of that there is only 6 epochs.

Figure 2.26 Performance and Training State graphs for Experiment 4

This problem is great illustration of overfitting effect: the performance of the training set is
good and in the same time the test set gives big errors. The solution which can improves
results is decreasing the number of nodes.

On the other hand if training performance is poor we should try to do one of two things:

• Increasing number of points in training and validation set;
• Increasing number of neurons in hidden layer.

We should remember that bigger number of neurons in hidden layer let network to solve
more complicated problems. On the other hand it can cause an overfitting effect and
require more computation.

The same rule is true also for bigger number of hidden layers: more layers require more
computation but they allow for solving complex problems.

During practical analyzes of this problem there were created more networks than presented
four. The different numbers of points in training and validation sets were tested. The
conclusion is that the quality of surrogate model improves with bigger number of training
and validating points. But much more important is that the points should cover the whole
interval. For properly distributed points their number does not have so big impact for final
results.

2.4.2 Results for selected methods for all output parameters

After detailed analyze of one input, one output surrogate model there was a time to build
the model which take into account all of input parameters. There were chosen two
methods: spline interpolation and neural network.

68

Spline interpolation

Firstly the mathematical models for all input parameters for 4 knots were built. The result
of this interpolation are shown in Appendix 1. As it can be seen in some of the cases there
are differences between real data and function output. It is caused by very small number of
interpolation knots. We choose the worst interpolation model – for input parameter
F_421_T. It is shown in the Figure 2.27. The correlation coefficient for this case is equal
to 0.98. As it can be seen the biggest interpolation error is in the last interpolation interval
(between two last nodes), because there is the biggest slope of original data.

Figure 2.27 Surrogate model on basis of 4 knots for F_421_T

As it was said the reason of the mistakes is the small number of interpolation knots. It was
checked how the increasing this number influences the quality of the model. In the Figure
2.28. For 6 knots the correlation coefficient is equal to 0.999. So it is quite good result.

Figure 2.28 Surrogate model on basis of 6 knots for F_421_T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1490

1495

1500

1505

1510

1515

1520

RECY_FRAC

C
O

M
B

2
_
O

U
T

_
T

Surrogate model for output value:

COMB2_OUT_T

R value:

0.98027

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1490

1495

1500

1505

1510

1515

1520

RECY_FRAC

C
O

M
B

2
_
O

U
T

_
T

Surrogate model for output value:

COMB2_OUT_T

R value:

0.99939

original model

surrogate model

knots

69

We checked how many knots is needed to have correlation coefficient equals 1. The result
is shown in the Figure 2.29. So for the input parameter, which gave the worst result in first
interpolation, we need 11 knots to have really good results. In this case there is 10 intervals
of interpolation (each one of them is 0.05).

Figure 2.29 Surrogate model on basis of 11 knots for F_421_T

In the figures: Figure 2.30, Figure 2.31, Figure 2.32 there are presented correlation
coefficients for all model output parameters, ordered from the worst one. It can be seen
that for 4 knots all coefficient are better than 0.98. For 6 knots this number is much better –
all coefficients are bigger than 0.999 and many of them is even equal to 1. For 11 knots on
the other hand all coefficients are equal to 1.

Figure 2.30 R values for spline surrogate model based on 4 knots for all output parameters

(ordered from smallest one)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1490

1495

1500

1505

1510

1515

1520

RECY_FRAC

C
O

M
B

2
_
O

U
T

_
T

Surrogate model for output value:

COMB2_OUT_T

R value:

1

original model

surrogate model

knots

0 10 20 30 40 50 60 70 80
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Output variables

r
v
a
lu

e

R values for surrogate model based on 4 knots.

70

Figure 2.31 R values for spline surrogate model based on 6 knots for all output

parameters(ordered from smallest one)

Figure 2.32 R values for spline surrogate model based on 11 knots for all output

parameters(ordered from smallest one)

The final version of the spline interpolation surrogate model which was prepared to use in
real-life model bases on the 11 knots – it makes surrogate model high quality and efficient.

Neural network

The last stage of surrogate modeling one decision variable problem was building neural
network model for many output parameters. There was build one network for all of them:
network is build with one input, 3 neurons in hidden layer, 79 neurons in output layer and
79 outputs. Figure 2.33 shows it design.

0 10 20 30 40 50 60 70 80
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Output variables

r
v
a
lu

e

R values for surrogate model based on 6 knots.

0 10 20 30 40 50 60 70 80
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Output variables

r
v
a
lu

e

R values for surrogate model based on 11 knots.

71

Figure 2.33 Design of the neural Network for one input, many output problem (from

MATLAB interface)

All real output data was normalized. If the raw data would be used, some of the output
parameters influences the final result more, some less (it depends from their absolute
values). Moreover the neural network, which was used in this analysis, is better suited for
parameters in range [-1,1]. From the set of all data, 20 samples was chosen randomly for
training set and 10 for validation set. The rest was used to testing the network.

The time of training network was long – it was over 7 minutes. There was done 1000
iterations of the algorithm (Table 2.4).

Table 2.4 Properties of neural network surrogate models for one input, many output

problem

Neurons in hidden layer Iteration number Time

3 1000 7 min 11s

Table 2.5 contains data for each of sets of points (training, validation, test and all). There
are presented the values of mean squared error MSE and Regression value R.

Table 2.5 Neural network surrogate models for one input, many output problem: MSE and

Regression R values

 Training Validation Test All

Points 20 10 170 200

MSE 1.8 ∙ 10Ms 2.09 ∙ 10Ms 6.39 ∙ 10Ms 6.39 ∙ 10Ms

Regression R 1 1 1 1

The regression graphs for the neural network are presented in the Figure 2.34. The network
generation time was very long but it resulted in high quality network. The points from all
sets cover the best fit line.

72

Figure 2.34 Regression graph for one input, many output problem

The process of the network training can be seen in the Figure 2.35. We can notice that
MSE value firstly drops very rapidly for all sets and then it approaching slowly the
minimum. The stop condition was not fulfill in this case. We can notice, that we could stop
training process much earlier. In future research introducing the new stop condition should
be considered. The process of training the network can be stopped when MSE has smaller
value then requested limit.

Figure 2.35 Performance and Training State graphs for one input, many output problem

73

Figure 2.36 shows the results of additional test. Created neural network was tested on the
set of 200 random points. As it can be seen the results are as good as before.

Figure 2.36 Regression graph for additional test set.

We should remember that the quality of the network was evaluated for all parameters
together. If this model would be used in real life problem we should also check the quality
of each output value. To do it we can for example calculate the norm of residuals and
correlation coefficient for all from output parameters separately. It was checked that for all
of the output parameters norm of residuals is smaller than 0.05 (remember about
normalization of the output values). All of the correlation coefficients are equal to 1.

2.4.3 Interpretation of results

In this subchapter several physical aspects of the model will be described.

All of the modeled tags, as well as analyzed system, were described earlier. The tags were
chosen to be modeled on the basis of the other parts of the model – it means that we
modeled all the tags which are used in other parts of the system.

During the process of choosing tags it was not checked if some of them do not have
constant values. In fact it turned out that some of them are imposed as constant. The
examples of these tags can be some temperatures, as for example COOL_OUT_T tag, or
ratio of CO2 captured by MEA process. It was checked that also for this variables
surrogate model gives good results – there is any additional disturbances or oscillations.

All of the interesting results (not imposed as a constant) are presented in the Appendix A.
On the basis of those graphs we can analyze the influence of recirculation ration for
different output parameters.

Below we will show the example of such analysis. We will focus on the net electricity
production:

74

• The gas composition depends on the FGR and syngas injection. This processes

decreasing κ=cp/cv of the working fluid. It influences power produced by the
turbines and power consumed by the compressor. Both of them are lower with
increasing FGR;

• The LHV of fuel mixture (lower heating value) decrease has no effect since the
inlet temperatures of gas turbine are fixed and the pressure drop of fuel injection is
not considered. The increasing fuel mass low compensates the lower LHV;

• H2 injection with increasing FGR changes the inlet mass flow of the gas turbine.
The mechanical power increases proportionally, what compensate and overweight
the calorific factor decrease effect;

• With increasing value of FRG we need to consume more energy to produce syngas.

As it was shown there are many parameters in the system which influence the final shape
of the dependences. Interpretation of those connections is not a trivial task.

75

3 MULTI DECISION VARIABLE MODEL

3.1 Flow sheet and model description

The second practical problem analyzed in the Thesis is connected with the previously
described system. The whole problem is to model the power plants with post-combustion
CO 2 capture, consisting of: a gas turbine with flue gas recirculation, a CO 2 capture unit
(chemical absorption with amines) and a steam network (Dubuis & Tock, 2010).The whole
system is presented in the Figure 3.1.

Figure 3.1 Superstructure of gas turbine power plant with CO 2 capture (Dubuis & Tock,

2010)

The first three parts: syngas production, gas turbine with flue gas recirculation and a CO 2
capture unit have been described in the previous chapter. In this part of the work we will
focus on the last part of the system: steam network and more globally utilities conception.

In the system there are several additional hot and cold streams at different temperature
levels from the rest of the process. The idea is to recover as much heat as possible from hot
streams to feed cold streams and produce power. As a cold source, a cooling water system
is included as well as an eventual boiler if hot demands can’t be covered by steam network.

There are two possible methods of modeling a steam network.

First of them is process flowsheet simulation. In this case we are preparing the detailed
model of the system. It lets for building very precise and transparent simulation. On the
other hand this is very time-consuming method in evaluation as well as in preparation.
Moreover this solution is not flexible when we want to optimize the complex

76

superstructure and need one model per configuration. It is hard to apply this model to
complex Heat Exchanger Network.

Second approach is the process integration techniques. It allows to include heat sink and
source in the steam network design. Moreover, it allows to represent every configuration
(steam injection or draw off …). This method is much more effective – it is less time and
memory consuming what allows for better optimization. One of the biggest advantages of
this method is easy adding of the new streams to the problem.

The model used in the Master Thesis is based on the second approach. This method lets for
relatively easy optimization of the level of different pressure and temperatures involved in
the steam network. It allows also for good approximation of the generated power,
efficiency and costs of the total network.

Figure 3.2 presents the superstructure of the steam network. We have to remember that it is
only the representation of the steam network, which is useful to optimize it (for example
the stream L – let down flow – is introduced to help solver to converge).

Figure 3.2 Superstructure of a steam network with one expansion level and heat

consumption and rejection (Girardin, Dubuis, & Marechal)

When we focus on the structure of steam network we can notice important elements which
define the system:

• Headers in the system are defined by their properties: temperature, pressure, steam

quality (� > 0.85) and their type. Each header is defined as one of the following:

o Production header in which steam is injected. In the Figure 3.2 it is
represented as header W;

o Usage header which can receive or distribute steam. It is represented as
header W + �;

77

o Condensation header in which steam is condensed. After that the steam is
sent back to Heat Recovery Steam Generator. In the Figure 3.2 it is
represented as header W + �.

• The different mass flow rates involved in:

o Steam turbine (�4);
o Let down flow (w);
o Steam recovered from heat reject (x);
o Steam consumed by heat sink (/).

Steam injections (x) or extractions (/) can in the header be understand as the energy
demand or additional processes (like for example the devices to CO2 capture).

The simplest correct model of the steam network has the following elements:

• One steam production level;

• One condensation level;
• Minimum pressure level observed in the list is a condensation header.

The performance indicators desired for the optimization process in this system were cost
and efficiency of the system. In the surrogate model also those two parameters will be used
as the targets values. In the model we can optimize the flowrates as well as several other
values: pressure, temperature and number of different header of a steam network.

The thermodynamic efficiency of the cycle can be calculated from the following formula:

y�_`�� = z{ |3/} − ∑ / + ∑ x~{ _�_ .

On the other hand to calculate the value of the isentropic efficiency of the steam expansion
between two pressure levels we can use (Dubuis & Tock, 2010):

yI,I+1 = 0.919 − 0.549 ∙ �1 − 1I − 1I+11I �.

The optimization of the system was prepared and described in (Girardin, Dubuis, &
Marechal) and (Dubuis & Tock, 2010).Some of the results are presented below. Those
graphs can introduce several concepts about the Steam Network and make them easier to
understand.

78

Firstly the Integrated Composite Curves for the Steam Network integrated with MEA and
syngas production process are presented in the Figure 3.3 and Figure 3.4. They show
respectively the examples of bad and good design of Stem Network.

The first example shows the system with one steam turbine. Steam is produced at 100 bar
and 50 bar; the condensation is at 5.7 bar. In the system we do not go below 5.7 bar
because of feeding MEA process. Presented system produces 57 MWe. As it can be seen in
the Integrated Composite Curve graph this design is not good integrated and there are big
looses in the system.

Figure 3.3 Bad example of Steam Network Configuration (Dubuis & Tock, 2010)

The second example, on the other hand, shows system which is much better integrated. In
this system the total power production is equal to 89 MWe. The system also consists in one
steam turbine. The condensation in this case is from 200 bar to 0.04 bar. The steam is
produced at 50 bars. Moreover there is also draw off to feed MEA in the system at 5.7 bar.

.

79

Figure 3.4 Good example of Steam Network Configuration (Dubuis & Tock, 2010)

Those examples show how important is to find the optimal parameters of the system.

Below the examples of the optimization for described system are shown. Actually those
graphs shows only the results which can be obtained as a result of optimization process.
We will show where the surrogate model can be used.

Graphs show the visualization of three typical steam network configurations. As a
objectives functions the investment cost and total power production are assumed. The
results are presented in the Figure 3.5. The base case (Case 3 in the graph) is designed as
two steam turbines model (working in ranges 60-0.04 bar and 3.3-0.04 bar). There is a
draw off in the second turbine at 0.2 bar.

We have to remember that this kind of optimization is very time and memory consuming.
For this type of computations it takes about 30 hours to make 1000 iterations on 40
processors (2.8 GHZ). It would be very helpful to use surrogate model instead real one. We
could get even more promising results.

Figure 3.5 Pareto Curve for Power Output – Investment Cost for different configurations

of Steam Network (Girardin, Dubuis, & Marechal)

Another possibly optimization is shown in the Figure 3.6. It represents the levelized
electricity cost. Comparison of two graphs let us to find the best solution for the system. In
this case the optimum configuration consists in a 3 expansion levels. An electricity cost are
about 46.5 $/MWh and an investment cost are 59.2 M$. The power output is 115 MW.
This type of decision making process is characteristic for optimization tasks.

80

Figure 3.6 Pareto Curve for Power Output – Levelized Electricity Cost for different

configurations of Steam Network (Girardin, Dubuis, & Marechal)

3.2 Problem description

In this part Steam Network was analyzed and the surrogate model for it was prepared.
Actually the problem was divided for two parts.

The first was the simpler situation with smaller number of input values. This situation
represented the simple Steam Network with only one steam production level and only one
condensation level.

The second model was prepared for more complicated problem – more complex Steam
Network design. All inputs parameters will be described in the next subchapter.

The prepared surrogate model can be used in the studies concerning the Steam Networks.
They can improve the number of iteration of genetic algorithm which are possible to run.
So also the results of optimization would be more accurate.

This problem introduces moreover several problems connected with surrogate modeling
(connected strictly with the software used in LENI). Sometimes there is a big problem with
generation appropriate points to train the network. This problem was very good visible in
the first simpler network design. In the next chapter the detailed description and used
solution will be described.

This problem – Steam Network – is moreover a very good introduction to the task which
will be implemented during next year. The final goal of the project is preparing the tool to
automotive generation of surrogate model for complex energy systems. The Steam
Network has all features which characterize this type of problems.

3.3 Modeling problem description

In this chapter the prepared models are described in the details.

81

For both of them there was two output values – total power production and total cost of the
system. The input values depend from the model.

First surrogate model was prepared for the simpler problem. There were following inputs
values take into account:

• H1_Pressure;

• H1_SuperheatingDT;
• H1_ReheatSuperheatingDT;

• H1_doReheat;

• D1_Pressure;
• D1_SuperheatingDT;

• D2_SuperheatingDT;

• D2_Pressure;

• C1_Pressure.

So there is 9 different independent input variables in the system. This situation is much
more complicated than problem from previous chapter when we had only one input value.

It was decided to prepare only one type of surrogate model in this case – the neural
network model. Actually the solution was more complicated than one simple neural
network.

The first problem which appeared was with training points generation. The intervals in
which we chose points were not good defined. The first used intervals are shown in the
Table 3.1.

Table 3.1 Input parameters of the simple Steam Network model

Paramether Unit Minimum value Maximum value

H1_Pressure Bar 20 30

H1_SuperheatingDT 0C 20 100

H1_ReheatSuperheatingDT 0C 0 100

H1_doReheat - 0 1

D1_Pressure Bar 40 180

D1_SuperheatingDT 0C 0 80

D2_Pressure Bar 20 40

D2_SuperheatingDT 0C 0 30

C1_Pressure Bar 0.02 1

During point generation it turned out that there is much more point (the set of input
variables) for which the system did not converge than the good ones. There were only
about 20% of points for we had the reasonable results.

82

Because of that the first step of preparing the surrogate model was generation of the 2000
random points. Then on the basis of this set, the simple neural network was created – its
task was to check if the point is converging or not. This simple network was used only to
create new set of points, which were converging.

The new set of 1640 points was created in the following way: firstly we create new random
points of input values. Then the simple network is checking if the point is converging or
not (of course the network made some mistakes, as a result in final set there was about 5%
points, that finally turn out to be not converged). If the point is not converged (negative
answer of network) we randomly choose new point. If the answer of network is positive we
run the OSMOSE and Energy Integration for that point and save its value as well as value
of costs and power generated by the defined system. Then the data points from both sets
(random and converging points) were used to create the final surrogate model. Only the
points with positive convergence, were used to create fitting neural network. This
algorithm of data preparation is shown in the Figure 3.7.

Figure 3.7 Schema of data preparation for surrogate model creation.

For process of training a network all of the input and targets values was normalized to the
interval [-1,1]. This was done with Neural Network Toolbox function:

[Y,PS] = mapminmax(X,YMIN,YMAX).

83

This normalization helps network to fit better to the data. It is connected with shape of
activation function in the neurons.

Moreover when we have the neural network for two or more output parameters
normalization helps in showing the real errors of both function, for example in the
regression graphs. If the data were not normalized, the output with bigger absolute values
could have bigger influence for final results.

However, it this problem, for each objective function (cost and power) the different
surrogate model was created. Each of the final surrogate models consists of two different
neural networks. The first of them is classification network. To train this network the
whole set of training points was used. It shows if the input point is converging or not. If
not, the answer of surrogate model is: the point does not converge – the system is incorrect.
If yes, the point is sent to the second part of the surrogate model – second neural network.
To train it only the converging points were used. This network computes the value of
performance indicator for given point. The schema of surrogate model, and method in
which it works is presented in the Figure 3.8.

Figure 3.8 The schema of surrogate model

Very similar methodology was used in the case of more complicated model. There was
only one difference. In the set of the randomly generated points about 50% were
converged. So the auxiliary neural network was not used in this case. We were working on
the points generated in the beginning.

In the more complicated case there were much more decision variables (23). Some of them
were normal number variables, but some represented decision if a unit is present in the
system or not. The list with all decision variables and the intervals for which we generated
points is shown in the Table 3.2.

84

Table 3.2 Input parameters of the simple Steam Network model

Paramether Unit Minimum value Maximum value

H1_Pressure Bar 2 30

H2_Pressure Bar 30 140

H3_Pressure Bar 100 180

H1_SuperheatingDT 0C 20 100

H2_SuperheatingDT 0C 20 150

H3_SuperheatingDT 0C 20 100

H1_ReheatSuperheatingDT 0C 0 100

H1_doReheat - 0 1

H2_ReheatSuperheatingDT 0C 0 100

H2_doReheat - 0 1

H3_ReheatSuperheatingDT 0C 0 100

H3_doReheat - 0 1

D1_Pressure Bar 40 180

D2_Pressure Bar 20 40

D3_Pressure Bar 5 60

D4_Pressure Bar 0.02 5

D5_Pressure Bar 0.02 1

D1_SuperheatingDT 0C 0 80

D2_SuperheatingDT 0C 0 30

D3_SuperheatingDT 0C 0 80

D4_SuperheatingDT 0C 0 30

D5_Vapf - 0.85 1

C1_Pressure Bar 0.02 1

3.4 Results

In this subchapter the results of surrogate modeling of complicated multivariable problem
are presented. In this problem we focused also on the surrogate model with one hidden
layer. During the surrogate modeling process we get good results for simpler problem and
much worse for the complex one.

Firstly the information connected with simpler version of the system are shown. Several
network configurations were analyzed and described. The graphs show characteristic
features of neural network surrogate models. We have to remember, that each of surrogate
models consists actually with three neural networks:

85

• Classifying part;
• Power fitting part;
• Cost fitting part.

Simpler problem

The first analyzed model was prepared on the basis of big training set (we used 2548 points
to train the network and 1092 points to test the network). The first, classifying network was
consistued of 10 neurons in hidden layer. The details about the neural network are
presented in the Table 3.3.

Table 3.3 Properties of neural network surrogate models – classifying part – bigger testing

set

Neurons in hidden layer Iteration number Time [s]

10 75 10

This type of the network is different than networks used in the previous part of the Thesis.
The classifying network shows to which class the point belong: to the converging or to not
converging points. As an output we have a single value, if it is close to 1 it means that
point is converging. It is more close to 0 the point does not converge.

The numbers according to size of each set of points as well as information about the
accuracy of network in each set are presented in the Table 3.4. It can be seen that biggest
precision is reached in the training set (here the situation is similar as in the most of fitting
networks).

Table 3.4 Neural network surrogate models – classifying part – bigger testing set: MSE

and Regression R values

 Training Validation Test All

Points 1820 728 1092 3640

Accuracy 99,6% 98,5% 98,4% 99%

The confusion matrix of this problem is presented in the Figure 3.9. The confusion matrix
sows 4 groups of points:

• Points originally converging, classifying as converging (good classification);
• Points originally converging, classifying as not converging (bad classification);
• Points originally not converging, classifying as converging (bad classification);
• Points originally not converging, classifying as not converging (good

classification).

86

To create the surrogate model the similar number of converging (1940) as not converging
points (1719) were used.

In the set of 3640 points only 35 are wrongly classified. It is only 1% of all points. The
worse classification can be seen in the set of points originally not converging, classifying
as converging than in the set of points originally converging, classifying as not converging.
It is probably connected with the fact that in the whole space there is much more originally
not converging points than converging ones. Because of the method of generating points
there is much bigger sampling density in the “converging parts” of the space.

Figure 3.9 Confusion matrix for neural network surrogate models – classifying part –

bigger testing set

The details about the proces of learning the calsyffing network are presented in the Figure

3.10. On the graph with training state we can notice that validation error behaved rather
changeablly.

87

Figure 3.10 Performance and Training State graphs for neural network surrogate models

– classifying part – bigger testing set

When the classifying network had been ready, the power and cost fitting models were
created.

Details about first of them – cost fitting surrogate model are presented in the Table 3.5.
The network is consist of 20 neurons in hidden layer. All of the model parameters output
as well as input ones were normalized. But still – for such big problem (with big number of
samples) the norm of residuals is relatively small. The correlation coefficient for this
problem – 0.99 is also very good.

Table 3.5 Properties of neural network surrogate models – power fitting part – bigger

testing set

Neurons in hidden

layer
Iteration number Time [s]

Norm of

residuals

Correlation

coefficient

20 47 6 2.56 0.99

The Table 3.6 presents the rest of the important information about power fitting network. It
shows the number of points used to train the network (1122) and to validate it (198). To
test the network all of the converging points from testing set of classifying network were
used (601 points). The mean square error is small – it is equal only to 0.003. The
regression R is over 0.99.

Table 3.6 Neural network surrogate models – power fitting part – bigger testing set: MSE

and Regression R values

 Training Validation Test All

Points 1122 198 601 1921

MSE 0.0013 0.0033 0.0074 0.0034

Regression R 0.997 0.992 0.982 0.992

88

The Figure 3.11 presents the regression graphs for all of the sets. As it can be seen tere is
several mistakes in the model, but still the fit is very good. To improve the behavior of the
network we should check the points were there are biggest errors and give more training
examples from their neighborhood.

Figure 3.11 Regression graph for neural network surrogate models – power fitting part –

bigger testing set

The training process details for this problem are presented in the Figure 3.12.

89

Figure 3.12 Performance and Training State graphs for neural network surrogate models

– power fitting part – bigger testing set

The second objective function – total cost – are presented below. In the Table 3.7 the
properties of the neural network model are shown. As previously the network has 20
neurons in the hidden layer and its properties (norm of residuals and correlation
coefficient) are good.

Table 3.7 Properties of neural network surrogate models – cost fitting part – bigger testing

set

Neurons in hidden

layer
Iteration number Time [s]

Norm of

residuals

Correlation

coefficient

20 48 6 2.42 0.993

The results for each of the sets are shown in the Table 3.8. The sizes of each of the sets are
the same as previously. The Regression for all points is equal to 0.993.

Table 3.8 Neural network surrogate models –cost fitting part – bigger testing set: MSE and

Regression R values

 Training Validation Test All

Points 1122 198 601 1921

MSE 0.00092 0.0083 0.0053 0.0031

Regression R 0.999 0.982 0.987 0.993

The regression graphs for the cost fitting network are shown in the Figure 3.13. There are
several errors of the network in the training set as well as in the rest of the sets. To improve
the quality of the network we could retrain the network. The results of such process will be

90

shown in the next analysis. Another method is trying to find more training examples in the
most sensitive part of the space (the same solution as previously).

Figure 3.13 Regression graph for neural network surrogate models – cost fitting part –

bigger testing set

The training details for this network are shown in the Figure 3.14.

Figure 3.14 Performance and Training State graphs for neural network surrogate models

– cost fitting part – bigger testing set

91

As the second analysis the same situation was investigated. Actually the first network is
the same one as previously. We changed only fitting networks. We checked the influence
of the different number of neurons in the hidden layer for the overall results. In this case
we used 30 neurons inside the network (earlier there were 20 neurons). The details about
the network are presented in the Table 3.9. The norm of residuals is better than previously
(1.45 in comparison to 2.56). The same situation is in the case of correlation coefficient
(0.997 in comparison to 0.99).

Table 3.9 Properties of neural network surrogate models – power fitting part – bigger

testing set, version 2

Neurons in hidden

layer
Iteration number Time [s]

Norm of

residuals

Correlation

coefficient

30 72 16 1.45 0.997

Table 3.10 shows learning process for this situation. The number of points is the same as
previously. The regression coefficients are also slightly better than in the case of smaller
number of neurons in the hidden layer (for example 0.997 in comparison to 0.992 for all
points).

Table 3.10 Neural network surrogate models – power fitting part – bigger testing set,

version 2: MSE and Regression R values

 Training Validation Test All

Points 1122 198 601 1921

MSE 0.00013 0.00038 0.0031 0.00109

Regression R 0.9997 0.9992 0.993 0.997

As it can be seen in the Figure 3.15 the biggest error are in the test set and they are
irregular. The fit for the training and validation set is almost ideal.

92

Figure 3.15 Regression graph for neural network surrogate models – power fitting part –

bigger testing set, version 2

The next example shows interesting correlation. The first prepared network was quite bad,
but retraining gave us much better results. The final information about the network are
presented in the Table 3.11 and in the Table 3.12.

Table 3.11 Properties of neural network surrogate models – cost fitting part – bigger

testing set, version 2

Neurons in hidden

layer
Iteration number Time [s]

Norm of

residuals

Correlation

coefficient

30 28 (retraining) 6 3.59 0.984

Table 3.12 Neural network surrogate models – cost fitting part – bigger testing set, version

2: MSE and Regression R values

 Training Validation Test All

Points 1122 198 601 1921

MSE 0.000008 0.00011 0.021 0.0067

Regression R 1 0.999 0.95 0.98

93

Figure 3.16 shows first attempt to build the surrogate model. Result are bad and big errors
appear even in the training set.

Figure 3.16 Regression graph for neural network surrogate models – cost fitting part –

bigger testing set, version 2, training

After the first retraining process (we train the network again but as initial weights we use
the weights from previous network) the results are much better. They are presented in the
Figure 3.17. There is only one bad thing in the model. There are two points in testing set
with big error. The values of their output are bigger than 1 and smaller than -1 respectively.
This is very bad behavior – when we use surrogate model to optimize a problem, the
results can be wrong. The optimization algorithm can find non-existent extremums. One of
ideas to solve this problem is to use the connection of two algorithms: optimization and
surrogate modeling algorithm. This solution will be described in the Generalization
chapter.

94

Figure 3.17 Regression graph for neural network surrogate models – cost fitting part –

bigger testing set, version 2, retraining 1

We decided to check if we can improve the surrogate modeling results even better. We
retrained the network one more time. The result graphs are presented in the Figure 3.18.
The approximation for the most of the points is almost ideal. But from the other hand the
result for extremums points are even worse – they can hardly influence the optimization
process.

The interesting result is that when we retrain the network again error does not change. The
shape and the all quality indicators for testing set are almost ideal. The network can not be
learnt anything new with the same set of input points.

95

Figure 3.18 Regression graph for neural network surrogate models – cost fitting part –

bigger testing set, version 2, retraining 2

The last presented experiment is connected with the number of training and validation
points. Now we used much smaller learning sets. All of the results are presented in the
same convection as before.

For the classifying network the number of neurons in the hidden layer is 10 as in the first
analyzed case. The details about network are presented in the Table 3.13.

Table 3.13 Properties of neural network surrogate models – classifying part – smaller

testing set

Neurons in hidden layer Iteration number Time [s]

10 62 9

Table 3.14 shows the training process details. In this case we used almost two times
smaller training and validation sets than previously (1092 and 364 respectively in
comparison to 1820 and 728 points). This change influences the quality of the model for
each of the sets of points (for example 99% in comparison to 97,9% for all points).

96

Table 3.14 Neural network surrogate models – classifying part – smaller testing set: MSE

and Regression R values

 Training Validation Test All

Points 1092 364 2184 3640

Accuracy 98,9% 97,3% 97,6% 97,9%

The Figure 3.19 shows confusion matrixes for all sets. There is 75 points clasified wrongly
among all of the points.

Figure 3.19 Confusion matrix for neural network surrogate models – classifying part –

smaller testing set

The results of the power and cost fitting functions are shown below. Firstly the details
about power fitting surrogate model are presented in the Table 3.15 and in the Table 3.16
(we are using the bigger number of neurons in the hidden layer).

Table 3.15 Properties of neural network surrogate models – power fitting part – smaller

testing set

Neurons in hidden

layer
Iteration number Time [s]

Norm of

residuals

Correlation

coefficient

30 68 23 3.67 0.984

97

Table 3.16 Neural network surrogate models – power fitting part – smaller testing set:

MSE and Regression R values

 Training Validation Test All

Points 651 115 1155 1921

MSE 0.000068 0.00010 0.012 0.0070

Regression R 0.9997 0.9998 0.974 0.985

Figure 3.20 shows the shape of regression function for the objective function of total
power in the system. The fit is very good except of a few points. They are quite bad fitted –
this is the situation when the can disturb the process of optimization. The reason for this
fact is that the data were not cover the whole searching space (we have less training
examples now so probability of situation like this is bigger).

Figure 3.20 Regression graph for neural network surrogate models – power fitting part –

smaller testing set

Table 3.17 and Table 3.18 shows characteristic of the cost fitting surrogate model.

98

Table 3.17 Properties of neural network surrogate models – cost fitting part – smaller

testing set

Neurons in hidden

layer
Iteration number Time [s]

Norm of

residuals

Correlation

coefficient

30 67 23 4.034 0.98

Table 3.18 Neural network surrogate models – cost fitting part – smaller testing set: MSE

and Regression R values

 Training Validation Test All

Points 651 115 1155 1921

MSE 0.00031 0.00021 0.014 0.0085

Regression R 0.9993 0.9995 0.968 0.981

Results in this case are similar as for power production model. Overall fitting is quite good
(it could be improve a little but by the retraining the network). But there are 5 points which
do not follow the tendency. They can be observed in the Figure 3.21.

Figure 3.21 Regression graph for neural network surrogate models – cost fitting part –

smaller testing set

99

Complex problem

As it was mentioned before results in this case are much worse than for the simpler case. In
this problem there is 23 decision variables. It is huge number and our task was in fact to
approximate the function in 24-dimension space.

This system is in fact not the most popular solution (in practical problems). It is much
more complicated than popular used systems. Normally we use solutions which are
between simple and complex approach presented in this work.

The bottleneck of the surrogate modeling process was real point’s generation time.
Preparing one point by OSMOSE and Energy Integration software took over 1 minute. It
was 1906 points generated – this took over 32 hours. For this number of points several
neural networks’ configurations were investigated. Any of them did not give satisfactory
results. In some configuration it is possible to achieve good fit in the training set, but the
quality of the model for the validation and test set is bad.

We will present only the results for classification network and for the power fitting
network (the results for the cost fitting model are analogical).

The quality of the classification network could be accepted. The details are presented in the
Table 3.19 and Table 3.20.

Table 3.19 Properties of neural network surrogate models – classifying part – complex

problem

Neurons in hidden layer Iteration number Time [s]

25 28 4

Table 3.20 Neural network surrogate models – classifying part – complex problem: MSE

and Regression R values

 Training Validation Test All

Points 1620 191 95 1906

Accuracy 87,6% 83,8% 87,4% 87,2%

The confusion matrixes for this case are shown in the Figure 3.22. For all of the sets the
accuracy of the model is over 80%.

100

Figure 3.22 Confusion matrix for neural network surrogate models – classifying part –

complex problem

Much worse situation takes place when we try to approximate the power production. The
first attempt is shown in the Figure 3.23. The model has been prepared for 25 neurons in
the hidden layer. There can be observed some tendency in the data but the model is bad.

To prepare this model there were used 797 points in training set and 171 points in the
validation set. The surrogate model was tested on the basis of the 171 points.

101

Figure 3.23 Regression graph for neural network surrogate models – power fitting part –

complex case; 25 neurons in the hidden layer

When we increase the number of neurons in the hidden layer (for example 60 neurons) we
can achieve big precision in the training sets. This situation is presented in the Figure 3.24.
This situation shows the effect of over fitting the surrogate model.

There are several solutions in this case to improve the quality of the model. First of them is
to collect more training data, which better cover the space. The second method is to use
different method of learning the model (for example, choose different validation set in each
iteration of the algorithm). The last idea is to use special methods of sampling – instead of
random selection use the declared algorithm.

102

Figure 3.24 Regression graph for neural network surrogate models – power fitting part –

complex case; 25 neurons in the hidden layer

103

4 GENERALIZATION

In this chapter some general observations connected with surrogate modeling problem are
collected.

4.1 Points choosing

The point choosing methods are important in the case of mathematical as well as artificial
intelligence modeling techniques. The better the training points cover the space, the better
results we can obtain.

The good example of appropriate points influence was shown for polynomial interpolation
– for Chebyshev nodes we could obtain much better results than for equidistant or random
one. Moreover with Chebyshev nodes we could obtain the Runge phenomena.

Another important thing was to choose the optimal number of nodes. If we have to less of
nodes surrogate models would not be precise. One the other hand – if we have to many
nodes, their generation time will be very long. This period with the time of preparing and
using surrogate model can make building surrogate model uneconomic. It can be better to
generate values of chosen points in the standard way (flowsheeting models).

In the analyzed examples it can be seen that the biggest errors appears in the parts of the
space where the enough number of samples was not chosen. The problems appear also
very often next to the edges of the searching space. It is caused by the lack of reference
points for that parts of the space.

The good solution could be equidistant sampling of the whole space. Unfortunately in
many cases this is not possible. We have to remember that with growing dimension of the
space, the number of equidistant samples grows exponentially. However, this type of
sampling is good in simple problems with one or two decision variables. This simple
problem can be found in the sensitivity analysis or very simple multi-objective
optimizations.

However, in practical life we are forced to solve much more complicated problems. There
are several ways to deal with them. In this work the simple random sampling was used. We
can get satisfactory results with this approach, but normally we need to prepare many
samples and, as it was shown in the last example in practical part, this is not always
possible.

Other solution is to select new points in the correlation to previously chosen. For example
if we will choose a point, we can not choose another one in the assumed distant. This
assumption would prevent choosing many points only in one part of the whole space – the
sampling distribution would be more equal.

Another idea is to choose points accordingly to the gradient in the model. If we notice that
there is a big gradient in some parts of the space, we chose more point in that
neighborhood. This algorithm could be connected with random point choosing to avoid
miss local extremums.

104

Two methods which are described above need to be carefully investigated in the future
work.

4.2 Model training methods – errors elimination

In this subchapter we will focus mainly on the artificial intelligence surrogate models
based on the neural networks. Although some of the presented methods can be used
successfully in the mathematical modeling techniques.

Firs method of improving the surrogate model quality was described in the previous
section and it require choosing optimal training points. But it is not always possible. When
we are using the surrogate model to accelerate the optimization process, we can thing
about connecting both algorithms: optimization and building the surrogate model. This
method will be described in the separated subchapter.

But we can obtain great results also by careful design of surrogate model: choosing the
best mathematical method or finding the best network configuration.

Several properties and methods for improving neural network surrogate models were
described in the practical part of the Thesis. Here we will collect all of them:

• Choosing appropriate number of layers. More complicated network can solve

complex problems more effectively. On the other hand they are more memory and
time consuming (especially in the training process);

• Hidden neurons number – they have similar tendency like the number of layers.
When there is to less neurons in the hidden layer the network can have a problems
with finding a good solution. On the other hand, for bigger network (more hidden
neurons) we need more time to prepare them. And moreover they are in many cases
over-fitted. Normally the maximum of the input and output values is good
approximation for optimal number of neurons in the hidden layer;

• There are many types of activation function in the neurons – two of them were
detailed presented (linear and semilog function). The basic usages of this function
were described (neurons in output and hidden layer respectively). Other types of
activation function will be investigated in the future work;

• To improve the behavior of the neural network we can use the variable validation
set. It is especially good method when we have not got many input points (for
example their generation is time-consuming). Firstly we divide the whole set of
points for n sets. In each iteration of training algorithm (epoch) different set of
initial group is used as validation set. Other sets (n-1) are used as training set;

• When the satisfactory solution is not found we can try to retrain the network.
Retrain is very similar to normal training process. Only difference is in the starting
weights. In the beginning we start with the randomly initialized values of weights
and bias. When the neural network is retrained the initial weights are pre-trained, so
it is easier to find good surrogate model from that point;

• There can be also find several methods of defining stop condition. Stop condition
tells us when we should end the training process. One of the method was presented
in the Thesis (ending when validation error does not decrease in defined number of

105

iteration). Other stop condition is assumed number of epochs or assumed maximum
error of the model.

All of this method can be used in the building optimal surrogate model. Some of them can
be used in the generic tool to build such models.

4.3 Surrogate model errors – validity

Another very important problem connected with surrogate modeling is finding the part of
the whole decision variable space in which the model is valid. In another words we should
introduce the measurement with let us know how big errors can we except for analyzed
point of decision variables.

As it was shown in the practical part of the Master Thesis, in many cases, when we have
appropriate set of training points chosen, we can obtain very good results by using
surrogate modeling. In case of simple problem it is better to use simple mathematical
methods, which can give even better results than more complicated in the conceptual and
computational senses artificial intelligence surrogate models. We should notice, that in
many cases very small differences between real values and surrogate model outputs does
not influence the final results (for example, when we are thinking about system with power
production approximately equals to MW, the differences in single W or even kW are not so
important). More important thing is that the surrogate model should behave as real one in
context of overall shape (when we are using surrogate model to optimize a function the
location of model extremums is one of the most important things).

Generally the surrogate model gives the good results in the part of the decision variable
space which is appropriately covered by training samples. It is logical – the surrogate
model have only that information, which was earlier given to it. It can not forecast the
shape – it can only generalize the available information.

Moreover we should realize that the surrogate models are much better in interpolation
values inside the problem ranges (inside the input point sampling area) than beyond the
ends of the range. All of the presented models had the biggest problems with points next to
the ends. When we do not have any reference points finding real value of the model is even
harder.

There is one more important feature of surrogate models which should be noticed in this
subchapter. In some of the examples we observed appear of the additional extremums. It
could be observed especially well in the problems with normalized output values. All of
the output could be included in the range [-1,1]. But unexpectedly the strange output values
were given by surrogate models – some of them were equal to -2 some to 2. Appearance of
these additional points can destroy the whole result of optimization of a function.

Because of that the good idea is connecting the optimization and surrogate modeling
algorithms. This solution can help in avoiding described situations.

4.4 Connection with optimization genetic algorithm

The idea how we can improve a surrogate model, which was mentioned before, is to
connect both algorithms: optimization and surrogate ones.

106

The schema of connected algorithm is presented in the Figure 4.1. This method was
described for example in (Sreekanth & Datta, 2010).

Figure 4.1 Surrogate modeling with optimization algorithm (Sreekanth & Datta, 2010)

The main idea is following: we are training the surrogate model with initial random
samples. Then we are using surrogate model prepared in this way to optimize the random
initial population of genetic algorithm.

When several iteration of genetic algorithm is done, we are using the individuals from the
current population to retrain the surrogate model. It guarantee us that in the most neuralgic
part of the decision variable space the surrogate model gives appropriate output values
with small error. It destroys also the false extremum values in the model.

This relearning of the surrogate model can be repeated until satisfactory results will be
obtained.

107

5 SURROGATE MODEL – PROJECT DEVELOPING IN POLAND

The Master Thesis was prepared with support of the EEA Financial Mechanism Grants:
“Professional Partnership between the Republic of Poland and the Republic of Iceland in
the Utilization of Renewable Energy Resources: Graduate Education, Practical Training
and Renewable Energy Research”. Important thing to mention is the work plan of the
project, which will be continued in Poland during next year.

The whole project methodology can be presented in the following plan:

1. A model was proposed (a gas turbine with recirculation and a steam network).
2. The learning and validation set have been generated on the basis of the MINLP

(Mixed-Integer Non-Linear Program) model. The surrogate models have been
developed in a MATLAB environment (consistent with other LENI tools). The
chosen and developed method is Artificial Neuron Network. For simpler
problem (a gas turbine with the recirculation) also mathematical programming
was used.
For given method the different parameters were tested and the best solution was
chosen. For ANN the parameters examples are:

• Network architecture – type of ANN;

• Number of neurons in the hidden layers;
• Activation function.

The ANN was developed with the Neural Network Toolbox for MATLAB.
3. The surrogate model was built. Some of the questions that was answered are:

• Optimization is performed through an evolutionist algorithm. Does the
surrogate model make enough evaluation of the real model or shall it be
completed by more data?

• How can we choose optimal learning and validation sets?

• In the decision variables space, what is the validity domain of the
surrogate model?

• What is its precision for a given set of data? The question behind this
one is ‘what is the surrogate model deviation, compared to uncertainty
influence’?

• What is the procedure to build such a model? Can it be made in parallel
with optimization?

4. Generalize the method (make it useable for any model). This means:
• Define a test (to check if the model is a possible candidate for such

approach);

• Define which parameters can be set as default parameters, and which
have to be defined by the user;

• Implementing it to build a general tool.
5. Incorporate the method into existing LENI tools.

108

In the context of this Master Thesis, the goal was to reach point 3 from the research plan.
The remaining research points and the development of the surrogate model tool will be
continued after the completion of the RES Master Thesis. The final goal of the project is to
develop a tool that can be used to build surrogate models for complex energy systems. This
tool will have to be user friendly and generic enough to be used on different models by
different users (non-expert). However this represents a lot of work that cannot be achieved
during four months time. Therefore the constrained goal of this project was to study a
detailed model, and develop methods that can be generalized to any kind of problem.

The project will be continued after writing the RES thesis – follow-up work will be used to
prepare a master thesis project for the author home university in Poland (academic year
2011-2012, thesis advisor: Dr. Adam Roman). As the result of these two projects the final
goal (building surrogate model tool) will be achieved.

The second, very important, part of the project will be developed and implemented in
Poland.

Moreover we have to remember that this project is devoted to developing a tool and a
methodology which can be useful in other practical problems. This toll will help in
analyzing complicated energy systems in faster and more effective way. It can improve
their quality, what can be beneficial not only for Poland but for any examined by this tool
problem.

109

6 CONCLUSIONS

The Master Thesis presents methods of preparing the surrogate models for complex energy
systems. Different methods were introduced and evaluated. Also possible applications of
presented theoretical solutions were shown.

The analysis prepared during Master Thesis provides information about practical
implementation methods of surrogate models into the energy system field. The Thesis is an
example of implementation of mathematical theory into real world problem.

The final goal of the project is to develop a tool that can be used to build surrogate models
for complex energy systems. This tool will have to be user friendly and generic enough to
be used on different models by different users (non-expert). In this Master Thesis project
first part of the work was done. The detailed models have been studied and results were
generalized to any kind of a problem. The different methods: mathematical as well as
artificial intelligence methods were incorporated into the surrogate modeling problems.
The generalization and conclusions according to different problems connected with
surrogate modeling are presented in the Generalization chapter. The conclusion are focused
on the following topics: choosing the best training set, method of elimination errors in the
training process, validity space of the model and possibilities of connecting two
algorithms: genetic optimization and creation of surrogate model.

The prepared surrogate models and general conclusions will be used to develop a new tool
which will be incorporated into LENI software. The tool will be implemented at
Jagiellonian University in Poland. This tool will provide new possibilities for optimization
and analysis strategies of complex energy systems. Using a surrogate model instead of the
real one gives the chance to perform more optimization strategies and to perform more
complex analysis. This tool will find many subsequent applications and will be used in the
future LENI projects.

The automatic tool can improve the quality and the speed of analysis of energy systems
connected with polish condition (a few of this type analysis were prepared in LENI).
Moreover the information presented in this Thesis can be used in preparing surrogate
models for specific problems related to Poland or other countries.

111

REFERENCES

Beale, M., Hagan, M., & Demuth, H. (2010). Neural Network Toolbox™ 7, User’s Guide.
online: The MathWorks.

Bernacki, M., Włodarczyk, P., & Gołda, A. (2004, September 6). Retrieved January 15,
2011, from Principles of training multi-layer neural network using backpropagation:
http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

Bernier, E., Marechal, F., & Samson, R. (2009). Multi-objective design optimization of a
natural gas-combined cycle with carbon dioxide capture in a life cycle perspective. Energy.

Caballero, J., & Grossmann, I. E. (2008). An Algorithm for the Use of Surrogate Models in
Modular Flowsheet Optimization. AICHE J , 54, 2633.

Dideková, Z. (2009, October 14). Portal Posterus. Retrieved January 15, 2011, from
Neural control of non-linear processes designed by genetic algorithms:
http://www.posterus.sk/?p=3138

Dubuis, M., & Tock, L. (2010). GTCO2 Project: Progress report.

Fernandes, F. (2006). Optimization of Fischer-Tropsch Synthesis Using Neural Networks.
Chem. Eng. & Tech. , 29,449.

Girardin, L., Dubuis, M., & Marechal, M. (n.d.). On the use of process integration
techniques to generate optimal steam cycle configurations for the power plant industry.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley.

Kemp, I. C. (2007). Pinch Analysis and Process Integration. Oxford, U.K.: Butterworth-
Heinemann.

Kincaid, D., & Chene, W. (2002). Numerical Analysis: Mathematics of Scientific

Computing, 3rd Edition. Providence, RI.: American Mathematical Society.

112

Linhoff, B., & Townsend, D. (1982). A user guide on process integration for the effcient

use of energy. The Institution of Chemical Engineers.

MATLAB documentation, pchip command.

Orr, G. (1999). Willamette University web page. Retrieved January 15, 2011, from Neural
Networks: http://www.willamette.edu/~gorr/classes/cs449/intro.html

Sivanandam, N., Sumathi, S., & Deepa, S. (2006). Introduction To Neural Networks Using

MATLAB 6.0. Dehli: Tata Mgraw Hill.

Sreekanth, J., & Datta, B. (2010). Multi-objective management of saltwater intrusion in
coastal aquifers using genetic programming and modular neural network based surrogate
models. Journal of Hydrology , 393, 245-256.

Stergiou, C., & Siganos, D. (n.d.). Retrieved January 15, 2011, from NEURAL
NETWORKS : http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

Stranz, D., & Martin, L. (1997, September 25). Retrieved January 15, 2011, from
Derivation of Peptide Sequence from Mass Spectral Data using the Genetic Algorithm:
http://www.abrf.org/JBT/Articles/JBT0004/JBT0004.html

Tenne, Y., & Armfield, S. (2008). A framework for memetic optimization using variable
global and local surrogate models. SOFT COMPUTING , Volume 13, Numbers 8-9, 781.

Won, K., & Ray, T. (2005). A Framework for Design Optimization Using Surrogates. Eng.

Optim. , 37,685. .

Genetic algorithms - Introduction:

http://cgm.cs.mcgill.ca/eden/PrimitiveGenetics/Introduction.htm. Retrieved January 15,
2011.

Genetic Algorithms : General Idea: http://www.sussex.ac.uk/space-science/Nature/ga.html
Retrieved January 15, 2011.

A - 1

APPENDIX A

Comparison of surrogate model based on spline interpolation and original one variable
model - gas turbine power plants designs with CO2 capture with Flue Gas Recirculation
(FGR). The original model is represented by set of 200 randomly chosen points determined
by the value of decision variable – recirculation ratio. Appendix consist graphs for all
output parameters analyzed in the Thesis.

A. 1 Surrogate model on basis of 4 knots

for TURB2_OUT_T

A. 2 Surrogate model on basis of 4 knots

for TURB2_OUT_HFLOWTOT

A. 3 Surrogate model on basis of 4 knots

for COOL_OUT_HFLOWTOT

A. 4 Surrogate model on basis of 4 knots

for F_1_002O2_T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
912

914

916

918

920

922

924

926

928

930

RECY_FRAC

T
U

R
B

2
_
O

U
T

_
T

Surrogate model for output value:

TURB2_OUT_T

R value:

0.99339

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5
x 10

5

RECY_FRAC

T
U

R
B

2
_
O

U
T

_
H

F
L
O

W
T

O
T

Surrogate model for output value:

TURB2_OUT_HFLOWTOT

R value:

0.99966

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28
x 10

4

RECY_FRAC

C
O

O
L
_
O

U
T

_
H

F
L
O

W
T

O
T

Surrogate model for output value:

COOL_OUT_HFLOWTOT

R value:

0.99994

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
854

854.5

855

855.5

856

856.5

RECY_FRAC

F
_
1

_
0
0

2
O

2
_
T

Surrogate model for output value:

F_1_002O2_T

R value:
1

original model

surrogate model

knots

A - 2

 A. 5 Surrogate model on basis of 4 knots

for F_1_002O2_HFLOWTOT

A. 6 Surrogate model on basis of 4 knots

for F_1_003_HFLOWTOT

A. 7 Surrogate model on basis of 4 knots

for F_420_T

A. 8 Surrogate model on basis of 4 knots

for F_420_HFLOWTOT

A. 9 Surrogate model on basis of 4 knots

for F_421_HFLOWTOT

A. 10 Surrogate model on basis of 4

knots for F_410_T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

RECY_FRAC

F
_

1
_
0

0
3

_
H

F
L

O
W

T
O

T

Surrogate model for output value:

F_1_003_HFLOWTOT

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

RECY_FRAC

F
_

1
_
0

0
3

_
H

F
L

O
W

T
O

T

Surrogate model for output value:

F_1_003_HFLOWTOT

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
297

297.5

298

298.5

299

299.5

RECY_FRAC

F
_
4
2
0
_
T

Surrogate model for output value:

F_420_T

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

RECY_FRAC

F
_
4
2
0
_
H

F
L
O

W
T

O
T

Surrogate model for output value:

F_420_HFLOWTOT

R value:

0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5
x 10

4

RECY_FRAC

F
_
4
2
1
_
H

F
L
O

W
T

O
T

Surrogate model for output value:

F_421_HFLOWTOT

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
297

297.2

297.4

297.6

297.8

298

298.2

298.4

298.6

298.8

299

RECY_FRAC

F
_
4
1
0
_
T

Surrogate model for output value:

F_410_T

R value:
1

original model

surrogate model

knots

A - 3

A. 11 Surrogate model on basis of 4 knots

for F_410_HFLOWTOT

A. 12 Surrogate model on basis of 4 knots

for F_411_HFLOWTOT

A. 13 Surrogate model on basis of 4 knots

for H21_T

A. 14 Surrogate model on basis of 4 knots

for H21_HFLOWTOT

A. 15 Surrogate model on basis of 4 knots

for H21A_HFLOWTOT

A. 16 Surrogate model on basis of 4 knots

for H22_T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14
x 10

4

RECY_FRAC

F
_
4
1
0
_
H

F
L
O

W
T

O
T

Surrogate model for output value:

F_410_HFLOWTOT

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14
x 10

4

RECY_FRAC

F
_
4
1
1
_
H

F
L
O

W
T

O
T

Surrogate model for output value:

F_411_HFLOWTOT

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1222

1222.5

1223

1223.5

1224

1224.5

RECY_FRAC

H
2
1
_
T

Surrogate model for output value:

H21_T

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

RECY_FRAC

H
2
1
_
H

F
L
O

W
T

O
T

Surrogate model for output value:

H21_HFLOWTOT

R value:
0.99132

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

RECY_FRAC

H
2
1
A

_
H

F
L
O

W
T

O
T

Surrogate model for output value:

H21A_HFLOWTOT

R value:
0.99132

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1222

1222.5

1223

1223.5

1224

1224.5

RECY_FRAC

H
2

2
_

T

Surrogate model for output value:

H22_T

R value:
1

original model

surrogate model

knots

A - 4

A. 17 Surrogate model on basis of 4 knots

for H22_HFLOWTOT

A. 18 Surrogate model on basis of 4 knots

for H22A_HFLOWTOT

A. 19 Surrogate model on basis of 4 knots

for STORAGE_WRCO2

A. 20 Surrogate model on basis of 4 knots

for STORAGE_WRH2O

A. 21 Surrogate model on basis of 4 knots

for STORAGE_WRN2

A. 22 Surrogate model on basis of 4 knots

for STORAGE_WRO2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12
x 10

4

RECY_FRAC

H
2
2
_
H

F
L
O

W
T

O
T

Surrogate model for output value:

H22_HFLOWTOT

R value:
0.99483

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12
x 10

4

RECY_FRAC

H
2

2
A

_
H

F
L
O

W
T

O
T

Surrogate model for output value:

H22A_HFLOWTOT

R value:
0.99483

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.234

1.236

1.238

1.24

1.242

1.244

1.246

1.248

1.25

1.252
x 10

5

RECY_FRAC

S
T

O
R

A
G

E
_

W
R

C
O

2

Surrogate model for output value:

STORAGE_WRCO2

R value:
0.9874

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

4

RECY_FRAC

S
T

O
R

A
G

E
_
W

R
H

2
O

Surrogate model for output value:

STORAGE_WRH2O

R value:

1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
6

7

8

9

10

11

12

13
x 10

5

RECY_FRAC

S
T

O
R

A
G

E
_
W

R
N

2

Surrogate model for output value:

STORAGE_WRN2

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

5

RECY_FRAC

S
T

O
R

A
G

E
_
W

R
O

2

Surrogate model for output value:

STORAGE_WRO2

R value:
0.99999

original model

surrogate model

knots

A - 5

A. 23 Surrogate model on basis of 4 knots

for NGAS_TOT_MASSF

A. 24 Surrogate model on basis of 4 knots

for NGAS_TOT_LHVWT

A. 25 Surrogate model on basis of 4 knots

for F_410_MASSF

A. 26 Surrogate model on basis of 4 knots

for F_410_LHVWT

A. 27 Surrogate model on basis of 4 knots

for H2_TOT_MASSF

A. 28 Surrogate model on basis of 4 knots

for H2_TOT_LHVWT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

RECY_FRAC

N
G

A
S

_
T

O
T

_
M

A
S

S
F

Surrogate model for output value:

NGAS_TOT_MASSF

R value:
0.99062

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
4.9194

4.9194

4.9195

4.9195

4.9195

4.9195

4.9195

4.9196

4.9196

4.9196

x 10
4

RECY_FRAC

N
G

A
S

_
T

O
T

_
L
H

V
W

T

Surrogate model for output value:

NGAS_TOT_LHVWT

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

RECY_FRAC

F
_
4

1
0

_
M

A
S

S
F

Surrogate model for output value:

F_410_MASSF

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
5

5

5.0001

5.0001

5.0001

5.0001

5.0001

5.0002

5.0002

5.0002

x 10
4

RECY_FRAC

F
_

4
1
0

_
L

H
V

W
T

Surrogate model for output value:

F_410_LHVWT

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

10

RECY_FRAC

H
2

_
T

O
T

_
M

A
S

S
F

Surrogate model for output value:

H2_TOT_MASSF

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.1003

1.1003

1.1003

1.1004

1.1004
x 10

4

RECY_FRAC

H
2

_
T

O
T

_
L
H

V
W

T

Surrogate model for output value:

H2_TOT_LHVWT

R value:
1

original model

surrogate model

knots

A - 6

A. 29 Surrogate model on basis of 4 knots

for COMB1_IN_MRO2

A. 30 Surrogate model on basis of 4 knots

for COMB1_OUT_MRO2

A. 31 Surrogate model on basis of 4 knots

for TURB1_OUT_MRO2

A. 32 Surrogate model on basis of 4 knots

for COMB2_OUT_MRO2

A. 33 Surrogate model on basis of 4 knots

for W_401_POWER

A. 34 Surrogate model on basis of 4 knots

for W_1_001_POWER

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

RECY_FRAC

C
O

M
B

1
_
IN

_
M

R
O

2

Surrogate model for output value:

COMB1_IN_MRO2

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

RECY_FRAC

C
O

M
B

1
_

O
U

T
_

M
R

O
2

Surrogate model for output value:

COMB1_OUT_MRO2

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

RECY_FRAC

T
U

R
B

1
_
O

U
T

_
M

R
O

2

Surrogate model for output value:

TURB1_OUT_MRO2

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RECY_FRAC

C
O

M
B

2
_
O

U
T

_
M

R
O

2

Surrogate model for output value:

COMB2_OUT_MRO2

R value:
0.99999

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

18

RECY_FRAC

W
_
4

0
1

_
P

O
W

E
R

Surrogate model for output value:

W_401_POWER

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

RECY_FRAC

W
_

1
_

0
0

1
_

P
O

W
E

R

Surrogate model for output value:

W_1_001_POWER

R value:
0.99393

original model

surrogate model

knots

A - 7

A. 35 Surrogate model on basis of 4 knots

for W_1_POWER

A. 36 Surrogate model on basis of 4 knots

for W_2_POWER

A. 37 Surrogate model on basis of 4 knots

for W_3_POWER

A. 38 Surrogate model on basis of 4 knots

for W_4_POWER

A. 39 Surrogate model on basis of 4 knots

for W_5_POWER

A. 40 Surrogate model on basis of 4 knots

for NGAS_TOT_MRC1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.24

2.245

2.25

2.255

2.26

2.265
x 10

5

RECY_FRAC

W
_

1
_

P
O

W
E

R

Surrogate model for output value:

W_1_POWER

R value:
0.99998

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
3.75

3.76

3.77

3.78

3.79

3.8

3.81

3.82

3.83
x 10

4

RECY_FRAC

W
_

2
_

P
O

W
E

R

Surrogate model for output value:

W_2_POWER

R value:
0.99998

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
7.662

7.664

7.666

7.668

7.67

7.672

7.674

7.676

7.678

7.68

7.682
x 10

4

RECY_FRAC

W
_

3
_

P
O

W
E

R

Surrogate model for output value:

W_3_POWER

R value:
0.99998

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
4.095

4.1

4.105

4.11

4.115

4.12

4.125

4.13

4.135
x 10

5

RECY_FRAC

W
_

4
_

P
O

W
E

R

Surrogate model for output value:

W_4_POWER

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29
x 10

5

RECY_FRAC

W
_

5
_

P
O

W
E

R

Surrogate model for output value:

W_5_POWER

R value:
0.99999

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

RECY_FRAC

N
G

A
S

_
T

O
T

_
M

R
C

1

Surrogate model for output value:

NGAS_TOT_MRC1

R value:
0.99061

original model

surrogate model

knots

A - 8

A. 41 Surrogate model on basis of 4 knots

for NGAS_TOT_MRC2

A. 42 Surrogate model on basis of 4 knots

for F_410_MOLF

A. 43 Surrogate model on basis of 4 knots

for SEP_OUT_WRCO2

A. 44 Surrogate model on basis of 4 knots

for SEP_OUT_MRCO2

A. 45 Surrogate model on basis of 4 knots

for RECIRC_MRCO2

A. 46 Surrogate model on basis of 4 knots

for STORAGE_WRCO2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.105

0.11

0.115

0.12

0.125

RECY_FRAC

N
G

A
S

_
T

O
T

_
M

R
C

2

Surrogate model for output value:

NGAS_TOT_MRC2

R value:
0.99061

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

RECY_FRAC

F
_
4

1
0

_
M

O
L

F

Surrogate model for output value:

F_410_MOLF

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
30

35

40

45

50

55

60

65

70

RECY_FRAC

S
E

P
_

O
U

T
_

W
R

C
O

2

Surrogate model for output value:

SEP_OUT_WRCO2

R value:
0.99998

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

RECY_FRAC

S
E

P
_

O
U

T
_

M
R

C
O

2

Surrogate model for output value:

SEP_OUT_MRCO2

R value:
0.99998

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RECY_FRAC

R
E

C
IR

C
_

M
R

C
O

2

Surrogate model for output value:

RECIRC_MRCO2

R value:
0.99997

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.234

1.236

1.238

1.24

1.242

1.244

1.246

1.248

1.25

1.252
x 10

5

RECY_FRAC

S
T

O
R

A
G

E
_
W

R
C

O
2

Surrogate model for output value:

STORAGE_WRCO2

R value:
0.9874

original model

surrogate model

knots

A - 9

A. 47 Surrogate model on basis of 4 knots

for STORAGE_MRCO2

A. 48 Surrogate model on basis of 4 knots

for FUMEES_WFCO2

A. 49 Surrogate model on basis of 4 knots

for FUMEES_MASSF

A. 50 Surrogate model on basis of 4 knots

for CO2_CAPTE_MASSF

A. 51 Surrogate model on basis of 4 knots

for CO2_CAPTE_MOLF

A. 52 Surrogate model on basis of 4 knots

for F_1_001_MASSF

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.778

0.78

0.782

0.784

0.786

0.788

0.79

0.792

0.794

0.796

RECY_FRAC

S
T

O
R

A
G

E
_
M

R
C

O
2

Surrogate model for output value:

STORAGE_MRCO2

R value:
0.98742

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

RECY_FRAC

F
U

M
E

E
S

_
W

F
C

O
2

Surrogate model for output value:

FUMEES_WFCO2

R value:
0.99999

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

6

RECY_FRAC

F
U

M
E

E
S

_
M

A
S

S
F

Surrogate model for output value:

FUMEES_MASSF

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
30.85

30.9

30.95

31

31.05

31.1

31.15

31.2

31.25

31.3

RECY_FRAC

C
O

2
_
C

A
P

T
E

_
M

A
S

S
F

Surrogate model for output value:

CO2_CAPTE_MASSF

R value:
0.98744

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.7

0.702

0.704

0.706

0.708

0.71

0.712

0.714

0.716

0.718

RECY_FRAC

C
O

2
_
C

A
P

T
E

_
M

O
L
F

Surrogate model for output value:

CO2_CAPTE_MOLF
R value:

0.98743

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

RECY_FRAC

F
_
1
_
0
0
1
_
M

A
S

S
F

Surrogate model for output value:

F_1_001_MASSF

R value:
0.99393

original model

surrogate model

knots

A - 10

A. 53 Surrogate model on basis of 4 knots

for F_411_MRC1

A. 54 Surrogate model on basis of 4 knots

for H2_TOT_MRC1

A. 55 Surrogate model on basis of 4 knots

for H2_TOT_MOLF

A. 56 Surrogate model on basis of 4 knots

for F_1_003_VOLF

A. 57 Surrogate model on basis of 4 knots

for COMB1_IN_MASSF

A. 58 Surrogate model on basis of 4 knots

for COMB1_OUT_T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

RECY_FRAC

F
_
4
1
1
_
M

R
C

1
Surrogate model for output value:

F_411_MRC1

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7
x 10

-3

RECY_FRAC

H
2
_
T

O
T

_
M

R
C

1

Surrogate model for output value:

H2_TOT_MRC1

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RECY_FRAC

H
2
_
T

O
T

_
M

O
L
F

Surrogate model for output value:

H2_TOT_MOLF

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2000

4000

6000

8000

10000

12000

RECY_FRAC

F
_
1
_
0
0
3
_
V

O
L
F

Surrogate model for output value:

F_1_003_VOLF

R value:
0.99393

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
224.4

224.6

224.8

225

225.2

225.4

225.6

225.8

226

226.2

226.4

RECY_FRAC

C
O

M
B

1
_
IN

_
M

A
S

S
F

Surrogate model for output value:

COMB1_IN_MASSF

R value:
0.99976

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1408

1410

1412

1414

1416

1418

1420

1422

1424

1426

1428

RECY_FRAC

C
O

M
B

1
_
O

U
T

_
T

Surrogate model for output value:

COMB1_OUT_T

R value:
0.9922

original model

surrogate model

knots

A - 11

A. 59 Surrogate model on basis of 4 knots

for TURB1_OUT_MRN2

A. 60 Surrogate model on basis of 4 knots

for COMB2_OUT_T

A. 61 Surrogate model on basis of 4 knots

for COMP1_IN_MASSF

A. 62 Surrogate model on basis of 4 knots

for C1_EFFIC

A. 63 Surrogate model on basis of 4 knots

for COMP2_IN_MASSF

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
9.9

9.92

9.94

9.96

9.98

10

10.02

10.04

10.06

10.08

RECY_FRAC

T
U

R
B

1
_
O

U
T

_
M

R
N

2

Surrogate model for output value:

TURB1_OUT_MRN2

R value:
0.99989

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1490

1495

1500

1505

1510

1515

1520

RECY_FRAC

C
O

M
B

2
_
O

U
T

_
T

Surrogate model for output value:

COMB2_OUT_T

R value:
0.98027

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
479

479.5

480

480.5

481

481.5

482

482.5

483

RECY_FRAC

C
O

M
P

1
_
IN

_
M

A
S

S
F

Surrogate model for output value:

COMP1_IN_MASSF

R value:
0.99976

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.5

0

0.5

1

1.5

2

RECY_FRAC

C
1
_
E

F
F

IC

Surrogate model for output value:

C1_EFFIC

R value:
1

original model

surrogate model

knots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
369.5

370

370.5

371

371.5

372

372.5

373

RECY_FRAC

C
O

M
P

2
_
IN

_
M

A
S

S
F

Surrogate model for output value:

COMP2_IN_MASSF

R value:
0.99976

original model

surrogate model

knots

