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Abstract

Image analysis is aimed at extracting meaningful information from im-
ages, by means of digital processing techniques. It covers diverse appli-
cations, which are continuously expanding through all areas of science
and industry, including, among all, medicine, astronomy, security, re-
mote sensing. Several techniques for the automatic analysis of images
have been proposed for different purposes. Generally, each technique
is applied to a small range of tasks and often outperformed by human
analyzing capabilities. Hence, there is still the need for developing new
and advanced methods of image analysis.

In this thesis, we propose and develop novel methods and algorithms
for the analysis of different types of images and for different purposes.
The proposed methods are applied to two different fields, i.e., diagnostic
ophthalmology and planetary surface analysis.

In this framework, the novel contributions of the present thesis can
be collected in three areas.

First, various feature-extraction methods are proposed and applied
in different contexts. On one hand, segmentation methods for the ex-
traction of spatial features from planetary images are proposed. Dif-
ferent feature extraction techniques are explored and applied for the
detection of craters and rocks on planetary images. The application of
the proposed methods for registration purposes is also presented. On

the other hand, feature extraction in retinal images is proposed as a
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preprocessing step for the registration of multitemporal images.

Subsequently, a feature-based image registration approach is pro-
posed, based on global optimization techniques, in order to spatially
align pairs of images. In particular, a genetic algorithm is used to
match previously extracted features from an image pair to be regis-
tered (e.g., blood vessel maps from retinal images or elliptical features
from planetary images).

Finally, we concentrate on approaches to analyze multitemporal reg-
istered images, focusing on change-detection. Different change-detection
approaches, based on automatic thresholding techniques and multiple
classifiers, are proposed and applied to analyze pairs of multitempo-
ral retinal images. Then, the classification of temporal changes is ad-
dressed, by analyzing different image features.

The new techniques, developed in this thesis and experimentally
validated on diverse data, improve the state of the art in each of the
mentioned application fields, when compared to previously proposed
methods, and thus show great potential for various image analysis sce-
narios.

Keywords: Image registration, image segmentation, feature ex-
traction, change-detection, retinal images, planetary images, genetic
algorithm, Hough transform, watershed, marked point process, multi-

ple classifiers.
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Agrip

Myndgreining midar ad pvi ad nota stafreenar aoferdir til ad draga
upplysingar fram ur myndum. Myndgreining hefur margs kyns
notkunarsvio i visindum og idnadi, og eru notkunarsvidin sifellt a0
verda viotaeekari og ma nefna demin lseknisfreedi, stjornufraedi,
oryggismal og fjarkonnun. Nokkrar adferdir til sjalfvirkar greiningar
mynda fyrir mismunandi notkunarsvid hafa komid fram &
undanférnum arum. Ad jafnadi er sérhver adferdo hénnuo fyrir prongt
notkunarsvio og pvi getur folk oft nad betri arangri i greiningu
vandaméalanna med berum augum. Af pessum sokum er naudsyn ao
pbroa nyjar og framsaeknar adferoir til sjalfvirkrar myndgreiningar.

I pessari doktorsritgerd, eru lagdar til og proadar nyjar adferdir og
algrim fyrir sjalfvirka myndgreiningu. Nyju adferounum er beitt & tvo
mismunandi notkunarsvid, p.e.  greiningu i augnlaeknisfraedi og
yfirbordsgreiningu 4 reikistjornum.

Med tilliti til ofangreinds, ma flokka framlag ritgerdarinnar i prju
meginsvid.

Fyrst méa nefna ad margar adferdir til ttdtrattar & einkennum (e.
feature extraction) eru kynntar og beitt i mismunandi samhengi. I
fyrsta lagi eru settar fram myndhlutunar adferdir (e. segmentation)
sem draga fram ramfraedileg einkenni fyrir myndir af reikistjéornum (e.
planetary images). Nokkrar mismunandi pannig adferdir eru skodadar

og peim beitt 1 skynjun giga og steina i reikistjarnamyndum.



Adferdunum er einnig beitt vio skraningu mynda (e. image
registration). 1 ©dru lagi eru adferdir til framdrattar einkenna {
augnbotnamyndum settar fram sem forvinnsluadferd fyrir skraningu
mynda frd mismunandi timum.

bvi naest er myndskraningaradferd sem byggir 4 notkun einkenna
sett fram. Dessi adferd byggir 4 vioveerri bestunarteekni sem leitast
vid a0 stilla pér mynda ramfraedilega saman. FErfoafraedilegt algrim
(e. genetic algorithm) er notad til ad samstilla einkenni sem dregin
hafa verid fram tr peim myndporum er skra skal saman (t.d. kort af
2dum { augnbotnamyndum eda sporoskjulaga einkenni ir myndum af
reikistjornum).

A0 lokum eru rannsakadar adferdir til ad greina skradar myndir fra
mismunandi timum med hoéfuddherslu & skynjun & breytingum (e.
change detection) i myndunum. Mismunandi adferdir til skynjunar &
breytingum eru settar fram en bessar aoferdir byggja 4 sjalfvirkum
proskuldum og fjolflokkurum (e. multiple classifiers). Adferdunum er
beitt vio greiningu & pérum augnbotnamynda fr4 mismunandi timum.
Sidan er gerd flokkun & breytingum sem ordid hafa med pvi ad nota
mismunandi einkenni myndanna.

Nyju aoferdirnar sem proadar eru i ritgerdinni og stadfestar med
beitingu 4 mismandi gogn, er framlag til beirra notkunarsvida sem
fjallad er um 1 ritgerdinni eins og synt er med samanburdi vio fyrri
aoferoir. Nyju aoferdirnar bjoéoa pvi upp & mikla moguleika i margs
konar myndgreiningarverkefnum.

Lykilord Myndgreining, hlutun mynda, utdrattur einkenna,
skynjun breytinga, augnbotnamyndir, myndir af reikistjornum,
erfoafraedileg algrim, Hough vorpun, vatnaskil, merkt punktferli,
fjolflokkarar.
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Sommario

L’analisi di immagini consiste nell’ estrazione di informazioni
significative da immagini digitali, attraverso specifiche tecniche di
elaborazione. Essa ricopre varie applicazioni in continua espansione
attraverso tutte le aree della scienza e dell’industria, che includono,
tra le altre, medicina, astronomia, sicurezza, telerilevamento. Sono
state proposte diverse tecniche per ’analisi automatica di immagini a
vari scopi. Generalmente, ogni tecnica ¢ applicabile ad un piccolo
insieme di compiti e spesso superata dalle capacitd umane. Quindi, lo
sviluppo di metodi nuovi ed avanzati per I'analisi di immagini risulta
tuttora necessario.

Nella presente tesi, si propongono metodi ed algoritmi innovativi
per 'analisi di diversi tipi di immagini e a vari scopi. L’applicazione
dei metodi proposti avviene in due diversi ambiti, quali I'oftalmologia
diagnostica e I'analisi di superfici planetarie.

In tale contesto, i contributi innovativi della presente tesi si
raggruppano in tre diverse categorie.

In primo luogo, si propongono diversi metodi per l'estrazione di
strutture spaziali caratteristiche (feature) e si applicano in diversi
ambiti. Da un lato, si esplorano metodi per l'estrazione di strutture
spaziali da immagini planetarie, nelle quali la rivelazione di crateri e
rocce viene effettuata attraverso diverse tecniche di segmentazione;

tali metodi vengono applicati al fine di registrare immagini planetarie.
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Dall’altro lato, si propone l'estrazione di feature in immagini della
retina come fase di pre-elaborazione per la registrazione di immagini
retiniche multitemporali.

Successivamente, si propone un approccio per la registrazione,
attraverso l'utilizzo di tecniche di ottimizzazione globale, allo scopo di
allineare spazialmente coppie di immagini. In particolare, si utilizza
un algoritmo genetico per determinare la corrispondenza tra feature
precedentemente estratte da una coppia di immagini da registrare.
Tali possono essere, ad esempio, mappe dei capillari in immagini
retiniche o strutture ellittiche in immagini planetarie.

Infine, si studiano approcci per l'analisi di immagini
multitemporali precedentemente registrate. In particolare, ci si
focalizza su tecniche di rivelazione di cambiamenti. Si propongono
diversi approcci di rivelazione di cambiamenti, basati su tecniche di
sogliatura automatica e classificatori multipli. Le tecniche proposte
vengono utilizzate per 'analisi coppie di immagini retiniche acquisite
in tempi diversi.  Successivamente, si affronta il problema della
classificazione dei cambiamenti rilevati, analizzando diverse
caratteristiche.

Le nuove tecniche, sviluppate in questa tesi e valutate
sperimentalmente su varie tipologie di immagini, migliorano lo stato
dell’arte in ognuno degli ambiti applicativi menzionati, in confronto a
metodi precedentemente proposti nella letteratura scientifica.
Pertanto costituiscono un elevato potenziale in vari scenari dell’analisi
di immagini.

Parole chiave: Registrazione di immagini, segmentazione,
estrazione di feature, rivelazione di cambiamenti, diagnostica per
immagini della retina, pianeti, algoritmo genetico, trasformata di

Hough, watershed, processo a punti marcati, classificatori multipli.
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Chapter 1

Introduction and Thesis

Overview

Visual information plays an important role in almost all areas of our life.
Thanks to the fast spreading of new digital tools, nowadays much of
this information is represented and processed digitally. Digital image
analysis has become a challenging problem. It covers a wide range
of fields, with applications ranging from remote sensing to diagnostic
medicine, from astronomy to robotics, from security to microscopy.
An effective exploitation of such potential calls for the development
of accurate and fast image analysis procedures, able to extract the
information of interest from the available image data.

In this context, different image analysis issues are addressed here.
The aim of this thesis is to propose innovative and advanced approaches
to solve different problems, which can be applied to different specific
areas of interest. The issues addressed in this thesis can be grouped
into three categories, i.e., image segmentation, image registration, and
change detection. Several algorithms, which have been developed to
address specific image analysis problems, are proposed.

This chapter introduces the framework of the research work that



will be presented in this thesis. Then, the thesis objectives and main
contributions are described. These contributions will be further dis-
cussed in the following chapters (i.e., Chapters 2, 3, and 4), each of
them focusing on one of the problems and on the corresponding devel-
oped methods. Results obtained by applying the proposed algorithms
to specific data will be presented in Chapter 5. General conclusions
about the approaches proposed in the thesis will be drawn in Chap-
ter 6. Finally, the second part of the thesis is composed of different
annexes, each of them representing a publication related to the main

findings of the research work.

1.1 Image Analysis

Image analysis is aimed at extracting meaningful information from dig-
ital images and involves the use of image processing techniques. In
particular, it is the process of characterizing an image with its content

description at a given semantical level.

Image analysis has become a critical component in contemporary
science and technology and has extensive applications, which are contin-
uously expanding through many different areas. Applications include,
among others, medicine, remote sensing, astronomy, robotics, etc. In
particular, in medical applications, image analysis can be used in order
to detect specific diseases, providing a powerful tool as a support for
the diagnostic process. Applications range from the detection of can-
cer in MRI (Magnetic Resonance Imaging) scans, to the monitoring of
diabetic retinopathy through the analysis of retinal images. Moreover,
environmental remote sensing represents the set of image processing
techniques aiming at retrieving information about a geographical area

by exploiting Earth-observation data. This type of technology has been
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acquiring a growing interest from the viewpoints of environmental mon-
itoring and management. In addition, the analysis of planetary images
has been acquiring strong attention. In fact, thanks to the increas-
ing number of planetary missions devoted to the acquisition of plane-
tary imagery, image-analysis technologies present a huge potential for a
wide range of planetary applications. Among them, selecting safe land-
ing sites, identifying planetary resources, and preparing for subsequent
planetary exploration by humans and robots.

The research work described here is aimed at identifying novel and
advanced image processing approaches for different applications. In
particular, from an application viewpoint, we focus on the analysis of
retinal images, on one side, and planetary images, on the other side.

In both frameworks, in the ideal case, the features of interest are
sharp and clearly defined, hence, easy to detect. In practice, however,
image quality can be uneven, due to different factors.

Here, we deal with images acquired with different modalities, under
poor illumination conditions, different field angles, etc. Those images
are difficult to analyze and the features represented are generally barely
visible. Hence, the proposal of new advanced techniques for their au-
tomatic analysis is highly desirable.

On one hand, we focus on the analysis of retinal images. In oph-
thalmology, diagnosis of retinal diseases is based on the analysis of the
changes in the retina that can occur during time. The analysis of multi-
temporal images is an important diagnostic tool. Fundus images may
be used to diagnose many diseases that affect the vascular structure by
revealing the changes that have occurred in it during the period between
two consecutive medical visits. A multitude of image devices have been
brought into clinical practice, by facilitating visual access to different
parts of the eye. In particular, fundus cameras have been commonly

used over the last decades. These devices produce a large amount of



images that need to be visually inspected by ophthalmologists to di-
agnose abnormalities. Therefore, automatic methods of retinal image
analysis have been acquiring a growing interest in order to support the
diagnosis. The aim of the work presented in this thesis, which will be
detailed in the following section, is to develop a set of new algorithms
to help ophthalmologist diagnosis and to be used in automated systems

for retinopathy screening.

On the other hand, the analysis of planetary images is addressed.
With each new planetary mission, the volume of acquired data signifi-
cantly increases. Different types of data are being collected at different
times, by different sensors, and from different view-points. Feature ex-
traction, i.e., extraction of spatial features in the images, is typically the
first step in most image analysis processes. For instance, registration
is an essential task to jointly exploit, integrate, or compare all these
different data and usually requires a prior accurate extraction of the
spatial features in the image. Identification of spatial features on plan-
etary surfaces can be manually performed by human experts but this
process can be very time consuming. Therefore, a reliable automatic ap-
proach to detect the position, structure, and dimension of each feature
is highly desirable. This is a difficult task for several reasons: Limited
data are usually available, the contrast of planetary images is generally
low (i.e., it is heavily affected by illumination, surface properties and
atmospheric state), and the features that are present in the images can
be barely visible due to atmospheric erosion and they may be based on
different structure types of variable sizes. Hence, the proposal of new
automatic approaches to help planetary scientists in identifying spatial
features to be used in automated systems for image registration is of

high interest.



1.2 Aim of The Thesis

The main objective of this thesis is the development of new advanced
methods and algorithms for the analysis of different types of data. The
developed approaches should be efficient in terms of accuracy and com-
putational complexity. In particular, here, we address the following

specific issues:

1. Image segmentation, i.e., the process of partitioning an image into

multiple regions, generally used to locate objects in an image.

2. Image registration, i.e., the process of spatially aligning two or
more images, a step always necessary when comparing two or

more images.

3. Change detection, i.e., the process of identifying differences in
the state of an object or phenomenon, by observing it at different

times through multitemporal images.

The main contributions of this thesis are summarized in Figure 1.1,
which depicts the proposed methods and algorithms for feature extrac-
tion, image registration and change detection of the analyzed data. In
order to achieve our objective, we address the three different main issues

previously defined and propose and develop different novel solutions.

1. Image segmentation methods are proposed with a specific focus on:

a) Feature extraction in retinal images, based on mathematical
morphology, for registration purposes (described in Chap-
ter 2).

b) Feature extraction in planetary images, by using watershed
segmentation combined with the generalized Hough trans-
form, for registration purposes (detailed in Chapter 2 and

object of the paper reported in Annex C).
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Figure 1.1: Overall block diagram of the proposed methods for feature
extraction, registration and change detection of the analyzed images.

¢) Crater detection in planetary images, based on marked point
processes (introduced in Chapter 2 and subject of the paper

reported in Annex D).
2. Image registration is addressed for:

a) Registration of retinal images by matching the extracted fea-
tures, i.e., retinal blood vessels, through a Genetic Algo-
rithm, GA (described in Chapter 3 and in the book chapter

presented in Annex A).



b) Registration of planetary images by matching through GA
the elliptical features previously extracted (i.e., craters and
rocks) by using the method proposed in the paper reported

in Annex C (as detailed in the same annex).

3. Change detection in multitemporal retinal images, especially focus-

ing on:

a) Change detection by using an automatic thresholding tech-

nique (detailed in Chapter 4 and addressed in Annex A).

b) Change detection by using an automatic thresholding tech-
nique integrated within a multiple classifier approach (de-

tailed in Chapter 4 and in the paper reported in Annex B).

1.3 Thesis Structure

This thesis is composed as a collection of publications, preceded by
an extended research summary. The manuscript is organized as fol-
lows: Chapters 2, 3, and 4 deal with the problems addressed in this
thesis, which are image segmentation, image registration, and change
detection, respectively. In particular, in each of the three Chapters an
overview of the analyzed problem is introduced, an overview of the lit-
erature analysis is given, and, finally, the architecture of the proposed
approaches is detailed. An evaluation of the results obtained by apply-
ing the proposed approaches is given in Chapter 5. Concluding remarks
and suggestions for future work are drawn in Chapter 6.

In the subsequent annexes different publications presenting the main

findings of this thesis are collected:

Annex A Book Chapter proposing a full system for registration and

change detection in retinal images, as a support for the diagnosis



of retinopathy. The images are acquired from the same patient
during different medical visits by a color fundus camera. An auto-
matic registration approach, based on the extraction of the vascu-
lar structures in the images to be registered and the optimization
of their match, is investigated. Then, in order to achieve the
detection of temporal changes, an unsupervised approach, based
on a minimume-error thresholding technique, is investigated. The
algorithm is tested on color fundus images with small and large

changes.

Annex B is a paper proposing a novel method for change detection in
retinal images, based on a minimume-error thresholding technique
integrated within a multiple classifier approach. Unsupervised
thresholding is applied to separate the “change” and the “no-
change” areas in a suitably defined difference image. However,
in order to cope with local illumination differences, the thresh-
olding technique is applied to randomly selected sub-images: The
outputs of the different windows are combined with a majority
vote approach. A novel approach, which performs local analysis

by combining spatially different classifiers, is proposed.

Annex C is a paper addressing a feature extraction issue in plane-
tary images. In particular, a new unsupervised method for the
extraction of different features of elliptical and geometrically com-
pact shape from the surface of the analyzed planet is proposed.
This approach is based on a novel combination of several image
processing techniques, including a watershed segmentation and
a case-specific formulation of the generalized Hough transform.

The method has many applications, including image registration.

Annex D is a paper proposing a novel application of a marked point

10



process for crater detection in planetary images. First, the con-
tours in the image are extracted. The object boundaries are
modeled as a configuration of an unknown number of random
ellipses, i.e., the contour image is considered as a realization of a
marked point process. Then, an energy function is defined, con-
taining both an a priori energy and a likelihood term. The global
minimum of this function is estimated by using reversible jump
Monte-Carlo Markov chain dynamics and a simulated annealing

scheme.
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Chapter 2

Image Segmentation for

Feature Extraction

Image segmentation is the process of partitioning an image into multiple
homogeneous regions with some homogeneity criterion. In particular,
each pixel is assigned with a label, such that pixels with the same label
share specific characteristics or properties (e.g., color, texture, etc.). As
a result the image is partitioned into a finite set of regions delimited
by region boundaries. Image segmentation is typically used to locate

objects and object boundaries in the analyzed images [106].

Here, different segmentation techniques are proposed, in the contest
of the analysis of both Retinal Images (RIs) and Planetary Images
(PIs). Concerning the former, methods for the detection of both optic
disc and blood vessels in retinal images are investigated. Concerning
the latter, different approaches for the identification of spatial features

such, as craters and rocks, in Pls are proposed.

This Chapter is organized as follows: Sections 2.1 and 2.2 deal with

the segmentation of Rls and Pls, respectively.

12



2.1 Retinal Image Segmentation

Retinal Images (RIs), generally acquired by a fundus camera, include
different features of interest. Indeed, they represent the retina with
its vascular structure and the optic nerve head. The choroid is the
structure below the retina and it is usually obscured by it. The retina
is a multilayer structure, which is transparent except for the deepest
layer, the pigmented epithelium. This gives to the retina its reddish
color. More superficially than the pigmented epithelium, there is the
sensory retina, composed by the photoreceptor cells and the gangliar
cells.

The segmentation of Rls, for registration purposes, is investigated
here. In particular, the problem of detecting the optic disc is pre-
sented in Section 2.1.1 and the vessel extraction issue is addressed in
Section 2.1.2.

2.1.1 Optic Disc Detection

The detection and exclusion of the optic disc are essential tasks in order
to further analyze Rls. In fact, the identification of the optic disc is
indispensable as a preprocessing step for the detection of changes, be-
cause the optic disc and the exudates have similar attributes in terms of
brightness, color and contrast. Furthermore, the optic disc localization
is a first step in understanding ocular fundus images: By estimating the
optic disc position and dimension, the localization of the macula can
be approximately determined. The macula is the entire area between
the temporal vessels and represents the center of vision. It is of great
importance as lesions in the macular region affect vision immediately.
Localizing the optic disc is also crucial for blood vessel tracking and as

a reference length for measuring distances in Rls.
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First, an overview of previous work on optic disc detection is pre-

sented. Then, the proposed approach is described.

Previous Work

The optic disc is the entrance region of blood vessels and optic nerves
into the retina. It is a brighter region than the rest of the fundus, due to
the absence of retina layer. The shape of the optic disc is approximately
circular, interrupted by the outgoing vessels. Sometimes the optic disc
appears as an elliptical object in the image, due to a nonnegligible angle
between image plane and object plane. Most of the time, however, it
is only partially visible, lying on the border of the image.

An area threshold was used by Tamura et al. [113] to localize the
optic disc. The contours were detected by means of the Hough trans-
form for the detection of circular features. This approach was quite
time consuming and it relied on the approximation of the shape of the
optic disc as a circle, which is not always met. In fact, often the optic
disc is even not entirely visible in the image plane, and its shape is
neither circular nor elliptical. In Pinz et al. [92], a similar approach
was proposed, in which the Hough transform was used to detect the
contours of the optic disc in infrared and argon-blue images. In spite
of some improvements, problems were stated if the optic disc does not
meet the shape conditions (e.g., if it lies on the border of the image) or
if the contrast is too low. In [2], the optic disc was identified by back-
tracking the vessels to their origin. This is certainly one of the safest
ways to localize the optic disc, but it has to rely on vessel detection,
which is, in itself, a complex problem. It is desirable to separate the
segmentation tasks in order to avoid an accumulation of segmentation
errors and reduce computational cost. Mendels et al. [71] proposed an
approach based on morphological filtering techniques and active con-
tours. Osareh et al. [83] described three different methods. The first
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method, based on template matching, gave a good location of the optic
disc; the second one, based on least square regression, estimated the
optic disc as a circular shape; the third one, based on snakes, gave a

very accurate representation of the shape and location of the optic disc.

Proposed Approach

In this work the location of the optic disc is estimated by exploiting the
local grey level variation, as proposed in [108|. The appearance of the
optic disc is characterized by a relatively rapid variation in intensity:
The dark blood vessels are beside the bright nerve fibres, being the grey
level variation in the papillary region higher than in any other part of
the image. The variance of intensity of adjacent pixels is used for the
recognition of the optic disc.

In the RGB color space, the contours of the optic disc appear more
continuous and more contrasted against the background in the red chan-
nel. Anyway, this channel has a very narrow dynamic range. Moreover,
the optic disc belongs to the brightest parts of the color image. Hence,
in order to localize the optic disc, the luminance channel of the HLS
color space is used.

Considering a square sub-image W (i,7) of size My, x My, centered
on pixel (i, j), the mean intensity within W (4,5), |/*|w can be defined

as
] i+ My /2 G+Myy /2

|JR|W(Z',]'):MW2 > > Ifm),  (21)

I=i—Mw /2  m=j—My /2

where I7(I,m) is the intensity of the pixel (I,m) in the original retinal

image I?. A variance image V can be obtained by the equation
o 20 . .
Vi, 7) = [(I") lw (i, 7) = (1w (3, 5))*. (2.2)
An image of the average variance V within sub-images is then obtained

15



V(i) = [VIw (). (2.3)

The location cop of the maximum of V is selected as an estimate for
the center of the optic disc.
The shape of the optic disc is estimated as a circular region, centered

in cop as detected by the proposed method.

2.1.2 Vessel Extraction

The detection of the blood vessels is an essential tasks in order to further
analyze RlIs. The vascular structure is the most prominent feature in
the fundus of the eye, it covers all the retina, and is assumed to be
stable over time. Vessel elongation, changes in width and tortuosity
may happen, due to specific retinal diseases, but generally they are
not large enough between visits to markedly affect the main vascular
structure [57].

Actually, automatic detection of blood vessels in Rls is a challenging
task. The contrast of such image data diminishes as the distance of a
pixel from the center of the image increases. And the presence of noise,
the variability of vessel width, the presence of pathological lesions, all
make the task more difficult.

First, an overview of previous work on retinal blood vessel detection

is presented. Then, the proposed approach is described.

Previous Work

The problem of blood vessel segmentation has been extensively ad-
dressed and several solutions have been proposed in the literature.
Pappas et al. |[84] proposed a method for the mapping of arteries in an-
giograms, based on a local analysis of the image. A model was created

for blood vessel densitometry and matched to regions of angiograms to
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determine blood vessel location as well as diameter and cross-sectional
area. Chauduri et al. [24] attempted to match the gray-scale intensities
of regions of a retinal image to a Gaussian profile and thereby locate
the blood vessels. Edge detection was done by [92], and parallel edges
were connected and identified as blood vessels. More recent methods
typically utilized three major steps to achieve retinal blood vessel seg-
mentation. Generally, some type of filtering and thresholding is used in
a preprocessing stage. The image is, then, processed in one of several
ways, and, finally, a post-processing step is aimed at detecting misclassi-
fied pixels and patches together labeled segments. Li et al. [59] rejected
the traditional single Gaussian filter for a double Gaussian filter which
more accurately models the vessel profile. Li et al. used that piecewise
Gaussian model to differentiate between arteries and veins. Lowell et
al. [64] used a correlation filter to locate the optic disk, frequently a
starting point for vessel segmentation algorithms. Such an approach
has to rely on vessel detection. Nonetheless, as previously stated, it is
desirable to separate the segmentation tasks in order to avoid an ac-
cumulation of segmentation errors. Lalonde et al. [59] used the Canny
operator in order to detect the vessel edges and to estimate the normal
vector to the edge. They followed the edge detection with thinning
and then a tracking algorithm. Their tracking algorithm tracks each
edge of each vessel individually before combining found walls as vessels
by exploiting knowledge of the parallel character of vessel borders. In
addition, several tracking methods have been implemented in the past.
Previous tracking methods proceeded by first determining start points
and then tracking the vessels from those points. One principal strat-
egy involved locating the optic disc, usually the brightest part of the
eye, and locating starting points from there. For instance, Tamura et
al. [113] used this strategy and located pixels within the center of ves-

sels by incrementally probing a vessel with a Gaussian profile. Tolias
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and Panas [116] also proposed a vessel detection starting the segmen-
tation process from the optic disc. In that approach, the probe was
propagated by using a fuzzy pixel-classification profile rather than a
Gaussian profile. Others chose alternative means to locate tracking
starting points. Hoover et al. [52] skeletonize a thresholded image and
start from the endpoints of the line segments they obtained. Subse-
quently, they probed the image and tested segments for region-based
properties to determine whether they were vessels or not. One of the
landmark works in this field was done by [52] and uses a hybrid method.
These authors use match filters (as in [24]) to extract possible vessels
from the background. This filtered image was then segmented using
iterative thresholding. One of the reasons the work is considered so
crucial is that they hand-labeled the blood vessels on 20 images and
used these as the truth data. This data set has been referenced and

used by many subsequent researchers.

Proposed Approach

In this work, blood vessel detection is addressed by using morphological
operators.

Only the green channel v of each RGB image is used in the extrac-
tion as it contains most of the vessel information, and it is treated as
a gray scale image. First, the green plane 7y is normalized, by scaling
its histogram (i.e., by calculating minimum and maximum of the image
matrix and by scaling its values within the range [0,1]).

Then, vessel segmentation is applied. In [23] an automatic method
to detect linear features (i.e., roads) in remote sensing images is pre-
sented. The method is unsupervised and involves very few parameters
(apart from the model dimensions, just one double threshold is in-
volved). Here, it is used to extract vessel segments in Rls, as it is

simple and fast.
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Specifically, a pre-filtering operation is needed to remove the back-
ground noise. In order to remove the structures that are lighter than
their surroundings, a morphological opening operator by reconstruction
is applied [33]. This is a connected operator: It consists in removing
the connected components of a binary image by an erosion and in pre-
serving the other components. Therefore, it does not introduce any
new discontinuity in the image. A square Structuring Element (SE) of
size equal to five pixels is chosen, assuming that two different vessels
will be separated by at least five pixels.

The removal of nonlinear (or too short) darker objects is achieved by
taking the minimum of all possible directional morphological closings
with predefined length Ao [105]. It is computed using linear SEs that are
successively oriented in every possible direction (18 different directions
for a 15 pixel long linear SE, assuming that all nonlinear dark objects
are shorter than the fixed number of pixels).

The third operation is the morphological extraction, performed to
detect vessel-pixels. The remaining linear objects that are too wide
(more than a predefined size A1, corresponding to the maximum ves-
sel width) are removed and the desired structures are extracted. The
bottom-hat operator [105], that is, the residue between the current im-
age and its closing, with a flat square SE of size A\; equal to 12 pixels, is
calculated (assuming that the maximum vessel width corresponds to 12
pixels). The only remaining structures are the wide dark objects. The
final binary decision (vessel pixel or not) is taken by a double threshold-
ing with reconstruction: In particular two binary images are obtained,
Thigh and Tiey, using one higher and one lower threshold, respectively.
Thigh 15 used as marker and 7., as mask. Finally, a morphological re-
construction of the marker with the connected elements of the mask is
applied.

As a result, a binary image (which will be referred to as vessel map,
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F®) showing the blood vessel structure is obtained. The proposed
technique for feature extraction can be used to register retinal image
pairs taken of the same eye. For registration, two binary images need
to be extracted from both images to be registered and their match can
be estimated (see Chapter 3).

2.1.3 Conclusions

In the previous sections, two different approaches for the segmentation
of RIs have been described. The proposed methods will be applied to
RIs, acquired by a fundus camera from Icelandic patients attending a
retinopathy screening service.

Those methods will be used as a preprocessing step for registration
and change detection. In particular, the vessel detection approach pre-
sented in the previous section, will be used in order to register pairs
of multitemporal Rls (see Chapter 3) Moreover, the optic disc detec-
tion approach presented in Section 2.1.1 will be used as a preprocessing
step for change detection in retinal image pairs (see Chapter 4). The
accuracy of the feature extraction results strongly influences the per-
formance of the following processing steps, as it will be discussed in
Chapter 5, where the experimental evaluation of proposed retinal im-

age analysis approaches is presented.

2.2 Planetary Image Segmentation

Optical Planetary Images (PIs) show the surface of the planet that
they represent. Identification of spatial features on planetary surfaces
can be manually performed by human experts but this process can
be very time consuming. Therefore, a reliable automatic approach to

detect the position, structure, and dimension of each feature is highly
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desirable. This is a difficult task for several reasons: Limited data are
usually available, the contrast of PIs is generally low (i.e., it is heavily
affected by illumination, surface properties and atmospheric state), and
the features that are present in the images can be barely visible due
to atmospheric erosion and they may be based on different structure

types of variable sizes.

In Section 2.2.1, an overview on the previous works on feature ex-
traction from Pls is presented. Then, the proposed approach for ellip-
soidal feature extraction, based on a novel combination of the Canny
operator, the Hough transform and the watershed, is detailed in Sec-
tion 2.2.2. Finally, a novel method for crater detection, based on a
Marked Point Process (MPP), is investigated in Section 2.2.3.

2.2.1 Previous Work

Among the typical features in planet-surface imagery, craters play a
primary role. Detection of craters has been widely addressed and dif-
ferent approaches have recently been proposed in the literature, based
on the analysis of planetary topography data [102], satellite images in

the visible spectrum and the infrared spectrum [41].

The existing techniques can be divided into two main categories;
supervised and unsupervised. Supervised methods require the input
of an expert and generally use supervised learning concepts to train
the algorithm for feature extraction. These techniques contemplate a
learning phase, in which a training set of images containing craters
is labeled by human experts. Craters are then detected by apply-
ing the previously trained algorithm to new unlabeled sets of images.
In [122], a continuously scalable detector, based on a supervised tem-

plate matching technique, is applied. In [124], different supervised
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learning approaches, including ensemble methods, support vector ma-
chines (SVM), and continuously-scalable template models, were em-
ployed to derive crater detectors from ground-truthed images. The
SVM approach with normalized image patches provided the best de-
tection and localization performance. In a different approach, Martins
et al. |66] adopted a supervised boosting algorithm, originally developed
by Viola and Jones [123] in the context of face detection, to identify

craters on Mars.

Unsupervised methods are fully automatic and generally based on
image-analysis techniques. These approaches generally rely on the iden-
tification of circular or elliptical arrangements of edges along the crater
boundary. A standard approach is based on the use of a General-
ized Hough Transform (GHT) [120]. Examples include the works of
Cross [34], Cheng et al. [25], Honda et al. [50], Leroy et al. [60], and
Michael |72|. Instead, in [4], the identification of impact craters was
achieved through the analysis of the probability volume created as a
result of a template matching procedure, approximating the craters as
objects of round shape. That unsupervised method enables the identifi-
cation of round spatial features. Kim and Muller [54| presented a crater
detection method based on texture analysis and ellipse fitting. That
method was not robust when applied to optical images. Therefore the
authors needed to use also DEM (Digital Elevation Model) data and
fuse them with the optical data.

In subsequent work, Kim et al. |[55] proposed a combination of un-
supervised and supervised techniques. In particular, edge detection,
template matching, and supervised neural network-based schemes for
the recognition of false positives were integrated, in order to automati-
cally detect craters on Mars. In [121], Urbach and Stepinski presented a
different approach, which combines unsupervised and supervised tech-

niques, for crater detection in panchromatic PIs. The method in [121]
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is based on using mathematical morphology for the detection of craters
and on supervised techniques to distinguish between objects and false

alarms.

Other typical features in Pls are represented by rocks. Rock de-
tection in ground imagery has been addressed in the literature. In
particular, in [115] the authors presented a supervised method for seg-
mentation, detection and classification of rocks on data collected by
rovers. That approach, based on a probabilistic fusion of data from
multiple sensor sources, was tested on Earth data (collected in the At-
acama desert in Chile). In [114], the same authors tested different rock
detection approaches on Mars Exploration Rover data. In [40], the au-
thors addressed rock detection by using a segmentation method on data
collected by the Spirit Mars Rover Planetary Camera. That approach
incorporates multiple scale attributes, which include local attributes
(e.g., texture), object attributes (e.g., shading), and scene attributes
(e.g., illumination direction). Moreover, in [46], the authors proposed
an automatic algorithm for rock detection both on ground imagery and
on HiRISE data, based on cylinder fitting.

Also, the detection of other types of planetary features, which is
not relevant here, has been addressed in the literature (e.g., detection
of volcanoes on Venus [15], polygonal patterns on Mars [91], valley
networks on Mars |75]).

Each of the previously published methodologies for automatic plan-
etary feature extraction has its advantages and drawbacks. Although
the recent approaches show high detection accuracy, the underlying
technology is complicated and its robustness to different types of plan-

etary surfaces and to image quality is not totally satisfactory yet.
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2.2.2 Proposed Approach for Ellipsoidal Features

Extraction

Different types of features are present in the Pls, and their size, shape
and position can be estimated. The extracted features can be used for

registration purposes.

Here, we focus on detecting features of ellipsoidal shape, such as
craters and rocks. Craters are objects of approximately elliptical shape
with shadows, due to their depth and uneven illumination. Rocks have
small circular or elliptical shape, with almost no shadows. The extrac-
tion of these spatial features is a difficult task, because PlIs are blurry,
quite noisy, present lack of contrast and uneven illumination, and the
represented objects are not well defined. For these reasons, a region-
based approach that lies on segmentation, has been chosen in order
to address such problems. A frequent approach to segmentation intro-
duces a set of characteristic points that are related to the objects to be
detected, automatically selected and used as “seed points” to segment
the images. Many segmentation approaches have been explored in the
literature. Here, the watershed algorithm, presented by Beucher in [7],
has been chosen, a method which is automatic, robust and fast. The
basic concept of watershed segmentation is giving a topographic repre-
sentation of a grey-level image (i.e., the grey level of a pixel represents
its elevation). A flooding process starts from the minima of the im-
age in terms of elevation, so that the merging of the flooding coming
from different sources is prevented. As a result the image is partitioned
into two different sets: The catchment basins (i.e., the regions) and the
watershed lines (i.e., the region boundaries). The flowchart of the pro-

posed technique for spatial feature extraction is shown in Figure 2.1.

Before applying feature extraction techniques, the input image I
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Figure 2.1: Flowchart of the proposed approach. The original image
is first preprocessed, in order to smooth the noise. Then the Canny
operator is applied to the smoothed image. In order to detect the rocks,
watershed segmentation is applied to the binary image gradient. Crater,
which are more complex objects, are detected by using the generalized
Hough accumulator: The maxima of the accumulator are used as seed
points for the watershed segmentation of the intensity image gradient.
The final result is a map of the all the detected features.

needs to be preprocessed. First, the noise is reduced by a smoothing
filter. Then, in order to detect edges, the image gradient is computed
by using the Canny edge detector [19]. As an intermediate result of this
operation an intensity gradient, G¥, is generated. Then, by applying a
non-maximum suppression algorithm followed by an hysteresis thresh-
olding to G7, a binary gradient image, BT, is obtained but this image
shows the contours of the objects represented in the original image.
Rocks generally appear like closed contours in B, because of the
almost absence of shadows. In order to extract these features, the
watershed segmentation algorithm is applied to B and closed contours
are extracted. All the areas included within a closed contour correspond

to “seed point-areas,”

and are identified as regions. The result of this
first step is a binary image R that shows boundaries of small ellipsoidal
features of regular shapes, such as rocks.

While rocks generally appear like closed contours and can be eas-
ily detected, craters have a more complex structure and, due to their
depth and uneven illumination, often exhibit internal shadows. Their
borders can be approximated with incomplete non-continuous ellipti-

cal curves. A generalized Hough accumulator [120] is used to identify
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the seed points to detect these structures from BY. For every pair of
pixels that are detected as edge points in B and exhibit opposite gra-
dient directions (being the relation of opposition defined with tolerance
€), an accumulator, corresponding to the median point between them
in the image plane, is incremented by a unit value. The maxima of
the accumulator are taken as centers of ellipses. The three parame-
ters describing the ellipse centered in each detected maximum are then
computed and a 3D accumulator is used to estimate the two semi-axes
and the direction angle of the ellipse from all the pairs of points that
contributed to the accumulator in the considered center. The center
of each ellipse that has been generated is used as a seed point for seg-
mentation. Starting from all the detected seed points, a watershed
algorithm is applied to G¥ and the craters are identified. G¥ is used in
this case because it represents not only the edges but also the elevation
information. As a result, a binary image C' that shows the boundaries
of elliptical features, such as craters, that were not detected by the
previous step. In a post-processing step, features are approximated by
ellipses and their attributes (i.e., ellipse semi-axes and rotation angle)
are estimated. Features with eccentricity e > 0.6 are discarded, being
features of larger e unlikely to be either craters or rocks. A binary
image, ¥, which represents the contours of all detected features, is
created. The binary image, F'¥', shows the boundaries of the features,

identifies their locations and estimates their shapes.

The proposed technique for feature extraction can be used to reg-
ister image pairs representing the same scene. For registration, two
binary images need to be extracted from both images to be registered
and their match can be estimated (in Chapter 3 a method for feature
matching is proposed, in Chapter 5 an example of the application of
the proposed feature extraction approach to image registration is pre-
sented).
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2.2.3 Proposed Approach for Crater Detection

Different types of spatial features are present in the Pls, but the most
evident ones are generally craters, i.e., objects of approximately ellip-
tical shapes with shadows.

In order to detect craters on planetary surfaces, an approach based
on a Marked Point Process (MPP) is investigated here. MPPs en-
able the modeling of the distribution of complex geometrical objects
in a scene and have been exploited for different applications in image
processing. Marked point processes have been successfully applied to
address different problems in terrestrial remote sensing, among which
road network extraction [36] and building extraction in dense urban
areas [22], [82], [94]. Moreover, in forestry applications, marked point
processes have been used to reproduce the spatial distribution of the
stems [87]. Here, the method is applied to the detection of craters in
Pls.

The context is stochastic and the goal is to minimize an energy on
the state space of all possible configurations of objects, using a Markov
Chain Monte-Carlo (MCMC) algorithm and a Simulated Annealing
(SA) scheme. More properly, a novel MPP is introduced here to model
the structure of the crater edges in the image.

The overall architecture of the proposed approach for crater detec-

tion is shown in Figure 2.2. First, the noise is reduced by applying a
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Figure 2.2: Flowchart of the proposed approach.

smoothing filtering operation. Then, in order to produce a binary edge

map B”, showing the contours of the objects represented in the original
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image, the Canny edge detector [19] is applied. The Canny detector
has been chosen because it guarantees a low error rate, the obtained
edge points are well localized, and the width of each detected edge is

one pixel.

The result of this first step, B, is a binary image that shows the
object boundaries. Craters have a complex structure and, due to their
depth and uneven illumination, exhibit shadows. Their borders can be

approximated with incomplete non-continuous elliptical curves.

BP is modeled as a configuration of objects whose positions and
attributes are a realization of an MPP X [89]. The MPP X is a process
whose realizations are random configurations x of several objects, each
belonging to a space S = P x K, where P is the position space, and K
the space of the marks, i.e., set of parameters that fully describe each
object. Here, the 2D model, used to extract the features of interest,
consists of an MPP of ellipses, and each ellipse is represented by a

5-tuple (u,v,a,b,0), taking values in the set space

P K

7 \

S —T0.M] % [0.M x Tomam] % boibul x 0.7, (2.4)

where (u,v) € [0, M] x [0, N] are the coordinates of the ellipse center
(M and N being the width and height of B”), a and b are the ellipse
axes (ranging in [a,,, ay] and [by,, bas], respectively), and 6 € [0, 7] is

the ellipse orientation angle.

The probability distribution of this stochastic process is uniformly
continuous [100] with respect to a suitable Poisson measure on S. Op-
eratively, this means that it may be characterized by a density f with
respect to this measure. Similarly, the posterior distribution of z con-
ditioned to BY can also be characterized by a density function f, with

respect to the same measure and a Gibbs formulation is proven to hold
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for f, [82]. Hence, one may introduce an energy function U such that
1
folalB") = ~ exp{~U(x|B")}, (2.5)

where c is a normalizing constant. Hence, in order to minimize this
posterior distribution, U will be minimized on the space of all configu-

rations x in the feature extraction process.

The Proposed Energy Function

The energy function takes into account the interactions between the
geometric objects 1, xa, ..., T, in the configuration z (the prior energy
Up), and the way they fit to the data (the likelihood energy U)

U(z|BY) = Up(x) + Ur(B”|x). (2.6)

The prior term characterizes the general aspect of the desired so-
lution. According to the geometric properties of the configurations of
craters, a basic rule is imposed on the prior term of our model. The
prior energy, Up, penalizes overlapping objects in x, which are very
unlikely, by adding a repulsion between objects which intersect. The

prior energy of our model is

Up(z) = % > plwr, am), (2.7)

T *Tm

where ¢ is a repulsion coefficient, which penalizes each pair of overlap-
ping objects (denoted as z;x x,,) in the configuration x. The repulsion

coefficient ¢ is calculated as follows

Ty M Ty,

m) — ; 2.8
o) = LD 29
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where x; N x,,, denotes the overlapping area between the two objects
x; and x,, in the configuration (I,m = 1,2,....,n, I # m ) and z; U x,,

indicates the sum of the areas covered by the two objects x; and x,,.

Then, the likelihood term Uy, is defined as
UL(B"|z) = Us(B"|x) + Up(B"|x), (2.9)

where Ug measures the similarity between the configuration and the
data, whereas the data term Up measures the distance between the
objects in the configuration and the contours of the data. Different
formulations for the likelihood energy, which have been proposed in
previous work on MPP [87,89|, have proven to be unfeasible for plane-
tary data. Hence, a new formulation for Uy, more appropriate for the

analyzed data, is proposed here.

In particular, the similarity energy Ug between the data BY and

the current configuration z is defined as a correlation measure!

H(u,v): BP(u,v) =1 & H(u,v|z) =1}
{(u,v) : BP(u,v) = 1}| ’

Us(B”|x) = (2.10)
where u and v are the spatial coordinates in the image plane; II(-|z) is
the projection of the configuration x such that II(u,v|x) = 1 if (u,v)
belongs to the boundary of at least one ellipse in the configuration z
(i.e., if there exists i € {1,2,...,n} such that (u,v) is on the boundary
of x;), and II(u,v|x) = 0, otherwise. Consequently, Us expressed as
(2.10) is equivalent to the definition of a correlation function between
the binary images BY and II(:|x), representing the extracted and the
modeled edges, respectively. According to the correlation definition, in

the binary case, only nonzero pixels from both images contribute to the

LGiven a finite set A, we denote by |A| the cardinality (i.e., the number of
elements) of A.
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value of the correlation. This energy term, which is novel with respect
to the MPP literature, resembles analogous correlation measures that
have been used for registration purposes [67]. The correlation measure
n (2.10) is considered to be appropriate here because it enables to
estimate the match between two binary images (BY and II) in a fast
and accurate way.

Then, the data energy Up is calculated at the object level: For
each object z; in the current configuration = a weight parameter v,
proportional to the distance from the closest detected edge pixel in the

data B with respect to its dimension, is calculated, i.e.,

by = inf{\/(u—u)?+ (v—0)2: BP(u,v) =1 & (v, v'|;) = 1}
L max (ay, by) ’
(2.11)

where II(+|z;) has a meaning similar to above and a; and b; are the two

ellipse axes associated to the object z; (i = 1,2,...,n).

The resulting data energy will be
Un(BTJr) - zwl 2.12)

Then, objects with a low value of 1 will be favored in the configuration.

Energy Minimization and Crater Mapping

A Markov Chain Monte-Carlo (MCMC) algorithm [43|, coupled with a
Simulated Annealing (applied with a given annealing schedule 7°(+)), is
used in order to find the configuration  which minimizes U. We stress
here that this minimization is carried out with respect to not only the
locations and marks of the objects in the MPP realization but also
the number of objects, i.e., the proposed method also automatically

optimizes the choice of the number of detected craters. In particular,
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the marked point process X, defined by f, is sampled by using a random
jump MCMC algorithm: It allows to build a Markov chain X (k =
0,1,...), which jumps between the different dimensions of the space of all
possible configurations and, in the ideal case, ergodically converges to
the optimum distribution * [97]. The final configuration of convergence
does not depend on the initial state. The flowchart of the minimization

scheme is shown in Figure 2.3.

‘ Generate the initial configuration x(0) ‘
¥

| Compute f (x(0)) |
2

Generate th‘e RIMCMC

Choose a proposition kernel
Q. and generate x’(k)

m

Iterate ]
(k=1,....K) ‘ Compute f(x’) and R, (k)
|
Accept x” with probability
o (k) = min(1, R (k))

m
I

v
‘ Get the final configuration x(K) ‘

Figure 2.3: Flowchart of the proposed minimization scheme.

At each step, the transition of this chain depends on a set of “propo-
sition kernels”, which are random changes proposed to the current con-
figuration. In order to find the configuration maximizing the density
f»(-) on S, we sample within a Simulated Annealing scheme (SA), which
gives us the MAP estimator. SA is an iterative algorithm where at each
iteration k£ a perturbation is proposed to the current configuration at
temperature ['(k), k = 1,2, ..., K). This perturbation is accepted or re-
jected with a probability which ensures that the probability distribution

of the Markov chain ergodically converges to

1

fp(@) T (2.13)
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Here, the annealing schedule, I'(+), is defined as

K
T(k) =T - G—j) " (2.14)
where I'; and [' are the initial and the final temperatures, respectively,
and K is the total number of allowed iterations. In practice, in order
to cope with too long computational times, the decrease of the temper-
ature is geometric (as usual in SA for Markov random fields) and does
also not imply the ergodic convergence to a probability distribution lo-
calized at the minima of U(z|BT), in contrast, it follows the adaptive
approach developed in [88].

The set of proposition kernels are birth and death, translation, di-
lation, and rotation [48]. For each proposition kernel m, a Green ratio
R (x,2') is defined, that tunes the likelihood of replacing configura-
tion x by configuration z’ at each SA iteration. More precisely, the
birth and death kernel consists in proposing, with probability pg, to
uniformly add in S an object to the current configuration x or, with

probability pp = 1 — pg, to remove a randomly chosen object of x.

2.2.4 Conclusions

Here, two different methods for planetary feature extraction have been
proposed. First, a segmentation technique, based on a novel combina-
tion of the Canny operator, the Generalized Hough Transform (GHT),
and the watershed, has been investigated to identify and reconstruct
the shape of ellipsoidal features. The proposed approach for ellipsoidal
feature extraction can be used for registration purposes, as it will be
shown in Chapter 5.

Moreover, a novel crater detection approach, based on the combina-

tion of an edge detector and a marked point process, has been proposed.
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The MPP approach, which was developed in the context of computer
vision and previously used in many different applications (e.g., tree
crown identification, road network detection, building extraction), is
for the first time applied to PI analysis.

Both methods are tested on images of Mars, acquired by the THEMIS
instrument flying on the Mars Odyssey spacecraft. Moreover the first
of the proposed methods, aimed at segmenting ellipsoidal features, was
tested on HiRISE images collected by the HiRISE camera flying on the
Mars Reconnaissance Orbiter. For both approaches, the accuracy of the
detection is assessed by comparison to a manually generated reference
map (results are presented in Chapter 5).

The proposed approaches can be adopted as the first important step
in several applications dealing with all the various data that are being
collected during the current and future planetary missions. Among
them selecting safe landing sites, identifying planetary resources, and
preparing for subsequent planetary exploration by humans and robots.

In our future work we plan to integrate the shadow information
around the features in order to improve the reliability of the edge de-
tection and reduce the false alarms in the contour map. Illumination
correction, based on the knowledge of the orbital angle and the acquisi-
tion time, will be useful to improve the reliability of the detection and
reduce the bias in the reconstruction of the exact feature shape.

The proposed approaches will also be applied to the registration of
multisensor and multitemporal images, by performing feature match-
ing.

Finally, the proposed methods could be used to extract other fea-
tures of elliptical shape, such as volcanoes. Additionally, features of
other shapes, such as ridges or polygonal patterns among others, could
be extracted, by adapting either the generalized Hough transform and

the marked point process to the detection of the shape of interest.
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Chapter 3
Image Registration

Registration is a fundamental task in image processing in order to com-
pare images acquired under different conditions. It is the process of
spatially aligning different images and it is used to match two or more
pictures taken, for example, at different times, from different sensors,
or from different viewpoints. The problem of registering two or more
images is indispensable in diverse applications of computer vision and
medical image analysis. For example, temporal registration is necessary
when analyzing multitemporal images.

In this work we deal with multitemporal Retinal Image (RI) pairs,
hence, image registration is addressed in order to perform their tempo-
ral analysis. The approach that will be proposed is general and can be
applied to the registration of Planetary Images (PIs) as well.

These applications are diverse and, therefore, it is important to
review the basic concepts underlying image registration theory which
will be used to formulate the addressed problem.

This chapter is organized as follows: The general theory about im-
age registration is outlined in Section 3.1. Then, an overview of pre-
vious work on RI registration is presented in Section 3.1.1. Finally,

the proposed approach for the automatic registration of image pairs is
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methodologically described in Section 3.2.

3.1 Definition

Image registration can be defined as a mapping between two images
both spatially and with respect to intensity. Defined these images as
2-D matrices, denoted by ler and Linput, Where Lie(i, 7) and Linput (7, J)
represent their respective intensity values, the mapping between images

can be expressed as:

]ref(iai) = g(Iinput(T(ivj»)’ (31)

where 1" is a 2-D spatial coordinate transformation, i.e.,

(i,5") = TG, ) (3.2)

and g is 1-D intensity or radiometric transformation.
The registration problem is the task involved in finding the optimal
spatial and intensity transformations so that the images are matched
with regard to the misregistration source [9]. Here, only the spatial or
geometric transformation will be evaluated.

It can be assumed that any new incoming input image, linput, is be-
ing registered with respect to a known reference image, I,t. According
to Brown [9], image registration can be viewed as the combination of

four components:

1. Feature space, i.e., the set of characteristics extracted from refer-

ence and input data that are used to perform the matching.

2. Search space, i.e., the class of potential transformations that
establish the correspondence between input data and reference
data.
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3. Similarity metric, which evaluates the match between input data
and transformed reference data for a given transformation chosen

in the search space.

4. Search strategy, which is used to choose which transformations

have to be computed and evaluated.

3.1.1 Previous Work

Image registration is a difficult task in image processing because cor-
respondence problem is not straightforward. As a consequence, several
different registration algorithms have been investigated.

The existing registration methods can be classified into two broad
groups: interactive and automatic techniques.

Human-interactive methods have been considered as a reference
among the existing methods. Human-involvement neither necessar-
ily achieves the highest accuracy nor reproducibility, but it has been
used to prevent catastrophic failures, which are possible with auto-
matic registration methods. The earliest studies of image registration
in the ocular imaging area were based on a human interaction [3,86,90].
However, manual registration is time-consuming, often prone to human
error, and requires specialized knowledge.

Automatic registration methods have been widely investigated in
the last decades. The existing automatic techniques may be sub-classified
into different categories based on the image data used, the consid-
ered measure of similarity, the selected transformation model, and the
method employed for the parameter search [9,127]. However, in the
context of fundus images, registration techniques can be simply sub-
classified into feature-based and area-based methods [28].

Feature-based methods are somewhat similar to manual registra-

tion. In fact, these techniques are based on the extraction of features
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in the images to be registered. Features include the vascular struc-
ture [17,52,110], the optic disc location and boundary [42,51, 64| and
the macula [92]. The ocular blood vessels or their crossing points
are commonly used for registration. The registration process is per-
formed by maximizing a similarity measure computed from the corre-
spondences between the extracted features. These approaches assume
that feature/point correspondences are available in both images, and
their performance largely depends on sufficient and/or reliable corre-
spondences, especially, when the overlapping part of an image pair is
very limited or when there are mismatched correspondences. In [85]
blood vessels were selected by an adaptive thresholding technique and
their correspondence was established by using a sequential similarity
detection method. In [45], matched filters were used to detect ves-
sel junctions and correspondences were determined by a local cross-
correlation. A group of papers extracted the bifurcations points of the
vessels by means of mathematical morphology [126] or Forster detec-
tor |38] and then they matched corresponding points. In [18] vascular
landmarks are automatically detected and aligned using a hierarchical
estimation technique. An iterative method, called dual bootstrap it-
erative closest point, is presented in [112]: An initial transformation,
which is only accurate in a small region (the “bootstrap region”) of the
mapped image, is estimated and iteratively expanded it into a global

transformation estimate.

Area-based techniques are generally based on all pixel intensities
within both images to be registered, in order to determine a single
best set of transformation parameters for the analyzed image pair. The
transformation can be either found by correlation or by optimization, in
the spatial or in the frequency domain. Phase correlation [58] has been
widely used to estimate translation misalignments, as proposed in [20].

This work was extended in [21]| to estimate not only translation but
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also rotational parameters: Many incrementally rotated images were
generated from the original and correlated. In [96], mutual information
was used as a similarity measure and simulated annealing was employed
as a searching technique. Butz and Thiran [16] maximized the mutual
information of the gradient images.

Among the two classes of automatic image registration techniques,
feature-based methods are difficult to generalize, because they are usu-
ally based on rules for both identification of features and determination
of correspondences. Area-based methods, on the other hand, are free
of decision processes and can be easily generalized. However, efficient
techniques can be applied only when translation is the only deformation
between the analyzed images. The proposed solutions to deal with both

translation and rotation are often computationally very expensive [28].

3.2 Proposed Approach

Here, an automatic registration approach based on global optimization
techniques is proposed. In particular, in order to estimate the opti-
mum transformation between the input and the base image, a Genetic
Algorithm (GA) is used to optimize the match between previously ex-
tracted maps of curvilinear structures in the images to be registered
(such structures being represented by the vessels in the human retina).

The reference and input images (denoted by I,.; and I;,, respec-
tively) are previously segmented (e.g., by using the blood vessel extrac-
tion approach proposed in Chapter 2 for Retinal Images, RI) in order
to extract the correspondent binary feature maps F.s and Fj,. Such
binary images are fed as inputs to an optimization module, aiming at
maximizing a suitably defined objective function. In fact, the trans-
formation matrix has to be optimized. Its goodness is evaluated by an

objective function that quantifies the matching between the two feature
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maps as a function of the unknown transformation (Sec. 3.2). The op-
timization is achieved here by applying a genetic algorithm. After the
optimum matrix has been estimated, it is applied to the original input
image, which is translated and interpolated in order to obtain the final
registered image. The architecture of the proposed registration process

is shown by the block diagram in Fig. 3.1.

F
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Extraction For | Optimization Transtormation

Figure 3.1: Block diagram of the registration process: Both the ref-
erence and the input images (s and ;) are segmented, in order
to obtain their binary vessel maps (F,.; and Fj,), used by the objec-
tive function to calculate the measure of match (MOM). The genetic
algorithm estimates the optimum transformation (genetic optimization
block), which is then applied to the input image, I;,, in order to achieve
the registered image, I c,.

Measure of Match

After segmentation, two binary feature maps are obtained, Fj, and
F,cs, from the input and reference image, respectively. The problem
is formulated as determining a transformation 7™ such that, when 7™
is applied to the first image, Fj,, the best match with the second one,
Fcs, is achieved. The problem can be mathematically formulated as

the maximization of the following objective function:

MOM(T) =~ S Fu(T(,5), (3.3)

n
(ivj):Fref (%.7)750

where MOM (Measure Of Match) denotes the objective function, 7" is

the transformation for the ¢ and j coordinates in the image plane, and n
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is the number of nonzero pixels of F.s itself. An affine transformation
model, which exhibits six independent parameters, is employed.
Equation (3.3) is equivalent to the definition of the correlation func-
tion for the binary images Fj, and F,.f. According to the correlation
definition, in the binary case, only nonzero pixels from both images
contribute to the value of the correlation. The function used, as de-
scribed in (3.3) is normalized, so that the absolute maximum value is
unitary; but in general, the achieved maximum value is significantly
lower. The reason is not the optimization method inefficiency, but the
fact that the two feature maps are in most of the cases not identical

due to noisy pixels and changes.

Genetic Algorithm

The determination of the transformation parameters strongly depends
on the objective function, as well as on the images to be registered. The
search based methods, provide a solution, based on the optimization of
a MOM between the original and the transformed images, with respect
to the transformation parameters.

Generally, the MOM has multiple extremes, hence the most at-
tractive search methods are based on global optimization techniques.
Here, a genetic algorithm is adopted (as proposed in [118]), since it
ensures, under mild assumptions, convergence to a global maximum of
the adopted matching functional.

The independent parameters of T" are defined over a wide range of
values to achieve robustness. The values of the parameters are con-
verted to binary digits and concatenated in a single string, called in-
dividual. Each real parameter is encoded as a binary number, with a
precision that depends on the number of digits used.

The process begins with the preliminary random definition of the

first population individuals and algorithm parameters, as well as of
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individual and population dimensions (i.e., the number of bits in each
string), minimum number or generations, mutation and crossover prob-
abilities. First, the population is evaluated by calculating the fitness
of each individual. According to the principle of the survival of the
fittest, pairs of fit individuals are selected to recombine their encoded
parameters in order to produce offspring, according to the following

steps:

1. The fittest individuals are kept in the next generation without

being changed, by elitism.

2. The other individuals are selected by tournament selection, ac-
cording to their fitness. In particular, for each individual a ran-
dom number r,, is uniformly drawn in [0,1] and the first individual

(after sorting) with a cumulative probability above r, is chosen.

3. Crossover is applied to each pair of individuals with a fixed prob-
ability.

4. Mutation is applied to each single individual, with a fixed prob-
ability.

In this way a new generation of solutions, which replaces the previous

one, is produced. Its fitness is calculated and a new selection is per-

formed, until the convergence of the MOM is achieved [74]. The final

transformation matrix is calculated, by decoding the fittest individual

of the last population and the input image is registered.

3.3 Conclusions

In this chapter, a technique is proposed that automatically registers
pairs of multitemporal images. The registration is achieved by using a

method based on a genetic optimization technique.
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Before the algorithm can be used to estimate the optimum trans-
formation, the images has to go through a segmentation stage, aimed
at obtaining feature maps from which a matching measure (adopted as
optimization functional) is extracted. Once the optimum transforma-
tion is obtained, it can be used to register the input image respect to
the reference one.

The proposed method has been first investigated in order to reg-
ister multitemporal Rls, by matching the correspondent vessel maps
extracted using the approach proposed in Chapter 2. Subsequently, the
proposed registration approach has also been applied to the registra-
tion of Pls, by matching the feature maps extracted using the methods
proposed in Chapter 2.

A manual registration process is carried out for comparison pur-
poses. Further conclusions about performances of the proposed ap-
proach will be drawn in Chapter 5, where the experimental evaluation

of the registration technique is presented.
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Chapter 4
Change Detection

Change detection is the process of identifying differences in the state
of an object or phenomenon, by observing it at different times, often
through remote sensors [107]. The object, as named in this definition, is
meant in a very general and abstract sense: It can be a physical object,
as well as a geographical region or a monitored area of an underground
station, etc.

In this chapter, the problem of detecting changes in pairs of multi-
temporal images is addressed. In particular, two different methods are
proposed to detect temporal changes in Retinal Images (RIs) that can
occur due to retinopathy.

First, an introduction of the change detection problem is outlined
in Section 4.1. Subsequently, an overview of the approaches in the
literature is given in Section 4.2. Finally, two novel approaches for

change detection in Rls are proposed in Section 4.3.

4.1 Definition

Essentially, change detection involves the ability to extract quantita-

tive information about temporal effects using multitemporal data sets,
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which express the observations concerning the object/phenomenon un-
der investigation. These observations are typically represented by data
(images) of the object/phenomenon, acquired at two or more distinct
times. Each image can be a scalar grey level image, as well as a color
image, or, in general, a multispectral image (i.e., a vector-valued image,
whose components consist of views of the object/phenomenon, corre-

sponding to different acquisition bands).

Hence, given two multispectral, equal sized images I; and I of the
object/phenomenon, acquired at times t; and t, respectively (t; > to),
the purpose of a change detection algorithm is to identify the difference
(i.e., the “changes”) between I; and I5. In the simplest case, a change
detector is concerned to identify if a change has occurred at a given
pixel. In a more sophisticated context, the algorithm may try to draw
conclusions about what kind of change has occurred at that pixel. In
both cases, the algorithm produces a change map, i.e., an output image
CM expressing the changes occurred at each pixel from I; to Io. When
the algorithm only detects if a change has happened, the change map
is a binary image, where, for instance, a white pixel denotes “change”
and a black one denotes “no-change.” On the other hand, a discrete
multi-level change map is obtained when different typologies of change

are taken into account and suitably distinguished from one another.

4.2 Previous Work

Change detection approaches can be divided into two broad families:
Supervised and unsupervised. The former family is based on super-
vised classification methods, which require the availability of a suitable
training set for the learning process of the classification algorithm. The

latter assumes no training data to be available at any observation date
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and usually performs the change detection by transforming the two ana-
lyzed images into a single image in which changed areas are emphasized
and can be successively detected.

From an operational perspective, in order to generate maps in which
“change” and “no-change” classes are discriminated, completely unsu-
pervised approaches are generally preferred, as they do not require the
difficult and (time- and possibly cost-) expensive process of training
data collection. When using these methods, no prior information about
the statistics of the aforesaid classes is available to the classification al-
gorithm.

A significant variety of change detection approaches have been pro-
posed in the literature to deal with change detection in different fields.
The traditional approaches to change detection in remote sensing in-
clude image differencing [35], image ratioing [81|, image regression,
Change Vector Analysis (CVA), methods based on Principal Compo-
nent Analysis (PCA), multitemporal coherence analysis [95], integra-
tion of segmentation with multilayer-perceptron and Kohonen neural
networks [125], fuzzy-rule-based analysis [61], multisource and multi-
temporal data fusion [11], spatio-temporal contextual classification [68], [70],
and likelihood ratio tests [30], [63].

One of the most widely used change detection method is image dif-
ferencing, according to which the images acquired at two different dates
are subtracted pixel-by-pixel in order to generate a “difference image.”
This method relies on the assumption that in the “difference image,”
the values of the pixels associated with changes present values signif-
icantly different from those of the pixels associated with unchanged
areas. Changes are then identified by analyzing the “difference image.”

Another commonly used change detection method is the image ra-
tioing approach, which generates a ratio image by dividing pixel-by-

pixel the gray levels at one date by the gray levels at another date.
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The detection of changes is performed by analyzing the “ratio image.”
This approach is usually preferred to image differencing when multi-
plicative noise affects the input images (e.g., in the case of radar or

sonar imagery).

Both image differencing and image ratioing involve the critical prob-
lem of selecting an optimal threshold value to be applied to the single
image that has been generated (i.e., difference or ratio) to separate
“change” from “no-change.” “Trial-and-error” procedures are typically
adopted to this end [37,62,81,107]. Rosin [98,99] surveyed and reported
experiments on many different criteria for choosing the threshold at
which the image should be binarized. Smits and Annoni [109] discussed
how the threshold can be chosen to achieve application-specific require-
ments for false and misses alarms [93]. However, such manual opera-
tions typically turn out to be time consuming. In addition, the quality
of their results critically depends on the visual interpretation of the user.
The decision rule in many change detection algorithms is cast as a sta-
tistical hypothesis test. The decision as to whether or not a change has
occurred at a given pixel corresponds to choosing one of two competing
hypotheses, corresponding to “change” and “no-change” decisions [53].
In [77], the problem of automating the threshold selection task is ad-
dressed by proposing an unsupervised technique that integrates image
ratioing with a generalization of the Kittler and Illingworth minimum-
error thresholding algorithm (K&I) [56]. The change-detection method
(proposed in [76] and [69] with regard to optical remote sensing im-
agery) that integrates K&I with image differencing is modified in [77]
by developing a new version of K&I, which is suited to image ratioing
and to the specific non-Gaussian statistics of the analyzed ratio images.
There are several methods that are closely related to image differencing

and image ratioing. For example, in CVA [12,13,29, 65|, which is an

47



approach often used for multispectral images, a feature vector is gener-
ated for each pixel in the image by considering several spectral channels.
The modulus of the difference between the two feature vectors at each
pixel gives the values of the “difference image.” Di Stefano et al. [111]
performed simple differencing on subsampled “gradient images.”

Although change detection techniques have been widely explored
for remote sensing imagery, few efforts have been undertaken in the
temporal analysis of medical images. In particular, only a few methods
have been described in the literature for quantifying the dynamic nature
of diabetic retinopathy from a time series of images. In [101] the images
are compared by computing their difference and the presence or absence
of progressive changes is empirically decided.

Berger et al. [6] introduced the dynamic flicker animation as a tool
for visualizing changes in the retinal fundus. In this method, the two
registered images are displayed in rapid succession, usually a few sec-
onds apart. Changed regions in the image appear to flicker, whereas
unchanged regions appear steady.

Cree et al. [31] defined a region of interest around the fovea, and used
matched filtering followed by thresholding and region growing to find
the microaneurysms. They also registered images from multiple time
points, to study the turnover of microaneurysms. In [32], methods are
described to find leakage of fluorescein in blood vessels by looking at
restored images from an angiographic sequence over time and finding
areas that do not have a particular pattern of intensity changes.

Studies of microaneurysm turnover were also made by Goatman
et al. [44]. They detected microaneurysms from baseline and follow-up
angiograms, registered the images, and categorized the microaneurysms
into three classes namely, static, new, and regressed. A disadvantage of
these methods was that the processing was limited to a small region of

interest centered on the fovea. Sbeh and Cohen [104] segmented drusen
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based on geodesic reconstruction algorithms. They used the method
to study the evolution of drusen by registering two images that were
widely spaced in time. Each of the methods described above studies
the changes associated with only one kind of lesion. Furthermore, they
are all susceptible to errors in segmentation of the lesions that leads to
accumulation of change analysis errors over time.

All the described methods are specific to one type of lesion or region
of the retina: The detection is performed by segmenting the lesions in
each image and analyzing the segmentation results, instead of directly
comparing multi-temporal images. Hence, they are susceptible to errors
in change detection resulting from segmentation errors.

A rare example of a study for change detection in Rls was presented
in [79]. In that paper, the “change” areas are detected by using a su-
pervised thresholding technique applied to the sum square of the image
difference; the detected changes are classified into different typologies
by using a Bayesian approach. This method is completely automatic;
however, a training set, in which “change” and “no-change” classes are
manually labeled, is required for the thresholding process. In a further
study |80| the same method was applied for the detection of vascular

changes.

4.3 Proposed Approaches

In the application of change detection techniques to Rls, we assume that
variations in light due to retinal changes are larger than the variations
due to other factors, such as sensor noise, different optical illuminance,
differences in field angle or in patient position, etc. [49]. The impact
of these “perturbing” factors might be partially reduced through the
selection of appropriate data. For instance, problems arising from field

angle differences can be dealt with by selecting data acquired at the
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same angle level set by the ophthalmologist.

Here, we focus on unsupervised approaches, due to the lack of a
priori information about the shapes and the statistics of the change
areas. In particular, two different approaches for change detection in
RIs are proposed and compared, through the evaluation of the exper-
imental results (see Chapter 5). The first approach, which lies on the
application of an automatic thresholding technique to an appropriate
difference image, is presented in Section 4.3.1. In particular, a consoli-
dated approach for change detection in remote sensing data is applied
here to RIs. More details can be found in Appendix A. The second
approach, which is based on the innovative combination of the previ-
ous thresholding technique and a novel multiple classifier approach, is
investigated in Section 4.3.2. More details can be found in the paper
reported in Appendix B. Both approaches generate a change map. The
detected changes can be further classified by a subclassification stage
(see Section 4.3.3).

4.3.1 Thresholding Approach

Given the registered Rls Iﬁf and Iﬁg of the human retina, acquired dur-
ing two consecutive medical visits, out purpose is to identify the mean-
ingful differences (i.e., the “changes”) that occurred due to retinopathy.

The block diagram in Fig. 4.1 synthesizes the basic steps of the
method. After a preprocessing step(described in Section 4.3.1), the two
images to be analyzed, having been co-registered, are converted into two
grey level images by applying a ratio of their green and red channels (see
Section 4.3.1). These two new grey level images are compared in order
to generate two further images (“difference images”). The difference
images are obtained by subtracting pixel-by-pixel the v/p ratio at the

second acquisition date from the v/p ratio at the first date (where =
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Figure 4.1: Block diagram of the proposed change-detection approach
based on Ké&I.

and p denote the green and red channels, respectively). Therefore, in
the difference images, pixels associated with retinal changes show grey
level values significantly different from those of pixels associated with
unchanged areas. Then the proposed algorithm is applied in order to
automatically detect the change pixels by using a decision threshold
to the histogram of the difference image. The selection of the decision
threshold is of major importance, as the accuracy of the final change
map strongly depends on this choice. This last step is highly critical in
the development of completely automatic and unsupervised techniques

for the detection of retinal changes [10].

Both It 7 and Iﬁg are converted to a gray level image by computing
the ratios of their green and red channels (see Section 4.3.1). These
two new gray level images are compared, pixel by pixel, in order to
generate two further images (“difference images”) obtained by a pixel-
by-pixel subtraction of the reference image from the registered one,
and viceversa. A difference image is computed in such a way that
pixels associated with retinal changes present gray-level values that are
significantly different from those of pixels associated with unchanged

areas.

The Kittler and Illingworth thresholding algorithm (K&T) [56] is ap-
plied in order to automatically estimate the optimal threshold, based on

the analysis of the histogram of the difference image. The threshold is
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then applied to the difference image, in order to detect the changes. The
selection of the decision threshold is of major importance, as the accu-
racy of the final change-detection map strongly depends on this choice.
This last step is highly critical in the development of completely au-
tomatic and unsupervised techniques for the detection of changes [10].
Consequently, the algorithm applies again the K&I method to the blue
feature in the “change” decision region to distinguish the typology of
change that occurred (red vs white spots). We use this unsupervised
approach by assigning the “white spot” and the “red spot” labels, when
the intensity in the blue feature is above or below the K&I optimal
threshold, respectively. In fact, the blue channel of this typology of im-

age data has proven to be effective to distinguish the two classes [78].

Preprocessing Step

Before applying an unsupervised approach to detect changes between
two different images, a preprocessing step is usually necessary to make
the two images comparable in both the spatial and spectral domains.
Concerning the former, the registration has been automatically per-
formed, as described in Chapter 3. With regard to the spectral domain,
changes in light, in field angle and in the absorption of the mydriatic
drop between the two acquisition times may be potential sources of er-
rors. This problem is mitigated by performing radiometric calibration
of the images, here performed by automatic histogram matching [47],
based on a linear rescaling.

Furthermore, the detection of the optic disc in the human retina
is very important and mandatory for our approach to the detection
of exudates, because the optic disc has similar attributes in terms of
brightness, color and contrast. The optic disc appears in color fundus
images as a bright yellowish or white region. Especially the blue channel

of the image acquired at each date turns out to be discriminant for its
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detection. In fact, in fundus images, the blue feature is significantly
non-zero only in bright regions corresponding to the exudates and the
optic disc; the latter can be identified based on its size and shape.
The detection and removal of the optic disc has been automatically
performed, by using the approach described in Chapter 2.
Consequently, illumination inhomogeneities are corrected by using
a homomorphic filtering technique [117]. For Lambertian surfaces, an
observed image [p can be modeled as a composition of a luminance
component, Le, and a reflectance component, Re (i.e., Io = Lc - Rc).
This imaging model holds for RIs due to the diffusive characteristics of
the fundus. An exception for this model is the optic disc, which has to
be excluded from the computation. The luminance component can be
assumed to vary slowly over space, whereas the reflectance component
contains also medium and high frequency details [8]. By first applying
the logarithm, we transform the multiplicative relation between I, Lc

and Rc to an additive one, i.e.:
log(1p) = log(Lc) + log(Rc). (4.1)

After applying the logarithm, the image is low-pass filtered, by using
a Gaussian filter, and, then, subtracted from the logarithmic original,
yielding a high-pass component (i.e., log(Rc)). Exponentiation of both
high-pass and low-pass components approximately separates the image
into luminance and reflectance components. Next processing steps are

applied to the latter component.

Feature Transformation

The three RGB channels of fundus images contain different information:
The red channel is usually the brightest channel but exhibits a very

narrow dynamic range; the green channel has the best contrast (the
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edge of retinal features such as exudates, optic disc, and blood vessels
are brighter than in the other channels); the blue channel is non-zero
mostly in the areas of the optic disc or of the white spots (see also
above).

Given the reflectance component of an RGB fundus image Rc =
{uij e R® 14 =0,1,...,M,5 =0,1,...,N} of size M x N, in order
to generate a gray-level image to be processed, a band ratioing ~y/p
between green channel v and red channel p is applied. Ratioing v and
p emphasizes different features. In fact, after the application of this
operator, vessels and blood regions are darker than the background

while white spots are brighter.

Thresholding Method for Change Detection

In order to automatically detect changes in color Rls, a threshold se-
lection task is addressed by adopting an automatic change-detection
technique, which integrates the image-differencing approach (see Sec-
tion 4.3.1) with a generalization of the K&I's unsupervised minimum-
error thresholding algorithm [56].

A thresholding approach is a simple classification procedure involv-
ing only one input feature, namely, the grey level of a scalar image.
Here, this operator is applied to two “difference images,” that are ob-
tained by subtracting pixel-by-pixel the v/p ratio of I by the one of

reg
I s> and viceversa. Adopting this approach, the key issue is to choose
the threshold in order to keep the number of misclassified pixels as low
as possible. We define the prior probabilities P, and P, and the param-
eters of the conditioned probability density functions (pdfs) p; and ps of
the difference image z, conditional to the classes w; = “no-change” and
wy = “change.” Since we operate in an unsupervised fashion, Py, P, p1,

and p, cannot be estimated through a training set. As a consequence,
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in place of the global intensity pdf of z, i.e.:

the histogram {h(Z),Z = 0,...,L — 1} of the difference image is com-
puted and utilized (L denotes the number of quantization levels in the
difference image). The selection of an appropriate threshold 7 is based
on the optimization of a given predefined criterion function J(7) which
averages a cost function (-, 7) over the feature histogram h(-) [26]. Kit-
tler and Illingworth proposed a thresholding algorithm [56], [26] whose
cost function is based on the Bayes decision theory. In particular, they
adopted the classification rule for minimum error, under the Gaus-
sian assumption for the class-conditional pdfs (i.e., p;(:) = N(m;,02),
where m; and o7 are the w;-conditional mean and variance, respectively;
i = 1,2). Under this hypothesis, the only parameters to be estimated
are the class prior probabilities P, and P», the class means my and meo,

and the class variances o7 and o3.

According to the MAP (Maximum A-posteriori Probability) rule,
which is equivalent to the minimum error rule [39], we need to maximize
the posterior probability P(w;|Z) (i = 1,2). This task is formulated
by the K&I method in terms of the threshold 7, by introducing the

following cost function [56]:

N(Z,7) = % ~21n 58 (4.3)

with i = 1for 2 < 7and i = 2 for z > 7. Pi(7), m;(7) and 6,%(7) are

histogram-based estimates of the class parameters, which depend on 7
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(¢ = 1,2) |56]. The resulting criterion function is:

oilr) (4.4)

J(r)=14+2 piTln
(7) +;() )

The optimal threshold 7* is chosen as to minimize J(-); this aims at
minimizing the classification error between w; and ws. The behavior
of the criterion function is strongly related to the scene characteristics,
which are represented by the histogram. Typically, only one minimum
is present in the interval [0, L — 1], which implies histogram bimodality
and reflects the presence of two natural classes (e.g., “change” and “no-

change”) in the scene.

4.3.2 Multiple Classifier Approach

In order to compensate for the problems due to different angles of il-
lumination in the two acquisitions, which cause local illumination vari-
ation not compensated by the homomorphic filtering, an innovative
approach based on multiple classifiers is proposed here. In particular,
the change-detection method proposed in Section 4.3.1 in integrated
within a multiple classifier approach, which combines different spatial
classifiers.
The architecture of the proposed multiple-classifier approach is shown

by the block diagram in Fig. 4.2. After a preprocessing step(described

Sub-images Sub-maps

Preprocessing, D, D, Multiple K&l Multiple Global
, &

Ratioing, & Window Window Change

. Thresholding
Ig 1o Difterencing Generator = Combiner Map

Figure 4.2: Block diagram of the proposed change-detection approach
based on multiple classifiers.
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in Section 4.3.1), the two images to be analyzed, having been co-
registered, are converted into two grey level images by applying the
v/p ratio between their green and red channels (see Section 4.3.1).
These two new grey level images are subtracted pixel-by-pixel in order
to generate two further images (“difference images”). Then, the pro-
posed multiple classifier approach is applied in order to automatically
detect the change pixels.

The thresholding approach for the detection of temporal changes (as
described in Section 4.3.1) is not applied to the whole difference image
but to a set of randomly selected sub-images, which can be considered
as single classifiers. Each sub-image is selected by a using a Random
Window Generator (RWG). RWG generates square windows in a ran-
dom way: They are centered in randomly generated pixels, which are
uniformly distributed in all the image but the dark background. As a
result, the windows partially overlap.

In the adopted multiple classifier voting approach, each window
corresponds to a single classifier: The thresholding approach (described
in Section 4.3.1) is applied to each sub-image and a change sub-map
is obtained. The information stored in each change sub-map needs to
be combined in a global change map. For each pixel of the image, all
the corresponding classifiers (i.e., the windows that include that pixel)
vote for “change” or “no-change” and the classification decision is taken
using a weighted sum of the votes. Here, we chose to use a majority
vote (i.e., we sum the vote of each classifier with the same weight).

This method compensates for the local differences in illumination
between the two images to be compared and improves the accuracy of
the change detection, especially in the external regions of the image,
which are generally darker and, hence, provide poor information.

The dimension of the windows is an important parameter to set: In

fact, the windows should be large enough to completely include each
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change area; at the same time, they should be small enough to avoid
illumination inhomogeneities. Another parameter to set is the number
of windows to be used, which influences the average number of sub-
images that include a single pixel. As the number of sub-images per

pixel increases, the performance of the method improves.

4.3.3 Subclassification

In a subclassification stage, the change map obtained by applying one
of the previous approaches is further classified into different categories,
which correspond to the different typologies of change that occurred
(red vs white spots). Here, the aim is to detect certain types of pig-
mentation changes that are clinically relevant for diabetic retinopathy.
The considered types of color changes are: Appearing/disappearing red
spots, which generally corresponds to the appearance or the disappear-
ance of a bleeding/microaneurysm, and appearing/disappearing white
spots, generally due to the appearance or the disappearance of exu-
dates/cotton wool spots (we will refer to these typologies as to new/old
red and white spots).

To this end, each pixel is described by a set of features. Here, the
feature space consists of the green/red ratio, 7v/p, and the green chan-

4

nel, v, for both images. The “white spot” and the “red spot” labels
are assigned based on the intensities of these features, which are com-
pared to corresponding thresholds. The architecture of the proposed
subclassification step is shown by the block diagram in Fig. 4.3.

The thresholds in this diagram are selected by using an interac-
tive approach, starting from the average values of the corresponding
features, which are calculated on the entire image excluding the dark
background. A trial-and-error approach is used by varying the thresh-

old, starting from the average value, with an excursion of 30% of the
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Figure 4.3: Block diagram of the architecture of the proposed subclas-
sification approach.

average value, in order to optimize the results from a visual point of
view.

The method proposed here is both simple and interactive: Few pa-
rameters have to be set by a human expert. This approach is preferable

to a supervised classification, which excludes the data interpretability.

4.4 Conclusions

The purpose, here, is to contribute to the development of a system able
to automatically detect temporal changes in color fundus images.

The Kittler & Illingworth’s thresholding technique (K&I), which
was developed in the context of computer vision and previously applied
to change detection problems on other typologies of images [69], [77], is
applied here to RIs. The K& is effective when it is locally applied to the
analyzed images. A multiple classifier approach for change detection

(based on the K&I applied to randomly selected windows) is proposed
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to compensate the problem of local illumination inhomogeneities.

Moreover, thresholding is a very fast approach: No iterations are
needed, but only the calculation of a criterion function, which is defined
for L values (e.g., L = 256). Given the histogram, the computation time
is also independent of the image size. The use of the multiple classifier
approach increases the computational time of the method (from few
dozens of seconds per image pair up to about 1 minute) but at the
same time makes it more robust.

The subclassification stage, in which temporal changes are classified
into different typologies, enables the identification of certain types of
pigmentation changes that are clinically relevant for the diagnosis and
the monitoring of diabetic retinopathy.

In the future, the multiple classifiers approach could be further in-
vestigated. Possible directions could be assigning different weights to
the different classifier votes and using windows of variable size to im-
prove the accuracy.

Further conclusions about the performance of the proposed tech-
niques will be drawn in the following chapter, where the experimental

evaluation of the proposed change-detection methods is presented.
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Chapter 5
Experimental Results

In this chapter the proposed methods for segmentation, registration,
and change detection, described in Chapters 2, 3, and 4, are experi-
mentally evaluated. First, the results of planetary image segmentation
are presented in Section 5.1. Then segmentation and registration of
retinal images are experimentally evaluated in Section 5.2.1. Finally,
the experimental results of change detection in retinal images are pre-

sented in Section 5.2.2.

5.1 Planetary Images

Experiments were carried out using Mars data, collected both by the
THermal EMission Imaging System (THEMIS), an instrument on board
the Mars Odyssey spacecraft and by the High Resolution Imaging Sci-
ence Experiment (HiRISE) camera flying on the Mars Reconnaissance
Orbiter (MRO). THEMIS combines a 5-band visual imaging system
with a 10-band infrared imaging system [27]. Both visible (VIS) and
infrared (IR) THEMIS images, with a resolution of 18 meters and 100
meters per pixel, respectively, were used to test the proposed approach.

For the experiments 5 VIS and 7 IR images were selected. Moreover,

61



9 HiRISE images (HR) were used, with resolution of 0.25 meters per
pixel.

Reference data were generated by manually analyzing each image of
the data set and identifying all the craters and rocks that are present.
Only objects completely included within the images were considered
(i.e., objects cut by the borders of the image were discarded). No lim-
its were imposed on the minimum dimensions of the features to be
detected. A quantitative assessment of the obtained results by the pro-
posed method was performed using these reference data. This was ac-
complished by comparing the obtained results with the labeled features
in the correspondent Reference Map (RM), by the similarity measure
proposed in [103].

The Detection percentage D, the Branching factor B, and the Qual-

ity percentage () were computed as follows:

100-TP FP 100 - TP

= —— B=_—"—: —
TP+ FN’ TP’ @ TP+ FP+ FN’

(5.1)

where True Positive (T'P) is the number of detected features that cor-
respond to labeled objects in RM, False Positive (F'P) is the number of
features detected by the proposed approach, which do not correspond
to any object in RM, and False Negative (F'P) is the number of objects
in RM that have not been detected by the proposed approach.

5.1.1 Results for Elliptical Feature Extraction

First, the method for the extraction of ellipsoidal features, which was
described in Section 2.2.2, is experimentally evaluated.

The global values of D, B, and () and the total number of TP, F'P,
and F'N obtained by the proposed approach for VIS, IR, and HR data
are shown in Table 5.3.

The global values of D for VIS data, IR data, and HR data were
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Table 5.1: Average numerical performance of the proposed approach
as measured by Detection percentage (D), Branching factor (B) and
Quality percentage (Q).

] Param H VIS \ IR \ HR \ Overall \ Rock \ Crater ‘
D 82% | 78% | 83% 81% 80% 81
B 0.03 | 0.05 | 0.06 0.05 0.04 0.07
Q 81% | 75% | 79% 77% 78% 77%

about 82%, 78%, and 83%, respectively; these high values indicate a
good detection rate (because of the high number of TP). B was about
0.03 for VIS, 0.05 for IR, and 0.06 for HR, which indicate a small
amount of false detections with respect to the true detections in both
cases, thanks to the small number of F'P. Finally, relatively high () val-
ues (i.e., about 81%, 75%, and 79% for VIS, IR, and HR, respectively)
reflect a good overall algorithm performance. In summary, the overall
values of D, B, and @) obtained by testing the proposed approach on
all the data sets were about 81%, 0.05%, and 77%, respectively. The
same evaluation parameters are also expressed separately for rock and
crater detection. The crater detection performance of the proposed
approach in terms of D, B, and ) compares favorably with most of
the results previously published for automatic crater detection meth-
ods [14,55,121].

Visual results are shown for a partition of a single band VIS image
(Figure 5.1-a). The grey level image is first preprocessed in order to
reduce the noise. In particular, Gaussian and median filtering opera-
tions are applied in a cascade [106] in order to reduce the noise and,
at the same time, preserve the edges. The Canny operator is applied
to the smoothed image. Subsequently, in order to extract the rocks, a
watershed algorithm is applied to the binary image gradient B. Rock

segmentation results are shown in Figure 5.1-b. Then, the generalized
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(a) I VIS (b) W result  (c) SPW result (d) F

Figure 5.1: Experimental results obtained by applying the proposed
method to a VIS image. (a) Original image, (b) watershed segmentation
applied to B, (c) watershed segmentation, using the maxima of the
Hough accumulator as “seed points”, and (d) detected features. Each
color in the segmentation map denotes a different region.

Hough transform is computed (with € = 5°) and a watershed segmen-
tation is applied, starting the flooding process from the ellipse centers
and leading to the detection of the craters. The segmentation results
are shown in Figures 5.1-c. Finally, the extracted features, including
both rocks and craters, are combined into a binary map and shown in
Figure 5.1-d, transparently superimposed to the original image. By a
visual inspection, it is possible to appreciate the accuracy of both the

detection and the reconstruction of the feature shape.

Visual results are also shown for a partition of the first band of an IR
image (Figure 5.2-a). Figure 5.2-b shows the segmentation results when
watershed is applied to B. Figure 5.2-c shows the crater segmentation
results. The different extracted features are combined and shown in
Figure 5.2-d. In this example, not all the features are detected. This
is because their contours were not extracted by the Canny operator.
A modified edge detection approach which may improve the accuracy
of the proposed method is currently under investigation. On the other
hand, it is shown below that the detected features are enough to achieve

an accurate registration.

Finally, visual results are also shown for different partitions of HR
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) I TR

) Wresult  (c) SPW result

Figure 5.2: Experimental results obtained by applying the proposed
method to the first band of an IR THEMIS image.

images. Figures 5.3-a to 5.3-f show the input data and Figures 5.3-g
to 5.3-1 show the contour maps in red superimposed on the correspon-

dent inputs.

@ F1 (h) F2 (i)F3(j)4 K F5 ()F6

Figure 5.3: Experimental results obtained by applying the proposed
method to HR images.

To demonstrate the applicability of the proposed method to registra-
tion, two different non-registered bands of an IR image are used as ref-

erence I,y and input [;, images. In order to show the results, the same
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() Results

Figure 5.4: Experimental registration results for a partition of (a) the
4™ and (d) the 5 bands of an IR image. (b) and (e) feature contours
extracted from (a) and (d), respectively. (c¢) Feature contours superim-
posed and represented in a false-color composition (i.e., the green plane
is (b), the red plane is (e), and the blue plane is identically zero). (f)
Registration results, by using a checkerboard representation.

partition of Figure 5.2-a is used; in particular, the 4* and 5* bands
were selected (Figures 5.4-a and 5.4-b, respectively). For both images,
craters and rocks are detected and their contours are represented in
binary feature images, F,.r and Fj,, as shown in Figures 5.4-c and 5.4-
d, respectively. The rotation and translation between the two bands
are visible by looking at Figure 5.4-e, in which the two non-registered
feature images are superimposed in a false-color representation. The
features extracted from I,.¢, F;.r, are represented in green, whereas the

I;, features, F},, are shown in red. The registration scheme used in this
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phase was based on a global optimization technique aimed at estimat-
ing the optimum parameters of an image transformation model. The
contour images, which represent the features of the two input image
bands, were fed as inputs to an optimization module. The transfor-
mation matrix was to be optimized: Its goodness was evaluated by an
objective function and its optimization was achieved by applying a ge-
netic algorithm [73]. After the optimum matrix was estimated, it was
used to transform and interpolate one of the two bands with respect to
the other one. The co-registered bands are shown in Figure 5.4-f, by
using a checkerboard representation: Each tile of the board represents
the registered input band and the reference band, alternately. The reg-
istration accuracy can be evaluated by looking at the continuity of the
features at the borders of the tiles. The visual analysis of Figure 5.4-f
suggests that the registration performed very well; craters and ridges

appear continuous at the borders, i.e., the points of overlap.

5.1.2 Results for Crater Detection by MPPs

The method for crater detection, based on a marked point process,

which was described in Section 2.2.3, is experimentally evaluated.

In a preliminary evaluation stage, few parameters of the proposed
method had to be assigned, concerning both the MPP state space S
and the MCMC sampler. Let recall that S = P x K, where P =
[0, M] x [0, N] corresponds to the size of the image (I;). The resolution
r varies for the two different types of images used, hence the total area
A of interest is A = M - N - r? [m?]. The parameters of K (i.e, a,
ay, by, and by) depend on the size of the objects that need to be
detected. In this study, the minimum size for both semi-axes was fixed

to 3 pixels (i.e., a,, = b, = 3) and the maximum size to 100 pixels (i.e.,
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ap = by = 100). The eccentricity e of each object, defined as

was constrained to e € [0,0.6] (i.e., min(a,b) > 0.8 - maz(a,b)), being

craters of bigger e unlikely.

Sampler probabilities needed to be assigned as well. In particu-
lar, the global parameters that correspond to the probability of choos-
ing the proposition kernel m were fixed to p,, = 0.25, where m €
{Tranlation, Rotation, Scaling, Birth&Death}. The probabilities pp
and pp regulating the birth and death kernel, were fixed to pgp = pp =
0.5.

For comparison purposes, a method for ellipse detection based on a
Generalized Hough Transform (GHT) [120] has been implemented and
tested on our data set. With this method, for every pair of pixels that
were detected as edge points in the Canny gradient and exhibit opposite
gradient directions, an accumulator, corresponding to the median point
between them in the image plane, is incremented by a unit value. The
maxima of the accumulator are taken as centers of ellipses. Then,
the three parameters describing the ellipse centered in each detected
maximum are computed and a 3D accumulator is used to estimate the
two semi-axes and the direction angle of the ellipse from all the pairs of
points that contribute to the accumulator in the considered center. The
results obtained by the proposed approach and by GHT were compared.
This particular approach was chosen for comparison, being a standard
technique for the detection of round and elliptical objects, commonly
used for crater detection [72], [50], [60], [119].

The global values of D, B, and @) obtained by the proposed approach
(MPP) and the standard method used for comparison (GHT) both for
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Table 5.2: Average numerical performance of both the proposed ap-
proach (MPP) and a standard method (GHT) as measured by Detec-
tion percentage (D), Branching factor (B) and Quality percentage (Q).

| Data [[Method | D | B | @ [[Method| D | B | Q

VIS GHT 73% | 0.24 | 62% MPP 82% | 0.22 | 71%
IR GHT 78% | 0.14 | 70% MPP 89% | 0.13 | 79%
Average GHT 75% | 0.20 | 65% MPP 85% | 0.18 | 74%

VIS and IR data are shown in Table 5.2. The global values of D for
VIS data and IR data obtained by the proposed approach were about

82% and 89%, respectively. These high values indicate a good detection
rate (because of the high number of TP). B was about 0.22 for VIS

and 0.13 for TR, which indicate a small amount of false detections with

respect to the true detections in both cases, thanks to the small number

of FP. The results obtained by applying the proposed approach are

more accurate when compared to the performance of the implemented

standard technique based on the GHT. In particular, the average value
of the detection rate D improved from 75% for the GHT to 85% for the

MPP. This is explained by the increase in true detections with respect

to the reference map. Similarly, the quality percentage (). A relatively

smaller improvement in the branching factor B is due to the fact that

the number of F'P was already small when applying GHT.

Moreover, the detection performance of the proposed approach in

terms of D, B, and () also compares favorably with most of the re-

sults previously published for automatic crater detection methods [4,5,

14,121]. Ideally, the performance of the proposed approach should be

compared with the results obtained by the previously published meth-

ods when applied to the same data. Unfortunately, the performance

of each published approach has been assessed on different sites and

distinct types of data (e.g., panchromatic images, topographic data).

The most direct performance comparison can be made with the method
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proposed by Barata et al. in [5]. That approach was tested on images
acquired by the Mars Orbiter Camera (MOC). The method in [5] iden-
tified 546 craters, with TP = 171, N = 93, and F'P = 282. Hence,
the resulting assessment factors were about D = 65%, B = 1.65, and
Q = 31%. Bandeira et al. [4] proposed an unsupervised approach for
crater detection from MOC data based on template matching. The
average performance indicators fof that approach gave about D = 86%
and @ = 84%. However, they tested their algorithm on images having
resolution of 200-300m/pixel. The high performances obtained in [4]
may be attributed to the fact that large craters in the sites of anal-
ysis have a very regular shape and are relatively easy to identify by
template matching. The performance of that approach for the detec-
tion of small and irregular craters is unknown. Bue and Stepinski |14]
proposed a supervised approach for crater detection from topographic
data. The average performance indicators for that approach gave about
D =74%, B = 0.29, and @ = 61%. The evaluation factors increased
to D = 92%, B = 0.29, and Q = 73% if degraded craters, which the
method was not able of detecting, were excluded. That approach is not
fully comparable with the proposed method, being supervised. Urbach
and Stepinski [121] proposed a supervised approach for crater detection
from panchromatic images. The performance factors of their method
were about D = 68%, B = 0.29, and ) = 57%, when detecting craters
of diameter greater that 200m, and lower when taking into account also
craters of smaller dimensions. However, a full comparison with our ap-
proach is again not possible. In general, the results obtained by the
proposed approach are comparable to, and in some cases better than
results obtained by methods reported in the literature in terms of the
assessment factors. Unfortunately, a full comparison is not possible,

because the methods were applied to different data.

Visual results of the feature extraction are shown for the first band
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of a visible image (Fig. 5.5(a)). The image is first preprocessed, in
order to reduce the noise. In particular, Gaussian filtering and median
filtering operations are applied in a cascade [106] in order to reduce the
noise and preserve the edges at the same time. The Canny edge detector
is applied to the smoothed image and the binary gradient I, is shown in
Fig. 5.5-b. The estimated optimum configuration of the MPP z*, which
identifies the feature contours, is shown in Fig. 5.5-c. The optimum
configuration x* is represented in red, transparently superimposed to
the original image. By a visual inspection, it is possible to appreciate
the accuracy of the detection, even when many false alarms are present
in the binary image gradient I,. Also the reconstruction of the feature

shape is very accurate.

(a) Original image (b) Image edges (c) Crater contours

Figure 5.5: Experimental results obtained by applying the proposed
method to the first band of a visible image. (a) Original image, (b)
Canny gradient, and (c) detected crater contours in red, transparently
superimposed to the original image.

Then, visual results obtained by applying the proposed approach
to the eighth band of an infrared image (Figure 5.6-a) are presented.
In particular, the Canny gradient /, is shown in Fig. 5.6-b and the

estimated x* is shown in Figure 5.6-c, transparently superimposed to
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the original image. The contours of the represented crater appear non-
continuous in the binary image gradient /;, due to the uneven quality
of the image. Anyway, the feature is correctly detected and its shape

reconstructed.

= 3

(a) Original image (b) Image edges (c) Crater contours

Figure 5.6: Experimental results obtained by applying the proposed
method to the eighth band of an infrared image. (a) Original image, (b)
Canny gradient, and (c) detected crater contours in red, transparently
superimposed to the original image.

A visual analysis of the detection results obtained with other plan-
etary images (see Fig. 5.7) confirms that the proposed method is able
to correctly identify the location and shape of the imaged craters, even
though the input edge map detected only part of the crater borders,
included many spurious contours unrelated with the craters, and was

severely affected by the shadows in the crater area.

5.1.3 Discussion

Here, the two different methods for planetary feature extraction pre-
sented in Chapter 2 have been experimentally evaluated.

Both methods have been tested on different types of images of Mars,
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(f) Edges 1 (g) Edges 2 Edges 3 (i) Edges 4  (j) Edges 5

(k) Result 1 (1) Result 2 ) Result 3 (n) Result 4 (o) Result 5

Figure 5.7: Examples of experimental results obtained by the proposed
method. (a), (b), (¢), (d), (e) Original data, (f), (g), (h), (i), (j) re-
spective edge maps, and (k), (1), (m), (n), (o) detected crater contours
in red.
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acquired both by the THEMIS and the HiRISE camera. For both ap-
proaches, the accuracy of the detection has been assessed by comparison
to a manually generated reference map. First, the proposed approach
for ellipsoidal feature extraction, based on the Hough transform and
the watershed, has been experimentally evaluated. The features to be
extracted are not as well contrasted nor defined as for Earth data. How-
ever, by applying the proposed approach, small rocks, which are not
affected by uneven illumination, can easily be detected. Crater detec-
tion is more difficult than rock detection, because of their depth and
spatial extent and, consequently, their contours are often blurry and
not continuous. Nevertheless, we showed in Section 5.1.1 that their
identification can be achieved and the proposed approach provided
quite accurate results. The results in terms of several indices based
on true and false positives compared favorably to previously proposed
approaches. Moreover, it has been shown that the features extracted
by the proposed approach can be used to accurately register pairs of

images acquired from the same sensor.

The MPP approach has proven to be effective in order to extract el-
liptical features, such as craters, in planetary images. Again, planetary
features are not as well contrasted nor defined as for Earth data. Never-
theless, in Section 5.1.2 it has been demonstrated that their identifica-
tion can be accurately achieved. The method outperformed a standard
method for crater detection based on a generalized Hough transform.
Moreover, the obtained results compare favorably to most previously
proposed approaches, when performances reported in the literature are
considered for the same indices. Finally, a visual inspection of the de-
tection results confirmed that the proposed method was also able to

correctly identify the location and shape of the detected craters.
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5.2 Retinal Images

Twenty-two images of the posterior pole in which haemorrhages, mi-
croaneurysms or exudates are present are selected for analysis. These
images of Icelandic patients attending a retinopathy screening service
are captured by using a ZEISS FF 450plus IR Fundus Camera, which is
connected to a JVC digital camera. The output image is an 8-bit color
image of size 1280 x 1024 pixels. In our testing phases no data on age
and ethnicity, duration or type of retinopathy was available. The ap-
proaches for registration and change detection, described in Chapters 3
and 4, respectively, have been tested on the 22 fundus multitemporal
data sets. As a convention, each data set is named with a consecu-
tive number, with no reference to the corresponding patient for privacy

reasons.

5.2.1 Registration Results

This section shows the results of the image registration step. The 22
image pairs to be registered were preprocessed and the vessel maps,
of both input and reference image, were extracted. Some differences
in the maps, due to different illuminations, determined a low value of
matching. Results of the second pair of images are shown in Fig. 5.8;
such a pair presents differences in illumination and point of view. Spots
also appeared from the first visit to the second one. Consequently, the
vessel maps (b) and (c) exhibit large differences, but still the measure-
of-match convergence is steadily achieved, as shown in (a). The illu-
mination of the two images is quite different. Therefore, the squares
of the checkerboards, shown in (d) and (e), present different intensity
values. However, analyzing them in detail, one may note very good
vessel continuity in border regions between a square and its neighbors

(i.e., where the vessel maps overlap).
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Comparable results were achieved for the other image pairs. Au-
tomatic registration results are shown for three additional data sets in
Fig. 5.8. For all the 22 image pairs, a correct registration was achieved
by the proposed method, in spite of a low value of the MOM parameter

at convergence.

5.2.2 Change Detection Results

The proposed algorithm for change detection has been tested on the
22 registered image pairs. In order to compare the results obtained by
the algorithm with the performance of a human grader, a test map was
created for each pair, with the support of a specialist.

For comparison purposes, a method for change detection based on
a Bayesian Algorithm (BA) for adaptive change detection proposed
in [79] has been implemented and tested on our data set. This method
is based on the assumption that the difference values follow a Gaussian
distribution. The change map were obtained by comparing the normal-
ized sum square of the differences within a neighborhood [1]| (see [79]
for more details). The results obtained by the proposed approach and
by BA are compared. This particular approach was chosen for com-
parison, being the only image processing technique proposed in the
literature for the detection of retinal changes. Moreover, the results
obtained by using the proposed approach based on multiple classifiers
(MC) were also compared with the change maps obtained by applying
the K&I thresholding technique to the entire image (KEI). The quan-
titative evaluation of the results in terms of Sensitivity and Specificity
obtained by BA, KEI, and MC are shown in Table 5.3. The values
of Specificity (Sp) obtained by applying either BA, KEI and MC are
generally very high also because the number of true negatives is al-

ways high. On the other hand, Sn is more variable because it strictly
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Table 5.3: Performances of BA, KEI, and MC applied to image pairs,
in terms of SnP, Sp, and SnR.

Method || BA | BA | BA || KEI | KEI | KEI || MC | MC | MC

Param. || SnP | Sp | SnR || SnP | Sp | SnR || SnP | Sp | SnR

Average || 57% | 87% | 91% || 54% | 91% | 94% || 58% | 92% | 96%

depends on the quality and similarities in luminance of the input im-
ages and is thus affected by sharp differences in the image dynamics at
the two dates. The average values of Sensitivity (Sn), assessed both
in terms of correctly classified pixels (SnP) and correctly classified re-
gions (SnR), produced by both KEI and the proposed MC method are
much higher than the ones obtained by applying BA. Moreover, the
MC approach improves the performance in terms of Sn if compared to
the values obtained by using the KEI technique. In fact, the use of mul-
tiple classifiers avoids the presence of wide false alarm areas, otherwise
caused by differences in luminance. In all cases, the values of Sn are
higher in the evaluation in terms of regions. In fact, the presence and
the position of most “change” areas are correctly detected, even when

their shape is not perfectly reconstructed.

The change maps generated by KEI and by the proposed multiple
classifier approach when applied to the first data set (Figs. 5.10(a) and
(b)) are shown in Figs. 5.10(d)-(e), respectively. Several typologies of
change are present in this data set, including new and old spots of both
types: The related test map is shown in Fig. 5.10(c). A lower value of
Sn is obtained in this case (about 76.5%), due to several missed alarms

where edges between “change” and “no-change” are present.

Change detection results obtained by applying MC to the fifth data
set (Figs. 5.11(a) and (b)) are also shown in Fig. 5.11(d). The related
test map is shown in Fig. 5.11(c).
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5.2.3 Discussion

Twenty-two different data sets, including changes of different types of
images, including changes of different sizes and typologies, were taken
into account in order to test the performances of the method. The
proposed approach provided quite accurate results. The accuracy of
the registration step, as compared to manual registration, has been
evaluated by visual inspection of the results. A correct registration
was obtained for all the image pairs with both the automatic and the
manual methods.

The results obtained by applying the Kittler & Illingworth thresh-
olding algorithm to the entire image were quite accurate. In fact, ac-
curacy in comparison to human grader has been evaluated on our data
base, which comprises images of variable quality. In addition, the pro-
posed multiple classifier approach based on random windows gives more
accurate results, meaning that this approach, which locally analyzes the

images, proves to be much more robust to differences in illumination.
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(a) MOM

(d) Manual reg. (e) Automatic reg.

Figure 5.8: First data set.(a) Measure Of Match (MOM) of the indi-
viduals among the generations, for a population of 50 individuals, with
pe = 0.5 and p,, = 0.01. The blue, the green, and the red line repre-
sent respectively the lowest, the median, and the highest value in the
population. Vessel maps of (b) the input and (c) the reference images.
(d) Manual and (e) automatic registration of the image pair shown by
using a checkerboard representation, in which checkers are alternately
taken from the reference and the registered images.
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(a) Data set 2 (b) Data set 3 (c) Data set 3

Figure 5.9: Registration results for (a) the second, (b) the third, and
(c) the forth data set, shown by using a checkerboard representation.

(a) First Image (b) Second Image

(c) Test map (d) KEI map (e) MC map

Figure 5.10: First data set: (a) and (b) registered input images acquired
from the same eye in June 4, 2003 and in January 24, 2005. (c) Test
map, (d) change map generated by KEI, and (e) change map generated
by MC. In order to visualize the different change typologies, for each
method two change maps are shown, transparently superposed to the
first image. Map legend: White = old white spots, red = old red
spots, blue = new white spots, green = new red spots, background =
“no-change”.
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(a) First Image (b) Second Image

(d) Test map (f) KEI map

Figure 5.11: Fifth dataset: (a) and (b) registered input images acquired
from the same eye in acquired on June 6, 2003 and in September 22,
2004, respectively. (c) Test map, (d) change map generated by KEI,
and (e) change map generated by MC. In order to visualize the differ-
ent change typologies, for each method two change maps are shown,
transparently superposed to the first image. Map legend: White = old
white spots, red = old red spots, blue = new white spots, green = new
red spots, background = “no-change”.
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Chapter 6

Conclusions

Image analysis has become a critical component in contemporary sci-
ence and technology and has extensive applications, which are contin-

uously expanding through many different areas.

In this thesis, several image analysis problems have been addressed
by proposing different image-processing techniques, in order to extract
useful information from different typologies of images. The proposed
methods aim at providing feasible solutions to several open problems in
different fields of image analysis, taking into account the specific issues
involved by the typology of data to be analyzed. With the progresses
in the image acquisition procedures in all fields, the amount of data
available for analysis is continuously increasing. The acquired images
need to be analyzed, preferably by automatic processing techniques be-
cause of the huge amount of data. Automatic and advanced technique

to analyze the data collected are of high relevance.

The next section summarizes the main contributions of this thesis,
thus explaining how we met our objectives, and perspectives for future

work.
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6.1 Contributions and Perspectives

The methodological issues that have been addressed in this thesis are
image segmentation, image registration, and change detection of differ-
ent types of data (i.e., retinal and planetary images). In the following
paragraphs, the main conclusions about all the addressed topics are
drawn, separately for each type of analyzed data. Detailed comments
about each proposed approach can be found in Section “Conclusions”

of each of the previous methodological chapters.

Retinal Image Analysis

In diagnostic ophthalmology a multitude of image devices, among which
fundus cameras, have been brought into clinical practice. These devices
produce a large amount of images that need to be analyzed in order to
detect abnormalities.

The problem of analyzing retinal images has been addressed and
the aim was to contribute to the development of a system that auto-
matically detects the temporal changes in retinal images, as a support
for the diagnosis of retinopathy. To this end, retinal image segmenta-
tion has been addressed, in order to identify peculiar structures in the
fundus of the eye, such as blood vessels and optic disc. Hence, regis-
tration of multitemporal retinal image pairs has been tackled as well.
Finally, change detection has been addressed and different approaches
have been investigated, in order to detect temporal changes in pairs of
registered images acquired during different medical visits.

The main novelty of the proposed system, in terms of application,
lies in the proposal of a method that combines an automatic image
registration technique and an automatic change detection approach.
Pairs of retinal images (taken of the same patient) can be compared and

temporal changes, which may occur between different medical visits,
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can be detected without the supervision of the ophthalmologists. A
specialist will be consulted only in the case that temporal changes are
detected by the proposed method.

Moreover, methodologically, a novel approach for change detection,
based on multiple classifiers, is proposed here. As far as we know, the
idea of combining multiple classifiers with different spatial location, in
order to overcome local illumination differences, is new in the contest
of multiple classifier approaches and it has demonstrated to be effective
when analyzing retinal images.

It is worth noting that the methodologies presented in this thesis
were developed and tested in a laboratory operational framework, in
which we focused on solving specific problems by proposing innovative
and advanced approaches. The applicability of the proposed approaches
to the clinical practice would require a further extensive phase of clinical
validation, over larger data sets and in close contact with ophthalmolo-
gists. Interesting developments would concern addressing such issue in
order to further optimize the developed techniques and apply them in

the operational context.

Planetary Image Analysis

The growing availability of planetary imagery, collected by several plan-
etary missions, provides a huge potential for the study of the planet
surface, but also claims for accurate automatic processing techniques.
The problem of analyzing planetary images has been addressed, as
well. In this case, the aim was to contribute to the development of
a system that automatically identifies planetary spatial features and
reconstructs their shape. In particular, two different methods were
proposed, the first one aimed at identifying ellipsoidal features, such as
craters and rocks, and a second one specifically aimed at the detection

of craters. The proposed approaches represent the first important step

84



for many applications dealing with all the various data that are being
collected by different planetary missions, among which image registra-
tion and image analysis, with the aim of selecting safe landing sites,
identifying lunar resources, and preparing for subsequent explorations
of the Moon and Mars by both robots and humans.

The main contribution of the first method for ellipsoidal feature ex-
traction lies in the proposal of a novel chain, which combines well-known
and robust image processing operators in order to achieve accurate re-
sults. On the other hand, the main contribution of the second approach
is a novel unsupervised method for crater detection, based on a very
promising stochastic modeling technique. Indeed, marked point pro-
cesses provide a powerful and methodologically rigorous framework to
efficiently map and detect objects in an image. They have been used in
different areas of terrestrial remote sensing, but have been applied here
for the first time to planetary image analysis. The use of the proposed
approaches provides an accurate analysis of planetary data, which is ex-
ploitable and helpful for analysts. Key point is that the methodologies
can be applied to different types of optical data.

The application of the proposed methodologies to the analysis of
planetary data still presents many open issues, from both an application
and a scientific viewpoint. For instance, the methodologies proposed
here were developed and tested in a laboratory operational situation.
Their applicability in integrated systems to large-scale imagery in op-
erational situations would require an extensive phase of adaptation and
optimization of the proposed approaches. In addition, further experi-
mental validation would be required. Interesting developments would
concern addressing such open issues, also in order to optimize further
the developed techniques, aiming at their practical application in op-
erational context and allowing a further complete assessment of their

processing capabilities.
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Chapter 11

Unsupervised Change Detection
in Multitemporal Images

of the Human Retina

Giulia Troglio, Jon Atli Benediktsson, Gabriele Mo<r,
Sebastiano Bruno Serpico, Einar Stefansson

Abstract. Diabetes is a growing epidemic in the world, du@apulation growth,
aging, urbanization, and increasing prevalencebekity and physical inactivity.
Diabetic retinopathy is the leading cause of blesinin the western working age
population. Early detection can enable timely treait minimizing further
deterioration. Clinical signs observable by digitaidus imagery include micro-
aneurysms, hemorrhages, and exudates, among othetisis chapter, a new
method to help the diagnosis of retinopathy andetaused in automated systems
for diabetic retinopathy screening is presentegdrticular, the automatic detec-
tion of temporal changes in retinal images is asklrd. The images are acquired
from the same patient during different medicaltgidly a color fundus camera.
The presented method is based on the preliminatgnatic registration of
multitemporal images, and the detection of the @malpchanges in the retina, by
comparing the registered images. An automatic negisn approach, based on
the extraction of the vascular structures in theges to be registered and the
optimization of their match, is proposed. Thenpider to achieve the detection
of temporal changes, an unsupervised approachdbasea minimum-error
thresholding technique, is proposed. The algoriiesmested on color fundus
images with small and large changes.
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1 Introduction

In ophthalmology, diagnosis of retinal diseasebased on the analysis of the changes in
the retina that can occur during time. The analgéimultitemporal images is an important
diagnostic tool. Fundus images may be used to dsgmmany diseases that affect the
vascular structure by revealing the changes that bacurred in it during the period between
two consecutive medical visits.

During the last few years an intensified effort h&en undertaken in developing tools to
assist in the diagnosis of retinopathy [1, 2, 3,Aljmultitude of image devices have been
brought into clinical practice, by facilitating val access to different parts of the eye. In
particular, fundus cameras have been commonly ased the last decades. These devices
produce a large amount of images that need to aaealy inspected by ophthalmologists to
diagnose abnormalities.

Therefore, automatic methods of retina analysiseHsaen acquiring a growing interest in
order to support the diagnosis [5]. In particultre detection of pathologies, such as
microaneurysms, hemorrhages, and edema has beessai

This Chapter summarizes current research in algostfor the analysis of multitemporal
retinal images. Furthermore, a novel method forgiengegistration and change detection with
this type of images is proposed. Registration fsralamental underlying technology for
many prospective applications of retinal image ysialand has been widely explored. It
consists in aligning pairs of images, in order tb fhem into the same coordinate systems: It
is thus essential for any further analysis of imsgees. Lesion detection has been carried out
in many different studies by analysing single raitimages. However, a fully unsupervised
method for comparison and change detection in tealpporal images has not been presented
yet.

Here, an automatic approach for the registratiorethal images, based on optimization
techniques, is proposed. The process of imagetratism can be formulated as a problem of
optimization of a functional that quantifies the toldng between the original and the
transformed image. As the images present clinibahges and differences in illumination
and intensity, the optimum matching is not triialbe achieved. In order to optimize the
robustness of the registration method, the matcisimpt computed between the two images,
but between the maps of structures which are présehe images themselves. According to
the specific nature of the considered images (@grg portion of the human retina) maps of
vessels are adopted for this purpose. The needrfaccurate registration with no human
interaction, the absence of clear anatomical regtbat can be used for reference, and the
low quality of the retinal images, suggest the afsa robust global technique to optimize the
matching. In this chapter, a genetic algorithm isppsed, since it ensures, under mild
assumptions, convergence to a global maximum otlopted matching functional. In order
to preliminarily map the vessels, a simple thredimg is not sufficient, since retinal vessels
and background structures are of comparable interEherefore, a preprocessing approach
based on the use of morphological techniques iggeed to accomplish the vessel-extraction
task.

The adopted technique to detect changes in theteegd colour fundus images is based on
the unsupervised thresholding method proposed hyleKiand lllingworth (K&I) [6],
originally designed for computer vision purposey] aecently extended to multispectral and
radar remote-sensing images. The key idea of ttieades to model the “change” and “no-
change” pixels of a pair of multitemporal imagestlwyp Gaussian-distributed classes and to
discriminate between such classes by applyingeshimiding technique to a suitably defined
“difference image”. In particular, the K&l methodlawvs the threshold-selection task to be
formalized in an unsupervised framework as the mization of a criterion function was
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defined according to the Bayes decision theoryeiAihe change-detection stage, the present
work aims at classifying the detected change regioto four different categories of change,
which are relevant to diabetic retinopathy, by eikpig two features relevant to the typology
of change.

The main body of the chapter starts with backgroandretinal image analysis and its
associated challenges (Section 2). It then proceegsesent an automatic and unsupervised
method for registration and change detection imaetimages (Section 3) and to show the
results obtained by applying the proposed appraadisection 4). Finally, concluding
remarks are drawn (Section 5).

2 Previous Work

In this section, an overview over the existing roeih for temporal analysis of retinal
images is presented. In particular, Section 2..udes on temporal registration of retinal
images. The problem of change-detection technidoegshe support of the diagnosis of
retinopathy is addressed in Section 2.2, whereamview over the existing methods for
change detection in image processing is given #mgah, the application of change detection
to the temporal analysis of retinal images is fecusn.

2.1 Registration

Registration is fundamental in order to comparegesaacquired in different conditions. In
particular, temporal registration is necessary whealyzing multitemporal images. It is a
difficult task in image processing because corradpace problem is not straightforward. As
a consequence, several different registration dlgos have been investigated.

The existing registration methods can be classifital two broad groups: interactive and
automatic techniques.

Human-interactive methods have been considered asfeaence among the existing
methods. Human-involvement necessarily achieveghereithe highest accuracy nor
reproducibility, but it has been used to prevemastaophic failures, which are possible with
automatic registration methods. The earliest studi€ image registration in the ocular
imaging area were based on a human interactio8,[8]. However, manual registration is
time-consuming, often prone to human error, andireq specialized knowledge.

Automatic registration methods have been widelyestigated in the last decades. The
existing automatic techniques may be subclassifitdl different categories based on the
image data used, the considered measure of sitpiltve selected transformation model, and
the method employed for the parameter search [1D,However, in the contest of fundus
images, registration techniques can simply be sisbifled into feature-based and area-based
methods [12].

Feature-based methods are somewhat similar to rhaegéstration. In fact, these
techniques are based on the extraction of feainrélse images to be registered. Features
include the vascular structure [13, 14, 15], théocogisc location and boundary [16, 17, 18],
and the macula [19]. The ocular blood vessels @r tirossing points are commonly used for
registration. The registration process is perfornyd maximizing a similarity measure
computed from the correspondences between the ctedraeatures. These approaches
assume that feature/point correspondences are ablailin both images, and their
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performance largely depends on sufficient and/babike correspondences, especially, when
the overlapping part of an image pair is very laditor when there are mismatched
correspondences. In [20], blood vessels were saldry an adaptive thresholding technique
and their correspondence was established by ussegjaential similarity detection method.
In [21], matched filters were used to detect vegsgttions and correspondences were
determined by a local cross-correlation. A groupaers extracted the bifurcations points of
the vessels by means of mathematical morphologyd2Eorster detector [23] and then they
matched corresponding points. In [24] vascular hamks are automatically detected and
aligned using a hierarchical estimation technigureiterative method, called dual bootstrap
iterative closest point, is presented in [25]: Aitial transformation, which is only accurate
in a small region (the “bootstrap region”) of thepped image, is estimated and iteratively
expanded it into a global transformation estimate.

Area-based techniques are generally based orxalliptensities within both images to be
registered, in order to determine a single besviseansformation parameters for the
analyzed image pair. The transformation can beeefttund by correlation or by

optimization, in the spatial or in the frequencyrdon. Phase correlation [26] has been
widely used to estimate translation misalignmeasgsproposed in [27]. That work was
extended in [28] to estimate not only translatioh dso rotational parameters: Many
incrementally rotated images were generated fraotlginal and correlated. In [29], mutual
information was used as a similarity measure amdilsited annealing was employed as a
searching technique. Butz and Thiran [30] maximitedmutual information of the gradient
images. In [31], the measure of match (MOM) wagpsed as an objective function and
different searching techniques were used to achiswptimization. Nevertheless, the
searching space of transformation models (affifimdar, and projective) was huge. The
greater the geometric distortion between the imgage the more complicated the searching
space.

Between the two classes of automatic image regjstréechniques, feature-based methods
are difficult to generalize, because they are Ugumsed on rules for both identification of
features and determination of correspondences.-Basad methods, on the other hand, are
free of decision processes and can be easily derestaHowever, efficient techniques can
be applied only when translation is the only defation between the analyzed images. The
proposed solutions to deal with both translatiord aotation are computationally too
expensive [12].

2.2 Change Detection

A change-detection problem can be defined as aifitagion problem in which “change”
and “no-change” classes have to be distinguishedgngtwo input images acquired at
different times on the same scene or object.

Change-detection approaches can be divided into bmwad families: Supervised and
unsupervised. The former family is based on supedvclassification methods, which require
the availability of a suitable training set for thearning process of the classification
algorithm. The latter assumes no training datagcabailable at any observation date and
usually performs the change detection by transfiognine two analyzed images into a single
image in which changed areas are emphasized arfukecsunccessively detected.

From an operational perspective, in order to gdaemaaps in which “change” and “no-
change” classes are discriminated, completely wrsiged approaches are generally
preferred, as they do not require the difficult éimche- and possibly cost-) expensive process
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of training data collection. When using these md¢hono prior information about the
statistics of the aforesaid classes is availabthdalassification algorithm.

A significant variety of change-detection approachave been proposed in the literature
to deal with change detection in different field&e traditional approaches to change
detection in remote sensing include image differend32], image ratioing [33], image
regression, Change Vector Analysis (CVA), methaasell on Principal Component Analysis
(PCA), multitemporal coherence analysis [34], inédign of segmentation with multiplayer-
perceptron and Kohonen neural networks [35], fuz#g-based analysis [36], multisource
and multitemporal data fusion [37], spatio-tempamahtextual classification [38], [39], and
likelihood ratio tests [40], [41].

One of the most widely used change-detection meithdndage differencing, according to
which the images acquired at two different dates sarbtracted pixel-by-pixel in order to
generate a “difference image”. This method relirgle assumption that in the “difference
image” the values of the pixels associated withhglesa present values significantly different
from those of the pixels associated with unchangeshs. Changes are then identified by
analyzing the “difference image”.

Another commonly used change-detection methoddsirttage ratioing approach, which
generates a ratio image by dividing pixel-by-pike¢ gray levels at one date by the gray
levels at another date. The detection of changpsrfermed by analyzing the “image ratio”.
This approach is usually preferred to image diffeneg when multiplicative noise affects the
input images (e.g., in the case of radar or sanagery).

Both image differencing and image ratioing invobbhe critical problem of selecting an
optimal threshold value to be applied to the sinighege that has been generated (i.e.:
difference or ratio) to separate “change” from ‘¢t@nge.” “Trial-and-error” procedures are
typically adopted to this end [33], [42], [43], [ARosin [45], [46] surveyed and reported
experiments on many different criteria for choosihg threshold at which the image should
be binarized. Smits and Annoni [47] discussed hioevthreshold can be chosen to achieve
application-specific requirements for false alaramsl misses (i.e. the choice of point on a
receiver-operating-characteristics curve [48]). ldgar, such manual operations typically
turn out to be time-consuming. In addition, the lgyaf their results critically depends on
the visual interpretation of the user. The decisida in many change-detection algorithms is
cast as a statistical hypothesis test. The decasan whether or not a change has occurred at
a given pixel corresponds to choosing one of twmpeting hypotheses, corresponding to
“change” and “no-changedecisions [49]. In [50], the problem of automatihg threshold
selection task is addressed by proposing an ungspdrtechnique that integrates image
ratioing with a generalization of the Kittler anllingworth minimum-error thresholding
algorithm (K&I) [6]. The change-detection methoddposed in [51] and [52] with regard to
optical remote-sensing imagery) that integrates Kéth image differencing is modified in
[50] by developing a new version of K&I, which isited to image ratioing and to the
specific nonGaussian statistics of the analyzeid ratages. There are several methods that
are closely related to image differencing and imadg®ing. For example, in CVA [53], [54],
[55], [56], which is an approach often used for tisplectral images, a feature vector is
generated for each pixel in the image by considesgveral spectral channels. The modulus
of the difference between the two feature vectdreach pixel gives the values of the
“difference image”. DiStefano et al. [57] performai@nple differencing on subsampled
“gradient images”.

Although change-detection techniques have been Iwideplored for remote-sensing
imagery, few efforts have been undertaken in tineptgal analysis of medical images. In
particular, only a few methods have been describethe literature for quantifying the
dynamic nature of diabetic retinopathy from a tiseeies of images.
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In [58], the images are compared by computing thigfiierence and the presence or
absence of progressive changes is empirically @dcid

Berger et al. [59] introduced the dynamic flicker animation astcml for visualizing
changes in the retinal fundus. In this method tweeregistered images are displayed in rapid
succession, usually a few seconds apart. Changpangein the image appear to flicker,
whereas unchanged regions appear steady.

Creeet al. [60] defined a region of interest around the fovaad used matched filtering
followed by thresholding and region growing to finde microaneurysms. They also
registered images from multiple time points, todgtuhe turnover of microaneurysms. In
[61], methods are described to find leakage ofrflgoein in blood vessels by looking at
restored images from an angiographic sequencetionerand finding areas that do not have
a particular pattern of intensity changes.

Studies of microaneurysm turnover were also madédgtmaret al. [62]. They detected
microaneurysms from baseline and follow-up angiogra registered the images, and
categorized the microaneurysms into three classmsely, static, new, and regressed. A
disadvantage of these methods was that the progesss limited to a small region of
interest centered on the fovea. Sbeh and Cohensg@hented drusen based on geodesic
reconstruction algorithms. They used the methodstialy the evolution of drusen by
registering two images that were widely spacednimet Each of the methods described above
studies the changes associated with only one kintesion. Furthermore, they are all
susceptible to errors in segmentation of the lesithvat lead to accumulation of change
analysis errors over time.

All the described methods are specific to one tgpéesion or region of the retina: The
detection is performed by segmenting the lesionseath image and analyzing the
segmentation results, instead of directly comparmgdtitemporal images. Hence, they are
susceptible to errors in change detection resuftmmg segmentation errors.

A first study for change detection in retinal imageas presented in [64]. In that paper, the
“change” areas are detected by using a supeniisedholding technique applied to the sum
square of the image difference; the detected clsaage classified into different typologies
by using a Bayesian approach. This method is caelglautomatic; however, a training set,
in which “change” and “no-change” classes are miyuabeled, is required for the
thresholding process. In a further study [65] thee method was applied for the detection of
vascular changes.

3 Methods

The method proposed here for temporal analysisotdrdundus images involves two
successive processing sequences: The registratipairs of images acquired at different
times and the detection of temporal changes imdpistered images. Temporal registration is
a fundamental task in the approach. Actually, inggal, such a preprocessing step is usually
necessary in order to make the two images compaiabthe spatial domain, before an
unsupervised approach is applied to detect changes different retinal images.

In this chapter, an automatic registration apprdzaed on global optimization techniques
is proposed (see Section 3.1). In particular, oheorto estimate the optimum transformation
between the input and the base image, a Genetioriligh (GA) is used to optimize the
match between previously extracted maps of cuedlinstructures in the images to be
registered (such structures being represented dyeksels in the human retina). Then, in
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order to achieve the detection of temporal changisin the registered images, a fully
unsupervised approach, based on a minimum-errestibiding technique, is proposed (see
Section 3.2). In particular, K&I thresholding methproposed in [41] is chosen here, since it
enables to differentiate “change” and “no-changefasa, by analyzing a suitably defined
difference image, with no need of training inforinatabout the statistic of the changed areas
and since it has already been found effective vapglied to change-detection problems with
different typologies of input image (i.e., multigp@l [51] and synthetic aperture radar [50]
remote-sensing images).

3.1 Registration

The vascular structure covers the entire retinaian@élatively stable over time. Thus, it
appears that a solution to the retinal image reggish problem can be driven by using the
ocular blood vessels [66]. Some difficulties ariisehis process, due to both the surface of
the retina, which is curved but not perfectly spdadr[67], and the overlap of the images
which can be small due to large changes in the paéw between images. In fact, during
imaging, a patient's pupil is dilated and his/leeehead is held against a harness. Small shifts
in the position of the patient’s head are likelyinduce translations and rotations of the eye.
Eye movements, which are incompletely constraingihg diagnosis or surgery, are almost
exclusively rotational and occur about two axegaaes of up to 180° per second [68].
Significantly, neither axis of rotation is the ajati axis. Moreover, except for detached
retinas, it may be reasonably assumed that thearéirigidly attached to the back of the eye.
Together, these observations imply that the appanetion of the retina should be modeled
as a general rigid motion. They also imply, howetkat some components of the motion
(i.e., rotation about the camera's optical axiparticular) will be small [67]. Consequently,
an affine transformation, which exhibits six indegent parameters, is applied to overlay
image pixels.

Hence, the registration approach proposed heredarssan affine transformation model,
parameterized by a suitable transformation matard a technique to achieve its
optimization, following an initial preprocessingage. The input images to be registered are
first preprocessed, in order to obtain binary insagehich show the vessel structure. Such
binary images are fed as inputs to an optimizatimdule, aiming at maximizing a suitably
defined objective function. In fact, the transfotioa matrix has to be optimized: lts
goodness is evaluated by an objective functioninoptimization is achieved by applying a
GA. When the optimum matrix is estimated, it is leggpto the original input image, which is
transformed and interpolated in order to obtainfthal registered image. In particular, the
nearest neighbor interpolation method is chosen, being the compmurtatly least demanding
and, above all, the data are not modified (i.e new gray levels are introduced).

The first step in the proposed automatic regiginathethod is the extraction of the ocular
blood vessels. The input and reference images, téénby I; and |, respectively, are
preprocessed, in order to obtain binary imdgesdls, which show the vessel structure. The
vessel extraction is addressed here by using mtogical operators [69]. Only the green
plane,G, of each RGB image is used in the extracti®ris treated as a gray scale image,
because it exhibits the best contrast (the edgddoofl vessel are clearer) of all the image
planes. To extract vessel segments the method gedpia [70] is used because it is simple
and fast. It is unsupervised and also involves ¥&wyinput parameters (apart from the model
dimensions, just one double threshold is involvedl)pre-filtering operation is needed in
order to remove the background noise. Most of tagssical noise smoothers are based on an
additive model. Actually, for the addressed prohléme useful information lies in anisotropic
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structures, and the preprocessing operator haseeteiye them as well as smooth the noise.
To remove the structures that are lighter thanr teefroundings, an opening operator (by
reconstruction) is applied, with a flat square ating element. This is a connected
operator. Therefore, it does not introduce any new discwiities in the image. The removal
of nonlinear (or too short) darker objects and pheservation of the others are achieved by
taking the minimum of all the possible long direatl closings. This minimum is computed
using linear structuring elements that are suceelysbriented in every possible direction.
The third operation is the morphological extractiperformed to detect vessel-pixels. The
remaining linear objects, which are too wide (mibran the vessel width), are removed and
the desired structures are extracted. The bottanoj@rator, which is the residue between
the current image and its closing, with a flat squstructuring element is calculated. The
only remaining structures are the wide dark featulay other pixel is set to zero. The final
binary decision (vessel pixel or not) is taken loable thresholding with reconstruction.

In this way, two binary vessel mapg,andlg, are obtained from the input and reference
image, respectively. Such binary images are fed@sgs to an optimization module, aiming
at maximizing a suitably defined objective functidm fact, the transformation matrix has to
be optimized. Its goodness is evaluated by an tigedunction and its optimization is
achieved by applying a GA.

The problem is formulated as the determination géametric transformatiof* such that,
whenT* is applied to the first imagé,, the best match with the second oiels achieved.
Mathematically, this problem can be expressed a&s rtfaximization of the following
objective function:

MOM(T) =2 31, y), (1)

(x.y)ilg (x,y)20

where MOM denotes the objective functiof, is the transformation for th& andy
coordinates in the image plane, and the number of nonzero pixelslgf

The objective function in ( 1) is normalized, sattthe absolute maximum value is unitary;
but in general, the achieved maximum value is figanitly lower. The reason for that is not
the inefficiency of the optimization method, buetfact that the two images are in most of
the cases not identical due to noisy pixels antigls.

The determination of the transformation paramegtrengly depends on the objective
function, as well as on the images to be registdrethe case of retinal images, whét®©M
has multiple extremes, the most attractive sear@thods are represented by global
optimization techniques. In this work, a GA is atap(as we proposed in [71]), since it
ensures, under mild assumptions, convergence kobalgnaximum of the adopted matching
functional. The aim of the GA is to find the valfoz the transformation parameters, which
maximize the objective function [72]. An affine tisformation model, which exhibits six
independent parameters, is employed. The valusaabf parameters are defined over a wide
range of values to achieve robustness; they areectad to binary digits and concatenated in
a single string, called “individual”. Each real pareter is encoded as a binary number, with a
precision that depends on the number of digits .uskd fitness of each individual (i.e., the
goodness of the transformation parameters) is astinby the objective function calculated
over its decoded parameters. The match betweemetiistered and the reference image,
MOM(T;), represents the fitness of theh individual. The process begins with the
preliminary random definition of the first populati individuals. The population is evaluated

1 The connected operators are commonly known asnbiopening by reconstruction. They consist in reingvthe
connected components of a binary image that aﬁyémmoved by erosion and in preserving the otleenponents.



by calculating the fitness of each individual. Aadiag to the principle of the survival of the
fittest, pairs of fit individuals are selected scombine their encoded parameters in order to
produce offspring, according to the following stepsst a few fittest individuals are kept in
the next generation without being changed, by islit. Then, the other individuals are
selected by a “tournament selection”, two-by-twacading to their fitness. Finally,
“crossover” and “mutation” are applied to each mdimdividuals with a fixed probability. In
this way, a new generation of solutions, which aept the previous one, is produced: The
fitness of the new generation will be calculated amew selection will be performed, until
the convergence of th&OM is achieved. At that point the process ends. Tihal f
transformation matriX™ is calculated by decoding the fittest individuttre last population
and the input image is registered.

3.2 Change Detection

Given two registered imagésandl,, acquired at timef andt,, respectively tg < t), the
purpose of change detection algorithms is to iflerttie meaningful differences (i.e., the
"changes") between them.

Here, an unsupervised approach is chosen due tadk@fa priori information about the
shapes and the statistics of the change areas.dE#toh two registered images to be analyzed
is converted in a gray-level image by computingrétes of its green and red chann&4R.
These new gray-level images are compared, pixglbogk in order to generate two further
images (“difference images”) obtained by a pixeldiyel subtraction of the first date image
from the second date one, and vice versa. A “diffee image” is computed in such a way
that pixels associated with retinal changes pregesy level values that are significantly
different from those of pixels associated with uaraed areas. The K&l algorithm is applied
in order to automatically detect the change piM®isapplying a decision threshold to the
histogram of each “difference image”. The selectidrthe decision threshold is of major
importance, as the accuracy of the final changeetien map strongly depends on this
choice. This last step is highly critical in thevdlpment of completely automatic and
unsupervised techniques for the detection of retefzanges [73]. Consequently, the
algorithm applies again the K&l method to the ragfogreen and red channe(S/R, in the
“change” decision region to distinguish the typglaf change that occurred (red vs. white
spots). We use this unsupervised approach by asgigwhite spot” and “red spot” labels,
when the intensity i6/R is above or below the K&l optimal threshold, restpeely. In fact,
this feature has proven to be effective to distisigthe two classes in this typology of image
data (see Section 3.2.2).

3.2.1 Preprocessing

Changes in light, in field angle, and in the absorpof the mydriatic drop between the
two acquisition times may be potential sources wbrs. This problem is mitigated by
performing first a radiometric calibration of theages.

Then the optic disc, which appears in color funionages as a bright yellowish or white
region, has to be identified and removed from the &cquisitions. It is important to remove
the optic disc for accurate change detection becaums similar attributes to the exudates in
terms of brightness, color, and contrast. Furtheemadts detection is a first step in
understanding ocular fundus images: the diamet@rmées approximately the localization
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of the macula [74] the center of vision, which fgyeeat importance as lesions in the macular
region affect vision immediately.

The optic disc is the entrance of the vessels hadptic nerve into the retina. It appears in
color fundus images as a bright yellowish or whégion. Its shape is more or less circular,
interrupted by the outgoing vessels. Sometimesoptee disc has the form of an ellipse
because of a consistent angle between the image plad the object plane. Sometimes, the
optic disc is even not visible entirely in the inegglane, and so the shape is far from being
circular or even elliptic.

Here, the optic disc is localized by identifyingthrea with the highest variation in intensity
of adjacent pixels [75]. In fact, the appearancéhefoptic disc region is characterized by a
relatively rapid variation in intensity: The gragvel variation in the papillary region higher
than in any other part of the image, because thek"tlood vessels are beside the “bright”
nerve fibres. The variance of intensity of adjaceiels is used for the localization of the
optic disc. In particular, the maximum of the vada image is considered as an estimate of
the optic disc center.

3.2.2 Feature Ratio

After a preprocessing step, the two co-registeradi radiometrically corrected images to
be analyzed are converted in a gray-level imageatiping different features, in order to
emphasize the structures of interest. The three R&8Bnels of fundus images contain
different information: The red channd®, is usually the brightest channel representing the
luminance value but has a very small dynamic ramge.green channeg, has normally the
best contrast (the edge of retinal features, sschxadates, optic disc, and blood vessel are
clearer than in the other channels) and the blamrmB is present mostly where there are
the optic disk or the white spots.

Given the RGB fundus imag#h, acquired at each considered titneand denoting by,

R, andB; the three related channels, a pixel-wise bandirgtibetweer; andR; is applied (
=1, 2). By ratioing these two features, a new deal imageGi/R is obtained, in which the
structures of interest are emphasized. In faaty #ifte application of this operator, vessel and
blood regions are darker than the background, witiliége spot are brighter.

3.2.3 Thresholding

In order to automatically detect changes in colmdius images, a threshold selection task
is addressed. An automatic change-detection technig proposed, which integrates an
image differencing approach with a generalizatioh the Kittler and lllingworth’s
unsupervised minimume-error thresholding algorith€&I) [41].

A thresholding approach is a simple classificatppocedure involving only one input
feature, namely, the gray level of a scalar ima&ghopting this approach, the key issue is to
choose the threshold in order to keep the numbeanisglassified pixels as small as possible,
i.e., to select an optimal threshold, accordingdme appropriate criterion. In a supervised
context, this optimal threshold can be easily cotgpuhrough some decision rule, given the
class-conditional probability density function (pdif each class [64]. On the contrary,
unsupervised threshold selection is a nontrivighk ta

Let the pixel intensities in the difference imagerbodeled as independent samples drawn
from a random variable. We operate in an unsupervised fashion; thereftive, prior
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probabilitiesP = P(w) (i = l2) of the classes&1= “change” andv, = “change”, as well as
the pdfs p ()= p,(«) of z, conditioned to the two classds=(1, 2), are neither known in

advance nor can be estimated through a trainingAseta consequence, in place of the
unconditional gray-level pdf:

p(2)=YP0(2), Z< R, (2)

the histogram(2) : 2= 0, 1, ...L — 1} of the difference image is used lfeing the related
number of quantization levels).

The selection of an appropriate threshoid formalized by K&l as the optimization of a
predefined criterion functiod(z) which averages a cost functia+, z7) over the feature
histogram h(l) [76]. More formally, the threshold is assumed ® fixed at some value

T E{O,],...,L —]}, and the corresponding decision regions

{ R(r)=[07] (3)
(r)

=[r+1L-1]

are introduced.

A real-valued cost functioq(-, ) is defined in such a way theZ, ©) measures the cost of
classifying a pixel with gray leved (Z =0, 1, ...,L — 1), by comparing Z with the threshold
7. Then, a criterion function is defined as an hysémn-based estimate of the average cost
E{c(z )}, i.e.

J(7) :ih(z)c(z,r). (4)

Thus, the optimal threshold is defined as the mimmraverage-cost threshold, i.e.:

r*=arg min J(r). (5)
r=0..L 1

Depending on the specific model adopted for the ftoxtion, several different algorithms
can be formalized according to this framework [S)ch as K&l, the Huang and Wang's
algorithm [77], or the Otsu’s method [78]. Here, K& adopted, since it was found more
effective when applied to change-detection problentgher image-processing fields [50].

The K&l cost function is based on the Bayes clasaifon rule, under Gaussian
assumptions for both class-conditional pdfs. Urtber hypothesis, the only parameters to be
estimated are the class prior probabilitRssand P,, the class-conditional meang andm,
and the class-conditional varianea$ands,”. These parameters are defined as follows:

R =Plw) (6)
o {zlw}

Ellz-m), |}
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Given the threshold, these quantities are estimated by K&l in a hisdogbased fashion.
Specifically, the prior probability estimate is ohefd simply as the relative frequency of the
pixels above and below the threshold valuiee:

Br)= Sh). (7)

2R (r)

Similarly, estimates for the class means and vaeasrare computed from the decision
regions in ( 3):

(8)

Hence, given the normality assumptions, conditiquutilestimates are derived< 1, 2):

b (2.7)=—— [Z-m]z}. ()

ex

TN e I )

The employed cost function is defined in connectmithe Bayes decision theory (hence,
the K&l method is also named minimum-error thrediai). Based on the maximum a-
posteriori probability (MAP) rule, we should assigach a pixel with grey lev&l to the class
wi corresponding to the maximum posterior probabWigyi| z=2) (i = 1, 2). This task can
be formulated in terms of the threshe]dy introducing the following cost function:

c(Z r)—[Z-m(T)]Z_zm P(r) - 1 forz<r (10)
o 20%(r 6,(r) |2 forz>t’

which depends on the threshold parameter
The criterion function resulting from the cost ftina is:

J(r):1+222|3i(r)ln :i(r) (11)

i=1 i (T) .

and the optimal threshold™ is correspondingly chosen as to minimi}e), i.e., as the
minimum-error threshold.

According to its definition,)(z) is indirectly related to the amount of overlapgvibeen the
pdf estimates. In fact, these estimates are cordpiuten the class-conditional mean and
variance estimates, which are obtained througts@dpiam truncation at the threshold value

1. But, although the histogram is truncated,athe model pdfa{ pGr):i= 12} overlap the
same. Actually, the smaller is the overlap, thedres the fit between the data (i.e., the
histogram) and the model (i.ef,(,7) and p,(l,7)). Moreover, the average classification
error is measured bifz), hence, a smaller overlap also implies a lowassification error

In addition, due to the histogram truncation, thitst{p,(,7): Z <7} and{p,(,7):Z > 1}

of the real conditional pdfs are ignored during ésémation procedure and then they do not
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influence the cost and criterion function, at Ak. a consequence, the optimal K&l estimates
{f?(r*),ﬁ](r*),(i(r*):i =12} should be considered as biased estimates of #hestatistical
parameterdP,m, o, :i = 12}. The optimal model pdf§p, (') :i = 12} are biased estimates
of the real oneé p(Q:i= J,2}, and, consequently; is an approximation of the true optimal
threshold which could be computed if the true clamsditional pdfs were known.

The criterion function behavior is strongly relatiedthe scene characteristics, which are
represented by the histogram. Typically, only origimmum in the intervaI[O,L—l] implies
histogram bimodality, which reflects the presentevo natural classes (e.g., foreground and
background, “change” and “no-change”) in the scéméhis case, the minimum point fafr)
is the optimal threshold”. Correspondingly, the absence of internal mininial@) in
[0, L —1] suggests that the image is homogeneous. Spelifita output classification map
would contain a single class. This behavior is @ttrfrom a classification point of view; in

fact, a homogeneous image does not exhibit mone ¢in@ natural class and should not be
split according to two classes.

4 Experimental Results

The proposed algorithms have been tested on mmjiteal fundus images (RGB 8-bit
color images of sizd280x1024 pixels), captured at different times by using <& FF
450plus IR Fundus Camera with VISUPAC/System 43iickvis connected to a JVC digital
camera. The images were taken in the same vigit different dates from Icelandic patients
attending a retinopathy screening service and cesept haemorrhages, microaneurysm, or
exudates. Accordingly, images acquired during @mes medical visit are not expected to
include changes, whereas changes may be presengatifferent images taken at different
times. In our testing phases, no data on age amdcéy, duration, or type of retinopathy
were available.

Here, the proposed methods are experimentally aetedu In particular, the experimental
results obtained by using the proposed approadre®gistration and change detection are
presented and compared, in Section 4.1 and 42ctgely.

4.1 Registration Results

The proposed algorithm for registration has besteteon the available image pairs. First,
the choice of the algorithm parameters is justifitillen, the experimental results obtained by
using the proposed approaches are presented.

4.1.1 Preliminary Registration Results

In order to choose the parameters of the proposethad, a number of preliminary
experiments have been done, using images with aonges. In particular, the first parameters
of the genetic algorithm to be assigned are thebaurof individuals in each population and
the minimum number of generations needed to achtemeergence. Then, in the selection
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process, the probabilities of crossover and mutatiave to be fixed. Finally, the structure
and the parameters of the transformation matrixHferregistration have to be established.

Choosing the size of the population can be crititate a small population size provides
an insufficient sample size over the space of gmigtand a large population requires a lot of
evaluations, thus resulting in long computationetimSeveral trials were done in order to
estimate the proper number. Different values far population size were tested: As a
tradeoff between accuracy and computational burdesjze of 50 individuals has been
chosen in the experiment reported here.

The number of generations necessary to achieveecgence of the algorithm needs to be
evaluated. In the experiments, the convergence aghgeved before 150 iterations: The
generation of a minimum of 180 offsprings was cdeséd to be enough.

Evolution operators are essential to the genegiorahm. Crossover enables the algorithm
to extract the best genes from different individuahd recombine them into potentially
superior offsprings. Mutation adds to the diversifya population and thereby increases the
likelihood that the algorithm will generate fittedividuals.

The number of individuals, in each generation, thatlergo crossover and mutation
depends on their probabilities. In order to find puoper values, both the probability of
mutation,py,, and the probability of crossovex, were varied in wide rangeps, in [0.005,
0.25] andp. in [0.25,1]. In conclusiom=0.01 was chosen here, large enough to encourage
the exploration of new solutions and, at the saime,tsmall enough not to deteriorate fit
individuals. The crossover probability specifie® thaction of the population, other than
“elite offsprings”, that are generated by crossovegood value can be selected within the
range [0.5,1]: In this worlg. = 0.75.

4.1.2 Experimental Registration Results

This section shows the results of registrationadéicRGB images.

In order to evaluate the performance of the progpdeehnique, the resultant registered
image is compared to a manually registered ongalticular, a control point method was
used. A good point-matching registration procesguires a sufficient number of
corresponding control points to be present in kiotages. The control points need to be
uniformly distributed and not affected by lesioAs. affine transformation was applied in the
experiments reported here to overlay the two imagks affine transformation required the
selection of at least 3 pairs of control pointsjaliiis the minimum value, but more points
may be needed to obtain an accurate registratiorihd implemented method, at least 6
points were chosen from both the reference anihthé image of each pair to be registered.

Then, the automatic registration approach was egplFirst, the image pairs to be
registered were preprocessed and the vessel miapsthoinput and reference image, were
extracted. Some differences in the maps, due ferdit illuminations, determined a low
value of matching.

Results of a pair of images are shown in Figuresuich a pair presents differences in
illumination and point of view. Spots also appeafien the first visit to the second one.
Consequently, the vessel maps (b) and (c) extabgel differences, but still the measure-of-
match convergence is steadily achieved, as shown (a
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Figure 1. MOM of the individuals among the generatins, for one of the data sets used in the
experiments are shown in(a). The blue, the green drthe red line represent respectively the lowesthe
median and the highest value of MOM in the populatin. Vessel maps of the input image are shown in (b)
and the reference image in (c). Manual and automati registration of the image pair shown in (d) ande),
respectively, by using a checkerboard representatip in which checkers are alternately taken from the
reference and the registered images.

The illumination of the two images is quite diffate Therefore, the squares in the
checkerboards, shown in (d) and (e), present difteintensity values. However, analyzing
them in detail, one may note very good vessel oaitti in border regions between a square
and its neighbors (i.e., where the vessel mapdap)er

Comparable results are achieved for the other irpags.
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4.2 Change-Detection Results

The proposed change-detection algorithm has bestadteon the registered image pairs.
First, the adopted performance measures are erplaiBubsequently, the experimental
results obtained by using the proposed approackgsesented and compared.

4.2.1 Performance Evaluation

The assessment of the quality of a change-detestistem in the medical field is not an
easy task; if a human grader does not agree withaltporithm.This can be due either to an
error of the human grader or to an error of therdtlgm. In order to compare the results
obtained by the algorithms with the performance dfuman grader, a test map (i.e., a map
that displays the actual changed features fourttiérimage pair) was created for each data
set, with the support of a specialist.

In this work, we are mainly concerned with the aacy of the methods, as opposed to
execution speed. A quantitative evaluation of #sults is performed, in terms of Sensitivity
(), Specificity &), User's Accuracy for “change’'UAs) and User’s Accuracy for “no-
change” UAn).

I, also known as “true positive rate”, is the petaga of pixels which are correctly
labelled as “change” in the change map over thelbmurof actual changed pixels in the test
map, as determined by a human observer (i.e.,ahisstimate of the detection probability
[79]). From a clinical point of view, the sensitiyiof a test is an estimate of the probability
that the test is positive when given to a groupatients with the disease; high values
mean that a negative test can rule out the disétassn be defined as:

g TP (12)
TP+FN

where TP is the number of true positives (i.e., “changeketé correctly labelled as
“change”) and-N is the number of false negatives (i.e., “chang&gls wrongly labelled as
“no-change”, also called “missed alarms”).

The specificity, also known as “true negative rates' the percentage of the pixels that are
correctly labeled as “no-change”. Therefore, thecHzity is an estimate of (1 Pg), where
Pr is the false-alarm probability [79]). The spedtficof a medical test is an estimate of the
probability that the test will be negative amongdigrds who do not have the disease;
therefore, a higlfp value means that a positive test can rule in tbeage. It can be defined
as:

TN (13)

> TN + FP

where TN and FP are the number of true negatives (i.e., “no-charmrels correctly
labelled as “no-change”) and false positives (i‘Bqg-change” pixels wrongly labelled as
“change”, also called “false alarms”), respectively

In this work we favoursn to Sp. In fact, in order to avoid missed alarms, whidaypa
relevant role from a clinical perspective, we ainrménimizing false negatives. However, it is
worth noticing that also false positives need tarbeimized, in order to reduce the number
of false alarms.
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UA, is the percentage of pixels which are correctigrsed to “change”TP) over the
total number of pixels labelled as “change” in thenge map. It can be defined as:

oA =P (14)
TP +FP

A similar definition holds folUA,, which is the percentage of pixels which are atye
assigned to “no-changeTN) over the total number of pixels labelled as “taitge” in the
change map. It can be defined as:

™ (15)

UA =——
A =N+ EN

4.2.2 Experimental Change-Detection Results

The results obtained for the available data sedswad with test data are shown in
Table 1 The performances of the approach are satisfadtotgrms of bottgn andp.

Table 1: Average performance parameters
obtained by applying the KEI approach to all the
data sets.

S S UAch UAnc
71,20% 99,86% 84,30% 99,80%

F is generally very high in part because the nuntdfdrue negatives (i.e., those pixels
that are correctly classified as “no-change”) iwals high. On the other hanf) is more
variable because it strictly depends on the qualitgt similarities in luminance of the input
images and is thus affected by sharp differencéserimage dynamics at the two dates. The
average sensitivity is about 71%, which is an ad#p value. The error is due to the
unsuccessful detection of some pixels belongingotwectly detected change areas. This is
not critical because, here, we aim at detectingttenge areas: Their exact shape could be a
posteriori reconstructed.

With regard to the user’s accuracies, very goodeslofUA,. were obtained for all data
sets, and quite good valueslWhy, (average above 84%) were given by the method.

For coherence with Section 4.1.2, the same datassemployed to show the change-
detection results (Figure 2). In particular, thpuhimage (a) and the reference image (b) are
acquired during two different medical visits, 8 rttenapart. A lot of typologies of change
are present in this data set, including new andptis of both “red” and “white” types.
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(b)

© (d)

Figure 2: Test map (a) and resulting classificatiomap (b) generated by the proposed approach, when
applied to the data set (a) and (b).

In this case, high specificity is obtained (i.e9,%%), thanks to the high number of true
“no-change” pixels. However, the sensitivity is4%, because the presence and the positions
of most “change” areas are correctly detected theit shape is not perfectly reconstructed.
Anyway, the detection of the changes and theirsdfiaation among the different typologies,
which represent clinically relevant informatione achieved.

5 Conclusions

The purpose of this chapter was the developmerd t#chnique able to automatically
register and detect the temporal changes in retnagjes. The registration is achieved by
using a method based on a genetic optimizationntqak; the proposed change-detection
approach is based on the Kittler & lllingworth’sekholding algorithm. RGB retina images,
captured by a fundus camera, were used.

First, the images were preprocessed, in order tailtheir vessel maps from which a
matching measure (adopted as the optimization ifumat) was extracted. Once the optimum
transformation was obtained, it was used to regite input image with respect to the
reference one. The reference and the registeredesnaere used as input for the change-
detection process.

Different types of images, including changes ofedént sizes and typologies, were taken
into account in order to test the p1e2r§ormanceshm‘ method. The proposed approach



provided quite accurate results. The accuracy efdigistration step, as compared to manual
registration, has been evaluated by visual inspedif the results, on a collection of pairs of
images of variable qualities. Very good overlappbefween the reference and the input
images was obtained. The change-detection resbitsined by applying the proposed
approach were accurate. The K&l technique, whicts wigveloped in the context of
computer vision and previously applied to changect®n problems on other typologies of
images [50], [51], has proven to be effective alb@n applied to fundus images here.

The main drawback is the possible sensitivity ® phesence of undesired modes, such as
artifacts and glares, which may occur also as asemuence of a partially inaccurate
preprocessing stage. The development and the inepliadion of a method for the automatic
identification of ungradable images may be an irtgrdr next step of this research. A
possible future development of the proposed approaald be the integration of contextual
information in the change-detection process: Spatiarmation may be exploited in the
postdetection classification stage, in order tothiewr improve the accuracy of the
classification map.
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Unsupervised Multiple Classifiers for Retinal Change Detection
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b Biophysical and Electronic Engineering Department, University of Genoa, Genova, Italy

Abstract

Retinal change detection is a powerful tool that can be used as a support for the monitoring
of retinopathy in diabetic eye screening. Here, an automatic method is proposed for change
detection in multitemporal retinal images, i.e., images acquired by a fundus camera from
patients with diabetic retinopathy during different medical visits. The proposed approach
is based on the registration of the collected images and on the detection of the changes that
can occur in the retina during time. A genetic algorithm is used for the registration. For
the change detection, a multiclassifier approach, based on a minimum-error thresholding
technique, is proposed. To cope with local illumination differences, unsupervised threshold-
ing is applied to randomly selected subimages and the outputs of the different windows are
combined with a majority vote approach. Quantitative assessment of the change detection
results shows that the proposed method provides accurate results. The comparison between
the results obtained using the implemented multiclassifier approach and a standard approach
points out that the proposed algorithm provides a more accurate change detection and a

reduced sensitivity to the illumination issues.
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1. Introduction

In ophthalmology, the diagnosis of retinal diseases is often based on the analysis of fundus
images, including retinal changes that can occur over time. Therefore, the examination of
multitemporal images is an important diagnostic tool. Fundus images may be used to follow
the progression of retinal diseases (Fritzsche et al., 2003), revealing retinal changes that have
occurred during the period between medical visits. During the last years an intensified effort
has been undertaken in developing tools to assist in the screening of diabetic retinopathy,
which is the most common cause of legal blindness in the working age population of developed
countries (Arun et al., 2009; Bek et al., 2009). Furthermore, effective treatments are available
if the disease is detected early, before visual symptoms occur (Stefansson et al., 2009; Walter
et al., 2002).

In screening programs, ophthalmologists have to deal with a large number of images.
Therefore, automatic image analysis methods have been acquiring a growing interest. In
particular, change detection in pathologies such as microaneurysms and retinal microhemor-
rhages would be useful in diabetic eye screening programs and possibly reduce the manpower
needed for image evaluation.

Typically, the detection of retinal diseases has been addressed using supervised meth-
ods (Usher et al., 2003), which require training based on information from an expert on the
data. In Usher et al. (2003) morphological operators and neural networks were used to de-
tect and classify retinal lesions. The results strictly depended on the resolution and contrast
of the photographs. A large number of studies have reported interesting preliminary results
for retinopathy detection. Automatic techniques for detecting and counting microaneurysm
in fluorescein angiograms have given good results (Cree et al., 1997; Spencer et al., 1992,

1996). However, angiography with intravenous fluorescein is too invasive to be used during
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screening and the role of oral fluorescein is uncertain (Newsom et al., 2000).

Although many studies have been done to detect specific retinal diseases, few efforts have
been undertaken to analyze their time evolution. A rare example can be found in Narasimha-
Iyer et al. (2006), where changes were detected using a Bayesian approach. However, a
training set, in which “change” and “nochange” classes are manually labeled, was required.

In this paper, an automatic technique is proposed for the detection of changes (in terms
of red and white spots) in fundus images and for their registration (Brown, 1992). The im-
plemented registration method is based on an optimization technique (Matsopoulos et al.,
1999). The proposed change detection approach is based on the automatic thresholding
method (K&I) proposed by Kittler and Illingworth (1986), applied to an appropriate differ-
ence image. However, the application of K&I to the whole image may be severely affected by
the spatial behavior of the illumination field at the two observation dates. To compensate
for nonuniform illumination across each acquisition and also for the variation of illumina-
tion between the two acquisitions, a multiclassifier voting approach (Troglio et al., 2010)
is proposed. K&I is applied to randomly generated subimages, corresponding to different
classifiers. This approach is based on the hypothesis that the illumination is approximately
uniform in each subimage. By combining the multiple classifiers we aim at a more accurate
classification although that comes at the expense of increased complexity and computational
cost (Kuncheva, 2004).

The main novelty of this paper lies in the development of a fully automatic and unsuper-
vised method, able to register retinal images, compare them, and detect changes occurred
in between different medical visits. Moreover, the introduction of a multiple classifier sys-
tem for change detection is novel and the idea of combining the vote of spatially different

classifiers to overcome local illumination differences is new in the contest of multiclassifier
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approaches.
The paper is organized as follows. Section 2 describes the methodology of the proposed

approach. In Section 3, results are shown, and in Section 4 conclusions are drawn.

2. Methodology

2.1. Overview of the Proposed Approach

A pair of images, acquired from a given patient during different medical visits, is reg-
istered using an optimization technique (see Section 2.2). Once the images are aligned,
they are compared by image differencing and the changes between them are detected using
K&I (Kittler and Illingworth, 1986) and a multiclassifier approach (see Section 2.3). Figure 1

shows the overall architecture of the proposed approach.
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Figure 1: Architecture of the proposed approach.
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2.2. Image Registration

Retinal image registration is a hard task because the eye position and rotation may vary
between images, the illumination is rather uneven due to light scattering within the eye, and
artifacts are often present.

Several automatic approaches for retinal image registration have been proposed in the
literature. Those techniques can be divided into area-based and feature-based. Area-based
approaches are generally based on pixel intensities and on optimization techniques. Those
methods, often used in multitemporal and multimodal registration, adopt criteria such as
least mean square error, crosscorrelation, phase correlation, and mutual information (Ritter
et al., 1999; Ballerini, 1997). Feature-based approaches assume that point correspondences
are available in both images to be registered and the registration is performed by matching
those correspondences (Can et al., 2002; Lalibert et al., 2003).The performance of those
methods largely depends on sufficient and reliable point correspondences.

Here, we propose an automatic approach based on the robust extraction of retinal vessels
and a global optimization technique to match the extracted features (see Fig. 1). Vessels are
used being the most prominent retinal feature, they cover all the fundus, and are assumed to
be stable over time. Vessel elongation, changes in width and tortuosity may happen, due to
specific retinal diseases, but here we assume that they are not great enough between visits
to markedly affect the main vascular structure Kristinsson et al. (1997).

The input and reference images, I;, and I,.y, are first preprocessed to obtain the corre-
spondent vessel maps 4 and Ig. An approach based on mathematical morphology, proposed
in Chanussot et al. (May 1999) for road detection in remote-sensing images, is used here
to extract retinal vessels. The method is unsupervised and involves very few parameters

(i.e., the dimensions of the morphological operator structuring elements and one double
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threshold).

I4 and Ig are fed as inputs to a module aimed at optimizing the transformation matrix
T. The problem is formulated as determining a transformation 7™ such that, when 7 is
applied to I4 the best match with Ip is achieved. Mathematically, it can be formulated as

the maximization of

MOM(TY =2 3 LTy, &

" @)l ()0
where MOM (Measure Of Match) denotes the objective function, T is the transformation
of the z and y coordinates in the image plane, and n is the number of nonzero pixels of Ig.
An affine transformation model, which exhibits 6 independent parameters, is employed for
T.

Equation 1 is considered appropriate in this case, where I4 and Ig are not identical
and may contain noisy pixels. Correlation methods based on distance measure calculations
would not perform satisfactory; they would be affected by noise and local differences between
the images. Furthermore, elastic methods (van den Elsen et al., 1993) would increase the
computational cost.

For the determination of the transformation parameters, search based methods provide a
solution, based on the optimization of a matching functional between the images. For retinal
image registration, where M OM has multiple extremes, global optimization techniques are
the most attractive search methods. Here, a Genetic Algorithm (GA) (Michalewicz, 1999)
is adopted (as proposed in Troglio et al. (2008)), since it ensures, under mild assumptions,
convergence to a global maximum. GA was proven to be more efficient compared to other
global optimization techniques in this case (Mouravliansky et al., 1998). GA is used to find

a transformation 7% that maximizes MOM. The transformation parameters are converted
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into binary digits concatenated in a single string, called individual. First, the initial popula-
tion of individuals is randomly defined. The population is evaluated calculating the fitness
of each individual (i.e., MOM of the transformation parameters encoded in the individual).
Pairs of fit individuals are selected to recombine their encoded parameters in order to pro-
duce offsprings. In an iterative process, a new generation of solutions, which replaces the
previous one, is produced at each step, until the MOM convergence is achieved. The final
transformation matrix 7™ is calculated decoding the last population fittest individual. T™*

is applied to I;,, in order to obtain the registered image, I 4.

2.3. Change Detection

After a preprocessing step (see Section 2.3.1), the proposed multiclassifier change detec-
tion approach (see Section 2.3.2), based on unsupervised thresholding (see Section 2.3.3), is

applied.

2.8.1. Feature Transformation

First, the nonuniform illumination is corrected in both images using a homomorphic
filtering technique (Oppenheim et al., 1968). For Lambertian surfaces, an observed image
Ip can be modeled as a multiplicative composition of a luminance component, Lo, and a

reflectance component, Ro (Toth et al., 2000),

Io = Lo - Ro. (2)

This model holds for fundus images due to the diffusive retinal characteristics. Lo can be
assumed to vary slowly over space, whereas R contains also medium and high frequency

details (Brinkmann et al., 1998). Applying the logarithm, the multiplicative relation in
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equation 2 is transformed into an additive one:

log(Io) = log(Lo) + log(Ro). (3)

Gaussian filtering G is applied to log(Ip), isolating the lowpass component, G(log(Ip)) =

log(Lo). Hence R can be estimated as

Ro = expflog(lo) — G(log(lo))}- (4)

The reflectance components R,.; and R,., are estimated for I,y and I,.,. Subsequently,
before performing image differencing, R,; and Ry, (i.e., two 3-cannel RGB images) need
to be projected into a 1-channel feature space. The 3 RGB channels contain different
information: The red channel, I,, is usually the brightest channel but exhibits a very narrow
dynamic range; the green channel, I,, has the best contrast (the edge of retinal features,
such as exudates, optic disc, and blood vessels, are brighter than in the other channels); the
blue channel, I3, is nonzero mostly in the optic disc and the white spot areas.

Given a reflectance component R, a band ratioing between green R, and red R, channels
is applied pixel-by-pixel. By ratioing these bands, a new gray-level image, vp, which empha-
sizes the features of interest, is obtained. Finally, vp,.; and 7p,,, obtained band ratioing

R,.; and R,.4, are subtracted pixel-by-pixel to generate two “difference images”,

D, = YPref = VPreg Dy = YPreg = VPref- (5)
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2.3.2. Multiclassifier Approach

To compensate for local illumination variations not compensated by the homomorphic
filtering, an innovative multiclassifier approach is proposed. A thresholding approach for
change detection is not applied to the whole “difference image” but to a set of randomly
selected subimages. Square windows are randomly generated: They are centered in randomly
selected pixels, which are uniformly distributed. As a result, the windows partially overlap.

Each window corresponds to a single classifier: The thresholding approach (see Sec-
tion 2.3.3) is applied to each subimage and a change submap is obtained. All the pix-
els included within a subimage are classified into two different classes (i.e., “change” or
“nochange”) in the corresponding change submap. The information stored in each change
submap needs to be combined in a global change map. Hence, a fusion of the label outputs
(“change” or “nochange” labels for each pixel) obtained on the different windows is per-
formed. For each pixel, all the corresponding classifiers (i.e., the windows that include it)
vote for “change” or “nochange”. The classification decision is taken using a nonweighted
sum of the votes. Here, a majority vote is used because we assume that each classifier has the
same probability of correct classification, p... Indeed, the windows have the same dimension
and only their spatial location is different, which does not influence pe..

Being the illumination within each subimage more uniform than within the entire image,
the change detection results obtained by each classifier are less influenced by the illumination
inhomogeneity. Therefore, the proposed method compensates for the local illumination
differences between the two acquisitions and is expected to improve the change detection
accuracy, especially in the external regions of the image, which are generally darker and,

hence, provide poor information.
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2.3.83. Thresholding

Changes are detected in each subimage (see Section 2.3.2) adopting a generalization of
the K&I unsupervised thresholding algorithm (Kittler and Illingworth, 1986).

A thresholding approach is a simple classification procedure involving only one input
feature, namely, the grey level of a scalar image. Here, such operator is applied to the
“difference images” D; and D,. The key issue is to choose the threshold to minimize the
number of misclassified pixels. Being the approach unsupervised, the prior probabilities P
and P, and the parameters of the conditional probability density functions (pdfs) p; and py
of the classes w; = “nochange” and ws = “change” cannot be estimated through a training

set. As a consequence, in place of the global grey level pdf of the difference feature z,

pz(Z):Plpl(Z)+P2p2(Z)7 ZGR? (6)

the histogram h(Z) (Z = 0,...,L — 1) of the considered difference image, D, is used (L
denotes the number of quantization levels in D). The selection of an appropriate threshold
7 on [0; L —1] is based on the optimization of a given criterion function J(7) which averages
a cost function ¢(-,7) over h(-) (Chi et al., 1996). Kittler and Illingworth (1986) proposed
a thresholding algorithm whose cost function is based on the Bayes decision theory. The

minimum-error classification rule is adopted, under the Gaussian assumption for the class-

conditional pdfs (i.e. p;(-) = N(my,c?), where m; and o2 are the w;-conditional mean and
variance, respectively; ¢ = 1,2). Under this hypothesis, the only parameters to be estimated
are the class prior probabilities P;, means m;, and variances o2, i = 1, 2.

According to the “maximum a posteriori probability” rule, P(w;|Z) (i = 1,2) are to be

)

maximized. This task is formulated introducing the following cost function (Kittler and
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Hlingworth, 1986)

o(2,7) = [ZZU?(S)] —2In fég (7)

with s = 1 for z < 7 and i = 2 for z > 7. Py(7), m;(7) and 6,%(r) are histogram-based
estimates of the class parameters and depend on 7 (i = 1,2). The resulting criterion function

=Y hZ) -z =142 Bir)n

=1

i(7)
Pi()

c

. (8)

The optimal threshold 7* is chosen as to minimize J(-) over 0,1,...,L — 1. The criterion
function behavior is strongly related to the scene characteristics, represented by h(-). Typ-
ically, only one minimum in the interval [0, L — 1] implies histogram bimodality, which
reflects the presence of two classes (e.g., “change” and “nochange”) in the scene. In the case
of histogram monomodality a minimum is not identified, hence all the pixels are classified
as “nochange” (i.e., 7 = L). Indeed, the window, in which the thresholding is applied, is
assumed here to be larger than the maximum change area to be detected and, hence, to

contain “nochange” pixels.

2.8.4. Change Classification

The change map obtained from the previous step is further classified into different cat-
egories, corresponding to the different change typologies (red vs white spots). Our aim
is to detect certain types of pigmentation changes that are clinically relevant for diabetic
retinopathy. The considered types of color changes are: Appearing/disappearing red spots,
which generally correspond to bleedings/microaneurysms, and appearing/disappearing white
spots, generally due to exudates/cotton wool spots (we will refer to these typologies as to
new/old red and white spots).

To this end, each pixel is described by a set of features. Here, the feature space consists
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of the green/red ratio, vp, and the green channel, I,, for both images. The “white spot”
and the “red spot” labels are assigned by comparing the intensities of these features to
corresponding thresholds. Fig. 2 shows the architecture of the proposed subclassification

step.
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Figure 2: Block diagram of the change classification step.

The thresholds in this diagram are selected using an interactive approach, starting from
the average values of the corresponding features. A trial-and-error approach is used by
varying the threshold, with an excursion of 30% of the average value, in order to optimize
the results from a visual view-point.

The method proposed here is simple and interactive and few parameters have to be set
by a human expert. This approach is preferable to a supervised classification, because it

encourages the data interpretability.

3. Experimental Results

The proposed method was tested on 22 pairs of multitemporal retinal images, which

are RGB 8-bit color images of size 1280x1024 pixels, captured by a ZEISS FF 450plus IR
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Fundus Camera with VISUPAC/System 451, connected to a JVC digital camera.
The images were taken in different medical visits from patients attending a retinopathy

screening service and can present haemorrhages, microaneurysms, or exudates.

3.1. Registration
The 22 image pairs to be registered were preprocessed and the vessel maps, of both
input and reference image, were extracted. Some differences in the maps, due to different

illuminations, determined a low MOM value. Fig. 3 shows registration results of the first
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Figure 3: First dataset.(a) Measure Of Match (MOM) of the individuals among the generations. The
blue, the green, and the red line represent the lowest, the median, and the highest value in the population,
respectively. (b) Input and (c) reference image vessel maps. (d) Manual and (e) automatic registration
shown by a checkerboard representation, in which checkers are alternately taken from I,y and I 4.

image pair, which presents differences in illumination and viewpoint. Spots also appeared

from the first visit to the second one. Consequently, the vessel maps (b) and (c) exhibit

large differences; nevertheless, the MOM convergence is steadily achieved, as shown in (a).
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By a visual analysis of the results (d) and (e), one may note very good vessel continuity in
border regions between a checker and its neighbors (i.e., where the vessel maps overlap).
A correct registration was achieved by the proposed method for all the 22 image pairs,

despite a low MOM value at convergence.

3.2. Change Detection

8.2.1. Performance Fvaluation

The quality assessment of a change detection system in the medical field is not an easy
task. In order to evaluate the performance of the proposed change detection approach, the
obtained results were compared to the performance of a human grader. A test map was
created for each image pair, with the support of a specialist.

A quantitative evaluation of the results is performed in terms of Sensitivity (Sn) and
Specificity (Sp). Sn is evaluated both in terms of pixels (SnP) and in terms of regions
(SnR). In particular, SnP is the percentage of pixels correctly labeled as “change” in the
change map over the number of “change” pixels in the test map, as determined by a human
observer (i.e., it is an estimate of the detection probability (Duda et al., 2001)). SnR is the
percentage of regions correctly identified as “change” in the change map over the number
of “change” regions in the test map, irrespective of the specific number of correctly labeled
pixels inside the regions. The Specificity (Sp) is the percentage of pixels correctly labeled as
“nochange” in the change map (i.e., it is an estimate of (1 — Pr), where Pr is the false-alarm

probability (Duda et al., 2001)).

8.2.2. Preliminary Fzxperiments
A few parameters of the multiclassifier approach need to be set. To this aim, preliminary

experiments were carried out. The classification window size, Sy, is an important parameter
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to set. The appropriate choice of Sy, depends on the illumination inhomogeneity between
the image pair and the expected size of the change regions. The windows should be small
enough to guarantee homogeneous illumination in the area that they include. Meanwhile,
Sw should be larger than the change areas to be detected. In order to estimate the proper
value, several trials were done varying Sy in a wide range. Fig. 4 shows the behavior of

the evaluation parameters (described in Sec. 3.2.1) versus Sy,. Both SnP and SnR values
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Figure 4: Performance parameter behavior versus Sy, (expressed as a percentage of the entire image) for a
selected dataset. The pink, the blue, and the green lines represent SnP, Sp, and SnR, respectively.

increase using classification windows of larger dimension. These parameters converge to
their maximum value for window areas about 10% of the original image. Differently, Sp
reaches its maximum value using windows that cover about 8-10% of the original image.
Hence, Sy was set to 10% of the analyzed image pair.

Another parameter to set is the number of windows to be used, which influences the av-
erage number of votes per pixel. As the number of votes per pixel increases, the performance
of the method improves, until reaching a certain value vpp. From experimental results vpp

is about 30 votes per pixel. Here, 400 windows were generated, which give us about 40 votes
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Table 1: Performances of BA, KEI, and MC applied to our datasets, in terms of SnP, Sp, and SnR.
Method BA | BA | BA KEI | KEI | KEI | MC | MC | MC
Parameter || SnP | Sp | SnR | SnP | Sp | SnR | SnP | Sp | SnR
Average 56% | 87% | 91% || 54% | 91% | 94% | 59% | 92% | 96%

per pixel on the average.

3.2.3. Results

The proposed change detection algorithm has been tested on all the registered image
pairs.

For comparison purposes, a method for change detection based on a Bayesian Algo-
rithm (BA) proposed in Narasimha-Iyer et al. (2006) was implemented and tested on our
data set. The change maps were obtained by comparing the normalized sum square of the
differences within a neighborhood (Aach and Kaup, 1995), see Narasimha-Iyer et al. (2006)
for more details. That approach was chosen for comparison, being the only previous work
for retinal change detection. Moreover, the results obtained by the proposed multiclassifier
approach (MC) were also compared with the change maps obtained by applying K&I to the
entire image (KEI). Table 1 shows the quantitative evaluation of the results obtained by
BA, KEI, and MC. Specificity values (Sp) obtained applying either BA, KEI, and MC are
very high also because the number of true negatives is always high. Moreover, Sp values
produced by KEI and MC are higher than the ones obtained by BA. Differently, Sn is more
variable because it strictly depends on the quality of the analyzed images and is thus af-
fected by sharp differences in the image dynamics at the two dates. Sensitivity values (Sn),
assessed both in terms of pixels (SnP) and of regions (SnR), produced by MC are higher
than the ones obtained applying BA and KEI. In fact, the use of multiple classifiers avoids

the presence of wide false alarm areas, otherwise caused by illumination differences. In all
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(a) Lies

(d) KEI map

(e) MC map

(c) Test map

Figure 5: First dataset: (a) and (b) registered images acquired two years apart. (c¢) Test map, (d) KEI
change map, and (e) MC change map. The change maps are shown transparently superposed to the first
image. Map legend: White = old white spots, red = old red spots, blue = new white spots, green = new
red spots, background = “nochange”.

cases, Sn values are higher in terms of regions. In fact, the presence and the position of most
“change” areas are correctly detected, even when their shape is not perfectly reconstructed.

Figs. 5(d)-(e) show the change maps generated by KEI and MC when applied to the
first dataset (Figs. 5(a) and (b)). Several typologies of change are present in this dataset,
including new and old spots of both types: Fig. 5(c) shows the related test map. Few missed
alarms appear in correspondence of edges between “change” and “nochange”. Anyway, the
detection of the changes and their classification, which is our aim (representing clinically
relevant information), are achieved.

Moreover, results obtained applying MC to another dataset (Figs. 6(a) and (b)) are

shown in Fig. 6(d). Fig. 6(c) shows the correspondent test map.
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(c) Test map (d) MC map

Figure 6: Fifth dataset: (a) and (b), acquired one year apart. (c¢) Test map, and (d) MC change map.
4. Conclusions

In this paper, an automatic technique has been proposed for retinal image registration
and change detection. Different types of images, including changes of different sizes and
typologies, were taken into account to test the performances of the proposed method. Accu-
rate results were achieved. The registration accuracy, as compared to manual registration,
has been evaluated by visual inspection of the results. A correct registration was obtained
for all the image pairs.

The Kittler & Illingworth’s thresholding technique, developed in the context of com-
puter vision and previously applied to change detection problems on other typologies of
images (Melgani et al., 2002; Moser and Serpico, 2006), has proven to be effective when

locally applied to retinal images here. In particular, the multiclassifier approach (based on
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K&I applied to randomly selected windows) provided accurate results, compensating for
local illumination differences.

In our experiments, very good change detection accuracies were obtained for the analyzed
images, for which the preprocessing phase effectively corrected the geometrical and radio-
metrical discrepancies between the two acquisition dates and the multiclassifier approach
compensated for the local illumination differences. The main drawback is the possible sen-
sitivity to the presence of undesired modes, such as artifacts and glares. The development
of a method to automatically identify ungradable images may be an important next step of
this research.

The proposed method integrates image registration and change detection. Retinal changes,
which may occur between different medical visits, can be detected without the supervision of
the ophthalmologists. A specialist will be consulted only in the case that temporal changes

are detected by the proposed method.
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Abstract— With the launch of several planetary missions in
the last decade, a large amount of planetary images has already
been acquired and much more will be available for analysis in the
coming years. The image data need to be analyzed, preferably by
automatic processing techniques because of the huge amount of
data. Although many automatic feature extraction methods have
been proposed and utilized for Earth remote sensing images, these
methods are not always applicable to planetary data that often
present low contrast and uneven illumination characteristics.
Here, we propose a new unsupervised method for the extraction
of different features of elliptical and geometrically compact
shape from the surface of the analyzed planet. This approach is
based on the combination of several image processing techniques,
including a watershed segmentation and the generalized Hough
transform. In particular, craters and rocks of compact shape (e.g.,
boulders) can be extracted. The method has many applications,
first of all image registration, and can be applied to arbitrary
planetary images.

Index Terms— Crater Detection, Feature Extraction, Water-
shed Segmentation, Hough Transform.

I. INTRODUCTION

With each new planetary mission, the volume of acquired
data significantly increases. Different types of data are being
collected at different times, by different sensors, and from
different view-points: Multitemporal, multimodal and stereo-
images need to be analyzed. Therefore, image registration is an
essential task to jointly exploit, integrate, or compare all these
different data. Feature extraction, i.e., extraction of spatial
features in the images, is the first step in the image registration
process. Furthermore, the feature extraction is important for
further analysis of the data.

In this paper, the extraction of spatial features in planetary
images is addressed. In particular, ellipsoidal features, such as
craters and rocks, are detected for registration purposes.

Identification of spatial features on planetary surfaces can be
manually performed by human experts but this process can be
very time consuming. Therefore, a reliable automatic approach
to detect the position, structure, and dimension of each feature
is highly desirable. This is a difficult task for several reasons:
Limited data are usually available, the quality of the images
is generally uneven (i.e., it depends on illumination, surface
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properties, and atmospheric state), and the features that are
present in the images can be barely visible due to atmospheric
erosion and they may be based on different structure types of
variable sizes.

Among the typical features in planet-surface imagery,
craters play a primary role. Detection of craters has been
widely addressed and different approaches have recently been
proposed in the literature, based on the analysis of planetary
topography data [1], satellite images [2] in the visible spectrum
and the infrared spectrum. Here, we focus on optical image-
based approaches for crater and rock detection. The existing
techniques can be divided into two main categories: Super-
vised and unsupervised. Supervised methods require input
labeled data to train the algorithm for feature extraction.
Unsupervised methods do not involve any training process and
search for the structures of interest in the image. Different
approaches have been presented, based on template match-
ing [2], [3], texture analysis [4], neural networks [5], [6],
boosting approaches [7], or a combination of these tech-
niques [8], [9]. In particular, in [10], the identification of
impact craters was achieved through the analysis of the
probability volume created as a result of a template matching
procedure. Such methods enable the identification of round
spatial features with shadows. Kim and Muller [4] presented
a crater detection method based on texture analysis and ellipse
fitting. That method was not robust when applied to optical
images, hence it was performed by using fusion techniques
exploiting both DEM and optical images. In subsequent
work [11], in order to automatically detect craters on Mars, the
authors proposed a combination of edge detection, template
matching, and supervised neural network-based schemes for
the recognition of false positives. In a different approach,
Martins et al. [12] adopted a supervised boosting algorithm,
originally developed by Viola and Jones [13] in the context of
face detection, to identify craters on Mars. In [14], Urbach and
Stepinski presented a different approach for crater detection in
panchromatic planetary images. The method in [14] is based
on using mathematical morphology for the detection of craters
and on supervised machine learning techniques to distinguish
between objects and false alarms.

Other typical features in planetary images are represented by
rocks. Rock detection in ground imagery has been addressed
in the literature. In particular, in [15] the authors presented
a supervised method for segmentation, detection and classi-
fication of rocks on data collected by rovers. That approach,
based on a probabilistic fusion of data from multiple sensor
sources, was tested on Earth data (collected in the Atacama
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desert in Chile). In [16], the same authors tested different rock
detection approaches on Mars Exploration Rover data. In [17],
the authors addressed rock detection by using a segmentation
method on data collected by the Spirit Mars Rover Planetary
Camera. That approach incorporates multiple scale attributes,
which include local attributes (e.g., texture), object attributes
(e.g., shading), and scene attributes (e.g., illumination direc-
tion). Moreover, in [18], the authors proposed an automatic
algorithm for rock detection both on ground imagery and on
HiRISE data, based on cylinder fitting.

Also the detection of other types of planetary features,
which is not relevant for this letter, has been addressed (e.g.,
detection of volcanoes on Venus [19], polygonal patterns on
Mars [20], valley networks on Mars [21]).

Registration of planetary images has been addressed in the
literature as well. Kim et al. [22] proposed a method for crater
extraction from MDIM and MOLA tracks, for their alignment.
However, registration errors occurred due to shape distortions
of the detected craters. In [23] a method for the automatic
recognition of impact craters on Mars was proposed and
applied to remeasure the coordinates of big craters (exceeding
10 km in diameter) in a catalogue. Lin et at. [24] proposed a
method for the co-registration of topographic data by surface
matching. Nonetheless, here, we focus on the analysis of
optical data.

In order to overcome the typical problems of planetary
images with limited contrast, poor illumination, and a lack
of good features, we propose here a new unsupervised region-
based approach for the extraction of different planetary fea-
tures. The main contribution of this paper is a novel feature
extraction approach for the unsupervised identification of plan-
etary images, aimed at extracting curvilinear features, relevant
for this typology of images as a typical model for craters and
rocks. In particular, the proposed approach is based on a novel
combination of robust image processing techniques, such as
the Canny operator, the Hough transform, and the watershed.
Moreover, the approach allows not only to locate the features,
but also to reconstruct their shape.

II. THE PROPOSED APPROACH

Planetary images show the surface of a planet and its
structures. The aim here is to automatically detect the different
structures that are present on a considered planetary surface by
using image analysis techniques. The extracted features could
then be used for image registration purposes, as will be shown
in Section III.

Different types of features are present in the planetary
images, and their sizes, shapes and positions are estimated
by applying different methods. The extracted features can be
used for registration purposes, as will be shown in Section III.

The main features to be extracted are craters and rocks.
Craters are objects of approximately elliptical (and generally
circular) shape with shadows, due to their deep concave shape
and uneven illumination. Rocks have small elliptical shape,
with almost no shadows, because of their convex shape. The
extraction of these spatial features is a difficult task, because
planetary images are blurry, quite noisy, present lack of con-
trast and uneven illumination, and the represented objects are
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not well defined. For these reasons, a region-based approach,
based on segmentation, has been chosen in order to address
such problems. Segmentation is the process of partitioning
an image into multiple regions, for instance, in order to
distinguish objects from the background. A frequent approach
to segmentation introduces a set of characteristic points that
are related to the objects to be detected, automatically selected
and used as “seed points” to segment the images. Many
segmentation approaches have been explored in the literature.
Here, the watershed algorithm, presented by Beucher in [25],
has been chosen, a method which is automatic, robust and
fast. The basic concept of watershed segmentation is giving a
topographic representation of a grey-level image (i.e., the grey
level of a pixel represents its elevation). A flooding process
starts from the minima of the image in terms of elevation, so
that the merging of the flooding coming from different sources
is prevented. As a result the image is partitioned into two
different sets: The catchment basins (i.e., the regions) and the
watershed lines (i.e., the region boundaries). The flowchart
of the proposed technique for feature extraction is shown in

Figure 1.
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Fig. 1.

Flowchart of the proposed approach.

Before applying feature extraction techniques, the input
image I needs to be preprocessed. First, the noise is reduced
by a Smoothing Filter, SF. Then, in order to detect edges,
the image gradient is computed by using the Canny edge
detector [26]. As an intermediate result of this operation an
intensity gradient, G, is generated. Then, by applying a non-
maximum suppression algorithm followed by an hysteresis
thresholding to G, a binary gradient image, B, is obtained
but this image shows the contours of the objects represented
in the original image.

Rocks generally appear like closed contours in B, because
of the almost absence of shadows. In order to extract these
features, the Watershed segmentation algorithm, W, is applied
to B and closed contours are extracted. All the areas included
within a closed contour correspond to “seed point-areas,” and
are identified as regions. The result of this first step is a binary
image R that shows boundaries of small ellipsoidal features
of regular shapes, such as rocks.

While rocks generally appear like closed contours and can
be easily detected, craters have a more complex structure
and, due to their depth and uneven illumination, often exhibit
internal shadows. Their borders can be approximated with
incomplete non-continuous elliptical curves. A generalized
Hough accumulator [27] is used to identify the seed points
to detect these structures from B. For every pair of pixels
that are detected as edge points in B and exhibit opposite
gradient directions (being the relation of opposition defined
with tolerance €), an accumulator, corresponding to the median
point between them in the image plane, is incremented of
a unit value. The maxima of the accumulator are taken as



centers of ellipses. The three parameters describing the ellipse
centered in each detected maximum are then computed and
a 3D accumulator is used to estimate the two semi-axes and
the direction angle of the ellipse from all the pairs of points
that contributed to the accumulator in the considered center.
The center of each ellipse that has been generated is used as
a seed point for segmentation. Starting from all the detected
Seed Points, SPs, a Watershed algorithm, SPW, is applied
to G and the craters are identified. G is used in this case
because it represents not only the edges but also the elevation
information. As a result, a binary image C' that shows the
boundaries of elliptical features, such as craters, that were
not detected by the previous step. In a post-processing step,
features are approximated by ellipses and their attributes (i.e.,
ellipse semi-axes and rotation angle) are estimated. Features
with eccentricity e > 0.6 are discarded, being features of
larger e unlikely to be either craters or rocks. A binary image,
F, which represents the contours of all detected features, is
created. The binary image, F', shows the boundaries of the
features, identifies their locations and estimates their shapes.

The proposed technique for feature extraction can be used
to register image pairs representing the same scene. For
registration, two binary images (I,.y and I;,) need to be
extracted from both images to be registered and their match
can be estimated (in Section III an example of the application
of the proposed approach to image registration is presented).

III. EXPERIMENTAL RESULTS

Experiments were carried out using Mars data, collected
both by the THermal EMission Imaging System (THEMIS),
an instrument on board the Mars Odyssey spacecraft, and by
the High Resolution Imaging Science Experiment (HiRISE)
camera flying on the Mars Reconnaissance Orbiter (MRO),
were used. THEMIS combines a 5-band visual imaging system
with a 10-band infrared imaging system [28]. Both THEMIS
visible (VIS) and infrared (IR) images, with resolutions of 18
meters and 100 meters per pixel, respectively, were used to
test the proposed approach. For the experiments 5 VIS and 7
IR images were selected. Moreover, 9 HiRISE images (HR)
were used, with resolution of about 0.3 meters per pixel. The
name, location, and attributes of each test site are listed in 1.

TABLE 1
NAMES, LOCATION, ATTRIBUTES, AND NUMBER OF IMAGES N OF EACH
SELECTED TEST SITE.

[ Site n° ] Name [ Lat [ Lon [N |
1 No description 14.7°S | 175.4°E | 4
2 No description 1.1°S 352.9°E | 5
3 Kasei Valles 20.7°N | 287.2°E 1
4 Ascreaus Mons 6.6°N 258.5°E 1
5 ITberus Vallis 21.5°N | 151.5°E 1
6 Hesperia Planum 19.9°S | 114.5°E 1
7 Pavonis Mons 0.5°S 251.5°E 1
8 Noctis Labyrinthus 8.2°S 260.4°E 1
9 Unnamed crater ray | 15.9°S | 151.9°E 1
10 Nili Fossae 19.4°N 75.6°E 1
11 Acidalia Planitia 38.1°N | 319.5°E 1

Reference data were generated by manually analyzing each
image of the data set and identifying all the craters and

rocks that are present. Only objects completely included within
the images were considered (i.e., objects cut by the borders
of the image were discarded). No limits were imposed on
the minimum dimensions of the features to be detected. A
quantitative assessment of the obtained results by the proposed
method was performed using these reference data. This was
accomplished by comparing the obtained results with the
labeled features in the correspondent Reference Map (RM),
by the similarity measure proposed in [29]. Moreover, the
Detection percentage D, the Branching factor B, and the
Quality percentage () were computed as follows:

_100.TP o FP.,___100-TP
T TP+FN'" TP ¥ TP+FP+FN’

where True Positive (1T'P) is the number of detected features
that correspond to labeled objects in RM, False Positive (' P)
is the number of features detected by the proposed approach,
which do not correspond to any object in RM, and False
Negative (F'P) is the number of objects in RM that have not
been detected by the proposed approach. The global values
of D, B, and @ and the total number of TP, FP, and FN
obtained by the proposed approach for VIS, IR, and HR data
are reported in Table II.

(€]

TABLE II
AVERAGE NUMERICAL PERFORMANCE OF THE PROPOSED APPROACH AS
MEASURED BY DETECTION PERCENTAGE (D), BRANCHING FACTOR (B)
AND QUALITY PERCENTAGE (Q).

[ Param [[ VIS [ IR | HR [ Overall [ Rock | Crater |

D 82% | 78% | 83% 81% 80% 81%
B 0.03 | 0.05 | 0.06 0.05 0.04 0.07
Q 81% | 75% | 19% 7% 78% 77%

The global values of D for VIS data, IR data, and HR
data were about 82%, 78%, and 83%, respectively. These
high values reflect good detection rates (i.e., high 7'P values).
Furthermore, B was about 0,03 for VIS, 0,05 for IR, and
0,06 for HR, which indicates in all cases a small amount of
false detections with respect to true detections, thanks to the
small F'P values. Finally, relatively high () values (i.e., about
81%, 75%, and 79% for VIS, IR, and HR, respectively) reflect
a good overall algorithm performance. The same evaluation
parameters obtained by testing the proposed approach on all
the data sets were also expressed separately in Table II for
rock and crater detections. The crater detection performance
of the proposed approach in terms of D, B, and ) com-
pares favorably with most of the results previously published
for automatic crater detection methods [11], [14], [30]. The
classification error, i.e., the percentage of feature classified in
the wrong class (crater versus rock) over the total number of
classified features is about 6%.

Visual results are shown for a partition of a single band VIS
image (Figure 2-a). The grey level image is first preprocessed
in order to reduce the noise. In particular, Gaussian and
median filtering operations are applied in a cascade [31] in
order to reduce the noise and, at the same time, preserve
the edges. The Canny operator is applied to the smoothed
image. Subsequently, in order to extract the rocks, a watershed
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(b) W result (c) SPW result

(a) I VIS @ F

Fig. 2. Experimental results obtained by applying the proposed method to
a VIS image. (a) Original image, (b) watershed segmentation applied to B,
(c) watershed segmentation, using the maxima of the Hough accumulator as
“seed points”, and (d) detected features. Each color in the segmentation map
denotes a different region.

algorithm is applied to the binary image gradient B. Rock
segmentation results are shown in Figure 2-b. Then, the
generalized Hough transform is computed (with ¢ = 5°)
and a watershed segmentation is applied, starting the flooding
process from the ellipse centers and leading to the detection of
the craters. The segmentation results are shown in Figures 2-
c. Finally, the extracted features, including both rocks and
craters, are combined into a binary map and shown in Figure 2-
d, transparently superimposed to the original image. By a
visual inspection, it is possible to appreciate the accuracy of
both the detection and the reconstruction of the feature shape.

Visual results are also shown for a partition of the first
band of an IR image (Figure 3-a). Figure 3-b shows the

(b) W result (c) SPW result

(@) I'IR @ F

Fig. 3. Experimental results obtained by applying the proposed method to
the first band of an IR THEMIS image.

segmentation results when watershed is applied to B. Figure 3-
¢ shows the crater segmentation results. The different extracted
features are combined and shown in Figure 3-d. In this
example, not all the features are detected. This is because their
contours were not extracted by the Canny operator. A modified
edge detection approach which may improve the accuracy of
the proposed method is currently under investigation. On the
other hand, it is shown below that the detected features are
enough to achieve an accurate registration.

Finally, visual results are also shown for different partitions
of HR images. Figures 4-a to 4-f show the input data and
Figures 4-g to 4-1 show the contour maps in red superimposed
on the correspondent inputs.

To demonstrate the applicability of the proposed method to
registration, two different non-registered bands of an IR image
are used as reference I,.; and input [;, images. In order to
show the results, the same partition of Figure 3-a is used; in
particular, the 4*" and 5" bands were selected (Figures 5-a
and 5-b, respectively). For both images, craters and rocks are
detected and their contours are represented in binary feature
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Fig. 4. Experimental results obtained by applying the proposed method to

HR images.
(d) Fip, (©) Freprikf) Results
Fig. 5. Experimental registration results for a partition of (a) the 4t and

(a) I’V‘Ef (b) Iin (C) Fref

(b) the 5" bands of an IR image. (c) and (d) feature contours extracted from
(a) and (b), respectively. (e) Feature contours superimposed and represented
in a false-color composition (i.e., the green plane is (c), the red plane is (d),
and the blue plane is identically zero). (f) Registration results, by using a
checkerboard representation.

images, F,.; and Fj,, as shown in Figures 5-c and 5-d, re-
spectively. The rotation and translation between the two bands
are visible by looking at Figure 5-e, in which the two non-
registered feature images are superimposed in a false-color
representation. The features extracted from I,..;, F.y, are
represented in green, whereas the [;,, features, F},,, are shown
in red. The registration scheme used in this phase was based
on a global optimization technique aimed at estimating the
optimum parameters of an image transformation model. The
contour images, which represent the features of the two input
image bands, were fed as inputs to an optimization module.
The transformation matrix was to be optimized: Its goodness
was evaluated by an objective function and its optimization
was achieved by applying a genetic algorithm [32]. After the
optimum matrix was estimated, it was used to transform and
interpolate one of the two bands with respect to the other one.
The co-registered bands are shown in Figure 5-f, by using a
checkerboard representation: Each tile of the board represents
the registered input band and the reference band, alternately.
The registration accuracy can be evaluated by looking at the
continuity of the features at the borders of the tiles. The visual
analysis of Figure 5-f suggests that the registration performed
very well; craters and ridges appear continuous at the borders,
i.e., the points of overlap.

IV. CONCLUSIONS

In this letter a novel unsupervised region-based approach
has been proposed for automatic detection of spatial features
that characterize planetary surfaces. The proposed approach
has been applied to the registration of planetary data.

The features to be extracted are not as well contrasted nor



defined as for Earth data. However, small rocks, which are
not affected by uneven illumination, can easily be detected
by the proposed approach. Crater detection is more difficult
than rock detection, because of their depth and spatial extent
and, consequently, their contours are often blurry and not
continuous. Nevertheless, we showed here that their identi-
fication can be achieved and the proposed approach provided
quite accurate results. The accuracy of the detection has been
assessed by comparison to a manually generated reference
map. The results in terms of several indices based on true
and false positives compared favorably to previously proposed
approaches. Moreover, we showed that the extracted features
can be used to accurately register pairs of image bands
acquired from the same sensor. The accuracy of the registration
step is confirmed by visual inspection of the results.

The proposed approach represents the first important step
for many applications dealing with all the various data that
are being collected by different planetary missions, among
which image registration and image analysis, with the aim of
selecting safe landing sites, identifying lunar resources, and
preparing for subsequent explorations of the Moon and Mars
by both robots and humans.

In future, we plan to expand the experimental validation.
The approach will be applied to different types of data and
registration of multisensor images will be addressed.

In our future work we plan to integrate the shadow informa-
tion around the features in order to improve the reliability of
the edge detection and reduce the false alarms in the contour
map F'. [llumination correction, based on the knowledge of the
orbital angle and the acquisition time, will be useful to reduce
the bias in the reconstruction of the exact feature shape.

Furthermore, crater detection and rock detection could be
addressed separately for specific applications. The different
features could be distinguished in a post-processing step, by
using the shape information. A crater detection algorithm able
to detect features of small size would be useful to identify
small craters. Craters that are not catalogued yet could be
identified and this information would increase the importance
of the already accurate but not complete Mars catalogues [33].

Finally, the proposed method could be used to extract other
features of elliptical shape, such as volcanoes. Additionally,
features of other shapes, such as ridges or polygonal patterns
among others, could be extracted, by adapting the generalized
Hough transform to the detection of the shape of interest.
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Abstract— With the launch of several planetary mis-
sions in the last decade, a large amount of planetary
images is being acquired. Preferably, automatic and robust
processing techniques need to be used for data analysis
because of the huge amount of the acquired data. Here,
the aim is to achieve a robust and general methodology
for crater detection. A novel technique based on a marked
point process is proposed. First, the contours in the image
are extracted. The object boundaries are modeled as a
configuration of an unknown number of random ellipses,
i.e., the contour image is considered as a realization of a
marked point process. Then, an energy function is defined,
containing both an a priori energy and a likelihood term.
The global minimum of this function is estimated by using
reversible jump Monte-Carlo Markov chain dynamics and
a simulated annealing scheme. The main idea behind
marked point processes is to model objects within a
stochastic framework: Marked point processes represent a
very promising current approach in the stochastic image
modeling and provide a powerful and methodologically
rigorous framework to efficiently map and detect objects
and structures in an image with an excellent robustness to
noise.

The proposed method for crater detection has several
feasible applications. One such application area is image
registration by matching the extracted features.

Index Terms— Crater Detection, Marked Point Process,
Markov Chains, Simulated Annealing.

I. INTRODUCTION

With each new planetary mission, the volume of
acquired data significantly increases. Different types
of data are being collected at different times, by
different sensors, and from different view-points.
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Feature extraction, i.e., extraction of spatial features
in the images, is typically the first step in most
image analysis processes. For instance, registration
is an essential task to jointly exploit, integrate, or
compare all these different data and usually requires
a prior accurate extraction of the spatial features in
the image.

Identification of spatial features on planetary sur-
faces can be manually performed by human experts
but this process can be very time consuming. There-
fore, a reliable automatic approach to detect the
position, structure, and dimension of each feature is
highly desirable. This is a difficult task for several
reasons: Limited data are usually available, the con-
trast of planetary images is generally low (i.e., it is
heavily affected by illumination, surface properties
and atmospheric state), and the features that are
present in the images can be barely visible due to
atmospheric erosion and they may be based on dif-
ferent structure types of variable sizes. Among the
typical features in planet-surface imagery, craters
play a primary role. Detection of craters has been
widely addressed and different approaches have
recently been proposed in the literature, based on the
analysis of planetary topography data [1], satellite
images in the visible spectrum and the infrared
spectrum [2]. Here, we focus on optical image-based
approaches for crater detection.

The existing techniques can be divided into two
main categories; supervised and unsupervised. Su-
pervised methods require the input of an expert
and generally use supervised learning concepts to
train the algorithm for feature extraction. These
techniques contemplate a learning phase, in which
a training set of images containing craters is labeled
by human experts. Craters are then detected by ap-
plying the previously trained algorithm to new unla-
beled sets of images. In [3], a continuously scalable
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detector, based on a supervised template matching
technique, is applied. In [4], different supervised
learning approaches, including ensemble methods,
support vector machines (SVM), and continuously-
scalable template models, were employed to de-
rive crater detectors from ground-truthed images.
The SVM approach with normalized image patches
provided the best detection and localization perfor-
mance. In a different approach, Martins et al. [5]
adopted a supervised boosting algorithm, originally
developed by Viola and Jones [6] in the context of
face detection, to identify craters on Mars.

Unsupervised methods are fully automatic and
generally based on image-analysis techniques.
These approaches generally rely on the identifica-
tion of circular or elliptical arrangements of edges
along the crater boundary. A standard approach is
based on the use of a Generalized Hough Trans-
form (GHT) [7]. Examples include the works of
Cross [8], Cheng et al. [9], Honda et al. [10],
Leroy et al. [11], and Michael [12]. Instead, in [13],
the identification of impact craters was achieved
through the analysis of the probability volume cre-
ated as a result of a template matching procedure,
approximating the craters as objects of round shape.
That unsupervised method enables the identification
of round spatial features. Kim and Muller [14]
presented a crater detection method based on texture
analysis and ellipse fitting. That method was not
robust when applied to optical images. Therefore
the authors needed to use also DEM data and fuse
them with the optical data.

In subsequent work [15], Kim et al. proposed
a combination of unsupervised and supervised
techniques. In particular, edge detection, template
matching, and supervised neural network-based
schemes for the recognition of false positives were
integrated, in order to automatically detect craters
on Mars. In [16], Urbach and Stepinski presented
a different approach, which combines unsupervised
and supervised techniques, for crater detection in
panchromatic planetary images. The method in [16]
is based on using mathematical morphology for the
detection of craters and on supervised techniques to
distinguish between objects and false alarms.

Each of the previously published methodologies
for automatic crater detection has its advantages and
drawbacks. Although the recent approaches show
high detection accuracy, the underlying technology
is complicated and its robustness to different types
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of planetary surfaces and to image quality is not
totally satisfactory yet.

Here, a novel automatic and unsupervised ap-
proach for the extraction of planetary craters, based
on a Marked Point Process (MPP) [17], is proposed
(see also [18]). An MPP is an abstract random
variable whose realizations are configurations of
objects, each object being described by a marked
point (see Appendix A for more details). In the
proposed method, the objects that are searched for
are craters and a novel MPP model is defined to
determine their statistical distribution in the im-
age. The boundaries of the regions of interest are
considered as a realization of an MPP of ellipses:
Hence, the optimum configuration of objects has to
be estimated. Similar to Markovian modeling, the
“Maximum-A-Posteriori” (MAP) can be proved to
be equivalent, under MPP assumption, to the min-
imization of a suitable energy function. An energy
function, which takes into account the interactions
between the geometric objects and the way they fit
in the image, is minimized by using a Markov chain
coupled with a simulated annealing scheme.

The main novelty of this paper is a novel un-
supervised method for crater detection, based on
the MPP stochastic modeling technique. Moreover,
a new formulation of the likelihood energy function
is proposed here, being more appropriate for the
analyzed data. In comparison with other techniques,
e.g., based on template matching, the proposed
approach enables the identification of features of
different shapes and orientations and it is applicable
to different types of data.

The proposed approach is described in Section II.
Experimental results with real data are presented
and discussed in Section III. Finally, conclusions
and ideas for future extensions are presented in
Section IV.

II. METHODOLOGY

A. Overview of the proposed method

Planetary images show the surface of a planet
and its structures. The aim of this study is to
automatically detect elliptical structures, such as
craters, that are present on a considered planetary
surface by using image analysis techniques. The
extracted features can be used for the registration
of multitemporal, multisensor, and stereo-images.



Different types of spatial features are present in
the planetary images, but the most evident ones
are generally craters, i.e., objects of approximately
elliptical shapes with shadows. Their extraction is a
difficult task, because planetary images are blurry,
quite noisy, present lack of contrast and uneven
illumination, and the represented objects are not
well defined.

In order to address this problem, an MPP-based
approach, aimed at detecting round and elliptical
objects, is proposed here. MPPs enable to model
the distribution of complex geometrical objects in
a scene (see Appendix A for more details) and
have been exploited for different applications in im-
age processing. Marked point processes have been
successfully applied to address different problems
in terrestrial remote sensing, among which road
network detection [19], building extraction in dense
urban areas [20], [21], [22], and road markings [23].
Moreover, in forestry applications, marked point
processes have been used to reproduce the spatial
distribution of the stems [24]. In [25], MPPs were
used to detect and count flamingos on aerial pho-
tographs. Vascular tree detection in angiograms was
addressed in [25]. Here, the method is applied to the
detection of features in planetary images.

The context is stochastic and the goal is to
minimize an energy on the state space of all possible
configurations of objects, using a Markov Chain
Monte-Carlo (MCMC) algorithm and a Simulated
Annealing (SA) scheme. More properly, a novel
MPP is introduced to model the structure of the
crater edges in the image.

The overall architecture of the proposed approach
for crater detection is shown in Figure 1. First, the
noise is reduced by applying a smoothing filtering
operation. Then, in order to produce an edge map
I,, showing the contours of the objects represented
in the original image, the Canny edge detector [26]
is applied. The Canny detector has been chosen
because it guarantees a low error rate, the obtained
edge points are well localized, and the width of each
detected edge is one pixel.

The result of this first step, [, is a binary
image that shows the object boundaries. Craters
have a complex structure and, due to their depth
and uneven illumination, exhibit shadows. Their
borders can be approximated with incomplete non-
continuous elliptical curves. The boundary infor-
mation is extracted here, being a crater univocally

‘ edge detection ‘

I,
likelihood simulated | | MPP+
annealing | | Markov chain s‘
Fig. 1. Block diagram of the architecture of the proposed approach.

described by its contour.

I, is modeled as a configuration of objects whose
positions and attributes are a realization of an MPP
X [27]. The MPP X is a process whose realizations
are random configurations x of several objects, each
belonging to a space S = P x K, where P is the
position space, and K the space of the marks, i.e.,
set of parameters that fully describe each object.
Here, the 2D model, used to extract the features
of interest, consists of an MPP of ellipses, and
each ellipse is represented by a 5-tuple (u, v, a, b, §),
taking values in the set space

P K
S = [O,]V” X [O,N} X [(lm,a]\,{] X [bm,b]u] X [0,71'],

ey
where (u,v) € [0, M] x [0, N] are the coordinates
of the ellipse center (M and N being the width and
height of I;), a and b are the ellipse axes (ranging in
[am, anr] and [by,, bas], respectively), and 6 € [0, 7]
is the ellipse orientation angle.

The probability distribution of this stochastic pro-
cess is uniformly continuous [28] with respect to
a suitable Poisson measure on S. Operatively, this
means that it may be characterized by a density f
with respect to this measure. Similarly, the posterior
distribution of = conditioned to I, can also be char-
acterized by a density function f, with respect to
the same measure and a Gibbs formulation is proven
to hold for f, [21]. Hence, one may introduce an
energy function U such that

Rl = el-UGL)}) @
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where Z is a normalizing constant. Hence, in order
to minimize this posterior distribution, U will be
minimized on the space of all configurations x in
the feature extraction process.

B. The proposed energy function

The energy function takes into account the inter-
actions between the geometric objects x1, o, ..., T,
in the configuration x (the prior energy Up), and
the way they fit to the data (the likelihood energy
Ur)

Ulzlly) =

Up(x) 4+ Ur(Iy|x). 3)

The prior term characterizes the general aspect
of the desired solution. According to the geometric
properties of the configurations of craters, a basic
rule is imposed on the prior term of our model. The
prior energy, Up, penalizes overlapping objects in
x, which are very unlikely, by adding a repulsion
between objects which intersect. The prior energy

of our model is
1
_ = R Xy, X5
n E (i, ;)

TixT

“

where R is a repulsion coefficient, which penalizes
each pair of overlapping objects (denoted as x;x ;)
in the configuration x. The repulsion coefficient
is calculated as follows

xiﬂxj

o(xi, ;) = (5

ZT; Ux j
where x; Nz, denotes the overlapping area between
the two objects x; and x; in the configuration (i, j =
1,2,...,n,%# j ) and 2; U x; indicates the sum of
the areas covered by the two objects z; and x;. It is
worth noticing that the repulsion term ¢, as defined
in equation 5, penalizes overlapping object, but still
allows them. In fact, overlapping craters are very
rare but plausible.
Then, the likelihood term Uy, is defined as

UL<Ig|$) = US([g"r) + UD(Ig|~73)a (6)

where Ug measures the similarity between the con-
figuration and the data, whereas the data term Up
measures the distance between the objects in the
configuration and the contours of the data. Different
formulations for the likelihood energy, which have
been proposed in previous work on MPP [24], [27],
have proven to be unfeasible for planetary data.
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Hence, a new formulation for U}, more appropriate
for the analyzed data, is proposed here.

In particular, the similarity energy Us between the
data I, and the current configuration x is defined as
a correlation measure! where u and v are the spatial
coordinates in the image plane; II(-|x) is the projec-
tion of the configuration x such that IT(u,v|z) =1
if (u,v) belongs to the boundary of at least one
ellipse in the configuration = (i.e., if there exists
i €{1,2,...,n} such that (u,v) is on the boundary
of z;), and TI(u,v|z) = 0, otherwise. Consequently,
Us expressed as (7) is equivalent to the definition
of a correlation function between the binary images
I, and II(-|z), representing the extracted and the
modeled edges, respectively. According to the cor-
relation definition, in the binary case, only nonzero
pixels from both images contribute to the value of
the correlation. This energy term, which is novel
with respect to the MPP literature, resembles anal-
ogous correlation measures that have been used for
registration purposes [29]. The correlation measure
in (7) is considered to be appropriate here because
it enables to estimate the match between two binary
images (/, and II) in a fast and accurate way.

Then, the data energy Up is calculated at the
object level: For each object x; in the current
configuration x a weight parameter IV;, proportional
to the distance from the closest detected edge pixel
in the data I, with respect to its dimension, is
calculated, i.e.,

d(G, O;
Wi= ma(X @, 13) ®
where
G =A{(u,v) : Ly(u,v) =1}, ©)
0; = {(u,v) : (u,v|z;) = 1}, (10)
d(A,B) =inf{||P-Q||},P € A,Q e B, (11)

II(-|z;) has a meaning similar to above, and a; and
b; are the two ellipse axes associated to the object
x; =1,2,...,n).

The resulting data energy will be

ZW

Then, objects with a low value of W will be favored
in the configuration.

(1) = (12)

!Given a finite set A, we denote by |A| the cardinality (i.e., the
number of elements) of A.



u,v) : Iy(u,v

)=1 & TI(u,v]z) =1}

Us(z,Jr) = UL

C. Energy Minimization and Crater Mapping

A Markov Chain Monte-Carlo (MCMC) algo-
rithm [30], coupled with a Simulated Annealing
(applied with a given annealing schedule 7'(+)), is
used in order to find the configuration z which
minimizes U.

We stress here that this minimization is carried
out with respect to not only the locations and marks
of the objects in the MPP realization but also the
number of objects, i.e., the proposed method also
automatically optimizes the choice of the number
of detected craters. In particular, the marked point
process X, defined by f, is sampled by using a
random jump MCMC algorithm: It allows to build
a Markov chain X, (kK = 0,1,...), which jumps
between the different dimensions of the space of
all possible configurations and, in the ideal case,
ergodically converges to the optimum distribution
2* [31]. The final configuration of convergence does
not depend on the initial state. The flowchart of the
minimization scheme is shown in Figure 2.

‘ Generate the initial configuration x(0) ‘
J

‘ Compute f, (x(0)) ‘
[

RIMCMC+SA [

.| Choose a proposition kernel

0,, and generate x’ (k)
Iterate !
(k=1,....K) Sample R,,; compute

_]‘/', (x’) and R,,(x,x")
J
Sample o; accept x” with
probability o. = min(1, R, (k))

1

Get the final configuration x(K) ‘

Fig. 2. Flowchart of the proposed minimization scheme.

At each step, the transition of this chain depends
on a set of “proposition kernels”’, which are ran-
dom changes proposed to the current configuration.
In order to find the configuration maximizing the
density f,(-) on S, we sample within a Simulated
Annealing scheme (SA), which gives us the MAP
estimator. SA is an iterative algorithm where at each
iteration k a perturbation is proposed to the current

H(u,v) : Iy(u,v) = 1}

)

configuration at temperature 7'(k), k = 1,2,..., K).
This perturbation is accepted or rejected with a
probability which ensures that the probability dis-
tribution of the Markov chain ergodically converges

to fp(x)ﬁ. Here, the annealing schedule, T'(+), is

defined as
k
Tr\ ¥
TEk)=T; - =
() =T <:73'> 7

where T} and T are the initial and the final tem-
peratures, respectively, and K is the total number of
allowed iterations. In practice, in order to cope with
too long computational times, the decrease of the
temperature is geometric (as usual in SA for Markov
random fields) and does also not imply the ergodic
convergence to a probability distribution localized
at the minima of U (x|l,), in contrast, it follows the
adaptive approach developed in [32].

The efficiency of the algorithm highly depends on
the variety of the proposition kernels (). The set of
proposition kernels are birth and death, translation,
dilation, and rotation [33]. Birth and death are
jumping perturbations, i.e, they vary the number
of objects in the configuration. If birth is chosen,
a new marked point is randomly generated and
added to the configuration, while if death is chosen
a randomly selected point in the configuration is
removed. Non-jumping moves are transformations
that do not change the number of objects in the con-
figuration. In particular, a marked point is randomly
selected and is replaced by a “perturbed” version of
1t.

For each proposition kernel m, a Green ratio
R, (x,2") is defined, that tunes the likelihood of
replacing configuration x by configuration z’ at
each SA iteration (analytical details can be found
in Appendix B). More precisely, the birth and death
kernel consists in proposing, with probability pg,
to uniformly add in S an object to the current
configuration x or, with probability pp = 1 —pp, to
remove a randomly chosen object of z. The Green’s
ratios for birth and death (namely, Rp and Rp,
respectively) are

_ @fp(xl|jg) v(S5)
pe fplzlly) n(z) +1

13)

Rp

(14)
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_ po B(@IL,) n(a)
ps fy(@lly) v(8)’

where n(z) is the number of objects in the current
configuration x, x’ is the candidate configuration,
and v(S) is the Poisson intensity measure. For
the selected non-jumping kernels (i.e., translation,
dilation, and rotation), the suitable Green’s ratio is
given by the usual Metropolis-Hastings ratio

N _ o)
R(z,2") = m.

Rp

5)

(16)

III. EXPERIMENTAL RESULTS

Experiments were carried out using Mars data,
collected during the 2001 Mars Odyssey mission, by
the THermal EMission Imaging System (THEMIS),
an instrument on board the Mars Odyssey space-
craft. Such an instrument combines a 5-band visual
imaging system with a 10-band infrared imaging
system [34]. Both 7 visible and 7 infrared THEMIS
images, with a resolution of 18 meters and 100
meters per pixel, respectively, were used to test the
proposed approach. In particular, the visible data
set was chosen in the area with center longitude
lon = 352.86 and center latitude lat = —1.09; the
infrared data set was chosen within an area with
lon = 175.36 and lat = —14.68.

Few parameters of the proposed method had to
be assigned, concerning both the MPP state space S
and the MCMC sampler. Let recall that S = P x K,
where P = [0, M] x [0, N] corresponds to the size
of the data (I;). The resolution r varies for the two
different types of images used, hence the total area
A of interest is A = M - N -r? [m?]. The parameters
of K (i.e, am, ay, by, and byy) depend on the size
of the objects that need to be detected. In this study,
the minimum size for both semi-axes was fixed to 3
pixels (i.e., a,, = b,, = 3) and the maximum size to
100 pixels (i.e., ap; = by = 100). The eccentricity
e of each object, defined as

min(a,b)\”
e=¢|1—|—— ),

max(a, b)
was constrained to e € [0,0.6] (i.e., min(a,b) >
0.8 - max(a, b)), being craters of bigger e unlikely.
Sampler probabilities needed to be assigned as
well. In particular, the global parameters that corre-

spond to the probability of choosing the proposition
kernel m were fixed to p,, = 0.25, where m €

a7
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{Tranlation, Rotation, Scaling, Birth& Death}.
The probabilities pp and pp regulating the birth and
death kernel, were fixed to pg = pp = 0.5.

For comparison purposes, a method for ellipse
detection based on a Generalized Hough Trans-
form (GHT) [7] has been implemented and tested
on our data set. With this method, for every pair
of pixels that were detected as edge points in
the Canny gradient and exhibit opposite gradient
directions, an accumulator, corresponding to the
median point between them in the image plane, is
incremented by a unit value. The maxima of the
accumulator are taken as centers of ellipses. Then,
the three parameters describing the ellipse centered
in each detected maximum are computed and a 3D
accumulator is used to estimate the two semi-axes
and the direction angle of the ellipse from all the
pairs of points that contribute to the accumulator in
the considered center. The results obtained by the
proposed approach and by GHT were compared.
This particular approach was chosen for compari-
son, being a standard technique for the detection
of round and elliptical objects, commonly used for
crater detection [12], [10], [11], [35].

Reference data were generated by manually ana-
lyzing each image of the data set and identifying all
the craters that are present. Only objects completely
included within the images were considered (i.e.,
objects cut by the borders of the image were dis-
carded). A quantitative assessment of the obtained
results by the proposed method was performed using
these reference data. This was accomplished by
comparing the obtained results with the labeled
features in the correspondent reference map. The
Detection percentage D, the Branching factor B,
and the Quality percentage () were computed as

follows: 100- TP
- . 1
TP+ FN’ (18)
FP
B=—: 19
> (19)
100 - TP
Q= (20)

TP+ FP+FN

where True Positive (1'P) is the number of detected
features that correspond to labeled objects in the
reference map, False Positive (F'P) is the number of
features detected by the proposed approach, which
do not correspond to any object in the reference
map, and False Negative (F'N) is the number of



TABLE 1
AVERAGE NUMERICAL PERFORMANCE OF BOTH THE PROPOSED
APPROACH (MPP) AND A STANDARD METHOD (GHT) AS
MEASURED BY DETECTION PERCENTAGE (D), BRANCHING
FACTOR (B) AND QUALITY PERCENTAGE (Q).

[ Data [[Method [ D | B | Q |
VIS GHT 73% | 0.24 | 62%
IR GHT 78% | 0.14 | 70%

Average GHT 75% | 0.20 | 65%
VIS MPP 82% | 0.22 | 711%
IR MPP 89% | 0.13 | 79%

Average MPP 85% | 0.18 | 74%

objects in the reference map that have not been
detected by the proposed approach. The global
values of D, B, and () obtained by the proposed
approach (MPP) and the standard method used for
comparison (GHT) both for VIS and IR data are
shown in Table I. The global values of D for VIS
data and IR data obtained by the proposed approach
were about 82% and 89%, respectively. These high
values indicate a good detection rate (because of the
high number of T'P). B was about 0.22 for VIS
and 0.13 for IR, which indicate a small amount
of false detections with respect to the true detec-
tions in both cases, thanks to the small number of
FP. The results obtained by applying the proposed
approach are more accurate when compared to the
performance of the implemented standard technique
based on the GHT. In particular, the average value
of the detection rate D improved from 75% for the
GHT to 85% for the MPP. This is explained by
the increase in true detections with respect to the
reference map. Similarly, the quality percentage ().
A relatively smaller improvement in the branching
factor B is due to the fact that the number of F'P
was already small when applying GHT.

Moreover, the detection performance of the pro-
posed approach in terms of D, B, and ) com-
pares also favorably with most of the results pre-
viously published for automatic crater detection
methods [13], [16], [36], [37]. Ideally, the perfor-
mance of the proposed approach should be com-
pared with the results obtained by the previously
published methods when applied to the same data.
Unfortunately, the performance of each published
approach has been assessed on different sites and
distinct types of data (e.g., panchromatic images,
topographic data). The most direct performance
comparison can be made with the method proposed

by Barata et al. in [36]. That approach was tested
on images acquired by the Mars Orbiter Camera
(MOC). The method in [36] identified 546 craters,
with TP = 171, FN = 93, and F'P = 282. Hence,
the resulting assessment factors were about D =
65%, B = 1.65, and Q = 31%. Bandeira et al. [13]
proposed an unsupervised approach for crater detec-
tion from MOC data based on template matching.
The average performances of that approach were
about D = 86% and Q = 84%. However, they
tested their algorithm on images having resolution
of 200-300m/pixel. The high performances obtained
in [13] may be attributed to the fact that large
craters in the sites of analysis have a very regular
shape and are relatively easy to identify by template
matching. The performance of that approach for the
detection of small and irregular craters is unknown.
Bue and Stepinski [37] proposed a supervised ap-
proach for crater detection from topographic data.
The average performances of that approach were
about D = 74%, B = 0.29, and Q = 61%.
The evaluation factors increased to D = 92%,
B = 0.29, and Q = 73% if degraded craters,
which the method was not able of detecting, were
excluded. That approach is not fully comparable
with the proposed method, being supervised. Urbach
and Stepinski [16] proposed a supervised approach
for crater detection from panchromatic images. The
performance factors of their method were about
D = 68%, B = 0.29, and Q = 57%, when detecting
craters of diameter greater that 200m, and lower
when taking into account also craters of smaller
dimensions. However, a full comparison with our
approach is again not possible. In general, the results
obtained by the proposed approach are comparable
to, and in some cases better than results obtained
by methods reported in the literature in terms of the
assessment factors. Unfortunately, a full comparison
is not possible, because the methods were applied
to different data.

Visual results of the feature extraction are shown
for the first band of a visible image (Fig. 3(a)). The
image is first preprocessed, in order to reduce the
noise. In particular, Gaussian filtering and median
filtering operations are applied in a cascade [38] in
order to reduce the noise and preserve the edges at
the same time. The Canny edge detector is applied
to the smoothed image and the binary gradient
I, is shown in Fig. 3-b. The estimated optimum
configuration of the MPP z*, which identifies the
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(a) Original image

Fig. 3.

(b) Image edges

(c) Crater contours

Experimental results obtained by applying the proposed method to the first band of a visible image. (a) Original image, (b) Canny

gradient, and (c) detected crater contours in red, transparently superimposed to the original image.

(a) Original image

(b) Image edges

L5 7 e
(c) Crater contours

Fig. 4. Experimental results obtained by applying the proposed method to the eighth band of an infrared image. (a) Original image, (b)
Canny gradient, and (c) detected crater contours in red, transparently superimposed to the original image.

feature contours, is shown in Fig. 3-c. The optimum
configuration z* is represented in red, transparently
superimposed to the original image. By a visual
inspection, it is possible to appreciate the accuracy
of the detection, even when many false alarms are
present in the binary image gradient /,. Also the
reconstruction of the feature shape is very accurate.

Then, visual results obtained by applying the
proposed approach to the eighth band of an infrared
image (Figure 4-a) are presented. In particular, the
Canny gradient I, is shown in Fig. 4-b and the
estimated z* is shown in Figure 4-c, transparently
superimposed to the original image. The contours of
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the represented crater appear non-continuous in the
binary image gradient /,, due to the uneven quality
of the image. Anyway, the feature is correctly
detected and its shape reconstructed.

A visual analysis of the detection results obtained
with other planetary images (see Fig. 5) confirms
that the proposed method is able to correctly iden-
tify the location and shape of the imaged craters,
even though the input edge map detected only
part of the crater borders, included many spurious
contours unrelated with the craters, and was severely
affected by the shadows in the crater area.



(a) VIS (b) VIS 2

(f) Edges 1 (g) Edges 2

(c) VIS 3

(h) Edges 3

(d) VIS 4

(1) Edges 4 () Edges 5

(k) Result 1 (1) Result 2

(m) Result 3

(n) Result 4

(o) Result 5

Fig. 5. Examples of experimental results obtained by the proposed method. (a), (b), (c), (d), (e) Original data, (f), (g), (h), (i), (j) respective

edge maps, and (k), (1), (m), (n), (o) detected crater contours in red.

IV. CONCLUSIONS

In this paper, a novel approach has been proposed
for automatic detection of features that characterize
planetary surfaces. The identification is achieved by
using a method based on a Marked Point Process
(MPP), coupled with a Markov chain and a simu-
lated annealing scheme.

Mars infrared and visible multiband images, cap-
tured by THEMIS during the Mars Odyssey Mis-
sion, were used. Before the algorithm could be used
to estimate the MPP optimum configuration, the im-
ages had to go through a preprocessing stage, aimed
at obtaining contour map of the analyzed image.
The likelihood between the extracted map and the
current configuration was measured and maximized,
in order to identify the optimum configuration.

The MPP approach, which was developed in the
context of computer vision and previously used in
many different applications (e.g., tree crown iden-
tification, road network detection, building extrac-
tion), has proven to be effective when applied to
planetary images here. For such data, the features
to be extracted are not as well contrasted nor defined
as for Earth data. Nevertheless, we showed here
that their identification can be accurately achieved.
The accuracy of the detection has been assessed
by a comparison to a manually generated reference
map. The method outperformed a standard method
for crater detection based on a generalized Hough
transform, in terms of several indices based on
true positives, false negatives, and false positives.
Moreover, the obtained results compared favorably
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to most previously proposed approaches, when per-
formances reported in the literature were considered
for the same indices. Finally, a visual inspection of
the detection results confirmed that the proposed
method was also able to correctly identify the lo-
cation and shape of the detected craters.

In our future work, we will investigate the use
of an illumination correction to improve the relia-
bility of the detection for all craters, when shadows
are present. Illumination correction, based on the
knowledge of the orbital angle and the acquisition
time, will be useful to reduce the bias in the
reconstruction of the exact feature shape. Moreover,
we plan to integrate the shadow information around
the features in order reduce the false alarms in the
contour map.

The proposed approach can be adopted as the
first important step in several applications dealing
with all the various data that are being collected
during the current and future planetary missions.
Among them selecting safe landing sites, identifying
planetary resources, and preparing for subsequent
planetary exploration by humans and robots. The
proposed approach will also be applied to the reg-
istration of multisensor and multitemporal images,
by performing feature matching.
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