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Abstract

Image analysis is aimed at extracting meaningful information from im-

ages, by means of digital processing techniques. It covers diverse appli-

cations, which are continuously expanding through all areas of science

and industry, including, among all, medicine, astronomy, security, re-

mote sensing. Several techniques for the automatic analysis of images

have been proposed for di�erent purposes. Generally, each technique

is applied to a small range of tasks and often outperformed by human

analyzing capabilities. Hence, there is still the need for developing new

and advanced methods of image analysis.

In this thesis, we propose and develop novel methods and algorithms

for the analysis of di�erent types of images and for di�erent purposes.

The proposed methods are applied to two di�erent �elds, i.e., diagnostic

ophthalmology and planetary surface analysis.

In this framework, the novel contributions of the present thesis can

be collected in three areas.

First, various feature-extraction methods are proposed and applied

in di�erent contexts. On one hand, segmentation methods for the ex-

traction of spatial features from planetary images are proposed. Dif-

ferent feature extraction techniques are explored and applied for the

detection of craters and rocks on planetary images. The application of

the proposed methods for registration purposes is also presented. On

the other hand, feature extraction in retinal images is proposed as a
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preprocessing step for the registration of multitemporal images.

Subsequently, a feature-based image registration approach is pro-

posed, based on global optimization techniques, in order to spatially

align pairs of images. In particular, a genetic algorithm is used to

match previously extracted features from an image pair to be regis-

tered (e.g., blood vessel maps from retinal images or elliptical features

from planetary images).

Finally, we concentrate on approaches to analyze multitemporal reg-

istered images, focusing on change-detection. Di�erent change-detection

approaches, based on automatic thresholding techniques and multiple

classi�ers, are proposed and applied to analyze pairs of multitempo-

ral retinal images. Then, the classi�cation of temporal changes is ad-

dressed, by analyzing di�erent image features.

The new techniques, developed in this thesis and experimentally

validated on diverse data, improve the state of the art in each of the

mentioned application �elds, when compared to previously proposed

methods, and thus show great potential for various image analysis sce-

narios.

Keywords: Image registration, image segmentation, feature ex-

traction, change-detection, retinal images, planetary images, genetic

algorithm, Hough transform, watershed, marked point process, multi-

ple classi�ers.
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Ágrip

Myndgreining miðar að því að nota stafrænar aðferðir til að draga

upplýsingar fram úr myndum. Myndgreining hefur margs kyns

notkunarsvið í vísindum og iðnaði, og eru notkunarsviðin sífellt að

verða víðtækari og má nefna dæmin læknisfræði, stjörnufræði,

öryggismál og fjarkönnun. Nokkrar aðferðir til sjálfvirkar greiningar

mynda fyrir mismunandi notkunarsvið hafa komið fram á

undanförnum árum. Að jafnaði er sérhver aðferð hönnuð fyrir þröngt
notkunarsvið og því getur fólk oft náð betri árangri í greiningu

vandamálanna með berum augum. Af þessum sökum er nauðsyn að

þróa nýjar og framsæknar aðferðir til sjálfvirkrar myndgreiningar.

Í þessari doktorsritgerð, eru lagðar til og þróaðar nýjar aðferðir og
algrím fyrir sjálfvirka myndgreiningu. Nýju aðferðunum er beitt á tvo

mismunandi notkunarsvið, þ.e. greiningu í augnlæknisfræði og

y�rborðsgreiningu á reikistjörnum.

Með tilliti til ofangreinds, má �okka framlag ritgerðarinnar í þrjú
meginsvið.

Fyrst má nefna að margar aðferðir til útdtráttar á einkennum (e.

feature extraction) eru kynntar og beitt í mismunandi samhengi. Í

fyrsta lagi eru settar fram myndhlutunar aðferðir (e. segmentation)

sem draga fram rúmfræðileg einkenni fyrir myndir af reikistjörnum (e.

planetary images). Nokkrar mismunandi þannig aðferðir eru skoðaðar

og þeim beitt í skynjun gíga og steina í reikistjarnamyndum.
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Aðferðunum er einnig beitt við skráningu mynda (e. image

registration). Í öðru lagi eru aðferðir til framdráttar einkenna í

augnbotnamyndum settar fram sem forvinnsluaðferð fyrir skráningu

mynda frá mismunandi tímum.

Því næst er myndskráningaraðferð sem byggir á notkun einkenna

sett fram. Þessi aðferð byggir á víðværri bestunartækni sem leitast

við að stilla pör mynda rúmfræðilega saman. Erfðafræðilegt algrím

(e. genetic algorithm) er notað til að samstilla einkenni sem dregin

hafa verið fram úr þeim myndpörum er skrá skal saman (t.d. kort af

æðum í augnbotnamyndum eða sporöskjulaga einkenni úr myndum af

reikistjörnum).

Að lokum eru rannsakaðar aðferðir til að greina skráðar myndir frá

mismunandi tímum með höfuðáherslu á skynjun á breytingum (e.

change detection) í myndunum. Mismunandi aðferðir til skynjunar á

breytingum eru settar fram en þessar aðferðir byggja á sjálfvirkum

þröskuldum og fjöl�okkurum (e. multiple classi�ers). Aðferðunum er

beitt við greiningu á pörum augnbotnamynda frá mismunandi tímum.

Síðan er gerð �okkun á breytingum sem orðið hafa með því að nota

mismunandi einkenni myndanna.

Nýju aðferðirnar sem þróaðar eru í ritgerðinni og staðfestar með

beitingu á mismandi gögn, er framlag til þeirra notkunarsviða sem

fjallað er um í ritgerðinni eins og sýnt er með samanburði við fyrri

aðferðir. Nýju aðferðirnar bjóða því upp á mikla möguleika í margs

konar myndgreiningarverkefnum.

Lykilorð Myndgreining, hlutun mynda, útdráttur einkenna,

skynjun breytinga, augnbotnamyndir, myndir af reikistjörnum,

erfðafræðileg algrím, Hough vörpun, vatnaskil, merkt punktferli,

fjöl�okkarar.
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Sommario

L'analisi di immagini consiste nell' estrazione di informazioni

signi�cative da immagini digitali, attraverso speci�che tecniche di

elaborazione. Essa ricopre varie applicazioni in continua espansione

attraverso tutte le aree della scienza e dell'industria, che includono,

tra le altre, medicina, astronomia, sicurezza, telerilevamento. Sono

state proposte diverse tecniche per l'analisi automatica di immagini a

vari scopi. Generalmente, ogni tecnica è applicabile ad un piccolo

insieme di compiti e spesso superata dalle capacità umane. Quindi, lo

sviluppo di metodi nuovi ed avanzati per l'analisi di immagini risulta

tuttora necessario.

Nella presente tesi, si propongono metodi ed algoritmi innovativi

per l'analisi di diversi tipi di immagini e a vari scopi. L'applicazione

dei metodi proposti avviene in due diversi ambiti, quali l'oftalmologia

diagnostica e l'analisi di super�ci planetarie.

In tale contesto, i contributi innovativi della presente tesi si

raggruppano in tre diverse categorie.

In primo luogo, si propongono diversi metodi per l'estrazione di

strutture spaziali caratteristiche (feature) e si applicano in diversi

ambiti. Da un lato, si esplorano metodi per l'estrazione di strutture

spaziali da immagini planetarie, nelle quali la rivelazione di crateri e

rocce viene e�ettuata attraverso diverse tecniche di segmentazione;

tali metodi vengono applicati al �ne di registrare immagini planetarie.
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Dall'altro lato, si propone l'estrazione di feature in immagini della

retina come fase di pre-elaborazione per la registrazione di immagini

retiniche multitemporali.

Successivamente, si propone un approccio per la registrazione,

attraverso l'utilizzo di tecniche di ottimizzazione globale, allo scopo di

allineare spazialmente coppie di immagini. In particolare, si utilizza

un algoritmo genetico per determinare la corrispondenza tra feature

precedentemente estratte da una coppia di immagini da registrare.

Tali possono essere, ad esempio, mappe dei capillari in immagini

retiniche o strutture ellittiche in immagini planetarie.

In�ne, si studiano approcci per l'analisi di immagini

multitemporali precedentemente registrate. In particolare, ci si

focalizza su tecniche di rivelazione di cambiamenti. Si propongono

diversi approcci di rivelazione di cambiamenti, basati su tecniche di

sogliatura automatica e classi�catori multipli. Le tecniche proposte

vengono utilizzate per l'analisi coppie di immagini retiniche acquisite

in tempi diversi. Successivamente, si a�ronta il problema della

classi�cazione dei cambiamenti rilevati, analizzando diverse

caratteristiche.

Le nuove tecniche, sviluppate in questa tesi e valutate

sperimentalmente su varie tipologie di immagini, migliorano lo stato

dell'arte in ognuno degli ambiti applicativi menzionati, in confronto a

metodi precedentemente proposti nella letteratura scienti�ca.

Pertanto costituiscono un elevato potenziale in vari scenari dell'analisi

di immagini.

Parole chiave: Registrazione di immagini, segmentazione,

estrazione di feature, rivelazione di cambiamenti, diagnostica per

immagini della retina, pianeti, algoritmo genetico, trasformata di

Hough, watershed, processo a punti marcati, classi�catori multipli.
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Chapter 1

Introduction and Thesis

Overview

Visual information plays an important role in almost all areas of our life.

Thanks to the fast spreading of new digital tools, nowadays much of

this information is represented and processed digitally. Digital image

analysis has become a challenging problem. It covers a wide range

of �elds, with applications ranging from remote sensing to diagnostic

medicine, from astronomy to robotics, from security to microscopy.

An e�ective exploitation of such potential calls for the development

of accurate and fast image analysis procedures, able to extract the

information of interest from the available image data.

In this context, di�erent image analysis issues are addressed here.

The aim of this thesis is to propose innovative and advanced approaches

to solve di�erent problems, which can be applied to di�erent speci�c

areas of interest. The issues addressed in this thesis can be grouped

into three categories, i.e., image segmentation, image registration, and

change detection. Several algorithms, which have been developed to

address speci�c image analysis problems, are proposed.

This chapter introduces the framework of the research work that
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will be presented in this thesis. Then, the thesis objectives and main

contributions are described. These contributions will be further dis-

cussed in the following chapters (i.e., Chapters 2, 3, and 4), each of

them focusing on one of the problems and on the corresponding devel-

oped methods. Results obtained by applying the proposed algorithms

to speci�c data will be presented in Chapter 5. General conclusions

about the approaches proposed in the thesis will be drawn in Chap-

ter 6. Finally, the second part of the thesis is composed of di�erent

annexes, each of them representing a publication related to the main

�ndings of the research work.

1.1 Image Analysis

Image analysis is aimed at extracting meaningful information from dig-

ital images and involves the use of image processing techniques. In

particular, it is the process of characterizing an image with its content

description at a given semantical level.

Image analysis has become a critical component in contemporary

science and technology and has extensive applications, which are contin-

uously expanding through many di�erent areas. Applications include,

among others, medicine, remote sensing, astronomy, robotics, etc. In

particular, in medical applications, image analysis can be used in order

to detect speci�c diseases, providing a powerful tool as a support for

the diagnostic process. Applications range from the detection of can-

cer in MRI (Magnetic Resonance Imaging) scans, to the monitoring of

diabetic retinopathy through the analysis of retinal images. Moreover,

environmental remote sensing represents the set of image processing

techniques aiming at retrieving information about a geographical area

by exploiting Earth-observation data. This type of technology has been
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acquiring a growing interest from the viewpoints of environmental mon-

itoring and management. In addition, the analysis of planetary images

has been acquiring strong attention. In fact, thanks to the increas-

ing number of planetary missions devoted to the acquisition of plane-

tary imagery, image-analysis technologies present a huge potential for a

wide range of planetary applications. Among them, selecting safe land-

ing sites, identifying planetary resources, and preparing for subsequent

planetary exploration by humans and robots.

The research work described here is aimed at identifying novel and

advanced image processing approaches for di�erent applications. In

particular, from an application viewpoint, we focus on the analysis of

retinal images, on one side, and planetary images, on the other side.

In both frameworks, in the ideal case, the features of interest are

sharp and clearly de�ned, hence, easy to detect. In practice, however,

image quality can be uneven, due to di�erent factors.

Here, we deal with images acquired with di�erent modalities, under

poor illumination conditions, di�erent �eld angles, etc. Those images

are di�cult to analyze and the features represented are generally barely

visible. Hence, the proposal of new advanced techniques for their au-

tomatic analysis is highly desirable.

On one hand, we focus on the analysis of retinal images. In oph-

thalmology, diagnosis of retinal diseases is based on the analysis of the

changes in the retina that can occur during time. The analysis of multi-

temporal images is an important diagnostic tool. Fundus images may

be used to diagnose many diseases that a�ect the vascular structure by

revealing the changes that have occurred in it during the period between

two consecutive medical visits. A multitude of image devices have been

brought into clinical practice, by facilitating visual access to di�erent

parts of the eye. In particular, fundus cameras have been commonly

used over the last decades. These devices produce a large amount of
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images that need to be visually inspected by ophthalmologists to di-

agnose abnormalities. Therefore, automatic methods of retinal image

analysis have been acquiring a growing interest in order to support the

diagnosis. The aim of the work presented in this thesis, which will be

detailed in the following section, is to develop a set of new algorithms

to help ophthalmologist diagnosis and to be used in automated systems

for retinopathy screening.

On the other hand, the analysis of planetary images is addressed.

With each new planetary mission, the volume of acquired data signi�-

cantly increases. Di�erent types of data are being collected at di�erent

times, by di�erent sensors, and from di�erent view-points. Feature ex-

traction, i.e., extraction of spatial features in the images, is typically the

�rst step in most image analysis processes. For instance, registration

is an essential task to jointly exploit, integrate, or compare all these

di�erent data and usually requires a prior accurate extraction of the

spatial features in the image. Identi�cation of spatial features on plan-

etary surfaces can be manually performed by human experts but this

process can be very time consuming. Therefore, a reliable automatic ap-

proach to detect the position, structure, and dimension of each feature

is highly desirable. This is a di�cult task for several reasons: Limited

data are usually available, the contrast of planetary images is generally

low (i.e., it is heavily a�ected by illumination, surface properties and

atmospheric state), and the features that are present in the images can

be barely visible due to atmospheric erosion and they may be based on

di�erent structure types of variable sizes. Hence, the proposal of new

automatic approaches to help planetary scientists in identifying spatial

features to be used in automated systems for image registration is of

high interest.
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1.2 Aim of The Thesis

The main objective of this thesis is the development of new advanced

methods and algorithms for the analysis of di�erent types of data. The

developed approaches should be e�cient in terms of accuracy and com-

putational complexity. In particular, here, we address the following

speci�c issues:

1. Image segmentation, i.e., the process of partitioning an image into

multiple regions, generally used to locate objects in an image.

2. Image registration, i.e., the process of spatially aligning two or

more images, a step always necessary when comparing two or

more images.

3. Change detection, i.e., the process of identifying di�erences in

the state of an object or phenomenon, by observing it at di�erent

times through multitemporal images.

The main contributions of this thesis are summarized in Figure 1.1,

which depicts the proposed methods and algorithms for feature extrac-

tion, image registration and change detection of the analyzed data. In

order to achieve our objective, we address the three di�erent main issues

previously de�ned and propose and develop di�erent novel solutions.

1. Image segmentation methods are proposed with a speci�c focus on:

a) Feature extraction in retinal images, based on mathematical

morphology, for registration purposes (described in Chap-

ter 2).

b) Feature extraction in planetary images, by using watershed

segmentation combined with the generalized Hough trans-

form, for registration purposes (detailed in Chapter 2 and

object of the paper reported in Annex C).
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Figure 1.1: Overall block diagram of the proposed methods for feature
extraction, registration and change detection of the analyzed images.

c) Crater detection in planetary images, based on marked point

processes (introduced in Chapter 2 and subject of the paper

reported in Annex D).

2. Image registration is addressed for:

a) Registration of retinal images by matching the extracted fea-

tures, i.e., retinal blood vessels, through a Genetic Algo-

rithm, GA (described in Chapter 3 and in the book chapter

presented in Annex A).
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b) Registration of planetary images by matching through GA

the elliptical features previously extracted (i.e., craters and

rocks) by using the method proposed in the paper reported

in Annex C (as detailed in the same annex).

3. Change detection in multitemporal retinal images, especially focus-

ing on:

a) Change detection by using an automatic thresholding tech-

nique (detailed in Chapter 4 and addressed in Annex A).

b) Change detection by using an automatic thresholding tech-

nique integrated within a multiple classi�er approach (de-

tailed in Chapter 4 and in the paper reported in Annex B).

1.3 Thesis Structure

This thesis is composed as a collection of publications, preceded by

an extended research summary. The manuscript is organized as fol-

lows: Chapters 2, 3, and 4 deal with the problems addressed in this

thesis, which are image segmentation, image registration, and change

detection, respectively. In particular, in each of the three Chapters an

overview of the analyzed problem is introduced, an overview of the lit-

erature analysis is given, and, �nally, the architecture of the proposed

approaches is detailed. An evaluation of the results obtained by apply-

ing the proposed approaches is given in Chapter 5. Concluding remarks

and suggestions for future work are drawn in Chapter 6.

In the subsequent annexes di�erent publications presenting the main

�ndings of this thesis are collected:

Annex A Book Chapter proposing a full system for registration and

change detection in retinal images, as a support for the diagnosis

9



of retinopathy. The images are acquired from the same patient

during di�erent medical visits by a color fundus camera. An auto-

matic registration approach, based on the extraction of the vascu-

lar structures in the images to be registered and the optimization

of their match, is investigated. Then, in order to achieve the

detection of temporal changes, an unsupervised approach, based

on a minimum-error thresholding technique, is investigated. The

algorithm is tested on color fundus images with small and large

changes.

Annex B is a paper proposing a novel method for change detection in

retinal images, based on a minimum-error thresholding technique

integrated within a multiple classi�er approach. Unsupervised

thresholding is applied to separate the �change� and the �no-

change� areas in a suitably de�ned di�erence image. However,

in order to cope with local illumination di�erences, the thresh-

olding technique is applied to randomly selected sub-images: The

outputs of the di�erent windows are combined with a majority

vote approach. A novel approach, which performs local analysis

by combining spatially di�erent classi�ers, is proposed.

Annex C is a paper addressing a feature extraction issue in plane-

tary images. In particular, a new unsupervised method for the

extraction of di�erent features of elliptical and geometrically com-

pact shape from the surface of the analyzed planet is proposed.

This approach is based on a novel combination of several image

processing techniques, including a watershed segmentation and

a case-speci�c formulation of the generalized Hough transform.

The method has many applications, including image registration.

Annex D is a paper proposing a novel application of a marked point
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process for crater detection in planetary images. First, the con-

tours in the image are extracted. The object boundaries are

modeled as a con�guration of an unknown number of random

ellipses, i.e., the contour image is considered as a realization of a

marked point process. Then, an energy function is de�ned, con-

taining both an a priori energy and a likelihood term. The global

minimum of this function is estimated by using reversible jump

Monte-Carlo Markov chain dynamics and a simulated annealing

scheme.
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Chapter 2

Image Segmentation for

Feature Extraction

Image segmentation is the process of partitioning an image into multiple

homogeneous regions with some homogeneity criterion. In particular,

each pixel is assigned with a label, such that pixels with the same label

share speci�c characteristics or properties (e.g., color, texture, etc.). As

a result the image is partitioned into a �nite set of regions delimited

by region boundaries. Image segmentation is typically used to locate

objects and object boundaries in the analyzed images [106].

Here, di�erent segmentation techniques are proposed, in the contest

of the analysis of both Retinal Images (RIs) and Planetary Images

(PIs). Concerning the former, methods for the detection of both optic

disc and blood vessels in retinal images are investigated. Concerning

the latter, di�erent approaches for the identi�cation of spatial features

such, as craters and rocks, in PIs are proposed.

This Chapter is organized as follows: Sections 2.1 and 2.2 deal with

the segmentation of RIs and PIs, respectively.
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2.1 Retinal Image Segmentation

Retinal Images (RIs), generally acquired by a fundus camera, include

di�erent features of interest. Indeed, they represent the retina with

its vascular structure and the optic nerve head. The choroid is the

structure below the retina and it is usually obscured by it. The retina

is a multilayer structure, which is transparent except for the deepest

layer, the pigmented epithelium. This gives to the retina its reddish

color. More super�cially than the pigmented epithelium, there is the

sensory retina, composed by the photoreceptor cells and the gangliar

cells.

The segmentation of RIs, for registration purposes, is investigated

here. In particular, the problem of detecting the optic disc is pre-

sented in Section 2.1.1 and the vessel extraction issue is addressed in

Section 2.1.2.

2.1.1 Optic Disc Detection

The detection and exclusion of the optic disc are essential tasks in order

to further analyze RIs. In fact, the identi�cation of the optic disc is

indispensable as a preprocessing step for the detection of changes, be-

cause the optic disc and the exudates have similar attributes in terms of

brightness, color and contrast. Furthermore, the optic disc localization

is a �rst step in understanding ocular fundus images: By estimating the

optic disc position and dimension, the localization of the macula can

be approximately determined. The macula is the entire area between

the temporal vessels and represents the center of vision. It is of great

importance as lesions in the macular region a�ect vision immediately.

Localizing the optic disc is also crucial for blood vessel tracking and as

a reference length for measuring distances in RIs.
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First, an overview of previous work on optic disc detection is pre-

sented. Then, the proposed approach is described.

Previous Work

The optic disc is the entrance region of blood vessels and optic nerves

into the retina. It is a brighter region than the rest of the fundus, due to

the absence of retina layer. The shape of the optic disc is approximately

circular, interrupted by the outgoing vessels. Sometimes the optic disc

appears as an elliptical object in the image, due to a nonnegligible angle

between image plane and object plane. Most of the time, however, it

is only partially visible, lying on the border of the image.

An area threshold was used by Tamura et al. [113] to localize the

optic disc. The contours were detected by means of the Hough trans-

form for the detection of circular features. This approach was quite

time consuming and it relied on the approximation of the shape of the

optic disc as a circle, which is not always met. In fact, often the optic

disc is even not entirely visible in the image plane, and its shape is

neither circular nor elliptical. In Pinz et al. [92], a similar approach

was proposed, in which the Hough transform was used to detect the

contours of the optic disc in infrared and argon-blue images. In spite

of some improvements, problems were stated if the optic disc does not

meet the shape conditions (e.g., if it lies on the border of the image) or

if the contrast is too low. In [2], the optic disc was identi�ed by back-

tracking the vessels to their origin. This is certainly one of the safest

ways to localize the optic disc, but it has to rely on vessel detection,

which is, in itself, a complex problem. It is desirable to separate the

segmentation tasks in order to avoid an accumulation of segmentation

errors and reduce computational cost. Mendels et al. [71] proposed an

approach based on morphological �ltering techniques and active con-

tours. Osareh et al. [83] described three di�erent methods. The �rst
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method, based on template matching, gave a good location of the optic

disc; the second one, based on least square regression, estimated the

optic disc as a circular shape; the third one, based on snakes, gave a

very accurate representation of the shape and location of the optic disc.

Proposed Approach

In this work the location of the optic disc is estimated by exploiting the

local grey level variation, as proposed in [108]. The appearance of the

optic disc is characterized by a relatively rapid variation in intensity:

The dark blood vessels are beside the bright nerve �bres, being the grey

level variation in the papillary region higher than in any other part of

the image. The variance of intensity of adjacent pixels is used for the

recognition of the optic disc.

In the RGB color space, the contours of the optic disc appear more

continuous and more contrasted against the background in the red chan-

nel. Anyway, this channel has a very narrow dynamic range. Moreover,

the optic disc belongs to the brightest parts of the color image. Hence,

in order to localize the optic disc, the luminance channel of the HLS

color space is used.

Considering a square sub-image W (i,j) of size MW ×MW centered

on pixel (i, j), the mean intensity within W (i,j), |IR|W can be de�ned

as

|IR|W (i, j) =
1

MW
2

i+MW /2∑

l=i−MW /2

j+MW /2∑

m=j−MW /2

IR(l,m), (2.1)

where IR(l,m) is the intensity of the pixel (l,m) in the original retinal

image IR. A variance image V can be obtained by the equation

V (i, j) = |(IR)
2|W (i, j) − (|IR|W (i, j))2. (2.2)

An image of the average variance V̄ within sub-images is then obtained
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as

V̄ (i, j) = |V |W (i, j). (2.3)

The location cOD of the maximum of V̄ is selected as an estimate for

the center of the optic disc.

The shape of the optic disc is estimated as a circular region, centered

in cOD as detected by the proposed method.

2.1.2 Vessel Extraction

The detection of the blood vessels is an essential tasks in order to further

analyze RIs. The vascular structure is the most prominent feature in

the fundus of the eye, it covers all the retina, and is assumed to be

stable over time. Vessel elongation, changes in width and tortuosity

may happen, due to speci�c retinal diseases, but generally they are

not large enough between visits to markedly a�ect the main vascular

structure [57].

Actually, automatic detection of blood vessels in RIs is a challenging

task. The contrast of such image data diminishes as the distance of a

pixel from the center of the image increases. And the presence of noise,

the variability of vessel width, the presence of pathological lesions, all

make the task more di�cult.

First, an overview of previous work on retinal blood vessel detection

is presented. Then, the proposed approach is described.

Previous Work

The problem of blood vessel segmentation has been extensively ad-

dressed and several solutions have been proposed in the literature.

Pappas et al. [84] proposed a method for the mapping of arteries in an-

giograms, based on a local analysis of the image. A model was created

for blood vessel densitometry and matched to regions of angiograms to
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determine blood vessel location as well as diameter and cross-sectional

area. Chauduri et al. [24] attempted to match the gray-scale intensities

of regions of a retinal image to a Gaussian pro�le and thereby locate

the blood vessels. Edge detection was done by [92], and parallel edges

were connected and identi�ed as blood vessels. More recent methods

typically utilized three major steps to achieve retinal blood vessel seg-

mentation. Generally, some type of �ltering and thresholding is used in

a preprocessing stage. The image is, then, processed in one of several

ways, and, �nally, a post-processing step is aimed at detecting misclassi-

�ed pixels and patches together labeled segments. Li et al. [59] rejected

the traditional single Gaussian �lter for a double Gaussian �lter which

more accurately models the vessel pro�le. Li et al. used that piecewise

Gaussian model to di�erentiate between arteries and veins. Lowell et

al. [64] used a correlation �lter to locate the optic disk, frequently a

starting point for vessel segmentation algorithms. Such an approach

has to rely on vessel detection. Nonetheless, as previously stated, it is

desirable to separate the segmentation tasks in order to avoid an ac-

cumulation of segmentation errors. Lalonde et al. [59] used the Canny

operator in order to detect the vessel edges and to estimate the normal

vector to the edge. They followed the edge detection with thinning

and then a tracking algorithm. Their tracking algorithm tracks each

edge of each vessel individually before combining found walls as vessels

by exploiting knowledge of the parallel character of vessel borders. In

addition, several tracking methods have been implemented in the past.

Previous tracking methods proceeded by �rst determining start points

and then tracking the vessels from those points. One principal strat-

egy involved locating the optic disc, usually the brightest part of the

eye, and locating starting points from there. For instance, Tamura et

al. [113] used this strategy and located pixels within the center of ves-

sels by incrementally probing a vessel with a Gaussian pro�le. Tolias
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and Panas [116] also proposed a vessel detection starting the segmen-

tation process from the optic disc. In that approach, the probe was

propagated by using a fuzzy pixel-classi�cation pro�le rather than a

Gaussian pro�le. Others chose alternative means to locate tracking

starting points. Hoover et al. [52] skeletonize a thresholded image and

start from the endpoints of the line segments they obtained. Subse-

quently, they probed the image and tested segments for region-based

properties to determine whether they were vessels or not. One of the

landmark works in this �eld was done by [52] and uses a hybrid method.

These authors use match �lters (as in [24]) to extract possible vessels

from the background. This �ltered image was then segmented using

iterative thresholding. One of the reasons the work is considered so

crucial is that they hand-labeled the blood vessels on 20 images and

used these as the truth data. This data set has been referenced and

used by many subsequent researchers.

Proposed Approach

In this work, blood vessel detection is addressed by using morphological

operators.

Only the green channel γ of each RGB image is used in the extrac-

tion as it contains most of the vessel information, and it is treated as

a gray scale image. First, the green plane γ is normalized, by scaling

its histogram (i.e., by calculating minimum and maximum of the image

matrix and by scaling its values within the range [0,1]).

Then, vessel segmentation is applied. In [23] an automatic method

to detect linear features (i.e., roads) in remote sensing images is pre-

sented. The method is unsupervised and involves very few parameters

(apart from the model dimensions, just one double threshold is in-

volved). Here, it is used to extract vessel segments in RIs, as it is

simple and fast.
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Speci�cally, a pre-�ltering operation is needed to remove the back-

ground noise. In order to remove the structures that are lighter than

their surroundings, a morphological opening operator by reconstruction

is applied [33]. This is a connected operator: It consists in removing

the connected components of a binary image by an erosion and in pre-

serving the other components. Therefore, it does not introduce any

new discontinuity in the image. A square Structuring Element (SE) of

size equal to �ve pixels is chosen, assuming that two di�erent vessels

will be separated by at least �ve pixels.

The removal of nonlinear (or too short) darker objects is achieved by

taking the minimum of all possible directional morphological closings

with prede�ned length λ0 [105]. It is computed using linear SEs that are

successively oriented in every possible direction (18 di�erent directions

for a 15 pixel long linear SE, assuming that all nonlinear dark objects

are shorter than the �xed number of pixels).

The third operation is the morphological extraction, performed to

detect vessel-pixels. The remaining linear objects that are too wide

(more than a prede�ned size λ1, corresponding to the maximum ves-

sel width) are removed and the desired structures are extracted. The

bottom-hat operator [105], that is, the residue between the current im-

age and its closing, with a �at square SE of size λ1 equal to 12 pixels, is

calculated (assuming that the maximum vessel width corresponds to 12

pixels). The only remaining structures are the wide dark objects. The

�nal binary decision (vessel pixel or not) is taken by a double threshold-

ing with reconstruction: In particular two binary images are obtained,

τhigh and τlow, using one higher and one lower threshold, respectively.

τhigh is used as marker and τlow as mask. Finally, a morphological re-

construction of the marker with the connected elements of the mask is

applied.

As a result, a binary image (which will be referred to as vessel map,
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FR) showing the blood vessel structure is obtained. The proposed

technique for feature extraction can be used to register retinal image

pairs taken of the same eye. For registration, two binary images need

to be extracted from both images to be registered and their match can

be estimated (see Chapter 3).

2.1.3 Conclusions

In the previous sections, two di�erent approaches for the segmentation

of RIs have been described. The proposed methods will be applied to

RIs, acquired by a fundus camera from Icelandic patients attending a

retinopathy screening service.

Those methods will be used as a preprocessing step for registration

and change detection. In particular, the vessel detection approach pre-

sented in the previous section, will be used in order to register pairs

of multitemporal RIs (see Chapter 3) Moreover, the optic disc detec-

tion approach presented in Section 2.1.1 will be used as a preprocessing

step for change detection in retinal image pairs (see Chapter 4). The

accuracy of the feature extraction results strongly in�uences the per-

formance of the following processing steps, as it will be discussed in

Chapter 5, where the experimental evaluation of proposed retinal im-

age analysis approaches is presented.

2.2 Planetary Image Segmentation

Optical Planetary Images (PIs) show the surface of the planet that

they represent. Identi�cation of spatial features on planetary surfaces

can be manually performed by human experts but this process can

be very time consuming. Therefore, a reliable automatic approach to

detect the position, structure, and dimension of each feature is highly
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desirable. This is a di�cult task for several reasons: Limited data are

usually available, the contrast of PIs is generally low (i.e., it is heavily

a�ected by illumination, surface properties and atmospheric state), and

the features that are present in the images can be barely visible due

to atmospheric erosion and they may be based on di�erent structure

types of variable sizes.

In Section 2.2.1, an overview on the previous works on feature ex-

traction from PIs is presented. Then, the proposed approach for ellip-

soidal feature extraction, based on a novel combination of the Canny

operator, the Hough transform and the watershed, is detailed in Sec-

tion 2.2.2. Finally, a novel method for crater detection, based on a

Marked Point Process (MPP), is investigated in Section 2.2.3.

2.2.1 Previous Work

Among the typical features in planet-surface imagery, craters play a

primary role. Detection of craters has been widely addressed and dif-

ferent approaches have recently been proposed in the literature, based

on the analysis of planetary topography data [102], satellite images in

the visible spectrum and the infrared spectrum [41].

The existing techniques can be divided into two main categories;

supervised and unsupervised. Supervised methods require the input

of an expert and generally use supervised learning concepts to train

the algorithm for feature extraction. These techniques contemplate a

learning phase, in which a training set of images containing craters

is labeled by human experts. Craters are then detected by apply-

ing the previously trained algorithm to new unlabeled sets of images.

In [122], a continuously scalable detector, based on a supervised tem-

plate matching technique, is applied. In [124], di�erent supervised
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learning approaches, including ensemble methods, support vector ma-

chines (SVM), and continuously-scalable template models, were em-

ployed to derive crater detectors from ground-truthed images. The

SVM approach with normalized image patches provided the best de-

tection and localization performance. In a di�erent approach, Martins

et al. [66] adopted a supervised boosting algorithm, originally developed

by Viola and Jones [123] in the context of face detection, to identify

craters on Mars.

Unsupervised methods are fully automatic and generally based on

image-analysis techniques. These approaches generally rely on the iden-

ti�cation of circular or elliptical arrangements of edges along the crater

boundary. A standard approach is based on the use of a General-

ized Hough Transform (GHT) [120]. Examples include the works of

Cross [34], Cheng et al. [25], Honda et al. [50], Leroy et al. [60], and

Michael [72]. Instead, in [4], the identi�cation of impact craters was

achieved through the analysis of the probability volume created as a

result of a template matching procedure, approximating the craters as

objects of round shape. That unsupervised method enables the identi�-

cation of round spatial features. Kim and Muller [54] presented a crater

detection method based on texture analysis and ellipse �tting. That

method was not robust when applied to optical images. Therefore the

authors needed to use also DEM (Digital Elevation Model) data and

fuse them with the optical data.

In subsequent work, Kim et al. [55] proposed a combination of un-

supervised and supervised techniques. In particular, edge detection,

template matching, and supervised neural network-based schemes for

the recognition of false positives were integrated, in order to automati-

cally detect craters on Mars. In [121], Urbach and Stepinski presented a

di�erent approach, which combines unsupervised and supervised tech-

niques, for crater detection in panchromatic PIs. The method in [121]
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is based on using mathematical morphology for the detection of craters

and on supervised techniques to distinguish between objects and false

alarms.

Other typical features in PIs are represented by rocks. Rock de-

tection in ground imagery has been addressed in the literature. In

particular, in [115] the authors presented a supervised method for seg-

mentation, detection and classi�cation of rocks on data collected by

rovers. That approach, based on a probabilistic fusion of data from

multiple sensor sources, was tested on Earth data (collected in the At-

acama desert in Chile). In [114], the same authors tested di�erent rock

detection approaches on Mars Exploration Rover data. In [40], the au-

thors addressed rock detection by using a segmentation method on data

collected by the Spirit Mars Rover Planetary Camera. That approach

incorporates multiple scale attributes, which include local attributes

(e.g., texture), object attributes (e.g., shading), and scene attributes

(e.g., illumination direction). Moreover, in [46], the authors proposed

an automatic algorithm for rock detection both on ground imagery and

on HiRISE data, based on cylinder �tting.

Also, the detection of other types of planetary features, which is

not relevant here, has been addressed in the literature (e.g., detection

of volcanoes on Venus [15], polygonal patterns on Mars [91], valley

networks on Mars [75]).

Each of the previously published methodologies for automatic plan-

etary feature extraction has its advantages and drawbacks. Although

the recent approaches show high detection accuracy, the underlying

technology is complicated and its robustness to di�erent types of plan-

etary surfaces and to image quality is not totally satisfactory yet.
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2.2.2 Proposed Approach for Ellipsoidal Features

Extraction

Di�erent types of features are present in the PIs, and their size, shape

and position can be estimated. The extracted features can be used for

registration purposes.

Here, we focus on detecting features of ellipsoidal shape, such as

craters and rocks. Craters are objects of approximately elliptical shape

with shadows, due to their depth and uneven illumination. Rocks have

small circular or elliptical shape, with almost no shadows. The extrac-

tion of these spatial features is a di�cult task, because PIs are blurry,

quite noisy, present lack of contrast and uneven illumination, and the

represented objects are not well de�ned. For these reasons, a region-

based approach that lies on segmentation, has been chosen in order

to address such problems. A frequent approach to segmentation intro-

duces a set of characteristic points that are related to the objects to be

detected, automatically selected and used as �seed points� to segment

the images. Many segmentation approaches have been explored in the

literature. Here, the watershed algorithm, presented by Beucher in [7],

has been chosen, a method which is automatic, robust and fast. The

basic concept of watershed segmentation is giving a topographic repre-

sentation of a grey-level image (i.e., the grey level of a pixel represents

its elevation). A �ooding process starts from the minima of the im-

age in terms of elevation, so that the merging of the �ooding coming

from di�erent sources is prevented. As a result the image is partitioned

into two di�erent sets: The catchment basins (i.e., the regions) and the

watershed lines (i.e., the region boundaries). The �owchart of the pro-

posed technique for spatial feature extraction is shown in Figure 2.1.

Before applying feature extraction techniques, the input image IP
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Figure 2.1: Flowchart of the proposed approach. The original image
is �rst preprocessed, in order to smooth the noise. Then the Canny
operator is applied to the smoothed image. In order to detect the rocks,
watershed segmentation is applied to the binary image gradient. Crater,
which are more complex objects, are detected by using the generalized
Hough accumulator: The maxima of the accumulator are used as seed
points for the watershed segmentation of the intensity image gradient.
The �nal result is a map of the all the detected features.

needs to be preprocessed. First, the noise is reduced by a smoothing

�lter. Then, in order to detect edges, the image gradient is computed

by using the Canny edge detector [19]. As an intermediate result of this

operation an intensity gradient, GP , is generated. Then, by applying a

non-maximum suppression algorithm followed by an hysteresis thresh-

olding to GP , a binary gradient image, BP , is obtained but this image

shows the contours of the objects represented in the original image.

Rocks generally appear like closed contours in BP , because of the

almost absence of shadows. In order to extract these features, the

watershed segmentation algorithm is applied to BP and closed contours

are extracted. All the areas included within a closed contour correspond

to �seed point-areas,� and are identi�ed as regions. The result of this

�rst step is a binary image R that shows boundaries of small ellipsoidal

features of regular shapes, such as rocks.

While rocks generally appear like closed contours and can be eas-

ily detected, craters have a more complex structure and, due to their

depth and uneven illumination, often exhibit internal shadows. Their

borders can be approximated with incomplete non-continuous ellipti-

cal curves. A generalized Hough accumulator [120] is used to identify
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the seed points to detect these structures from BP . For every pair of

pixels that are detected as edge points in BP and exhibit opposite gra-

dient directions (being the relation of opposition de�ned with tolerance

ϵ), an accumulator, corresponding to the median point between them

in the image plane, is incremented by a unit value. The maxima of

the accumulator are taken as centers of ellipses. The three parame-

ters describing the ellipse centered in each detected maximum are then

computed and a 3D accumulator is used to estimate the two semi-axes

and the direction angle of the ellipse from all the pairs of points that

contributed to the accumulator in the considered center. The center

of each ellipse that has been generated is used as a seed point for seg-

mentation. Starting from all the detected seed points, a watershed

algorithm is applied to GP and the craters are identi�ed. GP is used in

this case because it represents not only the edges but also the elevation

information. As a result, a binary image C that shows the boundaries

of elliptical features, such as craters, that were not detected by the

previous step. In a post-processing step, features are approximated by

ellipses and their attributes (i.e., ellipse semi-axes and rotation angle)

are estimated. Features with eccentricity e > 0.6 are discarded, being

features of larger e unlikely to be either craters or rocks. A binary

image, F P , which represents the contours of all detected features, is

created. The binary image, F P , shows the boundaries of the features,

identi�es their locations and estimates their shapes.

The proposed technique for feature extraction can be used to reg-

ister image pairs representing the same scene. For registration, two

binary images need to be extracted from both images to be registered

and their match can be estimated (in Chapter 3 a method for feature

matching is proposed, in Chapter 5 an example of the application of

the proposed feature extraction approach to image registration is pre-

sented).
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2.2.3 Proposed Approach for Crater Detection

Di�erent types of spatial features are present in the PIs, but the most

evident ones are generally craters, i.e., objects of approximately ellip-

tical shapes with shadows.

In order to detect craters on planetary surfaces, an approach based

on a Marked Point Process (MPP) is investigated here. MPPs en-

able the modeling of the distribution of complex geometrical objects

in a scene and have been exploited for di�erent applications in image

processing. Marked point processes have been successfully applied to

address di�erent problems in terrestrial remote sensing, among which

road network extraction [36] and building extraction in dense urban

areas [22], [82], [94]. Moreover, in forestry applications, marked point

processes have been used to reproduce the spatial distribution of the

stems [87]. Here, the method is applied to the detection of craters in

PIs.

The context is stochastic and the goal is to minimize an energy on

the state space of all possible con�gurations of objects, using a Markov

Chain Monte-Carlo (MCMC) algorithm and a Simulated Annealing

(SA) scheme. More properly, a novel MPP is introduced here to model

the structure of the crater edges in the image.

The overall architecture of the proposed approach for crater detec-

tion is shown in Figure 2.2. First, the noise is reduced by applying a

Figure 2.2: Flowchart of the proposed approach.

smoothing �ltering operation. Then, in order to produce a binary edge

map BP , showing the contours of the objects represented in the original
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image, the Canny edge detector [19] is applied. The Canny detector

has been chosen because it guarantees a low error rate, the obtained

edge points are well localized, and the width of each detected edge is

one pixel.

The result of this �rst step, BP , is a binary image that shows the

object boundaries. Craters have a complex structure and, due to their

depth and uneven illumination, exhibit shadows. Their borders can be

approximated with incomplete non-continuous elliptical curves.

BP is modeled as a con�guration of objects whose positions and

attributes are a realization of an MPP X [89]. The MPP X is a process

whose realizations are random con�gurations x of several objects, each

belonging to a space S = P ×K, where P is the position space, and K

the space of the marks, i.e., set of parameters that fully describe each

object. Here, the 2D model, used to extract the features of interest,

consists of an MPP of ellipses, and each ellipse is represented by a

5-tuple (u, v, a, b, θ), taking values in the set space

S =

P︷ ︸︸ ︷
[0,M ] × [0, N ] ×

K︷ ︸︸ ︷
[am, aM ] × [bm, bM ] × [0, π], (2.4)

where (u, v) ∈ [0,M ] × [0, N ] are the coordinates of the ellipse center

(M and N being the width and height of BP ), a and b are the ellipse

axes (ranging in [am, aM ] and [bm, bM ], respectively), and θ ∈ [0, π] is

the ellipse orientation angle.

The probability distribution of this stochastic process is uniformly

continuous [100] with respect to a suitable Poisson measure on S. Op-

eratively, this means that it may be characterized by a density f with

respect to this measure. Similarly, the posterior distribution of x con-

ditioned to BP can also be characterized by a density function fp with

respect to the same measure and a Gibbs formulation is proven to hold
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for fp [82]. Hence, one may introduce an energy function U such that

fp(x|BP ) =
1

c
exp{−U(x|BP )}, (2.5)

where c is a normalizing constant. Hence, in order to minimize this

posterior distribution, U will be minimized on the space of all con�gu-

rations x in the feature extraction process.

The Proposed Energy Function

The energy function takes into account the interactions between the

geometric objects x1, x2, ..., xn in the con�guration x (the prior energy

UP ), and the way they �t to the data (the likelihood energy UL)

U(x|BP ) = UP (x) + UL(BP |x). (2.6)

The prior term characterizes the general aspect of the desired so-

lution. According to the geometric properties of the con�gurations of

craters, a basic rule is imposed on the prior term of our model. The

prior energy, UP , penalizes overlapping objects in x, which are very

unlikely, by adding a repulsion between objects which intersect. The

prior energy of our model is

UP (x) =
1

n

∑

xl⋆xm

φ(xl, xm), (2.7)

where φ is a repulsion coe�cient, which penalizes each pair of overlap-

ping objects (denoted as xl ⋆ xm) in the con�guration x. The repulsion

coe�cient φ is calculated as follows

φ(xl, xm) =
xl ∩ xm

xl ∪ xm

, (2.8)
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where xl ∩ xm denotes the overlapping area between the two objects

xl and xm in the con�guration (l,m = 1, 2, ..., n, l ̸= m ) and xl ∪ xm

indicates the sum of the areas covered by the two objects xl and xm.

Then, the likelihood term UL is de�ned as

UL(BP |x) = US(BP |x) + UD(BP |x), (2.9)

where US measures the similarity between the con�guration and the

data, whereas the data term UD measures the distance between the

objects in the con�guration and the contours of the data. Di�erent

formulations for the likelihood energy, which have been proposed in

previous work on MPP [87,89], have proven to be unfeasible for plane-

tary data. Hence, a new formulation for UL, more appropriate for the

analyzed data, is proposed here.

In particular, the similarity energy US between the data BP and

the current con�guration x is de�ned as a correlation measure1

US(BP |x) =
|{(u, v) : BP (u, v) = 1 & Π(u, v|x) = 1}|

|{(u, v) : BP (u, v) = 1}| , (2.10)

where u and v are the spatial coordinates in the image plane; Π(·|x) is
the projection of the con�guration x such that Π(u, v|x) = 1 if (u, v)

belongs to the boundary of at least one ellipse in the con�guration x

(i.e., if there exists i ∈ {1, 2, ..., n} such that (u, v) is on the boundary

of xl), and Π(u, v|x) = 0, otherwise. Consequently, US expressed as

(2.10) is equivalent to the de�nition of a correlation function between

the binary images BP and Π(·|x), representing the extracted and the

modeled edges, respectively. According to the correlation de�nition, in

the binary case, only nonzero pixels from both images contribute to the

1Given a �nite set A, we denote by |A| the cardinality (i.e., the number of
elements) of A.
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value of the correlation. This energy term, which is novel with respect

to the MPP literature, resembles analogous correlation measures that

have been used for registration purposes [67]. The correlation measure

in (2.10) is considered to be appropriate here because it enables to

estimate the match between two binary images (BP and Π) in a fast

and accurate way.

Then, the data energy UD is calculated at the object level: For

each object xl in the current con�guration x a weight parameter ψl,

proportional to the distance from the closest detected edge pixel in the

data BP with respect to its dimension, is calculated, i.e.,

ψl =
inf{

√
(u− u′)2 + (v − v′)2 : BP (u, v) = 1 & Π(u′, v′|xl) = 1}

max (al, bl)
,

(2.11)

where Π(·|xl) has a meaning similar to above and al and bl are the two

ellipse axes associated to the object xl (i = 1, 2, ..., n).

The resulting data energy will be

UD(BP |x) =
1

n

n∑

i=1

ψl. (2.12)

Then, objects with a low value of ψ will be favored in the con�guration.

Energy Minimization and Crater Mapping

A Markov Chain Monte-Carlo (MCMC) algorithm [43], coupled with a

Simulated Annealing (applied with a given annealing schedule T (·)), is
used in order to �nd the con�guration x which minimizes U . We stress

here that this minimization is carried out with respect to not only the

locations and marks of the objects in the MPP realization but also

the number of objects, i.e., the proposed method also automatically

optimizes the choice of the number of detected craters. In particular,
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the marked point processX, de�ned by f , is sampled by using a random

jump MCMC algorithm: It allows to build a Markov chain Xk (k =

0, 1, ...), which jumps between the di�erent dimensions of the space of all

possible con�gurations and, in the ideal case, ergodically converges to

the optimum distribution x∗ [97]. The �nal con�guration of convergence

does not depend on the initial state. The �owchart of the minimization

scheme is shown in Figure 2.3.

Figure 2.3: Flowchart of the proposed minimization scheme.

At each step, the transition of this chain depends on a set of �propo-

sition kernels�, which are random changes proposed to the current con-

�guration. In order to �nd the con�guration maximizing the density

fp(·) on S, we sample within a Simulated Annealing scheme (SA), which

gives us the MAP estimator. SA is an iterative algorithm where at each

iteration k a perturbation is proposed to the current con�guration at

temperature Γ(k), k = 1, 2, ..., K). This perturbation is accepted or re-

jected with a probability which ensures that the probability distribution

of the Markov chain ergodically converges to

fp(x)
1

Γ(k) . (2.13)
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Here, the annealing schedule, Γ(·), is de�ned as

Γ(k) = ΓI ·
(

ΓF

ΓI

) k
K

, (2.14)

where ΓI and ΓF are the initial and the �nal temperatures, respectively,

and K is the total number of allowed iterations. In practice, in order

to cope with too long computational times, the decrease of the temper-

ature is geometric (as usual in SA for Markov random �elds) and does

also not imply the ergodic convergence to a probability distribution lo-

calized at the minima of U(x|BP ), in contrast, it follows the adaptive

approach developed in [88].

The set of proposition kernels are birth and death, translation, di-

lation, and rotation [48]. For each proposition kernel m, a Green ratio

Rm(x, x′) is de�ned, that tunes the likelihood of replacing con�gura-

tion x by con�guration x′ at each SA iteration. More precisely, the

birth and death kernel consists in proposing, with probability pB, to

uniformly add in S an object to the current con�guration x or, with

probability pD = 1 − pB, to remove a randomly chosen object of x.

2.2.4 Conclusions

Here, two di�erent methods for planetary feature extraction have been

proposed. First, a segmentation technique, based on a novel combina-

tion of the Canny operator, the Generalized Hough Transform (GHT),

and the watershed, has been investigated to identify and reconstruct

the shape of ellipsoidal features. The proposed approach for ellipsoidal

feature extraction can be used for registration purposes, as it will be

shown in Chapter 5.

Moreover, a novel crater detection approach, based on the combina-

tion of an edge detector and a marked point process, has been proposed.
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The MPP approach, which was developed in the context of computer

vision and previously used in many di�erent applications (e.g., tree

crown identi�cation, road network detection, building extraction), is

for the �rst time applied to PI analysis.

Both methods are tested on images of Mars, acquired by the THEMIS

instrument �ying on the Mars Odyssey spacecraft. Moreover the �rst

of the proposed methods, aimed at segmenting ellipsoidal features, was

tested on HiRISE images collected by the HiRISE camera �ying on the

Mars Reconnaissance Orbiter. For both approaches, the accuracy of the

detection is assessed by comparison to a manually generated reference

map (results are presented in Chapter 5).

The proposed approaches can be adopted as the �rst important step

in several applications dealing with all the various data that are being

collected during the current and future planetary missions. Among

them selecting safe landing sites, identifying planetary resources, and

preparing for subsequent planetary exploration by humans and robots.

In our future work we plan to integrate the shadow information

around the features in order to improve the reliability of the edge de-

tection and reduce the false alarms in the contour map. Illumination

correction, based on the knowledge of the orbital angle and the acquisi-

tion time, will be useful to improve the reliability of the detection and

reduce the bias in the reconstruction of the exact feature shape.

The proposed approaches will also be applied to the registration of

multisensor and multitemporal images, by performing feature match-

ing.

Finally, the proposed methods could be used to extract other fea-

tures of elliptical shape, such as volcanoes. Additionally, features of

other shapes, such as ridges or polygonal patterns among others, could

be extracted, by adapting either the generalized Hough transform and

the marked point process to the detection of the shape of interest.
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Chapter 3

Image Registration

Registration is a fundamental task in image processing in order to com-

pare images acquired under di�erent conditions. It is the process of

spatially aligning di�erent images and it is used to match two or more

pictures taken, for example, at di�erent times, from di�erent sensors,

or from di�erent viewpoints. The problem of registering two or more

images is indispensable in diverse applications of computer vision and

medical image analysis. For example, temporal registration is necessary

when analyzing multitemporal images.

In this work we deal with multitemporal Retinal Image (RI) pairs,

hence, image registration is addressed in order to perform their tempo-

ral analysis. The approach that will be proposed is general and can be

applied to the registration of Planetary Images (PIs) as well.

These applications are diverse and, therefore, it is important to

review the basic concepts underlying image registration theory which

will be used to formulate the addressed problem.

This chapter is organized as follows: The general theory about im-

age registration is outlined in Section 3.1. Then, an overview of pre-

vious work on RI registration is presented in Section 3.1.1. Finally,

the proposed approach for the automatic registration of image pairs is
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methodologically described in Section 3.2.

3.1 De�nition

Image registration can be de�ned as a mapping between two images

both spatially and with respect to intensity. De�ned these images as

2-D matrices, denoted by Iref and Iinput, where Iref(i, j) and Iinput(i, j)

represent their respective intensity values, the mapping between images

can be expressed as:

Iref(i, i) = g(Iinput(T (i, j))), (3.1)

where T is a 2-D spatial coordinate transformation, i.e.,

(i′, j′) = T (i, j) (3.2)

and g is 1-D intensity or radiometric transformation.

The registration problem is the task involved in �nding the optimal

spatial and intensity transformations so that the images are matched

with regard to the misregistration source [9]. Here, only the spatial or

geometric transformation will be evaluated.

It can be assumed that any new incoming input image, Iinput, is be-

ing registered with respect to a known reference image, Iref . According

to Brown [9], image registration can be viewed as the combination of

four components:

1. Feature space, i.e., the set of characteristics extracted from refer-

ence and input data that are used to perform the matching.

2. Search space, i.e., the class of potential transformations that

establish the correspondence between input data and reference

data.
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3. Similarity metric, which evaluates the match between input data

and transformed reference data for a given transformation chosen

in the search space.

4. Search strategy, which is used to choose which transformations

have to be computed and evaluated.

3.1.1 Previous Work

Image registration is a di�cult task in image processing because cor-

respondence problem is not straightforward. As a consequence, several

di�erent registration algorithms have been investigated.

The existing registration methods can be classi�ed into two broad

groups: interactive and automatic techniques.

Human-interactive methods have been considered as a reference

among the existing methods. Human-involvement neither necessar-

ily achieves the highest accuracy nor reproducibility, but it has been

used to prevent catastrophic failures, which are possible with auto-

matic registration methods. The earliest studies of image registration

in the ocular imaging area were based on a human interaction [3,86,90].

However, manual registration is time-consuming, often prone to human

error, and requires specialized knowledge.

Automatic registration methods have been widely investigated in

the last decades. The existing automatic techniques may be sub-classi�ed

into di�erent categories based on the image data used, the consid-

ered measure of similarity, the selected transformation model, and the

method employed for the parameter search [9, 127]. However, in the

context of fundus images, registration techniques can be simply sub-

classi�ed into feature-based and area-based methods [28].

Feature-based methods are somewhat similar to manual registra-

tion. In fact, these techniques are based on the extraction of features
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in the images to be registered. Features include the vascular struc-

ture [17, 52, 110], the optic disc location and boundary [42, 51, 64] and

the macula [92]. The ocular blood vessels or their crossing points

are commonly used for registration. The registration process is per-

formed by maximizing a similarity measure computed from the corre-

spondences between the extracted features. These approaches assume

that feature/point correspondences are available in both images, and

their performance largely depends on su�cient and/or reliable corre-

spondences, especially, when the overlapping part of an image pair is

very limited or when there are mismatched correspondences. In [85]

blood vessels were selected by an adaptive thresholding technique and

their correspondence was established by using a sequential similarity

detection method. In [45], matched �lters were used to detect ves-

sel junctions and correspondences were determined by a local cross-

correlation. A group of papers extracted the bifurcations points of the

vessels by means of mathematical morphology [126] or Forster detec-

tor [38] and then they matched corresponding points. In [18] vascular

landmarks are automatically detected and aligned using a hierarchical

estimation technique. An iterative method, called dual bootstrap it-

erative closest point, is presented in [112]: An initial transformation,

which is only accurate in a small region (the �bootstrap region�) of the

mapped image, is estimated and iteratively expanded it into a global

transformation estimate.

Area-based techniques are generally based on all pixel intensities

within both images to be registered, in order to determine a single

best set of transformation parameters for the analyzed image pair. The

transformation can be either found by correlation or by optimization, in

the spatial or in the frequency domain. Phase correlation [58] has been

widely used to estimate translation misalignments, as proposed in [20].

This work was extended in [21] to estimate not only translation but
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also rotational parameters: Many incrementally rotated images were

generated from the original and correlated. In [96], mutual information

was used as a similarity measure and simulated annealing was employed

as a searching technique. Butz and Thiran [16] maximized the mutual

information of the gradient images.

Among the two classes of automatic image registration techniques,

feature-based methods are di�cult to generalize, because they are usu-

ally based on rules for both identi�cation of features and determination

of correspondences. Area-based methods, on the other hand, are free

of decision processes and can be easily generalized. However, e�cient

techniques can be applied only when translation is the only deformation

between the analyzed images. The proposed solutions to deal with both

translation and rotation are often computationally very expensive [28].

3.2 Proposed Approach

Here, an automatic registration approach based on global optimization

techniques is proposed. In particular, in order to estimate the opti-

mum transformation between the input and the base image, a Genetic

Algorithm (GA) is used to optimize the match between previously ex-

tracted maps of curvilinear structures in the images to be registered

(such structures being represented by the vessels in the human retina).

The reference and input images (denoted by Iref and Iin, respec-

tively) are previously segmented (e.g., by using the blood vessel extrac-

tion approach proposed in Chapter 2 for Retinal Images, RI) in order

to extract the correspondent binary feature maps Fref and Fin. Such

binary images are fed as inputs to an optimization module, aiming at

maximizing a suitably de�ned objective function. In fact, the trans-

formation matrix has to be optimized. Its goodness is evaluated by an

objective function that quanti�es the matching between the two feature
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maps as a function of the unknown transformation (Sec. 3.2). The op-

timization is achieved here by applying a genetic algorithm. After the

optimum matrix has been estimated, it is applied to the original input

image, which is translated and interpolated in order to obtain the �nal

registered image. The architecture of the proposed registration process

is shown by the block diagram in Fig. 3.1.

Figure 3.1: Block diagram of the registration process: Both the ref-
erence and the input images (Iref and Iin) are segmented, in order
to obtain their binary vessel maps (Fref and Fin), used by the objec-
tive function to calculate the measure of match (MOM). The genetic
algorithm estimates the optimum transformation (genetic optimization
block), which is then applied to the input image, Iin, in order to achieve
the registered image, Ireg.

Measure of Match

After segmentation, two binary feature maps are obtained, Fin and

Fref , from the input and reference image, respectively. The problem

is formulated as determining a transformation T ∗ such that, when T ∗

is applied to the �rst image, Fin, the best match with the second one,

Fref , is achieved. The problem can be mathematically formulated as

the maximization of the following objective function:

MOM(T ) =
1

n

∑

(i,j):Fref (i,j) ̸=0

Fin(T (i, j)), (3.3)

where MOM (Measure Of Match) denotes the objective function, T is

the transformation for the i and j coordinates in the image plane, and n
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is the number of nonzero pixels of Fref itself. An a�ne transformation

model, which exhibits six independent parameters, is employed.

Equation (3.3) is equivalent to the de�nition of the correlation func-

tion for the binary images Fin and Fref . According to the correlation

de�nition, in the binary case, only nonzero pixels from both images

contribute to the value of the correlation. The function used, as de-

scribed in (3.3) is normalized, so that the absolute maximum value is

unitary; but in general, the achieved maximum value is signi�cantly

lower. The reason is not the optimization method ine�ciency, but the

fact that the two feature maps are in most of the cases not identical

due to noisy pixels and changes.

Genetic Algorithm

The determination of the transformation parameters strongly depends

on the objective function, as well as on the images to be registered. The

search based methods, provide a solution, based on the optimization of

a MOM between the original and the transformed images, with respect

to the transformation parameters.

Generally, the MOM has multiple extremes, hence the most at-

tractive search methods are based on global optimization techniques.

Here, a genetic algorithm is adopted (as proposed in [118]), since it

ensures, under mild assumptions, convergence to a global maximum of

the adopted matching functional.

The independent parameters of T are de�ned over a wide range of

values to achieve robustness. The values of the parameters are con-

verted to binary digits and concatenated in a single string, called in-

dividual. Each real parameter is encoded as a binary number, with a

precision that depends on the number of digits used.

The process begins with the preliminary random de�nition of the

�rst population individuals and algorithm parameters, as well as of
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individual and population dimensions (i.e., the number of bits in each

string), minimum number or generations, mutation and crossover prob-

abilities. First, the population is evaluated by calculating the �tness

of each individual. According to the principle of the survival of the

�ttest, pairs of �t individuals are selected to recombine their encoded

parameters in order to produce o�spring, according to the following

steps:

1. The �ttest individuals are kept in the next generation without

being changed, by elitism.

2. The other individuals are selected by tournament selection, ac-

cording to their �tness. In particular, for each individual a ran-

dom number rn is uniformly drawn in [0,1] and the �rst individual

(after sorting) with a cumulative probability above rn is chosen.

3. Crossover is applied to each pair of individuals with a �xed prob-

ability.

4. Mutation is applied to each single individual, with a �xed prob-

ability.

In this way a new generation of solutions, which replaces the previous

one, is produced. Its �tness is calculated and a new selection is per-

formed, until the convergence of the MOM is achieved [74]. The �nal

transformation matrix is calculated, by decoding the �ttest individual

of the last population and the input image is registered.

3.3 Conclusions

In this chapter, a technique is proposed that automatically registers

pairs of multitemporal images. The registration is achieved by using a

method based on a genetic optimization technique.
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Before the algorithm can be used to estimate the optimum trans-

formation, the images has to go through a segmentation stage, aimed

at obtaining feature maps from which a matching measure (adopted as

optimization functional) is extracted. Once the optimum transforma-

tion is obtained, it can be used to register the input image respect to

the reference one.

The proposed method has been �rst investigated in order to reg-

ister multitemporal RIs, by matching the correspondent vessel maps

extracted using the approach proposed in Chapter 2. Subsequently, the

proposed registration approach has also been applied to the registra-

tion of PIs, by matching the feature maps extracted using the methods

proposed in Chapter 2.

A manual registration process is carried out for comparison pur-

poses. Further conclusions about performances of the proposed ap-

proach will be drawn in Chapter 5, where the experimental evaluation

of the registration technique is presented.
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Chapter 4

Change Detection

Change detection is the process of identifying di�erences in the state

of an object or phenomenon, by observing it at di�erent times, often

through remote sensors [107]. The object, as named in this de�nition, is

meant in a very general and abstract sense: It can be a physical object,

as well as a geographical region or a monitored area of an underground

station, etc.

In this chapter, the problem of detecting changes in pairs of multi-

temporal images is addressed. In particular, two di�erent methods are

proposed to detect temporal changes in Retinal Images (RIs) that can

occur due to retinopathy.

First, an introduction of the change detection problem is outlined

in Section 4.1. Subsequently, an overview of the approaches in the

literature is given in Section 4.2. Finally, two novel approaches for

change detection in RIs are proposed in Section 4.3.

4.1 De�nition

Essentially, change detection involves the ability to extract quantita-

tive information about temporal e�ects using multitemporal data sets,
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which express the observations concerning the object/phenomenon un-

der investigation. These observations are typically represented by data

(images) of the object/phenomenon, acquired at two or more distinct

times. Each image can be a scalar grey level image, as well as a color

image, or, in general, a multispectral image (i.e., a vector-valued image,

whose components consist of views of the object/phenomenon, corre-

sponding to di�erent acquisition bands).

Hence, given two multispectral, equal sized images I1 and I2 of the

object/phenomenon, acquired at times t1 and t2, respectively (t1 > t2),

the purpose of a change detection algorithm is to identify the di�erence

(i.e., the �changes�) between I1 and I2. In the simplest case, a change

detector is concerned to identify if a change has occurred at a given

pixel. In a more sophisticated context, the algorithm may try to draw

conclusions about what kind of change has occurred at that pixel. In

both cases, the algorithm produces a change map, i.e., an output image

CM expressing the changes occurred at each pixel from I1 to I2. When

the algorithm only detects if a change has happened, the change map

is a binary image, where, for instance, a white pixel denotes �change�

and a black one denotes �no-change.� On the other hand, a discrete

multi-level change map is obtained when di�erent typologies of change

are taken into account and suitably distinguished from one another.

4.2 Previous Work

Change detection approaches can be divided into two broad families:

Supervised and unsupervised. The former family is based on super-

vised classi�cation methods, which require the availability of a suitable

training set for the learning process of the classi�cation algorithm. The

latter assumes no training data to be available at any observation date
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and usually performs the change detection by transforming the two ana-

lyzed images into a single image in which changed areas are emphasized

and can be successively detected.

From an operational perspective, in order to generate maps in which

�change� and �no-change� classes are discriminated, completely unsu-

pervised approaches are generally preferred, as they do not require the

di�cult and (time- and possibly cost-) expensive process of training

data collection. When using these methods, no prior information about

the statistics of the aforesaid classes is available to the classi�cation al-

gorithm.

A signi�cant variety of change detection approaches have been pro-

posed in the literature to deal with change detection in di�erent �elds.

The traditional approaches to change detection in remote sensing in-

clude image di�erencing [35], image ratioing [81], image regression,

Change Vector Analysis (CVA), methods based on Principal Compo-

nent Analysis (PCA), multitemporal coherence analysis [95], integra-

tion of segmentation with multilayer-perceptron and Kohonen neural

networks [125], fuzzy-rule-based analysis [61], multisource and multi-

temporal data fusion [11], spatio-temporal contextual classi�cation [68], [70],

and likelihood ratio tests [30], [63].

One of the most widely used change detection method is image dif-

ferencing, according to which the images acquired at two di�erent dates

are subtracted pixel-by-pixel in order to generate a �di�erence image.�

This method relies on the assumption that in the �di�erence image,�

the values of the pixels associated with changes present values signif-

icantly di�erent from those of the pixels associated with unchanged

areas. Changes are then identi�ed by analyzing the �di�erence image.�

Another commonly used change detection method is the image ra-

tioing approach, which generates a ratio image by dividing pixel-by-

pixel the gray levels at one date by the gray levels at another date.
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The detection of changes is performed by analyzing the �ratio image.�

This approach is usually preferred to image di�erencing when multi-

plicative noise a�ects the input images (e.g., in the case of radar or

sonar imagery).

Both image di�erencing and image ratioing involve the critical prob-

lem of selecting an optimal threshold value to be applied to the single

image that has been generated (i.e., di�erence or ratio) to separate

�change� from �no-change.� �Trial-and-error� procedures are typically

adopted to this end [37,62,81,107]. Rosin [98,99] surveyed and reported

experiments on many di�erent criteria for choosing the threshold at

which the image should be binarized. Smits and Annoni [109] discussed

how the threshold can be chosen to achieve application-speci�c require-

ments for false and misses alarms [93]. However, such manual opera-

tions typically turn out to be time consuming. In addition, the quality

of their results critically depends on the visual interpretation of the user.

The decision rule in many change detection algorithms is cast as a sta-

tistical hypothesis test. The decision as to whether or not a change has

occurred at a given pixel corresponds to choosing one of two competing

hypotheses, corresponding to �change� and �no-change� decisions [53].

In [77], the problem of automating the threshold selection task is ad-

dressed by proposing an unsupervised technique that integrates image

ratioing with a generalization of the Kittler and Illingworth minimum-

error thresholding algorithm (K&I) [56]. The change-detection method

(proposed in [76] and [69] with regard to optical remote sensing im-

agery) that integrates K&I with image di�erencing is modi�ed in [77]

by developing a new version of K&I, which is suited to image ratioing

and to the speci�c non-Gaussian statistics of the analyzed ratio images.

There are several methods that are closely related to image di�erencing

and image ratioing. For example, in CVA [12, 13, 29, 65], which is an
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approach often used for multispectral images, a feature vector is gener-

ated for each pixel in the image by considering several spectral channels.

The modulus of the di�erence between the two feature vectors at each

pixel gives the values of the �di�erence image.� Di Stefano et al. [111]

performed simple di�erencing on subsampled �gradient images.�

Although change detection techniques have been widely explored

for remote sensing imagery, few e�orts have been undertaken in the

temporal analysis of medical images. In particular, only a few methods

have been described in the literature for quantifying the dynamic nature

of diabetic retinopathy from a time series of images. In [101] the images

are compared by computing their di�erence and the presence or absence

of progressive changes is empirically decided.

Berger et al. [6] introduced the dynamic �icker animation as a tool

for visualizing changes in the retinal fundus. In this method, the two

registered images are displayed in rapid succession, usually a few sec-

onds apart. Changed regions in the image appear to �icker, whereas

unchanged regions appear steady.

Cree et al. [31] de�ned a region of interest around the fovea, and used

matched �ltering followed by thresholding and region growing to �nd

the microaneurysms. They also registered images from multiple time

points, to study the turnover of microaneurysms. In [32], methods are

described to �nd leakage of �uorescein in blood vessels by looking at

restored images from an angiographic sequence over time and �nding

areas that do not have a particular pattern of intensity changes.

Studies of microaneurysm turnover were also made by Goatman

et al. [44]. They detected microaneurysms from baseline and follow-up

angiograms, registered the images, and categorized the microaneurysms

into three classes namely, static, new, and regressed. A disadvantage of

these methods was that the processing was limited to a small region of

interest centered on the fovea. Sbeh and Cohen [104] segmented drusen
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based on geodesic reconstruction algorithms. They used the method

to study the evolution of drusen by registering two images that were

widely spaced in time. Each of the methods described above studies

the changes associated with only one kind of lesion. Furthermore, they

are all susceptible to errors in segmentation of the lesions that leads to

accumulation of change analysis errors over time.

All the described methods are speci�c to one type of lesion or region

of the retina: The detection is performed by segmenting the lesions in

each image and analyzing the segmentation results, instead of directly

comparing multi-temporal images. Hence, they are susceptible to errors

in change detection resulting from segmentation errors.

A rare example of a study for change detection in RIs was presented

in [79]. In that paper, the �change� areas are detected by using a su-

pervised thresholding technique applied to the sum square of the image

di�erence; the detected changes are classi�ed into di�erent typologies

by using a Bayesian approach. This method is completely automatic;

however, a training set, in which �change� and �no-change� classes are

manually labeled, is required for the thresholding process. In a further

study [80] the same method was applied for the detection of vascular

changes.

4.3 Proposed Approaches

In the application of change detection techniques to RIs, we assume that

variations in light due to retinal changes are larger than the variations

due to other factors, such as sensor noise, di�erent optical illuminance,

di�erences in �eld angle or in patient position, etc. [49]. The impact

of these �perturbing� factors might be partially reduced through the

selection of appropriate data. For instance, problems arising from �eld

angle di�erences can be dealt with by selecting data acquired at the
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same angle level set by the ophthalmologist.

Here, we focus on unsupervised approaches, due to the lack of a

priori information about the shapes and the statistics of the change

areas. In particular, two di�erent approaches for change detection in

RIs are proposed and compared, through the evaluation of the exper-

imental results (see Chapter 5). The �rst approach, which lies on the

application of an automatic thresholding technique to an appropriate

di�erence image, is presented in Section 4.3.1. In particular, a consoli-

dated approach for change detection in remote sensing data is applied

here to RIs. More details can be found in Appendix A. The second

approach, which is based on the innovative combination of the previ-

ous thresholding technique and a novel multiple classi�er approach, is

investigated in Section 4.3.2. More details can be found in the paper

reported in Appendix B. Both approaches generate a change map. The

detected changes can be further classi�ed by a subclassi�cation stage

(see Section 4.3.3).

4.3.1 Thresholding Approach

Given the registered RIs IR
ref and I

R
reg of the human retina, acquired dur-

ing two consecutive medical visits, out purpose is to identify the mean-

ingful di�erences (i.e., the �changes�) that occurred due to retinopathy.

The block diagram in Fig. 4.1 synthesizes the basic steps of the

method. After a preprocessing step(described in Section 4.3.1), the two

images to be analyzed, having been co-registered, are converted into two

grey level images by applying a ratio of their green and red channels (see

Section 4.3.1). These two new grey level images are compared in order

to generate two further images (�di�erence images�). The di�erence

images are obtained by subtracting pixel-by-pixel the γ/ρ ratio at the

second acquisition date from the γ/ρ ratio at the �rst date (where γ
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Figure 4.1: Block diagram of the proposed change-detection approach
based on K&I.

and ρ denote the green and red channels, respectively). Therefore, in

the di�erence images, pixels associated with retinal changes show grey

level values signi�cantly di�erent from those of pixels associated with

unchanged areas. Then the proposed algorithm is applied in order to

automatically detect the change pixels by using a decision threshold

to the histogram of the di�erence image. The selection of the decision

threshold is of major importance, as the accuracy of the �nal change

map strongly depends on this choice. This last step is highly critical in

the development of completely automatic and unsupervised techniques

for the detection of retinal changes [10].

Both IR
ref and IR

reg are converted to a gray level image by computing

the ratios of their green and red channels (see Section 4.3.1). These

two new gray level images are compared, pixel by pixel, in order to

generate two further images (�di�erence images�) obtained by a pixel-

by-pixel subtraction of the reference image from the registered one,

and viceversa. A di�erence image is computed in such a way that

pixels associated with retinal changes present gray-level values that are

signi�cantly di�erent from those of pixels associated with unchanged

areas.

The Kittler and Illingworth thresholding algorithm (K&I) [56] is ap-

plied in order to automatically estimate the optimal threshold, based on

the analysis of the histogram of the di�erence image. The threshold is
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then applied to the di�erence image, in order to detect the changes. The

selection of the decision threshold is of major importance, as the accu-

racy of the �nal change-detection map strongly depends on this choice.

This last step is highly critical in the development of completely au-

tomatic and unsupervised techniques for the detection of changes [10].

Consequently, the algorithm applies again the K&I method to the blue

feature in the �change� decision region to distinguish the typology of

change that occurred (red vs white spots). We use this unsupervised

approach by assigning the �white spot� and the �red spot� labels, when

the intensity in the blue feature is above or below the K&I optimal

threshold, respectively. In fact, the blue channel of this typology of im-

age data has proven to be e�ective to distinguish the two classes [78].

Preprocessing Step

Before applying an unsupervised approach to detect changes between

two di�erent images, a preprocessing step is usually necessary to make

the two images comparable in both the spatial and spectral domains.

Concerning the former, the registration has been automatically per-

formed, as described in Chapter 3. With regard to the spectral domain,

changes in light, in �eld angle and in the absorption of the mydriatic

drop between the two acquisition times may be potential sources of er-

rors. This problem is mitigated by performing radiometric calibration

of the images, here performed by automatic histogram matching [47],

based on a linear rescaling.

Furthermore, the detection of the optic disc in the human retina

is very important and mandatory for our approach to the detection

of exudates, because the optic disc has similar attributes in terms of

brightness, color and contrast. The optic disc appears in color fundus

images as a bright yellowish or white region. Especially the blue channel

of the image acquired at each date turns out to be discriminant for its
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detection. In fact, in fundus images, the blue feature is signi�cantly

non-zero only in bright regions corresponding to the exudates and the

optic disc; the latter can be identi�ed based on its size and shape.

The detection and removal of the optic disc has been automatically

performed, by using the approach described in Chapter 2.

Consequently, illumination inhomogeneities are corrected by using

a homomorphic �ltering technique [117]. For Lambertian surfaces, an

observed image IO can be modeled as a composition of a luminance

component, Lc, and a re�ectance component, Rc (i.e., IO = Lc · Rc).
This imaging model holds for RIs due to the di�usive characteristics of

the fundus. An exception for this model is the optic disc, which has to

be excluded from the computation. The luminance component can be

assumed to vary slowly over space, whereas the re�ectance component

contains also medium and high frequency details [8]. By �rst applying

the logarithm, we transform the multiplicative relation between IO, Lc

and Rc to an additive one, i.e.:

log(IO) = log(Lc) + log(Rc). (4.1)

After applying the logarithm, the image is low-pass �ltered, by using

a Gaussian �lter, and, then, subtracted from the logarithmic original,

yielding a high-pass component (i.e., log(Rc)). Exponentiation of both

high-pass and low-pass components approximately separates the image

into luminance and re�ectance components. Next processing steps are

applied to the latter component.

Feature Transformation

The three RGB channels of fundus images contain di�erent information:

The red channel is usually the brightest channel but exhibits a very

narrow dynamic range; the green channel has the best contrast (the
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edge of retinal features such as exudates, optic disc, and blood vessels

are brighter than in the other channels); the blue channel is non-zero

mostly in the areas of the optic disc or of the white spots (see also

above).

Given the re�ectance component of an RGB fundus image Rc =

{uij ∈ R3 : i = 0, 1, . . . ,M, j = 0, 1, . . . , N} of size M × N , in order

to generate a gray-level image to be processed, a band ratioing γ/ρ

between green channel γ and red channel ρ is applied. Ratioing γ and

ρ emphasizes di�erent features. In fact, after the application of this

operator, vessels and blood regions are darker than the background

while white spots are brighter.

Thresholding Method for Change Detection

In order to automatically detect changes in color RIs, a threshold se-

lection task is addressed by adopting an automatic change-detection

technique, which integrates the image-di�erencing approach (see Sec-

tion 4.3.1) with a generalization of the K&I's unsupervised minimum-

error thresholding algorithm [56].

A thresholding approach is a simple classi�cation procedure involv-

ing only one input feature, namely, the grey level of a scalar image.

Here, this operator is applied to two �di�erence images,� that are ob-

tained by subtracting pixel-by-pixel the γ/ρ ratio of IR
reg by the one of

IR
ref , and viceversa. Adopting this approach, the key issue is to choose

the threshold in order to keep the number of misclassi�ed pixels as low

as possible. We de�ne the prior probabilities P1 and P2 and the param-

eters of the conditioned probability density functions (pdfs) p1 and p2 of

the di�erence image z, conditional to the classes ω1 = �no-change� and

ω2 = �change.� Since we operate in an unsupervised fashion, P1, P2, p1,

and p2 cannot be estimated through a training set. As a consequence,
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in place of the global intensity pdf of z, i.e.:

pz(Z) = P1p1(Z) + P2p2(Z), Z ∈ R, (4.2)

the histogram {h(Z), Z = 0, ..., L − 1} of the di�erence image is com-

puted and utilized (L denotes the number of quantization levels in the

di�erence image). The selection of an appropriate threshold τ is based

on the optimization of a given prede�ned criterion function J(τ) which

averages a cost function Σ(·, τ) over the feature histogram h(·) [26]. Kit-
tler and Illingworth proposed a thresholding algorithm [56], [26] whose

cost function is based on the Bayes decision theory. In particular, they

adopted the classi�cation rule for minimum error, under the Gaus-

sian assumption for the class-conditional pdfs (i.e., pi(·) = N(mi, σ
2
i ),

wheremi and σ2
i are the ωi-conditional mean and variance, respectively;

i = 1, 2). Under this hypothesis, the only parameters to be estimated

are the class prior probabilities P1 and P2, the class means m1 and m2,

and the class variances σ2
1 and σ2

2.

According to the MAP (Maximum A-posteriori Probability) rule,

which is equivalent to the minimum error rule [39], we need to maximize

the posterior probability P (ωi|Z) (i = 1, 2). This task is formulated

by the K&I method in terms of the threshold τ , by introducing the

following cost function [56]:

Σ(Z, τ) =
[Z − m̂i(τ)]

2

2σ̂i
2(τ)

− 2 ln
P̂i(τ)

σ̂i(τ)
, (4.3)

with i = 1 for z ≤ τ and i = 2 for z > τ . P̂i(τ), m̂i(τ) and σ̂i
2(τ) are

histogram-based estimates of the class parameters, which depend on τ
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(i = 1, 2) [56]. The resulting criterion function is:

J(τ) = 1 + 2
2∑

i=1

P̂i(τ) ln
σ̂i(τ)

P̂i(τ)
. (4.4)

The optimal threshold τ ∗ is chosen as to minimize J(·); this aims at

minimizing the classi�cation error between ω1 and ω2. The behavior

of the criterion function is strongly related to the scene characteristics,

which are represented by the histogram. Typically, only one minimum

is present in the interval [0, L− 1], which implies histogram bimodality

and re�ects the presence of two natural classes (e.g., �change� and �no-

change�) in the scene.

4.3.2 Multiple Classi�er Approach

In order to compensate for the problems due to di�erent angles of il-

lumination in the two acquisitions, which cause local illumination vari-

ation not compensated by the homomorphic �ltering, an innovative

approach based on multiple classi�ers is proposed here. In particular,

the change-detection method proposed in Section 4.3.1 in integrated

within a multiple classi�er approach, which combines di�erent spatial

classi�ers.

The architecture of the proposed multiple-classi�er approach is shown

by the block diagram in Fig. 4.2. After a preprocessing step(described

Figure 4.2: Block diagram of the proposed change-detection approach
based on multiple classi�ers.
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in Section 4.3.1), the two images to be analyzed, having been co-

registered, are converted into two grey level images by applying the

γ/ρ ratio between their green and red channels (see Section 4.3.1).

These two new grey level images are subtracted pixel-by-pixel in order

to generate two further images (�di�erence images�). Then, the pro-

posed multiple classi�er approach is applied in order to automatically

detect the change pixels.

The thresholding approach for the detection of temporal changes (as

described in Section 4.3.1) is not applied to the whole di�erence image

but to a set of randomly selected sub-images, which can be considered

as single classi�ers. Each sub-image is selected by a using a Random

Window Generator (RWG). RWG generates square windows in a ran-

dom way: They are centered in randomly generated pixels, which are

uniformly distributed in all the image but the dark background. As a

result, the windows partially overlap.

In the adopted multiple classi�er voting approach, each window

corresponds to a single classi�er: The thresholding approach (described

in Section 4.3.1) is applied to each sub-image and a change sub-map

is obtained. The information stored in each change sub-map needs to

be combined in a global change map. For each pixel of the image, all

the corresponding classi�ers (i.e., the windows that include that pixel)

vote for �change� or �no-change� and the classi�cation decision is taken

using a weighted sum of the votes. Here, we chose to use a majority

vote (i.e., we sum the vote of each classi�er with the same weight).

This method compensates for the local di�erences in illumination

between the two images to be compared and improves the accuracy of

the change detection, especially in the external regions of the image,

which are generally darker and, hence, provide poor information.

The dimension of the windows is an important parameter to set: In

fact, the windows should be large enough to completely include each
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change area; at the same time, they should be small enough to avoid

illumination inhomogeneities. Another parameter to set is the number

of windows to be used, which in�uences the average number of sub-

images that include a single pixel. As the number of sub-images per

pixel increases, the performance of the method improves.

4.3.3 Subclassi�cation

In a subclassi�cation stage, the change map obtained by applying one

of the previous approaches is further classi�ed into di�erent categories,

which correspond to the di�erent typologies of change that occurred

(red vs white spots). Here, the aim is to detect certain types of pig-

mentation changes that are clinically relevant for diabetic retinopathy.

The considered types of color changes are: Appearing/disappearing red

spots, which generally corresponds to the appearance or the disappear-

ance of a bleeding/microaneurysm, and appearing/disappearing white

spots, generally due to the appearance or the disappearance of exu-

dates/cotton wool spots (we will refer to these typologies as to new/old

red and white spots).

To this end, each pixel is described by a set of features. Here, the

feature space consists of the green/red ratio, γ/ρ, and the green chan-

nel, γ, for both images. The �white spot� and the �red spot� labels

are assigned based on the intensities of these features, which are com-

pared to corresponding thresholds. The architecture of the proposed

subclassi�cation step is shown by the block diagram in Fig. 4.3.

The thresholds in this diagram are selected by using an interac-

tive approach, starting from the average values of the corresponding

features, which are calculated on the entire image excluding the dark

background. A trial-and-error approach is used by varying the thresh-

old, starting from the average value, with an excursion of 30% of the
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Figure 4.3: Block diagram of the architecture of the proposed subclas-
si�cation approach.

average value, in order to optimize the results from a visual point of

view.

The method proposed here is both simple and interactive: Few pa-

rameters have to be set by a human expert. This approach is preferable

to a supervised classi�cation, which excludes the data interpretability.

4.4 Conclusions

The purpose, here, is to contribute to the development of a system able

to automatically detect temporal changes in color fundus images.

The Kittler & Illingworth's thresholding technique (K&I), which

was developed in the context of computer vision and previously applied

to change detection problems on other typologies of images [69], [77], is

applied here to RIs. The K&I is e�ective when it is locally applied to the

analyzed images. A multiple classi�er approach for change detection

(based on the K&I applied to randomly selected windows) is proposed
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to compensate the problem of local illumination inhomogeneities.

Moreover, thresholding is a very fast approach: No iterations are

needed, but only the calculation of a criterion function, which is de�ned

for L values (e.g., L = 256). Given the histogram, the computation time

is also independent of the image size. The use of the multiple classi�er

approach increases the computational time of the method (from few

dozens of seconds per image pair up to about 1 minute) but at the

same time makes it more robust.

The subclassi�cation stage, in which temporal changes are classi�ed

into di�erent typologies, enables the identi�cation of certain types of

pigmentation changes that are clinically relevant for the diagnosis and

the monitoring of diabetic retinopathy.

In the future, the multiple classi�ers approach could be further in-

vestigated. Possible directions could be assigning di�erent weights to

the di�erent classi�er votes and using windows of variable size to im-

prove the accuracy.

Further conclusions about the performance of the proposed tech-

niques will be drawn in the following chapter, where the experimental

evaluation of the proposed change-detection methods is presented.
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Chapter 5

Experimental Results

In this chapter the proposed methods for segmentation, registration,

and change detection, described in Chapters 2, 3, and 4, are experi-

mentally evaluated. First, the results of planetary image segmentation

are presented in Section 5.1. Then segmentation and registration of

retinal images are experimentally evaluated in Section 5.2.1. Finally,

the experimental results of change detection in retinal images are pre-

sented in Section 5.2.2.

5.1 Planetary Images

Experiments were carried out using Mars data, collected both by the

THermal EMission Imaging System (THEMIS), an instrument on board

the Mars Odyssey spacecraft and by the High Resolution Imaging Sci-

ence Experiment (HiRISE) camera �ying on the Mars Reconnaissance

Orbiter (MRO). THEMIS combines a 5-band visual imaging system

with a 10-band infrared imaging system [27]. Both visible (VIS) and

infrared (IR) THEMIS images, with a resolution of 18 meters and 100

meters per pixel, respectively, were used to test the proposed approach.

For the experiments 5 VIS and 7 IR images were selected. Moreover,
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9 HiRISE images (HR) were used, with resolution of 0.25 meters per

pixel.

Reference data were generated by manually analyzing each image of

the data set and identifying all the craters and rocks that are present.

Only objects completely included within the images were considered

(i.e., objects cut by the borders of the image were discarded). No lim-

its were imposed on the minimum dimensions of the features to be

detected. A quantitative assessment of the obtained results by the pro-

posed method was performed using these reference data. This was ac-

complished by comparing the obtained results with the labeled features

in the correspondent Reference Map (RM), by the similarity measure

proposed in [103].

The Detection percentage D, the Branching factor B, and the Qual-

ity percentage Q were computed as follows:

D =
100 · TP
TP + FN

; B =
FP

TP
; Q =

100 · TP
TP + FP + FN

, (5.1)

where True Positive (TP ) is the number of detected features that cor-

respond to labeled objects in RM , False Positive (FP ) is the number of

features detected by the proposed approach, which do not correspond

to any object in RM , and False Negative (FP ) is the number of objects

in RM that have not been detected by the proposed approach.

5.1.1 Results for Elliptical Feature Extraction

First, the method for the extraction of ellipsoidal features, which was

described in Section 2.2.2, is experimentally evaluated.

The global values of D, B, and Q and the total number of TP , FP ,

and FN obtained by the proposed approach for VIS, IR, and HR data

are shown in Table 5.3.

The global values of D for VIS data, IR data, and HR data were
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Table 5.1: Average numerical performance of the proposed approach
as measured by Detection percentage (D), Branching factor (B) and
Quality percentage (Q).

Param VIS IR HR Overall Rock Crater

D 82% 78% 83% 81% 80% 81
B 0.03 0.05 0.06 0.05 0.04 0.07
Q 81% 75% 79% 77% 78% 77%

about 82%, 78%, and 83%, respectively; these high values indicate a

good detection rate (because of the high number of TP ). B was about

0.03 for VIS, 0.05 for IR, and 0.06 for HR, which indicate a small

amount of false detections with respect to the true detections in both

cases, thanks to the small number of FP . Finally, relatively high Q val-

ues (i.e., about 81%, 75%, and 79% for VIS, IR, and HR, respectively)

re�ect a good overall algorithm performance. In summary, the overall

values of D, B, and Q obtained by testing the proposed approach on

all the data sets were about 81%, 0.05%, and 77%, respectively. The

same evaluation parameters are also expressed separately for rock and

crater detection. The crater detection performance of the proposed

approach in terms of D, B, and Q compares favorably with most of

the results previously published for automatic crater detection meth-

ods [14,55,121].

Visual results are shown for a partition of a single band VIS image

(Figure 5.1-a). The grey level image is �rst preprocessed in order to

reduce the noise. In particular, Gaussian and median �ltering opera-

tions are applied in a cascade [106] in order to reduce the noise and,

at the same time, preserve the edges. The Canny operator is applied

to the smoothed image. Subsequently, in order to extract the rocks, a

watershed algorithm is applied to the binary image gradient B. Rock

segmentation results are shown in Figure 5.1-b. Then, the generalized
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(a) I VIS (b) W result (c) SPW result (d) F

Figure 5.1: Experimental results obtained by applying the proposed
method to a VIS image. (a) Original image, (b) watershed segmentation
applied to B, (c) watershed segmentation, using the maxima of the
Hough accumulator as �seed points�, and (d) detected features. Each
color in the segmentation map denotes a di�erent region.

Hough transform is computed (with ϵ = 5◦) and a watershed segmen-

tation is applied, starting the �ooding process from the ellipse centers

and leading to the detection of the craters. The segmentation results

are shown in Figures 5.1-c. Finally, the extracted features, including

both rocks and craters, are combined into a binary map and shown in

Figure 5.1-d, transparently superimposed to the original image. By a

visual inspection, it is possible to appreciate the accuracy of both the

detection and the reconstruction of the feature shape.

Visual results are also shown for a partition of the �rst band of an IR

image (Figure 5.2-a). Figure 5.2-b shows the segmentation results when

watershed is applied to B. Figure 5.2-c shows the crater segmentation

results. The di�erent extracted features are combined and shown in

Figure 5.2-d. In this example, not all the features are detected. This

is because their contours were not extracted by the Canny operator.

A modi�ed edge detection approach which may improve the accuracy

of the proposed method is currently under investigation. On the other

hand, it is shown below that the detected features are enough to achieve

an accurate registration.

Finally, visual results are also shown for di�erent partitions of HR
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(a) I IR (b) W result (c) SPW result (d) F

Figure 5.2: Experimental results obtained by applying the proposed
method to the �rst band of an IR THEMIS image.

images. Figures 5.3-a to 5.3-f show the input data and Figures 5.3-g

to 5.3-l show the contour maps in red superimposed on the correspon-

dent inputs.

(a) I 1 (b) I 2 (c) I 3 (d) I 4 (e) I 5 (f) I 6

(g) F 1 (h) F 2 (i) F 3 (j) F 4 (k) F 5 (l) F 6

Figure 5.3: Experimental results obtained by applying the proposed
method to HR images.

To demonstrate the applicability of the proposed method to registra-

tion, two di�erent non-registered bands of an IR image are used as ref-

erence Iref and input Iin images. In order to show the results, the same
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(a) Iref (b) Fref (c) Fref+in

(d) Iin (e) Fin (f) Results

Figure 5.4: Experimental registration results for a partition of (a) the
4th and (d) the 5th bands of an IR image. (b) and (e) feature contours
extracted from (a) and (d), respectively. (c) Feature contours superim-
posed and represented in a false-color composition (i.e., the green plane
is (b), the red plane is (e), and the blue plane is identically zero). (f)
Registration results, by using a checkerboard representation.

partition of Figure 5.2-a is used; in particular, the 4th and 5th bands

were selected (Figures 5.4-a and 5.4-b, respectively). For both images,

craters and rocks are detected and their contours are represented in

binary feature images, Fref and Fin, as shown in Figures 5.4-c and 5.4-

d, respectively. The rotation and translation between the two bands

are visible by looking at Figure 5.4-e, in which the two non-registered

feature images are superimposed in a false-color representation. The

features extracted from Iref , Fref , are represented in green, whereas the

Iin features, Fin, are shown in red. The registration scheme used in this
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phase was based on a global optimization technique aimed at estimat-

ing the optimum parameters of an image transformation model. The

contour images, which represent the features of the two input image

bands, were fed as inputs to an optimization module. The transfor-

mation matrix was to be optimized: Its goodness was evaluated by an

objective function and its optimization was achieved by applying a ge-

netic algorithm [73]. After the optimum matrix was estimated, it was

used to transform and interpolate one of the two bands with respect to

the other one. The co-registered bands are shown in Figure 5.4-f, by

using a checkerboard representation: Each tile of the board represents

the registered input band and the reference band, alternately. The reg-

istration accuracy can be evaluated by looking at the continuity of the

features at the borders of the tiles. The visual analysis of Figure 5.4-f

suggests that the registration performed very well; craters and ridges

appear continuous at the borders, i.e., the points of overlap.

5.1.2 Results for Crater Detection by MPPs

The method for crater detection, based on a marked point process,

which was described in Section 2.2.3, is experimentally evaluated.

In a preliminary evaluation stage, few parameters of the proposed

method had to be assigned, concerning both the MPP state space S

and the MCMC sampler. Let recall that S = P × K, where P =

[0,M ]× [0, N ] corresponds to the size of the image (Ig). The resolution

r varies for the two di�erent types of images used, hence the total area

A of interest is A = M · N · r2 [m2]. The parameters of K (i.e, am,

aM , bm, and bM) depend on the size of the objects that need to be

detected. In this study, the minimum size for both semi-axes was �xed

to 3 pixels (i.e., am = bm = 3) and the maximum size to 100 pixels (i.e.,
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aM = bM = 100). The eccentricity e of each object, de�ned as

e =

√
1 −

(
min(a, b)

max(a, b)

)2

, (5.2)

was constrained to e ∈ [0, 0.6] (i.e., min(a, b) ≥ 0.8 ·max(a, b)), being
craters of bigger e unlikely.

Sampler probabilities needed to be assigned as well. In particu-

lar, the global parameters that correspond to the probability of choos-

ing the proposition kernel m were �xed to pm = 0.25, where m ∈
{Tranlation, Rotation, Scaling, Birth&Death}. The probabilities pB

and pD regulating the birth and death kernel, were �xed to pB = pD =

0.5.

For comparison purposes, a method for ellipse detection based on a

Generalized Hough Transform (GHT) [120] has been implemented and

tested on our data set. With this method, for every pair of pixels that

were detected as edge points in the Canny gradient and exhibit opposite

gradient directions, an accumulator, corresponding to the median point

between them in the image plane, is incremented by a unit value. The

maxima of the accumulator are taken as centers of ellipses. Then,

the three parameters describing the ellipse centered in each detected

maximum are computed and a 3D accumulator is used to estimate the

two semi-axes and the direction angle of the ellipse from all the pairs of

points that contribute to the accumulator in the considered center. The

results obtained by the proposed approach and by GHT were compared.

This particular approach was chosen for comparison, being a standard

technique for the detection of round and elliptical objects, commonly

used for crater detection [72], [50], [60], [119].

The global values ofD, B, andQ obtained by the proposed approach

(MPP) and the standard method used for comparison (GHT) both for
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Table 5.2: Average numerical performance of both the proposed ap-
proach (MPP) and a standard method (GHT) as measured by Detec-
tion percentage (D), Branching factor (B) and Quality percentage (Q).

Data Method D B Q Method D B Q

VIS GHT 73% 0.24 62% MPP 82% 0.22 71%
IR GHT 78% 0.14 70% MPP 89% 0.13 79%

Average GHT 75% 0.20 65% MPP 85% 0.18 74%

VIS and IR data are shown in Table 5.2. The global values of D for

VIS data and IR data obtained by the proposed approach were about

82% and 89%, respectively. These high values indicate a good detection

rate (because of the high number of TP ). B was about 0.22 for VIS

and 0.13 for IR, which indicate a small amount of false detections with

respect to the true detections in both cases, thanks to the small number

of FP . The results obtained by applying the proposed approach are

more accurate when compared to the performance of the implemented

standard technique based on the GHT. In particular, the average value

of the detection rate D improved from 75% for the GHT to 85% for the

MPP. This is explained by the increase in true detections with respect

to the reference map. Similarly, the quality percentage Q. A relatively

smaller improvement in the branching factor B is due to the fact that

the number of FP was already small when applying GHT.

Moreover, the detection performance of the proposed approach in

terms of D, B, and Q also compares favorably with most of the re-

sults previously published for automatic crater detection methods [4,5,

14, 121]. Ideally, the performance of the proposed approach should be

compared with the results obtained by the previously published meth-

ods when applied to the same data. Unfortunately, the performance

of each published approach has been assessed on di�erent sites and

distinct types of data (e.g., panchromatic images, topographic data).

The most direct performance comparison can be made with the method
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proposed by Barata et al. in [5]. That approach was tested on images

acquired by the Mars Orbiter Camera (MOC). The method in [5] iden-

ti�ed 546 craters, with TP = 171, FN = 93, and FP = 282. Hence,

the resulting assessment factors were about D = 65%, B = 1.65, and

Q = 31%. Bandeira et al. [4] proposed an unsupervised approach for

crater detection from MOC data based on template matching. The

average performance indicators fof that approach gave about D = 86%

and Q = 84%. However, they tested their algorithm on images having

resolution of 200-300m/pixel. The high performances obtained in [4]

may be attributed to the fact that large craters in the sites of anal-

ysis have a very regular shape and are relatively easy to identify by

template matching. The performance of that approach for the detec-

tion of small and irregular craters is unknown. Bue and Stepinski [14]

proposed a supervised approach for crater detection from topographic

data. The average performance indicators for that approach gave about

D = 74%, B = 0.29, and Q = 61%. The evaluation factors increased

to D = 92%, B = 0.29, and Q = 73% if degraded craters, which the

method was not able of detecting, were excluded. That approach is not

fully comparable with the proposed method, being supervised. Urbach

and Stepinski [121] proposed a supervised approach for crater detection

from panchromatic images. The performance factors of their method

were about D = 68%, B = 0.29, and Q = 57%, when detecting craters

of diameter greater that 200m, and lower when taking into account also

craters of smaller dimensions. However, a full comparison with our ap-

proach is again not possible. In general, the results obtained by the

proposed approach are comparable to, and in some cases better than

results obtained by methods reported in the literature in terms of the

assessment factors. Unfortunately, a full comparison is not possible,

because the methods were applied to di�erent data.

Visual results of the feature extraction are shown for the �rst band
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of a visible image (Fig. 5.5(a)). The image is �rst preprocessed, in

order to reduce the noise. In particular, Gaussian �ltering and median

�ltering operations are applied in a cascade [106] in order to reduce the

noise and preserve the edges at the same time. The Canny edge detector

is applied to the smoothed image and the binary gradient Ig is shown in

Fig. 5.5-b. The estimated optimum con�guration of the MPP x∗, which

identi�es the feature contours, is shown in Fig. 5.5-c. The optimum

con�guration x∗ is represented in red, transparently superimposed to

the original image. By a visual inspection, it is possible to appreciate

the accuracy of the detection, even when many false alarms are present

in the binary image gradient Ig. Also the reconstruction of the feature

shape is very accurate.

(a) Original image (b) Image edges (c) Crater contours

Figure 5.5: Experimental results obtained by applying the proposed
method to the �rst band of a visible image. (a) Original image, (b)
Canny gradient, and (c) detected crater contours in red, transparently
superimposed to the original image.

Then, visual results obtained by applying the proposed approach

to the eighth band of an infrared image (Figure 5.6-a) are presented.

In particular, the Canny gradient Ig is shown in Fig. 5.6-b and the

estimated x∗ is shown in Figure 5.6-c, transparently superimposed to
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the original image. The contours of the represented crater appear non-

continuous in the binary image gradient Ig, due to the uneven quality

of the image. Anyway, the feature is correctly detected and its shape

reconstructed.

(a) Original image (b) Image edges (c) Crater contours

Figure 5.6: Experimental results obtained by applying the proposed
method to the eighth band of an infrared image. (a) Original image, (b)
Canny gradient, and (c) detected crater contours in red, transparently
superimposed to the original image.

A visual analysis of the detection results obtained with other plan-

etary images (see Fig. 5.7) con�rms that the proposed method is able

to correctly identify the location and shape of the imaged craters, even

though the input edge map detected only part of the crater borders,

included many spurious contours unrelated with the craters, and was

severely a�ected by the shadows in the crater area.

5.1.3 Discussion

Here, the two di�erent methods for planetary feature extraction pre-

sented in Chapter 2 have been experimentally evaluated.

Both methods have been tested on di�erent types of images of Mars,
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(a) VIS 1 (b) VIS 2 (c) VIS 3 (d) VIS 4 (e) IR 1

(f) Edges 1 (g) Edges 2 (h) Edges 3 (i) Edges 4 (j) Edges 5

(k) Result 1 (l) Result 2 (m) Result 3 (n) Result 4 (o) Result 5

Figure 5.7: Examples of experimental results obtained by the proposed
method. (a), (b), (c), (d), (e) Original data, (f), (g), (h), (i), (j) re-
spective edge maps, and (k), (l), (m), (n), (o) detected crater contours
in red.
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acquired both by the THEMIS and the HiRISE camera. For both ap-

proaches, the accuracy of the detection has been assessed by comparison

to a manually generated reference map. First, the proposed approach

for ellipsoidal feature extraction, based on the Hough transform and

the watershed, has been experimentally evaluated. The features to be

extracted are not as well contrasted nor de�ned as for Earth data. How-

ever, by applying the proposed approach, small rocks, which are not

a�ected by uneven illumination, can easily be detected. Crater detec-

tion is more di�cult than rock detection, because of their depth and

spatial extent and, consequently, their contours are often blurry and

not continuous. Nevertheless, we showed in Section 5.1.1 that their

identi�cation can be achieved and the proposed approach provided

quite accurate results. The results in terms of several indices based

on true and false positives compared favorably to previously proposed

approaches. Moreover, it has been shown that the features extracted

by the proposed approach can be used to accurately register pairs of

images acquired from the same sensor.

The MPP approach has proven to be e�ective in order to extract el-

liptical features, such as craters, in planetary images. Again, planetary

features are not as well contrasted nor de�ned as for Earth data. Never-

theless, in Section 5.1.2 it has been demonstrated that their identi�ca-

tion can be accurately achieved. The method outperformed a standard

method for crater detection based on a generalized Hough transform.

Moreover, the obtained results compare favorably to most previously

proposed approaches, when performances reported in the literature are

considered for the same indices. Finally, a visual inspection of the de-

tection results con�rmed that the proposed method was also able to

correctly identify the location and shape of the detected craters.
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5.2 Retinal Images

Twenty-two images of the posterior pole in which haemorrhages, mi-

croaneurysms or exudates are present are selected for analysis. These

images of Icelandic patients attending a retinopathy screening service

are captured by using a ZEISS FF 450plus IR Fundus Camera, which is

connected to a JVC digital camera. The output image is an 8-bit color

image of size 1280 × 1024 pixels. In our testing phases no data on age

and ethnicity, duration or type of retinopathy was available. The ap-

proaches for registration and change detection, described in Chapters 3

and 4, respectively, have been tested on the 22 fundus multitemporal

data sets. As a convention, each data set is named with a consecu-

tive number, with no reference to the corresponding patient for privacy

reasons.

5.2.1 Registration Results

This section shows the results of the image registration step. The 22

image pairs to be registered were preprocessed and the vessel maps,

of both input and reference image, were extracted. Some di�erences

in the maps, due to di�erent illuminations, determined a low value of

matching. Results of the second pair of images are shown in Fig. 5.8;

such a pair presents di�erences in illumination and point of view. Spots

also appeared from the �rst visit to the second one. Consequently, the

vessel maps (b) and (c) exhibit large di�erences, but still the measure-

of-match convergence is steadily achieved, as shown in (a). The illu-

mination of the two images is quite di�erent. Therefore, the squares

of the checkerboards, shown in (d) and (e), present di�erent intensity

values. However, analyzing them in detail, one may note very good

vessel continuity in border regions between a square and its neighbors

(i.e., where the vessel maps overlap).
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Comparable results were achieved for the other image pairs. Au-

tomatic registration results are shown for three additional data sets in

Fig. 5.8. For all the 22 image pairs, a correct registration was achieved

by the proposed method, in spite of a low value of the MOM parameter

at convergence.

5.2.2 Change Detection Results

The proposed algorithm for change detection has been tested on the

22 registered image pairs. In order to compare the results obtained by

the algorithm with the performance of a human grader, a test map was

created for each pair, with the support of a specialist.

For comparison purposes, a method for change detection based on

a Bayesian Algorithm (BA) for adaptive change detection proposed

in [79] has been implemented and tested on our data set. This method

is based on the assumption that the di�erence values follow a Gaussian

distribution. The change map were obtained by comparing the normal-

ized sum square of the di�erences within a neighborhood [1] (see [79]

for more details). The results obtained by the proposed approach and

by BA are compared. This particular approach was chosen for com-

parison, being the only image processing technique proposed in the

literature for the detection of retinal changes. Moreover, the results

obtained by using the proposed approach based on multiple classi�ers

(MC) were also compared with the change maps obtained by applying

the K&I thresholding technique to the entire image (KEI). The quan-

titative evaluation of the results in terms of Sensitivity and Speci�city

obtained by BA, KEI, and MC are shown in Table 5.3. The values

of Speci�city (Sp) obtained by applying either BA, KEI and MC are

generally very high also because the number of true negatives is al-

ways high. On the other hand, Sn is more variable because it strictly

76



Table 5.3: Performances of BA, KEI, and MC applied to image pairs,
in terms of SnP , Sp, and SnR.
Method BA BA BA KEI KEI KEI MC MC MC
Param. SnP Sp SnR SnP Sp SnR SnP Sp SnR
Average 57% 87% 91% 54% 91% 94% 58% 92% 96%

depends on the quality and similarities in luminance of the input im-

ages and is thus a�ected by sharp di�erences in the image dynamics at

the two dates. The average values of Sensitivity (Sn), assessed both

in terms of correctly classi�ed pixels (SnP ) and correctly classi�ed re-

gions (SnR), produced by both KEI and the proposed MC method are

much higher than the ones obtained by applying BA. Moreover, the

MC approach improves the performance in terms of Sn if compared to

the values obtained by using the KEI technique. In fact, the use of mul-

tiple classi�ers avoids the presence of wide false alarm areas, otherwise

caused by di�erences in luminance. In all cases, the values of Sn are

higher in the evaluation in terms of regions. In fact, the presence and

the position of most �change� areas are correctly detected, even when

their shape is not perfectly reconstructed.

The change maps generated by KEI and by the proposed multiple

classi�er approach when applied to the �rst data set (Figs. 5.10(a) and

(b)) are shown in Figs. 5.10(d)-(e), respectively. Several typologies of

change are present in this data set, including new and old spots of both

types: The related test map is shown in Fig. 5.10(c). A lower value of

Sn is obtained in this case (about 76.5%), due to several missed alarms

where edges between �change� and �no-change� are present.

Change detection results obtained by applying MC to the �fth data

set (Figs. 5.11(a) and (b)) are also shown in Fig. 5.11(d). The related

test map is shown in Fig. 5.11(c).
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5.2.3 Discussion

Twenty-two di�erent data sets, including changes of di�erent types of

images, including changes of di�erent sizes and typologies, were taken

into account in order to test the performances of the method. The

proposed approach provided quite accurate results. The accuracy of

the registration step, as compared to manual registration, has been

evaluated by visual inspection of the results. A correct registration

was obtained for all the image pairs with both the automatic and the

manual methods.

The results obtained by applying the Kittler & Illingworth thresh-

olding algorithm to the entire image were quite accurate. In fact, ac-

curacy in comparison to human grader has been evaluated on our data

base, which comprises images of variable quality. In addition, the pro-

posed multiple classi�er approach based on random windows gives more

accurate results, meaning that this approach, which locally analyzes the

images, proves to be much more robust to di�erences in illumination.
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(a) MOM

(b) Fref (c) Fin

(d) Manual reg. (e) Automatic reg.

Figure 5.8: First data set.(a) Measure Of Match (MOM) of the indi-
viduals among the generations, for a population of 50 individuals, with
pc = 0.5 and pm = 0.01. The blue, the green, and the red line repre-
sent respectively the lowest, the median, and the highest value in the
population. Vessel maps of (b) the input and (c) the reference images.
(d) Manual and (e) automatic registration of the image pair shown by
using a checkerboard representation, in which checkers are alternately
taken from the reference and the registered images.
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(a) Data set 2 (b) Data set 3 (c) Data set 3

Figure 5.9: Registration results for (a) the second, (b) the third, and
(c) the forth data set, shown by using a checkerboard representation.

(a) First Image (b) Second Image

(c) Test map (d) KEI map (e) MC map

Figure 5.10: First data set: (a) and (b) registered input images acquired
from the same eye in June 4, 2003 and in January 24, 2005. (c) Test
map, (d) change map generated by KEI, and (e) change map generated
by MC. In order to visualize the di�erent change typologies, for each
method two change maps are shown, transparently superposed to the
�rst image. Map legend: White = old white spots, red = old red
spots, blue = new white spots, green = new red spots, background =
�no-change�.
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(a) First Image (b) Second Image

(d) Test map (f) KEI map

Figure 5.11: Fifth data set: (a) and (b) registered input images acquired
from the same eye in acquired on June 6, 2003 and in September 22,
2004, respectively. (c) Test map, (d) change map generated by KEI,
and (e) change map generated by MC. In order to visualize the di�er-
ent change typologies, for each method two change maps are shown,
transparently superposed to the �rst image. Map legend: White = old
white spots, red = old red spots, blue = new white spots, green = new
red spots, background = �no-change�.
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Chapter 6

Conclusions

Image analysis has become a critical component in contemporary sci-

ence and technology and has extensive applications, which are contin-

uously expanding through many di�erent areas.

In this thesis, several image analysis problems have been addressed

by proposing di�erent image-processing techniques, in order to extract

useful information from di�erent typologies of images. The proposed

methods aim at providing feasible solutions to several open problems in

di�erent �elds of image analysis, taking into account the speci�c issues

involved by the typology of data to be analyzed. With the progresses

in the image acquisition procedures in all �elds, the amount of data

available for analysis is continuously increasing. The acquired images

need to be analyzed, preferably by automatic processing techniques be-

cause of the huge amount of data. Automatic and advanced technique

to analyze the data collected are of high relevance.

The next section summarizes the main contributions of this thesis,

thus explaining how we met our objectives, and perspectives for future

work.
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6.1 Contributions and Perspectives

The methodological issues that have been addressed in this thesis are

image segmentation, image registration, and change detection of di�er-

ent types of data (i.e., retinal and planetary images). In the following

paragraphs, the main conclusions about all the addressed topics are

drawn, separately for each type of analyzed data. Detailed comments

about each proposed approach can be found in Section �Conclusions�

of each of the previous methodological chapters.

Retinal Image Analysis

In diagnostic ophthalmology a multitude of image devices, among which

fundus cameras, have been brought into clinical practice. These devices

produce a large amount of images that need to be analyzed in order to

detect abnormalities.

The problem of analyzing retinal images has been addressed and

the aim was to contribute to the development of a system that auto-

matically detects the temporal changes in retinal images, as a support

for the diagnosis of retinopathy. To this end, retinal image segmenta-

tion has been addressed, in order to identify peculiar structures in the

fundus of the eye, such as blood vessels and optic disc. Hence, regis-

tration of multitemporal retinal image pairs has been tackled as well.

Finally, change detection has been addressed and di�erent approaches

have been investigated, in order to detect temporal changes in pairs of

registered images acquired during di�erent medical visits.

The main novelty of the proposed system, in terms of application,

lies in the proposal of a method that combines an automatic image

registration technique and an automatic change detection approach.

Pairs of retinal images (taken of the same patient) can be compared and

temporal changes, which may occur between di�erent medical visits,
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can be detected without the supervision of the ophthalmologists. A

specialist will be consulted only in the case that temporal changes are

detected by the proposed method.

Moreover, methodologically, a novel approach for change detection,

based on multiple classi�ers, is proposed here. As far as we know, the

idea of combining multiple classi�ers with di�erent spatial location, in

order to overcome local illumination di�erences, is new in the contest

of multiple classi�er approaches and it has demonstrated to be e�ective

when analyzing retinal images.

It is worth noting that the methodologies presented in this thesis

were developed and tested in a laboratory operational framework, in

which we focused on solving speci�c problems by proposing innovative

and advanced approaches. The applicability of the proposed approaches

to the clinical practice would require a further extensive phase of clinical

validation, over larger data sets and in close contact with ophthalmolo-

gists. Interesting developments would concern addressing such issue in

order to further optimize the developed techniques and apply them in

the operational context.

Planetary Image Analysis

The growing availability of planetary imagery, collected by several plan-

etary missions, provides a huge potential for the study of the planet

surface, but also claims for accurate automatic processing techniques.

The problem of analyzing planetary images has been addressed, as

well. In this case, the aim was to contribute to the development of

a system that automatically identi�es planetary spatial features and

reconstructs their shape. In particular, two di�erent methods were

proposed, the �rst one aimed at identifying ellipsoidal features, such as

craters and rocks, and a second one speci�cally aimed at the detection

of craters. The proposed approaches represent the �rst important step
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for many applications dealing with all the various data that are being

collected by di�erent planetary missions, among which image registra-

tion and image analysis, with the aim of selecting safe landing sites,

identifying lunar resources, and preparing for subsequent explorations

of the Moon and Mars by both robots and humans.

The main contribution of the �rst method for ellipsoidal feature ex-

traction lies in the proposal of a novel chain, which combines well-known

and robust image processing operators in order to achieve accurate re-

sults. On the other hand, the main contribution of the second approach

is a novel unsupervised method for crater detection, based on a very

promising stochastic modeling technique. Indeed, marked point pro-

cesses provide a powerful and methodologically rigorous framework to

e�ciently map and detect objects in an image. They have been used in

di�erent areas of terrestrial remote sensing, but have been applied here

for the �rst time to planetary image analysis. The use of the proposed

approaches provides an accurate analysis of planetary data, which is ex-

ploitable and helpful for analysts. Key point is that the methodologies

can be applied to di�erent types of optical data.

The application of the proposed methodologies to the analysis of

planetary data still presents many open issues, from both an application

and a scienti�c viewpoint. For instance, the methodologies proposed

here were developed and tested in a laboratory operational situation.

Their applicability in integrated systems to large-scale imagery in op-

erational situations would require an extensive phase of adaptation and

optimization of the proposed approaches. In addition, further experi-

mental validation would be required. Interesting developments would

concern addressing such open issues, also in order to optimize further

the developed techniques, aiming at their practical application in op-

erational context and allowing a further complete assessment of their

processing capabilities.
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 Chapter 11        
 Unsupervised Change Detection      
 in Multitemporal Images        
 of the Human Retina 

Giulia Troglio, Jon Atli Benediktsson, Gabriele Moser,      
Sebastiano Bruno Serpico, Einar Stefansson 

 

Abstract. Diabetes is a growing epidemic in the world, due to population growth, 
aging, urbanization, and increasing prevalence of obesity and physical inactivity. 
Diabetic retinopathy is the leading cause of blindness in the western working age 
population. Early detection can enable timely treatment minimizing further 
deterioration. Clinical signs observable by digital fundus imagery include micro-
aneurysms, hemorrhages, and exudates, among others. In this chapter, a new 
method to help the diagnosis of retinopathy and to be used in automated systems 
for diabetic retinopathy screening is presented. In particular, the automatic detec-
tion of temporal changes in retinal images is addressed. The images are acquired 
from the same patient during different medical visits by a color fundus camera. 
The presented method is based on the preliminary automatic registration of 
multitemporal images, and the detection of the temporal changes in the retina, by 
comparing the registered images. An automatic registration approach, based on 
the extraction of the vascular structures in the images to be registered and the 
optimization of their match, is proposed. Then, in order to achieve the detection 
of temporal changes, an unsupervised approach, based on a minimum-error 
thresholding technique, is proposed. The algorithm is tested on color fundus 
images with small and large changes.  
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1 Introduction 

In ophthalmology, diagnosis of retinal diseases is based on the analysis of the changes in 
the retina that can occur during time. The analysis of multitemporal images is an important 
diagnostic tool. Fundus images may be used to diagnose many diseases that affect the 
vascular structure by revealing the changes that have occurred in it during the period between 
two consecutive medical visits. 

During the last few years an intensified effort has been undertaken in developing tools to 
assist in the diagnosis of retinopathy [1, 2, 3, 4]. A multitude of image devices have been 
brought into clinical practice, by facilitating visual access to different parts of the eye. In 
particular, fundus cameras have been commonly used over the last decades. These devices 
produce a large amount of images that need to be visually inspected by ophthalmologists to 
diagnose abnormalities.  

Therefore, automatic methods of retina analysis have been acquiring a growing interest in 
order to support the diagnosis [5]. In particular, the detection of pathologies, such as 
microaneurysms, hemorrhages, and edema has been addressed. 

This Chapter summarizes current research in algorithms for the analysis of multitemporal 
retinal images. Furthermore, a novel method for image registration and change detection with 
this type of images is proposed. Registration is a fundamental underlying technology for 
many prospective applications of retinal image analysis and has been widely explored. It 
consists in aligning pairs of images, in order to put them into the same coordinate systems: It 
is thus essential for any further analysis of image series. Lesion detection has been carried out 
in many different studies by analysing single retinal images. However, a fully unsupervised 
method for comparison and change detection in multitemporal images has not been presented 
yet. 

Here, an automatic approach for the registration of retinal images, based on optimization 
techniques, is proposed. The process of image registration can be formulated as a problem of 
optimization of a functional that quantifies the matching between the original and the 
transformed image. As the images present clinical changes and differences in illumination 
and intensity, the optimum matching is not trivial to be achieved. In order to optimize the 
robustness of the registration method, the matching is not computed between the two images, 
but between the maps of structures which are present in the images themselves. According to 
the specific nature of the considered images (portraying portion of the human retina) maps of 
vessels are adopted for this purpose. The need for an accurate registration with no human 
interaction, the absence of clear anatomical regions that can be used for reference, and the 
low quality of the retinal images, suggest the use of a robust global technique to optimize the 
matching. In this chapter, a genetic algorithm is proposed, since it ensures, under mild 
assumptions, convergence to a global maximum of the adopted matching functional. In order 
to preliminarily map the vessels, a simple thresholding is not sufficient, since retinal vessels 
and background structures are of comparable intensity. Therefore, a preprocessing approach 
based on the use of morphological techniques is proposed to accomplish the vessel-extraction 
task. 

The adopted technique to detect changes in the registered colour fundus images is based on 
the unsupervised thresholding method proposed by Kittler and Illingworth (K&I) [6], 
originally designed for computer vision purposes, and recently extended to multispectral and 
radar remote-sensing images. The key idea of the method is to model the “change” and “no-
change” pixels of a pair of multitemporal images by two Gaussian-distributed classes and to 
discriminate between such classes by applying a thresholding technique to a suitably defined 
“difference image”. In particular, the K&I method allows the threshold-selection task to be 
formalized in an unsupervised framework as the minimization of a criterion function was 
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defined according to the Bayes decision theory. After the change-detection stage, the present 
work aims at classifying the detected change regions into four different categories of change, 
which are relevant to diabetic retinopathy, by exploiting two features relevant to the typology 
of change. 

The main body of the chapter starts with background on retinal image analysis and its 
associated challenges (Section 2). It then proceeds to present an automatic and unsupervised 
method for registration and change detection in retinal images (Section 3) and to show the 
results obtained by applying the proposed approaches (Section 4). Finally, concluding 
remarks are drawn (Section 5). 

 
 

2 Previous Work 

In this section, an overview over the existing methods for temporal analysis of retinal 
images is presented. In particular, Section 2.1 focuses on temporal registration of retinal 
images. The problem of change-detection techniques for the support of the diagnosis of 
retinopathy is addressed in Section 2.2, where an overview over the existing methods for 
change detection in image processing is given and, then, the application of change detection 
to the temporal analysis of retinal images is focused on. 

 

2.1 Registration 
 

Registration is fundamental in order to compare images acquired in different conditions. In 
particular, temporal registration is necessary when analyzing multitemporal images. It is a 
difficult task in image processing because correspondence problem is not straightforward. As 
a consequence, several different registration algorithms have been investigated. 

The existing registration methods can be classified into two broad groups: interactive and 
automatic techniques.  

Human-interactive methods have been considered as a reference among the existing 
methods. Human-involvement necessarily achieves neither the highest accuracy nor 
reproducibility, but it has been used to prevent catastrophic failures, which are possible with 
automatic registration methods. The earliest studies of image registration in the ocular 
imaging area were based on a human interaction [7, 8, 9]. However, manual registration is 
time-consuming, often prone to human error, and requires specialized knowledge. 

Automatic registration methods have been widely investigated in the last decades. The 
existing automatic techniques may be subclassified into different categories based on the 
image data used, the considered measure of similarity, the selected transformation model, and 
the method employed for the parameter search [10, 11]. However, in the contest of fundus 
images, registration techniques can simply be subclassified into feature-based and area-based 
methods [12]. 

Feature-based methods are somewhat similar to manual registration. In fact, these 
techniques are based on the extraction of features in the images to be registered. Features 
include the vascular structure [13, 14, 15], the optic disc location and boundary [16, 17, 18], 
and the macula [19]. The ocular blood vessels or their crossing points are commonly used for 
registration. The registration process is performed by maximizing a similarity measure 
computed from the correspondences between the extracted features. These approaches 
assume that feature/point correspondences are available in both images, and their 
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performance largely depends on sufficient and/or reliable correspondences, especially, when 
the overlapping part of an image pair is very limited or when there are mismatched 
correspondences. In [20], blood vessels were selected by an adaptive thresholding technique 
and their correspondence was established by using a sequential similarity detection method. 
In [21], matched filters were used to detect vessel junctions and correspondences were 
determined by a local cross-correlation. A group of papers extracted the bifurcations points of 
the vessels by means of mathematical morphology [22] or Forster detector [23] and then they 
matched corresponding points. In [24] vascular landmarks are automatically detected and 
aligned using a hierarchical estimation technique. An iterative method, called dual bootstrap 
iterative closest point, is presented in [25]: An initial transformation, which is only accurate 
in a small region (the “bootstrap region”) of the mapped image, is estimated and iteratively 
expanded it into a global transformation estimate. 
Area-based techniques are generally based on all pixel intensities within both images to be 
registered, in order to determine a single best set of transformation parameters for the 
analyzed image pair. The transformation can be either found by correlation or by 
optimization, in the spatial or in the frequency domain. Phase correlation [26] has been 
widely used to estimate translation misalignments, as proposed in [27]. That work was 
extended in [28] to estimate not only translation but also rotational parameters: Many 
incrementally rotated images were generated from the original and correlated. In [29], mutual 
information was used as a similarity measure and simulated annealing was employed as a 
searching technique. Butz and Thiran [30] maximized the mutual information of the gradient 
images. In [31], the measure of match (MOM) was proposed as an objective function and 
different searching techniques were used to achieve its optimization. Nevertheless, the 
searching space of transformation models (affine, bilinear, and projective) was huge. The 
greater the geometric distortion between the image pair, the more complicated the searching 
space. 

Between the two classes of automatic image registration techniques, feature-based methods 
are difficult to generalize, because they are usually based on rules for both identification of 
features and determination of correspondences. Area-based methods, on the other hand, are 
free of decision processes and can be easily generalized. However, efficient techniques can 
be applied only when translation is the only deformation between the analyzed images. The 
proposed solutions to deal with both translation and rotation are computationally too 
expensive [12]. 

 

2.2 Change Detection 
 

A change-detection problem can be defined as a classification problem in which “change” 
and “no-change” classes have to be distinguished, given two input images acquired at 
different times on the same scene or object. 

Change-detection approaches can be divided into two broad families: Supervised and 
unsupervised. The former family is based on supervised classification methods, which require 
the availability of a suitable training set for the learning process of the classification 
algorithm. The latter assumes no training data to be available at any observation date and 
usually performs the change detection by transforming the two analyzed images into a single 
image in which changed areas are emphasized and can be successively detected. 

From an operational perspective, in order to generate maps in which “change” and “no-
change” classes are discriminated, completely unsupervised approaches are generally 
preferred, as they do not require the difficult and (time- and possibly cost-) expensive process 
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of training data collection. When using these methods, no prior information about the 
statistics of the aforesaid classes is available to the classification algorithm. 

A significant variety of change-detection approaches have been proposed in the literature 
to deal with change detection in different fields. The traditional approaches to change 
detection in remote sensing include image differencing [32], image ratioing [33], image 
regression, Change Vector Analysis (CVA), methods based on Principal Component Analysis 
(PCA), multitemporal coherence analysis [34], integration of segmentation with multiplayer-
perceptron and Kohonen neural networks [35], fuzzy-rule-based analysis [36], multisource 
and multitemporal data fusion [37], spatio-temporal contextual classification [38], [39], and 
likelihood ratio tests [40], [41]. 

One of the most widely used change-detection method is image differencing, according to 
which the images acquired at two different dates are subtracted pixel-by-pixel in order to 
generate a “difference image”. This method relies on the assumption that in the “difference 
image” the values of the pixels associated with changes present values significantly different 
from those of the pixels associated with unchanged areas. Changes are then identified by 
analyzing the “difference image”. 

Another commonly used change-detection method is the image ratioing approach, which 
generates a ratio image by dividing pixel-by-pixel the gray levels at one date by the gray 
levels at another date. The detection of changes is performed by analyzing the “image ratio”. 
This approach is usually preferred to image differencing when multiplicative noise affects the 
input images (e.g., in the case of radar or sonar imagery). 

Both image differencing and image ratioing involve the critical problem of selecting an 
optimal threshold value to be applied to the single image that has been generated (i.e.: 
difference or ratio) to separate “change” from “no-change.” “Trial-and-error” procedures are 
typically adopted to this end [33], [42], [43], [44]. Rosin [45], [46] surveyed and reported 
experiments on many different criteria for choosing the threshold at which the image should 
be binarized. Smits and Annoni [47] discussed how the threshold can be chosen to achieve 
application-specific requirements for false alarms and misses (i.e. the choice of point on a 
receiver-operating-characteristics curve [48]). However, such manual operations typically 
turn out to be time-consuming. In addition, the quality of their results critically depends on 
the visual interpretation of the user. The decision rule in many change-detection algorithms is 
cast as a statistical hypothesis test. The decision as to whether or not a change has occurred at 
a given pixel corresponds to choosing one of two competing hypotheses, corresponding to 
“change” and “no-change” decisions [49]. In [50], the problem of automating the threshold 
selection task is addressed by proposing an unsupervised technique that integrates image 
ratioing with a generalization of the Kittler and Illingworth minimum-error thresholding 
algorithm (K&I) [6]. The change-detection method (proposed in [51] and [52] with regard to 
optical remote-sensing imagery) that integrates K&I with image differencing is modified in 
[50] by developing a new version of K&I, which is suited to image ratioing and to the 
specific nonGaussian statistics of the analyzed ratio images. There are several methods that 
are closely related to image differencing and image ratioing. For example, in CVA [53], [54], 
[55], [56], which is an approach often used for multispectral images, a feature vector is 
generated for each pixel in the image by considering several spectral channels. The modulus 
of the difference between the two feature vectors at each pixel gives the values of the 
“difference image”. DiStefano et al. [57] performed simple differencing on subsampled 
“gradient images”. 

Although change-detection techniques have been widely explored for remote-sensing 
imagery, few efforts have been undertaken in the temporal analysis of medical images. In 
particular, only a few methods have been described in the literature for quantifying the 
dynamic nature of diabetic retinopathy from a time series of images. 
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In [58], the images are compared by computing their difference and the presence or 
absence of progressive changes is empirically decided. 

Berger et al. [59] introduced the dynamic flicker animation as a tool for visualizing 
changes in the retinal fundus. In this method, the two registered images are displayed in rapid 
succession, usually a few seconds apart. Changed regions in the image appear to flicker, 
whereas unchanged regions appear steady.  

Cree et al. [60] defined a region of interest around the fovea, and used matched filtering 
followed by thresholding and region growing to find the microaneurysms. They also 
registered images from multiple time points, to study the turnover of microaneurysms. In 
[61], methods are described to find leakage of fluorescein in blood vessels by looking at 
restored images from an angiographic sequence over time and finding areas that do not have 
a particular pattern of intensity changes. 

Studies of microaneurysm turnover were also made by Goatman et al. [62]. They detected 
microaneurysms from baseline and follow-up angiograms, registered the images, and 
categorized the microaneurysms into three classes, namely, static, new, and regressed. A 
disadvantage of these methods was that the processing was limited to a small region of 
interest centered on the fovea. Sbeh and Cohen [63] segmented drusen based on geodesic 
reconstruction algorithms. They used the method to study the evolution of drusen by 
registering two images that were widely spaced in time. Each of the methods described above 
studies the changes associated with only one kind of lesion. Furthermore, they are all 
susceptible to errors in segmentation of the lesions that lead to accumulation of change 
analysis errors over time. 

All the described methods are specific to one type of lesion or region of the retina: The 
detection is performed by segmenting the lesions in each image and analyzing the 
segmentation results, instead of directly comparing multitemporal images. Hence, they are 
susceptible to errors in change detection resulting from segmentation errors. 

A first study for change detection in retinal images was presented in [64]. In that paper, the 
“change” areas are detected by using a supervised thresholding technique applied to the sum 
square of the image difference; the detected changes are classified into different typologies 
by using a Bayesian approach. This method is completely automatic; however, a training set, 
in which “change” and “no-change” classes are manually labeled, is required for the 
thresholding process. In a further study [65] the same method was applied for the detection of 
vascular changes. 

 
 

3 Methods 

The method proposed here for temporal analysis of color fundus images involves two 
successive processing sequences: The registration of pairs of images acquired at different 
times and the detection of temporal changes in the registered images. Temporal registration is 
a fundamental task in the approach. Actually, in general, such a preprocessing step is usually 
necessary in order to make the two images comparable in the spatial domain, before an 
unsupervised approach is applied to detect changes in two different retinal images. 

In this chapter, an automatic registration approach based on global optimization techniques 
is proposed (see Section 3.1). In particular, in order to estimate the optimum transformation 
between the input and the base image, a Genetic Algorithm (GA) is used to optimize the 
match between previously extracted maps of curvilinear structures in the images to be 
registered (such structures being represented by the vessels in the human retina). Then, in 
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order to achieve the detection of temporal changes within the registered images, a fully 
unsupervised approach, based on a minimum-error thresholding technique, is proposed (see 
Section 3.2). In particular, K&I thresholding method proposed in [41] is chosen here, since it 
enables to differentiate “change” and “no-change” areas, by analyzing a suitably defined 
difference image, with no need of training information about the statistic of the changed areas 
and since it has already been found effective when applied to change-detection problems with 
different typologies of input image (i.e., multispectral [51] and synthetic aperture radar [50] 
remote-sensing images). 

 

3.1 Registration 

The vascular structure covers the entire retina and is relatively stable over time. Thus, it 
appears that a solution to the retinal image registration problem can be driven by using the 
ocular blood vessels [66]. Some difficulties arise in this process, due to both the surface of 
the retina, which is curved but not perfectly spherical [67], and the overlap of the images 
which can be small due to large changes in the viewpoint between images. In fact, during 
imaging, a patient's pupil is dilated and his/her forehead is held against a harness. Small shifts 
in the position of the patient’s head are likely to induce translations and rotations of the eye. 
Eye movements, which are incompletely constrained during diagnosis or surgery, are almost 
exclusively rotational and occur about two axes at rates of up to 180° per second [68]. 
Significantly, neither axis of rotation is the optical axis. Moreover, except for detached 
retinas, it may be reasonably assumed that the retina is rigidly attached to the back of the eye. 
Together, these observations imply that the apparent motion of the retina should be modeled 
as a general rigid motion. They also imply, however, that some components of the motion 
(i.e., rotation about the camera's optical axis in particular) will be small [67]. Consequently, 
an affine transformation, which exhibits six independent parameters, is applied to overlay 
image pixels. 

Hence, the registration approach proposed here considers an affine transformation model, 
parameterized by a suitable transformation matrix, and a technique to achieve its 
optimization, following an initial preprocessing stage. The input images to be registered are 
first preprocessed, in order to obtain binary images, which show the vessel structure. Such 
binary images are fed as inputs to an optimization module, aiming at maximizing a suitably 
defined objective function. In fact, the transformation matrix has to be optimized: Its 
goodness is evaluated by an objective function and its optimization is achieved by applying a 
GA. When the optimum matrix is estimated, it is applied to the original input image, which is 
transformed and interpolated in order to obtain the final registered image. In particular, the 
nearest neighbor interpolation method is chosen, being the computationally least demanding 
and, above all, the data are not modified (i.e., no new gray levels are introduced). 

The first step in the proposed automatic registration method is the extraction of the ocular 
blood vessels. The input and reference images, denoted by I1 and I2 respectively, are 
preprocessed, in order to obtain binary images IA and IB, which show the vessel structure. The 
vessel extraction is addressed here by using morphological operators [69]. Only the green 
plane, G, of each RGB image is used in the extraction. G is treated as a gray scale image, 
because it exhibits the best contrast (the edges of blood vessel are clearer) of all the image 
planes. To extract vessel segments the method proposed in [70] is used because it is simple 
and fast. It is unsupervised and also involves very few input parameters (apart from the model 
dimensions, just one double threshold is involved). A pre-filtering operation is needed in 
order to remove the background noise. Most of the classical noise smoothers are based on an 
additive model. Actually, for the addressed problem, the useful information lies in anisotropic 
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structures, and the preprocessing operator has to preserve them as well as smooth the noise. 
To remove the structures that are lighter than their surroundings, an opening operator (by 
reconstruction) is applied, with a flat square structuring element. This is a connected 
operator1. Therefore, it does not introduce any new discontinuities in the image. The removal 
of nonlinear (or too short) darker objects and the preservation of the others are achieved by 
taking the minimum of all the possible long directional closings. This minimum is computed 
using linear structuring elements that are successively oriented in every possible direction. 
The third operation is the morphological extraction, performed to detect vessel-pixels. The 
remaining linear objects, which are too wide (more than the vessel width), are removed and 
the desired structures are extracted. The bottom-hat operator, which is the residue between 
the current image and its closing, with a flat square structuring element is calculated. The 
only remaining structures are the wide dark features. Any other pixel is set to zero. The final 
binary decision (vessel pixel or not) is taken by a double thresholding with reconstruction. 

In this way, two binary vessel maps, IA and IB, are obtained from the input and reference 
image, respectively. Such binary images are fed as inputs to an optimization module, aiming 
at maximizing a suitably defined objective function. In fact, the transformation matrix has to 
be optimized. Its goodness is evaluated by an objective function and its optimization is 
achieved by applying a GA.  

The problem is formulated as the determination of a geometric transformation T* such that, 
when T* is applied to the first image, IA, the best match with the second one, IB is achieved. 
Mathematically, this problem can be expressed as the maximization of the following 
objective function: 
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where MOM denotes the objective function, T is the transformation for the x and y 
coordinates in the image plane, and n is the number of nonzero pixels of IB. 

The objective function in ( 1) is normalized, so that the absolute maximum value is unitary; 
but in general, the achieved maximum value is significantly lower. The reason for that is not 
the inefficiency of the optimization method, but the fact that the two images are in most of 
the cases not identical due to noisy pixels and changes. 

The determination of the transformation parameters strongly depends on the objective 
function, as well as on the images to be registered. In the case of retinal images, where MOM 
has multiple extremes, the most attractive search methods are represented by global 
optimization techniques. In this work, a GA is adopted (as we proposed in [71]), since it 
ensures, under mild assumptions, convergence to a global maximum of the adopted matching 
functional. The aim of the GA is to find the value for the transformation parameters, which 
maximize the objective function [72]. An affine transformation model, which exhibits six 
independent parameters, is employed. The values of such parameters are defined over a wide 
range of values to achieve robustness; they are converted to binary digits and concatenated in 
a single string, called “individual”. Each real parameter is encoded as a binary number, with a 
precision that depends on the number of digits used. The fitness of each individual (i.e., the 
goodness of the transformation parameters) is estimated by the objective function calculated 
over its decoded parameters. The match between the registered and the reference image, 
MOM(Ti), represents the fitness of the i-th individual. The process begins with the 
preliminary random definition of the first population individuals. The population is evaluated 

                                                           
1 The connected operators are commonly known as binary opening by reconstruction. They consist in removing the 

connected components of a binary image that are totally removed by erosion and in preserving the other components. 
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by calculating the fitness of each individual. According to the principle of the survival of the 
fittest, pairs of fit individuals are selected to recombine their encoded parameters in order to 
produce offspring, according to the following steps: First a few fittest individuals are kept in 
the next generation without being changed, by “elitism”. Then, the other individuals are 
selected by a “tournament selection”, two-by-two, according to their fitness. Finally, 
“crossover” and “mutation” are applied to each pair of individuals with a fixed probability. In 
this way, a new generation of solutions, which replaces the previous one, is produced: The 
fitness of the new generation will be calculated and a new selection will be performed, until 
the convergence of the MOM is achieved. At that point the process ends. The final 
transformation matrix T* is calculated by decoding the fittest individual of the last population 
and the input image is registered. 

  

3.2 Change Detection 

Given two registered images I1 and I2, acquired at times t1 and t2,  respectively (t1 < t2), the 
purpose of change detection algorithms is to identify the meaningful differences (i.e., the 
"changes") between them. 

Here, an unsupervised approach is chosen due to the lack of a priori information about the 
shapes and the statistics of the change areas. Each of the two registered images to be analyzed 
is converted in a gray-level image by computing the ratios of its green and red channels, G/R. 
These new gray-level images are compared, pixel-by-pixel, in order to generate two further 
images (“difference images”) obtained by a pixel-by-pixel subtraction of the first date image 
from the second date one, and vice versa. A “difference image” is computed in such a way 
that pixels associated with retinal changes present gray level values that are significantly 
different from those of pixels associated with unchanged areas. The K&I algorithm is applied 
in order to automatically detect the change pixels by applying a decision threshold to the 
histogram of each “difference image”. The selection of the decision threshold is of major 
importance, as the accuracy of the final change-detection map strongly depends on this 
choice. This last step is highly critical in the development of completely automatic and 
unsupervised techniques for the detection of retinal changes [73]. Consequently, the 
algorithm applies again the K&I method to the ratio of green and red channels, G/R, in the 
“change” decision region to distinguish the typology of change that occurred (red vs. white 
spots). We use this unsupervised approach by assigning “white spot” and “red spot” labels, 
when the intensity in G/R is above or below the K&I optimal threshold, respectively. In fact, 
this feature has proven to be effective to distinguish the two classes in this typology of image 
data (see Section 3.2.2). 

 

3.2.1 Preprocessing 
 
Changes in light, in field angle, and in the absorption of the mydriatic drop between the 

two acquisition times may be potential sources of errors. This problem is mitigated by 
performing first a radiometric calibration of the images. 

Then the optic disc, which appears in color fundus images as a bright yellowish or white 
region, has to be identified and removed from the two acquisitions. It is important to remove 
the optic disc for accurate change detection because it has similar attributes to the exudates in 
terms of brightness, color, and contrast. Furthermore, its detection is a first step in 
understanding ocular fundus images: the diameter determines approximately the localization 
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of the macula [74] the center of vision, which is of great importance as lesions in the macular 
region affect vision immediately.  

The optic disc is the entrance of the vessels and the optic nerve into the retina. It appears in 
color fundus images as a bright yellowish or white region. Its shape is more or less circular, 
interrupted by the outgoing vessels. Sometimes the optic disc has the form of an ellipse 
because of a consistent angle between the image plane and the object plane. Sometimes, the 
optic disc is even not visible entirely in the image plane, and so the shape is far from being 
circular or even elliptic. 
Here, the optic disc is localized by identifying the area with the highest variation in intensity 
of adjacent pixels [75]. In fact, the appearance of the optic disc region is characterized by a 
relatively rapid variation in intensity: The gray-level variation in the papillary region higher 
than in any other part of the image, because the “dark” blood vessels are beside the “bright” 
nerve fibres. The variance of intensity of adjacent pixels is used for the localization of the 
optic disc. In particular, the maximum of the variance image is considered as an estimate of 
the optic disc center. 
 

3.2.2 Feature Ratio 
 
After a preprocessing step, the two co-registered and radiometrically corrected images to 

be analyzed are converted in a gray-level image by ratioing different features, in order to 
emphasize the structures of interest. The three RGB channels of fundus images contain 
different information: The red channel, R, is usually the brightest channel representing the 
luminance value but has a very small dynamic range. The green channel, G, has normally the 
best contrast (the edge of retinal features, such as exudates, optic disc, and blood vessel are 
clearer than in the other channels) and the blue channel B is present mostly where there are 
the optic disk or the white spots.  

Given the RGB fundus image, Ii, acquired at each considered time ti, and denoting by Gi, 
Ri, and Bi the three related channels, a pixel-wise band ratioing between Gi and Ri is applied (i 
= 1, 2). By ratioing these two features, a new gray-level image Gi/Ri is obtained, in which the 
structures of interest are emphasized. In fact, after the application of this operator, vessel and 
blood regions are darker than the background, while white spot are brighter. 

 

3.2.3 Thresholding 
 
In order to automatically detect changes in color fundus images, a threshold selection task 

is addressed. An automatic change-detection technique is proposed, which integrates an 
image differencing approach with a generalization of the Kittler and Illingworth’s 
unsupervised minimum-error thresholding algorithm (K&I) [41]. 

A thresholding approach is a simple classification procedure involving only one input 
feature, namely, the gray level of a scalar image. Adopting this approach, the key issue is to 
choose the threshold in order to keep the number of misclassified pixels as small as possible, 
i.e., to select an optimal threshold, according to some appropriate criterion. In a supervised 
context, this optimal threshold can be easily computed through some decision rule, given the 
class-conditional probability density function (pdf) of each class [64]. On the contrary, 
unsupervised threshold selection is a nontrivial task. 

Let the pixel intensities in the difference image be modeled as independent samples drawn 
from a random variable z. We operate in an unsupervised fashion; therefore, the prior 
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probabilities ( )2,1)( == iPP ii ω   of the classes ω1= “change” and ω2 = “change”, as well as 

the pdfs ( ) ( | )i z ip p ω⋅ = ⋅  of z, conditioned to the two classes (i = 1, 2), are neither known in 

advance nor can be estimated through a training set. As a consequence, in place of the 
unconditional gray-level pdf: 
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the histogram {h(Z) : Z = 0, 1, ..., L – 1} of the difference image is used (L being the related 
number of quantization levels). 

The selection of an appropriate threshold τ is formalized by K&I as the optimization of a 
predefined criterion function J(τ) which averages a cost function c(·, τ)  over the feature 
histogram )(⋅h  [76]. More formally, the threshold is assumed to be fixed at some value 

{ }1,...,1,0∈ −Lτ , and the corresponding decision regions 
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are introduced. 

A real-valued cost function c(·, τ) is defined in such a way that c(Z, τ) measures the cost of 
classifying a pixel with gray level Z (Z = 0, 1, …, L – 1), by comparing Z with the threshold 
τ. Then, a criterion function is defined as an histogram-based estimate of the average cost 
E{ c(z, τ)}, i.e.: 
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Thus, the optimal threshold is defined as the minimum-average-cost threshold, i.e.: 
 

( )ττ
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Depending on the specific model adopted for the cost function, several different algorithms 

can be formalized according to this framework [51], such as K&I, the Huang and Wang’s 
algorithm [77], or the Otsu’s method [78]. Here, K&I is adopted, since it was found more 
effective when applied to change-detection problems in other image-processing fields [50]. 

The K&I cost function is based on the Bayes classification rule, under Gaussian 
assumptions for both class-conditional pdfs. Under this hypothesis, the only parameters to be 
estimated are the class prior probabilities P1 and P2, the class-conditional means m1 and m2, 
and the class-conditional variances σ1

2 and σ2
2. These parameters are defined as follows: 
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Given the threshold τ, these quantities are estimated by K&I in a histogram-based fashion. 
Specifically, the prior probability estimate is defined simply as the relative frequency of the 
pixels above and below the threshold value τ, i.e: 
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Similarly, estimates for the class means and variances are computed from the decision 

regions in ( 3): 
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Hence, given the normality assumptions, conditional pdf estimates are derived (i = 1, 2): 
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The employed cost function is defined in connection to the Bayes decision theory (hence, 

the K&I method is also named minimum-error thresholding). Based on the maximum a-
posteriori probability (MAP) rule, we should assign each a pixel with grey level Z to the class 
ωi corresponding to the maximum posterior probability P(ωi| z = Z) (i = 1, 2). This task can 
be formulated in terms of the threshold τ, by introducing the following cost function: 
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which depends on the threshold parameter τ. 

The criterion function resulting from the cost function is: 
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and the optimal threshold *τ  is correspondingly chosen as to minimize J(τ), i.e., as the 
minimum-error threshold. 

According to its definition, J(τ) is indirectly related to the amount of overlap between the 
pdf estimates. In fact, these estimates are computed from the class-conditional mean and 
variance estimates, which are obtained through a histogram truncation at the threshold value 
τ. But, although the histogram is truncated at τ, the model pdfs { }2,1:),(ˆ =⋅ ipi τ  overlap the 

same. Actually, the smaller is the overlap, the better is the fit between the data (i.e., the 
histogram) and the model (i.e., ),(ˆ1 τ⋅p  and ),(ˆ2 τ⋅p ). Moreover, the average classification 
error is measured by J(τ), hence, a smaller overlap also implies a lower classification error 

In addition, due to the histogram truncation, the tails { }ττ ≤:),(ˆ1 Zp ⋅  and { }ττ >⋅ Zp :),(ˆ2  
of the real conditional pdfs are ignored during the estimation procedure and then they do not 
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influence the cost and criterion function, at all. As a consequence, the optimal K&I estimates 

{ }2,1:)(ˆ),(ˆ),(ˆ *** =imP iii τσττ  should be considered as biased estimates of the real statistical 

parameters { }2,1:,, =imP iii σ . The optimal model pdfs { }2,1:),(ˆ * =⋅ ipi τ  are biased estimates 

of the real ones { }2,1:)( =⋅ ipi , and, consequently, *τ  is an approximation of the true optimal 

threshold which could be computed if the true class-conditional pdfs were known. 
The criterion function behavior is strongly related to the scene characteristics, which are 

represented by the histogram. Typically, only one minimum in the interval [ ]1,0 −L  implies 
histogram bimodality, which reflects the presence of two natural classes (e.g., foreground and 
background, “change” and “no-change”) in the scene. In this case, the minimum point for J(τ) 
is the optimal threshold *τ . Correspondingly, the absence of internal minima of J(τ) in 
[ ]1,0 −L  suggests that the image is homogeneous. Specifically, the output classification map 
would contain a single class. This behavior is correct from a classification point of view; in 
fact, a homogeneous image does not exhibit more than one natural class and should not be 
split according to two classes. 

 
 

4 Experimental Results 

The proposed algorithms have been tested on multitemporal fundus images (RGB 8-bit 
color images of size 10241280×  pixels), captured at different times by using a ZEISS FF 
450plus IR Fundus Camera with VISUPAC/System 451, which is connected to a JVC digital 
camera. The images were taken in the same visit or in different dates from Icelandic patients 
attending a retinopathy screening service and can present haemorrhages, microaneurysm, or 
exudates. Accordingly, images acquired during the same medical visit are not expected to 
include changes, whereas changes may be present among different images taken at different 
times. In our testing phases, no data on age and ethnicity, duration, or type of retinopathy 
were available.  

Here, the proposed methods are experimentally evaluated. In particular, the experimental 
results obtained by using the proposed approaches for registration and change detection are 
presented and compared, in Section 4.1 and 4.2, respectively. 

 

4.1 Registration Results 

The proposed algorithm for registration has been tested on the available image pairs. First, 
the choice of the algorithm parameters is justified. Then, the experimental results obtained by 
using the proposed approaches are presented. 

 

4.1.1 Preliminary Registration Results 
 

In order to choose the parameters of the proposed method, a number of preliminary 
experiments have been done, using images with no changes. In particular, the first parameters 
of the genetic algorithm to be assigned are the number of individuals in each population and 
the minimum number of generations needed to achieve convergence. Then, in the selection 
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process, the probabilities of crossover and mutation have to be fixed. Finally, the structure 
and the parameters of the transformation matrix for the registration have to be established. 

Choosing the size of the population can be critical since a small population size provides 
an insufficient sample size over the space of solutions and a large population requires a lot of 
evaluations, thus resulting in long computation times. Several trials were done in order to 
estimate the proper number. Different values for the population size were tested: As a 
tradeoff between accuracy and computational burden, a size of 50 individuals has been 
chosen in the experiment reported here. 

The number of generations necessary to achieve convergence of the algorithm needs to be 
evaluated. In the experiments, the convergence was achieved before 150 iterations: The 
generation of a minimum of 180 offsprings was considered to be enough. 

Evolution operators are essential to the genetic algorithm. Crossover enables the algorithm 
to extract the best genes from different individuals and recombine them into potentially 
superior offsprings. Mutation adds to the diversity of a population and thereby increases the 
likelihood that the algorithm will generate fitter individuals. 

The number of individuals, in each generation, that undergo crossover and mutation 
depends on their probabilities. In order to find out proper values, both the probability of 
mutation, pm, and the probability of crossover, pc, were varied in wide ranges: pm in [0.005, 
0.25] and pc in [0.25,1]. In conclusion pm=0.01 was chosen here, large enough to encourage 
the exploration of new solutions and, at the same time, small enough not to deteriorate fit 
individuals. The crossover probability specifies the fraction of the population, other than 
“elite offsprings”, that are generated by crossover. A good value can be selected within the 
range [0.5,1]: In this work, pc = 0.75. 

 

4.1.2 Experimental Registration Results 
 
This section shows the results of registration of color RGB images.  
In order to evaluate the performance of the proposed technique, the resultant registered 

image is compared to a manually registered one. In particular, a control point method was 
used. A good point-matching registration process requires a sufficient number of 
corresponding control points to be present in both images. The control points need to be 
uniformly distributed and not affected by lesions. An affine transformation was applied in the 
experiments reported here to overlay the two images. The affine transformation  required the 
selection of at least 3 pairs of control points, which is the minimum value, but more points 
may be needed to obtain an accurate registration. In the implemented method, at least 6 
points were chosen from both the reference and the input image of each pair to be registered. 

Then, the automatic registration approach was applied. First, the image pairs to be 
registered were preprocessed and the vessel maps, of both input and reference image, were 
extracted. Some differences in the maps, due to different illuminations, determined a low 
value of matching. 

Results of a pair of images are shown in Figure 1; such a pair presents differences in 
illumination and point of view. Spots also appeared from the first visit to the second one. 
Consequently, the vessel maps (b) and (c) exhibit large differences, but still the measure-of-
match convergence is steadily achieved, as shown (a). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 1. MOM of the individuals among the generations, for one of the data sets used in the 
experiments are shown in(a). The blue, the green and the red line represent respectively the lowest, the 
median and the highest value of MOM in the population. Vessel maps of the input image are shown in (b) 
and the reference image in (c). Manual and automatic  registration of the image pair shown in (d) and (e), 
respectively, by using a checkerboard representation, in which checkers are alternately taken from the 
reference and the registered images. 

 
 
The illumination of the two images is quite different. Therefore, the squares in the 

checkerboards, shown in (d) and (e), present different intensity values. However, analyzing 
them in detail, one may note very good vessel continuity in border regions between a square 
and its neighbors (i.e., where the vessel maps overlap). 

Comparable results are achieved for the other image pairs. 
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4.2 Change-Detection Results 

The proposed change-detection algorithm has been tested on the registered image pairs. 
First, the adopted performance measures are explained. Subsequently, the experimental 
results obtained by using the proposed approaches are presented and compared. 

 

4.2.1 Performance Evaluation 
 
The assessment of the quality of a change-detection system in the medical field is not an 

easy task; if a human grader does not agree with the algorithm.This can be due either to an 
error of the human grader or to an error of the algorithm. In order to compare the results 
obtained by the algorithms with the performance of a human grader, a test map (i.e., a map 
that displays the actual changed features found in the image pair) was created for each data 
set, with the support of a specialist.  

In this work, we are mainly concerned with the accuracy of the methods, as opposed to 
execution speed. A quantitative evaluation of the results is performed, in terms of Sensitivity 
(Sn), Specificity (Sp), User’s Accuracy for “change” (UAch) and User’s Accuracy for “no-
change” (UAnc). 

Sn, also known as “true positive rate”, is the percentage of pixels which are correctly 
labelled as “change” in the change map over the number of actual changed pixels in the test 
map, as determined by a human observer (i.e., it is an estimate of the detection probability 
[79]). From a clinical point of view, the sensitivity of a test is an estimate of the probability 
that the test is positive when given to a group of patients with the disease; high Sn values 
mean that a negative test can rule out the disease. It can be defined as: 
 

FNTP

TP
Sn

+
=  ( 12) 

 
where TP is the number of true positives (i.e., “change” pixels correctly labelled as 

“change”) and FN is the number of false negatives (i.e., “change” pixels wrongly labelled as 
“no-change”, also called “missed alarms”).  

The specificity, also known as “true negative rate”,  is the percentage of the pixels that are 
correctly labeled as “no-change”. Therefore, the specificity is an estimate of (1 – PF), where 
PF is the false-alarm probability [79]). The specificity of a medical test is an estimate of the 
probability that the test will be negative among patients who do not have the disease; 
therefore, a high Sp value means that a positive test can rule in the disease. It can be defined 
as: 
 

FPTN

TN
Sp

+
=  

( 13) 

 
where TN and FP are the number of true negatives (i.e., “no-change” pixels correctly 

labelled as “no-change”) and false positives (i.e., “no-change” pixels wrongly labelled as 
“change”, also called “false alarms”), respectively. 

In this work we favour Sn to Sp. In fact, in order to avoid missed alarms, which play a 
relevant role from a clinical perspective, we aim at minimizing false negatives. However, it is 
worth noticing that also false positives need to be minimized, in order to reduce the  number 
of false alarms. 
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UAch is the percentage of pixels which are correctly assigned to “change” (TP) over the 
total number of pixels labelled as “change” in the change map. It can be defined as:   
 

FPTP

TP
UA

ch +
=  ( 14) 

 
A similar definition holds for UAnc, which is the percentage of pixels which are correctly 

assigned to “no-change” (TN) over the total number of pixels labelled as “no-change” in the 
change map. It can be defined as: 

 

FNTN

TN
UA

nc +
=  ( 15) 

 
 

4.2.2 Experimental Change-Detection Results 
 
The results obtained for the available data sets endowed with test data are shown in  
Table 1. The performances of the approach are satisfactory, in terms of both Sn and Sp. 

 

Table 1: Average performance parameters 
obtained by applying the KEI approach to all the 
data sets. 

Sn Sp UAch UAnc 

71,20% 99,86% 84,30% 99,80% 

 
Sp is generally very high in part because the number of true negatives (i.e., those pixels 

that are correctly classified as “no-change”) is always high. On the other hand, Sn is more 
variable because it strictly depends on the quality and similarities in luminance of the input 
images and is thus affected by sharp differences in the image dynamics at the two dates. The 
average sensitivity is about 71%, which is an acceptable value. The error is due to the 
unsuccessful detection of some pixels belonging to correctly detected change areas. This is 
not critical because, here, we aim at detecting the change areas: Their exact shape could be a 
posteriori reconstructed. 

With regard to the user’s accuracies, very good values of UAnc were obtained for all data 
sets, and quite good values of UAch (average above 84%) were given by the method. 

For coherence with Section 4.1.2, the same data set is employed to show the change-
detection results (Figure 2). In particular, the input image (a) and the reference image (b) are 
acquired during two different medical visits, 8 months apart. A lot of typologies of change 
are present in this data set, including new and old spots of both “red” and “white” types. 
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(a) 

 
(b) 

 
© 

 
(d) 

Figure 2: Test map (a) and resulting classification map (b) generated by the proposed approach, when 
applied to the data set (a) and (b). 

 
In this case, high specificity is obtained (i.e., 99.9%), thanks to the high number of true 

“no-change” pixels. However, the sensitivity is 62.4%, because the presence and the positions 
of most “change” areas are correctly detected, but their shape is not perfectly reconstructed. 
Anyway, the detection of the changes and their classification among the different typologies, 
which represent clinically relevant information, are achieved. 

 
 

5 Conclusions 

The purpose of this chapter was the development of a technique able to automatically 
register and detect the temporal changes in retinal images. The registration is achieved by 
using a method based on a genetic optimization technique; the proposed change-detection 
approach is based on the Kittler & Illingworth’s thresholding algorithm. RGB retina images, 
captured by a fundus camera, were used. 

First, the images were preprocessed, in order to obtain their vessel maps from which a 
matching measure (adopted as the optimization functional) was extracted. Once the optimum 
transformation was obtained, it was used to register the input image with respect to the 
reference one. The reference and the registered images were used as input for the change-
detection process. 

Different types of images, including changes of different sizes and typologies, were taken 
into account in order to test the performances of the method. The proposed approach 

128



provided quite accurate results. The accuracy of the registration step, as compared to manual 
registration, has been evaluated by visual inspection of the results, on a collection of pairs of 
images of variable qualities. Very good overlapping between the reference and the input 
images was obtained. The change-detection results obtained by applying the proposed 
approach were accurate. The K&I technique, which was developed in the context of 
computer vision and previously applied to change-detection problems on other typologies of 
images [50], [51], has proven to be effective also when applied to fundus images here. 

The main drawback is the possible sensitivity to the presence of undesired modes, such as 
artifacts and glares, which may occur also as a consequence of a partially inaccurate 
preprocessing stage. The development and the implementation of a method for the automatic 
identification of ungradable images may be an important next step of this research. A 
possible future development of the proposed approach could be the integration of contextual 
information in the change-detection process: Spatial information may be exploited in the 
postdetection classification stage, in order to further improve the accuracy of the 
classification map. 
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Abstract

Retinal change detection is a powerful tool that can be used as a support for the monitoring

of retinopathy in diabetic eye screening. Here, an automatic method is proposed for change

detection in multitemporal retinal images, i.e., images acquired by a fundus camera from

patients with diabetic retinopathy during different medical visits. The proposed approach

is based on the registration of the collected images and on the detection of the changes that

can occur in the retina during time. A genetic algorithm is used for the registration. For

the change detection, a multiclassifier approach, based on a minimum-error thresholding

technique, is proposed. To cope with local illumination differences, unsupervised threshold-

ing is applied to randomly selected subimages and the outputs of the different windows are

combined with a majority vote approach. Quantitative assessment of the change detection

results shows that the proposed method provides accurate results. The comparison between

the results obtained using the implemented multiclassifier approach and a standard approach

points out that the proposed algorithm provides a more accurate change detection and a

reduced sensitivity to the illumination issues.
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1. Introduction

In ophthalmology, the diagnosis of retinal diseases is often based on the analysis of fundus

images, including retinal changes that can occur over time. Therefore, the examination of

multitemporal images is an important diagnostic tool. Fundus images may be used to follow

the progression of retinal diseases (Fritzsche et al., 2003), revealing retinal changes that have

occurred during the period between medical visits. During the last years an intensified effort

has been undertaken in developing tools to assist in the screening of diabetic retinopathy,

which is the most common cause of legal blindness in the working age population of developed

countries (Arun et al., 2009; Bek et al., 2009). Furthermore, effective treatments are available

if the disease is detected early, before visual symptoms occur (Stefansson et al., 2009; Walter

et al., 2002).

In screening programs, ophthalmologists have to deal with a large number of images.

Therefore, automatic image analysis methods have been acquiring a growing interest. In

particular, change detection in pathologies such as microaneurysms and retinal microhemor-

rhages would be useful in diabetic eye screening programs and possibly reduce the manpower

needed for image evaluation.

Typically, the detection of retinal diseases has been addressed using supervised meth-

ods (Usher et al., 2003), which require training based on information from an expert on the

data. In Usher et al. (2003) morphological operators and neural networks were used to de-

tect and classify retinal lesions. The results strictly depended on the resolution and contrast

of the photographs. A large number of studies have reported interesting preliminary results

for retinopathy detection. Automatic techniques for detecting and counting microaneurysm

in fluorescein angiograms have given good results (Cree et al., 1997; Spencer et al., 1992,

1996). However, angiography with intravenous fluorescein is too invasive to be used during
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screening and the role of oral fluorescein is uncertain (Newsom et al., 2000).

Although many studies have been done to detect specific retinal diseases, few efforts have

been undertaken to analyze their time evolution. A rare example can be found in Narasimha-

Iyer et al. (2006), where changes were detected using a Bayesian approach. However, a

training set, in which “change” and “nochange” classes are manually labeled, was required.

In this paper, an automatic technique is proposed for the detection of changes (in terms

of red and white spots) in fundus images and for their registration (Brown, 1992). The im-

plemented registration method is based on an optimization technique (Matsopoulos et al.,

1999). The proposed change detection approach is based on the automatic thresholding

method (K&I) proposed by Kittler and Illingworth (1986), applied to an appropriate differ-

ence image. However, the application of K&I to the whole image may be severely affected by

the spatial behavior of the illumination field at the two observation dates. To compensate

for nonuniform illumination across each acquisition and also for the variation of illumina-

tion between the two acquisitions, a multiclassifier voting approach (Troglio et al., 2010)

is proposed. K&I is applied to randomly generated subimages, corresponding to different

classifiers. This approach is based on the hypothesis that the illumination is approximately

uniform in each subimage. By combining the multiple classifiers we aim at a more accurate

classification although that comes at the expense of increased complexity and computational

cost (Kuncheva, 2004).

The main novelty of this paper lies in the development of a fully automatic and unsuper-

vised method, able to register retinal images, compare them, and detect changes occurred

in between different medical visits. Moreover, the introduction of a multiple classifier sys-

tem for change detection is novel and the idea of combining the vote of spatially different

classifiers to overcome local illumination differences is new in the contest of multiclassifier

141



approaches.

The paper is organized as follows. Section 2 describes the methodology of the proposed

approach. In Section 3, results are shown, and in Section 4 conclusions are drawn.

2. Methodology

2.1. Overview of the Proposed Approach

A pair of images, acquired from a given patient during different medical visits, is reg-

istered using an optimization technique (see Section 2.2). Once the images are aligned,

they are compared by image differencing and the changes between them are detected using

K&I (Kittler and Illingworth, 1986) and a multiclassifier approach (see Section 2.3). Figure 1

shows the overall architecture of the proposed approach.

Figure 1: Architecture of the proposed approach.
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2.2. Image Registration

Retinal image registration is a hard task because the eye position and rotation may vary

between images, the illumination is rather uneven due to light scattering within the eye, and

artifacts are often present.

Several automatic approaches for retinal image registration have been proposed in the

literature. Those techniques can be divided into area-based and feature-based. Area-based

approaches are generally based on pixel intensities and on optimization techniques. Those

methods, often used in multitemporal and multimodal registration, adopt criteria such as

least mean square error, crosscorrelation, phase correlation, and mutual information (Ritter

et al., 1999; Ballerini, 1997). Feature-based approaches assume that point correspondences

are available in both images to be registered and the registration is performed by matching

those correspondences (Can et al., 2002; Lalibert et al., 2003).The performance of those

methods largely depends on sufficient and reliable point correspondences.

Here, we propose an automatic approach based on the robust extraction of retinal vessels

and a global optimization technique to match the extracted features (see Fig. 1). Vessels are

used being the most prominent retinal feature, they cover all the fundus, and are assumed to

be stable over time. Vessel elongation, changes in width and tortuosity may happen, due to

specific retinal diseases, but here we assume that they are not great enough between visits

to markedly affect the main vascular structure Kristinsson et al. (1997).

The input and reference images, Iin and Iref , are first preprocessed to obtain the corre-

spondent vessel maps IA and IB. An approach based on mathematical morphology, proposed

in Chanussot et al. (May 1999) for road detection in remote-sensing images, is used here

to extract retinal vessels. The method is unsupervised and involves very few parameters

(i.e., the dimensions of the morphological operator structuring elements and one double
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threshold).

IA and IB are fed as inputs to a module aimed at optimizing the transformation matrix

T . The problem is formulated as determining a transformation T ∗ such that, when T ∗ is

applied to IA the best match with IB is achieved. Mathematically, it can be formulated as

the maximization of

MOM(T ) =
1

n

∑

(x,y):IB(x,y)̸=0

IA(T (x, y)), (1)

where MOM (Measure Of Match) denotes the objective function, T is the transformation

of the x and y coordinates in the image plane, and n is the number of nonzero pixels of IB.

An affine transformation model, which exhibits 6 independent parameters, is employed for

T .

Equation 1 is considered appropriate in this case, where IA and IB are not identical

and may contain noisy pixels. Correlation methods based on distance measure calculations

would not perform satisfactory; they would be affected by noise and local differences between

the images. Furthermore, elastic methods (van den Elsen et al., 1993) would increase the

computational cost.

For the determination of the transformation parameters, search based methods provide a

solution, based on the optimization of a matching functional between the images. For retinal

image registration, where MOM has multiple extremes, global optimization techniques are

the most attractive search methods. Here, a Genetic Algorithm (GA) (Michalewicz, 1999)

is adopted (as proposed in Troglio et al. (2008)), since it ensures, under mild assumptions,

convergence to a global maximum. GA was proven to be more efficient compared to other

global optimization techniques in this case (Mouravliansky et al., 1998). GA is used to find

a transformation T ∗ that maximizes MOM . The transformation parameters are converted

144



into binary digits concatenated in a single string, called individual. First, the initial popula-

tion of individuals is randomly defined. The population is evaluated calculating the fitness

of each individual (i.e., MOM of the transformation parameters encoded in the individual).

Pairs of fit individuals are selected to recombine their encoded parameters in order to pro-

duce offsprings. In an iterative process, a new generation of solutions, which replaces the

previous one, is produced at each step, until the MOM convergence is achieved. The final

transformation matrix T ∗ is calculated decoding the last population fittest individual. T ∗

is applied to Iin, in order to obtain the registered image, Ireg.

2.3. Change Detection

After a preprocessing step (see Section 2.3.1), the proposed multiclassifier change detec-

tion approach (see Section 2.3.2), based on unsupervised thresholding (see Section 2.3.3), is

applied.

2.3.1. Feature Transformation

First, the nonuniform illumination is corrected in both images using a homomorphic

filtering technique (Oppenheim et al., 1968). For Lambertian surfaces, an observed image

IO can be modeled as a multiplicative composition of a luminance component, LO, and a

reflectance component, RO (Toth et al., 2000),

IO = LO · RO. (2)

This model holds for fundus images due to the diffusive retinal characteristics. LO can be

assumed to vary slowly over space, whereas RO contains also medium and high frequency

details (Brinkmann et al., 1998). Applying the logarithm, the multiplicative relation in
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equation 2 is transformed into an additive one:

log(IO) = log(LO) + log(RO). (3)

Gaussian filtering G is applied to log(IO), isolating the lowpass component, G(log(IO)) =

log(LO). Hence RO can be estimated as

RO = exp{log(IO) − G(log(IO))}. (4)

The reflectance components Rref and Rreg are estimated for Iref and Ireg. Subsequently,

before performing image differencing, Rref and Rreg (i.e., two 3-cannel RGB images) need

to be projected into a 1-channel feature space. The 3 RGB channels contain different

information: The red channel, Iρ, is usually the brightest channel but exhibits a very narrow

dynamic range; the green channel, Iγ, has the best contrast (the edge of retinal features,

such as exudates, optic disc, and blood vessels, are brighter than in the other channels); the

blue channel, Iβ, is nonzero mostly in the optic disc and the white spot areas.

Given a reflectance component R, a band ratioing between green Rγ and red Rρ channels

is applied pixel-by-pixel. By ratioing these bands, a new gray-level image, γρ, which empha-

sizes the features of interest, is obtained. Finally, γρref and γρreg, obtained band ratioing

Rref and Rreg, are subtracted pixel-by-pixel to generate two “difference images”,

D1 = γρref − γρreg D2 = γρreg − γρref . (5)
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2.3.2. Multiclassifier Approach

To compensate for local illumination variations not compensated by the homomorphic

filtering, an innovative multiclassifier approach is proposed. A thresholding approach for

change detection is not applied to the whole “difference image” but to a set of randomly

selected subimages. Square windows are randomly generated: They are centered in randomly

selected pixels, which are uniformly distributed. As a result, the windows partially overlap.

Each window corresponds to a single classifier: The thresholding approach (see Sec-

tion 2.3.3) is applied to each subimage and a change submap is obtained. All the pix-

els included within a subimage are classified into two different classes (i.e., “change” or

“nochange”) in the corresponding change submap. The information stored in each change

submap needs to be combined in a global change map. Hence, a fusion of the label outputs

(“change” or “nochange” labels for each pixel) obtained on the different windows is per-

formed. For each pixel, all the corresponding classifiers (i.e., the windows that include it)

vote for “change” or “nochange”. The classification decision is taken using a nonweighted

sum of the votes. Here, a majority vote is used because we assume that each classifier has the

same probability of correct classification, pcc. Indeed, the windows have the same dimension

and only their spatial location is different, which does not influence pcc.

Being the illumination within each subimage more uniform than within the entire image,

the change detection results obtained by each classifier are less influenced by the illumination

inhomogeneity. Therefore, the proposed method compensates for the local illumination

differences between the two acquisitions and is expected to improve the change detection

accuracy, especially in the external regions of the image, which are generally darker and,

hence, provide poor information.
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2.3.3. Thresholding

Changes are detected in each subimage (see Section 2.3.2) adopting a generalization of

the K&I unsupervised thresholding algorithm (Kittler and Illingworth, 1986).

A thresholding approach is a simple classification procedure involving only one input

feature, namely, the grey level of a scalar image. Here, such operator is applied to the

“difference images” D1 and D2. The key issue is to choose the threshold to minimize the

number of misclassified pixels. Being the approach unsupervised, the prior probabilities P1

and P2 and the parameters of the conditional probability density functions (pdfs) p1 and p2

of the classes ω1 = “nochange” and ω2 = “change” cannot be estimated through a training

set. As a consequence, in place of the global grey level pdf of the difference feature z,

pz(Z) = P1p1(Z) + P2p2(Z), Z ∈ R, (6)

the histogram h(Z) (Z = 0, ..., L − 1) of the considered difference image, D, is used (L

denotes the number of quantization levels in D). The selection of an appropriate threshold

τ on [0; L−1] is based on the optimization of a given criterion function J(τ) which averages

a cost function c(·, τ) over h(·) (Chi et al., 1996). Kittler and Illingworth (1986) proposed

a thresholding algorithm whose cost function is based on the Bayes decision theory. The

minimum-error classification rule is adopted, under the Gaussian assumption for the class-

conditional pdfs (i.e. pi(·) = N(mi, σ
2
i ), where mi and σ2

i are the ωi-conditional mean and

variance, respectively; i = 1, 2). Under this hypothesis, the only parameters to be estimated

are the class prior probabilities Pi, means mi, and variances σ2
i , i = 1, 2.

According to the “maximum a posteriori probability” rule, P (ωi|Z) (i = 1, 2) are to be

maximized. This task is formulated introducing the following cost function (Kittler and
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Illingworth, 1986)

c(Z, τ) =
[Z − m̂i(τ)]2

2σ̂i
2(τ)

− 2 ln
P̂i(τ)

σ̂i(τ)
, (7)

with i = 1 for z ≤ τ and i = 2 for z > τ . P̂i(τ), m̂i(τ) and σ̂i
2(τ) are histogram-based

estimates of the class parameters and depend on τ (i = 1, 2). The resulting criterion function

is

J(τ) =
L−1∑

Z=1

h(Z) · c(Z, τ) = 1 + 2
2∑

i=1

P̂i(τ) ln
σ̂i(τ)

P̂i(τ)
. (8)

The optimal threshold τ ∗ is chosen as to minimize J(·) over 0, 1, ..., L − 1. The criterion

function behavior is strongly related to the scene characteristics, represented by h(·). Typ-

ically, only one minimum in the interval [0, L − 1] implies histogram bimodality, which

reflects the presence of two classes (e.g., “change” and “nochange”) in the scene. In the case

of histogram monomodality a minimum is not identified, hence all the pixels are classified

as “nochange” (i.e., τ = L). Indeed, the window, in which the thresholding is applied, is

assumed here to be larger than the maximum change area to be detected and, hence, to

contain “nochange” pixels.

2.3.4. Change Classification

The change map obtained from the previous step is further classified into different cat-

egories, corresponding to the different change typologies (red vs white spots). Our aim

is to detect certain types of pigmentation changes that are clinically relevant for diabetic

retinopathy. The considered types of color changes are: Appearing/disappearing red spots,

which generally correspond to bleedings/microaneurysms, and appearing/disappearing white

spots, generally due to exudates/cotton wool spots (we will refer to these typologies as to

new/old red and white spots).

To this end, each pixel is described by a set of features. Here, the feature space consists
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of the green/red ratio, γρ, and the green channel, Iγ, for both images. The “white spot”

and the “red spot” labels are assigned by comparing the intensities of these features to

corresponding thresholds. Fig. 2 shows the architecture of the proposed subclassification

step.

Figure 2: Block diagram of the change classification step.

The thresholds in this diagram are selected using an interactive approach, starting from

the average values of the corresponding features. A trial-and-error approach is used by

varying the threshold, with an excursion of 30% of the average value, in order to optimize

the results from a visual view-point.

The method proposed here is simple and interactive and few parameters have to be set

by a human expert. This approach is preferable to a supervised classification, because it

encourages the data interpretability.

3. Experimental Results

The proposed method was tested on 22 pairs of multitemporal retinal images, which

are RGB 8-bit color images of size 1280×1024 pixels, captured by a ZEISS FF 450plus IR
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Fundus Camera with VISUPAC/System 451, connected to a JVC digital camera.

The images were taken in different medical visits from patients attending a retinopathy

screening service and can present haemorrhages, microaneurysms, or exudates.

3.1. Registration

The 22 image pairs to be registered were preprocessed and the vessel maps, of both

input and reference image, were extracted. Some differences in the maps, due to different

illuminations, determined a low MOM value. Fig. 3 shows registration results of the first

(a) MOM

(b) IA (c) IB (d) Manual (e) Automatic

Figure 3: First dataset.(a) Measure Of Match (MOM) of the individuals among the generations. The
blue, the green, and the red line represent the lowest, the median, and the highest value in the population,
respectively. (b) Input and (c) reference image vessel maps. (d) Manual and (e) automatic registration
shown by a checkerboard representation, in which checkers are alternately taken from Iref and Ireg.

image pair, which presents differences in illumination and viewpoint. Spots also appeared

from the first visit to the second one. Consequently, the vessel maps (b) and (c) exhibit

large differences; nevertheless, the MOM convergence is steadily achieved, as shown in (a).
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By a visual analysis of the results (d) and (e), one may note very good vessel continuity in

border regions between a checker and its neighbors (i.e., where the vessel maps overlap).

A correct registration was achieved by the proposed method for all the 22 image pairs,

despite a low MOM value at convergence.

3.2. Change Detection

3.2.1. Performance Evaluation

The quality assessment of a change detection system in the medical field is not an easy

task. In order to evaluate the performance of the proposed change detection approach, the

obtained results were compared to the performance of a human grader. A test map was

created for each image pair, with the support of a specialist.

A quantitative evaluation of the results is performed in terms of Sensitivity (Sn) and

Specificity (Sp). Sn is evaluated both in terms of pixels (SnP ) and in terms of regions

(SnR). In particular, SnP is the percentage of pixels correctly labeled as “change” in the

change map over the number of “change” pixels in the test map, as determined by a human

observer (i.e., it is an estimate of the detection probability (Duda et al., 2001)). SnR is the

percentage of regions correctly identified as “change” in the change map over the number

of “change” regions in the test map, irrespective of the specific number of correctly labeled

pixels inside the regions. The Specificity (Sp) is the percentage of pixels correctly labeled as

“nochange” in the change map (i.e., it is an estimate of (1−PF ), where PF is the false-alarm

probability (Duda et al., 2001)).

3.2.2. Preliminary Experiments

A few parameters of the multiclassifier approach need to be set. To this aim, preliminary

experiments were carried out. The classification window size, SW , is an important parameter
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to set. The appropriate choice of SW depends on the illumination inhomogeneity between

the image pair and the expected size of the change regions. The windows should be small

enough to guarantee homogeneous illumination in the area that they include. Meanwhile,

SW should be larger than the change areas to be detected. In order to estimate the proper

value, several trials were done varying SW in a wide range. Fig. 4 shows the behavior of

the evaluation parameters (described in Sec. 3.2.1) versus SW . Both SnP and SnR values

Figure 4: Performance parameter behavior versus SW (expressed as a percentage of the entire image) for a
selected dataset. The pink, the blue, and the green lines represent SnP , Sp, and SnR, respectively.

increase using classification windows of larger dimension. These parameters converge to

their maximum value for window areas about 10% of the original image. Differently, Sp

reaches its maximum value using windows that cover about 8-10% of the original image.

Hence, SW was set to 10% of the analyzed image pair.

Another parameter to set is the number of windows to be used, which influences the av-

erage number of votes per pixel. As the number of votes per pixel increases, the performance

of the method improves, until reaching a certain value vpp. From experimental results vpp

is about 30 votes per pixel. Here, 400 windows were generated, which give us about 40 votes
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Table 1: Performances of BA, KEI, and MC applied to our datasets, in terms of SnP , Sp, and SnR.

Method BA BA BA KEI KEI KEI MC MC MC
Parameter SnP Sp SnR SnP Sp SnR SnP Sp SnR
Average 56% 87% 91% 54% 91% 94% 59% 92% 96%

per pixel on the average.

3.2.3. Results

The proposed change detection algorithm has been tested on all the registered image

pairs.

For comparison purposes, a method for change detection based on a Bayesian Algo-

rithm (BA) proposed in Narasimha-Iyer et al. (2006) was implemented and tested on our

data set. The change maps were obtained by comparing the normalized sum square of the

differences within a neighborhood (Aach and Kaup, 1995), see Narasimha-Iyer et al. (2006)

for more details. That approach was chosen for comparison, being the only previous work

for retinal change detection. Moreover, the results obtained by the proposed multiclassifier

approach (MC) were also compared with the change maps obtained by applying K&I to the

entire image (KEI). Table 1 shows the quantitative evaluation of the results obtained by

BA, KEI, and MC. Specificity values (Sp) obtained applying either BA, KEI, and MC are

very high also because the number of true negatives is always high. Moreover, Sp values

produced by KEI and MC are higher than the ones obtained by BA. Differently, Sn is more

variable because it strictly depends on the quality of the analyzed images and is thus af-

fected by sharp differences in the image dynamics at the two dates. Sensitivity values (Sn),

assessed both in terms of pixels (SnP ) and of regions (SnR), produced by MC are higher

than the ones obtained applying BA and KEI. In fact, the use of multiple classifiers avoids

the presence of wide false alarm areas, otherwise caused by illumination differences. In all
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(a) Iref (b) Ireg

(c) Test map (d) KEI map (e) MC map

Figure 5: First dataset: (a) and (b) registered images acquired two years apart. (c) Test map, (d) KEI
change map, and (e) MC change map. The change maps are shown transparently superposed to the first
image. Map legend: White = old white spots, red = old red spots, blue = new white spots, green = new
red spots, background = “nochange”.

cases, Sn values are higher in terms of regions. In fact, the presence and the position of most

“change” areas are correctly detected, even when their shape is not perfectly reconstructed.

Figs. 5(d)-(e) show the change maps generated by KEI and MC when applied to the

first dataset (Figs. 5(a) and (b)). Several typologies of change are present in this dataset,

including new and old spots of both types: Fig. 5(c) shows the related test map. Few missed

alarms appear in correspondence of edges between “change” and “nochange”. Anyway, the

detection of the changes and their classification, which is our aim (representing clinically

relevant information), are achieved.

Moreover, results obtained applying MC to another dataset (Figs. 6(a) and (b)) are

shown in Fig. 6(d). Fig. 6(c) shows the correspondent test map.
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(a) Iref (b) Ireg

(c) Test map (d) MC map

Figure 6: Fifth dataset: (a) and (b), acquired one year apart. (c) Test map, and (d) MC change map.

4. Conclusions

In this paper, an automatic technique has been proposed for retinal image registration

and change detection. Different types of images, including changes of different sizes and

typologies, were taken into account to test the performances of the proposed method. Accu-

rate results were achieved. The registration accuracy, as compared to manual registration,

has been evaluated by visual inspection of the results. A correct registration was obtained

for all the image pairs.

The Kittler & Illingworth’s thresholding technique, developed in the context of com-

puter vision and previously applied to change detection problems on other typologies of

images (Melgani et al., 2002; Moser and Serpico, 2006), has proven to be effective when

locally applied to retinal images here. In particular, the multiclassifier approach (based on
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K&I applied to randomly selected windows) provided accurate results, compensating for

local illumination differences.

In our experiments, very good change detection accuracies were obtained for the analyzed

images, for which the preprocessing phase effectively corrected the geometrical and radio-

metrical discrepancies between the two acquisition dates and the multiclassifier approach

compensated for the local illumination differences. The main drawback is the possible sen-

sitivity to the presence of undesired modes, such as artifacts and glares. The development

of a method to automatically identify ungradable images may be an important next step of

this research.

The proposed method integrates image registration and change detection. Retinal changes,

which may occur between different medical visits, can be detected without the supervision of

the ophthalmologists. A specialist will be consulted only in the case that temporal changes

are detected by the proposed method.
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Automatic Extraction of Ellipsoidal Features for
Planetary Image Registration

Giulia Troglio, Student Member, IEEE, Jacqueline Le Moigne, Senior Member, IEEE, Jon A.
Benediktsson, Fellow, IEEE, Gabriele Moser, Member, IEEE, and Sebastiano B. Serpico, Fellow, IEEE

Abstract— With the launch of several planetary missions in
the last decade, a large amount of planetary images has already
been acquired and much more will be available for analysis in the
coming years. The image data need to be analyzed, preferably by
automatic processing techniques because of the huge amount of
data. Although many automatic feature extraction methods have
been proposed and utilized for Earth remote sensing images, these
methods are not always applicable to planetary data that often
present low contrast and uneven illumination characteristics.
Here, we propose a new unsupervised method for the extraction
of different features of elliptical and geometrically compact
shape from the surface of the analyzed planet. This approach is
based on the combination of several image processing techniques,
including a watershed segmentation and the generalized Hough
transform. In particular, craters and rocks of compact shape (e.g.,
boulders) can be extracted. The method has many applications,
first of all image registration, and can be applied to arbitrary
planetary images.

Index Terms— Crater Detection, Feature Extraction, Water-
shed Segmentation, Hough Transform.

I. INTRODUCTION

With each new planetary mission, the volume of acquired
data significantly increases. Different types of data are being
collected at different times, by different sensors, and from
different view-points: Multitemporal, multimodal and stereo-
images need to be analyzed. Therefore, image registration is an
essential task to jointly exploit, integrate, or compare all these
different data. Feature extraction, i.e., extraction of spatial
features in the images, is the first step in the image registration
process. Furthermore, the feature extraction is important for
further analysis of the data.

In this paper, the extraction of spatial features in planetary
images is addressed. In particular, ellipsoidal features, such as
craters and rocks, are detected for registration purposes.

Identification of spatial features on planetary surfaces can be
manually performed by human experts but this process can be
very time consuming. Therefore, a reliable automatic approach
to detect the position, structure, and dimension of each feature
is highly desirable. This is a difficult task for several reasons:
Limited data are usually available, the quality of the images
is generally uneven (i.e., it depends on illumination, surface

The authors G. Troglio and J.A. Benediktsson are with the Fac. of Electrical
and Computer Eng., University of Iceland, Reykjavik, Iceland. The author
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Eng. Division, Code 580, Greenbelt, MD, USA. The authors G. Troglio, G.
Moser, and S.B. Serpico are with the Biophysical and Electronic Eng. Dept.,
University of Genoa, Genova, Italy. This research was partially supported by
the Research of Fund of the University of Iceland and was performed at NASA
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properties, and atmospheric state), and the features that are
present in the images can be barely visible due to atmospheric
erosion and they may be based on different structure types of
variable sizes.

Among the typical features in planet-surface imagery,
craters play a primary role. Detection of craters has been
widely addressed and different approaches have recently been
proposed in the literature, based on the analysis of planetary
topography data [1], satellite images [2] in the visible spectrum
and the infrared spectrum. Here, we focus on optical image-
based approaches for crater and rock detection. The existing
techniques can be divided into two main categories: Super-
vised and unsupervised. Supervised methods require input
labeled data to train the algorithm for feature extraction.
Unsupervised methods do not involve any training process and
search for the structures of interest in the image. Different
approaches have been presented, based on template match-
ing [2], [3], texture analysis [4], neural networks [5], [6],
boosting approaches [7], or a combination of these tech-
niques [8], [9]. In particular, in [10], the identification of
impact craters was achieved through the analysis of the
probability volume created as a result of a template matching
procedure. Such methods enable the identification of round
spatial features with shadows. Kim and Muller [4] presented
a crater detection method based on texture analysis and ellipse
fitting. That method was not robust when applied to optical
images, hence it was performed by using fusion techniques
exploiting both DEM and optical images. In subsequent
work [11], in order to automatically detect craters on Mars, the
authors proposed a combination of edge detection, template
matching, and supervised neural network-based schemes for
the recognition of false positives. In a different approach,
Martins et al. [12] adopted a supervised boosting algorithm,
originally developed by Viola and Jones [13] in the context of
face detection, to identify craters on Mars. In [14], Urbach and
Stepinski presented a different approach for crater detection in
panchromatic planetary images. The method in [14] is based
on using mathematical morphology for the detection of craters
and on supervised machine learning techniques to distinguish
between objects and false alarms.

Other typical features in planetary images are represented by
rocks. Rock detection in ground imagery has been addressed
in the literature. In particular, in [15] the authors presented
a supervised method for segmentation, detection and classi-
fication of rocks on data collected by rovers. That approach,
based on a probabilistic fusion of data from multiple sensor
sources, was tested on Earth data (collected in the Atacama
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desert in Chile). In [16], the same authors tested different rock
detection approaches on Mars Exploration Rover data. In [17],
the authors addressed rock detection by using a segmentation
method on data collected by the Spirit Mars Rover Planetary
Camera. That approach incorporates multiple scale attributes,
which include local attributes (e.g., texture), object attributes
(e.g., shading), and scene attributes (e.g., illumination direc-
tion). Moreover, in [18], the authors proposed an automatic
algorithm for rock detection both on ground imagery and on
HiRISE data, based on cylinder fitting.

Also the detection of other types of planetary features,
which is not relevant for this letter, has been addressed (e.g.,
detection of volcanoes on Venus [19], polygonal patterns on
Mars [20], valley networks on Mars [21]).

Registration of planetary images has been addressed in the
literature as well. Kim et al. [22] proposed a method for crater
extraction from MDIM and MOLA tracks, for their alignment.
However, registration errors occurred due to shape distortions
of the detected craters. In [23] a method for the automatic
recognition of impact craters on Mars was proposed and
applied to remeasure the coordinates of big craters (exceeding
10 km in diameter) in a catalogue. Lin et at. [24] proposed a
method for the co-registration of topographic data by surface
matching. Nonetheless, here, we focus on the analysis of
optical data.

In order to overcome the typical problems of planetary
images with limited contrast, poor illumination, and a lack
of good features, we propose here a new unsupervised region-
based approach for the extraction of different planetary fea-
tures. The main contribution of this paper is a novel feature
extraction approach for the unsupervised identification of plan-
etary images, aimed at extracting curvilinear features, relevant
for this typology of images as a typical model for craters and
rocks. In particular, the proposed approach is based on a novel
combination of robust image processing techniques, such as
the Canny operator, the Hough transform, and the watershed.
Moreover, the approach allows not only to locate the features,
but also to reconstruct their shape.

II. THE PROPOSED APPROACH

Planetary images show the surface of a planet and its
structures. The aim here is to automatically detect the different
structures that are present on a considered planetary surface by
using image analysis techniques. The extracted features could
then be used for image registration purposes, as will be shown
in Section III.

Different types of features are present in the planetary
images, and their sizes, shapes and positions are estimated
by applying different methods. The extracted features can be
used for registration purposes, as will be shown in Section III.

The main features to be extracted are craters and rocks.
Craters are objects of approximately elliptical (and generally
circular) shape with shadows, due to their deep concave shape
and uneven illumination. Rocks have small elliptical shape,
with almost no shadows, because of their convex shape. The
extraction of these spatial features is a difficult task, because
planetary images are blurry, quite noisy, present lack of con-
trast and uneven illumination, and the represented objects are

not well defined. For these reasons, a region-based approach,
based on segmentation, has been chosen in order to address
such problems. Segmentation is the process of partitioning
an image into multiple regions, for instance, in order to
distinguish objects from the background. A frequent approach
to segmentation introduces a set of characteristic points that
are related to the objects to be detected, automatically selected
and used as “seed points” to segment the images. Many
segmentation approaches have been explored in the literature.
Here, the watershed algorithm, presented by Beucher in [25],
has been chosen, a method which is automatic, robust and
fast. The basic concept of watershed segmentation is giving a
topographic representation of a grey-level image (i.e., the grey
level of a pixel represents its elevation). A flooding process
starts from the minima of the image in terms of elevation, so
that the merging of the flooding coming from different sources
is prevented. As a result the image is partitioned into two
different sets: The catchment basins (i.e., the regions) and the
watershed lines (i.e., the region boundaries). The flowchart
of the proposed technique for feature extraction is shown in
Figure 1.

Fig. 1. Flowchart of the proposed approach.

Before applying feature extraction techniques, the input
image I needs to be preprocessed. First, the noise is reduced
by a Smoothing Filter, SF. Then, in order to detect edges,
the image gradient is computed by using the Canny edge
detector [26]. As an intermediate result of this operation an
intensity gradient, G, is generated. Then, by applying a non-
maximum suppression algorithm followed by an hysteresis
thresholding to G, a binary gradient image, B, is obtained
but this image shows the contours of the objects represented
in the original image.

Rocks generally appear like closed contours in B, because
of the almost absence of shadows. In order to extract these
features, the Watershed segmentation algorithm, W, is applied
to B and closed contours are extracted. All the areas included
within a closed contour correspond to “seed point-areas,” and
are identified as regions. The result of this first step is a binary
image R that shows boundaries of small ellipsoidal features
of regular shapes, such as rocks.

While rocks generally appear like closed contours and can
be easily detected, craters have a more complex structure
and, due to their depth and uneven illumination, often exhibit
internal shadows. Their borders can be approximated with
incomplete non-continuous elliptical curves. A generalized
Hough accumulator [27] is used to identify the seed points
to detect these structures from B. For every pair of pixels
that are detected as edge points in B and exhibit opposite
gradient directions (being the relation of opposition defined
with tolerance ϵ), an accumulator, corresponding to the median
point between them in the image plane, is incremented of
a unit value. The maxima of the accumulator are taken as
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centers of ellipses. The three parameters describing the ellipse
centered in each detected maximum are then computed and
a 3D accumulator is used to estimate the two semi-axes and
the direction angle of the ellipse from all the pairs of points
that contributed to the accumulator in the considered center.
The center of each ellipse that has been generated is used as
a seed point for segmentation. Starting from all the detected
Seed Points, SPs, a Watershed algorithm, SPW, is applied
to G and the craters are identified. G is used in this case
because it represents not only the edges but also the elevation
information. As a result, a binary image C that shows the
boundaries of elliptical features, such as craters, that were
not detected by the previous step. In a post-processing step,
features are approximated by ellipses and their attributes (i.e.,
ellipse semi-axes and rotation angle) are estimated. Features
with eccentricity e > 0.6 are discarded, being features of
larger e unlikely to be either craters or rocks. A binary image,
F , which represents the contours of all detected features, is
created. The binary image, F , shows the boundaries of the
features, identifies their locations and estimates their shapes.

The proposed technique for feature extraction can be used
to register image pairs representing the same scene. For
registration, two binary images (Iref and Iin) need to be
extracted from both images to be registered and their match
can be estimated (in Section III an example of the application
of the proposed approach to image registration is presented).

III. EXPERIMENTAL RESULTS

Experiments were carried out using Mars data, collected
both by the THermal EMission Imaging System (THEMIS),
an instrument on board the Mars Odyssey spacecraft, and by
the High Resolution Imaging Science Experiment (HiRISE)
camera flying on the Mars Reconnaissance Orbiter (MRO),
were used. THEMIS combines a 5-band visual imaging system
with a 10-band infrared imaging system [28]. Both THEMIS
visible (VIS) and infrared (IR) images, with resolutions of 18
meters and 100 meters per pixel, respectively, were used to
test the proposed approach. For the experiments 5 VIS and 7
IR images were selected. Moreover, 9 HiRISE images (HR)
were used, with resolution of about 0.3 meters per pixel. The
name, location, and attributes of each test site are listed in I.

TABLE I
NAMES, LOCATION, ATTRIBUTES, AND NUMBER OF IMAGES N OF EACH

SELECTED TEST SITE.

Site n◦ Name Lat Lon N

1 No description 14.7◦S 175.4◦E 4
2 No description 1.1◦S 352.9◦E 5
3 Kasei Valles 20.7◦N 287.2◦E 1
4 Ascreaus Mons 6.6◦N 258.5◦E 1
5 Iberus Vallis 21.5◦N 151.5◦E 1
6 Hesperia Planum 19.9◦S 114.5◦E 1
7 Pavonis Mons 0.5◦S 251.5◦E 1
8 Noctis Labyrinthus 8.2◦S 260.4◦E 1
9 Unnamed crater ray 15.9◦S 151.9◦E 1

10 Nili Fossae 19.4◦N 75.6◦E 1
11 Acidalia Planitia 38.1◦N 319.5◦E 1

Reference data were generated by manually analyzing each
image of the data set and identifying all the craters and

rocks that are present. Only objects completely included within
the images were considered (i.e., objects cut by the borders
of the image were discarded). No limits were imposed on
the minimum dimensions of the features to be detected. A
quantitative assessment of the obtained results by the proposed
method was performed using these reference data. This was
accomplished by comparing the obtained results with the
labeled features in the correspondent Reference Map (RM ),
by the similarity measure proposed in [29]. Moreover, the
Detection percentage D, the Branching factor B, and the
Quality percentage Q were computed as follows:

D =
100 · TP

TP + FN
; B =

FP

TP
; Q =

100 · TP

TP + FP + FN
; (1)

where True Positive (TP ) is the number of detected features
that correspond to labeled objects in RM , False Positive (FP )
is the number of features detected by the proposed approach,
which do not correspond to any object in RM , and False
Negative (FP ) is the number of objects in RM that have not
been detected by the proposed approach. The global values
of D, B, and Q and the total number of TP , FP , and FN
obtained by the proposed approach for VIS, IR, and HR data
are reported in Table II.

TABLE II
AVERAGE NUMERICAL PERFORMANCE OF THE PROPOSED APPROACH AS

MEASURED BY DETECTION PERCENTAGE (D), BRANCHING FACTOR (B)
AND QUALITY PERCENTAGE (Q).

Param VIS IR HR Overall Rock Crater
D 82% 78% 83% 81% 80% 81%
B 0.03 0.05 0.06 0.05 0.04 0.07
Q 81% 75% 79% 77% 78% 77%

The global values of D for VIS data, IR data, and HR
data were about 82%, 78%, and 83%, respectively. These
high values reflect good detection rates (i.e., high TP values).
Furthermore, B was about 0, 03 for VIS, 0, 05 for IR, and
0, 06 for HR, which indicates in all cases a small amount of
false detections with respect to true detections, thanks to the
small FP values. Finally, relatively high Q values (i.e., about
81%, 75%, and 79% for VIS, IR, and HR, respectively) reflect
a good overall algorithm performance. The same evaluation
parameters obtained by testing the proposed approach on all
the data sets were also expressed separately in Table II for
rock and crater detections. The crater detection performance
of the proposed approach in terms of D, B, and Q com-
pares favorably with most of the results previously published
for automatic crater detection methods [11], [14], [30]. The
classification error, i.e., the percentage of feature classified in
the wrong class (crater versus rock) over the total number of
classified features is about 6%.

Visual results are shown for a partition of a single band VIS
image (Figure 2-a). The grey level image is first preprocessed
in order to reduce the noise. In particular, Gaussian and
median filtering operations are applied in a cascade [31] in
order to reduce the noise and, at the same time, preserve
the edges. The Canny operator is applied to the smoothed
image. Subsequently, in order to extract the rocks, a watershed
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(a) I VIS (b) W result (c) SPW result (d) F

Fig. 2. Experimental results obtained by applying the proposed method to
a VIS image. (a) Original image, (b) watershed segmentation applied to B,
(c) watershed segmentation, using the maxima of the Hough accumulator as
“seed points”, and (d) detected features. Each color in the segmentation map
denotes a different region.

algorithm is applied to the binary image gradient B. Rock
segmentation results are shown in Figure 2-b. Then, the
generalized Hough transform is computed (with ϵ = 5◦)
and a watershed segmentation is applied, starting the flooding
process from the ellipse centers and leading to the detection of
the craters. The segmentation results are shown in Figures 2-
c. Finally, the extracted features, including both rocks and
craters, are combined into a binary map and shown in Figure 2-
d, transparently superimposed to the original image. By a
visual inspection, it is possible to appreciate the accuracy of
both the detection and the reconstruction of the feature shape.

Visual results are also shown for a partition of the first
band of an IR image (Figure 3-a). Figure 3-b shows the

(a) I IR (b) W result (c) SPW result (d) F

Fig. 3. Experimental results obtained by applying the proposed method to
the first band of an IR THEMIS image.

segmentation results when watershed is applied to B. Figure 3-
c shows the crater segmentation results. The different extracted
features are combined and shown in Figure 3-d. In this
example, not all the features are detected. This is because their
contours were not extracted by the Canny operator. A modified
edge detection approach which may improve the accuracy of
the proposed method is currently under investigation. On the
other hand, it is shown below that the detected features are
enough to achieve an accurate registration.

Finally, visual results are also shown for different partitions
of HR images. Figures 4-a to 4-f show the input data and
Figures 4-g to 4-l show the contour maps in red superimposed
on the correspondent inputs.

To demonstrate the applicability of the proposed method to
registration, two different non-registered bands of an IR image
are used as reference Iref and input Iin images. In order to
show the results, the same partition of Figure 3-a is used; in
particular, the 4th and 5th bands were selected (Figures 5-a
and 5-b, respectively). For both images, craters and rocks are
detected and their contours are represented in binary feature

(a) I 1 (b) I 2 (c) I 3 (d) I 4 (e) I 5 (f) I 6

(g) F 1 (h) F 2 (i) F 3 (j) F 4 (k) F 5 (l) F 6

Fig. 4. Experimental results obtained by applying the proposed method to
HR images.

(a) Iref (b) Iin (c) Fref (d) Fin (e) Fref+in(f) Results

Fig. 5. Experimental registration results for a partition of (a) the 4th and
(b) the 5th bands of an IR image. (c) and (d) feature contours extracted from
(a) and (b), respectively. (e) Feature contours superimposed and represented
in a false-color composition (i.e., the green plane is (c), the red plane is (d),
and the blue plane is identically zero). (f) Registration results, by using a
checkerboard representation.

images, Fref and Fin, as shown in Figures 5-c and 5-d, re-
spectively. The rotation and translation between the two bands
are visible by looking at Figure 5-e, in which the two non-
registered feature images are superimposed in a false-color
representation. The features extracted from Iref , Fref , are
represented in green, whereas the Iin features, Fin, are shown
in red. The registration scheme used in this phase was based
on a global optimization technique aimed at estimating the
optimum parameters of an image transformation model. The
contour images, which represent the features of the two input
image bands, were fed as inputs to an optimization module.
The transformation matrix was to be optimized: Its goodness
was evaluated by an objective function and its optimization
was achieved by applying a genetic algorithm [32]. After the
optimum matrix was estimated, it was used to transform and
interpolate one of the two bands with respect to the other one.
The co-registered bands are shown in Figure 5-f, by using a
checkerboard representation: Each tile of the board represents
the registered input band and the reference band, alternately.
The registration accuracy can be evaluated by looking at the
continuity of the features at the borders of the tiles. The visual
analysis of Figure 5-f suggests that the registration performed
very well; craters and ridges appear continuous at the borders,
i.e., the points of overlap.

IV. CONCLUSIONS

In this letter a novel unsupervised region-based approach
has been proposed for automatic detection of spatial features
that characterize planetary surfaces. The proposed approach
has been applied to the registration of planetary data.

The features to be extracted are not as well contrasted nor
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defined as for Earth data. However, small rocks, which are
not affected by uneven illumination, can easily be detected
by the proposed approach. Crater detection is more difficult
than rock detection, because of their depth and spatial extent
and, consequently, their contours are often blurry and not
continuous. Nevertheless, we showed here that their identi-
fication can be achieved and the proposed approach provided
quite accurate results. The accuracy of the detection has been
assessed by comparison to a manually generated reference
map. The results in terms of several indices based on true
and false positives compared favorably to previously proposed
approaches. Moreover, we showed that the extracted features
can be used to accurately register pairs of image bands
acquired from the same sensor. The accuracy of the registration
step is confirmed by visual inspection of the results.

The proposed approach represents the first important step
for many applications dealing with all the various data that
are being collected by different planetary missions, among
which image registration and image analysis, with the aim of
selecting safe landing sites, identifying lunar resources, and
preparing for subsequent explorations of the Moon and Mars
by both robots and humans.

In future, we plan to expand the experimental validation.
The approach will be applied to different types of data and
registration of multisensor images will be addressed.

In our future work we plan to integrate the shadow informa-
tion around the features in order to improve the reliability of
the edge detection and reduce the false alarms in the contour
map F . Illumination correction, based on the knowledge of the
orbital angle and the acquisition time, will be useful to reduce
the bias in the reconstruction of the exact feature shape.

Furthermore, crater detection and rock detection could be
addressed separately for specific applications. The different
features could be distinguished in a post-processing step, by
using the shape information. A crater detection algorithm able
to detect features of small size would be useful to identify
small craters. Craters that are not catalogued yet could be
identified and this information would increase the importance
of the already accurate but not complete Mars catalogues [33].

Finally, the proposed method could be used to extract other
features of elliptical shape, such as volcanoes. Additionally,
features of other shapes, such as ridges or polygonal patterns
among others, could be extracted, by adapting the generalized
Hough transform to the detection of the shape of interest.
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Abstract— With the launch of several planetary mis-
sions in the last decade, a large amount of planetary
images is being acquired. Preferably, automatic and robust
processing techniques need to be used for data analysis
because of the huge amount of the acquired data. Here,
the aim is to achieve a robust and general methodology
for crater detection. A novel technique based on a marked
point process is proposed. First, the contours in the image
are extracted. The object boundaries are modeled as a
configuration of an unknown number of random ellipses,
i.e., the contour image is considered as a realization of a
marked point process. Then, an energy function is defined,
containing both an a priori energy and a likelihood term.
The global minimum of this function is estimated by using
reversible jump Monte-Carlo Markov chain dynamics and
a simulated annealing scheme. The main idea behind
marked point processes is to model objects within a
stochastic framework: Marked point processes represent a
very promising current approach in the stochastic image
modeling and provide a powerful and methodologically
rigorous framework to efficiently map and detect objects
and structures in an image with an excellent robustness to
noise.
The proposed method for crater detection has several
feasible applications. One such application area is image
registration by matching the extracted features.

Index Terms— Crater Detection, Marked Point Process,
Markov Chains, Simulated Annealing.

I. INTRODUCTION

With each new planetary mission, the volume of
acquired data significantly increases. Different types
of data are being collected at different times, by
different sensors, and from different view-points.
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of Electrical and Computer Eng., University of Iceland, Reykjavik,
Iceland. The author J. Le Moigne is with the NASA Goddard Space
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Biophysical and Electronic Eng. Dept., University of Genoa, Genova,
Italy. This research was partially supported by the Research of Fund
of the University of Iceland. The support is gratefully acknowledged.

Feature extraction, i.e., extraction of spatial features
in the images, is typically the first step in most
image analysis processes. For instance, registration
is an essential task to jointly exploit, integrate, or
compare all these different data and usually requires
a prior accurate extraction of the spatial features in
the image.

Identification of spatial features on planetary sur-
faces can be manually performed by human experts
but this process can be very time consuming. There-
fore, a reliable automatic approach to detect the
position, structure, and dimension of each feature is
highly desirable. This is a difficult task for several
reasons: Limited data are usually available, the con-
trast of planetary images is generally low (i.e., it is
heavily affected by illumination, surface properties
and atmospheric state), and the features that are
present in the images can be barely visible due to
atmospheric erosion and they may be based on dif-
ferent structure types of variable sizes. Among the
typical features in planet-surface imagery, craters
play a primary role. Detection of craters has been
widely addressed and different approaches have
recently been proposed in the literature, based on the
analysis of planetary topography data [1], satellite
images in the visible spectrum and the infrared
spectrum [2]. Here, we focus on optical image-based
approaches for crater detection.

The existing techniques can be divided into two
main categories; supervised and unsupervised. Su-
pervised methods require the input of an expert
and generally use supervised learning concepts to
train the algorithm for feature extraction. These
techniques contemplate a learning phase, in which
a training set of images containing craters is labeled
by human experts. Craters are then detected by ap-
plying the previously trained algorithm to new unla-
beled sets of images. In [3], a continuously scalable
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detector, based on a supervised template matching
technique, is applied. In [4], different supervised
learning approaches, including ensemble methods,
support vector machines (SVM), and continuously-
scalable template models, were employed to de-
rive crater detectors from ground-truthed images.
The SVM approach with normalized image patches
provided the best detection and localization perfor-
mance. In a different approach, Martins et al. [5]
adopted a supervised boosting algorithm, originally
developed by Viola and Jones [6] in the context of
face detection, to identify craters on Mars.

Unsupervised methods are fully automatic and
generally based on image-analysis techniques.
These approaches generally rely on the identifica-
tion of circular or elliptical arrangements of edges
along the crater boundary. A standard approach is
based on the use of a Generalized Hough Trans-
form (GHT) [7]. Examples include the works of
Cross [8], Cheng et al. [9], Honda et al. [10],
Leroy et al. [11], and Michael [12]. Instead, in [13],
the identification of impact craters was achieved
through the analysis of the probability volume cre-
ated as a result of a template matching procedure,
approximating the craters as objects of round shape.
That unsupervised method enables the identification
of round spatial features. Kim and Muller [14]
presented a crater detection method based on texture
analysis and ellipse fitting. That method was not
robust when applied to optical images. Therefore
the authors needed to use also DEM data and fuse
them with the optical data.

In subsequent work [15], Kim et al. proposed
a combination of unsupervised and supervised
techniques. In particular, edge detection, template
matching, and supervised neural network-based
schemes for the recognition of false positives were
integrated, in order to automatically detect craters
on Mars. In [16], Urbach and Stepinski presented
a different approach, which combines unsupervised
and supervised techniques, for crater detection in
panchromatic planetary images. The method in [16]
is based on using mathematical morphology for the
detection of craters and on supervised techniques to
distinguish between objects and false alarms.

Each of the previously published methodologies
for automatic crater detection has its advantages and
drawbacks. Although the recent approaches show
high detection accuracy, the underlying technology
is complicated and its robustness to different types

of planetary surfaces and to image quality is not
totally satisfactory yet.

Here, a novel automatic and unsupervised ap-
proach for the extraction of planetary craters, based
on a Marked Point Process (MPP) [17], is proposed
(see also [18]). An MPP is an abstract random
variable whose realizations are configurations of
objects, each object being described by a marked
point (see Appendix A for more details). In the
proposed method, the objects that are searched for
are craters and a novel MPP model is defined to
determine their statistical distribution in the im-
age. The boundaries of the regions of interest are
considered as a realization of an MPP of ellipses:
Hence, the optimum configuration of objects has to
be estimated. Similar to Markovian modeling, the
“Maximum-A-Posteriori” (MAP) can be proved to
be equivalent, under MPP assumption, to the min-
imization of a suitable energy function. An energy
function, which takes into account the interactions
between the geometric objects and the way they fit
in the image, is minimized by using a Markov chain
coupled with a simulated annealing scheme.

The main novelty of this paper is a novel un-
supervised method for crater detection, based on
the MPP stochastic modeling technique. Moreover,
a new formulation of the likelihood energy function
is proposed here, being more appropriate for the
analyzed data. In comparison with other techniques,
e.g., based on template matching, the proposed
approach enables the identification of features of
different shapes and orientations and it is applicable
to different types of data.

The proposed approach is described in Section II.
Experimental results with real data are presented
and discussed in Section III. Finally, conclusions
and ideas for future extensions are presented in
Section IV.

II. METHODOLOGY

A. Overview of the proposed method

Planetary images show the surface of a planet
and its structures. The aim of this study is to
automatically detect elliptical structures, such as
craters, that are present on a considered planetary
surface by using image analysis techniques. The
extracted features can be used for the registration
of multitemporal, multisensor, and stereo-images.
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Different types of spatial features are present in
the planetary images, but the most evident ones
are generally craters, i.e., objects of approximately
elliptical shapes with shadows. Their extraction is a
difficult task, because planetary images are blurry,
quite noisy, present lack of contrast and uneven
illumination, and the represented objects are not
well defined.

In order to address this problem, an MPP-based
approach, aimed at detecting round and elliptical
objects, is proposed here. MPPs enable to model
the distribution of complex geometrical objects in
a scene (see Appendix A for more details) and
have been exploited for different applications in im-
age processing. Marked point processes have been
successfully applied to address different problems
in terrestrial remote sensing, among which road
network detection [19], building extraction in dense
urban areas [20], [21], [22], and road markings [23].
Moreover, in forestry applications, marked point
processes have been used to reproduce the spatial
distribution of the stems [24]. In [25], MPPs were
used to detect and count flamingos on aerial pho-
tographs. Vascular tree detection in angiograms was
addressed in [25]. Here, the method is applied to the
detection of features in planetary images.

The context is stochastic and the goal is to
minimize an energy on the state space of all possible
configurations of objects, using a Markov Chain
Monte-Carlo (MCMC) algorithm and a Simulated
Annealing (SA) scheme. More properly, a novel
MPP is introduced to model the structure of the
crater edges in the image.

The overall architecture of the proposed approach
for crater detection is shown in Figure 1. First, the
noise is reduced by applying a smoothing filtering
operation. Then, in order to produce an edge map
Ig, showing the contours of the objects represented
in the original image, the Canny edge detector [26]
is applied. The Canny detector has been chosen
because it guarantees a low error rate, the obtained
edge points are well localized, and the width of each
detected edge is one pixel.

The result of this first step, Ig, is a binary
image that shows the object boundaries. Craters
have a complex structure and, due to their depth
and uneven illumination, exhibit shadows. Their
borders can be approximated with incomplete non-
continuous elliptical curves. The boundary infor-
mation is extracted here, being a crater univocally

Fig. 1. Block diagram of the architecture of the proposed approach.

described by its contour.
Ig is modeled as a configuration of objects whose

positions and attributes are a realization of an MPP
X [27]. The MPP X is a process whose realizations
are random configurations x of several objects, each
belonging to a space S = P × K, where P is the
position space, and K the space of the marks, i.e.,
set of parameters that fully describe each object.
Here, the 2D model, used to extract the features
of interest, consists of an MPP of ellipses, and
each ellipse is represented by a 5-tuple (u, v, a, b, θ),
taking values in the set space

S =

P︷ ︸︸ ︷
[0,M ] × [0, N ] ×

K︷ ︸︸ ︷
[am, aM ] × [bm, bM ] × [0, π],

(1)
where (u, v) ∈ [0,M ] × [0, N ] are the coordinates
of the ellipse center (M and N being the width and
height of Ig), a and b are the ellipse axes (ranging in
[am, aM ] and [bm, bM ], respectively), and θ ∈ [0, π]
is the ellipse orientation angle.

The probability distribution of this stochastic pro-
cess is uniformly continuous [28] with respect to
a suitable Poisson measure on S. Operatively, this
means that it may be characterized by a density f
with respect to this measure. Similarly, the posterior
distribution of x conditioned to Ig can also be char-
acterized by a density function fp with respect to
the same measure and a Gibbs formulation is proven
to hold for fp [21]. Hence, one may introduce an
energy function U such that

fp(x|Ig) =
1

Z
exp{−U(x|Ig)} (2)
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where Z is a normalizing constant. Hence, in order
to minimize this posterior distribution, U will be
minimized on the space of all configurations x in
the feature extraction process.

B. The proposed energy function

The energy function takes into account the inter-
actions between the geometric objects x1, x2, ..., xn

in the configuration x (the prior energy UP ), and
the way they fit to the data (the likelihood energy
UL)

U(x|Ig) = UP (x) + UL(Ig|x). (3)

The prior term characterizes the general aspect
of the desired solution. According to the geometric
properties of the configurations of craters, a basic
rule is imposed on the prior term of our model. The
prior energy, UP , penalizes overlapping objects in
x, which are very unlikely, by adding a repulsion
between objects which intersect. The prior energy
of our model is

UP (x) =
1

n

∑

xi⋆xj

R(xi, xj) (4)

where R is a repulsion coefficient, which penalizes
each pair of overlapping objects (denoted as xi ⋆xj)
in the configuration x. The repulsion coefficient φ
is calculated as follows

φ(xi, xj) =
xi ∩ xj

xi ∪ xj

(5)

where xi ∩xj denotes the overlapping area between
the two objects xi and xj in the configuration (i, j =
1, 2, ..., n, i ̸= j ) and xi ∪ xj indicates the sum of
the areas covered by the two objects xi and xj . It is
worth noticing that the repulsion term φ, as defined
in equation 5, penalizes overlapping object, but still
allows them. In fact, overlapping craters are very
rare but plausible.

Then, the likelihood term UL is defined as

UL(Ig|x) = US(Ig|x) + UD(Ig|x), (6)

where US measures the similarity between the con-
figuration and the data, whereas the data term UD

measures the distance between the objects in the
configuration and the contours of the data. Different
formulations for the likelihood energy, which have
been proposed in previous work on MPP [24], [27],
have proven to be unfeasible for planetary data.

Hence, a new formulation for UL, more appropriate
for the analyzed data, is proposed here.

In particular, the similarity energy US between the
data Ig and the current configuration x is defined as
a correlation measure1 where u and v are the spatial
coordinates in the image plane; Π(·|x) is the projec-
tion of the configuration x such that Π(u, v|x) = 1
if (u, v) belongs to the boundary of at least one
ellipse in the configuration x (i.e., if there exists
i ∈ {1, 2, ..., n} such that (u, v) is on the boundary
of xi), and Π(u, v|x) = 0, otherwise. Consequently,
US expressed as (7) is equivalent to the definition
of a correlation function between the binary images
Ig and Π(·|x), representing the extracted and the
modeled edges, respectively. According to the cor-
relation definition, in the binary case, only nonzero
pixels from both images contribute to the value of
the correlation. This energy term, which is novel
with respect to the MPP literature, resembles anal-
ogous correlation measures that have been used for
registration purposes [29]. The correlation measure
in (7) is considered to be appropriate here because
it enables to estimate the match between two binary
images (Ig and Π) in a fast and accurate way.

Then, the data energy UD is calculated at the
object level: For each object xi in the current
configuration x a weight parameter Wi, proportional
to the distance from the closest detected edge pixel
in the data Ig with respect to its dimension, is
calculated, i.e.,

Wi =
d(G, Oi)

max (ai, bi)
, (8)

where
G = {(u, v) : Ig(u, v) = 1}, (9)

Oi = {(u, v) : Π(u, v|xi) = 1}, (10)

d(A,B) = inf{||P − Q||}, P ∈ A,Q ∈ B, (11)

Π(·|xi) has a meaning similar to above, and ai and
bi are the two ellipse axes associated to the object
xi (i = 1, 2, ..., n).

The resulting data energy will be

UD(Ig|x) =
1

n

n∑

i=1

Wi. (12)

Then, objects with a low value of W will be favored
in the configuration.

1Given a finite set A, we denote by |A| the cardinality (i.e., the
number of elements) of A.
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US(Ig|x) =
|{(u, v) : Ig(u, v) = 1 & Π(u, v|x) = 1}|

|{(u, v) : Ig(u, v) = 1}| (7)

C. Energy Minimization and Crater Mapping
A Markov Chain Monte-Carlo (MCMC) algo-

rithm [30], coupled with a Simulated Annealing
(applied with a given annealing schedule T (·)), is
used in order to find the configuration x which
minimizes U .

We stress here that this minimization is carried
out with respect to not only the locations and marks
of the objects in the MPP realization but also the
number of objects, i.e., the proposed method also
automatically optimizes the choice of the number
of detected craters. In particular, the marked point
process X , defined by f , is sampled by using a
random jump MCMC algorithm: It allows to build
a Markov chain Xk (k = 0, 1, ...), which jumps
between the different dimensions of the space of
all possible configurations and, in the ideal case,
ergodically converges to the optimum distribution
x∗ [31]. The final configuration of convergence does
not depend on the initial state. The flowchart of the
minimization scheme is shown in Figure 2.

Fig. 2. Flowchart of the proposed minimization scheme.

At each step, the transition of this chain depends
on a set of “proposition kernels”, which are ran-
dom changes proposed to the current configuration.
In order to find the configuration maximizing the
density fp(·) on S, we sample within a Simulated
Annealing scheme (SA), which gives us the MAP
estimator. SA is an iterative algorithm where at each
iteration k a perturbation is proposed to the current

configuration at temperature T (k), k = 1, 2, ..., K).
This perturbation is accepted or rejected with a
probability which ensures that the probability dis-
tribution of the Markov chain ergodically converges
to fp(x)

1
T (k) . Here, the annealing schedule, T (·), is

defined as

T (k) = TI ·
(

TF

TI

) k
K

, (13)

where TI and TF are the initial and the final tem-
peratures, respectively, and K is the total number of
allowed iterations. In practice, in order to cope with
too long computational times, the decrease of the
temperature is geometric (as usual in SA for Markov
random fields) and does also not imply the ergodic
convergence to a probability distribution localized
at the minima of U(x|Ig), in contrast, it follows the
adaptive approach developed in [32].

The efficiency of the algorithm highly depends on
the variety of the proposition kernels Q. The set of
proposition kernels are birth and death, translation,
dilation, and rotation [33]. Birth and death are
jumping perturbations, i.e, they vary the number
of objects in the configuration. If birth is chosen,
a new marked point is randomly generated and
added to the configuration, while if death is chosen
a randomly selected point in the configuration is
removed. Non-jumping moves are transformations
that do not change the number of objects in the con-
figuration. In particular, a marked point is randomly
selected and is replaced by a “perturbed” version of
it.

For each proposition kernel m, a Green ratio
Rm(x, x′) is defined, that tunes the likelihood of
replacing configuration x by configuration x′ at
each SA iteration (analytical details can be found
in Appendix B). More precisely, the birth and death
kernel consists in proposing, with probability pB,
to uniformly add in S an object to the current
configuration x or, with probability pD = 1−pB, to
remove a randomly chosen object of x. The Green’s
ratios for birth and death (namely, RB and RD,
respectively) are

RB =
pD

pB

fp(x
′|Ig)

fp(x|Ig)

ν(S)

n(x) + 1
(14)
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RD =
pD

pB

fp(x
′|Ig)

fp(x|Ig)

n(x)

ν(S)
, (15)

where n(x) is the number of objects in the current
configuration x, x′ is the candidate configuration,
and ν(S) is the Poisson intensity measure. For
the selected non-jumping kernels (i.e., translation,
dilation, and rotation), the suitable Green’s ratio is
given by the usual Metropolis-Hastings ratio

R(x, x′) =
fp(x

′|Ig)

fp(x|Ig)
. (16)

III. EXPERIMENTAL RESULTS

Experiments were carried out using Mars data,
collected during the 2001 Mars Odyssey mission, by
the THermal EMission Imaging System (THEMIS),
an instrument on board the Mars Odyssey space-
craft. Such an instrument combines a 5-band visual
imaging system with a 10-band infrared imaging
system [34]. Both 7 visible and 7 infrared THEMIS
images, with a resolution of 18 meters and 100
meters per pixel, respectively, were used to test the
proposed approach. In particular, the visible data
set was chosen in the area with center longitude
lon = 352.86 and center latitude lat = −1.09; the
infrared data set was chosen within an area with
lon = 175.36 and lat = −14.68.

Few parameters of the proposed method had to
be assigned, concerning both the MPP state space S
and the MCMC sampler. Let recall that S = P ×K,
where P = [0,M ] × [0, N ] corresponds to the size
of the data (Ig). The resolution r varies for the two
different types of images used, hence the total area
A of interest is A = M ·N ·r2 [m2]. The parameters
of K (i.e, am, aM , bm, and bM ) depend on the size
of the objects that need to be detected. In this study,
the minimum size for both semi-axes was fixed to 3
pixels (i.e., am = bm = 3) and the maximum size to
100 pixels (i.e., aM = bM = 100). The eccentricity
e of each object, defined as

e =

√
1 −

(
min(a, b)

max(a, b)

)2

, (17)

was constrained to e ∈ [0, 0.6] (i.e., min(a, b) ≥
0.8 · max(a, b)), being craters of bigger e unlikely.

Sampler probabilities needed to be assigned as
well. In particular, the global parameters that corre-
spond to the probability of choosing the proposition
kernel m were fixed to pm = 0.25, where m ∈

{Tranlation, Rotation, Scaling, Birth&Death}.
The probabilities pB and pD regulating the birth and
death kernel, were fixed to pB = pD = 0.5.

For comparison purposes, a method for ellipse
detection based on a Generalized Hough Trans-
form (GHT) [7] has been implemented and tested
on our data set. With this method, for every pair
of pixels that were detected as edge points in
the Canny gradient and exhibit opposite gradient
directions, an accumulator, corresponding to the
median point between them in the image plane, is
incremented by a unit value. The maxima of the
accumulator are taken as centers of ellipses. Then,
the three parameters describing the ellipse centered
in each detected maximum are computed and a 3D
accumulator is used to estimate the two semi-axes
and the direction angle of the ellipse from all the
pairs of points that contribute to the accumulator in
the considered center. The results obtained by the
proposed approach and by GHT were compared.
This particular approach was chosen for compari-
son, being a standard technique for the detection
of round and elliptical objects, commonly used for
crater detection [12], [10], [11], [35].

Reference data were generated by manually ana-
lyzing each image of the data set and identifying all
the craters that are present. Only objects completely
included within the images were considered (i.e.,
objects cut by the borders of the image were dis-
carded). A quantitative assessment of the obtained
results by the proposed method was performed using
these reference data. This was accomplished by
comparing the obtained results with the labeled
features in the correspondent reference map. The
Detection percentage D, the Branching factor B,
and the Quality percentage Q were computed as
follows:

D =
100 · TP

TP + FN
; (18)

B =
FP

TP
; (19)

Q =
100 · TP

TP + FP + FN
(20)

where True Positive (TP ) is the number of detected
features that correspond to labeled objects in the
reference map, False Positive (FP ) is the number of
features detected by the proposed approach, which
do not correspond to any object in the reference
map, and False Negative (FN ) is the number of
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TABLE I

AVERAGE NUMERICAL PERFORMANCE OF BOTH THE PROPOSED

APPROACH (MPP) AND A STANDARD METHOD (GHT) AS

MEASURED BY DETECTION PERCENTAGE (D), BRANCHING

FACTOR (B) AND QUALITY PERCENTAGE (Q).

Data Method D B Q

VIS GHT 73% 0.24 62%
IR GHT 78% 0.14 70%

Average GHT 75% 0.20 65%
VIS MPP 82% 0.22 71%
IR MPP 89% 0.13 79%

Average MPP 85% 0.18 74%

objects in the reference map that have not been
detected by the proposed approach. The global
values of D, B, and Q obtained by the proposed
approach (MPP) and the standard method used for
comparison (GHT) both for VIS and IR data are
shown in Table I. The global values of D for VIS
data and IR data obtained by the proposed approach
were about 82% and 89%, respectively. These high
values indicate a good detection rate (because of the
high number of TP ). B was about 0.22 for VIS
and 0.13 for IR, which indicate a small amount
of false detections with respect to the true detec-
tions in both cases, thanks to the small number of
FP . The results obtained by applying the proposed
approach are more accurate when compared to the
performance of the implemented standard technique
based on the GHT. In particular, the average value
of the detection rate D improved from 75% for the
GHT to 85% for the MPP. This is explained by
the increase in true detections with respect to the
reference map. Similarly, the quality percentage Q.
A relatively smaller improvement in the branching
factor B is due to the fact that the number of FP
was already small when applying GHT.

Moreover, the detection performance of the pro-
posed approach in terms of D, B, and Q com-
pares also favorably with most of the results pre-
viously published for automatic crater detection
methods [13], [16], [36], [37]. Ideally, the perfor-
mance of the proposed approach should be com-
pared with the results obtained by the previously
published methods when applied to the same data.
Unfortunately, the performance of each published
approach has been assessed on different sites and
distinct types of data (e.g., panchromatic images,
topographic data). The most direct performance
comparison can be made with the method proposed

by Barata et al. in [36]. That approach was tested
on images acquired by the Mars Orbiter Camera
(MOC). The method in [36] identified 546 craters,
with TP = 171, FN = 93, and FP = 282. Hence,
the resulting assessment factors were about D =
65%, B = 1.65, and Q = 31%. Bandeira et al. [13]
proposed an unsupervised approach for crater detec-
tion from MOC data based on template matching.
The average performances of that approach were
about D = 86% and Q = 84%. However, they
tested their algorithm on images having resolution
of 200-300m/pixel. The high performances obtained
in [13] may be attributed to the fact that large
craters in the sites of analysis have a very regular
shape and are relatively easy to identify by template
matching. The performance of that approach for the
detection of small and irregular craters is unknown.
Bue and Stepinski [37] proposed a supervised ap-
proach for crater detection from topographic data.
The average performances of that approach were
about D = 74%, B = 0.29, and Q = 61%.
The evaluation factors increased to D = 92%,
B = 0.29, and Q = 73% if degraded craters,
which the method was not able of detecting, were
excluded. That approach is not fully comparable
with the proposed method, being supervised. Urbach
and Stepinski [16] proposed a supervised approach
for crater detection from panchromatic images. The
performance factors of their method were about
D = 68%, B = 0.29, and Q = 57%, when detecting
craters of diameter greater that 200m, and lower
when taking into account also craters of smaller
dimensions. However, a full comparison with our
approach is again not possible. In general, the results
obtained by the proposed approach are comparable
to, and in some cases better than results obtained
by methods reported in the literature in terms of the
assessment factors. Unfortunately, a full comparison
is not possible, because the methods were applied
to different data.

Visual results of the feature extraction are shown
for the first band of a visible image (Fig. 3(a)). The
image is first preprocessed, in order to reduce the
noise. In particular, Gaussian filtering and median
filtering operations are applied in a cascade [38] in
order to reduce the noise and preserve the edges at
the same time. The Canny edge detector is applied
to the smoothed image and the binary gradient
Ig is shown in Fig. 3-b. The estimated optimum
configuration of the MPP x∗, which identifies the
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(a) Original image (b) Image edges (c) Crater contours

Fig. 3. Experimental results obtained by applying the proposed method to the first band of a visible image. (a) Original image, (b) Canny
gradient, and (c) detected crater contours in red, transparently superimposed to the original image.

(a) Original image (b) Image edges (c) Crater contours

Fig. 4. Experimental results obtained by applying the proposed method to the eighth band of an infrared image. (a) Original image, (b)
Canny gradient, and (c) detected crater contours in red, transparently superimposed to the original image.

feature contours, is shown in Fig. 3-c. The optimum
configuration x∗ is represented in red, transparently
superimposed to the original image. By a visual
inspection, it is possible to appreciate the accuracy
of the detection, even when many false alarms are
present in the binary image gradient Ig. Also the
reconstruction of the feature shape is very accurate.

Then, visual results obtained by applying the
proposed approach to the eighth band of an infrared
image (Figure 4-a) are presented. In particular, the
Canny gradient Ig is shown in Fig. 4-b and the
estimated x∗ is shown in Figure 4-c, transparently
superimposed to the original image. The contours of

the represented crater appear non-continuous in the
binary image gradient Ig, due to the uneven quality
of the image. Anyway, the feature is correctly
detected and its shape reconstructed.

A visual analysis of the detection results obtained
with other planetary images (see Fig. 5) confirms
that the proposed method is able to correctly iden-
tify the location and shape of the imaged craters,
even though the input edge map detected only
part of the crater borders, included many spurious
contours unrelated with the craters, and was severely
affected by the shadows in the crater area.
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(a) VIS 1 (b) VIS 2 (c) VIS 3 (d) VIS 4 (e) IR 1

(f) Edges 1 (g) Edges 2 (h) Edges 3 (i) Edges 4 (j) Edges 5

(k) Result 1 (l) Result 2 (m) Result 3 (n) Result 4 (o) Result 5

Fig. 5. Examples of experimental results obtained by the proposed method. (a), (b), (c), (d), (e) Original data, (f), (g), (h), (i), (j) respective
edge maps, and (k), (l), (m), (n), (o) detected crater contours in red.

IV. CONCLUSIONS

In this paper, a novel approach has been proposed
for automatic detection of features that characterize
planetary surfaces. The identification is achieved by
using a method based on a Marked Point Process
(MPP), coupled with a Markov chain and a simu-
lated annealing scheme.

Mars infrared and visible multiband images, cap-
tured by THEMIS during the Mars Odyssey Mis-
sion, were used. Before the algorithm could be used
to estimate the MPP optimum configuration, the im-
ages had to go through a preprocessing stage, aimed
at obtaining contour map of the analyzed image.
The likelihood between the extracted map and the
current configuration was measured and maximized,
in order to identify the optimum configuration.

The MPP approach, which was developed in the
context of computer vision and previously used in
many different applications (e.g., tree crown iden-
tification, road network detection, building extrac-
tion), has proven to be effective when applied to
planetary images here. For such data, the features
to be extracted are not as well contrasted nor defined
as for Earth data. Nevertheless, we showed here
that their identification can be accurately achieved.
The accuracy of the detection has been assessed
by a comparison to a manually generated reference
map. The method outperformed a standard method
for crater detection based on a generalized Hough
transform, in terms of several indices based on
true positives, false negatives, and false positives.
Moreover, the obtained results compared favorably
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to most previously proposed approaches, when per-
formances reported in the literature were considered
for the same indices. Finally, a visual inspection of
the detection results confirmed that the proposed
method was also able to correctly identify the lo-
cation and shape of the detected craters.

In our future work, we will investigate the use
of an illumination correction to improve the relia-
bility of the detection for all craters, when shadows
are present. Illumination correction, based on the
knowledge of the orbital angle and the acquisition
time, will be useful to reduce the bias in the
reconstruction of the exact feature shape. Moreover,
we plan to integrate the shadow information around
the features in order reduce the false alarms in the
contour map.

The proposed approach can be adopted as the
first important step in several applications dealing
with all the various data that are being collected
during the current and future planetary missions.
Among them selecting safe landing sites, identifying
planetary resources, and preparing for subsequent
planetary exploration by humans and robots. The
proposed approach will also be applied to the reg-
istration of multisensor and multitemporal images,
by performing feature matching.
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