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ABSTRACT 

This Master Thesis investigates the possibility of using the surrogate modeling techniques 
in the complex energy system modeling problems. The different mathematical (nearest-
neighbor, linear, spline, cubic Hermite and polynomial interpolation as well as polynomial 
fitting) and artificial intelligence (neural network) methods were introduced and 
implemented.   
 
Prepared paper includes information from many different fields of science: energy science, 
mathematics and computer science. All of them were used to prepare multi-science 
analysis of surrogate modeling problem. 
 
Several different surrogate models were created for two different energy systems. First of 
them was gas turbine with recirculation, syngas production and CO2 capture; second 
system was the steam network. The energy system descriptions were provided in the 
Thesis. 
 
Implemented models were analyzed and their errors were found. The results helped in 
generalizing the features of surrogate models of each type. The conclusion are focused on 
the following topics: methods of choosing the best initial sets of points, method of 
elimination errors in the training process, validity space of the model and possibilities of 
connecting two algorithms: genetic optimization and creation of surrogate model. Gathered 
information will be used in the second part of the project – implementing the generic tool 
to create surrogate models for any energy system model. The second part of the project 
will be realized in Poland at Jagiellonian University in cooperation with École 
Polytechnique Fédérale De Lausanne. In the Thesis, the process of creating the automotive 
computer tool is designed. Moreover the possible positive influence, not only for Poland, 
but for any problem examined by this tool, is described.  
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PREFACE 

Today many problems are solved with computer simulations. They help us to model very 
complicated systems in relatively short time. Run so complex analysis and optimization 
would not be possible in any other way. But nowadays we need better and better solutions 
which allows for working with bigger speed and effectiveness. One of method to achieve 
that is to use better computers, but it is not always possible.  

Other way of finding the more effective way of computer computations is introducing the 
surrogate models of complex energy systems. In this paper a several surrogate modeling 
techniques are investigated and implemented in the real life problem. 

The Thesis is good example of merging a various fields of science (energy science, 
mathematics and computer science) in order to obtain the best results. 

All of the analyzed problems are strictly connected with energy science, but the methods 
used to model and analyze them are more connected with terms as interpolation, error 
analysis or artificial intelligence, neural networks, genetic algorithms and surrogate 
models. This paper shows how important it is to find a connection between seemingly 
unrelated brands of science. 
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1 THEORY PART 

In the first part of the Master Thesis several important information used in the practical 
problems are introduced. In this chapter several mathematical and artificial intelligence 
techniques connected with modeling problems are presented. This work lies on the 
crossroads of different disciplines. Presented topics are connected with energy science, 
computer science and mathematics. 

1.1 Modeling and optimization techniques 

There are many modeling and optimization techniques used in energy engineering 
software. To introduce some of them: the different methods of building the models and 
solving them, energy integration techniques or optimization algorithms. Some of those 
methods are described below. The greatest emphasis is placed on the genetic optimization 
algorithms, because they are used in the existing software and they can be correlated with 
the surrogate modelling algorithms.  

1.1.1 Motivation  

In many cases we need computer models to solve complicated problems in the topic of 
energy engineering. Real model preparation is not always possible because of time, money 
and physical possibilities. 

Moreover in many cases we consider very complex systems. There is huge number of 
possibilities for designing such problem. Often we have several competitive objective 
functions in the system (like for example cost of the system and its environmental 
influence). Computer models let for many problem evaluations. We can use them in the 
optimization problems to find the best system design. 

1.1.2 Energy integration 

The energy integration technique is also called the pinch technology or heat integration. 
This method helps in optimal designing of energy systems. It helps in minimizing energy 
consumption and maximizing the internal heat recovery. The detailed description of this 
methodology can be found for example in (Linhoff & Townsend, 1982) and (Kemp, 2007). 
In the theory part only the main idea of pinch point technology is shown. 

The pinch point technology allows for calculating the thermodynamically attainable energy 
targets for a process and helps in identification methods to achieve them. 

One of the most important things is pinch temperature, which is the most constrained point 
in the process. There are three most important rules of pinch point technology presented in 
the Figure 1.1: 

 
• Do not transfer heat through pinch point; 

• Do not cool the process above the pinch point; 

• Do not heat the process below the pinch point. 
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Figure 1.1 Pinch point technology – rules 

 

1.1.3 Optimization 

Optimization is the method of finding the best solution for given problem. Problem is 
evaluated by special objective functions. Optimization can be understood as searching the 
function extremums (minimums or maximums, depending of problem formulation). There 
is two type of optimization: mono-objective or multi-objectives. Multi-objective 
optimization helps in finding the best decision in case of several competing targets (for 
example it can be finding a compromise between production cost and quality). 
Optimization results can be shown in the Pareto curve, which shows the connection 
between different objective functions. 

To optimize a function we can use many different algorithms. One of them is genetic 
algorithm. We will introduce a basic theory about this method. Genetic algorithm can be 
also used in the building a surrogate model (this concept will be explain in the separate 
chapter). Genetic algorithms are used in the LENI software (MOO – the tool implementing 
multi-objective optimization). Good understanding of genetic algorithm is especially 
important - the next step of this Master Thesis will be incorporating surrogate modeling 
into the LENI software and combination surrogate models with optimization algorithms (to 
make the process of learning the surrogate model more efficient). 

The genetic and evolutionary algorithms were invented by John Holland in 60. and 70.XX. 
These kinds of algorithms try to mimetic the natural evolution process and to solve 
problems in the similar way as evolution do. They use the biological evolutionary 
mechanisms, such as natural selection, survival of the fittest, inheritance, reproduction and 
mutation. They can be understood as the compromise between the stochastic solution 
searching and working on the basis of previous results. There is many publications on this 
subject, more details can be found in (Goldberg, 1989). 

Basic concepts connected with genetic algorithms are: 

 
• Method of saving the parameters of each individual – chromosome; 

• Method to rating the individuals - the fitness function ; 

• Random selection of initial population; 
• Selection operator; 
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• Crossover operator; 
• Mutation operator. 

 

The basic genetic algorithm schema is shown in the Figure 1.2. Of course there is many 
methods to improve the basic algorithm, but the most important stages are following: first 
step is initialization of the population of chromosomes - they are generated randomly. Then 
for all chromosomes the cost function (fitness function) is evaluated. On the basis of this 
information the parent chromosomes are selected. Then the crossover and mutation 
operator makes the children population. The new population is created from new children 
population and selected individuals (best ones) of the old population. If the good enough 
individual is found (if the problem is solved) algorithm ends. If not, the algorithm goes 
back to the point 2 (cost function evaluation) (Dideková, 2009).  

 

 

 

Figure 1.2 Genetic algorithm schema (Genetic algorithms - Introduction) 

 

Let’s take a closer look for each element of genetic algorithm. 

Each individual (the description of problem solution) is modeled in computer memory – 
this description is called the chromosome. In all of practical problems used in the practical 
part of the Thesis the individuals can be seen as energy system’s models (in fact the input 
parameters which defines models). Descriptions of individuals, as well as descriptions of 
cost functions which can be used, will be introduced in each case. The fitness function has 
to be chosen appropriately to the given problem. The function does not evaluate the 
chromosomes directly, but the phenotype of each individual.  This grade is saved as the 
feature of each individual. 
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The initial population is built with n points from problem parameters space X. For genetic 
algorithm we are choosing the number of individuals and then, selecting them randomly. 
The next important step is checking the correctness of creating individuals. 

Selection operator is used when the stop condition is not fulfilled – it means that the good 
enough individual was not found and the number of algorithm iteration is smaller than the 
established one. As a result of selection the new population is created from parents 
population. The most popular selection methods are: 

 
• Fitness proportionate selection (roulette-wheel selection); 

• Tournament selection; 

• Truncation selection. 
 
Crossover is a genetic operator which makes new generation from previous one. It uses 
two individuals from parent population to create two offspring individuals. There are many 
types of crossover operator, for example single point crossover or two point crossover, 
which are presented in the  
Figure 1.3. 
 

 

Figure 1.3 Crossover operator in genetic algorithm 

 

Mutation is uncommon phenomena, but it is very important part of algorithm. It enters 
diversity into the solution set. The mutation operator changes value of randomly chosen 
part of chromosome. In many cases results are quite bad, but sometimes the output 
chromosome is suited better to environment – it gives better problem solution. Mutation 
helps when algorithm stops in the local extremums (it helps in finding global one). The 
main idea of mutation operator is shown in the Figure 1.4. Figure 1.5 presents the different 
types of mutation. 

 

 

Figure 1.4 Mutation operator in genetic algorithm 
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Figure 1.5 Mutation types (Stranz & Martin, 1997) 

 

The main idea about working of crossover and mutation operators is presented in the 
Figure 1.6. The crossover improves the solutions which were found previously – it is 
process similar to climbing at the top a hill that is not the highest (local maximum). On the 
other hand mutation lets for trying random solutions from the problem space. Most 
mutation will be bad and individuals will die. However occasionally a higher peak may be 
found. 

 

 

Figure 1.6 The role of crossover and mutation operators in genetic algorithm (Genetic 

Algorithms : General Idea) 
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1.2 Surrogate models – introduction  

Optimization of energy systems is a field in continuous development, and one which 
requires a lot of computation time and memory. Moreover, recent research in this domain 
demonstrates that new methods that include uncertainties in the design of such systems are 
needed. This means sampling of uncertain parameters and increasing the necessary 
computational resources. The role of surrogate models may be a way to include uncertainty 
in the analysis of energy systems.  Surrogate models possess the following crucial 
properties: 

 
• They can provide a more efficient model, allowing more iteration in optimization 

and uncertainty analysis. 
• Depending on the methods used, they can provide even analytical formulation what 

would open the door to uncertainty propagation. 

 

It should be noted that the word ‘model’ will be assigned to the original pre-existing 
model, which was developed based on flow sheeting and integration software. The 
expression ‘surrogate model’ will represent the model that will be developed in this study. 

Today, many energy system evaluation projects perform costly and lengthy laboratory 
experiments and/or complex computer models are used. Due to their complexity, a single 
evaluation of the model can require several hours of CPU processing time on a high-
performance computer. Because of this, many modern engineering designs use surrogate 
models: (Tenne & Armfield, 2008)  and (Won & Ray, 2005) 

As the examples show, great results can be achieved when surrogate models are used 
(Fernandes, 2006) 

There are several books and articles connected with surrogate methods theory (Caballero & 
Grossmann, 2008). There are mathematical (Kincaid & Chene, 2002) and artificial 
intelligence theory (Sivanandam, Sumathi, & Deepa, 2006). The real challenge is to apply 
the theory to a real life project. For each project the methodology has to be studied and the 
best method has to be chosen. 

There are also several MATLAB Toolboxes available for surrogate models and for neural 
networks. The manual for them will be studied and used during model development for 
this project (Beale, Hagan, & Demuth, 2010). 

1.3 Models evaluation methods  

We have to introduce the methods of evaluating the quality of surrogate model. 

To evaluate the model we normally use the additional auxiliary testing set. 

In the mathematical models we can distinguish two different set of points: training set 
(nodes of interpolation) and testing set. In the case of artificial intelligence model (we will 
focus on the neural network model) we have three different sets: training, validation and 
testing set. Training and validation set will be described in the next chapters. 

The testing set should cover the whole decision variable space (we should have a 
possibility to test all variants of the problem). However, in many cases the testing set is 
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chosen randomly – it is caused by a big complexity of the considered problem. In each of 
practical problems the detailed information about used testing set will be given. 

There are several different measurements which can be used to grade the surrogate model. 
Some of them (used in this Master Thesis) are introduced below. 

1.3.1 Norm of residual 

The norm of residuals is often used as a measure of the goodness of fit. It is especially 
useful when we have to compare different fits. 

The residuals �  are the difference between the real data value ��  and the output of the 
surrogate model in given point ����,�, ��,�, … , ��,��: 

 � = �� −  ����,� , ��,� , … , ��,��. 
 

The norm (in this context the L2-norm) of the vector z: 

 

� = �����⋮��
�, 

 

can be expressed as: 

 ||�||� = �|��|� + |��|� + ⋯ + |��|� � �! . 
 

So the norm of the residuals is the square root of the sum of squared �  values. It can be 
calculated from: 

 

"�#� = $%|�|��
�&� '� �! = (%)�� −  ����,�, ��,� , … , ��,��)��

�&� . 
  

Generally the smaller norm of residuals means, the fit is better. 

1.3.2 Correlation coefficient r 

Another common measurement of the “goodness” of a correlation is the correlation 
coefficient r. The square of r is the fraction of the variance in the dependent variables that 
is explained by the correlation.  The mathematical form to express the correlation 
coefficient is following: 
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#� = 1 − "�#���" − 1 �� ; 
 

where � is the standard deviation: 

 

� = +∑�����,� , ��,� , … , ��,�� − ��̅" − 1 , 
 

And � ̅is the mean (average) of all output values. 

The closer to 1 is the correlation coefficient, the better surrogate model fits the original 
function. 

1.3.3 Mean square error 

The mean squared error is default performance function of the feedforward neural network. 
This is the averaged squared error between the real values and output of the surrogate 
model.  

The mean squared error is defined in the following way: 

 

./0 = 1" %)�� −  ����,�, ��,�, … , ��,��)��
�&� . 

 

This measurement is similar to the norm of residuals. 

1.4 Mathematical models 

In this chapter several mathematical techniques will be described. Mathematical formulas 
can be useful in building surrogate models. Although in many cases they are very 
complicated and it takes a lot of memory and time to find a satisfactory solution by them.  

In this chapter, we will focus on one dimension approximation problem - the aim of the 
theory part is to present the main ideas and methods which can be used in surrogate 
modeling. The precise mathematical theory which is behind the used methods can be found 
in Numerical Analysis books (Kincaid & Chene, 2002).Some of the presented methods can 
be generalized for higher dimension problems. Although finding the smooth interpolants 
for multivariable functions is a difficult problem because of some unusual features of the 
multivariate problems. This features shows even in the bivariaite cases (two independent 
variables). 

1.4.1 Interpolation problem definition 

One of the way in which we can build a surrogate model is using the mathematical 
solution. There are several methods which can be used but this work is focusing on the 
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interpolation methods. They are a good example of the mathematical surrogate modeling. 
There are different methods of interpolation like, for example, linear, polynom or spline 
interpolation. Chosen methods will be presented and implemented in one of the analyzed 
real life problems. 

The interpolation problem is one of the basic problems of Numerical Mathematics and 
interpolation has also many engineering usages. The simplest explanation of the term 
interpolation is imagining the process of interpolation like an inverse of tabularizing a 
function. When we discretize a function we have an analytical form of a function and then 
we can use this form, build a table of values of this function in concrete points. On the 
other hand, when we interpolate, we know only values of the function in some, certain 
points, and using them we can find an analytical form of this function. This definition of 
the interpolation is consistent with the description of the surrogate modeling problem (we 
can generate only finite number of real examples but we would like to know the model 
values for different decision variable sets). 

The formal definition of the interpolation problem is following: 

 

For given ( )jixxxxNn jn ≠≠∈ for  x  ,...,, , i10  and function f defined in points 

{ }nxxx ,...,, 10  find a function nI  satisfying the following conditions:  

 

( ) ( ) ( )n0,1,...,i , == iin xfxI . 

 

Points  ,...,, 10 nxxx are called interpolation nodes and the function nI  is called an 

interpolation function. 

 

The examples of solution for interpolation problem are shown below. 

Another very important problem connected with interpolation is the interpolation error. 
The interpolation function has the same value as function f only in the nodes. In other 
points of interval in which we interpolate, there could be differences between interpolation 
function and the relevant function. This error of interpolation is called the rest of 
interpolation. 

1.4.2 Nearest-neighbor interpolation 

Nearest-neighbor interpolation is the one of the simplest method of interpolation. 
Sometimes it is called point sampling or proximal interpolation. This method can be used 
in one dimension problems as well as in the more complicated ones. Easy to implement 
algorithm selects the closest point and just assign its value like a solution of interpolation 
problem. Algorithm in the basic version does not include the values of other points in the 
neighborhood to the final solution so as a result we have piecewise-constant interpolation 
function instead of the continuous one. 

The nearest-neighbor algorithm as well as its modifications (k-nearest-neighbor 
algorithms) are often use in the pattern recognition problems and are classified as the 
simplest of the machine learning algorithms. Simplicity of this solution is connected with 
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rather big interpolation error in case of fitting the functions. The example of the use of this 
method can be seen in the Figure 1.7 . 

This method is rarely used in the one dimension problems. We can use other interpolation 
methods, like for example linear interpolation, which is not more difficult and almost 
always gives better results. On the other hand in multi dimension problems we can 
consider nearest-neighbor interpolation because of its simplicity and speed. But if we 
would like to have good results with this method we need many samples – interpolation 
nodes. However problems considered in the next part of the Thesis need more precise and 
faster methods (the nodes generation is connected with time) so the different surrogate 
techniques have to be applied. 

 

 

Figure 1.7 Nearest-neighbour interpolation of function cos(x) based on 10 equidistant 

nodes in the interval [0,10]. 

1.4.3 Linear interpolation 

Second simple method of interpolation is the linear interpolation (sometimes it is called 
lerp).  It is old and often used method – it has been used since antiquity in Mesopotamia 
and Greek in mathematical and astronomical computations. 

In case of two interpolation nodes 1����, ��  and 1����, ��  the linear interpolant is the 
straight line between them. This situation is illustrated in the Figure 1.8. We can easily 
notice that the following proportion is true (geometrical derivation): 

 � − ��� − �� = �� − ���� − ��. 
 

From this equation we have the linear interpolation formula. The � value of the 
interpolated point 1��, � ,  where � is in the interval ���, �� ,  is equal:  
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� = �� + �� − �� ∙ �� − ���� − ��. 
 

 

 

Figure 1.8 Linear interpolation between two given points P1 and P2 

 

The interpolation of bigger set of data points is presented in the Figure 1.9. The 
interpolation is concatenation of linear interpolants build for each pair of consecutive 
points. The final form of interpolation function has the following features: 

 

• Continuous curve; 
• Discontinuous derivative; 
• Differentiability class C0

. 

 

Linear interpolation is simple in comparison to other methods, but we have to remember 
about the interpolation error. The error of approximation 34 is defined as: 

  34 = ��� − 5�� , 
where: 

5�� = ���� + ���� − ���� �� − �� �� − ��  

 

is linear interpolation polynom. We can prove be using Rolle’s theorem that the following 
expression is true: 

 

 |34| ≤ ��� − �� �8 max;<=;=;>|�??�� |, 
 

if original function � has continuous second derivative. The error of linear interpolation 
depends on the maximum value of second derivative of original function and the length of 



22 

interpolation interval – for longer interval and “curvier” function we have worse 
extrapolation.  

 

 

Figure 1.9 Linear interpolation of function cos(x) based on 10 equidistant nodes in the 

interval [0,10]. 

 

1.4.4 Polynomial interpolation 

Linear interpolation for two nodes is the simple case of polynomial interpolation. 
Polynomial interpolation is more complicated method than previous forms of interpolation. 
We can obtain relatively good results with it, however, certain conditions must be satisfied.  

Interpolation polynom definition is following: 

 

By interpolation polynom we mean polynom degree at most n, which takes values 

nwww ,...,, 10  in pair wise different points nxxx ,...,, 10 . Numbers nxxx ,...,, 10  we 

called interpolation nodes. 

 

This definition is consistent with Interpolation problem. There is several ways of 
construction the interpolation polynoms. We will show two basic methods of constructing 
the polynom, which satisfy the interpolation problem conditions, to prove that the problem 
have the polynom solution. 

We will start from the Lagrange form of interpolation polynom. Using this form we can in 
the simplest way show how the interpolation polynom works. We have to think about the 
following polynom ( )xLn : 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑
=

=+++=
n

k

kknnn xxfxxfxxfxxfxL
0

1100 ... λλλλ , 
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where:  

( )
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )nkkkkkkk

nkk
k

xxxxxxxxxx

xxxxxxxxxx
x

−−−−−

−−−−−
=

+−

+−

......

......

1110

1110λ . 

 

The polynom ( )xLn  is built with using values of function f in given points and auxiliary 

polynoms ( )xkλ . We can notice that polynom ( )xkλ  is equal to 1, for x equals ix , when i is 

k and ( )xkλ  is 0, when i is not equal to k : 

 

( )




=

≠
=

ki

ki
xik for  1

for  0
λ , ni ,...,1,0=  

 

So we can see that value of interpolation polynom nL  in points 10 , xx …, is the same as 

value of the function � in those points. In this way we have shown that the Lagrange 
problem has a solution. What’s more it is very easy to prove from Fundamental Theorem 
of Algebra that this solution is unambiguous. 

Computing a coefficient of interpolation polynom or its value in a concrete point is rather 
complicated and laborious. Of course we can find algorithms which help us to do it, but the 
whole process of computing still will be very time-consuming. For this reason we 
introduce the Newton form of interpolation polynom. Each polynom can be presented in 
the Newton form, which means the sum of the products of auxiliary polynoms 5���  and 
suitable coefficients @� . We can also write an interpolation polynom in the Newton form: 

 

( ) ( )∑
=

=
n

k

kkn xpbxL
0

,  

where: 

( )( ) ( ) ( ).,...2,1            ...)(

1)(

110

0

=−−−=

≡

− kxxxxxxxp

xp

kk  

 

In this case, we call coefficient @�  differential ratios of function f with nodes nxxx ,...,, 10 . 

The simplest way to compute each differential ratio is using the following recursive 
formula: 

 

 

[ ] ( )ll xfxf = ,  nl ,...,1,0=  

 

We can notice that to compute a differential ratio rank k we need two differential ratios 
rank k-1 with other nodes. When we know how we can find coefficients@� , we can write 
the final form of the Newton interpolation polynom: 

[ ]
[ ] [ ]

lkl

klllklll
klll

xx

xxxfxxxf
xxxf

−

−
=

+

−+++++
++

1121
1

,...,,...,,
,...,,
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( ) [ ] [ ]( )( ) ( )110
1

10 ....,...,, −

=

−−−+= ∑ i

k

i

ion xxxxxxxxxfxfxL . 

 

We can see that it is built from polynoms 5���  and differential ratios. Finding the 
coefficients of polynom in this form is easier than in case of the Lagrange form. To make it 
in the simplest way we can use the algorithm of building the table of differential ratios. 
When we interpolate on the basis of equidistant nodes the interpolation process is even 
easier (in case of Lagrange form of interpolation polynom) – instead of differential ration 
we are using finite differences and the formulas are simplify. 

Another important problem of polynomial interpolation is the polynomial interpolation rest 3�� . For any continuous function ( )xf  and any pairwise points kxxx ,...,, 10  the 

following formula holds: 

 

( ) ( ) ( )xRxLxf n =− , 

( ) [ ]( )( ) ( )nn xxxxxxxxxfxR −−−= ...,...,, 100 . 

 

Precise calculating the interpolation error is rather complicated and we have to look for 
other methods of finding the rest of interpolation. Especially when it comes to practical 
solutions, we only have to know an approximate maximum of error.  

The second important problem of interpolation is the following: how should we choose 
nodes if we want to have the minimal rest of interpolation? Until now, we didn’t give any 
special conditions to interpolation nodes. There was only one important thing – when we 
interpolate function on the interval <a,b> all nodes also have to belong to that interval. For 
other nodes we have other interpolation polynoms, which approximate a given function 
more or less precisely. We have to find nodes which give us the best approximation. In 
other words we want to find a polynom which is closest to given function. As a matter of 
fact, those conditions are satisfied by polynom based on the nodes which are roots of the 
Chebyshev polynom. The Chebyshev polynom can be defined by trigonometric identity: 

 A��� = cos�" ∙ arccos � = cosh�" ∙ arcosh� . 
 

 We can introduce also a formula, which helps us to find needed nodes: 

 

( ) 212

12
cos

2

ba

n

kab
xk

+
+

+

+
⋅

−
= π . 

 

The differences between polynomial interpolation in different cases can be seen in the 
Figure 1.10. Four different situations are presented: 
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A. Polynomial interpolation based on the 5 equidistant nodes; 
B. Polynomial interpolation based on the 5 Chebyshev nodes; 
C. Polynomial interpolation based on the 33 equidistant nodes; 
D. Polynomial interpolation based on the 33 Chebyshev nodes. 

 

 

 

Figure 1.10 Interpolation polynoms of function ��� = ���G0,1 − �H in interval [-4,4] 

based on different types of nodes: equidistant(A,C) and Chebyshev(B,D) and different 

number of nodes: 5 nodes (A, B) and 33 nodes (C,D). 

 

For 5 nodes the results are similar for both cases: equidistant and Chebyshev ones. For 33 
Chebyshev nodes we have very good results with minimal rest of interpolation. On the 
other hand in the case of 33 equidistant nodes the interpolation error is huge. This is a good 
illustration of the Runge Phenomenon. It is the situation when with growing values of n 
(that is growing number of interpolation nodes), the maximum error of interpolation grows 
infinitely. The rest of interpolations are shown in the Table 1.1 Rest of interpolations for 
different interpolation conditions. 
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Table 1.1 Rest of interpolations for different interpolation conditions. 

 Type of nodes Number of nodes Error maximum 

A 5 Equidistant 0,34 

B 5 Chebyshev 0,37 

C 33 Equidistant 101216 

D 33 Chebyshev 0,042 

 

To sum up, the smaller rather than bigger number of equidistant nodes gives better results. 
With the Chebyshev nodes, on the other hand, it is the other way around, that is the more 
nodes, the better results. 

1.4.5 Spline interpolation 

The next method of numerical mathematics is spline interpolation. This type of 
interpolation is in some details similar to linear interpolation and in other to polynomial 
one. In this case the interpolation function is special type of piecewise low degree polynom 
– spline (but the polynom pieces fits smoothly together). There are several advantages of 
this type of interpolation over the standard polynomial interpolation: 

 
• Interpolation error can be minimized with using low degree polynoms for the 

spline. The rest of interpolation is smaller than in case of linear interpolation; 
• The Runge effect is not present in this case; 

• Interpolant is smooth; 
• It is easier to find a value of the interpolating function (evaluate it) than in case of 

high degree polynoms. 
 

Formal definition of spline according to (Kincaid & Chene, 2002): 

A spline function consists of polynomial pieces on subintervals joined together with 
certain continuity conditions. Formally, suppose that n+1 points �0, �1, … , �" have been 
specified and satisfy �0 ≤ �1 ≤ ⋯ ≤ �". These points are often called knots in case of 
spline interpolation. Suppose also that an integer I ≥ 0 has been prescribed. A spline 
function of degree I having knots �0, �1, … , �" is a function / such that:  

 
• On each interval [xLM�, xL , S is a polynomial of degree ≤ k; 
• S has a continuous �k − 1 st derivative on [xP, xQ]. 

 

So we are looking for a spline of degree " function in following form: 
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/�� = S /P��      �T[�P, ��]/���      �T[��, ��]⋮/�M���      �T[��M�, ��]U. 
 /V��  is a polynom of degree I. 

The spline interpolation of degree 0 has the same principals as nearest-neighbor 
interpolation. Linear spline interpolation (spline of degree 1), on the other hand, is 
consistent with linear interpolation process, which was described earlier. 

Now let focus on the spline interpolation of degree 3 (cubic spline interpolation). This 
method will be presented in practical usages in the next part of the Thesis. 

For cubic splines we have following requirements: 

 
• /��V = ���V   - standard condition for interpolation 

• Continuously differentiable condition for W = 1, … , " − 1: 
 /VM���V =  /V��V , /?VM���V =  /?V��V , /VM�′′��V =  /V′′��V . 
 

Moreover we have to remember about the conditions for first and last knot. We can give 
them as: /?��P = Y and /?��� = Z - the result is clamped cubic spline. The second 
possibility is: /??��P = 0 and /?′��� = 0 - the natural cubic spline . 

In the case of cubic spline interpolant has the form  of separate cubic polynoms for each 
interval with the different coefficient for each of them (�T[�V, �V[�]): 
 /V�� = �V�� − �V \ + @V�� − �V � + 
V�� − �V + V . 
 
The ex ample of the cubic spline interpolation can be seen in the Figure 1.12. We can 
observe, that in the case of interpolation of function 
����  based on 10 equidistant nodes 
in the interval [1,10] it gave great results. The functions are almost identical. 
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Figure 1.11 Cubic spline interpolation of function cos(x) based on 10 equidistant nodes in 

the interval [0,10]. 

 

To sum up – the spline interpolation has many advantages and is popular in practical 
solutions. It is easy to implement, fast and produce smooth curves (for example in case of 
cubic spline). In case of polynomial interpolation we have continuous solution but in many 
cases for high degree polynoms there are big interpolation errors next to the ends of 
interpolation intervals. In case of cubic spline those problems are not present. But on the 
other hand it is only piecewise continuous – when the problem is sensitive for changes in 
the higher derivatives (for cubic splines higher than second) the interpolation errors can 
occur.   

1.4.6 Cubic Hermite interpolation 

The cubic Hermite interpolation find an interpolant 1��  in each interval on the basis of 
the given value and slopes at the two endpoints. The values in the knots of interpolant and 
the function are the same: 1��V = ���V . The second condition is that the first derivative 1′��  is continous (but the second one 1′′��  is not). The second important thing is 
choosing the slopes in the knots.  1��  shape is compatible with the shape and 
monotonicity of the data. It can be observed especially in the local extremums – the 
interpolant act as the original function (it preserves function monotonicity and 
extremums)(MATLAB documentation, pchip command). The example of cubic Hermite 
interpolation can be seen in the Figure 1.12  
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Figure 1.12 Cubic Hermite interpolation of function cos(x) based on 10 equidistant nodes 

in the interval [0,10]. 

 

The cubic Hermite interpolation is in many aspects similar to cubic spline interpolation. 
They construct interpolants in very similar way. The difference is in the way in which the 
slopes at the knots are chosen (in case of cubic spline the second derivative is continuous). 
The results of this behavior are following: 

 
• It is easier to build Hermite interpolant than cubic spline one; 
• The evaluation time of both of them is very similar; 
• Spline interpolation gives smoother results because / ′′��  is continuous; 
• Spline is better solution in situation when we interpolate a smooth function; 
• When the interpolated function is not smooth (when it has a point of a non-

continuity) it is better to choose Hermite interpolation because it do not have so 
big effect of overshoots and oscillation. (MATLAB documentation, pchip 
command) 

 

The Figure 1.13 shows the differences between cubic spline interpolation and cubic 
Hermite interpolation. 
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Figure 1.13 Cubic Spline Interpolation (spline) versus Cubic Hermite Interpolation (pchip) 

(MATLAB documentation, pchip command) 

 

1.4.7 Polynom fitting 

Interpolation is a part of the wider brand of mathematic called curve fitting (or regression 
analysis). When we interpolate we would like to find a function which exactly fits the data 
points. In case of the curve fitting we are looking for the function which closely fits the 
data, for example in a least squares sense. Last squares sense means the minimization the 
sum of squared residuals (residual is the difference between a real value in a point and 
value of fitted function in that point) 

The curve fitting involves interpolation as well as smoothing – process of finding a smooth 
function which approximates the data points. Another important term connected with 
regression analysis is extrapolation. Extrapolation is using the approximated function 
beyond the interval in which the beginning data points was situated. The uncertainty and 
errors are in this case much bigger than in the case of standard situation.  

The example of regression analysis is shown in the Figure 1.14. We can notice that the 
worst error is in the case of first degree polynom (it is straight line). From the other hand in 
case of fourth degree polynom we can observe big rest on the ends of approximation 
interval. 
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Figure 1.14 Polynomial fitting for function 
����  - red line – in the interval [0,12] by 

polynoms of different degree: blue – fist degree, green – second degree, yellow – third 

degree, violet – fourth degree. 

 

There are several reasons to choose curve fitting instead of polynomial interpolation. When 
we have many nodes it is better to use regression analysis (instead of high dimension 
polynomial interpolation) because of: 

 

• The Runge Phenomena – situation in which high order polynoms can have 
oscillatory character and the rest of interpolation grows infinitely; 

• The high dimension polynoms can fit the data precisely but in many cases more 
important is the effect of averaging the results (what can be done by fitting the  
smaller degree polynom); 

• The exact interpolation of high dimension polynom can be hard and time 
consuming. In many cases we need only approximate solution which can be good 
enough to practical problems; 

• The high order polynoms are less smooth than simpler one (they have more 
inflection points). 

 

Two situations were discussed: when we have more nodes than degree of interpolation and 
when those two numbers are the same. The situation when we would like to fit the 
polynom which degree is higher than number of nodes is the most complicate one. Imagine 
that we would like to fit the straight line (first degree polynom) to one point. There is 
infinite number of possible solutions. So finding a good method of evaluating solutions and 
choosing one is hard. 

Finding the best degree of polynom (which fits the data the best) has to be done 
experimentally, but we can assume that we should choose the smallest possible degree, 
which gives us a satisfying result. 
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1.5 Artificial intelligence models  

The second very important techniques of surrogate modeling is artificial intelligence 
approach. When we are talking about artificial intelligence we think about computer 
programming methods which imitate the real biology organisms or processes. 

The methods which can be used in the surrogate modeling are neural networks, supported 
vector machines, machine learning and genetic programming.  

Below the basic concepts of neural networks and genetic programming will be introduced. 

The main part of the Thesis – description of the surrogate model for complicated energy 
system will be connected with neural networks problems.  

1.6 Neural networks 

1.6.1 Introduction 

Many scientists have a big interest in neural networks. They are the great instrument to 
solve problems from different brands of science. We can understand neural networks as the 
modern computing systems, which architecture and method of processing  information is 
similar to the biological prototype – human brain. In the Table 1.2 the differences between 
human brain and computer are presented. Neural networks are a way in which computer 
try to imitate brain processes. Information processed by the network has the form of the 
numerical data and because of that the neural networks can be used to model many 
different types of systems. 

The first neural network – perception – was invented by Frank Rosenblatt in 1957 at the 
Cornell Aeronautical Laboratory. It can be seen as a simple linear classifier build on the 
basis of the biological model, which was able to learn.  

 

Table 1.2 Comparison of brain and computer (Orr, 1999) 

 

 

Processing 
element 

Element 
size 

Energy 
use 

Processing 
speed 

Style of 
computation 

Fault 
tolerant 

Learns Intelligent, 
conscious 

Brain 1014 
synapses 

10-6 m 30 W 100 Hz Parallel, 
distributed 

Yes Yes Usually 

Computer 108 
transistors 

10-6 m 30 W 
(CPU) 

109 Hz Serial, 
centralized 

No A 
little 

Not (yet) 

 

There are seven main parts in the process of creating the Neural Network: 

 
• Data collecting; 

• Network creation; 
• Network configuration; 

• Initializing weights and biases; 

• Network training; 

• Network validating 
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• Network using. 

 

In the practical part of the Master Thesis all of this step will be used and demonstrated. To 
understand good all of those steps we have to look into the theory behind neural networks. 

1.6.2  Simple neuron 

The simplest and most important element of neural network is simple, single input neuron. 
The schema of the neuron is presented in the Figure 1.15.  

 

 

Figure 1.15 Simple neuron (Beale, Hagan, & Demuth, 2010) 

 

There are several important values presented in the graph: input p, weight w, bias b, net 
input n, transfer function f and output a. 

The values of bias and weight are adjustable. The training  network process is in fact a 
process of finding the appropriate values of this two parameters. 

Now we will take a closer look on the mathematical operations which take place in the 
neuron. Firstly the scalar input is multiplied by a weight. The product of this operation is 
added to the bias value – as a result we get a net input. We can understand a bias value like 
an additional weight for input equals 1. The next operation is finding the value of transfer 
function for the net input - the result of this operation is output value. So we can write: 

 � = ��" = ��5 ∙ ] + @ . 
 

The names of described processes are respectively: the weighting function, the net input 
function and the transfer function. 

The most popular weighting function is multiplying the input value by a weight, however 
sometimes different function are used. As a net input function we use normally the 
summation of weighted inputs with the bias. Transfer function depends from the type of 
the considered problem. 



34 

1.6.3 Transfer functions 

There are many different transfer functions used in the design of neural networks. Two of 
them are presented in the Figure 1.16.  Those transfer functions – linear and log sigmoid 
transfer function - are commonly used in the practical solutions, especially in the problems 
connected with fitting the functions. 

 

 

Figure 1.16 Transfer functions used in Neural Network (Beale, Hagan, & Demuth, 2010) 

 

First example is linear transfer function. This type of the neuron is often used in the last 
layer of the multilayer approximation network.  

The second example – sigmoid transfer function (log-sigmoid function, also known as a 
logistic function) – is commonly used in the hidden layers of multilayer networks. This 
function takes the input (any value between plus and minus infinity) and give the output 
value in the range �0,1 .  Sigmoid function is prized because its derivative is easy to 
calculate. This fact is helpful in calculating and updating the weights in the process of 
training.  

The sigmoid transfer function is represented by the following formula: 

 

^�_ = 11 + `Mab . 
 

For c = 1 the derivative of this function can be calculated from: 

 ^�_ _ = ^�_ [1 − ^�_ ]. 
 

And for c ≠ 1, using ^�c, _ = ��[efgh, we have the following formulation:  

 ^�c, _ _ = c[^�c, _ [1 − ^�c, _  ]]. 
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1.6.4 Neuron with vector input 

In this subchapter the neuron with many inputs values is presented. The individual input 
elements: 51,  52, … , 53 are multiplied by weights:  ]�,�,  ]�,�, … , ]�,j . Their sum is kl 

(the dot product of the single row matrix k and the vector l). The schema of the single 
neuron with many inputs is presented in the Figure 1.17. 

 

 

Figure 1.17 Neuron with vector input (Beale, Hagan, & Demuth, 2010) 

 

Additional value in the neuron is the bias – it is summed with the weighted inputs to form 
the net input ". Then to get the value of output we have to use the transfer function:  

 � = ��" = ��k ∙ l + @ = ��]�,� ∙ 5� + ]�,� ∙ 5� + ⋯ + ]�,j ∙ 5j + @�. 
 

The presented form of notation is quite complicated and detailed. Because of that simpler 
form is introduced – it is shown in the Figure 1.18. This abbreciated notation is especially 
useful when we have to represent complicated multilayer networks. 

 

 

Figure 1.18 Neuron with vector input: abbreviated notation (Beale, Hagan, & Demuth, 

2010) 

1.6.5 Multilayer neural network 

The very simple idea of multilayer network is presented in the Figure 1.19. It shows a 
neural network with one input layer, one hidden layer and one output layer. 
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Figure 1.19 Simple representation of multilayer Network (Stergiou & Siganos) 

 

Now we will explain more precisely the concept of layer and multilayer network. 

Generally, two or more neurons can be connected to create a layer. A network can contain 
one or more layers. A layer of network includes the weights, the multiplication and 
summation operations, the bias @ and the transfer function �. The array of inputs - vector l 
- is not included in or called a layer.  

First we will focus on the single layer of neurons. An examples of different notations of  
one-layer network with R input elements and S neurons follows are presented in the Figure 
1.20.  

 

 

Figure 1.20 One layer of a neural network in normal and abbreviated notation (Beale, 

Hagan, & Demuth, 2010) 

 

In this network, each element of the input vector p is connected to each neuron input 
through the weight matrix W. 

The multilayer network schema a is presented in the Figure 1.21. 
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Figure 1.21 Multilayer network (Beale, Hagan, & Demuth, 2010) 

 

The next figure, Figure 1.22, shows the basic neural network model used in the practical 
problems in the Master Thesis. As it is said in the (Beale, Hagan, & Demuth, 2010) this 
network can be used as a general function approximator. It can arbitrarily well approximate 
any function with a finite number of discontinuities (of course we have to remember about 
sufficient neurons in the hidden layer). 

 

 

Figure 1.22 Approximation network with one hidden layer(Beale, Hagan, & Demuth, 

2010) 

 

1.6.6 Back propagation algorithm 

The back propagation training is one of the most popular methods of training neural 
networks. The first step in this problem is to prepare the appropriate sets of the data: 
training and validating one. Training set should precisely characterize investigated problem 
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(it is the best situation). The training set has two parts: the vectors of input data (values 
which are taken by the network) and the vectors of target data (the values which should be 
given by a network). 

The initial values of weights and biases are chosen randomly. 

The back propagation algorithm can be described in the following way: 

The chosen input vector is transformed by the network. After that the network output value 
is compared with the target vector for this input. We have to check if the answer of the 
network is correct, and if not how big is the error. Next, this error is propagated in the 
network but in the reverse direction than the input vector (from output to the input layer). 
On the basis of this error the weights in each neuron are corrected to decrease the error of 
the answer in the next iteration. This procedure is repeated until the error of the network is 
smaller than assumed earlier value. 

The same procedure has to be done for all of the input vectors from training set.  
Processing of the whole training set is called an epoch. After each epoch the error in 
validation set is calculated. The minimum value of validation error from all epoch is saved. 
If during six (this number was used in the practical part of the Thesis) consecutive epochs 
the error in validation set does not decrease, the training process is stopped. 

Good and detailed description of back propagation algorithm can be find in (Bernacki, 
Włodarczyk, & Gołda, 2004) 

1.7 Genetic programming 

Genetic programming can be used not only to optimize a model but also to build a 
surrogate model. As it was mentioned before the genetic algorithms apply the Darwin 
Evolution Theory to the regression model over a series of generations(Sreekanth & Datta, 
2010). All genetic algorithms need specific input data. In this case each individual is a 
specified surrogate model – in other words it is a syntactically correct computer programs 
which behave as a conventional model. All of those individuals are built with parametric 
constants, specified inputs, operators (addiction, subtraction, multiplication, etc.) and 
function (ex. trigonometric function). The example of individuals can be seen in the Figure 
1.23.  

To evaluate individuals we have to prepare the testing set of input points for original model 
and the values of output in this point of the real model. Then we examine each individual 
by checking the difference (error) between the individual output (it is program – surrogate 
model so we can find its output for input point) and real output for all points from testing 
set.  

The genetic algorithm works in the standard way: cross-over, mutation, duplication and 
delete operators are used to prepare next population. This action leads to finding the best 
suited individuals – the best surrogate models which have the smallest error. Figure 1.23 
shows how the children population (Figure 1.23 c, d) is created from parent population  
(Figure 1.23 a, b): they are created as a result of cross-over and mutation operators applied 
to the two individuals from parent population. In the Figure 1.23 d is presented interesting 
situation: variable y is eliminated from the equation, so this individual gives the constant 
output for any input point. 
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The children population is tested with the previously described way and reproduced 
according to the results. After many iterations of the algorithm the functions evaluate and 
the good surrogate model can be found. 

 

 

Figure 1.23 Genetic  programs  in  tree structure for one decision variable model 

(Sreekanth & Datta, 2010) 
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2 ONE DECISION VARIABLE MODEL 

The second chapter of the Thesis consist the analysis of the relatively simple real life 
problem (with only one decision variable). In this part the theoretical assumptions used in 
model are described. Also the surrogate model is prepared and evaluated. Different model 
techniques are introduced into the practical problem and differences in those methods are 
pointed. 

2.1 Flow sheet and model description  

In this part of the Thesis the energy system with installed gas turbines will be considered. 
There are several ways to reduce CO2 from such system. One of them is to capture and 
sequester CO2 by using monoethanolamine (MEA). To make this process efficient we need 
high concentration of CO2. To make the CO2 concentration high in exhaust gases (they are 
going to sorbent process) we can re-inject a part of flue gases in the compressor. 

Gas turbine model with recirculation 

The first part of the system which we should analyze is gas turbine model with 
recirculation. The schema of this system is shown in the Figure 2.1. 

 

 

Figure 2.1  Gas turbine with recirculation schema – GT_SEQ  

 

All details about the streams and other elements in the system are given in the reports 
according the computer models used in the practical part of the Thesis (Dubuis & Tock, 
2010). 

Modeling an recirculation in the system as similarly to reality as possible is not a simple 
task. Several assumptions were made in order to prepare a model of an recirculation 
impacts in the system. All of the assumptions were made on the basis of nominal condition 
presented in (Dubuis & Tock, 2010). The assumptions are following: 
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• Volumetric flow rate is constant - it is equal to 400 �\ �! . This assumption is made 

due to maintain velocity triangle in the compressor; 
• Split fraction of the streams after LP  and HP compressors are constant and equal 

respectively /� = 0.77 and /� = 0.61 (this assumption is made to avoid detailed 
simulation;  the splitting fraction  of  these  flows  are given by the geometry and 
the type of fuid); 

• The  temperatures of streams before the turbines are maximally equal to A� =1100°q (LP turbine) and A� = 1300°q (HP turbine). This assumption is made 
because the capacity of the blade cooling system. Those temperatures are controlled 
by the air excess in the combustor 

 

Moreover, we should remember that volumetric flow rate is not constant in the turbines. It 
is because the inlet temperatures are maintained constant. The velocity triangles in the 
turbines will change.  

It is also assumed that isentropic efficiency of the turbines is constant, but in fact, it should 
decreases because of non-optimal flow conditions connected with recirculation. Also the 
work produced by the turbines is overestimated. 

The turbine models, as well as compressor models are built on the basis of mass and 
energy balances and isentropic efficiencies. 

To improve the flame stability we need to add H2 inlet streams. The amount of H2 to be 
added as a function of the excess O2 left after combustion is shown in the Figure 2.2. 

 

 

Figure 2.2 The amount of H2 to be added to improve flame stability 

 

The blue curve is for adding pure H2 and red one represents adding of a syngas (60% of H2 

and 40% of CO). In case of syngas it is mixed with natural gas. The syngas is more 
available as the product of autothermal reforming of natural gas, so this situation will be 
considered. 
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Syngas production 

As it was mentioned, to maintain flame stability, it is necessary to add H2 to the fuel and 
the hydrogen is introduced by producing syngas. The unit to produce syngas was also 
modeled and its schema is presented in the Figure 2.3.  

 

 

 

Figure 2.3 Syngas production schema – REACT  

 

The syngas production is modeled as synthesis in the membrane reactor. The oxygen for 
partial oxidation process is provided from the air. The main process reactions are: 

 

• Steam methane reforming SMR( molkJhr /206
0~

−=∆ ): 
CH4 + H2O ↔ CO + 3H2 

• Partial oxidation  POX ( molkJhr /36
0~

=∆ ): 
CH4 +1/2 O2 ↔ CO + 2H2 

• Auto-thermal reforming where the heat for the endothermic reforming is 
satisfied by the exothermic partial oxidation. 
 

These reactions are followed by a one or two step water-gas shift reaction to convert CO to 

CO2 and additional H2 (WGS: CO + H2O ↔ CO2 + H2 , molkJhr /41
0~

=∆ ). 

The overall reaction is autothermal and it is assumed that there is no oxygen at the reactor 
outlet. The reactions are operated at 950 °C and 30 bar with a steam to carbon ratio initially 
set to 2.   

The natural gas combustion and recovering heat from H2 streams leaving the reactor at 
high temperature help in satisfy heat demands of H2 production. Moreover we have to 
remember, that the temperature of the H2 entering the combustion chamber can not be 
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higher than 200 – 2500C. So there can be used heat exchanger to preheat the reactants in 
those streams. 

The MEA unit  

The last part of the system to be modeled is MEA unit. In used model is was assumed as a 
black box. The schema is represented in the Figure 2.4. 

 

 

Figure 2.4  CO2 capture black box model for chemical absorption with 

monoethanolamines (Dubuis & Tock, 2010) 

 

In fact, this problem can be modeled in much more complicated way presented in the 
Figure 2.5. 

 

 

Figure 2.5 Flow-sheeting model which can be use to simulate multi-pressure, split-fraction 

CO 2 capture (Bernier, Marechal, & Samson, 2009) 

 

The model which is based on flowsheeting software  is very time and memory-consuming. 
A simpler model is based on the following assumptions. First of all the amount of CO2 

captured is equal to 90% (it is the data basis on the literature). The heat and mechanical 
power consumption have the following values: 
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• Thermal heat need at 150: 3.7 MJ/kg CO2 captured; 

• Thermal heat demand at 110: 3.7 MJ/kg CO2 captured; 

• Mechanical power: 1 MJ/kg CO2 captured. 

2.2 Problem description 

The first problem which was analyzed in the Thesis is simple model with only one decision 
variable. The modeled system is gas turbine power plants designs with CO 2 capture with 
Flue Gas Recirculation (FGR). The decision variable in this case is the Recirculation 
Fraction and all output values depend on this parameter. 

In the next chapters different surrogate models will be introduced and evaluated. This 
simple problem is an excellent example of techniques used in surrogate modeling. 
Moreover it is a good introduction to the more complicated cases which can be solved by 
using similar methodology.  The surrogate models of the simple system will show 
differences between mathematical and artificial intelligence approaches. Also the methods 
of finding interpolation error and evaluating the surrogate model will be introduced. 

We have to remember about one more big advantage of one decision variable surrogate 
models. In practical problems we often prepare the sensitivity analysis – we want to know 
the influence of one decision variable for the output function. So even simple mathematical 
or artificial intelligence models can help in preparing this curves. After generating very 
small number of points and building a surrogate model we can have very precise sensitivity 
analysis data. 

Moreover the prepared surrogate model can be used in real life problem. The existing 
model is used to optimize the gas turbine power plant system in LENI EPFL laboratory. 
The optimization process is complicated especially because the computer model is built 
with several parts. The main optimization program uses data from two separate models. In 
the Figure 2.6.A the schema of this system is presented. The VALI model as well as 
ASPEN model are both flowsheet software. The main part of the system, gas turbine power 
plant, is modeled in VALI software. The CO2 storage module is build in ASPEN 
technology. Figure 2.1.B presents the simplified problem model which was used to prepare 
the surrogate model. 

 

 

Figure 2.6 The multi-objective problem (gas turbine power plant with CO2 capture with 

Flue Gas Recirculation). A - program schema, B simplified problem. 
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Generating data by both parts of the model is very laborious and time consuming. For 
example, generation output values from one decision variable point with OSMOSE 
procedure and VALI model takes approximately 7 seconds. So for 100 points we need 
about 700 seconds – it mean over 11 minutes. And the optimization algorithm calculates 
thousands of points in both VALI and/or ASPEN modules. 

The surrogate model will be prepared for the gas turbine power plant (originally modeled 
in VALI). This should make the optimization process much faster. It will be possible to 
analyze more points and run more iteration of optimization algorithm. So also the results of 
the optimization should be more precise.    

 

2.3 Modeling problem description  

In this part of the Master Thesis the system with only one input parameter was considered. 
All output parameters are the function of one variable: recirculation ratio.  

In the first part of the modeling process only one output value was considered. It was the 
power output from the turbine. The different methods of building surrogate model were  
implemented for this problem. The mathematical models (nearest-neighbor interpolation, 
linear interpolation, cubic spline interpolation, cubic Hermite interpolation and polynom 
fitting) as well as artificial intelligence models (neural network with one neuron in input 
layer and one neuron in output layer) were prepared. Also the different numbers of nodes 
of interpolation was checked. All of this method was evaluated and the precision of the 
different surrogate models was compared.   

After the method’s evaluation the best one from mathematical methods – spline 
interpolation - was chosen to use in more complicate model. The second model had the 
same input value like simpler one: recirculation ratio, but it had many more output 
parameters. These parameters are needed by energy integration and performance 
evaluation (hot and cold stream definition, energy stream…). The output parameters 
analyzed in the problem are shown in the Table 2.1. Table 2.1 presents also the example of 
values of all output variables for recirculation ratio equals 30%.  For the same problem 
data (input and output variables) the second surrogate model was prepared. The second 
model was based on the neural network with one neuron in input layer and 79 neurons in 
output layer. 

 

Table 2.1 All input and output variables in the surrogate model with example of values.  

Model Tag name Output variable Unit Value 

INPUT 

GT_SEQ RECY_FRAC Recirculation fraction - 0,3 

OUTPUT 

GT_SEQ TURB2_OUT_T Temperature after HP 
turbine 

K 926,14 

GT_SEQ TURB2_OUT_HFLOWTOT Total enthalpy flow after 
HP turbine 

kW 425595 
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GT_SEQ COOL_OUT_T Temperature before 
separator 

K 298,15 

GT_SEQ COOL_OUT_HFLOWTOT Total enthalpy flow before 
separator 

kW 22325,1 

REACT F_1_002O2_T Temperature after 
compressor and N2 

separation 

K 855,2 

REACT F_1_002O2_HFLOWTOT Total enthalpy after 
compressor and N2 

separation 

kW 205,66 

REACT F_1_003_T Temperature of oxygen 
before reactor 

K 1223,15 

REACT F_1_003_HFLOWTOT Total enthalpy of oxygen 
before reactor 

kW 354,18 

REACT F_420_T Temperature after pump K 298,19 

REACT F_420_HFLOWTOT Total enthalpy after pump kW 2,86 

REACT F_421_T Temperature of water 
before reactor 

K 1223,15 

REACT F_421_HFLOWTOT Total enthalpy of water 
before reactor 

kW 4413,33 

REACT F_410_T Temperature of input NG K 298 

REACT F_410_HFLOWTOT Total enthalpy of input NG kW 24752,1 

REACT F_411_T Temperature of NG before 
reactor 

K 1223,15 

REACT F_411_HFLOWTOT Total enthalpy of NG 
before reactor 

kW 26264 

GT_SEQ  H21_T Temperature of SNGfor HP 
combustor before 

preheating 

K 1223,15 

GT_SEQ H21_HFLOWTOT Total enthalpy of SNGfor 
HP combustor before 

preheating 

kW 8061,34 

GT_SEQ H21A_T Temperature of SNGfor HP 
combustor after preheating 

K 473,15 

GT_SEQ H21A_HFLOWTOT Total enthalpy of SNGfor 
HP combustor after 

preheating 

kW 7123,4 

GT_SEQ H22_T Temperature of SNGfor 
reheat combustor before 

preheating 

K 1223,15 

GT_SEQ H22_HFLOWTOT Total enthalpy of SNGfor kW 22970,2 
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reheat combustor before 
preheating 

GT_SEQ H22A_T Temperature of SNGfor 
reheat combustor after 

preheating 

K 523,15 

GT_SEQ H22A_HFLOWTOT Total enthalpy of SNGfor 
reheat combustor after 

preheating 

kW 20468,5 

GT_SEQ STORAGE_WRCO2 Partial mass flow rate of 
CO2 to storage 

kg/s 124370 

GT_SEQ STORAGE_WRH2O Partial mass flow rate of 
H2O to storage 

kg/s 23056,8 

GT_SEQ STORAGE_WRN2 Partial mass flow rate of N2 
to storage 

kg/s 908493 

GT_SEQ STORAGE_WRO2 Partial mass flow rate of O2 
to storage 

kg/s 115366 

GT_SEQ NGAS_TOT_MASSF Mass flowrate of NG for 
both combustors 

kg/s 11,32 

GT_SEQ NGAS_TOT_LHVWT Mass low heat value of NG 
for both combustors 

kJ/kg 49195,2 

REACT F_410_MASSF Mass flowrate of NG kg/s 0,45 

REACT F_410_LHVWT Mass low heat value of NG kJ/kg 50001,2 

REACT H2_TOT_MASSF Mass flowrate in SNG from 
reactor 

kg/s 1,82 

REACT H2_TOT_LHVWT Mass low heat value in 
SNG from reactor 

kJ/kg 11003,5 

GT_SEQ COMB1_IN_MRO2 O2 partial flow rate before 
HP combustor 

kmol/s 1,34 

GT_SEQ COMB1_OUT_MRO2 O2 partial flow rate after HP 
combustor 

kmol/s 0,69 

GT_SEQ TURB1_OUT_MRO2 O2 partial flow rate after LP 
turbine 

kmol/s 1,55 

GT_SEQ COMB2_OUT_MRO2 O2 partial flow rate after 
reheat combustor 

kmol/s 0,78 

REACT W_401_POWER Power input for pump kW 3,49 

REACT W_1_001_POWER Power input for compressor kW 953,25 

GT_SEQ W_1_POWER Power input for LP 
compressor 

kW 225348 

GT_SEQ W_2_POWER Power for HP compressor kW 37908,1 

GT_SEQ W_3_POWER Power output from LP 
turbine 

kW 76719,8 
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GT_SEQ W_4_POWER Power output from HP 
turbine 

kW 411485 

GT_SEQ W_5_POWER Total power output kW 224948 

GT_SEQ NGAS_TOT_MRC1 SNGinput partial flow rate 
of methane 

kmol/s 0,48 

GT_SEQ NGAS_TOT_MRC2 SNGinput partial flow rate 
of ethane 

kmol/s 0,12 

REACT F_410_MOLF Molar flowrate of NG kmol/s 0,028 

GT_SEQ SEP_OUT_WRCO2 O2 partial mass flow rate 
from separator 

kg/s 49,35 

GT_SEQ SEP_OUT_MRCO2 O2 partial flow rate from 
separator 

kmol/s 1,12 

GT_SEQ RECIRC_MRCO2 CO2 partial flow rate in 
recirculation stream 

kmol/s 0,34 

GT_SEQ STORAGE_WRCO2 CO2 partial  mass flow rate 
to storage 

kg/s 124370 

GT_SEQ STORAGE_MRCO2 CO2 partial flow rate to 
storage 

kmol/s 0,78 

MEA FUMEES_WFCO2 CO2 compound weight 
fraction in fumes 

- 0,12 

MEA FUMEES_MASSF Mass flow rate  of fumes kg/h 1171290 

MEA CO2_CAPT 
Ratio of CO2 captured by 

MEA process 
- 0,9 

MEA CO2_CAPTE_MASSF CO2  mass flow rate from 
MEA 

kg/s 31,093 

MEA CO2_CAPTE_MOLF CO2 molar flow rate from 
MEA  

kmol/s 0,71 

REACT F_1_001_MASSF Mass flow rate of air to 
compressor  

kg/s 1,59 

REACT F_1_002_P Pressure after compressor bar 30 

REACT F_411_MRC1 Partial flow rate of methane 
in NG before reactor 

kmol/s 0,028 

REACT H2_TOT_MRC1 Partial flow rate of methane 
in SNG from reactor 

kmol/s 0,0014 

REACT H2_TOT_P Pressure of SNG from 
reactor 

bar 30 

REACT H2_TOT_T Temperature of SNG from 
reactor 

K 1223,15 

REACT H2_TOT_MOLF Molar flow rate of SNG 
from reactor 

kmol/s 0,14 
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REACT F_420_P Pressure after pump Bar 30 

REACT F_1_003_VOLF Volumetric flow rate of 
oxygen before reactor 

m3/s 2356,23 

GT_SEQ COMB1_IN_MASSF Mass flow rate before HP 
combustor 

kg/s 224,68 

GT_SEQ COMB1_OUT_T Temperature after HP 
combustor 

0C 1425,05 

GT_SEQ TURB1_OUT_MRN2 N2 partial flow rate after LP 
turbine 

kmol/s 9,94 

GT_SEQ COMB2_OUT_T Temperature after reheat 
combustor 

0C 1518,72 

GT_SEQ COMP1_OUT_P Pressure after LP 
compressor 

bar 20 

GT_SEQ COMP1_IN_P Pressure before LP 
compressor 

bar 1 

GT_SEQ COMP1_IN_MASSF Mass flow rate before LP 
compressor 

kg/s 479,47 

GT_SEQ C1_EFFIC Efficiency of LP 
compressor 

- 0,83 

GT_SEQ COMP2_OUT_P Pressure after HP 
compressor 

Bar 30 

GT_SEQ COMP2_IN_P Pressure before HP 
compressor 

bar 20 

GT_SEQ COMP2_IN_MASSF Mass flow rate before HP 
compressor 

kg/s 370,15 

GT_SEQ C2_EFFIC Efficiency of HP 
compressor 

- 0,88 

 

To evaluate the methods for many outputs the set of 200 random points was generated. All 
correlation coefficients r were calculated on the basis of this set. The interpolation nodes 
was generated as equidistant point in the interval of interpolation (actually the set of 100 
equidistant points was generated in the beginning and then needed number of nodes was 
chosen from the whole set). The one output models (in the first part of modeling process) 
were evaluated on the basis of the 100 equidistant points. 

In this part of Master Thesis several MATLAB files was generated: beginning from point 
generation scripts and functions to create the surrogate models, ending on the analysis and 
results plotting functions. Moreover the intuition function to find the value of surrogate 
model for given input was prepared (it can be used to incorporate surrogate model into the 
more complicated optimization program).  

All the mathematical methods was implemented on the basis of MATLAB function. Such 
function as: 
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• pp = interp1(x,Y,method,'pp') with different values of paramether 
method: 

o 'nearest' – nearest-neighbor interpolation 
o 'linear' - Linear interpolation (default) 
o 'spline' - Cubic spline interpolation 
o 'cubic' - Piecewise cubic Hermite interpolation 

This function was used to perform the nearest-neighbor interpolation, linear 
interpolation, cubic spline interpolation and cubic Hermite interpolation; 

• p = polyfit(x,y,n) 

This function was used to perform the polynomial interpolation and 
polynomial fitting. 

 

The neural network used to prepare artificial intelligence surrogate model was 
implemented with Neural Network Toolbox 7. Detailed description of this Toolbox and all 
the functions can be found in (Beale, Hagan, & Demuth, 2010). 

2.4 Results 

This chapter presents the results of surrogate modeling of one variable problem. 

2.4.1 Results for one output (times, errors, graphs) 

The first analyzed situation was the problem with one input and one output. Our aim was 
to predict the value of the tag W_5_POWER on the basis of tag RECY_FRAC. There were 
several methods used to find the surrogate model: mathematical ones as well as artificial 
intelligence ones. 

Mathematical models 

The mathematical methods, which were introduced previously, were implemented to find 
the surrogate models for analyzed system. Below the results are described and also the 
graphs are shown. Those graphs are excellent example of all dependences and features of 
mathematical interpolation described in the theoretical section. 

On the graphs it can be seen that with growing value of recirculation fraction, the value of 
power output of the system also grows. Some of the physical dependences will be 
explained in the next subchapter. However, all of them can not be explained due to model 
complexity. This underlines the advantage of surrogate model being to represent 
tendencies without having to model all relations between variables.  

All the results will be presented in the graphs. For each method the several options for 
number of nodes was investigated. In cases of nearest-neighbor interpolation, linear 
interpolation the interpolation functions was prepared for 2 and 11 equidistant nodes. 
Cubic spline interpolation and cubic Hermite interpolation was prepared for 2, 5, 8 and 11 
equidistant nodes. For polynomial interpolation 6 different interpolation polynoms are 
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presented (in this case the degree of the polynom depends on the number of nodes). The 
last method is polynomial fitting. Two different polynoms (polynom of the degree 5 and 
degree 10) were fitted to the data points (in different situations it was 5, 10, 15 or 20 
equidistant nodes). 

All the graphs have the similar outlook. On the upper graph the real data and interpolation 
function are presented. Also the interpolation nodes are pointed. The second graph (lower 
one) shows the interpolation error – the graph presents the residuals in function of 
recirculation fraction. The residuals are the difference between the real data and data 
interpolated by the surrogate model. The graph shows also the value of norm of residuals 
and the correlation coefficient between data and surrogate model. 

The first built model was nearest-neighbour interpolation model. The results can be seen in 
the Figure 2.7. The interpolation function is built with the horizontal lines with the middle 
point in the nodes. The biggest interpolation error can be seen in the middle of interval 
between neighboring nodes (this is caused by the shape of  the function – it is 
monotonically; if there would be any local extrema this property changed). The bigger 
slope of the original function causes the bigger interpolation error. This feature of nearest-
neighbor interpolation can be seen on the each of the graph. The interpolation errors are 
bigger in the right side of interpolation interval than in the left side and the slope of the 
function is also steeper there. Moreover it can be seen that in the nodes the residuals are 
equal to 0. On the right side of the node the residuals are positive and on the left side they 
are negative (this is caused by the original data shape). 

It can be seen also that the bigger number of interpolation nodes makes the interpolation 
error smaller. The norms of residuals are smaller and the correlation coefficients are bigger 
with the growing number of nodes. When there are more parts of interpolation function 
they interpolate data with bigger precision.  

The value of norm of residuals for shown example of 11 nodes is over 2022. The 
correlation coefficient for this case is 0.99434.  

 

 

Figure 2.7 Nearest-neighbor interpolation for different number of nodes for Power Output 
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The next analyzed mathematical interpolation method was linear interpolation. The graphs 
illustrating this method are shown in the Figure 2.8. The interpolation function is also built 
with the linear parts (as in the nearest – neighbor interpolation method), but in this case the 
lines connect the neighboring nodes.  

As previously the biggest interpolation errors can be seen in the middle of interval of 
interpolation (this is caused by the shape of the original data). The interpolation errors are 
smaller when the interpolation intervals are shorter. The error distribution (shape of  the 
residual graphs) is different than in the nearest-neighbor method. All of the residuals are 
smaller than 0 (and this feature is also connected with shape of original data function). 

The value of norm of residuals we are getting in the case of 11 nodes is equal to 76.4. In 
the same case the correlation coefficient is 0.99999. 

 

 

Figure 2.8 Linear  interpolation for different number of nodes for Power Output 

 

The cubic spline interpolation results are shown in the Figure 2.9. We can get really good 
results with this method (the best from all analyzed mathematical methods). 

In case of 2 nodes the interpolation function is the same as in the case of linear 
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the each interval the function has the form of the polynom degree 3. This explains non-
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The best interpolation results we are getting in the case of 11 modes. The norm of residuals 
is equal to 3.3 and correlation coefficient is 1. 

This interpolation method was chosen to use in the next part of the problem (modeling 
many inputs problem). It gives the best and the most predictable results from all of the 
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because the interpolation real data has the shape of continuous functions and cubic spline 
interpolation takes care of second derivative in the nodes (cubic Hermite interpolation does 
not). 
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Figure 2.9 Spline  interpolation for different number of nodes for Power Output 

 

The next described method is cubic Hermite interpolation. The result of this method are 
shown in the Figure 2.10. As it was mentioned earlier this method is similar to the cubic 
spline interpolation, but it does not take care of second derivative in the nodes. Analyzed 
original data function is continuous in the whole interval, so we are getting slightly worse 
results than for spline interpolation. 

The best results we are getting for 11 nodes. The norm of residuals in this case is 4 and the 
correlation coefficient is equal to 1.  

Moreover on the graphs we can notice that the biggest interpolation errors occur next to the 
ends of interpolation interval (it can be seen especially well in the case of small number of 
nodes). It is caused because there is any other data to compare for the extreme points. 
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Figure 2.10 Cubic Hermite interpolation for different number of nodes for Power Output 

 

Another method of interpolation is polynomial interpolation. In this case we have 
continuous function in the whole interval. But in this case a polynom’s degree depends on 
the number of nodes: if we have many nodes, we need also high polynom degree. This is 
resulting in the big error of interpolation in case of many nodes (it can be seen like an over 
fitting). We have to find a compromise between precision of interpolation and the 
possibility of Runge effect. 

The polynomial interpolation examples are shown in the Figure 2.11. There is six different 
interpolation polynoms presented: 

 
• 3 nodes (square polynom); 

• 7 nodes (6th degree polynom); 
• 11 nodes (10th degree polynom); 

• 15 nodes (14th degree polynom); 
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• 19 nodes (18th degree polynom); 

• 23 nodes (12nd degree polynom). 

Firstly the interpolation error is getting smaller with the number of nodes. We are getting 
very good results for the polynom based on 11 nodes. The norm of residuals is 4.23 and 
correlation coefficient is 1. But from this moment, with growing number of nodes the 
interpolation error grows fast. Especially big errors can be seen near ends of interval of 
interpolation. It is good illustration of Runge effect. 
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Figure 2.11 Polynomial interpolation for different number of nodes (and different degree 

of interpolation polynom) for Power Output 

 

The last mathematical method is polynom fitting. The biggest difference between this 
method and previous ones is that the polynom does not have to have the same value as 
original function in the nodes. The example of interpolating data with polynom degree 5 
can be seen in the Figure 2.12.   

As we can observe on the graphs below the polynomial fitting is giving really good results. 
The interpolation for 15 nodes is almost as good as spline interpolation (the norm of 
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sense. Finding the appropriate polynom is more time-consuming and moreover the 
polynom evaluation for given points is also more complicated. 

One more thing should be noticed – when the 5th degree polynom is fitted to 5 nodes it is 
ambiguous. To fit this kind of polynom unambiguously we need at least 6 interpolation 
nodes. 
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Figure 2.12 Polynomial fitting of polynom degree 5 for different number of nodes for 

Power Output 

 

The fitting of polynom degree 10 is presented in the Figure 2.13. This situation is 
analogical to the previous one. As before the best results can be observed for 11 nodes (the 
norm of residuals is 3.4 and correlation coefficient is equal to 1). This results are slightly 
better than for 5th degree polynom, but the difference is really small. On the other hand the 
10th degree polynom is even more complicated in using that previous one.  

In this case the fitting result is not unambiguous for 5 and for 10 nodes.  

For 5 and for 10 nodes fitting we can observe on the residual graph some tendencies. This 
tendencies shows us the approximate shape of a interpolation polynom in comparison to 
the original function. For bigger number of nodes the residuals are more irregular. It is like 
that because the more nodes were incorporated into the process of creating the 
interpolation polynom. 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 5 on the basis of 5 nodes

P
o

w
e

r

 

 

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

0

1

2
Norm of residuals: 5.8311; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 5 on the basis of 10 nodes

P
o

w
e

r

 

 

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

0

1

2
Norm of residuals: 4.0673; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 5 on the basis of 15 nodes

P
o

w
e

r

 

 

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1
Norm of residuals: 3.4123; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.2

2.25

2.3
x 10

5 Polynomial interpolation degree 5 on the basis of 20 nodes

P
o

w
e

r

 

 

nodes

interpolation

real

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1
Norm of residuals: 3.5591; correlation coefficient: 1

Rec frac

R
e

s
id

u
a

l



58 

 

 

 

Figure 2.13 Polynomial fitting of polynom degree 10 for different number of nodes for 

Power Output 

 

Neural network 

Second type of surrogate modeling is artificial intelligence modeling. As it was mentioned 
previously this Thesis is focused on the neural network models. The neural network 
surrogate solution was implemented for simple problem with one input and one output. As 
it was shown there are many basic mathematical methods which can be used to model this 
problem with very good results. The neural network seems to be too complex and 
complicated tool to use is such easy case. In the real life problems in fact it is better 
solution to use the mathematical model in case like this one (it is faster and easier to 
implement). 

However, in this Thesis, the neural network model was implemented, tested and analyzed 
in details. Below the description of different experiments is presented. It is much easier to 
show many features of neural network on the example of simple problem with one input 
and one output. In this case those features can be understood by intuition – for more 
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complicated cases they are not so obvious. This subchapter is an introduction to more 
complex problems, which will be presented in the next chapters.  

There was many experiments done, but below only 4 of them are presented in the details. 

For all of the presented experiments there was 5 points in the training set, 2 points in the 
validation set and 93 points in testing set. All of them were randomly chosen from set of 
100 equidistant points generated in the beginning. The experiment with other division for 
different set was also done and their results will be briefly described at the end of 
subchapter. For all of the experiments the maximum number of iteration was equal 1000. 

The design of the used neural networks is presented in the Figure 2.14. In three first 
experiments the neural network was built from one input, 2 neurons in hidden layer, 1 
neuron in output layer and one output. In the fourth experiment the hidden layer had 10 
neurons. 

 

 

 

Figure 2.14 Design of the neural Network with 2 neurons (experiment 1,2,3) and with 10 

neurons (experiment 4) in hidden layer (from MATLAB interface) 

 

The results of four experiments are listed in the  

Table 2.2. The most import ant data are norm of residuals and correlation coefficient which 
allows for evaluation of each model and also for comparison neural network models with 
mathematical ones.  

 

Table 2.2 Properties of different neural network surrogate models 

Experiment 
Neurons in 

hidden layer 

Iteration 

number 
Time [s] 

Norm of 

residuals 

Correlation 

coefficient 

1 2 1000 22 12.37 1 

2 2 10 1 2511.23 0.989 

3 2 7 1 9124.22 0.743 

4 10 6 1 12972.21 0.844 

 

Table 2.3 contains data for each of  sets of points (training, validation, test and all). There 
are presented the values of mean squared error MSE and Regression value R. 
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Table 2.3 Neural network surrogate models: MSE and Regression R values 

Experiment  Training Validation Test All 

 Points 5 2 93 100 

1 
MSE 0.94 0.62 1.58 1.58 

Regression R 1 1 1 1 

2 
MSE 2519.41 307.872 67667.61 67667.61 

Regression R 1 1 0.997 0.997 

3 
MSE 1330765 4456,54 823533,8 823533,8 

Regression R 0.997 1 0.902 0.896 

4 
MSE 0 6101841 1678220 1678220 

Regression R 1 1 0.889 0.889 

 

Now we will focus on the individual experiments. Each of them lets for illustrating some 
interesting features of neural network. 

The first experiment gives the best results. It shows that with appropriate neural network 
and the good chosen training and validation set we can built a good model. During the 
experiments sometimes even better results was achieved, but this example is representative 
one. We have to remember that the quality of neural network is in part a random value. It 
strongly depends from the staring weights in network, as well as from the distribution of 
the points from each set among the whole interval. 

Figure 2.15 shows the real point and results from neural network surrogate model. We can 
notice that there is almost no difference between those two sets. The norm of residuals for 
this case is equal 12.37 and the correlation coefficient is 1. On the graph we can also 
observe the distribution of the training and validation points. As it can be seen the training 
points cover the whole interval. If we would choose better training points (for example 
equidistant ones) the final results would be even better.  

 

 

Figure 2.15 Fit graph for Experiment 1 
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The regression graphs for the Experiment 1 are shown in the Figure 2.16. They show 
differences between real results (targets) and output of the neural network. The graph 
presents also the regression line for each data set. If this line connects left down and right 
upper edges of the graph, it means that the network gives good results. If the point lies in 
the distance of that line it means that there are mistakes in the surrogate model (for a 
perfect fit, the data should fall along a 45 degree line, where the network outputs are equal 
to the targets). 

If we want to improve the results given by the neural network we should retrain the 
existing one. The new training process starts with the weights from previous one. So the 
better results can be achieved. It can help especially in the situation when the training 
process ended as a result of achieving maximum number of iterations (not because of 
validation checking). 

 

 

Figure 2.16 Regression graph for Experiment 1 

 

The last two graphs presents details about training process – they are shown  in the Figure 
2.17 The first graph shows performance of the training, validation, and test sets. The 
second graph presents the details of network parameters in each epoch. In first experiment 
there was 1000 epochs (maximum allowed number). It means that the stop condition was 
not reached (the MSE for validation set should be constant or bigger  than best value 
during 6 consecutive epochs).  There is one more thing which should be noticed. The 
difference of MSE for all point in first and last epoch – it changed from about 108 to 1. 

The accuracy for this network is very good, but the training process took 22 seconds, what 
is very big number for such a simple problem like this one. The good think is that the time 
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of training does not depends linearly from the complexity of the problem (sometimes we 
can get really good results for complicated models in relatively short time).  

 

  

Figure 2.17 Performance and Training State graphs  for Experiment 1 

 

In the next experiment the training set did not cover the whole interval. There is no training 
point in the left end as it can be seen in the Figure 2.18. It can be noticed also that in left 
part the differences between real data and network output are the biggest. In the process of 
learning the network was basis on the connection between training points, which does not 
corresponds to the relation between points in the left part of interval.  

The smallest value of MSE is achieved for validation set, but the value for training set is 
also small in relation to MSE of test set. 

 

 

Figure 2.18 Fit graph for Experiment 2 
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In the Figure 2.19 we can see that test set the regression line does not cover the 450 line. It 
means that there are mistakes in the surrogate model. The same situation can be observed 
on the regression graph for all points. 

To achieve better results we should check which points gives us the worst results and add 
the points from their neighborhood to  the training set.  

 

 

Figure 2.19 Regression graph for Experiment 2 

 

Figure 2.20 shows detail information about the training process. There were only 10 
iterations of training algorithm. The validation error started growing in 4th epoch. This 
behavior could be changed by adding more points to training set as by adding points to 
validation set.  
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Figure 2.20 Performance and Training State graphs  for Experiment 2 

 

The next analyzed case is presented in the Figure 2.21. The training points are focused in 
the middle of interval. In this case two factors had an influence for big surrogate model’s 
error: bad training points distribution and bad starting weights. 

 

 

Figure 2.21 Fit graph for Experiment 3 

 

Any of the regression graphs presented in the Figure 2.22 does not have appropriate shape. 
Big errors can be seen in each parth of the interval. 
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Figure 2.22 Regression graph for Experiment 3 

 

In this case there were only 7 epochs and the detailed information about each of them are 
presented in the Figure 2.23.  

 

  

Figure 2.23 Performance and Training State graphs  for Experiment 3 

 

The interesting results can be observed in the last experiment. In this case there was bigger 
number of neurons in the hidden layer (10). It is a big number in comparison to only one 
input value. The results show that neural network is overfitted. It gives great results for 
training set, but for other points MSE values are huge. The fit graph for this experiment is 
presented in the Figure 2.24. 



66 

 

Figure 2.24 Fit graph for Experiment 4 

 

Figure 2.25 shows the regression graphs for the last experiment. As it was Said before in 
the training set the points lay on the perfect fit line. For other sets there are big 
fluctuations. 

 

 

Figure 2.25 Regression graph for Experiment 4 
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The last graph in this paragraph, Figure 2.26, shows the details of training process for 
fourth experiment. It is significant that the training error decreases very fast and validation 
error is constant. Because of that there is only 6 epochs. 

 

  

Figure 2.26 Performance and Training State graphs  for Experiment 4 

 

This problem is great illustration of overfitting effect: the performance of the training set is 
good and in the same time the test set gives big errors. The solution which can improves 
results is decreasing the number of nodes.   

On the other hand if training performance is poor we should try to do one of two things: 
 

• Increasing number of points in training and validation set; 
• Increasing number of neurons in hidden layer. 

 

We should remember that bigger number of neurons in hidden layer let network to solve 
more complicated problems. On the other hand it can cause an overfitting effect and 
require more computation. 

The same rule is true also for bigger number of hidden layers: more layers require more 
computation but they allow for solving complex problems. 

During practical analyzes of this problem there were created more networks than presented 
four. The different numbers of points in training and validation sets were tested. The 
conclusion is that the quality of surrogate model improves with bigger number of training 
and validating points. But much more important is that the points should cover the whole 
interval. For properly distributed points their number does not have so big impact for final 
results. 

2.4.2 Results for selected methods for all output parameters 

After detailed analyze of one input, one output surrogate model there was a time to build 
the model which take into account all of input parameters. There were chosen two 
methods: spline interpolation and neural network. 
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Spline interpolation 

Firstly the mathematical models for all input parameters for 4 knots were built. The result 
of this interpolation are shown in Appendix 1. As it can be seen in some of the cases there 
are differences between real data and function output. It is caused by very small number of 
interpolation knots. We choose the worst interpolation model – for input parameter 
F_421_T. It is shown in the Figure 2.27. The correlation coefficient for  this case is equal 
to 0.98. As it can be seen the biggest interpolation error is in the last interpolation interval 
(between two last nodes), because there is the biggest slope of original data. 

 

 

Figure 2.27 Surrogate model on basis of 4 knots for F_421_T 

 

As it was said the reason of the mistakes is the small number of interpolation knots. It was 
checked how the increasing this number influences the quality of the model. In the Figure 
2.28. For 6 knots the correlation coefficient is equal to 0.999.  So it is quite good result. 

 

 

Figure 2.28 Surrogate model on basis of 6 knots for F_421_T 
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We checked how many knots is needed to have correlation coefficient equals 1. The result 
is shown in the Figure 2.29. So for the input parameter, which gave the worst result in first 
interpolation, we need 11 knots to have really good results. In this case there is 10 intervals 
of interpolation (each one of them is 0.05). 

 

 

Figure 2.29 Surrogate model on basis of 11 knots for F_421_T 

 

In the figures: Figure 2.30, Figure 2.31, Figure 2.32 there are presented correlation 
coefficients for all model output parameters, ordered from the worst one. It can be seen 
that for 4 knots all coefficient are better than 0.98. For 6 knots this number is much better – 
all coefficients are bigger than 0.999 and many of them is even equal to 1. For 11 knots on 
the other hand all coefficients are equal to 1. 

 

 

Figure 2.30 R values for spline surrogate model based on 4 knots for all output parameters 

(ordered from smallest one) 
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Figure 2.31 R values for spline surrogate model based on 6 knots for all output 

parameters(ordered from smallest one) 

 

 

 

Figure 2.32 R values for spline surrogate model based on 11 knots for all output 

parameters(ordered from smallest one) 

The final version of the spline interpolation surrogate model which was prepared to use in 
real-life model bases on the 11 knots – it makes surrogate model high quality and efficient. 

Neural network 

The last stage of surrogate modeling one decision variable problem was building neural 
network model for many output parameters. There was build one network for all of them: 
network is build with one input, 3 neurons in hidden layer, 79 neurons in output layer and 
79 outputs. Figure 2.33 shows it design. 
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Figure 2.33 Design of the neural Network for one input, many output problem (from 

MATLAB interface) 

 

All real output data was normalized. If the raw data would be used, some of the output 
parameters influences the final result more, some less (it depends from their absolute 
values). Moreover the neural network, which was used in this analysis, is better suited for 
parameters in range [-1,1]. From the set of all data, 20 samples was chosen randomly for 
training set and 10 for validation set. The rest was used to testing the network. 

The time of training network was long – it was over 7 minutes. There was done 1000 
iterations of the algorithm (Table 2.4). 

 

Table 2.4 Properties of neural network surrogate models for one input, many output 

problem 

Neurons in hidden layer Iteration number Time  

3 1000 7 min 11s 

 

Table 2.5 contains data for each of sets of points (training, validation, test and all). There 
are presented the values of mean squared error MSE and Regression value R. 

 

Table 2.5 Neural network surrogate models for one input, many output problem: MSE and 

Regression R values 

 Training Validation Test All 

Points 20 10 170 200 

MSE 1.8 ∙ 10Ms 2.09 ∙ 10Ms 6.39 ∙ 10Ms 6.39 ∙ 10Ms 

Regression R 1 1 1 1 

 

The regression graphs for the neural network are presented in the Figure 2.34. The network 
generation time was very long but it resulted in high quality network. The points from all 
sets cover the best fit line. 
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Figure 2.34 Regression graph for one input, many output problem 

 

The process of the network training can be seen in the Figure 2.35. We can notice that 
MSE value firstly drops very rapidly for all sets and then it approaching slowly the 
minimum. The stop condition was not fulfill in this case. We can notice, that we could stop 
training process much earlier. In future research introducing the new stop condition should 
be considered. The process of training the network can be stopped when MSE has smaller 
value then requested limit. 

 

 

Figure 2.35 Performance and Training State graphs  for one input, many output problem 
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Figure 2.36 shows the results of additional test. Created neural network was tested on the 
set of 200 random points. As it can be seen the results are as good as before.  

 

 

Figure 2.36 Regression graph for additional test set. 

 

We should remember that the quality of the network was evaluated for all parameters 
together. If this model would be used in real life problem we should also check the quality 
of each output value. To do it we can for example calculate the norm of residuals and 
correlation coefficient for all from output parameters separately. It was checked that for all 
of the output parameters norm of residuals is smaller than 0.05 (remember about 
normalization of the output values).  All of the correlation coefficients are equal to 1. 

2.4.3 Interpretation of results  

In this subchapter several physical aspects of the model will be described. 

All of the modeled tags, as well as analyzed system, were described earlier. The tags were 
chosen to be modeled on the basis of the other parts of the model – it means that we 
modeled all the tags which are used in other parts of the system. 

During the process of choosing tags it was not checked if some of them do not have 
constant values. In fact it turned out that some of them are imposed as constant. The 
examples of these tags can be some temperatures, as for example COOL_OUT_T tag, or 
ratio of CO2 captured by MEA process. It was checked that also for this variables 
surrogate model gives good results – there is any additional disturbances or oscillations. 

All of the interesting results (not imposed as a constant) are presented in the Appendix A. 
On the basis of those graphs we can analyze the influence of recirculation ration for 
different output parameters. 

Below we will show the example of such analysis. We will focus on the net electricity 
production: 
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• The gas composition depends on the FGR and syngas injection. This processes 

decreasing κ=cp/cv of the working fluid. It influences power produced by the 
turbines and power consumed by the compressor. Both of them are lower with 
increasing FGR; 

• The LHV of fuel mixture (lower heating value) decrease has no effect since the 
inlet temperatures of gas turbine are fixed and the pressure drop of fuel injection is 
not considered.  The increasing fuel mass low compensates the lower LHV; 

• H2 injection with increasing FGR changes the inlet mass flow of the gas turbine. 
The mechanical power increases proportionally, what compensate and overweight 
the calorific factor decrease effect; 

• With increasing value of FRG we need to consume more energy to produce syngas. 
 

As it was shown there are many parameters in the system which influence the final shape 
of the dependences. Interpretation of those connections is not a trivial task. 

 



75 

3 MULTI DECISION VARIABLE MODEL 

3.1 Flow sheet and model description  

The second practical problem analyzed in the Thesis is connected with the previously 
described system. The whole problem is to model the power plants with post-combustion 
CO 2 capture, consisting of: a gas turbine with flue gas recirculation, a CO 2 capture unit 
(chemical absorption with amines) and a steam network (Dubuis & Tock, 2010).The whole 
system is presented in the Figure 3.1.   

 

 

Figure 3.1 Superstructure of gas turbine power plant with CO 2 capture (Dubuis & Tock, 

2010) 

 

The first three parts: syngas production, gas turbine with flue gas recirculation and a CO 2 
capture unit have been described in the previous chapter. In this part of the work we will 
focus on the last part of the system: steam network and more globally utilities conception. 

In the system there are several additional hot and cold streams at different temperature 
levels from the rest of the process. The idea is to recover as much heat as possible from hot 
streams to feed cold streams and produce power. As a cold source, a cooling water system 
is included as well as an eventual boiler if hot demands can’t be covered by steam network. 

There are two possible methods of modeling a steam network. 

First of them is process flowsheet simulation. In this case we are preparing the detailed 
model of the system. It lets for building very precise and transparent simulation. On the 
other hand this is very time-consuming method in evaluation as well as in preparation. 
Moreover this solution is not flexible when we want to optimize the complex 
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superstructure and need one model per configuration. It is hard to apply this model to 
complex Heat Exchanger Network. 

Second approach is the process integration techniques. It allows to include heat sink and 
source in the steam network design. Moreover, it allows to represent every configuration 
(steam injection or draw off …). This method is much more effective – it is less time and 
memory consuming what allows for better optimization. One of the biggest advantages of 
this method is easy adding of the new streams to the problem. 

The model used in the Master Thesis is based on the second approach. This method lets for 
relatively easy optimization of the level of different pressure and temperatures involved in 
the steam network. It allows also for good approximation of the generated power, 
efficiency and costs of the total network. 

Figure 3.2 presents the superstructure of the steam network. We have to remember that it is 
only the representation of the steam network, which is useful to optimize it (for example 
the stream L – let down flow – is introduced to help solver to converge). 

 

 

Figure 3.2 Superstructure of a steam network with one expansion level and heat 

consumption and rejection (Girardin, Dubuis, & Marechal)  

 

When we focus on the structure of steam network we can notice important elements which 
define the system: 

 
• Headers in the system are defined by their properties: temperature, pressure, steam 

quality (� > 0.85) and their type. Each header is defined as one of the following: 
 

o Production header in which steam is injected. In the Figure 3.2 it is 
represented as header W; 

o Usage header which can receive or distribute steam. It is represented as 
header W + �; 
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o Condensation header in which steam is condensed. After that the steam is 
sent back to Heat Recovery Steam Generator. In the Figure 3.2 it is 
represented as header W + �. 
 

• The different mass flow rates involved in: 
 

o Steam turbine (�4); 
o Let down  flow (w); 
o Steam recovered from heat reject (x); 
o Steam consumed by heat sink (/). 

 

Steam injections (x) or extractions (/) can in the header be understand as the energy 
demand or additional processes (like for example the devices to CO2 capture). 

The simplest correct model of the steam network has the following elements: 

 
• One steam production level; 

• One condensation level; 
• Minimum pressure level observed in the list is a condensation header. 

 

The performance indicators desired for the optimization process in this system were cost 
and efficiency of the system. In the surrogate model also those two parameters will be used 
as the targets values. In the model we can optimize the flowrates as well as several other 
values:  pressure, temperature and number of different header of a steam network. 

The thermodynamic efficiency of the cycle can be calculated from the following formula: 

 

y�_`�� = z{ |3/} − ∑ / + ∑ x~{ _�_ . 
 

On the other hand to calculate the value of the isentropic efficiency of the steam expansion 
between two pressure levels we can use (Dubuis & Tock, 2010): 

 

yI,I+1 = 0.919 − 0.549 ∙ �1 − 1I − 1I+11I �. 
 

The optimization of the system was prepared and described in (Girardin, Dubuis, & 
Marechal) and (Dubuis & Tock, 2010).Some of the results are presented below. Those 
graphs can introduce several concepts about the Steam Network and make them easier to 
understand. 
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Firstly the Integrated Composite Curves for the Steam Network integrated with MEA and 
syngas production process are presented in the Figure 3.3 and Figure 3.4. They show 
respectively the examples of bad and good design of Stem Network. 

The first example shows the system with one steam turbine. Steam is produced at 100 bar 
and 50 bar; the condensation is at 5.7 bar. In the system we do not go below 5.7 bar 
because of feeding MEA process. Presented system produces 57 MWe. As it can be seen in 
the Integrated Composite Curve graph this design is not good integrated and there are big 
looses in the system. 

 

 

Figure 3.3 Bad example of Steam Network Configuration (Dubuis & Tock, 2010) 

 

The second example, on the other hand, shows system which is much better integrated. In 
this system the total power production is equal to 89 MWe. The system also consists in one 
steam turbine. The condensation in this case is from 200 bar to 0.04 bar. The steam is 
produced at 50 bars. Moreover there is also draw off to feed MEA in the system at 5.7 bar. 

.  
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Figure 3.4 Good example of Steam Network Configuration (Dubuis & Tock, 2010) 

 

Those examples show how important is to find the optimal parameters of the system. 

Below the examples of the optimization for described system are shown. Actually those 
graphs shows only the results which can be obtained as a result of optimization process. 
We will show where the surrogate model can be used. 

Graphs show the visualization of three typical steam network configurations. As a 
objectives functions the investment cost and total power production are assumed. The 
results are presented in the Figure 3.5. The base case (Case 3 in the graph) is designed as 
two steam turbines model (working in ranges 60-0.04 bar and 3.3-0.04 bar). There is a 
draw off in the second turbine at 0.2 bar. 

We have to remember that this kind of optimization is very time and memory consuming. 
For this type of computations it takes about 30 hours to make 1000 iterations on 40 
processors (2.8 GHZ). It would be very helpful to use surrogate model instead real one. We 
could get even more promising results.  

 

 

Figure 3.5 Pareto Curve for Power Output – Investment Cost for different configurations 

of Steam Network (Girardin, Dubuis, & Marechal) 

 

Another possibly optimization is shown in the Figure 3.6. It represents the levelized 
electricity cost. Comparison of two graphs let us to find the best solution for the system. In 
this case the optimum configuration consists in a 3 expansion levels. An electricity cost are 
about 46.5 $/MWh and an investment cost are 59.2 M$. The power output is 115 MW. 
This type of decision making process is characteristic for optimization tasks. 
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Figure 3.6 Pareto Curve for Power Output – Levelized Electricity Cost for different 

configurations of Steam Network (Girardin, Dubuis, & Marechal) 

3.2 Problem description  

In this part Steam Network was analyzed and the surrogate model for it was prepared. 
Actually the problem was divided for two parts.  

The first was the simpler situation with smaller number of input values. This situation 
represented the simple Steam Network with only one steam production level and only one 
condensation level. 

The second model was prepared for more complicated problem – more complex Steam 
Network design. All inputs parameters will be described in the next subchapter.  

The prepared surrogate model can be used in the studies concerning the Steam Networks. 
They can improve the number of iteration of genetic algorithm which are possible to run. 
So also the results of optimization would be more accurate.  

This problem introduces moreover several problems connected with surrogate modeling 
(connected strictly with the software used in LENI). Sometimes there is a big problem with 
generation appropriate points to train the network. This problem was very good visible in 
the first simpler network design. In the next chapter the detailed description and used 
solution will be described. 

This problem – Steam Network – is moreover a very good introduction to the task which 
will be implemented during next year. The final goal of the project is preparing the tool to 
automotive generation of surrogate model for complex energy systems. The Steam 
Network has all features which characterize this type of problems.   

3.3 Modeling problem description  

In this chapter the prepared models are described in the details.  
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For both of them there was two output values – total power production and total cost of the 
system. The input values depend from the model. 

First  surrogate model was prepared for the simpler problem. There were following inputs 
values take into account: 

 
• H1_Pressure; 

• H1_SuperheatingDT; 
• H1_ReheatSuperheatingDT; 

• H1_doReheat; 

• D1_Pressure; 
• D1_SuperheatingDT; 

• D2_SuperheatingDT; 

• D2_Pressure; 

• C1_Pressure. 
 

So there is 9 different independent input variables in the system. This situation is much 
more complicated than problem from previous chapter when we had only one input value. 

It was decided to prepare only one type of surrogate model in this case – the neural 
network model. Actually the solution was more complicated than one simple neural 
network.  

The first problem which appeared was with training points generation. The intervals in 
which we chose points were not good defined. The first used intervals are shown in the 
Table 3.1. 

 

Table 3.1 Input parameters of the simple Steam Network model 

Paramether Unit Minimum value Maximum value 

H1_Pressure Bar 20 30 

H1_SuperheatingDT 0C 20 100 

H1_ReheatSuperheatingDT 0C 0 100 

H1_doReheat - 0 1 

D1_Pressure Bar 40 180 

D1_SuperheatingDT 0C 0 80 

D2_Pressure Bar 20 40 

D2_SuperheatingDT 0C 0 30 

C1_Pressure Bar 0.02 1 

 

During point generation it turned  out that there is much more point (the set of input 
variables) for which the system did not converge than the good ones. There were only 
about 20% of points for we had the reasonable results.  
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Because of that the first step of preparing the surrogate model was generation of the 2000 
random points. Then on the basis of this set, the simple neural network was created – its 
task was to check if the point is converging or not. This simple network was used only to 
create new set of points, which were converging.  

The new set of 1640 points was created in the following way: firstly we create new random 
points of input values. Then the simple network is checking if the point is converging or 
not (of course the network made some mistakes, as a result in final set there was about 5% 
points, that finally turn out to be not converged). If the point is not converged (negative 
answer of network) we randomly choose new point. If the answer of network is positive we 
run the OSMOSE and Energy Integration for that point and save its value as well as value 
of costs and power generated by the defined system.  Then the data points from both sets 
(random and converging points) were used to create the final surrogate model. Only the 
points with positive convergence, were used to create fitting neural network.   This 
algorithm of data preparation is shown in the Figure 3.7. 

 

 

Figure 3.7 Schema of data preparation for surrogate model creation. 

 

For process of training a network all of the input and targets values was normalized to the 
interval [-1,1]. This was done with Neural Network Toolbox function: 

[Y,PS] = mapminmax(X,YMIN,YMAX). 
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This normalization helps network to fit better to the data. It is connected with shape of 
activation function in the neurons. 

Moreover when we have the neural network for two or more output parameters 
normalization helps in showing the real errors of both function, for example in the 
regression graphs. If the data were not normalized, the output with bigger absolute values 
could have bigger influence for final results. 

However, it this problem, for each objective function (cost and power) the different 
surrogate model was created. Each of the final surrogate models consists of two different 
neural networks. The first of them is classification network. To train this network the 
whole set of training points was used. It shows if the input point is converging or not. If 
not, the answer of surrogate model is: the point does not converge – the system is incorrect. 
If yes, the point is sent to the second part of the surrogate model – second neural network. 
To train it only the converging points were used. This network computes the value of 
performance indicator for given point. The schema of surrogate model, and method in 
which it works is presented in the Figure 3.8. 

 

 

Figure 3.8 The schema of surrogate model 

 

Very similar methodology was used in the case of more complicated model. There was 
only one difference. In the set of the randomly generated points about 50% were 
converged. So the auxiliary neural network was not used in this case. We were working on 
the points generated in the beginning. 

In the more complicated case there were much more decision variables (23). Some of them 
were normal number variables, but some represented decision if a unit is present in the 
system or not. The list with all decision variables and the intervals for which we generated 
points is shown in the Table 3.2. 
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Table 3.2 Input parameters of the simple Steam Network model 

Paramether Unit Minimum value Maximum value 

H1_Pressure Bar 2 30 

H2_Pressure Bar 30 140 

H3_Pressure Bar 100 180 

H1_SuperheatingDT 0C 20 100 

H2_SuperheatingDT 0C 20 150 

H3_SuperheatingDT 0C 20 100 

H1_ReheatSuperheatingDT 0C 0 100 

H1_doReheat - 0 1 

H2_ReheatSuperheatingDT 0C 0 100 

H2_doReheat - 0 1 

H3_ReheatSuperheatingDT 0C 0 100 

H3_doReheat - 0 1 

D1_Pressure Bar 40 180 

D2_Pressure Bar 20 40 

D3_Pressure Bar 5 60 

D4_Pressure Bar 0.02 5 

D5_Pressure Bar 0.02 1 

D1_SuperheatingDT 0C 0 80 

D2_SuperheatingDT 0C 0 30 

D3_SuperheatingDT 0C 0 80 

D4_SuperheatingDT 0C 0 30 

D5_Vapf - 0.85 1 

C1_Pressure Bar 0.02 1 

 

3.4 Results 

In this subchapter the results of surrogate modeling of complicated multivariable problem 
are presented. In this problem we focused also on the surrogate model with one hidden 
layer. During the surrogate modeling process we get good results for simpler problem and 
much worse for the complex one.  

Firstly the information connected with simpler version of the system are shown. Several 
network configurations were analyzed and described. The graphs show characteristic 
features of neural network surrogate models. We have to remember, that each of surrogate 
models consists actually with three neural networks: 
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• Classifying part; 
• Power fitting part; 
• Cost fitting part. 

Simpler problem 

The first analyzed model was prepared on the basis of big training set (we used 2548 points 
to train the network and 1092 points to test the network). The first, classifying network was 
consistued of 10 neurons in hidden layer. The details about the neural network are 
presented in the Table 3.3.  

 

Table 3.3 Properties of neural network surrogate models – classifying part – bigger testing 

set 

Neurons in hidden layer Iteration number Time [s] 

10 75 10 

 

This type of the network is different than networks used in the previous part of the Thesis. 
The classifying network shows to which class the point belong: to the converging or to not 
converging points. As an output we have a single value, if it is close to 1 it means that 
point is converging. It is more close to 0 the point does not converge.  

The numbers according to size of each set of points as well as information about the 
accuracy of network in each set are presented in the Table 3.4. It can be seen that biggest 
precision is reached in the training set (here the situation is similar as in the most of fitting 
networks).  

 

Table 3.4 Neural network surrogate models – classifying part – bigger testing set: MSE 

and Regression R values 

 Training Validation Test All 

Points 1820 728 1092 3640 

Accuracy 99,6% 98,5% 98,4% 99% 

 

The confusion matrix of this problem is presented in the Figure 3.9. The confusion matrix 
sows 4 groups of points: 

 

• Points originally converging, classifying as converging (good classification); 
• Points originally converging, classifying as not converging (bad classification); 
• Points originally not converging, classifying as converging (bad classification); 
• Points originally not converging, classifying as not converging (good 

classification). 
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To create the surrogate model the similar number of converging (1940) as not converging 
points (1719) were used.  

In the set of 3640 points only 35 are wrongly classified. It is only 1% of all points. The 
worse classification can be seen in the set of points originally not converging, classifying 
as converging than in the set of points originally converging, classifying as not converging. 
It is probably connected with the fact that in the whole space there is much more originally 
not converging points than converging ones. Because of the method of generating points 
there is much bigger sampling density in the “converging parts” of the space. 

 

 

Figure 3.9 Confusion matrix for neural network surrogate models – classifying part – 

bigger testing set 

 

The details about the proces of learning the calsyffing network are presented in the Figure 

3.10. On the graph with training state we can notice that validation error behaved rather 
changeablly.  

 



87 

  

Figure 3.10 Performance and Training State graphs  for neural network surrogate models 

– classifying part – bigger testing set 

 

When the classifying network had been ready, the power and cost fitting models were 
created. 

Details about first of them – cost fitting surrogate model are presented in the Table 3.5. 
The network is consist of 20 neurons in hidden layer. All of the model parameters output 
as well as input ones were normalized. But still – for such big problem (with big number of 
samples) the norm of residuals is relatively small. The correlation coefficient for this 
problem – 0.99 is also very good. 

 

Table 3.5 Properties of neural network surrogate models – power fitting part – bigger 

testing set 

Neurons in hidden 

layer 
Iteration number Time [s] 

Norm of 

residuals 

Correlation 

coefficient 

20 47 6 2.56 0.99 

 

The Table 3.6 presents the rest of the important information about power fitting network. It 
shows the number of points used to train the network (1122) and to validate it (198). To 
test the network all of the converging points from testing set of classifying network were 
used (601 points). The mean square error is small – it is equal only to 0.003. The 
regression R is over 0.99. 

 

Table 3.6 Neural network surrogate models – power fitting part – bigger testing set: MSE 

and Regression R values 

 Training Validation Test All 

Points 1122 198 601 1921 

MSE 0.0013 0.0033    0.0074 0.0034 

Regression R 0.997 0.992 0.982 0.992 
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The Figure 3.11 presents the regression graphs for all of the sets. As it can be seen tere is 
several mistakes in the model, but still the fit is very good. To improve the behavior of the 
network we should check the points were there are biggest errors and give more training 
examples from their neighborhood. 

 

Figure 3.11 Regression graph for neural network surrogate models – power fitting part – 

bigger testing set 

 

The training process details for this problem are presented in the Figure 3.12. 
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Figure 3.12 Performance and Training State graphs for neural network surrogate models 

– power fitting part – bigger testing set 

 

The second objective function – total cost – are presented below. In the Table 3.7 the 
properties of the neural network model are shown. As previously the network has 20 
neurons in the hidden layer and its properties (norm of residuals and correlation 
coefficient) are good. 

 

Table 3.7 Properties of neural network surrogate models – cost fitting part – bigger testing 

set 

Neurons in hidden 

layer 
Iteration number Time [s] 

Norm of 

residuals 

Correlation 

coefficient 

20 48 6 2.42 0.993 

 

The results for each of the sets are shown in the Table 3.8.  The sizes of each of the sets are 
the same as previously. The Regression for all points is equal to 0.993. 

 

Table 3.8 Neural network surrogate models –cost fitting part – bigger testing set: MSE and 

Regression R values 

 Training Validation Test All 

Points 1122 198 601 1921 

MSE    0.00092 0.0083 0.0053 0.0031 

Regression R 0.999 0.982 0.987 0.993 

 

The regression graphs for the cost fitting network are shown in the Figure 3.13. There are 
several errors of the network in the training set as well as in the rest of the sets. To improve 
the quality of the network we could retrain the network. The results of such process will be 
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shown in the next analysis. Another method is trying to find more training examples in the 
most sensitive part of the space (the same solution as previously). 

 

 

Figure 3.13 Regression graph for neural network surrogate models – cost fitting part – 

bigger testing set 

 

The training details for this network are shown in the Figure 3.14. 

 

  

Figure 3.14 Performance and Training State graphs  for neural network surrogate models 

– cost fitting part – bigger testing set 
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As the second analysis the same situation was investigated. Actually the first network is 
the same one as previously. We changed only fitting networks. We checked the influence 
of the different number of neurons in the hidden layer for the overall results. In this case 
we used 30 neurons inside the network (earlier there were 20 neurons). The details about 
the network are presented in the Table 3.9. The norm of residuals is better than previously 
(1.45 in comparison to 2.56). The same situation is in the case of correlation coefficient 
(0.997 in comparison to 0.99). 

 

Table 3.9 Properties of neural network surrogate models – power fitting part – bigger 

testing set, version 2 

Neurons in hidden 

layer 
Iteration number Time [s] 

Norm of 

residuals 

Correlation 

coefficient 

30 72 16 1.45 0.997 

 

Table 3.10 shows learning process for this situation. The number of points is the same as 
previously. The regression coefficients are also slightly better than in the case of smaller 
number of neurons in the hidden layer (for example 0.997 in comparison to 0.992 for all 
points). 

 

Table 3.10 Neural network surrogate models – power fitting part – bigger testing set, 

version 2: MSE and Regression R values 

 Training Validation Test All 

Points 1122 198 601 1921 

MSE    0.00013 0.00038 0.0031 0.00109 

Regression R 0.9997 0.9992 0.993 0.997 

As it can be seen in the Figure 3.15 the biggest error are in the test set and they are 
irregular. The fit for the training and validation set is almost ideal. 
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Figure 3.15 Regression graph for neural network surrogate models – power fitting part – 

bigger testing set, version 2 

 

The next example shows interesting correlation. The first prepared network was quite bad, 
but retraining gave us much better results. The final information about the network are 
presented in the Table 3.11 and in the Table 3.12. 

 

Table 3.11 Properties of neural network surrogate models – cost fitting part – bigger 

testing set, version 2 

Neurons in hidden 

layer 
Iteration number Time [s] 

Norm of 

residuals 

Correlation 

coefficient 

30 28 (retraining) 6 3.59 0.984 

 

Table 3.12 Neural network surrogate models – cost fitting part – bigger testing set, version 

2: MSE and Regression R values 

 Training Validation Test All 

Points 1122 198 601 1921 

MSE 0.000008 0.00011 0.021 0.0067 

Regression R 1 0.999 0.95 0.98 
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Figure 3.16 shows first attempt to build the surrogate model. Result are bad and big errors 
appear even in the training set. 

 

 

Figure 3.16 Regression graph for neural network surrogate models – cost fitting part – 

bigger testing set, version 2, training  

 

After the first retraining process (we train the network again but as initial weights we use 
the weights from previous network) the results are much better. They are presented in the 
Figure 3.17. There is only one bad thing in the model. There are two points in testing set 
with big error. The values of their output are bigger than 1 and smaller than -1 respectively. 
This is very bad behavior – when we use surrogate model to optimize a problem, the 
results can be wrong. The optimization algorithm can find non-existent extremums. One of 
ideas to solve this problem is to use the connection of two algorithms: optimization and 
surrogate modeling algorithm. This solution will be described in the Generalization 
chapter.   
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Figure 3.17 Regression graph for neural network surrogate models – cost fitting part – 

bigger testing set, version 2, retraining 1 

 

We decided to check if we can improve the surrogate modeling results even better. We 
retrained the network one more time. The result graphs are presented in the Figure 3.18. 
The approximation for the most of the points is almost ideal. But from the other hand the 
result for extremums points are even worse – they can hardly influence the optimization 
process. 

The interesting result is that when we retrain the network again error does not change. The 
shape and the all quality indicators for testing set are almost ideal. The network can not be 
learnt anything new with the same set of input points. 
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Figure 3.18 Regression graph for neural network surrogate models – cost fitting part – 

bigger testing set, version 2, retraining 2 

 

The last presented experiment is connected with the number of training and validation 
points. Now we used much smaller learning sets. All of the results are presented in the 
same convection as before. 

For the classifying network the number of neurons in the hidden layer is 10 as in the first 
analyzed case. The details about network are presented in the Table 3.13. 

 

Table 3.13 Properties of neural network surrogate models – classifying part – smaller 

testing set 

Neurons in hidden layer Iteration number Time [s] 

10 62 9 

 

Table 3.14 shows the training process details. In this case we used almost two times 
smaller training and validation sets than previously (1092 and 364 respectively in 
comparison to 1820 and 728 points). This change influences the quality of the model for 
each of the sets of points (for example 99% in comparison to 97,9% for all points). 
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Table 3.14 Neural network surrogate models – classifying part – smaller testing set: MSE 

and Regression R values 

 Training Validation Test All 

Points 1092 364 2184 3640 

Accuracy 98,9% 97,3% 97,6% 97,9% 

The Figure 3.19 shows confusion matrixes for all sets. There is 75 points clasified wrongly 
among all of the points. 

 

 

Figure 3.19 Confusion matrix for neural network surrogate models – classifying part – 

smaller testing set 

 

The results of the power and cost fitting functions are shown below. Firstly the details 
about power fitting surrogate model are presented in the Table 3.15 and in the Table 3.16 
(we are using the bigger number of neurons in the hidden layer). 

 

Table 3.15 Properties of neural network surrogate models – power fitting part – smaller 

testing set 

Neurons in hidden 

layer 
Iteration number Time [s] 

Norm of 

residuals 

Correlation 

coefficient 

30 68 23 3.67 0.984 
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Table 3.16 Neural network surrogate models – power fitting part – smaller testing set: 

MSE and Regression R values 

 Training Validation Test All 

Points 651 115 1155 1921 

MSE    0.000068 0.00010 0.012 0.0070 

Regression R 0.9997 0.9998 0.974 0.985 

Figure 3.20 shows the shape of regression function for the objective function of total 
power in the system. The fit is very good except of a few points. They are quite bad fitted – 
this is the situation when the can disturb the process of optimization. The reason for this 
fact is that the data were not cover the whole searching space (we have less training 
examples now so probability of situation like this is bigger). 

 

 

Figure 3.20 Regression graph for neural network surrogate models – power fitting part – 

smaller testing set 

 

Table 3.17 and Table 3.18 shows characteristic of the cost fitting surrogate model.  
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Table 3.17 Properties of neural network surrogate models – cost fitting part – smaller 

testing set 

Neurons in hidden 

layer 
Iteration number Time [s] 

Norm of 

residuals 

Correlation 

coefficient 

30 67 23 4.034 0.98 

 

Table 3.18 Neural network surrogate models – cost fitting part – smaller testing set: MSE 

and Regression R values 

 Training Validation Test All 

Points 651 115 1155 1921 

MSE 0.00031 0.00021 0.014 0.0085 

Regression R 0.9993 0.9995 0.968 0.981 

 

Results in this case are similar as for power production model. Overall fitting is quite good 
(it could be improve a little but by the retraining the network). But there are 5 points which 
do not follow the tendency. They can be observed in the Figure 3.21.  

 

 

Figure 3.21 Regression graph for neural network surrogate models – cost fitting part – 

smaller testing set 
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Complex problem 

As it was mentioned before results in this case are much worse than for the simpler case. In 
this problem there is 23 decision variables. It is huge number and our task was in fact to 
approximate the function in 24-dimension space. 

This system is in fact not the most popular solution (in practical problems). It is much 
more complicated than popular used systems. Normally we use solutions which are 
between simple and complex approach presented in this work. 

The bottleneck of the surrogate modeling process was real point’s generation time. 
Preparing one point by OSMOSE and Energy Integration software took over 1 minute. It 
was 1906 points generated – this took over 32 hours. For this number of points several 
neural networks’ configurations were investigated. Any of them did not give satisfactory 
results. In some configuration it is possible to achieve good fit in the training set, but the 
quality of the model for the validation and test set is bad. 

We will present only the results for classification network and for the power fitting 
network (the results for the cost fitting model are analogical). 

The quality of the classification network could be accepted. The details are presented in the 
Table 3.19 and Table 3.20. 

 

Table 3.19 Properties of neural network surrogate models – classifying part – complex 

problem 

Neurons in hidden layer Iteration number Time [s] 

25 28 4 

 

Table 3.20 Neural network surrogate models – classifying part – complex problem: MSE 

and Regression R values 

 Training Validation Test All 

Points 1620 191 95 1906 

Accuracy 87,6% 83,8% 87,4% 87,2% 

 

The confusion matrixes for this case are shown in the Figure 3.22. For all of the sets the 
accuracy of the model is over 80%. 
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Figure 3.22 Confusion matrix for neural network surrogate models – classifying part – 

complex problem 

 

Much worse situation takes place when we try to approximate the power production. The 
first attempt is shown in the Figure 3.23. The model has been prepared for 25 neurons in 
the hidden layer. There can be observed some tendency in the data but the model is bad. 

To prepare this model there were used 797 points in training set and 171 points in the 
validation set. The surrogate model was tested on the basis of the 171 points. 
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Figure 3.23 Regression graph for neural network surrogate models – power fitting part – 

complex case; 25 neurons in the hidden layer 

 

When we increase the number of neurons in the hidden layer (for example 60 neurons) we 
can achieve big precision in the training sets. This situation is presented in the Figure 3.24. 
This situation shows the effect of over fitting the surrogate model. 

There are several solutions in this case to improve the quality of the model. First of them is 
to collect more training data, which better cover the space. The second method is to use 
different method of learning the model (for example, choose different validation set in each 
iteration of the algorithm). The last idea is to use special methods of sampling – instead of 
random selection use the declared algorithm.  
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Figure 3.24 Regression graph for neural network surrogate models – power fitting part – 

complex case; 25 neurons in the hidden layer 
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4 GENERALIZATION 

In this chapter some general observations connected with surrogate modeling problem are 
collected. 

4.1 Points choosing 

The point choosing methods are important in the case of mathematical as well as artificial 
intelligence modeling techniques. The better the training points cover the space, the better 
results we can obtain.  

The good example of appropriate points influence was shown for polynomial interpolation 
– for Chebyshev nodes we could obtain much better results than for equidistant or random 
one.  Moreover with Chebyshev nodes we could obtain the Runge phenomena. 

Another important thing was to choose the optimal number of nodes. If we have to less of 
nodes surrogate models would not be precise. One the other hand – if we have to many 
nodes, their generation time will be very long. This period with the time of preparing and 
using surrogate model can make building surrogate model uneconomic. It can be better to 
generate values of chosen points in the standard way (flowsheeting models). 

In the analyzed examples it can be seen that the biggest errors appears in the parts of the 
space where the enough number of samples was not chosen. The problems appear also 
very often next to the edges of the searching space. It is caused by the lack of reference 
points for that parts of the space. 

The good solution could be equidistant sampling of the whole space. Unfortunately in 
many cases this is not possible. We have to remember that with growing dimension of the 
space, the number of equidistant samples grows exponentially. However, this type of 
sampling is good in simple problems with one or two decision variables. This simple 
problem can be found in the sensitivity analysis or very simple multi-objective 
optimizations.    

However, in practical life we are forced to solve much more complicated problems. There 
are several ways to deal with them. In this work the simple random sampling was used. We 
can get satisfactory results with this approach, but normally we need to prepare many 
samples and, as it was shown in the last example in practical part, this is not always 
possible. 

Other solution is to select new points in the correlation to previously chosen. For example 
if we will choose a point, we can not choose another one in the assumed distant. This 
assumption would prevent choosing many points only in one part of the whole space – the 
sampling distribution would be more equal.  

Another idea is to choose points accordingly to the gradient in the model. If we notice that 
there is a big gradient in some parts of the space, we chose more point in that 
neighborhood. This algorithm could be connected with random point choosing to avoid 
miss local extremums.  
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Two methods which are described above need to be carefully investigated in the future 
work.  

4.2 Model training methods – errors elimination 

In this subchapter we will focus mainly on the artificial intelligence surrogate models 
based on the neural networks. Although some of the presented methods can be used 
successfully in the mathematical modeling techniques. 

Firs method of improving the surrogate model quality was described in the previous 
section and it require choosing optimal training points. But it is not always possible. When 
we are using the surrogate model to accelerate  the optimization process, we can thing 
about connecting both algorithms: optimization and building the surrogate model. This 
method will be described in the separated subchapter. 

But we can obtain great results also by careful design of surrogate model: choosing the 
best mathematical method or finding the best network configuration. 

Several properties and methods for improving neural network surrogate models were 
described in the practical part of the Thesis. Here we will collect all of them: 

 
• Choosing appropriate number of layers. More complicated network can solve 

complex problems more effectively. On the other hand they are more memory and 
time consuming (especially in the training process); 

• Hidden neurons number – they have similar tendency like the number of layers. 
When there is to less neurons in the hidden layer the network can have a problems 
with finding a good solution. On the other hand, for bigger network (more hidden 
neurons) we need more time to prepare them. And moreover they are in many cases 
over-fitted. Normally the maximum of the input and output values is good 
approximation for optimal number of neurons in the hidden layer; 

•  There are many types of activation function in the neurons – two of them were 
detailed presented (linear and semilog function). The basic usages of this function 
were described (neurons in output and hidden layer respectively). Other types of 
activation function will be investigated in the future work; 

• To improve the behavior of the neural network we can use the variable validation 
set. It is especially good method when we have not got many input points (for 
example their generation is time-consuming). Firstly we divide the whole set of 
points for n sets. In each iteration of training algorithm (epoch) different set of 
initial group is used as validation set. Other sets (n-1) are used as training set; 

• When the satisfactory solution is not found we can try to retrain the network. 
Retrain is very similar to normal training process. Only difference is in the starting 
weights. In the beginning we start with the randomly initialized values of weights 
and bias. When the neural network is retrained the initial weights are pre-trained, so 
it is easier to find good surrogate model from that point; 

• There can be also find several methods of defining stop condition. Stop condition 
tells us when we should end the training process. One of the method was presented 
in the Thesis (ending when validation error does not decrease in defined number of 
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iteration). Other stop condition is assumed number of epochs or assumed maximum 
error of the model. 

 

All of this method can be used in the building optimal surrogate model. Some of them can 
be used in the generic tool to build such models.  

4.3 Surrogate model errors – validity 

Another very important problem connected with surrogate modeling is finding the part of 
the whole decision variable space in which the model is valid. In another words we should 
introduce the measurement with let us know how big errors can we except for analyzed 
point of decision variables. 

As it was shown in the practical part of the Master Thesis, in many cases, when we have 
appropriate set of training points chosen, we can obtain very good results by using 
surrogate modeling. In case of simple problem it is better to use simple mathematical 
methods, which can give even better results than more complicated in the conceptual and 
computational senses artificial intelligence surrogate models. We should notice, that in 
many cases very small differences between real values and surrogate model outputs does 
not influence the final results (for example, when we are thinking about system with power 
production approximately equals to MW, the differences in single W or even kW are not so 
important). More important thing is that the surrogate model should behave as real one in 
context of overall shape (when we are using surrogate model to optimize a function the 
location of model extremums is one of the most important things). 

Generally the surrogate model gives the good results in the part of the decision variable 
space which is appropriately covered by training samples. It is logical – the surrogate 
model have only that information, which was earlier given to it. It can not forecast the 
shape – it can only generalize the available information. 

Moreover we should realize that the surrogate models are much better in interpolation 
values inside the problem ranges (inside the input point sampling area) than beyond the 
ends of the range. All of the presented models had the biggest problems with points next to 
the ends. When we do not have any reference points finding real value of the model is even 
harder. 

There is one more important feature of surrogate models which should be noticed in this 
subchapter. In some of the examples we observed appear of the additional extremums. It 
could be observed especially well in the problems with normalized output values. All of 
the output could be included in the range [-1,1]. But unexpectedly the strange output values 
were given by surrogate models – some of them were equal to -2 some to 2. Appearance of 
these additional points can destroy the whole result of optimization of a function. 

Because of that the good idea is connecting the optimization and surrogate modeling 
algorithms. This solution can help in avoiding described situations.  

4.4 Connection with optimization genetic algorithm 

The idea how we can improve a surrogate model, which was mentioned before, is to 
connect both algorithms: optimization and surrogate ones. 
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The schema of connected algorithm is presented in the Figure 4.1. This method was 
described for example in (Sreekanth & Datta, 2010). 

 

 

Figure 4.1 Surrogate modeling with optimization algorithm (Sreekanth & Datta, 2010) 

 

The main idea is following: we are training the surrogate model with initial random 
samples. Then we are using surrogate model prepared in this way to optimize the random 
initial population of genetic algorithm. 

When several iteration of genetic algorithm is done, we are using the individuals from the 
current population to retrain the surrogate model. It guarantee us that in the most neuralgic 
part of the decision variable space the surrogate model gives appropriate output values 
with small error. It destroys also the false extremum values in the model. 

This relearning of the surrogate model can be repeated until satisfactory results will be 
obtained.  
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5 SURROGATE MODEL – PROJECT DEVELOPING IN POLAND 

The Master Thesis was prepared with support of the EEA Financial Mechanism Grants: 
“Professional Partnership between the Republic of Poland and the Republic of Iceland in 
the Utilization of Renewable Energy Resources: Graduate Education, Practical Training 
and Renewable Energy Research”. Important thing to mention is the work plan of the 
project, which will be continued in Poland during next year. 

The whole project methodology can be presented in the following plan:  

 
1. A model was proposed (a gas turbine with recirculation and a steam network).  
2. The learning and validation set have been generated on the basis of the MINLP 

(Mixed-Integer Non-Linear Program) model. The surrogate models have been 
developed in a MATLAB environment (consistent with other LENI tools). The 
chosen and developed method is Artificial Neuron Network. For simpler 
problem (a gas turbine with the recirculation) also mathematical programming 
was used.  
For given method the different parameters were tested and the best solution was 
chosen. For ANN the parameters examples are: 

• Network architecture – type of ANN; 

• Number of neurons in the hidden layers; 
• Activation function. 

The ANN was developed with the Neural Network Toolbox for MATLAB. 
3. The surrogate model was built. Some of the questions that was answered are: 

• Optimization is performed through an evolutionist algorithm. Does the 
surrogate model make enough evaluation of the real model or shall it be 
completed by more data? 

• How can we choose optimal learning and validation sets? 

• In the decision variables space, what is the validity domain of the 
surrogate model? 

• What is its precision for a given set of data? The question behind this 
one is ‘what is the surrogate model deviation, compared to uncertainty 
influence’? 

• What is the procedure to build such a model? Can it be made in parallel 
with optimization?  

4. Generalize the method (make it useable for any model). This means: 
• Define a test (to check if the model is a possible candidate for such 

approach); 

• Define which parameters can be set as default parameters, and which 
have to be defined by the user; 

• Implementing it to build a general tool. 
5. Incorporate the method into existing LENI tools. 
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In the context of this Master Thesis, the goal was to reach point 3 from the research plan. 
The remaining research points and the development of the surrogate model tool will be 
continued after the completion of the RES Master Thesis. The final goal of the project is to 
develop a tool that can be used to build surrogate models for complex energy systems. This 
tool will have to be user friendly and generic enough to be used on different models by 
different users (non-expert). However this represents a lot of work that cannot be achieved 
during four months time. Therefore the constrained goal of this project was to study a 
detailed model, and develop methods that can be generalized to any kind of problem. 

The project will be continued after writing the RES thesis – follow-up work will be used to 
prepare a master thesis project for the author home university in Poland (academic year 
2011-2012, thesis advisor: Dr. Adam Roman). As the result of these two projects the final 
goal (building surrogate model tool) will be achieved. 

The second, very important, part of the project will be developed and implemented in 
Poland.  

Moreover we have to remember that this project is devoted to developing a tool and a 
methodology which can be useful in other practical problems. This toll will help in 
analyzing complicated energy systems in faster and more effective way. It can improve 
their quality, what can be beneficial not only for Poland but for any examined by this tool 
problem. 
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6 CONCLUSIONS 

The Master Thesis presents methods of preparing the surrogate models for complex energy 
systems. Different methods were introduced and evaluated. Also possible applications of 
presented theoretical solutions were shown.  

The analysis prepared during Master Thesis provides information about practical 
implementation methods of surrogate models into the energy system field. The Thesis is an 
example of implementation of mathematical theory into real world problem. 

The final goal of the project is to develop a tool that can be used to build surrogate models 
for complex energy systems. This tool will have to be user friendly and generic enough to 
be used on different models by different users (non-expert). In this Master Thesis project 
first part of the work was done. The detailed models have been studied and results were 
generalized to any kind of a problem. The different methods: mathematical as well as 
artificial intelligence methods were incorporated into the surrogate modeling problems. 
The generalization and conclusions according to different problems connected with 
surrogate modeling are presented in the Generalization chapter. The conclusion are focused 
on the following topics: choosing the best training set, method of elimination errors in the 
training process, validity space of the model and possibilities of connecting two 
algorithms: genetic optimization and creation of surrogate model. 

The prepared surrogate models and general conclusions will be used to develop a new tool 
which will be incorporated into LENI software. The tool will be implemented at 
Jagiellonian University in Poland. This tool will provide new possibilities for optimization 
and analysis strategies of complex energy systems. Using a surrogate model instead of the 
real one gives the chance to perform more optimization strategies and to perform more 
complex analysis. This tool will find many subsequent applications and will be used in the 
future LENI projects.  

The automatic tool can improve the quality and the speed of analysis of energy systems 
connected with polish condition (a few of this type analysis were prepared in LENI). 
Moreover the information presented in this Thesis can be used in preparing surrogate 
models for specific problems related to Poland or other countries. 
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APPENDIX A 

Comparison of surrogate model based on spline interpolation and original one variable 
model - gas turbine power plants designs with CO2 capture with Flue Gas Recirculation 
(FGR). The original model is represented by set of 200 randomly chosen points determined 
by the value of decision variable – recirculation ratio.  Appendix consist graphs for all 
output parameters analyzed in the Thesis. 
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 A. 5 Surrogate model on basis of 4 knots 

for F_1_002O2_HFLOWTOT 
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A. 11 Surrogate model on basis of 4 knots 

for F_410_HFLOWTOT 
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A. 17 Surrogate model on basis of 4 knots 

for H22_HFLOWTOT 
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A. 23 Surrogate model on basis of 4 knots 

for NGAS_TOT_MASSF 
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A. 29 Surrogate model on basis of 4 knots 

for COMB1_IN_MRO2 
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A. 35 Surrogate model on basis of 4 knots 

for W_1_POWER 
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A. 41 Surrogate model on basis of 4 knots 

for NGAS_TOT_MRC2 
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A. 47 Surrogate model on basis of 4 knots 

for STORAGE_MRCO2 
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A. 53 Surrogate model on basis of 4 knots 

for F_411_MRC1 
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A. 59 Surrogate model on basis of 4 knots 

for TURB1_OUT_MRN2 

 

 

A. 60 Surrogate model on basis of 4 knots 
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A. 63 Surrogate model on basis of 4 knots 
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