
Faculty of Industrial Engineering, Mechanical Engineering and

Computer Science

University of Iceland

2011

Faculty of Industrial Engineering, Mechanical Engineering and

Computer Science

University of Iceland

2011

Refactoring UML Diagrams and
Models with Model-to-Model

Transformations

Hafsteinn Þór Einarsson

REFACTORING UML DIAGRAMS AND MODELS

WITH MODEL-TO-MODEL

TRANSFORMATIONS

Hafsteinn Þór Einarsson

60 ECTS thesis submitted in partial ful�llment of a

Magister Scientiarum degree in Software Engineering

Advisors

Helmut Wolfram Neukirchen

Ebba Þóra Hvannberg

Faculty Representative

Jóhann Pétur Malmquist

Faculty of Industrial Engineering, Mechanical Engineering and

Computer Science

School of Engineering and Natural Sciences

University of Iceland

Reykjavik, May 2011

Refactoring UML Diagrams and Models with Model-to-Model Transformations

Refactoring UML models and diagrams

60 ECTS thesis submitted in partial ful�llment of a M.Sc. degree in Software Engineering

Copyright c© 2011 Hafsteinn Þór Einarsson

All rights reserved

Faculty of Industrial Engineering, Mechanical Engineering and

Computer Science

School of Engineering and Natural Sciences

University of Iceland

Hjarðarhagi 2-6

107, Reykjavík, Reykjavik

Iceland

Telephone: 525 4000

Bibliographic information:

Hafsteinn Þór Einarsson, 2011, Refactoring UML Diagrams and Models with Model-

to-Model Transformations, M.Sc. thesis, Faculty of Industrial Engineering, Mechanical

Engineering and

Computer Science, University of Iceland.

Printing: Háskólaprent, Fálkagata 2, 107 Reykjavík

Reykjavik, Iceland, May 2011

Abstract

Software is becoming increasingly important in everyday life and is becoming increas-
ingly complex as well. Techniques have been developed to reduce the complexity,
e.g. abstract modelling, model-driven development and refactoring code structure.
Refactoring is a systematic approach to restructure code to make it simpler without
changing its behaviour. Refactoring has been well investigated and is proven for pro-
gramming languages but is still a developing concept in model-driven development.
The refactoring process has already been applied to UML models in earlier work
but the focus has only been on the elements of a UML model without updating the
typically associated diagrammatic representation. In this thesis, automated refac-
torings are developed for restructuring UML activity models together with their
diagrammatic representation using the QVT operational transformation language
for transforming UML models and diagrams created with the Papyrus UML editor.

Ágrip

Hugbúnaður verður æ mikilvægari í daglegu lí� og einnig �óknari um leið. Ýmsar
aðferðir hafa verið þróaðar til að minnka �ækjustigið, t.d. líkanagerð, líkanadri�n
þróun og endurþáttun kóða (e. refactoring). Endurþáttun snýst um að gera upp-
byggingu kóða einfaldari án þess að hafa áhrif á hegðun hans. Endurþáttun hefur
verið mikið rannsökuð og prófuð fyrir forritunarmál en er enn í þróun sem hug-
tak fyrir líkanadrifna hugbúnaðarþróun. Í áður útgefnu efni hefur endurþáttun á
líkönum verið skilgreind fyrir UML líkön en aðeins hefur verið einblínt á líkönin
sjálf án tillits til grafískrar uppsetningar þeirra. Í þessari ritgerð eru skilgreind
dæmi um sjálfvirka endurþáttun á UML aðgerðaritum (e. activity diagram) sem
taka bæði tillit til líkansins og grafískrar uppsetningar þess með því að nota QVT
líkanaumbreytingarmálið til að umbreyta UML ritum sem búin eru til í Papyrus
UML ritlinum.

Preface

This M.Sc. project was carried out at the Faculty of Industrial Engineering, Me-
chanical Engineering and Computer Science at the University of Iceland.

Special thanks goes to my supervisor, Associate Professor Helmut Neukirchen at
the University of Iceland, his dedication and guidance were crucial to the project
and he always had time to help. I also greatly appreciate Ebba Þóra Hvannberg's
e�orts as secondary supervisor as well as Jóhann Malmquist's contribution as faculty
representative. I must also thank my partner Eva for her support and encouragement
throughout the project. Finally I would like to thank my good friend Oddgeir
Guðmundsson for all his good advice and of course Böðvar Hlöðversson for always
being an inspiration.

Reykjavík, May 2011.

Hafsteinn Þór Einarsson

Contents

List of Figures xv

Listings xvii

1. Introduction 1

2. Foundations 3
2.1. Refactoring . 3
2.2. The Uni�ed Modeling Language . 4

2.2.1. The UML infrastructure . 5
2.2.2. The UML superstructure . 6
2.2.3. The Object Constraint Language 9
2.2.4. XML Metadata Interchange 10
2.2.5. The UML Diagram Interchange 10

2.3. The Eclipse Project . 10
2.3.1. Plugins . 10
2.3.2. The Eclipse Modeling Framework 11
2.3.3. Papyrus . 14
2.3.4. Model-To-Model . 17
2.3.5. Operational QVT . 17

3. Related Work 19
3.1. UML refactoring . 19
3.2. Tool support . 21
3.3. Discussion . 22

4. UML Refactorings 23
4.1. Merge actions . 23

4.1.1. Motivation . 24
4.1.2. Refactoring mechanics . 24

4.2. Divide action . 24
4.2.1. Motivation . 25
4.2.2. Refactoring mechanics . 25

5. Tool Implementation 27
5.1. Model-based vs. low-level transformations 27

xi

Contents

5.2. Tools . 27
5.3. Challenges . 28

5.3.1. Documentation . 28
5.3.2. Finding selected objects in the model 29
5.3.3. Creating a new object in the model 29
5.3.4. Accessing coordinates of diagram elements 29
5.3.5. Transforming two models . 29

5.4. Metamodel classes . 30
5.4.1. Notation metamodel classes 30
5.4.2. UML metamodel classes . 31

5.5. Plugin architecture . 31
5.5.1. Work�ow . 33

5.6. Blackboxing library . 35
5.6.1. isSelectedObject() . 36
5.6.2. moveElement() . 36
5.6.3. setElementID() . 37

5.7. Executing the transformation . 37
5.7.1. Invoking a QVTO transformation with Java 38
5.7.2. Adding a context menu entry 42

5.8. Merge actions refactoring . 44
5.8.1. The getObjects() query . 45
5.8.2. The merge() mapping . 46
5.8.3. UML model element mappings 48

5.9. Divide action refactoring . 49
5.9.1. The getObjectToDivide() query 50
5.9.2. The addNode() mapping . 51
5.9.3. The addEdge() mapping . 52
5.9.4. The addNodeAndEdge() mapping 53
5.9.5. The setSource() mapping . 54

6. Evaluation 55
6.1. The example activity diagram . 55
6.2. The Merge actions refactoring . 60

6.2.1. The UML model comparison 64
6.2.2. The Notation model comparison 66

6.3. The Divide actions refactoring . 68
6.3.1. The UML model comparison 71
6.3.2. The Notation model comparison 74

6.4. The �nishing touches . 76
6.5. Discussion . 78

7. Conclusion 79
7.1. Summary . 79
7.2. Outlook . 79

xii

Contents

Acronyms 81

Bibliography 83

A. The UML refactoring plugin 87
A.1. Dependencies . 87
A.2. Obtaining the code from an SVN repository 90
A.3. Installing the plugin . 94
A.4. Using and debugging the plugin . 95

xiii

List of Figures

2.1. An example of the four-layer metamodel hierarchy [32] 6

2.2. A simple activity diagram [19] . 8

2.3. The Notation metamodel . 13

2.4. An Activity diagram created with Papyrus 15

2.5. The relevant parts of Figure 2.4 in more detail 16

4.1. The Merge actions refactoring . 23

4.2. The Divide actions refactoring . 25

5.1. The structure of the plugin . 32

5.2. The work�ow of the refactoring transformation 34

6.1. Creating a new project in Eclipse . 56

6.2. Creating a new Papyrus project in Eclipse 56

6.3. Naming the Papyrus project . 57

6.4. Selecting the diagram type . 57

6.5. Adding an activity diagram to the project. 58

6.6. The Papyrus workbench . 59

6.7. The example activity diagram . 60

xv

LIST OF FIGURES

6.8. The Merge actions refactoring selected 61

6.9. A dialog telling the user that the model resource has changed. 62

6.10. The diagram after the merge actions refactoring. 63

6.11. The Divide actions refactoring selected 69

6.12. The diagram after the divide actions refactoring. 70

6.13. The �nal model . 77

A.1. Installing the Eclipse Modeling Discovery UI 88

A.2. Selecting the model installation UI 89

A.3. Installing QVTO and Papyrus UML 90

A.4. Creating a new SVN project . 91

A.5. Selecting the head revision . 92

A.6. Finding the projects in the SVN repository 93

A.7. Con�rming the projects found in the SVN repository 93

A.8. Selecting the plugins for export . 95

A.9. The plugins debugged in a new eclipse instance 96

A.10.Creating a debug con�guration for a QVTO transformation 97

A.11.Finding a Shape object's GUID in a Notation model 97

A.12.Setting the value of a con�guration property 98

xvi

Listings

2.1. An example QVTO transformation 18

5.1. Making a blackboxing library available in plugin.xml 35
5.2. The isSelectedObject() blackboxing operation 36
5.3. The moveElement blackboxing operation 36
5.4. The setElementID() blackboxing operation 37
5.5. The run() method in RefactoringInvocation.java 38
5.6. The getSelection() method in MergeActions.java 41
5.7. The initTransformation() method in MergeActions.java 41
5.8. The setProperties() method in MergeActions.java 42
5.9. Adding a context menu entry in plugin.xml 43
5.10. The MergeActions.qvto transformation 44

6.1. The UML model before refactoring 65
6.2. The resulting UML model after the Merge actions refactoring 66
6.3. The Notation model before the refactoring 67
6.4. The resulting Notation model after the Merge actions refactoring . . 68
6.5. The UML model before refactoring 72
6.6. The resulting UML model from the Divide actions refactoring 73
6.7. The Notation model before refactoring 74
6.8. The resulting Notation model from the Divide action refactoring . . . 75

xvii

1. Introduction

Software is an important part of everyday life, and is becoming increasingly impor-
tant every day. As software becomes ever more present in the world, it also becomes
more complex. When complexity increases it gets harder to keep an overview of
the whole software. However, some techniques have been developed and utilized to
reduce the complexity, e.g. making abstract models of the software, model-driven
development and refactoring the code structure.

The term refactoring was coined by William Opdyke [34] in 1992 and further de�ned
by Martin Fowler [18] in 1999. Refactoring is de�ned as a process of restructuring
software to improve quality and readability without changing its behaviour. This
process can be automated through the use of software tools which have already been
implemented for most popular programming languages.

Model-driven development is a discipline in software engineering where the focus is
on designing and creating models instead of developing the software logic in code,
often by using the Uni�ed Modeling Language (UML) [29, 32]. UML models can
be created graphically using UML editors that turn the graphical elements into an
underlying UML model representation. These UML models can then e.g. be used
as input for code generators. While the implementation of automatic refactorings
has already been done on source code level, the shift to do the programming on the
model level also requires refactoring at the model level. However, even though the
refactoring of UML models has been studied using model-to-model transformations
(M2M) [2, 36], a thorough search revealed that almost no tools exist for automat-
ing model refactoring. Refactoring models is also di�erent from refactoring code,
because models often have a diagrammatic representation so the layout of elements
has to be taken into account. The main focus of the research that has already been
done on model refactoring has been on the underlying model but not on the diagram
itself. This means that aspects of refactoring the graphical models have not been
addressed, e.g. the placement of new elements that are added to a diagram in the
process of refactoring.

The aim of this thesis is to develop and implement automatic refactorings for UML
models and diagrams which refactor the UML model itself and the diagram model
as well. Example refactorings, that refactor activity diagrams, are developed as an
Eclipse IDE [17] plugin which works with the Eclipse Papyrus UML editor [14] and

1

1. Introduction

utilizes the QVTO transformation language [15] to implement the UML model and
diagram refactorings using a model-based approach.

The structure of this thesis is as follows: Chapter 2 describes the foundations of
the technologies used in the thesis and covers the refactoring process, the UML, the
QVT transformation language and the Eclipse project. In chapter 3 the work that
has already been done on refactoring models is examined. Chapter 4 outlines the
refactorings developed in an abstract way and shows the steps needed in the refac-
toring process. In chapter 5, where the main contribution of the thesis resides, the
implementation of the refactorings is explained in detail, both the support structure
and the QVT transformations. In chapter 6 the refactoring implementation is eval-
uated by its application to an example diagram and the resulting models compared
to the original models. Chapter 7 concludes the thesis with a summary and an
outlook.

2

2. Foundations

In this chapter the main fundamentals behind the thesis are presented. Section 2.1
presents the basics of code refactoring and its history. In section 2.2 the basics of
the Uni�ed Modeling Language are presented as well as some related technologies,
e.g. the Meta-Object Facility (MOF) and the Query/View/Transformation (QVT)
standard for model-to-model transformations. Section 2.3 introduces the Eclipse
project and some of its extensions and frameworks.

2.1. Refactoring

Software is known to become less maintainable over time, as code is added to satisfy
new requirements or changed to �x errors. This can lead to a gradual diversion
from the original design of the software which can make changes harder to make.
David Parnas refers to this as software aging [35]. To mend this problem one has
to restructure the software to remove clutter and make it more readable. This
restructuring process has been named refactoring.

Martin Fowler de�nes refactoring in the following way:

�Refactoring (noun): A change made to the internal structure of soft-
ware to make it easier to understand and cheaper to modify without
changing its observable behavior.� [18]

In other words, refactoring is generally used to simplify code structure, which can
make code easier to read and ease maintainability. The process of refactoring consists
of a sequence of systematic mechanical steps, where each step is a transformation of
the code structure which preserves its behavior. Fowler refers to these steps as the
mechanics of a refactoring which are systematic, predictable steps to keep with the
"never change a running system" attitude. Often the need to refactor code arises
from code smells, where a pattern or symptom can be recognized in code which
can indicate a potential problem, e.g. when a class has grown too large to be easily
maintained or changed. An example of a refactoring to address this code smell is
the Extract Class [18] refactoring. Fowler describes the manual steps included in
the process:

3

2. Foundations

1. Decide how to split the responsibilities of the class

2. Create a new class to express the split-o� responsibilities

3. Make a link from the old to the new class

4. Move chosen �elds to new class

5. Compile and test after each move

6. Review and reduce the interfaces of each class

7. Decide whether to expose the new class

Fowler emphasizes greatly the need to run automatic unit tests after each step
in the manual refactoring process to minimize the risk of introducing new bugs or
changing the behavior in any way. However, some refactorings have been automated
in a number of tools. In these cases automatic tests may not be necessary. William
Opdyke argues that it is not possible to automate every refactoring, but when it is
possible the tool should make sure that defects are not introduced into a program
[34].

2.2. The Uni�ed Modeling Language

The Uni�ed Modeling Language (UML) is a standardized modeling language cre-
ated by the Object Management Group [33]. The �rst version of the language was
published as a standard in 1997. The UML is intended for designing and describing
object-oriented software systems. The UML speci�cation has four major parts:

• Infrastructure

• Superstructure

• The Object Constraint Language (OCL)

• The UML Diagram Interchange

4

2.2. The Uni�ed Modeling Language

2.2.1. The UML infrastructure

The main component of the UML infrastructure is the Meta-Object Facility (MOF) [32],
which is a metamodeling tool. There are two variants of the MOF [30]:

Essential MOF (EMOF) a basic representation of the MOF, only allows simple
metamodels

Complete MOF (CMOF) a fully featured representation of the MOF

The MOF has a four layered architecture with itself in the top layer (M3) as a meta-
meta model which conforms to itself. The M2 layer consists of a metamodel for the
UML language which is de�ned using the MOF, the M1 layer consists of instances of
user models, e.g. a UML class diagram and the M0 bottom layer consists of run-time
instances. This is illustrated in �g. 2.1.

5

2. Foundations

Figure 2.1: An example of the four-layer metamodel hierarchy [32]

2.2.2. The UML superstructure

The UML superstructure [29] de�nes the semantics for diagrams and their model
elements. Note that in this thesis the following distinction is made between a model
and a diagram, because in practice the term diagram is often used to describe a
diagram and a model:

Model A model is the description of a set of elements and their relationships but
not their layout or representation in a diagram.

Diagram A diagram is the diagrammatic representation of a model.

6

2.2. The Uni�ed Modeling Language

It is possible to have a model without a diagrammatic representation, such a model
could be used as input for a code generator. Additionally a diagram may not have
a corresponding model, e.g. when a diagram is drawn on paper. A UML editor
typically allows the user to draw diagrams besides the underlying model. However,
as the underlying model does not contain any graphical information, e.g. coordinates,
it is not possible to create a diagram from a model.

The UML proposes a few kinds of models and diagrams, the following can be con-
sidered the most common [19]:

• Structural diagrams

� Class diagram, describes classes, their operations and attributes and the
relationships between them

� Component diagram, describes components and their dependencies

� Package diagram, describes how systems are broken down into packages,
most often a group of classes

• Behavior diagrams

� Activity diagram, describes procedural logic and work �ow, see Figure 2.2

� Use case diagram, describes how users interact with the system

� State machine diagram, describes the behavior of a system and how it
moves between states

� Interaction diagrams

∗ Communication diagram, describes the interaction between objects

∗ Sequence diagram, describes how processes send information between
each other and in what order

7

2. Foundations

Figure 2.2: A simple activity diagram [19]

8

2.2. The Uni�ed Modeling Language

2.2.3. The Object Constraint Language

The Object Constraint Language (OCL) [27] is an extension language for MOF
metamodels to describe formal constraints or expressions which can not be commu-
nicated through diagrams. It was originally designed as an extension for the UML
but is now intended for every MOF compliant metamodel.

Query/View/Transformation

The Query/View/Transformation language (QVT) [26] is a standard for transform-
ing models. It is developed by the OMG and can be used to transform any MOF
compliant model into any MOF compliant model. The QVT speci�cation integrates
the OCL and adds three languages on top:

QVT Core The OMG de�nes the QVT core language as a

�small model/language which only supports pattern matching over
a �at set of variables by evaluating conditions over those variables
against a set of models.� [26]

QVT core is a declarative language and it only has an abstract syntax.

QVT Relations The relations language is declarative as core, but o�ers more com-
plex object pattern matching and has a concrete syntax.

QVT Operational mappings The operational mappings extends both relations
and core but it is imperative and o�ers a procedural concrete syntax, so it
might be easier to grasp for programmers who only have experience with pro-
cedural languages.

QVT also adds a mechanism called Black Box implementations which adds the
possibility of calling external libraries that are implemented in other languages.
This can be useful, i.e. when the domain has complex algorithms that can not be
expressed in OCL [26]. An example of a QVT operational transformation is shown
in section 2.3.5.

9

2. Foundations

2.2.4. XML Metadata Interchange

The XML Metadata Interchange (XMI) [28] is a standard format for exchanging
information about MOF compliant models using the Extensible Markup Language
(XML). It includes information about elements in a model and their relationships.
The diagrammatic representation or layout is not contained in XMI because the
MOF does not contain information about layout.

2.2.5. The UML Diagram Interchange

The UML Diagram Interchange (UMLDI) is a standard format for exchanging UML
diagrams between di�erent UML software tools, including information regarding dia-
grams and their layout [31]. This format is based on the XML Metadata Interchange
(XMI) standard described in section 2.2.4 but adds a speci�cation for diagrammatic
information which is not possible with the XMI. The UMLDI is quite bene�cial as it
allows users to interchange their models between programs, but it is not very widely
used in practice. However, at least one tool claims conformance to the format [44].

2.3. The Eclipse Project

The Eclipse project was originally created in 2001 by IBM [17]. It is an open devel-
opment platform comprised of frameworks which can be extended with plugins. The
most known project within the Eclipse project is the Eclipse integrated development
environment (IDE). It was originally designed for the Java programming language
but it also has extensions and plugins which support other popular programming
languages.

2.3.1. Plugins

An important part of the Eclipse environment is the ability to extend it with plugins
that add functionality to it. The Eclipse IDE has a built in mechanism for easing the
development of a plugin, it is e.g. possible to run the plugin in another instance of
Eclipse for testing and debugging purposes and packaging the plugin can be mostly
done automatically.

10

2.3. The Eclipse Project

Extension points

Extension points is a part of the plugin mechanism in Eclipse which can be used
to de�ne a point in one plugin to which another plugin contribute. An example of
this is a mechanism for easily adding menu entries and other simple functions to the
user interface.

2.3.2. The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a framework for Java code generation
based on models [41]. It is a uni�cation of three technologies: XMI, UML and
Java. A model can be de�ned in any of these forms, and then the other can be
automatically generated. An example of this would be to create a UML model
in a diagram editor which can save the model in a UML format. With that model
EMF can automatically generate both an XMI model and Java code which represent
the model, and changes to either generated model can be propagated to the other
generated model and the original model.

Ecore

The EMF provides Ecore, an EMF model which closely resembles the EMOF [41].
Ecore is a metamodel for itself so it is a meta-metamodel. It is intended for creating
metamodels for domain models and adds runtime support for the models includ-
ing [7]:

• Change noti�cation

• XMI serialization for model persistence

• A re�ective Application Programming Interface (API) for manipulating EMF
objects

UML2

UML2 is a part of the Model Development Tools Eclipse project (MDT) [12]. It
is an EMF-based implementation of the UML 2 metamodel by OMG, speci�ed as
an Ecore metamodel. It also provides an XMI schema to ease interchange between
programs focusing on the model but not the diagrammatic representation.

11

2. Foundations

The Graphical Editing Framework

The Graphical Editing Framework (GEF) is a generic Eclipse framework which adds
the possibility to create graphical editors for diagrams [8]. Many graphical editors
for speci�c diagrams are based on the GEF.

The Graphical Modeling Project

The Graphical Modeling Framework (GMP) is an Eclipse project which builds upon
the EMF and the GEF to provide a runtime infrastructure for the ability to create
graphical diagram editors which work with concrete EMF models [9].

The Notation metamodel

The GMP includes an EMF metamodel for persisting diagram information indepen-
dent from the domain model [10], called the Notation metamodel. The Notation
metamodel structure is shown in Figure 2.3.

12

2.3. The Eclipse Project

F
ig
u
re

2.
3:

T
he

N
ot
at
io
n
m
et
am

od
el

13

2. Foundations

The most important classes in the Notation metamodel in Figure 2.3 are the View,
Node and Edge classes. A View is a general class of which Edge objects and Node
objects are instances. A Node has attributes, i.e. size and position and edges have
attributes which include the corners where an edge bends, called bendpoints, and
an anchor which describes where it connects to a node.

2.3.3. Papyrus

Papyrus is a GMP based project to provide Eclipse with a fully �edged UML editor
along with supporting other related languages such as SysML and MARTE [14]. It
stores diagram information in a notation model and model speci�c information in
an EMF model. In the case of UML the information is stored in a UML2 model.
Papyrus currently supports the most popular [19] UML diagrams:

• Activity diagram

• State machine diagram

• Communication diagram

• Sequence diagram

• Use case diagram

• Class diagram

• Package diagram

• Composite structure diagram

When a new diagram is created with Papyrus, three �les are created based on a
name given by the user. If the diagram is named ActivityExample, the following
XMI compliant �les are automatically created:

ActivityExample.di The .di �le holds metadata about the diagram and a path to
the Notation model.

ActivityExample.notation The .notation �le stores information about the diagram
elements, e.g. size, position and a link to the element in the UML model.

ActivityExample.uml The .uml �le keeps all information about the underlying
UML model elements.

The diagram and the associated �les Papyrus creates can be seen in Figure 2.4 and
the relevant parts can be seen in more detail in Figure 2.5.

14

2.3. The Eclipse Project

Figure 2.4: An Activity diagram created with Papyrus

15

2. Foundations

Figure 2.5: The relevant parts of Figure 2.4 in more detail

Figure 2.4 illustrates a part of the �les associated with an activity diagram cre-
ated with Papyrus. The �gure shows a very simple activity diagram and high-
lights the representations of an action and a control �ow edge, with some important
parts underlined. The ActivityExample.di �le contains a link to the ActivityEx-
ample.notation �le and its globally unique identi�er (GUID), which is a randomly
generated string of characters as seen in the underlined parts of the �le.

In the �le ActivityExample.notation in Figure 2.5 two important objects can be seen.
The �rst one is an object with the type notation:Shape and represents the Action
2 element in the diagram. The second object has the type notation:Connector and

16

2.3. The Eclipse Project

represents the incoming edge to Action 2. Both of these objects hold the element
property which is a link to the UML model element the diagram element represents.
The link points to the GUID of the element in the ActivityExample.uml �le, and
it can be seen that elements with these GUIDs exist there. The notation:Shape
object also contains a layoutConstraint property which holds information about the
position of the diagram element.

In the ActivityExample.uml �le in Figure 2.5 the object of the type uml:OpaqueAction
represents the Action 2 element as can be seen by the name property. The incoming
property holds the GUID of the control �ow edge discussed here. The edge object
of the type uml:ControlFlow in turn has a target property which holds the GUID
of the Action 2 element.

2.3.4. Model-To-Model

Model-To-Model (M2M) is a subproject of the Eclipse Modeling Project (EMP). It
provides three transformation engines for model-to-model transformations [11]:

Declarative QVT is based on the OMG's QVT core and relations languages, but
is still work in progress.

Operational QVT is based on the OMG's QVT operational package mappings
and provides a procedural language with concrete syntax. It is used in the
implementation in this thesis and is explained in more detail in section 2.3.5.

The ATL Transformation Language (ATL) is a transformation language with
an IDE and debugger built on top of the Eclipse platform.

2.3.5. Operational QVT

Operational QVT (QVTO) is an open source implementation of the imperative
QVT standard from the OMG [11]. It provides a transformation engine that can
perform model-to-model transformations on any Ecore compliant model when pro-
vided with a metamodel for both input and output models. There are two types of
transformations:

Exogenous transformation The target metamodel is di�erent from the source meta-
model.

Endogenous transformation The source and target metamodels are the same.

17

2. Foundations

Listing 2.1 shows an example of a very simple exogenous QVTO transformation:

1 t rans fo rmat ion Book2Publ icat ion (in bookModel :BOOK, out pubModel :PUB) ;
2
3 main () {
4 bookModel . objectsOfType (Book)−>map book_to_publication () ;
5 }
6
7 mapping Book : : book_to_publication () : Pub l i ca t i on {
8 t i t l e := s e l f . t i t l e ;
9 nbPages := s e l f . chapters−>nbPages−>sum() ;
10 }

Listing 2.1: An example QVTO transformation

In this example there are two metamodels. The Ecore metamodels are not shown,
but they can be summarized as follows:

Book A book has a title and sequence of chapters, where each chapter has a title
and a number of pages

Publication A publication has a title and a number of pages

The transformation takes in a Book input model and returns a Publication model.
The main function in lines 3-5 is the entry point to the transformation, that's
where the execution starts. There each book in the input model is transformed to a
publication with the book_to_publication mapping, where the actual transformation
takes place. In the mapping, each book object is transformed to a publication object.
Each resulting publication object gets the title of the book and the number of pages
is calculated from the sum of the page numbers of all the chapters from the book
object.

Java Black-boxing

QVTO provides a way to call external Java libraries with QVT's blackboxing mech-
anism. This can be bene�cial when complex calculations are needed or when the
metamodel does not provide setting or fetching attributes of an element. An example
of this is shown in chapter 5.

18

3. Related Work

In this chapter earlier work on the refactoring of models will be presented. The
work is mostly focused on UML models because they are a widely used standard in
the software world. Most of the work that has been done in regards to refactoring
models has been on the domain model level and not on the diagram layout level.

3.1. UML refactoring

Gerson Sunyé et al. [42] propose a set of refactorings on UML models, speci�cally
class models and state machine models. They present a catalog of transformations
and divide them into three categories:

• Add feature/association

• Remove feature/association

• Move element

Additionally, OCL pre- and postconditions are de�ned for each state machine refac-
toring to show that the behaviour of the machine is preserved.

France and Bieman [38] identify two classes of model transformations:

Vertical transformation results in a model at a di�erent level of abstraction

Horizontal transformation results in a model at the same level of abstraction

They propose model transformations based on design patterns [20]. A design pattern-
based transformation is decided by role models, that is, models that de�ne the design
pattern precisely.

Marko Boger and Per Fragemann [4] implement a refactoring browser and include
within it a few refactorings for state machine models and two for activity models:

19

3. Related Work

Make actions concurrent Creates a split and join pseudostate for concurrent ac-
tivities and moves actions between them

Sequentialize concurrent actions Removes a pair of split and join pseudostates
and makes actions in between them sequential.

The refactorings are implemented as a plugin to the Poseidon UML tool [21] but
the models are not based on an OMG standard.

Dave Astels [1] presents a few examples of smells in UML class models and imple-
ments refactorings to address them. He reasons that sometimes smell detection can
be easier in UML as it has a di�erent view at the structure of the program than the
code itself. He adds that it would be bene�cial to refactor the models to react to the
smells as tools will increasingly be able to keep the code in sync with the models.

Kexing Rui and Greg Butler [39] provide a catalog of use case model refactorings.
The metamodel is based on Regnell's use case model [37] with a few modi�cations,
but should mostly be compatible with the UML use case model.

Ivan Porres [36] presents an action language which resembles OCL that is capable of
model transformation. It is a rule-based language which means that when a set of
preconditions are satis�ed, a sequence of transformations are executed. He provides
a few refactorings for class models and state machine models and implements them
in an experimental tool. He reasons that adding new elements in a graphical diagram
can be problematic because the position can not be easily inferred.

Slavi²a Markovi¢ and Thomas Baar [2] develop a few refactorings for class models
using QVT. They focus on OCL annotated models so that any changes made by
refactoring a model are automatically re�ected in OCL constraints. However, they
only focus on the underlying UML model and not the graphical representation.

�ukasz Dobrza«ski [5] develops a catalog of refactorings for executable UML, that
is, UML models that are precisely speci�ed and thus can be compiled to executable
code. He focuses on refactoring class models and de�nes the refactorings in OCL. He
does not focus on the graphical representation of the diagrams, only the underlying
model.

Graph transformation theory de�nes how graphs can be transformed to make new
graphs. UML models can be seen as graphs [23] so graph transformation theory
can be useful for executing automatic UML refactorings. Enrico Biermann et al. [3]
present a few refactorings on state machine models in EMF using graph transfor-
mations. They use the method to validate model transformations to ensure their
correctness and preservation of functional behaviour. The focus is only on the un-
derlying EMF model and not its graphical representation.

20

3.2. Tool support

Alessandro Folli and Tom Mens [6] develop the Attributed Graph Grammar System
(AGG) using graph transformations to execute refactorings on UML models. They
focus on class models and state machine models and de�ne a metamodel similar
to the UML metamodel as a type graph. There are some limits to this approach
however, because the type graph can only represent a simpli�ed version of the UML
metamodel.

3.2. Tool support

There exist many tools for drawing UML diagrams. However not many of them
give the user a possibility of automatically refactoring. MagicDraw [25] o�ers two
refactorings:

Convert to which converts an element to a new element of a di�erent type

Replace with which replaces one element with another based on the user's choice

Rational Rhapsody [24] o�ers one simple refactoring, Rename element which can
rename any element.

Poseidon UML [21] had Boger's et al. [4] refactoring browser implemented as a
plugin. It is currently not included in the software unless speci�cally installed as a
plugin.

Some academic tools have also been provided. Philipp Seuring [40] created the
GaliciaUML framework for using the Multi FCA algorithm for refactoring UML. The
framework is based on Eclipse and the EMF. However, the work is not focused on
the refactorings themselves, only the framwork behind running the transformations.

Pieter Van Gorp et al. [22] add a few minimal extensions to the UML metamodel
to aid in keeping consistency between UML and code when refactoring. Pre- and
postconditions are composed in OCL to verify preservation of program behaviour.
They focus on the UML model and not on refactoring UML diagrams.

21

3. Related Work

3.3. Discussion

As this chapter shows, refactoring UML models and diagrams is quite an active �eld
of research, but there is still work to do. Little work has been done on UML diagrams
other than class diagrams and state machine diagrams and almost no research has
been done on refactoring the graphical models in parallel to the UML model, which
is the topic of this thesis.

22

4. UML Refactorings

In this chapter, example refactorings developed for UML activity diagrams are de-
scribed. The refactorings will be introduced in an abstract way from the user's
point of view, but in chapter 5 they will be explained in more detail. There are two
refactorings that are developed in this thesis: Merge actions and Divide action.

4.1. Merge actions

Two actions are merged into one, as demonstrated in Figure 4.1.

Figure 4.1: The Merge actions refactoring

23

4. UML Refactorings

4.1.1. Motivation

When working with activity diagrams, it can sometimes be the case that two actions
are doing more or less the same thing. An example might be an action that receives
the last name of a client and then right after that there is an action that receives
the �rst name of a client. If there is no need for keeping the �rst and last names
separate they can be merged into one action which receives the full name of the
client, as demonstrated in Figure 4.1. This is bene�cial to the user because it can
be prone to errors for the user to do this manually as she will have to move all edges
from an action to the other and then remove one of them.

4.1.2. Refactoring mechanics

This refactoring will merge two actions, which are linked together by an edge, into
one. The action which is on the source end of the connecting edge will be merged
into the original action and subsequently removed. There is one precondition that
must be satis�ed for the refactoring to be executed, the actions to be merged must
be linked together by a control �ow edge.

The steps in the refactoring are:

• Move the source of all outgoing edges from the action to be removed to the
action that will be kept

• Move the target of all incoming edges from the action to be removed to the
action that will be kept

• Add name of action to be removed to the merged action

• Remove the control �ow edge that connects the actions to be merged

• Remove the source action

4.2. Divide action

An action is divided into two, as demonstrated in Figure 4.2.

24

4.2. Divide action

Figure 4.2: The Divide actions refactoring

4.2.1. Motivation

Sometimes an action is doing more than it should be doing, possible symptoms may
be long names, or names that contain the word "and". An example might be an
action that receives a payment and processes it. It would be more clear to divide
the action into two actions, where the �rst one receives a payment and another that
processes it, as Figure 4.2 demonstrates. It is bene�cial for the user to be able to
do this automatically because it takes time to create a new action, position it and
then move all the outgoing edges to the new action.

4.2.2. Refactoring mechanics

This refactoring will divide one action into two by making a copy of the original and
adding a control �ow edge between them.

The steps in the refactoring are:

25

4. UML Refactorings

• Make a clone of the original action

• Set coordinates of new action below original action

• Set name of new action to "New [name of original action]"

• Add a control �ow edge from the original to the clone

• Move the source of all outgoing edges from the original to the clone

26

5. Tool Implementation

In this chapter the implementation of the automated refactorings described in the
previous chapter will be explained in detail. The reasons for choosing model-to-
model transformation are discussed in section 5.1 and the tools used are described
in section 5.2. The technological challenges are listed in section 5.3. Section 5.4
presents the key classes in the UML metamodel and the Notation metamodel. The
plugin architecture is outlined in section 5.5. Each of the most crucial components
are then explained in detail in sections 5.6 and 5.7. The Merge Actions refactor-
ing implementation is explained in section 5.8 and the Divide actions refactoring
implementation is detailed in section 5.9.

5.1. Model-based vs. low-level transformations

Model-to-model transformations using transformation languages is a recent and
proven way of refactoring models, as described in the previous chapter. A low-level
solution for implementing the refactorings could be written with a conventional pro-
gramming language but there are a few downsides. It would of course be quite
a big task and would probably be closely tied to the XMI representation of both
the UML model and the diagram, so the refactoring implementations might not be
easily reused for other representations of a UML model and diagram. As model-to-
model transformations can be run on any model, provided that a metamodel has
been speci�ed, the refactorings can probably be converted to run for other types of
UML models and diagrams so using them instead of a low-level solution is a logical
choice.

5.2. Tools

There are a couple of tools used in the development of the refactoring implementa-
tions:

• Eclipse IDE 3.6 (Helios)

27

5. Tool Implementation

• Java 1.6

• Eclipse Modeling Framework 2.6.1

• UML2 3.1.2

• Operational QVT for Eclipse 3.0.1

• Papyrus UML 0.7.0

The main reasons for choosing the Eclipse platform for implementing these refac-
torings is that its components are open source and that the EMF is feature rich
and based on OMG standards. QVTO is also based on an OMG standard like
the UML and some work has already been done on refactorings before with QVTO
which makes it a good candidate for implementing the refactorings, even though it
is not as mature as ATL. ATL is not based on an o�cial OMG standard, so using
standardized QVTO enables reuse of the refactoring transformations in other tool
contexts.

There exist at least two open source UML diagram editors for Eclipse, UML2tools
[13] and Papyrus UML. UML2Tools is not supported in the current version of Eclipse
and continued support is not planned so Papyrus UML is the best choice for this, it
is quite feature rich, supports all popular UML diagrams and is actively maintained.

5.3. Challenges

There are a few technological challenges in developing refactorings for UML models
and the diagrams using QVTO. They are discussed in the following.

5.3.1. Documentation

One of the main problems is the lack of documentation available for QVTO. The
main reference document is the OMG's standard but as QVTO is still work in
progress a part of the functionality is missing, some of which are detailed in this
section.

28

5.3. Challenges

5.3.2. Finding selected objects in the model

Another challenge is knowing which objects the user selected in Papyrus to refactor.
The only way to be sure that the right object is selected is to reference the globally
unique identi�er (GUID) described in section 2.3.3. However, QVTO does not yet
support the _globalId() method which is described in the OMG's standard for QVT
[26] and intended for getting the GUID of an object. The metamodels do not provide
any means for accessing the GUID either, so another method has to be used to solve
this problem. The solution is demonstrated in section 5.6.1.

5.3.3. Creating a new object in the model

Creating a new object in a model can be a di�cult task. Most model objects
have many properties and subobjects that can not be explicitly accessed or set
through the metamodel. There exist some options to solve this in QVTO, like the
deepclone() operation which copies an element and all its subobjects to make a new
one. However, it does not create a GUID for the new element until the next time the
model is saved by the user, so that problem has to be solved as well. The solution
is outlined in section 6.3.

5.3.4. Accessing coordinates of diagram elements

The metamodel for the Papyrus Notation diagram does not provide a way of ac-
cessing the coordinates of an element, or changing them. QVTO does not provide
this functionality either, so this has to be achieved in another way. The solution is
shown in section 5.6.2.

5.3.5. Transforming two models

For refactoring on the model level and on the diagram level at the same time,
the diagram notation model and the UML model and the references between them
have to be respected. QVTO supports transforming more than one model in one
transformation very well, but the main challenge is that the same object is referenced
in two di�erent models, even though one refers to it as a diagram element and
the other as a model element. Fortunately the Notation metamodel for Papyrus
diagrams includes a reference to the UML model for each model object referenced
in a diagram, but the UML metamodel does not include a reference to the diagram

29

5. Tool Implementation

element that corresponds to a model object. The solution is outlined in sections 6.2
and 6.3.

5.4. Metamodel classes

The Notation and UML metamodels have many di�erent classes and complex rela-
tionships between them. However, to understand the transformations presented in
this chapter it is su�cient to know only a small set of them.

5.4.1. Notation metamodel classes

For the proprietary Notation metamodel used by Papyrus, the following classes are
of importance:

Diagram The Diagram class is a top level class in the notation that contains all
other elements as children.

Shape The Shape class extends the Node class, it represents every node in a diagram
that has a shape. A Shape has a few properties of note:

sourceEdges The sourceEdges property is a set which contains all outgoing
edges from the Shape object.

targetEdges The targetEdges property is a set which contains all incoming
edges to the Shape object.

element The element property holds a reference to the UML model element
the Shape object represents.

LayoutConstraint The LayoutConstraint class is owned by a Shape object and
holds information about the layout of the Shape, i.e. position and size.

Bounds The Bounds class is descended from the LayoutConstraint class and rep-
resents the position of a Shape element.

DecorationNode A DecorationNode is a node that has no shape. The model for an
activity diagram contains a DecorationNode which in turn contains all diagram
nodes as children, and can be accessed with the children property.

30

5.5. Plugin architecture

Edge The Edge class represents every edge in a diagram. The edges belong to the
Diagram class and can be accessed with the edges property of the Diagram
class.

5.4.2. UML metamodel classes

The UML metamodel is very complex, but for this implementation only these classes
are important:

Activity The Activity class is a top level class which contains all elements belonging
to an activity diagram. It has a few important properties:

ownedElement The ownedElement property is a set which contains all ele-
ments of the activity diagram.

node The node property is a set which contains all nodes in the activity
diagram.

edge The edge property is a set which contains all edges in the activity dia-
gram.

ActivityNode The ActivityNode class is an abstract class that represents every node
in an activity diagram, including actions and decision nodes.

OpaqueAction The OpaqueAction class is an implementation of the ActivityNode
class and represents an ordinary action which is an important part of an ac-
tivity diagram.

ActivityEdge The ActivityEdge class is an abstract class that represents every edge
in an activity diagram, including control �ows and links.

ControlFlow The ControlFlow class is an implementation of the ActivityEdge class
and represents the control �ow edge which de�nes the �ow between actions.

5.5. Plugin architecture

The implementation of the refactorings is built as a plugin to the Eclipse IDE. It
depends on QVTO and Papyrus UML and can be easily extended. This plugin has
three components:

31

5. Tool Implementation

is.hi.cs.umlrefactoring.core.libraries In this component the Java blackboxing li-
brary is contained and made available to other plugins.

is.hi.cs.umlrefactoring.ui In this component all the Java code is contained to in-
voke the transformations. It also contains de�nitions for adding context menu
entries to the Papyrus editor.

is.hi.cs.umlrefactoring.core.transformations This component contains the QVTO
transformations.

The structure of the plugin is shown in Figure 5.1.

Figure 5.1: The structure of the plugin

The is.hi.cs.umlrefactoring.core.transformations component includes two QVTO trans-
formation �les, MergeActions.qvto and DivideActions.qvto in the ActivityDiagram
directory. It also contains automatically generated plugin description �les created
by Eclipse.

The is.hi.cs.umlrefactoring.ui component includes three �les in the
is.hi.cs.umlrefactoring.ui.popup.actions package which take care of the QVTO invo-
cation:

RefactoringInvocation.java RefactoringInvocation is an abstract class that con-

32

5.5. Plugin architecture

tains a run() method, described in section 5.7.1, which the MergeActions and
DivideAction classes inherit as subclasses. It contains generic re-usable code
for invoking the refactoring implementations. It also de�nes three abstract
methods which are implemented in the subclasses.

MergeActions.java The MergeActions class handles the Merge actions refactoring
and implements the abstract methods de�ned in the RefactoringInvocation
superclass.

DivideAction.java The DivideActions class handles the Divide actions refactoring
and implements the abstract methods de�ned in the RefactoringInvocation
superclass.

The component also contains a plugin.xml �le which adds context menu entries to
the Papyrus editor. It is described in detail in section 5.7.2.

The is.hi.cs.umlrefactoring.libraries component includes the UtilitiesLibrary.java �le
which contains the blackboxing library detailed in section 5.6. The component also
contains a plugin.xml �le which makes the blackboxing library available to other
components. It is described in detail in section 5.6.

5.5.1. Work�ow

The work�ow of the refactoring transformation is shown in Figure 5.2.

33

5. Tool Implementation

Figure 5.2: The work�ow of the refactoring transformation

As seen in Figure 5.2, when the user selects a refactoring in the Papyrus UML
editor, the invocation library starts with fetching the model �les. It then sends
the models to the QVTO transformation which calls blackboxing operations when
needed. When the transformation has been executed, the invocation library saves
the output, overwriting the original models.

34

5.6. Blackboxing library

5.6. Blackboxing library

As some of the problems listed in section 5.3 can not be solved in QVTO, other
solutions are needed. The blackboxing method described in chapter 2 is a good way
of solving these kinds of problems. With that approach, Java can be utilized to
access and change properties which can not be accessed through the metamodel in
QVTO.

This can be achieved by creating a Java class with the operations needed and import-
ing it to the QVTO transformation. To make it available to QVTO the plugin.xml
�le has to include the code shown in Listing 5.1. The listings will generally only
show the code that is relevant to each part so often the line numbers do not start
with the �rst line.

4 <extens i on po int="org . e c l i p s e .m2m. qvt . oml . javaBlackboxUnits ">
5 <uni t name="UmlUt i l i t i e s " namespace="m2m. qvt . oml">
6 <l i b r a r y name=" U t i l i t i e s L i b r a r y " c l a s s=" i s . h i . c s . uml r e f a c to r i ng .

u i . U t i l i t i e s L i b r a r y ">
7 <metamodel nsURI=" ht tp : //www. e c l i p s e . org /emf/2002/Ecore"/>
8 </ l i b r a r y>
9 </ uni t>
10 </ extens i on>

Listing 5.1: Making a blackboxing library available in plugin.xml

This XML code simply makes the Java UtilitiesLibrary class in line 6 located in the li-
brary is.hi.cs.umlrefactoring.ui.UtilitiesLibrary available to QVTO as
org.eclipse.m2m.qvt.oml.javaBlackboxUnits in line 4.

For implementing the refactorings described in the previous chapter, four operations
are needed in the UtilitiesLibrary class:

• isSelectedObject()

• moveElement()

• setElementID()

• generateElementID()

The operations are explained in detail below, excluding the generateElementID()
operation which is a very simple helper for the setElementID() operation.

35

5. Tool Implementation

5.6.1. isSelectedObject()

This is an important operation for solving the problem of reliably �nding the selected
object in the model, i.e. to which object or objects a refactoring shall be applied.
The code is shown in Listing 5.2:

19 public stat ic boolean i s S e l e c t edOb j e c t (Object shapeElement , S t r ing
fragment) {

20 St r ing elementFragment = ((EObject) shapeElement) . eResource () .
getURIFragment ((EObject) shapeElement) ;

21 return elementFragment . equa l s (fragment) ;
22 }

Listing 5.2: The isSelectedObject() blackboxing operation

The boolean operation in Listing 5.2 gets two parameters as input; shapeElement
which is a Shape object and fragment, a string which contains the GUID of an
element. In line 20 the GUID of the element is fetched and in line 21 it is compared
to the input GUID to check if they match. If they match, that means that a selected
element has been found and true is returned to the calling transformation.

5.6.2. moveElement()

The moveElement() operation in Listing 5.3 receives a Bounds element which con-
tains coordinates and x and y o�sets to move the element from its original position.
It then returns the element. The operation is used in this implementation for mov-
ing a copied diagram element from its original position to a new position in the
diagram.

25 public stat ic Object moveElement (Object boundsElement , int x , int y) {
26 Bounds element = ((Bounds) boundsElement) ;
27 element . setX (element . getX () + x) ;
28 element . setY (element . getY () + y) ;
29 return element ;
30 }

Listing 5.3: The moveElement blackboxing operation

The code in Listing 5.3 is quite simple, in lines 27 and 28 the element is moved x
pixels horizontally and y pixels vertically, before being returned back to the caller
in line 29.

36

5.7. Executing the transformation

5.6.3. setElementID()

The setElementID() operation shown in Listing 5.4 gets two parameters as input;
shapeElement and oldElement which are both Shape objects. The GUID is gen-
erated for the shapeElement object, but another object is needed to be passed as
a parameter to the function so the underlying resource can be accessed. As the
shapeElement is created in QVTO before this function is called, it doesn't contain
the Ecore resource which in turn contains all the other elements in the model. We
need to be able to access the Ecore resource to be sure that there is no other object
in the model that has the same GUID.

33 public stat ic EObject setElementID (Object shapeElement , Object
oldElement) {

34 EObject oldElem = (EObject) oldElement ;
35 St r ing idRandomPart ;
36
37 //Create a new ID fo r the element and
38 //make sure t ha t an element wi th t h i s ID doesn ' t e x i s t
39 do {
40 idRandomPart = generateElementID () ;
41 } while (oldElem . eResource () . getEObject (idRandomPart) != null) ;
42
43 XMIResource r e s ou r c e = (XMIResource) oldElem . eResource () ;
44 r e sou r c e . setID ((EObject) shapeElement , "_SpltEl" + idRandomPart .

t oS t r i ng ()) ;
45 return ((EObject) shapeElement) ;
46 }

Listing 5.4: The setElementID() blackboxing operation

This function simply starts with casting the oldElement object to an Ecore object.
In line 40 the GUID is generated using the generateElementID() function which is a
very simple function that randomly picks characters from the alphabet to generate
the GUID. The do-while loop then makes sure that the ID is truly unique in the
model. In lines 43-45 the object's GUID is set and then returned to the caller.

5.7. Executing the transformation

The QVTO plugin for Eclipse provides the TransformationExecutor class for invok-
ing QVTO transformations in Java as described in section 5.7.1. Such an invocation
is typically initiated via the user interface. The extension point functionality pro-
vided by Eclipse can then be used to add context menu entries to the Papyrus editor
so the refactorings can be easily selected in the user interface. This is described in
detail in section 5.7.2.

37

5. Tool Implementation

5.7.1. Invoking a QVTO transformation with Java

The code in this implementation is based on the example of using the Transfor-
mationExecutor class provided by the QVT Eclipse project [15], but with a few
modi�cations. The run() method in Listing 5.5 is located in the abstract Refac-
toringInvocation class, and the DivideAction and MergeAction classes inherit it.
This design is based on the template method design pattern from Gamma et al.
[20]. Using this design pattern means that adding a transformation is an easy task
because the run() method can be reused and only three methods have to be imple-
mented in the subclass for the transformation, getSelection(), initTransformation()
and setProperties(), which are explained later in the section. Only the methods in
the MergeActions class will be explained as they are very similar to the ones in the
DivideActions class.

The run() method

The run() method in Listing 5.5 runs the transformation and saves the output,
and handles possible errors that can occur during transformation. The details are
described below.

48 public void run (IAct ion ac t i on) {
49 List<ShapeImpl> s e l e c t ed I t ems = ge t S e l e c t i o n () ;
50
51 // Get path to diagram
52 IWorkbenchPage act ivePage = PlatformUI . getWorkbench () .

getActiveWorkbenchWindow () . getActivePage () ;
53 CoreMultiDiagramEditor a c t i v eEd i t o r = (CoreMultiDiagramEditor)

act ivePage . ge tAct iveEd i to r () ;
54 EObject model = (EObject) a c t i v eEd i t o r . getDiagramEditPart () . getModel

() ;
55 URI u r i = model . eResource () . getURI () ;
56 Path pathToDiagram = new Path (u r i . toP la t fo rmStr ing (fa l se)) ;
57
58 i f (! a c t i v eEd i t o r . i sD i r t y ()) {
59 TransformationExecutor executor = in i tTrans fo rmat ion () ;
60
61 // de f i n e the t rans format ion input
62 // Remark : we take the o b j e c t s from a resource , however
63 // a l i s t o f a r b i t r a r y in−memory EObjects may be passed
64 ResourceSetImpl r e s ou r c eSe t = new ResourceSetImpl () ;
65 Resource umlInResource = re sou r c eSe t . getResource (URI . createURI ("

plat form :/ r e sou r c e " + pathToDiagram . removeFi leExtens ion () .
addFi leExtens ion ("uml") . t oS t r i ng ()) , true) ;

66 EList<EObject> umlInObjects = umlInResource . getContents () ;
67
68 Resource notat ionInResource = re sou r c eSe t . getResource (URI .

createURI (" plat form :/ r e sou r c e " + pathToDiagram . toS t r i ng ()) ,

38

5.7. Executing the transformation

true) ;
69 EList<EObject> notat ion InObjec t s = notat ionInResource . getContents

() ;
70
71 // crea t e the input e x t en t wi th i t s i n i t i a l con ten t s
72 ModelExtent umlInput = new BasicModelExtent (umlInObjects) ;
73 ModelExtent notat ionInput = new BasicModelExtent (

notat ion InObjec t s) ;
74 // crea t e an empty e x t en t to catch the output
75 ModelExtent output = new BasicModelExtent () ;
76
77 ExecutionContextImpl context = s e tP r op e r t i e s (s e l e c t ed I t ems) ;
78
79 // run the t rans format ion ass i gned to the execu tor wi th the g iven
80 // input and output and execu t ion con t ex t −> ChangeTheWorld (in ,

out)
81 // Remark : v a r i a b l e arguments count i s supported
82 Execut ionDiagnost i c r e s u l t = executor . execute (context ,

notat ionInput , umlInput) ;
83
84 // check the r e s u l t f o r succe s s
85 i f (r e s u l t . g e tS ev e r i t y () == Diagnos t i c .OK) {
86 // the output o b j e c t s go t captured in the output e x t en t
87 List<EObject> outObjects = output . getContents () ;
88 // l e t ' s p e r s i s t them us ing a resource
89 Resource umlOutResource = umlInResource ;
90 Resource notationOutResource = notat ionInResource ;
91 umlOutResource . getContents () . addAll (outObjects) ;
92 notationOutResource . getContents () . addAll (outObjects) ;
93 try {
94 umlOutResource . save (Co l l e c t i o n s . emptyMap ()) ;
95 notationOutResource . save (Co l l e c t i o n s . emptyMap ()) ;
96 } catch (IOException e) {
97 e . pr intStackTrace () ;
98 }
99 } else {
100 // turn the r e s u l t d i a gno s t i c in t o s t a t u s and send i t to error

l o g
101 ISta tus s t a tu s = Bas i cDiagnos t i c . t o IS ta tu s (r e s u l t) ;
102 Act ivator . ge tDe fau l t () . getLog () . l og (s t a tu s) ;
103 }
104 } else {
105 MessageDialog . openError (
106 s h e l l ,
107 "Unsaved changes " ,
108 "The model has unsaved changes , p l e a s e save be f o r e running

the r e f a c t o r i n g . ") ;
109 }
110 }

Listing 5.5: The run() method in RefactoringInvocation.java

39

5. Tool Implementation

The run() method in Listing 5.5 starts with running the getSelection() method,
which is explained in section 5.7.1, to populate the selectedItems list with the selected
objects. In lines 52-56 the path to the diagram that contains the selected items is
looked up and stored in the pathToDiagram variable.

Line 58 checks if any unsaved changes exist in the editor by looking at the isDirty()
property of the editor. If unsaved changes exist then an error message is displayed
to the user in lines 104-109. Running a transformation on a model when changes
have not been saved to it will cause the changes to be lost, because the user might
have added a new element to the diagram but the element will not appear in the
underlying models until the diagram is saved in Papyrus.

If no unsaved changes exist, the preparation for the execution continues in line 59 by
running the initTransformation() method which is explained in section 5.7.1, which
returns an executor object of the TransformationExecutor class.

In lines 64-75 the underlying UML and Notation models are looked up and loaded
into the umlInobjects and notationInObjects variables respectively. It should be
noted that the pathToDiagram variable holds the path to the .di �le of the Notation
model, but as the Notation and UML model �les have the same name as the .di �le,
except the �le extension, it is simply enough to replace the extension of the �le with
the correct one as is done in lines 65 and 68 with the removeFileExtension() and
addFileExtension() methods. In line 75 an empty extent is created to capture the
output from the transformation.

The setProperties() method is called in line 77 to create an execution context and
pass properties to the transformation. This is explained in detail in section 5.7.1.
The transformation is �nally executed in line 82 by calling the execute() method on
the executor object with the execution context and model objects as parameters.
The result of the transformation is kept in the result variable which holds information
about whether the transformation was executed and any errors that might have
occurred.

The result object is checked in line 85 to see if the transformation was executed
correctly. If errors occurred, the execution �ow goes to lines 99-103 where the error
descriptions are extracted from the result object and sent to an error console in the
Eclipse IDE. However, if the transformation executed without errors the execution
continues in lines 87-98. The transformed models are then gathered from the output
model extent and loaded into the outObjects list in line 87. In lines 89-92 the resource
of the input models is replaced with the output models, however, no data is written
before the resources are saved. In lines 94 and 95 the UML and Notation model
resources are saved, essentially overwriting the input models with the transformation
output. The Papyrus tool will then update the diagram display.

40

5.7. Executing the transformation

The getSelection() method

The getSelection() method returns a list of the items the user selected as ShapeImpl
objects. The implementation in the MergeActions class is shown in Listing 5.6

40 public List<ShapeImpl> g e t S e l e c t i o n () {
41 List<ShapeImpl> s e l e c t i o n L i s t = new ArrayList<ShapeImpl >() ;
42 Object [] s e l e c t i o n s = s e l e c t i o n . toArray () ;
43
44 // Get s e l e c t e d i tems
45 OpaqueActionEditPart f i r s tEd i tPa r t = (OpaqueActionEditPart)

s e l e c t i o n s [0] ;
46 OpaqueActionEditPart secondEditPart = (OpaqueActionEditPart)

s e l e c t i o n s [1] ;
47 ShapeImpl f i r s t I t em = (ShapeImpl) f i r s tEd i tP a r t . getModel () ;
48 ShapeImpl secondItem = (ShapeImpl) secondEditPart . getModel () ;
49 s e l e c t i o n L i s t . add (f i r s t I t em) ;
50 s e l e c t i o n L i s t . add (secondItem) ;
51 return s e l e c t i o n L i s t ;
52 }

Listing 5.6: The getSelection() method in MergeActions.java

The method starts with creating an empty list intended for ShapeImpl objects in line
41 and creates an array of the selected objects in line 42. In this implementation two
and only two items are expected to be in the selection array because the refactoring
is implemented for merging two actions. In lines 45-51 the �rst two items are fetched
from the array and added the the selectionList as ShapeImpl objects. The list is
then returned back to the caller.

The initTransformation() method

The initTransformation() method returns an object of the TransformationExecutor
class which includes the path to the resource containing the QVTO transformation.
The implementation in the MergeActions class is shown in Listing 5.7

54 public TransformationExecutor in i tTrans fo rmat ion () {
55 URI transformationURI = URI . createURI (" plat form :/ p lug in / i s . h i . c s .

uml r e f a c to r ing . core . t r ans f o rmat i ons / trans forms /ActivityDiagram/
MergeActions . qvto") ;

56 TransformationExecutor executor = new TransformationExecutor (
transformationURI) ;

57 return executor ;
58 }

Listing 5.7: The initTransformation() method in MergeActions.java

41

5. Tool Implementation

The code in Listing 5.7 starts with creating a URI containing the path to the QVTO
transformation contained within the plugin in line 55. The object of the Transfor-
mationExecutor class is created with the URI to the transformation in line 56 and
then returned to the caller in line 57.

The setProperties() method

The setProperties() method sets the con�guration properties for the transforma-
tion with the selectionList parameter which contains the selected items from the
getSelection() method. It returns an object of the ExecutionContextImpl class to
the caller. The implementation in the MergeActions class is shown in Listing 5.8

60 public ExecutionContextImpl s e tP r op e r t i e s (L is t<ShapeImpl> s e l e c t i o n L i s t
) {

61 ExecutionContextImpl context = new ExecutionContextImpl () ;
62
63 context . s e tConf igProper ty (" toMerge1" , s e l e c t i o n L i s t . get (0) . eResource

() . getURIFragment (s e l e c t i o n L i s t . get (0))) ;
64 context . s e tConf igProper ty (" toMerge2" , s e l e c t i o n L i s t . get (1) . eResource

() . getURIFragment (s e l e c t i o n L i s t . get (1))) ;
65 return context ;
66 }

Listing 5.8: The setProperties() method in MergeActions.java

The method in Listing 5.8 starts with creating an object of the ExecutionCon-
textImpl class called context. The setCon�gProperty() method is used in lines 63
and 64 to add the GUID strings of the selected elements, i.e. the activity node to
be merged, as con�guration properties to the QVTO transformation. The method
then ends in line 65 with returning the context object to the caller.

5.7.2. Adding a context menu entry

In this plugin the org.eclipse.ui.popupMenus extension point is utilized to add an en-
try to the OpaqueAction element's context menu. This is speci�ed in the plugin.xml
�le in the is.hi.cs.umlrefactoring.ui plugin. The code is shown in Listing 5.9.

42

5.7. Executing the transformation

4 <extens i on po int="org . e c l i p s e . u i . popupMenus">
5 <objec tCont r ibut i on
6 id=" i s . h i . c s . uml r e f a c to r ing . u i . popup . a c t i on s "
7 ob j e c tC l a s s="org . e c l i p s e . papyrus . diagram . a c t i v i t y . e d i t . par t s .

OpaqueActionEditPart "
8 nameFi lter="∗">
9 <menu
10 id="org . e c l i p s e . gmf . runtime . diagram . u i . DiagramEditorContextMenu .

Refactor "
11 l a b e l="Refactor "
12 path=" add i t i on s ">
13 <separa to r name="group1"/>
14 </menu>
15 <act i on id=" i s . h i . c s . uml r e f a c to r i ng . u i . popup . a c t i on s . MergeActions"
16 l a b e l="Merge a c t i on s "
17 menubarPath="org . e c l i p s e . gmf . runtime . diagram . u i .

DiagramEditorContextMenu . Refactor /group1"
18 d e f i n i t i o n I d=" i s . h i . c s . uml r e f a c to r ing . u i . popup . a c t i on s .

MergeActions "
19 c l a s s=" i s . h i . c s . uml r e f a c to r ing . u i . popup . a c t i on s . MergeActions "
20 enablesFor="2">
21 </ ac t i on>
22 <act i on id=" i s . h i . c s . uml r e f a c to r i ng . u i . popup . a c t i on s . DivideAction "
23 l a b e l="Divide ac t i on "
24 menubarPath="org . e c l i p s e . gmf . runtime . diagram . u i .

DiagramEditorContextMenu . Refactor /group1"
25 d e f i n i t i o n I d=" i s . h i . c s . uml r e f a c to r ing . u i . popup . a c t i on s .

DivideAct ion "
26 c l a s s=" i s . h i . c s . uml r e f a c to r ing . u i . popup . a c t i on s . DivideAct ion "
27 enablesFor="1">
28 </ ac t i on>
29 </ ob j ec tCont r ibut i on>
30 </ extens i on>

Listing 5.9: Adding a context menu entry in plugin.xml

There are some important parts in this speci�cation. Line 4 de�nes the extension
point used, org.eclipse.ui.popupMenus, which provides a way of adding menu entries
to any context menu in Eclipse and line 6 de�nes the identi�er for the extension.
Line 8 de�nes the type of object the context menu entry is added to, in this case for
an action, de�ned as an OpaqueActionEditPart object by Papyrus.

Lines 9-14 de�ne a submenu called Refactor where the individual refactoring actions
are added.

Lines 15-21 specify the Merge Actions menu entry. Line 16 de�nes the label, Merge
actions, and line 17 de�nes which menu the action is added to, which in this case is
the submenu de�ned in lines 9-14. Line 18 de�nes an identi�er for the entry and line
19 states which class is executed when the entry is selected. In line 20 it is de�ned
that the menu entry is only enabled when two objects are selected.

43

5. Tool Implementation

Lines 22-28 specify the Divide Action menu entry, in the same way as the Merge
Actions entry. However, it must be noted that the menu entry is only enabled when
one object is selected.

5.8. Merge actions refactoring

The Merge actions transformation carries out the refactoring by the same name
detailed in chapter 4. This section describes the QVTO code behind it and explains
it line by line.

1 import m2m. qvt . oml . UmlUt i l i t i e s ;
2
3 modeltype NOTATION uses ' http ://www. e c l i p s e . org /gmf/ runtime /1 . 0 . 2 /

notat ion ' ;
4 modeltype UML uses ' http ://www. e c l i p s e . org /uml2 /3 . 0 . 0 /UML' ;
5 modeltype ECORE uses "http ://www. e c l i p s e . org /emf/2002/Ecore " ;
6
7 t rans fo rmat ion MergeActions (inout notat ion : NOTATION, inout uml : UML)

;
8
9 c on f i gu r a t i on property toMerge1 : String ;
10 c on f i gu r a t i on property toMerge2 : String ;
11
12 property objToMerge1 : notat ion : : Shape = nu l l ;
13 property objToMerge2 : notat ion : : Shape = nu l l ;
14 property edgeToRemove : uml : : Act iv ityEdge = nu l l ;
15 property incomingEdgesToTransform : Set (Act iv ityEdge) = Set {} ;
16 property outgoingEdgesToTransform : Set (Act iv ityEdge) = Set {} ;
17 property nodeToRemove : uml : : ActivityNode = nu l l ;
18 property targetNode : uml : : ActivityNode = nu l l ;
19
20 main () {
21 notat ion . objectsOfType (Shape) −> getObject s () ;
22 notat ion . objectsOfType (Shape) −> map merge () ;
23 uml . objectsOfType (Act iv ityEdge) −> map setTarget () ;
24 uml . objectsOfType (Act iv ityEdge) −> map setSource () ;
25 uml . objectsOfType (ActivityNode) −> map changeName () ;
26 uml . objectsOfType (Act iv ityEdge) −> map removeEdge () ;
27 uml . objectsOfType (ActivityNode) −> map removeNode () ;
28 }

Listing 5.10: The MergeActions.qvto transformation

The �rst line imports the blackboxing library which contains transformation helpers.
Lines 3-5 de�ne the metamodels used for the transformation: Notation, UML and
Ecore.

44

5.8. Merge actions refactoring

Line 7 is the transformation header, which de�nes the name and input and output
metamodels; in this case the input is the same as the output, Notation and UML.

Lines 9 and 10 de�ne con�guration properties which hold values that are passed into
the transformation from the caller which in this case is the Java execution class. The
properties, toMerge1 and toMerge2 get passed strings which contain the GUID of
the respective diagram elements which were selected for merging.

Lines 12-18 de�ne properties, or global variables, which can be referenced anywhere
in the transformation. In this case they are used to store references to the selected
objects to be merged and the UML elements that are to be transformed alongside
the diagram objects.

In lines 20-28 is the main function which is the entry point to the transformation.
In the main function the mappings are invoked as well as queries when applicable.
It starts o� with fetching the diagram objects whose GUID's were passed into the
transformation as strings by calling the getObjects() query, which is explained in
section 5.8.1.

In line 22 the actual merging is started by invoking the merge() mapping for the
Notation model, which is detailed in section 5.8.2. Note the syntax for invoking the
mapping:

notat ion . objectsOfType (Shape) −> map merge () ;

This code sends all objects of the Shape type from the Notation model to themerge()
mapping. The mapping then includes a guard for checking whether the object passed
is supposed to be transformed.

Lines 23-27 invoke mappings for the UML model, based on which diagram elements
were transformed in the merge() mapping. This is explained in more detail in
sections 5.8.2 and 5.8.3.

5.8.1. The getObjects() query

A query is a function that does not update any models but iterates over a set of
input objects like a mapping. The getObjects() query receives a Shape as input and
is void, that is, it doesn't return a value. However, it populates the global variables
objToMerge1 and objToMerge2 with the relevant diagram elements.

45

5. Tool Implementation

30 query Shape : : ge tObject s () : Void
31 {
32 i f (s e l f . i s S e l e c t edOb j e c t (toMerge1)) then {
33 objToMerge1 := s e l f ;
34 } endif ;
35
36 i f (s e l f . i s S e l e c t edOb j e c t (toMerge2)) then {
37 objToMerge2 := s e l f ;
38 } endif ;
39 }

Listing 5.11: The getObjects() query in MergeActions.qvto

The getObjects() query uses the blackboxing method isSelectedObject() in line 32 and
line 36 to determine if the element in question is one of those selected for merging.

5.8.2. The merge() mapping

The merge() mapping is the most important part of the transformation. It trans-
forms the Notation model and stores references to elements to be transformed in
the UML model.

41 mapping inout notat ion : : Shape : : merge ()
42 when { s e l f . i s S e l e c t edOb j e c t (toMerge1) }
43 {
44 var f i r s tNode : Shape = nu l l ;
45 var lastNode : Shape = nu l l ;
46 var connectingEdge : Edge = nu l l ;
47
48 s e l f . targetEdges−>forEach (incoming) {
49 i f (incoming . source = objToMerge2) then {
50 f i r s tNode := objToMerge2 ;
51 lastNode := objToMerge1 ;
52 connectingEdge := incoming ;
53 } endif ;
54 } ;
55
56 s e l f . sourceEdges−>forEach (outgoing) {
57 i f (outgoing . t a r g e t = objToMerge2) then {
58 f i r s tNode := objToMerge1 ;
59 lastNode := objToMerge2 ;
60 connectingEdge := outgoing ;
61 } endif ;
62 } ;
63
64 i f not (f i r s tNode = nu l l and lastNode = nu l l) then {
65 edgeToRemove := connectingEdge . element . oclAsType (Act iv ityEdge) ;
66 nodeToRemove := f i r s tNode . element . oclAsType (ActivityNode) ;

46

5.8. Merge actions refactoring

67 targetNode := lastNode . element . oclAsType (ActivityNode) ;
68 f i r s tNode . oclAsType (Shape) . targetEdges−>forEach (incomingEdge) {
69 incomingEdge . t a r g e t := lastNode ;
70 incomingEdgesToTransform += incomingEdge . element . oclAsType (

Act iv ityEdge) ;
71 } ;
72 f i r s tNode . oclAsType (Shape) . sourceEdges−>forEach (outgoingEdge) {
73 outgoingEdge . source := lastNode ;
74 outgoingEdgesToTransform += outgoingEdge . element . oclAsType (

Act iv ityEdge)
75 } ;
76
77 notat ion . removeElement (connectingEdge) ;
78 notat ion . removeElement (f i r s tNode) ;
79 }endif ;
80 }

Listing 5.12: The merge() mapping in MergeActions.qvto

Line 41 states that the mapping takes a Shape as an input and outputs a Shape.
Line 42 de�nes a guard which checks that the input Shape is the �rst one of the two
selected using the isSelectedObject() blackboxing operation. It is su�cient to check
for only one item because the transformation �nds the other element by looking at
nodes connected to it by an edge.

Lines 44-46 de�ne three variables, �rstNode and lastNode, which will be used to
reference the node that comes �rst in the control �ow of the nodes to be merged and
the one that is last, respectively. the connectingEdge variable references the edge
between the nodes to be merged.

In lines 48-62 the transformation looks at all incoming edges(targetEdges) and out-
going edges(sourceEdges) connected to the toMerge1 object using the forEach con-
struct, which scans through every item of a set. If the toMerge2 object is found on
the other end of an edge then the variables �rstNode, lastNode and connectingEdge
are set to reference the appropriate elements. The if statement in line 64 checks if
the variables have been set and continues the transformation if so. If the variables
are not set, that means that the elements selected are not connected by an edge and
then the transformation is not executed.

If the transformation is to be executed, the edgeToRemove global property is in line
65 set to reference the UML object that corresponds to the connectingEdge object
for a later use. The oclAsType() function is used for converting objects into another
type, in line 65 it is used to convert the Ecore element that the connectingEdge
element references to a UML edge. In lines 66 and 67 references to the UML elements
to be removed and the node to be kept are stored in global properties, nodeToRemove
and targetNode, respectively.

47

5. Tool Implementation

In lines 68-71 every outgoing edge from the �rstNode shape is transformed. Its target
is in line 69 set to the lastNode shape, which means that every edge that was con-
nected to the �rstNode shape will be connected to the lastNode shape. A reference
to the UML element of every edge is also stored in the global incomingEdgesTo-
Transform set.

Because the �rstNode object will be removed, it is also necessary to move all outgoing
edges from it to the lastNode object. This is done in lines 72-75 with a forEach
construct, where the source of every edge is set to the lastNode shape and a reference
to the UML element is added to the outgoingEdgesToTransform set.

The transformation on the notation model then ends with removing the �rstNode
and connectingEdge objects from the model in lines 77 and 78.

5.8.3. UML model element mappings

At this stage in the transformation the Notation model has been refactored according
to the refactoring mechanics in chapter 4. Now all that is left to do is to re�ect the
changes in the UML model. That is quite a simple task now because all the logic has
been taken care of in the Notation transformation, and global variables are in place
that contain the UML elements to transform. The code for the UML mappings is
in Listing 5.13.

82 mapping inout uml : : Act iv ityEdge : : removeEdge ()
83 when { edgeToRemove=s e l f }
84 {
85 uml . removeElement (s e l f) ;
86 }
87
88 mapping inout uml : : Act iv ityEdge : : s e tTarget ()
89 when { incomingEdgesToTransform−>inc l ud e s (s e l f) }
90 {
91 s e l f . t a r g e t := targetNode ;
92 }
93
94 mapping inout uml : : Act iv ityEdge : : s e tSource ()
95 when { outgoingEdgesToTransform−>inc l ud e s (s e l f) }
96 {
97 s e l f . source := targetNode ;
98 }
99
100 mapping inout uml : : ActivityNode : : removeNode ()
101 when { s e l f = nodeToRemove }
102 {
103 uml . removeElement (s e l f) ;
104 }

48

5.9. Divide action refactoring

105
106 mapping inout uml : : ActivityNode : : changeName ()
107 when { s e l f = targetNode }
108 {
109 s e l f . name := nodeToRemove . name + " − " + s e l f . name ;
110 }

Listing 5.13: The UML mappings in MergeActions.qvto

In lines 82-86 the edge between the elements to be merged is removed from the
UML model. In lines 88-92 the source of all incoming edges from the element to be
removed are set to the element to be kept. The same thing happens in lines 94-98
to the outgoing edges, except that the source is changed.

In lines 100-104 the nodeToRemove element is removed from the UML model and
then the transformation ends in lines 106-110 with prepending the name of the
merged element with the name of the removed element and a hyphen in between.

5.9. Divide action refactoring

The Divide action transformation carries out the refactoring by the same name
detailed in chapter 4. This section describes the QVTO code behind it and explains
it line by line.

1 import m2m. qvt . oml . UmlUt i l i t i e s ;
2
3 modeltype UML uses ' http ://www. e c l i p s e . org /uml2 /3 . 0 . 0 /UML' ;
4 modeltype NOTATION uses ' http ://www. e c l i p s e . org /gmf/ runtime /1 . 0 . 2 /

notat ion ' ;
5 modeltype ECORE uses "http ://www. e c l i p s e . org /emf/2002/Ecore " ;
6
7 t rans fo rmat ion DivideAct ion (inout notat ion : NOTATION, inout uml : UML)

;
8
9 c on f i gu r a t i on property toDiv ide : String ;
10
11 property objectToDivide : notat ion : : Shape = nu l l ;
12 property newEdge : notat ion : : Edge = nu l l ;
13 property newShape : notat ion : : Shape = nu l l ;
14
15 property umlEdgesToTransform : Set (Act iv ityEdge) = Set {} ;
16 property newUmlNode : ActivityNode = nu l l ;
17
18 main () {
19 notat ion . objectsOfType (Shape) −> getObjectToDivide () ;
20 notat ion . objectsOfType (DecorationNode) −> map addNode () ;
21 notat ion . objectsOfType (Diagram) −> map addEdge () ;

49

5. Tool Implementation

22 uml . objectsOfType (Act i v i ty) −> map addNodeAndEdge () ;
23 uml . objectsOfType (Act iv ityEdge) −> map setSource () ;
24 }

Listing 5.14: The DivideActions.qvto transformation

The Divide actions transformation starts o� in a similar way as the Merge actions
transformation. Line 1 imports the Java blackboxing library and lines 3-5 de�ne the
Notation, UML and Ecore metamodels. The transformation header in line 7 speci�es
that the transformation has two input models and two output models; Notation and
UML.

Line 9 de�nes a con�guration property that contains the GUID string of the Shape
that is to be divided. Global properties to keep In lines 11-16 global properties are
de�ned for keeping references to the selected object, Notation element to be added
and UML elements that correspond to elements in the Notation model.

The main function starts with calling the getObjectToDivide() query in line 19.
Then a new node is added to the Notation model with the addNode() mapping
and an edge between the original and the new node with the addEdge() mapping.
Lines 22 and 23 do the same for the UML model. The query and the mappings are
explained in detail below.

5.9.1. The getObjectToDivide() query

The getObjectToDivide() query receives a Shape object as input and looks up the
selected object to divide in the Notation model by iterating over a set of input
objects.

26 query Shape : : getObjectToDivide () : Void
27 {
28 i f (s e l f . i s S e l e c t edOb j e c t (toDiv ide)) then {
29 objectToDivide := s e l f ;
30 } endif ;
31 }

Listing 5.15: The getObjectToDivide() query in DivideActions.qvto

The query in Listing 5.15 starts starts with using the isSelectedObject() operation
in line 28 to �nd the object selected for division. When found, the global property
objectToDivide is used to store a reference to the element in line 29.

50

5.9. Divide action refactoring

5.9.2. The addNode() mapping

The addNode() mapping receives a DecorationNode object as input and adds a new
node to the Notation model by making a copy of the original one.

33 mapping inout notat ion : : DecorationNode : : addNode ()
34 when { s e l f . ch i ld r en−>inc l ud e s (objectToDivide) }
35 {
36 var newNode : notat ion : : Shape := objectToDivide . deepc lone () .

setElementID (objectToDivide) . oclAsType (Shape) ;
37 var newPos : notat ion : : LayoutConstraint := newNode . l ayoutConst ra in t .

moveElement (0 , 100) . oclAsType (LayoutConstraint) ;
38 newNode . l ayoutConst ra in t := newPos ;
39
40 i f (objectToDivide . sourceEdges−>notEmpty ()) then {
41 newEdge := objectToDivide . sourceEdges−>f i r s t () . deepc lone () .

oclAsType (Edge) ;
42 newEdge . source := objectToDivide ;
43 newEdge . t a r g e t := newNode ;
44 } else {
45 i f (objectToDivide . targetEdges−>notEmpty ()) then {
46 newEdge := objectToDivide . targetEdges−>f i r s t () . deepc lone () .

oclAsType (Edge) ;
47 newEdge . source := objectToDivide ;
48 newEdge . t a r g e t := newNode ;
49 } endif ;
50 } endif ;
51
52 objectToDivide . sourceEdges−>forEach (outgoingEdge) {
53 i f (outgoingEdge <> newEdge) then {
54 outgoingEdge . source := newNode ;
55 umlEdgesToTransform += outgoingEdge . element . oclAsType (

Act iv ityEdge) ;
56 } endif ;
57 } ;
58
59 newShape := newNode ;
60 s e l f . c h i l d r en += newNode ;
61 }

Listing 5.16: The addNode() mapping in DivideActions.qvto

As can be seen in Listing 5.16, the addNode() mapping starts with a guard that
checks whether the DecorationNode includes the object to divide in the children set
in line 34. In line 36 a new node is created by cloning the original node with the
deepclone() operation QVTO provides and a GUID is set with the setElementID()
operation. If not set explicitly, the new model element will exist without a GUID
until the next time the user saves the model. That would make it impossible to
execute further refactorings on that element until the model is saved, so the safest
way is to set it right away.

51

5. Tool Implementation

A new LayoutConstraint element is created in line 37 and moved 100 pixels down
in the diagram by using the moveElement() blackboxing operation. The Layout-
Constraint element is then set to belong to the new node in line 38. In a more
sophisticated approach, an algorithm could be developed to �nd the right place in
the diagram for the new element but in this approach the solution is kept simple
because in most activity diagrams the �ow goes straight down from the top. This
could also be decided by the user via an input dialog before the refactoring is exe-
cuted, but it would be hard to get completely right because a pixel is quite a small
unit and often displayed di�erently on di�erent monitors. The user anyway has to
edit the name of the new action and it is not uncommon to request interaction from
the user in an advanced code refactoring.

Lines 40-50 contain conditional statements that check if there exist any incoming
or outgoing edges that connect to the element to be divided. When found, the �rst
edge in either set is copied with the deepclone() operation and then connected to
the original node and the cloned node by setting the source and target properties
appropriately.

In lines 52-57 all outgoing edges from the original node are moved to the new node
by setting the source property of each edge to point to the new element. The UML
elements of each node are added to the global umlEdgesToTransform set so the same
can be done for them later on in the transformation.

The mapping then ends with keeping a reference to the new node object in the global
newShape property, and the node is added to the children set of the DecorationNode
being mapped.

5.9.3. The addEdge() mapping

The addEdge() mapping is very simple, it adds the edge between the divided ele-
ments to the edges set of the Diagram element.

63 mapping inout notat ion : : Diagram : : addEdge ()
64 when { objectToDivide . diagram = s e l f }
65 {
66 i f not (newEdge = nu l l) then {
67 s e l f . edges += newEdge ;
68 } endif

69 }

Listing 5.17: The addEdge() mapping in DivideActions.qvto

The mapping in Listing 5.17 starts with a guard in line 64 that checks if the correct
Diagram element is being mapped. When the correct Diagram element is found,

52

5.9. Divide action refactoring

and the newEdge element exists, the edge is added to the edges set of the Diagram
element in line 67.

5.9.4. The addNodeAndEdge() mapping

The addNodeAndEdge() mapping receives a UML Activity element as input and
adds an action and an edge to it to re�ect the changes already done to the Notation
model.

71 mapping inout uml : : Ac t i v i ty : : addNodeAndEdge ()
72 when { s e l f . ownedElement−>inc l ud e s (objectToDivide . element . oclAsType (

uml : : ActivityNode)) }
73 {
74 var newActivity : UML: : ActivityNode := ob j e c t uml : : OpaqueAction {
75 name := "New " + objectToDivide . element . oclAsType (uml : :

ActivityNode) . name ;
76 } ;
77
78 i f not (newEdge = nu l l) then {
79 var newControlFlow : UML: : Act iv ityEdge := ob j e c t uml : : ControlFlow

{
80 name := "New Edge " ;
81 t a r g e t := newActivity ;
82 source := objectToDivide . element . oclAsType (uml : : ActivityNode) ;
83 } ;
84 s e l f . edge += newControlFlow ;
85 newEdge . element := newControlFlow . oclAsType (eco re : : EObject) ;
86 } endif ;
87
88 newUmlNode := newActivity ;
89 s e l f . node += newActivity ;
90 newShape . element := newActivity . oclAsType (ecore : : EObject) ;
91 }

Listing 5.18: The addNodeAndEdge() mapping in DivideActions.qvto

The mapping in Listing 5.18 starts with a guard in line 72 that makes sure that
correct activity element is mapped by checking that the original action is contained
in the ownedElement set of the Activity.

When the correct element is found, an OpaqueAction node and a ControlFlow edge
are created in lines 74-86. The OpaqueAction element is given the name of the
original action with the text "New" prepended in line 75. The ControlFlow edge,
if it exists, is given a name in line 80 and then its source and target properties are
set to the original action and the new action in lines 81-82. In line 84 the edge is
added to the edge set of the Diagram element. In line 85 the element property of

53

5. Tool Implementation

the corresponding edge from the notation model is set to reference the new UML
control �ow edge, which was not possible before the UML element had been created.

In line 88 a reference to the new action is stored in the global newUmlNode property
and then the newly created node is added to the node set of the Diagram element in
lines 89. The mapping then ends with setting the corresponding element property
of the node from the Notation model.

5.9.5. The setSource() mapping

The last mapping of the transformation, the setSource() mapping, is quite simple.
It receives an ActivityEdge as input and moves its source to the divided element.

93 mapping inout uml : : Act iv ityEdge : : s e tSource ()
94 when { umlEdgesToTransform−>inc l ud e s (s e l f) }
95 {
96 s e l f . source := newUmlNode ;
97 }

Listing 5.19: The setSource() mapping in DivideActions.qvto

The mapping in Listing 5.19 starts with a guard in line 94 that checks if the element
to be mapped is contained in the umlEdgesToTransform set. In line 96 the source
property is set to the divided node, newUmlNode, which concludes the transforma-
tion.

54

6. Evaluation

In this chapter the refactorings implemented in the plugin described in chapter 5 are
evaluated. An activity diagram will be created with Papyrus in section 6.1 and used
as an example to show that the refactorings work in sections 6.2 and 6.3. Finishing
touches are added to the example in section 6.4 and the chapter is concluded with
a discussion in section 6.5.

6.1. The example activity diagram

The activity diagram used as an example to show the refactorings is based on the
activity diagram from Fowler shown in section 2.2.2 [19]. A papyrus project called
RefactoringExample is created in Eclipse with the project creation wizard along
with the example activity diagram contained in the project, with the steps shown
in �gures 6.1 to 6.6.

Creating the diagram only requires a few steps. A new Papyrus project is created
by selecting the New menu entry in the �le menu as demonstrated in Figure 6.1. A
Papyrus project is selected in Figure 6.2 and given a name in Figure 6.3. The UML
language is selected for the project in Figure 6.4 and the last step involves creating
an activity diagram inside the project and naming it RefactoringExample as shown
in Figure 6.5. Three �les will be created inside the project; model.di, model.notation
and model.uml. Note that the highlighted Link with editor button in Figure 6.6 has
to be disabled before trying the refactorings because a bug in Papyrus will make
the selection of more than one object impossible with the Link with editor option
selected.

Finally the diagram is created by adding the relevant actions and control �ows which
will generate the diagram shown in Figure 6.7.

55

6. Evaluation

Figure 6.1: Creating a new project in Eclipse

Figure 6.2: Creating a new Papyrus project in Eclipse

56

6.1. The example activity diagram

Figure 6.3: Naming the Papyrus project

Figure 6.4: Selecting the diagram type

57

6. Evaluation

Figure 6.5: Adding an activity diagram to the project.

58

6.1. The example activity diagram

Figure 6.6: The Papyrus workbench

59

6. Evaluation

Figure 6.7: The example activity diagram

6.2. The Merge actions refactoring

In this section theMerge actions refactoring implementation will be executed on the
example diagram created in section 6.1 and the results analyzed. When the diagram

60

6.2. The Merge actions refactoring

in Figure 6.7 is examined, it can be seen that two actions seem to be doing more
or less the same thing; the Prepare order action and the Fill order action, so they
should be merged into one action.

The two actions are selected and the context menu is opened as shown in Figure
6.8. Only the Merge actions refactoring will be available because two objects have
been selected, as described in section 5.7.2.

Figure 6.8: The Merge actions refactoring selected

When the refactoring has been selected and executed a dialog pops up telling the
user that the underlying model has been changed due to the applied transformations

61

6. Evaluation

as shown in Figure 6.9, and asks the user if the diagram should be updated.

Figure 6.9: A dialog telling the user that the model resource has changed.

When the diagram has been updated based on the refactored models, the actions
have been merged as can be seen in Figure 6.10. The the Merge actions transfor-
mation has merged the two selected actions into one action. The merged actions
holds the name of the selected actions, Prepare order - Fill order and has the same
coordinates as the Fill order action had originally. It can also be seen that the
control �ow edge between the original actions has been removed and the incoming
control �ow to the Prepare order action now points to the merged action.

62

6.2. The Merge actions refactoring

Figure 6.10: The diagram after the merge actions refactoring.

63

6. Evaluation

6.2.1. The UML model comparison

The underlying models should also be analyzed. The resulting UMLmodel compared
to the original in section 6.2.1 and the Notation model is compared to the original
in section 6.2.2. As the models are quite large and contain many lines that do not
change after the refactoring, only the relevant parts of each model will be shown in
the comparison, with changes highlighted.

As seen when the models are compared, the changes are highlighted. Lines 16 and
30 in the original model have been deleted in the resulting model and lines 9 and 20
have changed according to the changes in the diagram. The node in line 9 has a new
name, Prepare order - Fill order and a di�erent incoming edge. The edge in line 20
in the original model has a new target in the resulting model, which means that the
outgoing edge from the removed action is now connected to the merged action.

64

6.2. The Merge actions refactoring

1 <?xml version=" 1 .0 " encoding="UTF−8"?>

9 <node xmi:type="uml:OpaqueAction" xmi:id="__kM_wHPlEeCn-pOPqs82NA"

name="Fill order" outgoing="_mdeWcHPmEeCn-pOPqs82NA"

incoming="_dzDnMHPqEeCn-pOPqs82NA"/>

15 <node xmi:type="uml:OpaqueAction" xmi : id="_R5yP8HPmEeCn−pOPqs82NA"
name="Close order " outgoing="_ytcTQHPmEeCn−pOPqs82NA" incoming=
"_yTxPAHPmEeCn−pOPqs82NA"/>

16 <node xmi:type="uml:OpaqueAction" xmi:id="_RnfCMHPqEeCn-pOPqs82NA"

name="Prepare order" outgoing="_dzDnMHPqEeCn-pOPqs82NA"

incoming="_iNERMHPmEeCn-pOPqs82NA"/>

17 <edge xmi:type="uml:ControlFlow" xmi : id="_giGkMHPmEeCn−pOPqs82NA"
name="ControlFlow1" source="_0MLXkHPlEeCn−pOPqs82NA" ta rg e t="
_6ryfUHPlEeCn−pOPqs82NA"/>

18 <edge xmi:type="uml:ControlFlow" xmi : id="_hDR−oHPmEeCn−pOPqs82NA"
name="ControlFlow2" source="_6ryfUHPlEeCn−pOPqs82NA" ta rg e t="
_8tPZsHPlEeCn−pOPqs82NA"/>

19 <edge xmi:type="uml:ControlFlow" xmi : id="_hpY8YHPmEeCn−pOPqs82NA"
name="ControlFlow3" source="_8tPZsHPlEeCn−pOPqs82NA" ta rg e t="
_7qgxYHPlEeCn−pOPqs82NA"/>

20 <edge xmi:type="uml:ControlFlow" xmi:id="_iNERMHPmEeCn-pOPqs82NA"

name="ControlFlow4" source="_8tPZsHPlEeCn-pOPqs82NA"

target="_RnfCMHPqEeCn-pOPqs82NA"/>

29 <edge xmi:type="uml:ControlFlow" xmi : id="_ytcTQHPmEeCn−pOPqs82NA"
name="ControlFlow14" source="_R5yP8HPmEeCn−pOPqs82NA" ta rg e t="
_2KllAHPlEeCn−pOPqs82NA"/>

30 <edge xmi:type="uml:ControlFlow" xmi:id="_dzDnMHPqEeCn-pOPqs82NA"

name="ControlFlow15" source="_RnfCMHPqEeCn-pOPqs82NA"

target="__kM_wHPlEeCn-pOPqs82NA"/>

31 </packagedElement>
32 </uml:Model>

Listing 6.1: The UML model before refactoring

65

6. Evaluation

1 <?xml version=" 1 .0 " encoding="UTF−8"?>

9 <node xmi:type="uml:OpaqueAction" xmi:id="__kM_wHPlEeCn-pOPqs82NA"

name="Prepare order - Fill order" outgoing="_mdeWcHPmEeCn-pOPqs82NA"

incoming="_iNERMHPmEeCn-pOPqs82NA"/>

15 <node xmi:type="uml:OpaqueAction" xmi : id="_R5yP8HPmEeCn−pOPqs82NA"
name="Close order " outgoing="_ytcTQHPmEeCn−pOPqs82NA" incoming=
"_yTxPAHPmEeCn−pOPqs82NA"/>

16 <edge xmi:type="uml:ControlFlow" xmi : id="_giGkMHPmEeCn−pOPqs82NA"
name="ControlFlow1" source="_0MLXkHPlEeCn−pOPqs82NA" ta rg e t="
_6ryfUHPlEeCn−pOPqs82NA"/>

17 <edge xmi:type="uml:ControlFlow" xmi : id="_hDR−oHPmEeCn−pOPqs82NA"
name="ControlFlow2" source="_6ryfUHPlEeCn−pOPqs82NA" ta rg e t="
_8tPZsHPlEeCn−pOPqs82NA"/>

18 <edge xmi:type="uml:ControlFlow" xmi : id="_hpY8YHPmEeCn−pOPqs82NA"
name="ControlFlow3" source="_8tPZsHPlEeCn−pOPqs82NA" ta rg e t="
_7qgxYHPlEeCn−pOPqs82NA"/>

19 <edge xmi:type="uml:ControlFlow" xmi:id="_iNERMHPmEeCn-pOPqs82NA"

name="ControlFlow4" source="_8tPZsHPlEeCn-pOPqs82NA"

target="__kM_wHPlEeCn-pOPqs82NA"/>

28 <edge xmi:type="uml:ControlFlow" xmi : id="_ytcTQHPmEeCn−pOPqs82NA"
name="ControlFlow14" source="_R5yP8HPmEeCn−pOPqs82NA" ta rg e t="
_2KllAHPlEeCn−pOPqs82NA"/>

29 </packagedElement>
30 </uml:Model>

Listing 6.2: The resulting UML model after the Merge actions refactoring

6.2.2. The Notation model comparison

When the Notation models are compared, a few highlighted changes can be seen.
The shape element in lines 223-237 has been removed in the resulting model along
with the edge in lines 472-488. The edge in line 297 has changed so the target points
the action which the removed shape was originally connected to.

66

6.2. The Merge actions refactoring

1 <?xml version=" 1 .0 " encoding="UTF−8"?>

221 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="
_R5zeEnPmEeCn−pOPqs82NA" x="321" y="737"/>

222 </ ch i l d r en>

223 <children xmi:type="notation:Shape" xmi:id="_RnhecHPqEeCn-pOPqs82NA"

type="3007" fontName="Ubuntu" fontHeight="11" lineColor="0">

235 <element xmi:type="uml:OpaqueAction"

href="model.uml#_RnfCMHPqEeCn-pOPqs82NA"/>

236 <layoutConstraint xmi:type="notation:Bounds"

xmi:id="_RniFgXPqEeCn-pOPqs82NA" x="160" y="257"/>

237 </children>

238 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="
_kN_cnXPlEeCn−pOPqs82NA"/>

239 </ ch i l d r en>

297 <edges xmi:type="notation:Connector" xmi:id="_iNGtcHPmEeCn-pOPqs82NA"

type="4004" source="_8tRO4HPlEeCn-pOPqs82NA"

target="_RnhecHPqEeCn-pOPqs82NA" lineColor="0">

469 <element xmi:type="uml:ControlFlow" hr e f="model . uml#_ytcTQHPmEeCn−
pOPqs82NA"/>

470 <bendpoints xmi:type=" nota t i on :Re la t i v eBendpo in t s " xmi : id="
_ytfWknPmEeCn−pOPqs82NA" po in t s=" [4 , 20 , −11, −48]$[5 , 68 , −10,
0] "/>

471 </ edges>

472 <edges xmi:type="notation:Connector" xmi:id="_dzJt0HPqEeCn-pOPqs82NA"

type="4004" source="_RnhecHPqEeCn-pOPqs82NA"

target="__kON4HPlEeCn-pOPqs82NA" lineColor="0">

486 <element xmi:type="uml:ControlFlow"

href="model.uml#_dzDnMHPqEeCn-pOPqs82NA"/>

487 <bendpoints xmi:type="notation:RelativeBendpoints"

xmi:id="_dzKU4HPqEeCn-pOPqs82NA"

points="[22, 20, -54, -70]$[108, 84, 32, -6]"/>

488 </edges>

489 </notat ion:Diagram>

Listing 6.3: The Notation model before the refactoring

67

6. Evaluation

1 <?xml version=" 1 .0 " encoding="UTF−8"?>

221 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="
_R5zeEnPmEeCn−pOPqs82NA" x="321" y="737"/>

222 </ ch i l d r en>
223 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="

_kN_cnXPlEeCn−pOPqs82NA"/>
224 </ ch i l d r en>
225 <element xmi:type=" uml :Act iv i ty " h r e f="model . uml#_kHP7YHPlEeCn−

pOPqs82NA"/>
226 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="_kN_cnnPlEeCn−

pOPqs82NA" y="15"/>
227 </ ch i l d r en>

282 <edges xmi:type="notation:Connector" xmi:id="_iNGtcHPmEeCn-pOPqs82NA"

type="4004" source="_8tRO4HPlEeCn-pOPqs82NA"

target="__kON4HPlEeCn-pOPqs82NA" lineColor="0">

454 <element xmi:type="uml:ControlFlow" hr e f="model . uml#_ytcTQHPmEeCn−
pOPqs82NA"/>

455 <bendpoints xmi:type=" nota t i on :Re la t i v eBendpo in t s " xmi : id="
_ytfWknPmEeCn−pOPqs82NA" po in t s=" [4 , 20 , −11, −48]$[5 , 68 , −10,
0] "/>

456 </ edges>
457 </notat ion:Diagram>

Listing 6.4: The resulting Notation model after the Merge actions refactoring

6.3. The Divide actions refactoring

In this section the Divide actions refactoring implementation will be executed on
the example diagram which has already been refactored once in section 6.2 and the
results analyzed. When the diagram in Figure 6.10 is examined, it can be seen that
the Send invoice and receive payment action is doing too much to be just one action,
so it should be refactored by dividing it into two actions.

The action to be divided is selected and the context menu is opened as shown in
Figure 6.11. Only the Divide action refactoring will be available because one object
has been selected, as described in section 5.7.2.

68

6.3. The Divide actions refactoring

Figure 6.11: The Divide actions refactoring selected

When the refactoring has been selected and executed, the dialog telling the user
that the underlying model has been changed, pops up and asks the user if the model
should be updated, as in section 6.2.

When the diagram has been updated based on the refactored models, the action has
been divided as can be seen in Figure 6.12.

69

6. Evaluation

Figure 6.12: The diagram after the divide actions refactoring.

As Figure 6.12 demonstrates, the Divide action transformation has divided the se-
lected action into two actions. The new action holds the name of the selected action
with the "New" word prepended, New Send invoice and receive payment. It can
also be seen that a control �ow edge between the actions has been added and the

70

6.3. The Divide actions refactoring

outgoing control �ow from the Send invoice and receive payment action now starts
at the new action. It should also be noted that the name of the new action is not
very descriptive so the user might want to rename the action along with �xing the
outgoing edge which crosses through the join node. This cleanup process will be
described in section 6.4.

6.3.1. The UML model comparison

The underlying models should also be analyzed. The resulting UMLmodel compared
to the original in section 6.3.1 and the Notation model is compared to the original
in section 6.3.2. As the models are quite large and contain many lines that do not
change after the refactoring, only the relevant parts of each model will be shown in
the comparison, with changes highlighted.

As seen when the UML models are compared, there are a few highlighted changes.
The node element in line 7 has another outgoing edge in the resulting model, the
one which has been added in line 30 in the resulting model. A new action, New Send
invoice and receive payment, has also been added in line 16 in the resulting model
and the edge in line 26 in the original model has had its source changed to the new
action.

71

6. Evaluation

1 <?xml version=" 1 .0 " encoding="UTF−8"?>

7 <node xmi:type="uml:OpaqueAction" xmi:id="_7qgxYHPlEeCn-pOPqs82NA"

name="Send invoice and receive payment"

outgoing="_x3kbMHPmEeCn-pOPqs82NA"

incoming="_hpY8YHPmEeCn-pOPqs82NA"/>

15 <node xmi:type="uml:OpaqueAction" xmi : id="_R5yP8HPmEeCn−pOPqs82NA"
name="Close order " outgoing="_ytcTQHPmEeCn−pOPqs82NA" incoming=
"_yTxPAHPmEeCn−pOPqs82NA"/>

16 <edge xmi:type="uml:ControlFlow" xmi : id="_giGkMHPmEeCn−pOPqs82NA"
name="ControlFlow1" source="_0MLXkHPlEeCn−pOPqs82NA" ta rg e t="
_6ryfUHPlEeCn−pOPqs82NA"/>

26 <edge xmi:type="uml:ControlFlow" xmi:id="_x3kbMHPmEeCn-pOPqs82NA"

name="ControlFlow12" source="_7qgxYHPlEeCn-pOPqs82NA"

target="_RSto4HPmEeCn-pOPqs82NA"/>

27 <edge xmi:type="uml:ControlFlow" xmi : id="_yTxPAHPmEeCn−pOPqs82NA"
name="ControlFlow13" source="_RSto4HPmEeCn−pOPqs82NA" ta rg e t="
_R5yP8HPmEeCn−pOPqs82NA"/>

28 <edge xmi:type="uml:ControlFlow" xmi : id="_ytcTQHPmEeCn−pOPqs82NA"
name="ControlFlow14" source="_R5yP8HPmEeCn−pOPqs82NA" ta rg e t="
_2KllAHPlEeCn−pOPqs82NA"/>

29 </packagedElement>
30 </uml:Model>

Listing 6.5: The UML model before refactoring

72

6.3. The Divide actions refactoring

1 <?xml version=" 1 .0 " encoding="UTF−8"?>

7 <node xmi:type="uml:OpaqueAction" xmi:id="_7qgxYHPlEeCn-pOPqs82NA"

name="Send invoice and receive payment"

outgoing="_BHCK0XPuEeCn-pOPqs82NA"

incoming="_hpY8YHPmEeCn-pOPqs82NA"/>

15 <node xmi:type="uml:OpaqueAction" xmi : id="_R5yP8HPmEeCn−pOPqs82NA"
name="Close order " outgoing="_ytcTQHPmEeCn−pOPqs82NA" incoming=
"_yTxPAHPmEeCn−pOPqs82NA"/>

16 <node xmi:type="uml:OpaqueAction" xmi:id="_BHCK0HPuEeCn-pOPqs82NA"

name="New Send invoice and receive payment"

outgoing="_x3kbMHPmEeCn-pOPqs82NA"

incoming="_BHCK0XPuEeCn-pOPqs82NA"/>

17 <edge xmi:type="uml:ControlFlow" xmi : id="_giGkMHPmEeCn−pOPqs82NA"
name="ControlFlow1" source="_0MLXkHPlEeCn−pOPqs82NA" ta rg e t="
_6ryfUHPlEeCn−pOPqs82NA"/>

27 <edge xmi:type="uml:ControlFlow" xmi:id="_x3kbMHPmEeCn-pOPqs82NA"

name="ControlFlow12" source="_BHCK0HPuEeCn-pOPqs82NA"

target="_RSto4HPmEeCn-pOPqs82NA"/>

28 <edge xmi:type="uml:ControlFlow" xmi : id="_yTxPAHPmEeCn−pOPqs82NA"
name="ControlFlow13" source="_RSto4HPmEeCn−pOPqs82NA" ta rg e t="
_R5yP8HPmEeCn−pOPqs82NA"/>

29 <edge xmi:type="uml:ControlFlow" xmi : id="_ytcTQHPmEeCn−pOPqs82NA"
name="ControlFlow14" source="_R5yP8HPmEeCn−pOPqs82NA" ta rg e t="
_2KllAHPlEeCn−pOPqs82NA"/>

30 <edge xmi:type="uml:ControlFlow" xmi:id="_BHCK0XPuEeCn-pOPqs82NA"

name="New Edge" source="_7qgxYHPlEeCn-pOPqs82NA"

target="_BHCK0HPuEeCn-pOPqs82NA"/>

31 </packagedElement>
32 </uml:Model>

Listing 6.6: The resulting UML model from the Divide actions refactoring

73

6. Evaluation

6.3.2. The Notation model comparison

As seen when the Notation models are compared, there are a few highlighted changes.
The edge in line 406 in the original model has a new source which is the new shape
element added in lines 223-237 in the resulting model. An edge has also been added
in lines 472-489 in the resulting model which goes from the original action and to
the newly added action.

1 <?xml version=" 1 .0 " encoding="UTF−8"?>

220 <element xmi:type="uml:OpaqueAction" h r e f="model . uml#
_R5yP8HPmEeCn−pOPqs82NA"/>

221 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="
_R5zeEnPmEeCn−pOPqs82NA" x="321" y="737"/>

222 </ ch i l d r en>
223 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="

_kN_cnXPlEeCn−pOPqs82NA"/>
224 </ ch i l d r en>

406 <edges xmi:type="notation:Connector" xmi:id="_x3mQYHPmEeCn-pOPqs82NA"

type="4004" source="_7qh_gHPlEeCn-pOPqs82NA"

target="_RSzIcHPmEeCn-pOPqs82NA" lineColor="0">

454 <element xmi:type="uml:ControlFlow" hr e f="model . uml#_ytcTQHPmEeCn−
pOPqs82NA"/>

455 <bendpoints xmi:type=" nota t i on :Re la t i v eBendpo in t s " xmi : id="
_ytfWknPmEeCn−pOPqs82NA" po in t s=" [4 , 20 , −11, −48]$[5 , 68 , −10,
0] "/>

456 </ edges>
457 </notat ion:Diagram>

Listing 6.7: The Notation model before refactoring

74

6.3. The Divide actions refactoring

1 <?xml version=" 1 .0 " encoding="UTF−8"?>

220 <element xmi:type="uml:OpaqueAction" h r e f="model . uml#
_R5yP8HPmEeCn−pOPqs82NA"/>

221 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="
_R5zeEnPmEeCn−pOPqs82NA" x="321" y="737"/>

222 </ ch i l d r en>

223 <children xmi:type="notation:Shape" xmi:id="_SpltElmLki9rsGaovxt803"

type="3007" fontName="Ubuntu" fontHeight="11" lineColor="0">

235 <element xmi:type="uml:OpaqueAction"

href="model.uml#_BHCK0HPuEeCn-pOPqs82NA"/>

236 <layoutConstraint xmi:type="notation:Bounds"

xmi:id="_4JlcyHPvEeCn-pOPqs82NA" "x="381" y="377"/>

237 </children>

238 <layoutConst ra in t xmi:type="notat ion:Bounds " xmi : id="
_kN_cnXPlEeCn−pOPqs82NA"/>

239 </ ch i l d r en>

421 <edges xmi:type="notation:Connector" xmi:id="_x3mQYHPmEeCn-pOPqs82NA"

type="4004" source="_SpltElmLki9rsGaovxt803"

target="_RSzIcHPmEeCn-pOPqs82NA" lineColor="0">

469 <element xmi:type="uml:ControlFlow" hr e f="model . uml#_ytcTQHPmEeCn−
pOPqs82NA"/>

470 <bendpoints xmi:type=" nota t i on :Re la t i v eBendpo in t s " xmi : id="
_ytfWknPmEeCn−pOPqs82NA" po in t s=" [4 , 20 , −11, −48]$[5 , 68 , −10,
0] "/>

471 </ edges>

472 <edges xmi:type="notation:Connector" xmi:id="_4JpHIHPvEeCn-pOPqs82NA"

type="4004" source="_7qh_gHPlEeCn-pOPqs82NA"

target="_SpltElmLki9rsGaovxt803" lineColor="0">

486 <element xmi:type="uml:ControlFlow"

href="model.uml#_BHCK0XPuEeCn-pOPqs82NA"/>

487 <bendpoints xmi:type="notation:RelativeBendpoints"

xmi:id="_4JpuNXPvEeCn-pOPqs82NA"

points="[3, 20, -12, -70]$[11, 70, -4, -20]"/>

488 <targetAnchor xmi:type="notation:IdentityAnchor"

xmi:id="_-xI_kHPvEeCn-pOPqs82NA" id="(0.4601449275362319,0.025)"/>

489 </edges>

490 </notat ion:Diagram>

Listing 6.8: The resulting Notation model from the Divide action refactoring

75

6. Evaluation

6.4. The �nishing touches

After the two refactorings have been executed on the model the user might want
to change a few things. The name of the element which was merged in section 6.2
is a bit too descriptive so it should be renamed from Prepare order - �ll order to
Fill order. However, the actions divided in section 6.3 do not have very descriptive
names. The Send invoice and receive payment action should be renamed to Send
invoice and the New Send invoice and receive payment action should be renamed
to Receive payment. For aesthetic purposes, the control �ow edges should also be
moved so they don't cross over any nodes and made straight. The resulting diagram
is shown in Figure 6.13.

76

6.4. The �nishing touches

Figure 6.13: The �nal model

77

6. Evaluation

6.5. Discussion

As this chapter demonstrates, a UML model and its diagrammatic representation
can be automatically refactored with high-level model-to-model transformations. In
section 5.1 the di�erence between refactoring with model-to-model transformations
and using a low-level solution is discussed.

It can be argued that using model-to-model transformations is a good choice because
the transformations shown in this thesis are only approximately 100 lines of quite
simple code, but would probably be quite more complex in a regular programming
language where the XMI �les or a similar internal data structure would be directly
manipulated. The QVTO transformations are also not tool speci�c as opposed
to a low-level solution which would need more adjustments when the metamodel
changes. As a result, the QVTO transformation can be reused between di�erent
tools, excluding the blackboxing library which is speci�c to Eclipse. This also means
that a QVTO transformation could be more easily adapted to another metamodel
than a lower level solution. The diagrammatic representation is however proprietary
to Papyrus, so the diagram transformations are not currently reusable in other UML
editors without adjustment. If more UML editors would adopt the UMLDI as a
standard format for storing UML models, refactorings would become more easily
reused between editors.

There are some limitations to the research in this thesis, e.g. using QVTO will
probably be slower than a low-level solution, especially on large models. However,
this was not researched in the thesis. Another limitation might be concerning the
expressiveness of QVTO, but as has been shown, when such problems arise they can
be solved by calling Java code from QVTO using a blackboxing library.

When compared to earlier work in the �eld of refactoring UML models, the approach
outlined in this thesis brings some new developments, especially refactoring on both
the model level and the diagram level at the same time. The solutions to the
problems listed in section 5.3 also provide a basis on which more refactorings can
be developed for activity diagrams and other diagrams in the UML.

78

7. Conclusion

This chapter concludes the thesis with a summary in section 7.1 and an outlook in
section 7.2.

7.1. Summary

Software refactoring is a powerful tool in the software developer's toolbox when
battling software aging. As a part of model-driven development, it can also be
a precious tool when developing software models. However, refactoring models is
still mostly an academic subject and more work needs to be done before it will be
used in the real world. As detailed in this thesis some work has already been done
on refactoring UML models, however without refactoring on the diagram as well.
Refactoring the diagrammatic representation of a model creates new problems which
do not exist for refactoring code, like the positioning of objects which does not a�ect
the meaning of the diagram but will a�ect the readability.

In this thesis, two refactorings for activity diagrams,Merge actions andDivide action
have been developed and implemented in QVTO for the Papyrus UML editor in the
Eclipse IDE. The refactorings change the structure of both the underlying UML
model and the diagram model, where elements are added to the diagram, removed
from it or just changed in place. This thesis is the �rst known work where this is
described.

7.2. Outlook

Even though this thesis adds to the understanding and implementation of refactoring
models and diagrams, there are a few things that still need work. A very interest-
ing subject is researching how to make the automatic placement of elements more
precise. An algorithm might be developed to decide the placement of new objects
in the diagram. Another important task is to create a catalog of the refactorings

79

7. Conclusion

developed in this thesis and in other related work in one place and implement them
based the method proposed in this thesis. As the study of related work reveals,
there exist no refactorings for UML sequence diagrams, even though it is quite well
known and used by professionals.

Some support mechanisms could also be added to the implemented refactoring tool:
the ability to undo and redo transformations, and giving the user the possibility
of reviewing the refactoring results before executing it. For other refactorings than
those proposed in this thesis, there is also the possibility that an object in one
diagram might be referenced in another, so the refactoring might look for references
in other diagrams and re�ect the changes there.

Refactorings are often used to combat code smells, which are symptoms in a pro-
gram which indicate problems. If smells are de�ned for UML models, an automatic
UML refactoring tool might suggest refactorings based on a smell. Based on that,
de�ning UML smells and developing refactorings to �x the underlying problem is
an interesting research subject.

The UML Diagram Interchange (UMLDI) is a well de�ned standard for exchanging
information about UML models and their diagrammatic representation but not very
widely used in practice. Despite that, it might be an interesting project to develop
UML refactorings for the UMLDI using model-to-model transformations, just like
it has been done for the proprietary Papyrus diagram model. If more UML editors
adopt UMLDI, this would enable exchanging the QVTO diagram transformations
between editors.

One other interesting possibility is refactoring the metalanguages themselves like
QVT. As QVT is a programming language with a syntax which resembles many pop-
ular languages, QVT transformations themselves could be refactored in the same way
as these languages, but the corresponding refactorings and tool support is needed.

80

Acronyms

AGG Attributed Graph Grammar System

API Application Programming Interface

ATL ATL Transformation Language

CMOF Complete Meta-Object Facility

EMF Eclipse Model Framework

EMOF Essential Meta-Object Facility

GEF Eclipse Graphical Editing Framework

GMP Eclipse Graphical Modeling Project

IDE Integrated Development Environment

MDT Eclipse Model Development Tools

MOF Meta-Object Facility

OCL Object Constraint Language

OMG Object Management Group

QVT Query/View/Transformation

QVTO Query/View/Transformation Operational

UML Uni�ed Modeling Language

UMLDI UML Diagram Interchange

URI Uniform Resource Identi�er

Acronyms

URL Uniform Resource Locator

XMI XML Metadata Interchange

XML Extensible Markup Language

82

Bibliography

[1] Dave Astels. Refactoring with UML. In 3rd International Conference on Ex-
treme Programming and Flexible Processes in Software Engineering (XP2002),
pages 67�70, 2002.

[2] Thomas Baar and Slavi²a Markovi¢. A graphical approach to prove the se-
mantic preservation of UML/OCL refactoring rules. In Proceedings of the 6th
international Andrei Ershov memorial conference on Perspectives of systems
informatics, PSI'06, pages 70�83, Berlin, Heidelberg, 2007. Springer-Verlag.

[3] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Precise semantics
of EMF model transformations by graph transformation. In Proceedings of
the 11th international conference on Model Driven Engineering Languages and
Systems, MoDELS '08, pages 53�67, Berlin, Heidelberg, 2008. Springer-Verlag.

[4] Marko Boger, Thorsten Sturm, and Per Fragemann. Refactoring browser for
UML. In Revised Papers from the International Conference NetObjectDays on
Objects, Components, Architectures, Services, and Applications for a Networked
World, NODe '02, pages 366�377, London, UK, UK, 2003. Springer-Verlag.

[5] Dobrza«ski and Ludwik Ku¹niarz. Practical refactoring of executable UML
models. Nordic J. of Computing, 12:343�360, August 2005.

[6] Alessandro Folli and Tom Mens. Refactoring of UML models using AGG.
ECEASST, pages �1�1, 2007.

[7] The Eclipse foundation. The Eclipse EMF website. http://www.eclipse.org/
modeling/emf/, May 2011.

[8] The Eclipse foundation. The Eclipse GEF website. http://www.eclipse.org/
gef/, May 2011.

[9] The Eclipse foundation. The Eclipse GMF website. http://www.eclipse.

org/modeling/gmp/, May 2011.

[10] The Eclipse foundation. The Eclipse help website. http://help.eclipse.org/
help33/index.jsp?topic=/org.eclipse.gmf.doc/prog-guide/runtime/

Developer%20Guide%20to%20Diagram%20Runtime.html, May 2011.

83

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gmf.doc/prog-guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gmf.doc/prog-guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gmf.doc/prog-guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.html

BIBLIOGRAPHY

[11] The Eclipse foundation. The Eclipse M2M website. http://www.eclipse.

org/m2m/, May 2011.

[12] The Eclipse foundation. The Eclipse model development tools website. http:
//www.eclipse.org/modeling/mdt/?project=uml2, May 2011.

[13] The Eclipse foundation. The Eclipse model development tools website. http:
//www.eclipse.org/modeling/mdt/?project=uml2tools, May 2011.

[14] The Eclipse foundation. The Eclipse Papyrus website. http://www.eclipse.
org/modeling/mdt/papyrus/, May 2011.

[15] The Eclipse foundation. The Eclipse QVT wiki. http://wiki.eclipse.org/
QVTOML/Examples/InvokeInJava, May 2011.

[16] The Eclipse foundation. The Eclipse Subversive website. http://www.eclipse.
org/subversive/, May 2011.

[17] The Eclipse foundation. The Eclipse website. http://www.eclipse.org/org/,
May 2011.

[18] Martin Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[19] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language (3rd Edition). Addison-Wesley Professional, 3 edition, September
2003.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: abstraction and reuse of object-oriented design, pages 701�717. Springer-
Verlag New York, Inc., New York, NY, USA, 2002.

[21] Gentleware. The Gentleware website. http://www.gentleware.com/

new-poseidon-for-uml-8-0.html, May 2011.

[22] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards
automating source-consistent uml refactorings. In In Proceedings of the 6th
International Conference on UML - The Uni�ed Modeling Language, pages
144�158. Springer, 2003.

[23] Reiko Heckel. Graph transformation in a nutshell. In Electr. Notes Theor.
Comput. Sci, pages 187�198. Elsevier, 2006.

[24] IBM. The IBM Rational Rhapsody website. www.ibm.com/software/

awdtools/rhapsody/, May 2011.

[25] MagicDraw. The MagicDraw website. http://www.magicdraw.com/, May
2011.

84

http://www.eclipse.org/m2m/
http://www.eclipse.org/m2m/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/mdt/papyrus/
http://wiki.eclipse.org/QVTOML/Examples/InvokeInJava
http://wiki.eclipse.org/QVTOML/Examples/InvokeInJava
http://www.eclipse.org/subversive/
http://www.eclipse.org/subversive/
http://www.eclipse.org/org/
http://www.gentleware.com/new-poseidon-for-uml-8-0.html
http://www.gentleware.com/new-poseidon-for-uml-8-0.html
www.ibm.com/software/awdtools/rhapsody/
www.ibm.com/software/awdtools/rhapsody/
http://www.magicdraw.com/

BIBLIOGRAPHY

[26] Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation Speci�cation Version 1.0. http://www.omg.org/
spec/QVT/1.0/PDF/, April 2008.

[27] Object Management Group (OMG). Object Constraint Language (OCL). Tech-
nical report, Object Management Group (OMG), 2010.

[28] Object Management Group (OMG). XML Metadata Interchange (XMI) Spec-
i�cation. Technical report, Object Management Group (OMG), 2002.

[29] Object Management Group (OMG). UML 2.0 Superstructure Speci�cation.
Technical report, Object Management Group (OMG), August 2005.

[30] Object Management Group (OMG). Meta Object Facility (MOF) Core Speci-
�cation Version 2.0, 2006.

[31] Object Management Group (OMG). UML 2.0 Diagram Interchange Speci�-
cation. Technical Report pct/03-09-01, Object Management Group (OMG),
2006.

[32] Object Management Group (OMG). OMG Uni�ed Modeling Language (OMG
UML), Infrastructure, V2.4. Technical report, Object Management Group
(OMG), 2010.

[33] Object Management Group (OMG). The OMG website. http://www.omg.

org/marketing/about-omg.htm, May 2011.

[34] William F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, Uni-
versity of Illinois, Champaign, IL, USA, 1992. UMI Order No. GAX93-05645.

[35] David Lorge Parnas. Software aging. In Proceedings of the 16th international
conference on Software engineering, ICSE '94, pages 279�287, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

[36] Ivan Porres, Turku Centre, and Computer Science. Model refactorings as rule-
based update transformations. In In Proceedings of UML 2003 Conference,
Springer-Verlag LNCS 2863, pages 159�174. Springer, 2003.

[37] Björn Regnell. Requirements Engineering with Use Cases - a Basis for Software
Development. PhD thesis, Lund University, 1999.

[38] James M. Bieman Robert B. France. Multi-view software evolution: A UML-
based framework for evolving object-oriented software. In Proceedings of the
IEEE International Conference on Software Maintenance (ICSM'01), ICSM
'01, pages 386�, Washington, DC, USA, 2001. IEEE Computer Society.

85

http://www.omg.org/spec/QVT/1.0/PDF/
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.omg.org/marketing/about-omg.htm
http://www.omg.org/marketing/about-omg.htm

BIBLIOGRAPHY

[39] Kexing Rui and Greg Butler. Refactoring use case models: the metamodel. In
Proceedings of the 26th Australasian computer science conference - Volume 16,
ACSC '03, pages 301�308, Darlinghurst, Australia, Australia, 2003. Australian
Computer Society, Inc.

[40] Philipp Seuring. Design and implementation of a UML model refactoring tool.
Master's thesis, Hasso-Plattner-Institute for Software Systems Engineering at
the University of Potsdam, 2005.

[41] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework (2nd Edition). Addison-Wesley Professional, 2
edition, January 2008.

[42] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refac-
toring uml models. In Proceedings of the 4th International Conference on The
Uni�ed Modeling Language, Modeling Languages, Concepts, and Tools, pages
134�148, London, UK, UK, 2001. Springer-Verlag.

[43] Tigris. The Subclipse website. http://subclipse.tigris.org/, May 2011.

[44] TOPCASED. The TOPCASED website. http://topcased.org/, May 2011.

86

http://subclipse.tigris.org/
http://topcased.org/

A. The UML refactoring plugin

In this appendix the implemented UML refactoring plugin for Papyrus is outlined
in terms of its dependencies, where the code is obtainable and how it is installed.
Section A.1 outlines the dependencies of the plugin and how they can be installed
and section A.2 demonstrates how the code can be obtained through a version control
repository. In section A.3 the installation of the plugin is demonstrated and section
A.4 then concludes the chapter with a summary of how the code can be examined
at runtime with a debugger.

A.1. Dependencies

The UML refactoring plugin depends on version 3.6 of the Eclipse IDE along with
a few extra plugins. The whole ecosystem needed is comprised of these parts:

• Eclipse IDE 3.6 (Helios)

• Java 1.6

• Eclipse Modeling Framework 2.6.1

• UML2 3.1.2

• Operational QVT for Eclipse 3.0.1

• Papyrus UML 0.7.0

When the Eclipse IDE 3.6 has been installed, the simplest way of installing the rest
of the needed plugins is by installing the Eclipse Modeling Discovery UI through
the Install new software option in Eclipse as shown in Figure A.1, along with the
UML2 extender SDK.

87

A. The UML refactoring plugin

Figure A.1: Installing the Eclipse Modeling Discovery UI

When the Eclipse Modeling Discovery UI and the UML2 extender SDK have been
installed, the rest of the modeling software can be installed with the Install Modeling
Components option shown in Figure A.2.

88

A.1. Dependencies

Figure A.2: Selecting the model installation UI

In the Eclipse Modeling Discovery UI both the QVTO and Papyrus UML plugins
can be selected and installed in one go, as shown in Figure A.3.

89

A. The UML refactoring plugin

Figure A.3: Installing QVTO and Papyrus UML

A.2. Obtaining the code from an SVN repository

The code behind the plugin is kept in a public SVN repository at the URL http:

//svn2.xp-dev.com/svn/UMLrfp/, so anyone can obtain the it without logging in.
A few SVN plugins exist for Eclipse, e.g. Subversive [16] and Subclipse [43], which
can be used to import the code into Eclipse. In this demonstration the Subversive
SVN plugin is used.

90

http://svn2.xp-dev.com/svn/UMLrfp/
http://svn2.xp-dev.com/svn/UMLrfp/

A.2. Obtaining the code from an SVN repository

To obtain the code, a wizard for creating a new SVN project is started in Eclipse.
The SVN repository URL is input in the URL �eld as shown in Figure A.4, and
proceeded to the next step.

Figure A.4: Creating a new SVN project

In the next step the head revision option is selected as shown in Figure A.5.

91

A. The UML refactoring plugin

Figure A.5: Selecting the head revision

The next step is then to make Eclipse �nd the projects in the SVN repository by
selecting the Find projects in children of the selected resource option in the wizard
as shown in Figure A.6.

92

A.2. Obtaining the code from an SVN repository

Figure A.6: Finding the projects in the SVN repository

The �nal step in the wizard is con�rming that the correct projects have been found
in the SVN repository as shown in Figure A.7, and instruct Eclipse to check the
projects out as new projects in the workspace.

93

A. The UML refactoring plugin

Figure A.7: Con�rming the projects found in the SVN repository

The plugin is then ready to be installed as described in section A.3.

A.3. Installing the plugin

To install the plugin the is.hi.cs.umlrefactoring.ui project is expanded in the Eclipse
project explorer and the plugin.xml �le opened. In the overview tab of plugin.xml the
Export wizard is selected. In the �rst step of the wizard, the is.hi.cs.umlrefactoring.ui,
is.hi.cs.umlrefactoring.core.transformations and is.hi.cs.umlrefactoring.core.libraries
plugins are selected and the Install into host option selected as shown in Figure A.8.
The repository �eld will be automatically �lled by Eclipse.

94

A.4. Using and debugging the plugin

Figure A.8: Selecting the plugins for export

The wizard concludes with calculating dependencies and installing the plugins into
the host Eclipse instance.

A.4. Using and debugging the plugin

When the code behind the plugin has been installed into Eclipse it will function as
described in chapter 6 in the Papyrus editor. To view how the code is executed at

95

A. The UML refactoring plugin

runtime, the plugin can be run in debug mode which will open a new Eclipse instance.
To achieve this, one of the plugins should be selected in the Project explorer view
and then the Debug As -> Eclipse application option selected in the Run menu as
shown in Figure A.9.

Figure A.9: The plugins debugged in a new eclipse instance

A new Eclipse install is started and breakpoints can be added in any Java code in
the original instance to step through the code. However, to debug the QVTO trans-
formation �les, another method has to be used since the debugger is not activated
for QVTO in another instance of Eclipse.

The �rst step to debugging a QVTO transformation �le is to create a new debug
con�guration in Eclipse by selecting the Debug Con�guration option in the Run
menu. In the window that opens a new entry is added to the Operational QVT
interpreter entry in the left menu. Then a new menu opens on the right as shown
in Figure A.10 where the appropriate entries are input to each �eld. First the
QVTO transformation is selected and then an optional trace �le can be designated
for examining the output of the transformation. Finally the Notation model and
the UML model of the activity diagram to be transformed are selected.

96

A.4. Using and debugging the plugin

Figure A.10: Creating a debug con�guration for a QVTO transformation

To complete the con�guration, the Con�guration tab is selected to add values to
the con�guration properties of the transformation. As described in chapter 5 the
transformations need to receive the GUID of the Shape objects to be transformed.
The Notation model �le has to be opened with a text editor and a Shape object
which points to a UML OpaqueAction found as shown in Figure A.11.

Figure A.11: Finding a Shape object's GUID in a Notation model

The GUID of the Shape object is then copied into the value �eld of the con�guration
property as shown in Figure A.12.

97

A. The UML refactoring plugin

Figure A.12: Setting the value of a con�guration property

Now the QVTO transformation can be stopped at breakpoints to step through the
execution.

98

	List of Figures
	Listings
	Introduction
	Foundations
	Refactoring
	The Unified Modeling Language
	The UML infrastructure
	The UML superstructure
	The Object Constraint Language
	 XML Metadata Interchange
	The UML Diagram Interchange

	The Eclipse Project
	Plugins
	The Eclipse Modeling Framework
	Papyrus
	Model-To-Model
	Operational QVT

	Related Work
	UML refactoring
	Tool support
	Discussion

	UML Refactorings
	Merge actions
	Motivation
	Refactoring mechanics

	Divide action
	Motivation
	Refactoring mechanics

	Tool Implementation
	Model-based vs. low-level transformations
	Tools
	Challenges
	Documentation
	Finding selected objects in the model
	Creating a new object in the model
	Accessing coordinates of diagram elements
	Transforming two models

	Metamodel classes
	Notation metamodel classes
	UML metamodel classes

	Plugin architecture
	Workflow

	Blackboxing library
	isSelectedObject()
	moveElement()
	setElementID()

	Executing the transformation
	Invoking a QVTO transformation with Java
	Adding a context menu entry

	Merge actions refactoring
	The getObjects() query
	The merge() mapping
	UML model element mappings

	Divide action refactoring
	The getObjectToDivide() query
	The addNode() mapping
	The addEdge() mapping
	The addNodeAndEdge() mapping
	The setSource() mapping

	Evaluation
	The example activity diagram
	The Merge actions refactoring
	The UML model comparison
	The Notation model comparison

	The Divide actions refactoring
	The UML model comparison
	The Notation model comparison

	The finishing touches
	Discussion

	Conclusion
	Summary
	Outlook

	Acronyms
	Bibliography
	The UML refactoring plugin
	Dependencies
	Obtaining the code from an SVN repository
	Installing the plugin
	Using and debugging the plugin

