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Abstract 

The objective of the presented research is to investigate methods used to calculate earth 

pressures against- and the stability of retaining structures. 

The classical methods of calculating earth pressures are covered in detail.  They are named 

after their creators Charles-Augustin de Coulomb and William John Macquorn Rankine.  A 

special interest is taken in a variant of Rankine‟s theory developed at Norges teknisk- 

naturvitenskapelige universitet (NTNU) that incorporates cohesive properties of soils as 

well as roughness between the structure and the soil material.  Both methods are then 

tested against each other in order to investigate if a clear link exists between the two.  The 

methods are tested against proposed design values of earth pressure coefficients according 

to the design standard Eurocode 7. 

Håndbok 016 is a design handbook published by the Norwegian Road Administration (n. 

Statens vegvesen).  In it is a chapter dedicated to the design of retaining structures and 

bridge abutments. The methods proposed to design retaining structures are used to design 

cantilevered structures of various heights and with various foundation- and backfill 

materials based on a few geometrical constraints. 

The structure designs created with methods in Håndbok 016 are modeled in the finite 

element program PLAXIS to test if the same material factors of safety could be derived 

that way. 

The results from this study are then discussed and commented upon. 
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1 Introduction 

During development of land, one is often confronted with the challenge of creating a 

difference in terrain elevation over an arbitrary horizontal distance.  This can often be done 

by creating slopes but when the proposed slope can no longer support itself, another kind 

of solution is required.  Retaining structures are manmade structures with the purpose of 

supporting earth masses for practical or esthetic reasons, solving the above problem up to a 

point.  Some common types of retaining structures are shown in Figure 1.1; they are a) a 

cantilevered wall b) a dry stone wall and c) a sheet pile wall (anchored). 

 
Figure 1.1:  Shows common types of retaining structures in urban development. 

In this thesis some common methods used to estimate forces acting on these structures are 

discussed and analyzed.  A special interest is taken in the method recommended by the 

Norwegian Road Administration (n. Statens vegvesen) in its design handbook named 

Håndbok 016 (HB016), which is widely used in Norway.  The handbook proposes a 

method to calculate both the lateral pressures against structures as well as a method to 

estimate the bearing capacity of the foundation under them. 

The geometry of a cantilever retaining wall is chosen as a benchmark and a limit design is 

calculated for varying soil types in both backfill and foundation according to methods 

proposed in HB016.  This process is repeated for various cases in geometry and loading 

and the effect of changes between cases are studied.  Figure 1.2 shows some common 

failure modes of cantilevered retaining walls, they are discussed in more detail later in this 

thesis; they are a) bearing capacity failure in foundation b) structure sliding foundation c) 

overturning d) larger failure mechanisms. 

 
Figure 1.2:  Shows common failure modes of cantilevered retaining walls 

The finite element method provides an alternative way to design retaining structures.  The 

method is generally used with the aid of computer programs as the calculations usually 

involve large matrix operations.  The program used in this study is PLAXIS; a program 

that has in the last decades gained high acclaim in finite element analysis of geotechnical 

problems.  The limit designs calculated with conventional hand calculation methods will 

be evaluated with PLAXIS and the results studied. 
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2 Theory 

2.1 Vertical pressures 

2.1.1 In situ vertical stresses 

Soil materials have weight and as a result internal stresses are created in all soil masses.  

The magnitude of these stresses at any location is dependent on the properties of the soil 

masses, the surrounding geometry, and any external loading.  If we take the simplest case 

of a uniform soil profile with a flat surface and no external loading, the vertical stresses 

acting on a soil particle at a certain depth is created only by the gravitational forces acting 

on the soil mass that rests on top of it.  It can be calculated in the following manner 

        (1) 

where    is the vertical stress component,   is the unit weight of the soil resting on top of 

the particle and   is the depth to the particle.  Groundwater is often present in real life 

situations and it creates stresses of its own.  Assuming that the groundwater does not flow 

in any direction then this stress acts equally in all directions and does not add to the 

stresses acting between particles of the soil mass.   

Equation (1) can be modified for effective stresses, layered soils and water pressures.  It is 

then presented as 

   
    ∑ (     )    (2) 

where   
 
 is the effective vertical stress, q is a load applied onto the surface,    and    are 

the weight and height of each layer and u is the pore pressure.  Total stress is defined as the 

sum of the water pressure and the stresses carried by the soil skeleton.  The term effective 

stress is a very important one as it represents the part of the stress that is carried by the soil 

skeleton and therefore has effect on the properties of the soil material.  Increase in effective 

stress will induce the soil to move into a more densely packed form (Das, 2002). 

A simple soil profile with layered soil and a groundwater table within the soil mass can be 

seen in Figure 2.1. 
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Figure 2.1:  A soil profile consisting of layered soil and a groundwater table. 

The vertical stress acting on soil element A in Figure 2.1can be described either on a total 

stress basis using equation (2) as 

                           

or on an effective stress basis as 

  
                (             )       

Particle A also has horizontal stress acting on it that is not necessarily equal to the vertical 

stress and methods used to estimate it will be discussed in chapter 2.3. 

2.2 Strength parameters of soil 

2.2.1 Undrained shear strength, Su analysis 

In a stress situation where the pore water is not allowed to dissipate during loading, 

strength parameters should be considered on a total stress basis.  This is done because any 

added stress on the soil sample will be carried by porewater between soil particles and not 

the soil skeleton, hence the effective mean stresses will remain constant during (and 

immediately after) the loading.  As the water cannot escape from the soils pores, its 

stiffness is added to the equation and so we do not expect any volume change in the soil 

under these conditions.  The strength of soil under these conditions is called undrained 

shear strength, and is symbolized as    (Janbu, et al., 2006). 

If we draw the failure criterion with a maximum allowable shear stress in a Mohr diagram 

we see the special case of the Mohr-Coulomb failure criterion known as the Tresca yield 

criterion, this can be seen in Figure 2.2 a).  The Tresca yield criterion is marked with a 

striped line indicating that no admissible stress situation can exist above it. 
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Figure 2.2:  a) The Tresca failure criterion. b) The critical failure element. 

From the gray circle in Figure 2.2 a), we can see that an increase in the mean total stress 

does not necessarily mean an increase in the difference between the principal stresses.  As 

the failure criterion Figure 2.2 a) is a horizontal line the maximum allowable shear stress 

can be defined as the radius of Mohr‟s circle.  In terms of principal stresses this can be 

written as 

       
     

 
 (3) 

It can be seen in Figure 2.2 a) that the maximum shear stress occurs along a plane with the 

inclination of 45° or   ⁄  radians to the principal planes.  This stress will be the stress 

causing failure in an undrained situation and so the shear diamond in the critical shear 

element, will have right angles as can be seen in Figure 2.2 b).  A more detailed 

explanation of how this is derived can be seen in Appendix A. 

 

Safety factors 

Because soil is by no means a homogenous material and its properties vary as a function of 

its ingredients, it is useful to define a safety margin for the strength parameters.  In an 

undrained analysis this is commonly done by introducing a factor of safety,  , which is the 

ratio between the maximum allowable shear stress,    , and the failure shear stress   .  

Another way is to define the ratio so that we decide just how much of the failure shear 

stress we allow to be mobilized,  .  These safety factors are therefore closely connected 

and are defined as 

 
  

   
   

 

 
 (4) 

  can by definition be greater or equal to     without resulting in failure of the soil 

material.  This means that the degree of mobilization,  , can vary between the no loading 

value,    , and the fully mobilized value of    .  Values over 1 would mean that the 

soil carries more shear stress than it can and are therefore inadmissible.  It is important to 

note that this safety factor is applied to the maximum stress the material can withstand and 

is therefore a material factor independent of load situation. 

When designing a slope or a structure in an undrained situation it has to be decided just 

how close to the failure shear stress,   , it is acceptable that the mobilized shear stress,    , 

is allowed to reach.  In HB016 a material strength safety factor of       is recommended 
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for the undrained case, when the consequences of failure are estimated as low.  This 

corresponds to a degree of mobilization of        .  If the consequences of failure are 

estimated as severe, the safety factor should be increased to       or         (Statens 

vegvesen, 2010) With soil investigations it is possible to estimate the undrained shear 

strength of the soil material at hand and using equation (4) the critical design shear stress is 

calculated as 

          (5) 

This critical design shear stress is illustrated as a gray dashed horizontal line in Figure 2.2-

a). 

This method of reducing the maximum allowed shear strength is a special case of the 

“Phi/c reduction” method that will be discussed later in this thesis, and can be thought of 

as having defined the friction angle as     and the cohesion as the undrained shear 

strength. 

2.2.2 Drained shear strength,     analysis 

For loading when pore pressures are allowed to dissipate the added stress will eventually 

be fully carried by the soil skeleton.  Hence there will be a change in the effective stresses 

driving the soil to change its state of compaction, which leads to a change in the strength 

parameters as a result. 

The Mohr-Coulomb failure criterion describes the relationship between the mean stress 

and the critical shear stress at failure.  It is generally presented as 

            (  ) (6) 

where    is the shear stress at failure,    is the cohesion of the material,    is the effective 

stress and    is the friction angle.  The line described by equation (6) in Figure 2.3 a) has 

markings on the top side to indicate that all combinations of principal stresses that create 

stress circles that cross the line are inadmissible. 

As it is experimentally verified that the effective stresses govern the shear strength 

(Sandven, 2000) the Mohr-Coulomb (MC) criterion described by equation (6) is presented 

using effective parameters. 
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Figure 2.3:  a) The Mohr-Coulomb failure criterion. b) The critical failure element. 

It is clear from Figure 2.3 a) that it is not only the difference of magnitudes of the principal 

stresses that decides if the critical shear stress is reached, but rather how unfavorable the 

combination of the two is.  In other words the shear strength is dependent on the stress 

conditions.  In a drained analysis there is always a friction angle.  This means that the most 

critical shear stress plane will never be 45° as it is in the undrained analysis and therefore 

we never get right angles in the critical stress elements shear diamond as seen in Figure 2.3 

b). 

Cohesion and the friction angle 

The friction angle and cohesion used in the MC-failure envelope are constants used to 

describe material properties of soils.  The model, which was proposed by Coulomb in 

1776, assumes a linear relationship between normal and shear stress.  More recent studies 

have shown that the failure envelope is curved and so the MC model will overestimate the 

strength if it is used to calculate strength at stress levels greatly different than those used to 

assess its constants (Nordal, 2009).  For most practical problems however the approximate 

results provided by the model are sufficient (Das, 2002). 

To get a feeling for these constants it is probably best to take a look at a block resting on an 

inclined plane.  The only driving force acting on the block is gravity pulling at its mass and 

the resisting force is the friction with the plane.  At a certain inclination the driving force 

will surpass the resisting force and the block will slide.  This inclination is defined as the 

friction angle.  In much the same manner soil particles rest on each other and between 

them are internal frictional forces.  If we imagine an inclined surface of a soil mass where 

the only driving force is the gravitational pull, there will be a certain inclination where the 

soil mass will slide to find a new state of equilibrium.  This angle is approximately the 

friction angle of the soil mass. 

To explain the cohesion it is easy to picture some sort of extra support between the block 

and the inclined plane, where some shear strength is added independent of normal stresses.  
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As if the block would stick to the plane until that initial bond is broken and the block 

slides.  This extra bond would allow the block to reach higher angles than the friction angle 

between it and the plane. 

Safety factors 

As two parameters governing the failure criterion have been introduced, the friction angle 

and the cohesion, a consistent way to calculate a factor of safety is needed.  The MC 

failure criterion can be presented in many different ways as shown in Appendix B and 

although the variables change there is one variable that can be found in all of them, and 

that is the attraction,  .  If we hold   constant and reduce the slope of the MC failure line 

we reduce both    and   at the same rate thus defining a degree of mobilization.  By 

holding   constant we mathematically only reduce the friction angle and a reduction in the 

cohesion will follow.  The factor of safety in the Phi-C reduction method is defined as  

   
 

 
 

   (  )

   (  )
 (7) 

where   is the factor of safety,   is the degree of mobilization,    is the friction angle and 

   is the mobilized friction angle.  We can now turn this formula so it takes the same form 

as equation (5) as 

    (  )     (  )    (8) 

This reduced failure envelope can be seen as a gray line in Figure 2.3 a) as well as how the 

critical stress state with a constant average stress has reduced as a result of the applied 

material factor of safety.  It should be noted that in all the equations in this thesis where the 

drained friction angle,   , is used it can be interchanged with the reduced friction angle,   , 

to account for the design degree of mobilization in accordance with equation (8).  When 

this is done one must take care to recalculate the cohesion as a result of this safety margin.  

The link between the attraction and the cohesion is defined with equation (B7) in Appendix 

B. 

2.2.3 Deciding when to use which model 

Deciding when to use each method is not an easy task and each situation has to be 

considered individually.  When the material at hand is a granular one and the pore 

pressures dissipate quickly relative to the speed of loading, the added load is carried by the 

soil skeleton and not pore pressures. Such a situation is better described as a drained one 

and effective stresses should be used in the analysis.  On the other hand when loading a 

saturated material that does not allow the porewater to dissipate quickly compared to the 

speed of loading, the load will be carried by the pore pressures rather than the soil skeleton 

and the situation is better described using undrained analysis. 

The real world is however complicated and a soil mass can be combined of many types of 

soils with different properties so the situation at hand is often a combination of the two 

scenarios rather than just one of them.  It is therefore not always easy to decide what 

material model best describes the problem.  The key words are the speed of loading and the 

mediums ability to release porewater and transfer the added stress to its skeleton. 
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The two methods are different but are connected by a process called consolidation.  

Consolidation is the time dependent process of pushing the porewater from the soil and 

thus transferring the excess pore pressures caused by the added loading to the soil skeleton.  

Because water can be assumed incompressible in comparison with soil, this process will 

control the rate of the primary settlements after the load has been added. 

2.3 Horizontal earth pressures 

As was briefly shown in chapter 2.1.1 estimating vertical stresses in soils is a relatively 

simple task, when we want to investigate the lateral stresses in soils things get more 

complicated.  In the following chapters we will discuss different methods used to estimate 

lateral earth pressures. 

2.3.1 At rest horizontal earth pressures 

If we take a look at the situation in Figure 2.1 where we have a soil particle under a flat 

surface at rest, the horizontal stresses acting on particle A are usually estimated as a 

function of the vertical stresses.  The relationship between the horizontal and vertical 

stresses can be defined as 

   
  
 

  
  (9) 

The task of estimating the horizontal stresses becomes a task of estimating the variable   

and calculating the vertical stress.  When the soil is at rest the ratio   is given an 

identifying 0,   , to indicate that the situation is controlled by static equilibrium. 

It is possible to derive the value of    purely by the means of the classical theory of 

elasticity, and the result is a function of the soils Poisson‟s ratio.  This has been done in 

Appendix F.  This solution is valid for isotropic homogenous materials; most soils are 

however neither isotropic nor homogenous so this relationship will not be used in this 

thesis. 

Jaky proposed an empirical relationship between the at rest earth pressure coefficient for 

coarse grained soils and the friction angle of the soil as 

         (  ) (10) 

It has been shown with laboratory testing that this formula will underestimate    when the 

soil consists of densely compacted sands (Das, 2002). 

Other empirical formulas have been suggested to deal with other types of soils.  HB016 

proposes the following formula to estimate the at rest earth pressure coefficient for 

horizontal terrain 

    (     (  ))  √    (11) 

where     stands for the overconsolidation ratio.  It is defined as 

     
  
 

  
  (12) 
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where   
  stands for the pre-consolidation pressure, the pressure the soil has encountered 

previously, and   
  stands for the in situ pressure.  When no information is available about 

the over-consolidation ratio it is natural to assume that the current state is the same as the 

pre-consolidation state and thus equation (11) reduces to equation (10). 

When the terrain is sloped at an angle   the at rest earth coefficient can be estimated as 

        (     ( )) (13) 

where    is calculated according to equation (10) or equation (11) and the resulting earth 

pressure force is assumed to be parallel to the inclined terrain (Statens vegvesen, 2010). 

When we need to estimate the at rest pressure coefficient where extensive laboratory 

testing has not been carried out Jaky‟s formula, equation (10), will provide a good first 

guess. 

Let‟s say a vertical wall is placed on one side of element A in Figure 2.1 and the soil is 

excavated from the other side of the wall.  As long as the wall does not move we have a 

case of static equilibrium and the force acting on the wall will be a function of the vertical 

pressure and the at rest earth pressure coefficient, as is proposed by equation (9).  If 

however the wall starts to move in either direction, the presumption of static equilibrium is 

broken and thus    no longer applies.  We will therefore have to estimate it using different 

methods. 

2.3.2 Smooth vertical walls and stress fields - Rankine zones 

Rankine proposed a method for calculating the horizontal earth pressures on a wall that has 

encountered movement by assuming that the earth mass was equally stressed and thus 

failing at all points.  Using the MC failure envelope and substituting the vertical and 

horizontal stresses for the major and minor principal stresses, Rankine developed equations 

to calculate the active and passive earth pressure coefficients.  A special notation of 

Rankine‟s equations originating from Norges teknisk- naturvitenskapelige universitet 

(NTNU) is derived in Appendix B.  Equation (B10) in Appendix B gives us a direct 

connection between the major principal stress,   
 , the minor principal stress,   

 , the 

friction angle,   , and the attraction,  . Substituting the vertical stress and horizontal stress 

for the major- and minor principal stresses in equation (B10) allows us to derive an 

equation for either the active or passive earth pressure coefficient.  By aligning critical 

stress elements, as seen in Figure 2.3, together we create a stress field that represents the 

theoretical stress situation in the soil.  The orientation and shape of the elements is 

dependent on whether the main principal stress is horizontal or vertical.  In other words it 

depends on if the wall is being pushed into the soil or if the soil is driving the wall out. 
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Figure 2.4:  The active and passive sides of a wall along with Rankine zones. 

The stress fields drawn on either side of the wall in Figure 2.4 are called active and passive 

Rankine zones.  Active Rankine zone develops in the soil mass where the soil pushes the 

wall out and the passive Rankine zone develops where the soil tries to resist the movement 

of the wall.  Let‟s first take a look at the stresses in the active stress fields. 

Active Rankine zones 

Looking at the active (right) side of the wall in Figure 2.4 we note that because the wall 

moves away from the soil mass it cannot maintain large stresses in the horizontal plane so 

the major principal stress will have to be the vertical one.  Using this knowledge   
  and   

  

can be substituted for   
  and   

  in equation (B10) in Appendix B.  By introducing equation 

(B27) into this the desired equation is derived as 

 (  
   )  (  

   )     (14) 

where    is the minor principal stress ratio given with equation (B27) in Appendix B.  

The failure wedge that can be seen on the right side of the wall in Figure 2.4 will have the 

inclination of 

    
 

 
 

  

 
 (15) 

to the vertical measured in radians.  The angle    can be seen schematically in Figure 2.3 

b).  With equation (14) it is possible to estimate the lateral earth pressure in the active case 

as a function of the horizontal earth pressure, the friction angle as well as the attraction.  

This can be used to calculate the magnitude of the force acting on the wall surface on the 

active side if no shear stress is transferred from the structure to the wall. 

Passive Rankine zones 

Looking again at the wall in Figure 2.4 and noting that the wall is moving into the soil 

mass on the passive (left) side and as a result the soil wedge is pushed upwards, it can be 

assumed that the horizontal stresses will in this case be larger than the vertical ones.  With 

similar substitution as before but this time using   
  as the major principal stress along with 

equation (B28) and equation (B10) in appendix B gives the result 

 (  
   )  (  

   )      (16) 

where    is the major principal stress ratio given with equation (B28) in Appendix B. This 

notation of calculating the horizontal earth pressures is not the classical one but the 
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simplicity of the form is certainly appealing.  When comparing equations (14) and (16) we 

see that the form is remarkably similar and that the only difference are the constants    

and   .  They are however closely related and by comparing equations (B27) and (B28) 

we see that 

    
     (  )

     (  )
 

 

     (  )

     (  )

 
 

   (17) 

As before we can look at the failure wedge in Figure 2.4 and by turning the critical element 

in Figure 2.3 b), note that the shear surface will have the angle of 

    
 

 
 

  

 
 (18) 

to the vertical measured in radians.  This angle can be seen in schematically in Figure 2.3 

b).  With equation (16) it is possible to estimate the passive lateral earth pressures against 

smooth vertical walls. 

Rankine zones are a great tool to approximate horizontal earth pressures but they do not 

present the whole picture as only critical shear elements oriented in the same direction as 

the major and minor principal stresses in the soil are used.  Because principal stresses act 

on principal planes which by definition only have normal stresses acting on them, no shear 

stress is transferred from the soil to the structure.  In other words in this idealized model 

the wall is assumed completely frictionless and the soil can slide effortlessly up and down 

its sides.  As retaining walls are rarely constructed completely smooth it is necessary to 

take into account the interaction between the wall and the soil. 

2.3.3 Rough walls and stress fields - Prandtl zones 

The critical soil element and its shear diamond can be seen in Figure 2.3 b), and we note 

that the one shown in Figure 2.2 b) is merely a special case of the other.  The shear 

elements in Figure 2.4 are rotated so that their major and minor principal stresses are 

aligned to the vertical and the horizontal, as stated before this would not transfer any shear 

stresses to the structure.  The failure surfaces seen in Figure 2.4 are also a function of the 

orientation of the critical shear planes and therefore have a planar form. 

In reality failure surfaces rarely have a completely planar form and it has been suggested 

that the most common form is a combination of a straight line and that of a curve in the 

shape of a logarithmic spiral (Das, 2002).  The logarithmic spiral has the equation 

             (  ) (19) 

Using the logarithmic spiral it is possible to rotate the stress fields and the critical shear 

elements along with them.  Defining the origin of the logarithmic spiral on the wall at 

terrain level and initially aligning the critical shear elements so that they have a side that 

tangents the structure it is possible to rotate the stress field so that it connects to the 

Rankine zone.  This means that by the means of a logarithmic spiral it is possible to 

transfer all the shear stress in the soil at failure to the structure. 
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Figure 2.5:  The active and passive Rankine and Prandtl zones in a stress field. 

In Figure 2.5 it can be seen that the critical stress elements have been rotated so that they 

have a common side with the structure and thus transferring all the available shear stress to 

the structure.  This implies that the structure is completely rough.  In Appendix D it is 

shown that the relationship between stress acting on either side of the Prandtl zone is 

described as 

 (     )        (  )  (     ) (20) 

where    and    signify the opening and rotated boundary of the Prandtl zone 

respectively.  The equation is consistent in both pressure cases if we define the friction 

angle to be positive when calculating passive pressures and negative when calculating 

active pressures. 

We have now developed two cases; one where the shear stress in the soil does not affect 

the structure at all and another where all the shear stress in the soil is transferred to the 

structure.  In reality the amount of shear stress transferred from the soil to the structure will 

probably lie somewhere in between the two. 

2.3.4 Roughness and partially developed stress fields 

As was stated above it is not plausible that all retaining structures should either be 

constructed as completely rough or completely smooth.  We therefore introduce a variable 

called the roughness ratio,  , as a measurement on how much of the shear stress in the soil 

will be transferred to the structure. 

   
 

   
 (21) 

where   stands for the shear stress acting on the structure and     stands for the critical 

shear stress found in the soil mass at failure, shown in Figure 2.3.  The roughness ratio will 

then take the value     when we have a completely smooth wall and the value     

when the wall is completely rough.  Failure in the soil mass when the roughness is     

would create a situation as can be seen in Figure 2.4.  Failure in the soil mass when the 

roughness is     would create a situation as can be seen in Figure 2.5. 

When describing a situation where only a part of the shear stress is transferred from the 

soil to the structure and we have a movement of the wall in respect to the soil as shown in 
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Figure 2.4, we end up with a combination of two Rankine zones connected by a partially 

developed Prandtl zone, this can be seen schematically in Figure 2.6 a) and b).  The 

opening angle of the Prandtl zones is then completely governed by the roughness ratio; or 

how much shear stress is transferred from the soil to the structure. 

 
Figure 2.6: Shows the combined stressfields for a) the passive case b) the active case. 

If we only have a partially developed Prandtl zone connected to two Rankine zones, the 

relationship between the vertical and horizontal shear stress can in the passive case be 

described as  

 (  
   )  *

(    
 )   

    
             (  )+  (  

   ) (22) 

where    is the shear plane mobilization,   is the opening angle of the Prandtl zone 

measured in radians and    is the major principal stress ratio.  A derivation of this 

equation can be found for both the active and passive case in Appendix E.  It should be 

noted that the active pressures can be calculated with equation (22) by shifting the sign of 

the friction angle. 

We can define the factor in the square brackets in equation (22) as a   factor linking the 

horizontal and vertical stress as the one shown in equation (9) and accept that in our 

equation we will shift both the horizontal and vertical stress by the attraction,  .  It should 

also be noted that for a roughness of     both    and   reduce to        and the 

factor   reduces to   .  Equation 22 is therefore a more general case of equation (16) and 

is valid for both the active- and the passive earth pressure case.  It should be noted that this 

solution is valid only for roughness on the interval between     and    . 

To produce a situation with negative roughness we can introduce external forces.  This is 

shown illustratively both for the active and passive state in Figure 2.7. 
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Figure 2.7:  Possible scenarios involving negative roughness. 

In the passive state a force pulls the wall upward and into the soil and in the active case the 

wall is anchored to the rock bed below it and is pulled downwards as it moves out.  Both 

cases present an opposite vertical movement of the wall in respect to the soil than the one 

shown in Figure 2.4. 

If we assume a planar shear surface for the active and passive cases involving negative 

roughness ratios, it can be shown that the connection between the vertical and horizontal 

earth pressures is governed by the relationship 

 (  
   )  (

 

√      (  )    (  ) √   
)
 

 (  
   ) (23) 

The term involving the second power can be defined as   and as before it is valid for both 

the active and passive case if we distinguish between them by using a negative friction 

angle on the active side.  It should again be noted that this case is valid only for negative 

roughness values (Janbu, et al., 2006).  Assuming a planar shear surface for negative 

values of roughness has been shown with different methods to deliver usable 

approximations of the earth pressure coefficient (Grande, 1976). 
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Figure 2.8:  Active and passive earth pressure coefficient as a function of tan(ρ’) and r. 

In Figure 2.8 it should be noted that the dashed lines represent a negative roughness and 

the continuous lines represent the positive.  The active side has a negative friction angle, 

this is as previously stated only a handy notation introduced in order to generalize 

equations (22) and (23). 

By the means of Figure 2.8 it is now possible to calculate the relationship between vertical 

and horizontal stress with the equation 

 (  
   )      (  

   ) (24) 

where   is the attraction and      represents either the passive or active earth pressure 

coefficient.  The required input parameters are    (  ) and the roughness,  .  This solution 

is valid for a stress field derived for a horizontal surface and a vertical wall. 

The effect of a sloping backfill 

When the backfill can be modeled as a continuous slope the theory behind Rankine‟s stress 

fields no longer applies in the form already presented.  This is because the active and 

passive pressures are no longer horizontal but have the same inclination as the backfill 

(Das, 2002).  Figure 2.9 shows a sloped terrain and the forces acting on the structure once 

it has experienced some movement.  Note that the active and passive shear stresses have 

opposite directions. 
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Figure 2.9:  Sloped terrain and the retaining forces. 

where      is the horizontal force and      is the shear stress after the wall has 

encountered some movement in either direction.  In order to generalize the solution of the 

earth pressure coefficient for the case of a sloping backfill the roughness term, (   ), in 

equation (23) is exchanged with a new variable,  , which is defined as 

   (   )  (   ) (25) 

where   is the roughness and   is a new variable defined as 

   
   ( )

   (  )
 (26) 

where   is the angle of inclination of the backfill and    is the mobilized friction angle.  

There are obvious limitations of application of this approach such as the slope of the 

backfill cannot be equal or greater than the friction angle.  By the definition of the friction 

angle this would induce a failure in the slope and from a calculation standpoint would 

mean a negative number under the square root resulting in a complex solution.  The 

variable  , is furthermore not allowed to exceed the value of 4 but recommended maximum 

value for practical applications is 2 (Statens vegvesen, 2010). 
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Figure 2.10: Active and passive earth pressure coefficients for sloping terrain. 

In addition to the modified version of the earth pressure coefficients the formula used to 

calculate the earth pressures has been modified as well.  The active earth pressures can in 

this case be calculated as 

 (  
   )     (  

   )  
 

    
   (27) 

where   is as defined in equation (26) and 

    
   (  )

   (  )
   

 

   (  )
 √

   

   
   

 

   (  )
 √

(      (  )) (   )

   
 (28) 

The passive case can be calculated in a similar manner 

 (  
   )     (  

   )  
 

    
   (29) 

where s is again as defined as in equation (26) with the modification that the angle,  , has 

a positive direction sloping downwards into the backfill and 

    
   (  )

   (  )
   

 

   (  )
 √

   

   
   

 

   (  )
 √

(      (  )) (   )

   
 (30) 

This solution assumes a linear failure surface as was done for the case of the negative 

roughness.  This solution assumes that the terrain is sloped upwards for the active case and 

sloped downwards for the passive case.  The coefficients    and    should not be 

confused with the active and passive openings of the Prandtl zones in equation (22). 
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Rankine´s solution for sloping backfill 

Rankine considered the possibility of a sloping backfill and proposed the following earth 

pressure coefficient for non-cohesive soils in the case of active pressures 

       ( )  
   ( ) √    ( )     (  )

   ( ) √    ( )     (  )
 (31) 

For the case of passive pressures he proposed the following equation for the earth pressure 

coefficient 

       ( )  
   ( ) √    ( )     (  )

   ( ) √    ( )     (  )
 (32) 

where   is the angle of inclination of the backfill and    is the friction angle.  The earth 

pressure should then be assumed to increase linearly from terrain level to the base of the 

structure.  The force resultant should therefore act at   ⁄  the distance from the base to the 

top of the structure and be inclined with the same angle as the backfill.  (Das, 2002).  It has 

been suggested that Rankine´s solution for passive pressures only gives usable results for 

values of    .  Furthermore it has been stated that the solution should not be used to 

calculate earth pressures against structures but rather to evaluate forces on vertical planes 

in soil mass.  (State of California Department of Transportation, 1990). 

The effect of wall leaning into the backfill 

When backside of the wall is sloped into the backfill the stressfield does not develop fully 

in the same way as has previously been described.  HB016 proposes that this be dealt with 

in the following manner.  The active earth pressure coefficient should be calculated as is 

done in Figure 2.8 or Figure 2.10 and then corrected as 

               
    (    )

    ( )    (  )
    (33) 

where δ is the angle of the back of the wall.  A situation of this sort is shown in Figure 

2.11. 

 
Figure 2.11:  Retaining wall sloped into the backfill and the angle δ. 

There are noted limitations of application for this reduction method as the mobilized 

friction angle shall lie in the interval          and the angle δ shall lie in the interval 

       .  It is noted that this method was developed for completely smooth walls but 

the method should give reasonable results when r lies on the interval           . 
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2.3.5 Coulomb’s theory of earth pressures against retaining 

walls 

In 1776 Coulomb presented a theory for the active and passive earth pressures against 

retaining walls.  In his formulations he made the assumptions that the failure surface was 

planar and the soil followed the strength criteria proposed by himself defined by equation 

(6) with no cohesion.  Coulomb also took into consideration the friction between the soil 

and the back of the wall.  The theory is derived by the means of static equilibrium of an 

assumed linear failure surface as is shown in Figure 2.12. 

 
Figure 2.12: Active pressures on a retaining structure along with a force diagram. 

The active forces in Figure 2.12 are created by the gravity pulling the soil wedge down and 

the earth and wall retaining the movement of the wedge along the assumed linear slip 

surface.  The orientation of the forces is derived directly from the geometry of the problem.  

The relationship between the driving force and the wall force is of a special interest when 

designing the structure and it can be derived from the geometry alone via the sine rule 

 
  

   (    )
 

 

   (           )
 (34) 

where    is the force the wall exerts back on the soil wedge,   is the angle of wall friction, 

   is the friction angle of the backfill,   is the inclination of the back of the wall,   is the 

angle of the assumed failure surface and   is the weight of the failure wedge.  The weight 

of the failure wedge is a function of the soil density and the area of the wedge which can, 

with a little help from Figure 2.12, be calculated as 

   
        (   )    (   )

      ( )    (   )
 (35) 
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where   is the angle of the backfill.  Putting together equations (34) and (33) we get an 

equation connecting the lateral active force with the height of wall and assumed angle of 

the failure surface. 

    
    

 
 

   (   )    (   )    (    )

    ( )    (   )    (           )
 (36) 

where   is the density of the backfill and   is the height of the structure.  If we assume the 

angle of wall friction,  , to be constant we have an equation with only one variable; the 

inclination of the failure surface,  .  By differentiation and back substitution it is possible 

to derive an equation for the active force from the most critical failure plane as 

       
    

 
 (37) 

where the earth pressure coefficient is independent of the angle   and is given by 

    
    (    )

    ( )    (   ) (  √
   (    )    (    )

   (   )    (   )
)

  (38) 

Coulombs passive earth pressure coefficient can be derived in a very similar manner, the 

angle of the passive force will then be positive as the force points at a downward angle to 

the wall back and because the failure wedge is now being pushed up the failure surface the 

shear stress will point in the opposite direction to the active case.  This situation is shown 

in Figure 2.13. 

 
Figure 2.13: Passive pressures on a retaining structure along with a force diagram. 

The geometry of the failure wedge in Figure 2.13 has not changed from Figure 2.12, but 

the orientation of the wall force and frictional force differ from the previous case.  Using 
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the sine rule it is possible to derive a relationship between the driving force and the wall 

force as 

 
  

   (    )
 

 

   (           )
 (39) 

Equation (33) still holds true for this case and by substituting into equation we can derive 

the equation for Coulombs passive earth pressures as 

    
    

 
 

   (   )    (   )    (    )

    ( )    (   )    (           )
 (40) 

Using the same methods as described for the active case it is possible to derive the passive 

pressure for the most critical plane as 

       
    

 
 (41) 

where the earth pressure coefficient is given by 

    
    (    )

    ( )    (   ) (  √
   (    )    (    )

   (   )    (   )
)

  (42) 

For frictionless, vertical walls retaining cohesionless soils equations (38) and (42) give the 

same results as equations (14) and (16) (Das, 2002).  These derivations are an elegant 

solution but they do however suffer somewhat as they only apply when calculating non 

cohesive soils as well as the failure surface is always assumed to be linear, which does not 

apply in all materials. 

2.4 Bearing capacity of foundations 

Terzaghi proposed an equation to calculate the ultimate bearing capacity of soils in 1943.  

His work was based on the principles published by Prandtl 20 years earlier (Das, 2002).  

According to Terzaghi the ultimate bearing capacity can be calculated with the formula 

                  
 

 
     (43) 

where   ,    and    are known as the bearing capacity factors,    is the cohesion,   is the 

surcharge,   is the soil unit weight and   is the width of the footing.  Empirical correcting 

factors are then given to each term to simulate the effect of a certain footing geometry and 

the depth of embedment. 

The factors affecting the bearing capacity the cohesion, surcharge, weight of the soil and 

geometry of the footing.  At NTNU a similar approach has been used to study the bearing 

capacity of footings.  The equation for the average bearing capacity on an effective stress 

basis proposed by NTNU is given as 

   ̅̅ ̅       (       
   )     (

 

 
       

    )        ̅̅ ̅ (44) 
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An extra term that reduces the bearing capacity has been added to handle excess pore 

pressures under the footing, as well as the notation has been altered to substitute the 

cohesion for the attraction. 

The bearing capacity factor    comes directly from the theory of stress fields, and is 

calculated in a similar manner as equation (22) is derived.  It is given as 

    
(    

 )   

    
      (    )    (  ) (45) 

Like the earth pressure coefficient,  ,    is only dependent on the friction angle and the 

roughness between the footing and the soil,   . 

 
Figure 2.14:  The relationship between Nq, tan(ρ’) and the roughness, rb. 

It should be noted that the roughness referred to in Figure 2.14 is the roughness acting 

between soil and foundation and is not connected to the roughness acting between structure 

and wall as was defined with equation (21). 

The factor    is derived from the geometry of the shear surface at failure.  This factor is 

not as easily calculated as the other bearing capacity factors but can be determined with the 

following iterative process  
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 (46) 

The convergence is fast and 10-20 iterations should produce good results.  This process 

was developed at NTNU by Professor Nilmar Janbu and the results introduced at a 

conference about the behavior of offshore structures in Trondheim in 1976, (Janbu, et al., 

1976); the method of calculation was however not published on paper.  It is referred to 

here by means of an internal report from his department published years later by a student 

(Døssland, 1980). 

 
Figure 2.15: The relationship between Nγ, tan(ρ’) and the roughness, rb. 

The calculation method does have its limitations and becomes unstable when both the 

roughness and    (  ) approach the value of 1.  In Figure 2.15, these side effects have 

been smoothed out. 

The effect of excess pore pressures in the foundation is taken into account via the factor 

  .  The parameters that control the behavior of    are the same as for the other bearing 

capacity factors,   and    (  ).  The effect of excess pore pressures in the foundation will 

not be discussed in this paper but for the sake of completeness values of    can be read 

from Figure 2.16. 
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Figure 2.16: The relationship between Nu, tan(ρ’) and the roughness, rb. 

The method of calculation behind the values of    is unknown to the author of this paper 
and values presented in Figure 2.16 have therefore not been verified with calculations. 

It should again be noted that the roughness referred to in Figure 2.14 - Figure 2.16,   , is 
the roughness between the foundation and soil underneath it and should not be confused 
with the roughness acting between the wall and soil,  . 

The effect of a moment acting on the footing is taken into account with the concept of 
the effective footing width   .  The effective footing width is caclulated as 

        |
 

  
| (47) 

where   is the geometrical width of the footing,   is the moment and    is the vertical 

force acting on the foundation.  Figure 2.17 shows illustratively the concept of the effective 

footing width. 
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Figure 2.17: The idea behind the effective footing width 

Taking the absolute value of the quotient in equation (47) ensures that the effective footing 

width,   , is always equal or less than the geometrical footing with,   (Statens vegvesen, 

2010). 

Effect of a sloping terrain on bearing capacity 

The bearing capacity equation, equation (44), was in part derived by the means of stress 

fields that develop from a horizontal plate through two Rankine zones and a Prandtl zone 

to a flat surface on either side of the structure.  If the terrain in front of the structure is 

sloped, the equation no longer applies and some modifications are required. 

 
Figure 2.18: An illustrative footing founded near a sloping terrain. 

To take care of the reduced bearing capacity two new reduction factors are introduced to 

equation (44).  The equation for the averaged bearing capacity then takes the form 

   ̅̅ ̅      (      
 

 
          

    )  (        )          ̅̅ ̅ (48) 

The two new factors     and     act as reduction factors for both the loading- and soil 

weight factors as well as the attraction.  They are defined as 

     (          ( ))
 
 (49) 
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and 

               (  ) (50) 

where   is the slope of the terrain and    is the mobilized friction angle of the soil (Statens 

vegvesen, 2010).  The equation for     is given as a bounding curve of all results derived 

for all values of the mobilized friction angle, erring on the safe side (Døssland, 1980).  It 

should be noted that when the terrain inclination is 0 equations (49) and (50) reduce to 1 

and equation (48) reduces to equation (44). 

Bearing capacity on a total stress basis 

The bearing capacity on an undrained, or total stress, basis is somewhat simpler than the 

one proposed in equation (44).  The bearing capacity on a total stress basis for flat terrain 

can be calculated as 

   ̅̅ ̅           (51) 

where    is the bearing capacity factor,    is the design shear strength and    is the 

surcharge load. 

The design shear strength is given as 

    
  

  
 (52) 

where    is the undrained shear strength and    is the material safety factor.  The bearing 

capacity factor    is given as 

          (     )  
 

    
  (53) 

where    is calculated with equation (C29) and   is calculated with equation (C20) noting 

that in the undrained case         ⁄ .  For quadratic and circular foundations it has 

been proposed that the undrained bearing capacity increases up to 20% depending on the 

roughness.  This is incorporated into the bearing capacity factor with the equation 

                       (    ) (54) 

Values for    is can be seen in Figure 2.19. 
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Figure 2.19: The geometrical correction factor   . 

Using equations (53) and (54) as well as Figure 2.19, a general equation for the bearing 

capacity factor can be derived as 

    ((     )  
 

    
 )  (  

      (   )

 
) (55) 

The bearing capacity factor proposed in equation (55) can be seen in Figure 2.20. 

 
Figure 2.20:  The bearing capacity factor    as a function of foundation roughness. 

The bearing capacity factor    in Figure 2.20 only applies as long as the terrain is flat.  If it 

is at an angle another solution is required (Janbu, et al., 2006). 
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2.5 Failure modes of retaining structures 

The stability of a retaining structure is defined by several factors.  There are different ways 

in which a retaining structure can fail and some common ones are shown in Figure 2.21. 

 
Figure 2.21: Common failure modes; a) bearing capacity failure b) sliding c) overturning 

Bearing capacity failure 

Failure occurrs when the vertical load exceeds the bearing capacity of the foundation, this 

can be seen in Figure 2.21 a).  This is the most common type of failure found in the 

calculations done in this paper.  In addition to increasing the vertical load the bearing 

capacity can also be exceeded as a result of variations in the horizontal load.  This is due to 

the fact that changes in the horizontal load affects the effective footing width through the 

eccentricity of the vertical load and can in some cases be the cause of failure. 

Sliding of base 

Another failure mode of a designed retaining structure is that the structure slides on its 

base plate as a result of the lateral forces acting on it, this can be seen in Figure 2.21 b).  

This failure mode was encountered a few times in the calculations done in this paper. 

By summing up all horizontal forces acting on the structure it is easy to check if the shear 

stresses in the foundation required to act against sliding exceed the shear stresses that can 

exist in the soil mass.  In the method proposed by HB016 the maximum allowed shear 

stress is reduced from the maximum by a roughness number that varies between the values 

       and        depending on soil type and terrain geometry. 

Overturning 

If the driving moments acting on the structure are larger than the resisting moments the 

structure will tip over,  this failure mode can be seen in Figure 2.21 c).  To check if the 

earth pressures and design action loads will cause the structure to become unstable is a 

general requirement when designing retaining structures.  By summing up the moments of 

all forces acting on the structure it is possible to derive an equation for the overturning 

factor of safety as 

     
∑  

∑  
 (56) 

where    are the resisting moments and    are the driving moments.  If the point of 

overturning is chosen at the toe, the normal requirement is that       (Erlingsson, 

2006).  The overturning criteria is handled in a different way in the method proposed by 

HB016 as the overturning moment results in a smaller effective footing reducing the 

bearing capacity. 
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Failure in a structure member 

Retaining structures are designed to retain masses of earth.  After the backfill process is 

complete a constant load will act on the structure.  If the design of the structure itself is not 

adequate, local structural failures may occur leading to a failure of the structure as a whole. 

In the case of a cantilever retaining structure made from concrete, the dimensions at the 

base of the wall will be a deciding factor whether the structure will collapse or not.  It is at 

the base of the wall that the greatest moment will act and the geometry of the base will 

have to be able to handle it. 

Information on wall base widths and concrete reinforcements can be found in HB100 

(Statens vegvesen, 1985) and Eurocode 2 (Eurocode, 2004). 

Larger failure mechanisms as a result of the construction 

Retaining walls are usually built where a new project requires a larger difference in 

elevation than the current situation allows. This can as an example be a house or a road 

constructed in a sloping terrain.  In order to get the flat terrain needed to create these 

structures the existing terrain needs to be cut or a fill be placed on top of it.   

 
Figure 2.22: Proposed road section in a cut(a) and a fill(b) and resulting failure surfaces. 

Figure 2.22 shows two variants of a road construction in the same terrain along with a 

possible failure mode for each case.  The main difference between failures in cuts and fills 

is that situations involving fills are usually at its most unstable right after construction.  

The excess pore pressures at point P are then released and the factor of safety gradually 

rises to a new equilibrium state.  In the case of a cut the pore pressures are at their 

minimum just after construction.  The pore pressures build up and the factor of safety 

gradually decreases to a new equilibrium state.  Failure as a result of initial loading in 

situations involving cuts can occur months or even years after construction. 

Evaluation of large failure mechanisms will not be covered in more detail here but more 

information methods used to calculate slope stability can be found in chapter 4 of HB016.  

A direct method for calculating slope stability by means of design graphs for simplified 

geometries is provided (Statens vegvesen, 2010). 

Deformations due to settlements 

Settlements under a retaining wall mean movement of the wall and its immediate 

surroundings that change the stress situation around the structure.  If the settlements are 

large enough they can in some cases cause a structure to become unstable and fail. 
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3 Comparison of methods used to 

calculate lateral earth pressures 

Comparison between Coulomb‟s methods and the stressfield method is an interesting 

subject as both methods are approved methods for designing retaining structures according 

to HB016.  The task is interesting as the two have different limitations and use different 

definitions of soil and structure interaction. 

Both methods assume a planar failure surface when the backfill is sloped at an angle.  They 

produce identical results when tested with a frictionless vertical wall retaining a 

cohesionless soil.  This holds true for all admissible inclinations of the backfill. 

The stress field method has the great advantage over Coulomb‟s method that it has been 

developed with the attraction attached so calculating earth pressures for cohesive backfills 

is possible.  The calculations in this chapter have been done for friction angles that vary 

from       to       .  Although so low friction angles are hard to find in soils the 

chapter is aimed to compare the methods and therefore a large interval is used. 

3.1 Linking the roughness number, 𝒓, and the 

roughness angle, 𝜹. 

As both methods produce identical results when there is no friction between wall and soil, 

it is interesting to investigate if there exists a simple link between the stressfields 

roughness number,  , and Coulomb‟s roughness angle,  . 

The roughness angle in theory has a link to the roughness number.  By noting that 

roughness is defined as the percentage of the shear strength available in soil that is 

transferred to the wall and that Coulomb used his own failure criterion with no cohesion, 

the roughness number for his method can be defined as 

    
    ( )

   (  )
 (57) 

Assuming angles,  , that result in a roughness number on the interval         and 

calculating the roughness number resulting in the same coefficient of earth pressure in the 

horizontal direction for various friction angles for the active case and a flat terrain yielded 

the relationship seen in Figure 3.1.  It should be noted that the stressfield method delivers 

   in the horizontal direction but Coulombs method delivers    at an angle    In order to 

create a clear comparison it is important to account for this so we calculate the horizontal 

components as 

   
                ( ) (58) 

and  

   
                ( ) (59) 

For practical considerations the angle of wall friction,  , should in the active case for the 

case of loose granular backfill be equal to the friction angle.  For the active case with dense 
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granular backfills it should lie on the interval    ⁄        ⁄  (Das, 2002).  These 

intervals have been highlighted with dots in Figure 3.1.  The choice of negative values of δ 
for practical applications will not be covered in this thesis but the graph is extended to 

include those cases as well. 

By selecting a wall roughness angle, one manually selects the amount of roughness 

between the soil and the structure.  As the amount of shear stress available in the soil is a 

strength property of the soil it is important to account for the strength properties when 

selecting a wall roughness angle to ensure good results. 

The roughness number,  , and Coulombs roughness,   , can for design purposes assume 

any values on the interval           as they are defined as a percentage of the 

maximum shear strength that can exist in the backfill, negative and positive. 

Design values for the roughness,  , lie between       and     in the ultimate limit state, 

depending on the failure mechanism and the consequences of failure.  For the 

serviceability limit state,   lies in the interval           depending on the flexibility of 

the structure.  The choice of negative values of   for practical applications will not be 

covered in this thesis as it would introduce external forces to the problem as can be seen in 

Figure 2.7. 

 
Figure 3.1: Relationship of r* and r, active case. 
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If the methods would return identical results on the entire range, the lines in Figure 3.1 

would lie completely diagonally from (     ) to (   ).  For lower values of the friction 

angle, the relationship shows linearity as both methods deliver the same results in that 

range.  This can be explained by the fact that the stressfield method also assumes a linear 

shear surface in the case of negative roughness.  The main result from Figure 3.1 is that for 

higher positive values of roughness the methods do not produce the same values.  This is 

of importance because it is at this range that the recommended values of    lie. 

Plotting the active earth pressure coefficient against the roughness number,   , for 

Coulomb‟s method and doing the same for the earth pressure method using the roughness 

number,  , their relationship can be observed for various friction angles.  This has been 

done in Figure 3.2. 

 
Figure 3.2: Active earth pressure coefficient as a function of r and r*. 

Examining Figure 3.2 reveals that for high values of roughness Coulomb‟s method will 

produce lower values for the active earth pressure coefficient in the case of positive 

roughness.  This difference is numerically greatest for friction angles around       .  
When looking at the difference as a percentage of the earth pressure coefficient at full 

positive roughness the difference is greatest for        or around     .  For negative 

values of roughness the methods deliver almost the same results, as was shown in Figure 

3.1.  The difference between the methods in the positive roughness range can be explained 

by the fact that Coulomb‟s method assumes a planar failure surface while the stressfield 

method assumes a combination of two planes connected by a curve in the shape of the 

logarithmic spiral;  see Appendix E. 
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Although the values for the active earth pressure coefficient vary between the two 

methods, their difference is so small that it is safe to say that they produce almost identical 

results.  Both methods are approved by HB016 to calculate earth pressures while designing 

retaining structures. 

Using the same method of analysis between the two methods in the case of passive 

pressures reveals a different story.  The relationship between   and    in the case of 

passive pressure and horizontal terrain can be seen in Figure 3.3. 

 
Figure 3.3: Relationship of r* and r, passive case. 

In Figure 3.3 it is clear that   is used at its entire range but    is not.  This means that for a 

certain roughness range the methods deliver different results.  The rate of the divergence is 

interesting as the two methods fit almost perfectly together in the negative roughness 

range.  On the positive side the roughness number,  , is fully utilized for all friction angles 

at about 40-60% of Coulombs roughness number,   .  In the active case the two methods 

started to show non-linearity at roughness around         . 

The linearity of the negative roughness side can again be explained by the fact that both 

methods assume planar failure surfaces in that case.  Plotting the passive earth pressure 

coefficient against    for Coulomb method and doing the same for the earth pressure 

method using the roughness number,  , their relationship can be observed for various 

friction angles.  This has been done in Figure 3.4. 
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Figure 3.4: Passive earth pressure coefficient as a function of r and r*. 

In Figure 3.4 it is clear that in the case of positive values of roughness, Coulomb‟s method 

starts to deviate from the stressfield method when    reaches a value between around 

       and         depending on the friction angle.  The difference between the 

methods jumps orders for larger friction angles and therefore it is clear that Coulomb‟s 

method grossly overestimates passive pressures for those cases.  The reason for this 

behavior is that to counter the increase in the inclination of the wall force,  , the angle of 

the failure plane,  , is decreased.  This results in a larger failure wedge and a larger 

frictional surface.  When   approaches the inclination angle of the terrain  , small changes 

in the angle   have large effects on the geometry and consequently the passive earth 

pressure as well.  As the stressfield method is defined as a combination of a curved failure 

surface and a planar one, it is not as sensitive to change in roughness.  Similar to the case 

of active pressures the methods show almost the same results in the case of negative 

roughness. 

When the terrain behind the structure is inclined at an angle to the horizontal, HB016 

proposes that other earth pressure coefficients,     or    , be used.  They are derived by 

using planar failure surfaces and should therefore differ from    and   . 

The same analysis as was done in Figure 3.2 was done for the active case incrementing the 

terrain inclination by a single degree     .  The results can be seen in Figure 3.5. 

0,5

5,0

50,0

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

K
P
  a

n
d

 K
*P

  [
-]

 

r & r* [-] 

KP as a function of  dimensionless roughness,  α=0° 

Coulomb

Stressfield

ϕ'=45° 

ϕ'=40° 

ϕ'=35° 

ϕ'=30° 

ϕ'=20° 

ϕ'=5° 



35 

 
Figure 3.5: Active earth pressure coefficient as a function of r and r*, α=1°. 

As was expected the effect of the logarithmic spiral has vanished and the stressfield 

method shows results that are almost identical to the ones derived using Coulomb‟s 

method.  Besides this small change all trends that can be seen in Figure 3.2 are present here 

as well.  As the terrain is sloped further the curves are pushed up the graph.  

When doing the same analysis for the passive, it should be noted that     in HB016 is 

defined only for terrain sloping at a downward angle behind the structure.  Selecting a case 

but using a negative slope angle of just       reveals a large difference from Figure 3.4, 

as can be seen in Figure 3.6. 
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Figure 3.6: The passive earth pressure coefficient as a function of roughness, α=1°. 

It is clear that the stressfield method now follows Coulomb‟s method closely and shows 

the same exponential trend for higher values of roughness and friction angles.  If one were 

to follow the theory closely while calculating passive forces a single degree of terrain 

inclination for roughness value of       and        would result in around 65% 

increase in passive pressure from the horizontal case.  It is unlikely that this difference 

would can be explained by anything else than inherit errors in the calculation methods. 

In the case of negative roughness values the two methods show the same reducing trend 

and provide almost the same values. As negative roughness will not be used in calculations 

this will not be investigated further. 
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horizontal terrain and seem do diverge greatly in the passive case.  It is also interesting to 
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lies along roads making it more likely that the mass in front of the structure be dug away at 

some point. 

3.2 Active earth pressures on walls leaning into 
the backfill 

The inclination angle of the back of the wall,  , in the classical presentation of Coulomb‟s 

earth pressures is defined as positive when the wall is sloped away from the backfill, this is 

shown in Figure 2.12 and Figure 2.13.  It is proposed that the equations for active pressures 

also hold true for negative values of   (State of California Department of Transportation, 

1990). 

HB016 provides a correction factor for the earth pressure coefficient for the case of an 

inclined wall.  It can be calculated using equation (33).  Inspecting the equation it is clear 

that this correction is only a function of the friction angle and the inclination of the wall 

and does not account for roughness.  It is stated in HB016 that the method gives acceptable 

results for roughness in the interval           . 

Looking at the derivation of the active case of equation (22) given in Appendix E it is not 

difficult to derive that by adding the wall inclination angle to the rotation of the stressfield, 

we create an earth pressure coefficient that depends on the friction angle, wall inclination 

angle as well as the roughness.  The new opening angle of the Prandtl zone will then be 
(   ) and because   is defined as negative into the backfill this will result in a larger 

opening angle.  Adding a the angle   to the opening angle of the Prandtl zone will also 

rotate the direction of the resulting normal- and shear stress by the same angle.  The 

resulting horizontal force will therefore be a function of the two. 

Calculating earth pressures against structures that lean into the backfill is important as 

most dry stone walls are constructed in this manner.  Selecting a roughness interval to 

conduct this analysis is tricky as dry stone walls cannot be thought of as a single entity that 

rotates as a whole about the footing with the earth mass, but rather an extremely flexible 

structure that can move and adjust to the backfill.  HB016 proposes that the roughness for 

dry stone walls could be estimated as      .  The maximum value of roughness for    

calculations is proposed by HB016 to be      . 

The three variants of the earth pressure coefficients will be tested for friction angles 

varying from       to       .  The calculations will be performed for roughness 

values of    ,       and      .  The roughness angle for Coulombs method is 

adjusted in each case according to equation (57) and the link provided by Figure 3.1 to 

produce the same initial coefficient as the other two calculation methods.  The result from 

all three methods and zero roughness can be seen in Figure 3.7. 

It should be noted that the wall inclination angle,  , in the following figures is the same as 

the wall inclination angle   in Figure 2.11 but with the opposite sign.  Equation (33) is not 

defined for negative values of  .  The correction coefficient    is named as was done in 

HB016 and the wall inclination angle   should not be confused with the wall force angle  .  

It is unfortunate that the two have the same symbol but they will not appear in the same 

equation in this thesis. 
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Figure 3.7:  Comparison of KA for inclined wall from three different methods. r=0. 

Examining Figure 3.7 it is clear that the methods all start at the same coefficients and as 

the inclination of the wall face increases they all decrease at different rates.  Exceptions 

from this are the cases with        where Coulomb‟s method and the stressfield method 

start to increase for wall inclination angles greater than ca.       .  Coulomb‟s method 

and the stressfield method seem to produce a similar trend and as the friction angle 

increases their difference gets smaller.  The modified stressfield method shows a steady 

decrease in the earth pressure coefficient as the wall inclination increases.  The rate of 

decrease seems to be independent of the friction angle.  This means that for friction angles 

lower than        the modified stressfield method gives lower values for the earth 

pressure coefficient but higher for friction angles above       . 

 
Figure 3.8:  Comparison of KA for inclined wall from three different methods. r=0,3. 

Increasing the roughness to      , and Coulomb‟s angle of wall friction to the equivalent 

angle, pushes all the curves a little bit down the scale.  This can be seen in Figure 3.8. 
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Increased roughness has the effect on the modified stressfield method that as the wall 

inclination angle is increased the decay of the earth pressure coefficient slows down.  The 

modified stressfield method still produces higher earth pressure coefficients for larger wall 

inclination angles and friction angles greater than       . 

Increasing the roughness to the maximum value of       allowed in the stressfield 

method and increasing Coulomb‟s angle of wall friction to the equivalent angle, reveals 

much the same trend.  This has been done in Figure 3.9. 

 
Figure 3.9:  Comparison of KA for inclined wall from three different methods. r=0,7. 

As can be seen in Figure 3.9 the modified stressfield method gives decaying values of the 

earth pressure coefficient for small friction angles as the wall inclination angle is increased.  

For higher friction angles the earth pressure coefficient rises with the wall inclination 

angle.  This behavior can be explained by the fact that the shear stresses acting between the 

wall and the soil have greater influence on the lateral earth pressure. 

Comparison of Figure 3.7, Figure 3.8 and Figure 3.9 reveals that Coulomb‟s method and 

the stressfield method proposed by HB016 produce very similar results for all friction 

angles for the calculated values of roughness.  The modified stressfield method produces 

similar results as the other two for small inclinations of the wall, but this does not apply for 

the whole range of  .  With increasing roughness, all three curves are pushed down the 

scale. 
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that become unstable are free to fall independent of the whole wall.  Therefore they are 

often designed so that they can move with the earth mass without resulting in failure of the 
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A normal value of wall inclination of dry stone walls in Norway is      .  This means 
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equivalent of a wall inclination angle of around        .  At this angle the methods all 
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assumed to be in a similar range for all friction angles and roughness numbers in the case 

of a horizontal backfill. 

Retaining structures are often constructed out of pure necessity to make space for new 

structures or installations.  Therefore the terrain behind them is often sloped; and more 

often than not at a considerable angle.  Comparing the three methods for sloped backfill is 

therefore of interest.  This is done for the case of      . 

As the roughness is increased the curves in Figure 3.9 are pushed up the scale.  This starts 

gradually but as the backfill inclination angle nears a specific friction angle the process 

speeds up for the corresponding curve.  As an example a backfill slope of       was 

chosen and is shown in Figure 3.10.  By definition the slope is not stable at higher angles 

than the friction angles so all curves representing lower friction angles than        have 

vanished. 

 
Figure 3.10:  Comparison of KA for inclined wall. r=0,7, α=34°. 

Rankine proposed the idea that a stressfield under an inclined terrain will also be inclined 

by that same angle, the active earth pressure coefficient for his solution is given in equation 

(31).  Substituting this earth pressure coefficient for    in equation (22), remembering to 

use negative values for the friction angle, will develop the modified stressfield method for 

sloping backfill.  Adding the wall inclination angle to the opening angle of the Prandtl zone 

reveals the relationship shown in Figure 3.10. 

Figure 3.10 shows that all three methods show increased earth pressure coefficients for 

vertical walls that decay as the wall inclination angle leans towards the slope angle.  

Coulomb‟s method shows a faster decay for small wall inclination angles but the decay 

slows down as the angle is increased.  As a result the largest difference between 

Coulomb‟s method and the stressfield method lies somewhere between       to 

     , this is near the standard inclination of dry stone walls in Norway.  The modified 

stressfield method shows les decay in earth pressure coefficient than the other two as the 

wall inclination angle is increased. 
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Figure 3.7 to Figure 3.10 show a correlation between all calculation methods.  Although 

the methods do not produce identical results the results lie in a similar range in most cases.  

The modified stressfield method starts with the same values as the other two in the case of 

a horizontal backfill but shows much slower decay as the wall inclination angle is 

increased.  In the case of an inclined backfill the modified stressfield method starts at a 

lower value of the coefficient than the other two but shows faster decay than in the other 

two cases.  The way that the effect of inclined backfill was implemented has not been 

derived theoretically so there might be room for improvements to follow the theory more 

closely. 

3.3 Comparison of lateral earth pressures 

methods to method recommended by 
Eurocode 7 

The Eurocodes are a set of design standards published by the organization Comité 

Européen de Normalisation (CEN) the officially recognized standard body by the Europen 

Union, EU.  The standards aim to provide a consistent set of design rules that combined 

with national annexes create a common design field for engineers throughout Europe.  

Among the member countries of CEN are Norway and Iceland (Wikipedia, 2011). 

The Eurocode standard for geotechnical design is Eurocode 7 (EC7).  It is published in two 

parts 

1. Eurocode 7 part 1:  Geotechnical design – General rules 

2. Eurocode 7 part 2:  Geotechnical design - Ground investigation and testing 

The first part was approved by CEN in 2004 and was published as a standard along with 

the national annex in Norway in 2004 under the name NS-EN 1997-1:2004+NA:2008.  

The second part was approved by CEN in 2006 and was published as a standard along with 

the national annex in Norway under the name NS-EN 1997-2:2007+NA:2008. 

As of March 2010 Eurocode 7, NS-EN:1997-1 and NS-EN:1997-2 along with national 

annexes, replace the NS-34XX standard series as the national standard for geotechnical 

design in Norway (Eurocode, 2008). 

Appendix C in NS-EN 1997-1 provides a chapter on how earth pressures against vertical 

walls can be calculated.  The national annex states that appendix C should be considered as 

an informative chapter.  Therefore it should be used as a guideline when calculating earth 

pressures against vertical walls designed in Norway. 

The lateral earth pressure coefficient is given in figures and they are divided into four 

categories both for the active and passive case.  The case of the horizontal backfill for 

various roughness angle ratios comes first followed by three figures for specific roughness 

ratios and varying backfill ratios. 

Chapter C2 in appendix C provides procedures to evaluate both the passive and active 

earth pressure coefficient.  According to EC7 the earth pressure coefficients can be 

evaluated as 
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When there is a double sign in equations (60) to (62) the top sign refers to the passive case 

and the bottom sign for the active.  The exact theory behind there equations is unknown to 

me but by examining equation (60) it seems to have a contribution from a both a Rankine- 

and a Prandtl zone.  In the following chapter the earth pressure coefficients given in figures 

in EC7 will be used as a base for comparison to methods already derived. 

3.3.1 Active pressures according to Eurocode 7 

All four earth pressure coefficient figures from EC7 have been combined into one for the 

active case and can be seen in Figure 3.11. 

 
Figure 3.11:  Active earth pressure coefficient, KA, as it appears in Eurocode 7. 
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The explanatory figures in Figure 3.11 show that the earth pressure force is tilted at an 

angle   to the horizontal.  This is the same presentation as can be seen in Coulomb‟s 

method shown in Figure 2.12 and Figure 2.13. 

The case of horizontal backfill 

Comparing the values provided with Eurocode 7 to Coulomb‟s method is a straight 

forward task as the wall roughness is defined in the same way in both of them.  In Figure 

3.12 Coulomb‟s method has been superimposed on Figure C.1.1 in Eurocode 7. 

 
Figure 3.12: KA from EC7 and Coulomb’s method superimposed,    . 

It is clear that Coulomb„s method follows the values given by EC7 closely by providing 

similar results.  For the roughness angle ratios      ⁄  and         ⁄  Coulomb„s 

method produces almost the same values as EC7.  As the friction angle decreases the 

relationship Coulomb„s method delivers slightly lower values than EC7.  For full 

roughness Coulombs method produces lower values than EC7 over the entire range.  It is 

clear that for higher angles of wall friction Coulomb‟s method gives lower values for the 

earth pressures than those proposed by EC7.  As these pressures are the driving force in 

structure design using the values in EC7 will require a structure that can withstand larger 

forces thus erring on the safe side. 

As the formulas provided by EC7 have a factor representing the logarithmic spiral it is 

interesting to see what happens when the stressfield method is used for comparison instead 

of Coulomb‟s method. 
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Figure 3.13: KA according to EC7 with the stressfield method superimposed,    . 

Figure 3.13 shows a much closer relationship between the stressfield method and the 

values provided by EC7 than Coulomb‟s method produced.  The roughness used in the 

calculations was calculated for each friction angle using equation (57). 

The difference between the calculated values and the given values is so small that it is safe 

to assume that the stressfield method produces almost the same values as those presented 

in figure C1.1 in EC7. 

The difference between the calculated values in Figure 3.12 and Figure 3.13 can be 

explained by the fact that Coulomb‟s method assumes a planar failure surface, as this is not 

the most critical shear surface it adds extra stiffness against failure resulting in lower 

values of the earth pressure coefficient. 

The case of inclined backfill 

For the case of an inclined backfill the stressfield method, like Coulomb‟s method, 

assumes a planar failure surface.  It delivers almost exactly the same results as Coulomb‟s 

method for this case as can be seen in Figure 3.5.  It is therefore interesting to see if the 

values calculated these methods agree with the values of    presented in EC7.  In Figure 

3.14 the stressfield method has been superimposed on figure C1.2. in EC7, the figures 

assume a zero roughness angle. 
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Figure 3.14: KA from EC7 and superimposed stressfield method,    ,    ⁄     . 

Figure 3.14 shows a strong correlation between the stressfield method and the values given 

by EC7 for the case of zero roughness angles.  When the terrain inclination angle nears the 

friction angle some a noticeable difference appears between the values given by EC7 and 

the calculated ones.  This is evident both for positive and negative angles of terrain 

inclination.  There seems to be a slightly better fit between the calculated values and the 

given ones for higher values of friction angles.  For smaller friction angles EC7 estimates a 

bit larger values for the earth pressure coefficient than are calculated with the stressfield 

method. 

 
Figure 3.15: KA from EC7 and superimposed stressfield method    ,    ⁄      . 
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Figure 3.15 shows the stressfield method superimposed on the values given by figure 

C.1.3. in EC7.  A very strong correlation is evident between the calculated values and the 

ones given by EC7 for most of the range    ⁄ .  However as the terrain inclination angle 

nears the friction angle in either the positive or negative direction EC7 provides slightly 

higher values for the earth pressure coefficient. 

 
Figure 3.16: KA from EC7 and superimposed stressfield method,    ,    ⁄     . 

Figure 3.16 shows the stressfield method superimposed in figure C1.4. from EC7.  It shows 

the active earth pressure coefficient as a function of the friction angle and the inclination 

angle of the backfill when the roughness between soil and structure is fully mobilized.  The 

stressfield method shows a reasonable fit to the values proposed by EC7 for positive 

inclination angles of the backfill.  As the backfill is sloped at a negative angle the fit 

between given and calculated values gets worse. 

Although it cannot be assumed that the stressfield method as presented in HB016 delivers 

exactly the same results as those given by EC7, the difference between the two can in most 

cases be overlooked.  The greatest difference found with my calculations is for the case of 

zero wall roughness angle and a backfill inclination equal to the friction angle.  The 

difference in this case is estimated around       .  It can therefore be assumed that the 

stressfield method produces similar values for the active earth pressure coefficients as the 

ones proposed by EC7; it should be noted that the difference between the methods always 

erred in such a way that EC7 gave higher values for the earth pressure coefficient than the 

stressfield method. 

  

0,1

1,0

10 15 20 25 30 35 40 45

A
ct

iv
e

 e
ar

th
 p

re
ss

u
re

 c
o

e
ff

ic
ie

n
t,

  K
A
 [

-]
 

Friction angle,  φ' [°] 

Active earth pressure coefficient as a function of the friction angle 

The stressfield method

β/φ'=1,0 

β/φ'=-1,0 

β/φ'=0,0 

β/φ'=-0,6 

β/φ'=0,6 



47 

3.3.2 Passive pressures according to Eurocode 7 

All four earth pressure coefficient figures from EC7 have been combined into one for the 

passive case and can be seen together in Figure 3.17 

 
Figure 3.17:  Passive earth pressure coefficient, KP, as it appears in Eurocode 7. 

As can be seen in Figure 3.17, the passive earth pressure coefficient seems to always 

converge to a value for in all the figures provided by EC7.  This holds true for all 

inclination angles of the backfill and all values of roughness.  This differs from the results 

seen for both Coulomb‟s method and the stressfield method that can be seen in Figure 3.6 

as the passive pressure seems to grow exponentially for high roughness and friction angles.  

The stressfield method defined in HB016 is also not defined for backfills that are inclined 

upwards at an angle in the case of passive pressures.  By definition it should therefore not 

be applied in those cases. 
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It has been shown that the stressfield method delivers almost exactly the same values as 

Coulomb‟s method in the case of inclined backfill; it is therefore interesting to compare 

them to the values proposed by EC7. 

The case of horizontal backfill 

In Figure 3.18 the stressfield method has been superimposed on the values given by EC7 

for the case of passive earth pressures. 

 
Figure 3.18: KP according to EC7 with the stressfield method superimposed,    . 

The given values and the calculated ones are in total agreement in the case of no roughness 

but as the roughness is increased the difference between the two increases.  This result is a 

bit surprising because of the good fit produced between the two in the active case with a 

horizontal backfill; see Figure 3.13. 

When designing a structure that retains a mass of earth the passive force is usually a 

resisting force.  As EC7 gives higher values of    than the stressfield method it here errs 

on the side of failure if the stressfield method can be assumed to produce accurate results. 

The case of inclined backfill 

As can be seen in Figure 3.6 the passive earth pressures grow exponentially according to 

both Coulomb‟s method and the stressfield method for the case of inclined backfill.  Both 

methods assume a planar failure surface in this case and as EC7 assumes a curved one a 

difference as the one seen in Figure 3.4 can be expected.  In Figure 3.19 the stressfield 

method has been superimposed onto the values given in figure C.2.2 in EC7 
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Figure 3.19: KP from EC7 with stressfield method superimposed,    ,    ⁄     . 

It is clear from Figure 3.19 that the stressfield method and Coulomb‟s method do not 

produce similar values as the ones proposed by EC7 in the case of sloped terrain with no 

roughness.  The fit seems to be better for small friction angles and small inclinations of the 

backfill.  As the inclination of the backfill nears the friction angle the difference between 

the proposed values and the calculated ones becomes larger; this difference gets very large 

for large friction angles. 

With increased roughness between the structure and backfill the trend seen in Figure 3.19 

only increases and more of the curves show this exponential behavior.  It can therefore be 

assumed that neither the stressfield method nor Coulomb‟s method can be expected to 

deliver results similar to those proposed by EC7 in the case of passive pressures from an 

inclined backfill. 

It is interesting to see if the modified stressfield method from chapter 3.2 will produce 

better results.  Making the same assumption as was done in the case of inclined terrain it is 

possible to use the modified stressfield method.  As the Prandtl zone grows towards the 

backfill the passive pressures grow with increased inclination of the backfill.  Adding the 

backfill angle to the opening angle of the Prandtl zone we end up with an equation 

transferring the stress from an inclined Rankine zone to a normal stress acting on a vertical 

wall.  In this case there is no contribution from the shear stress to the earth pressure 

coefficient as the wall is assumed to be vertical.  In this test the factor   is used as 

presented in equation (22) as trials with   as described with equation (31) did not produce 

comparable results. 

The new opening angle of the Prandtl zone in equation (22) will therefore be (   ), 
when   is defined as positive for terrain sloping in an upwards direction.  As EC7 assumes 

both positive and negative angles of  , the modified stressfield method will use a planar 

shear surface when the backfill is inclined at a downward angle, just as the method 
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proposed in HB016.  This version of the modified stressfield method has been 

superimposed on figure C.2.2. from EC7 in Figure 3.20. 

 
Figure 3.20: KP from EC7 and the modified stressfield method,    ,    ⁄     . 

Figure 3.20 shows that the modified stressfield method produces similar trends as are 

proposed by EC7.  It converges to a value for all inclination angles of the backfill, thus 

solving the problem with the exponential divergence seen in Figure 3.19 but at the same 

time the fit gets worse for smaller friction angles.  The method cannot be assumed to 

produce the same values as are proposed by EC7.  With the exception of the curve where 

the angle of the backfill is equal to the friction angle the modified stressfield method can 

be assumed to deliver results of a similar order as the ones given by EC7.  The fit between 

the modified stressfield method and the values given by EC7 improves as the roughness is 

increased. 

 
Figure 3.21: KP from EC7 and the modified stressfield method,    ,    ⁄      . 
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Figure 3.21 shows the modified stressfield method superimposed on figure C.2.3 from 

EC7.  The modified stressfield method produces values more similar to those given by 

EC7 for higher values of roughness.  The modified stressfield method produces lower 

values of KP than are proposed by EC7 in the case of low friction angles and positive 

inclination angles of the backfill.  As the friction angle rises the method shows faster 

growth than the proposed values, this results in higher values of earth pressure coefficient 

for friction angles larger than       . 

 
Figure 3.22: KP from EC7 and the modified stressfield method,    ,    ⁄     . 

Figure 3.22 shows the modified stressfield method superimposed on figure C.2.4 from 

EC7.  The roughness angle is in this case equal to the soils friction angle, corresponding to 

a roughness number of      .  It is clear from Figure 3.22 that a good fit is achieved for 

the negative terrain inclination angle equal to the friction angle.  As the terrain inclination 

angle rises this fit gets worse and it gets difficult to compare the two. 

It is clear that the passive earth pressure coefficients proposed by EC7 are calculated with a 

method other than the ones derived in this paper.  For the case of an inclined backfill the 

method proposed by HB016 delivered results of a different order than the ones given by 

EC7.  The modified stressfield method produced results closer to the ones proposed by 

EC7, the method fits best to the proposed values for the mid-range of wall roughness 

angles. 

It is important to be aware of the limitations of the methods used to calculate the passive 

earth pressures.  Because passive pressures are often overlooked when designing retaining 

walls this point is perhaps not as important as it would otherwise be. 

The main result from comparing the methods derived to the values given by EC7 is there 

seems to be good correlation between the given values of active pressures and the 

calculated ones.  Using the stressfield method to calculate active earth pressures should 

satisfy the requirements of EC7. 
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4 Design methods proposed by 

Håndbok 016 

The Norwegian Road Administration (n. Statens vegvesen), publishes various handbooks 

to help designers, contractors and quality inspectors to uphold the standard requirements 

on each project they are involved in.  These handbooks are divided into two groups:  

standards and guidelines.  Handbooks classified as standards provide rules and 

requirements in each field that shall be fulfilled in order to get the NRA‟s approval of the 

project.  Handbooks classified as guidelines however contain guidelines, textbooks and 

road traffic data. 

Handbook 016 falls in the latter category and is a guidebook intended as a design aid to 

contribute to good and safe geotechnical design in projects that fall under the jurisdiction 

of the NRA.  Chapter 9 is dedicated to applying the theory of earth pressures and bearing 

capacity to the design of retaining structures and bridge abutments.  Retaining structures 

are then divided into retaining walls and dry stone walls. 

Retaining structures come in many sizes and shapes but they all have the common purpose 

of creating a difference in elevation.  This elevation difference may then be for practical or 

esthetic purposes.  The main types of retaining walls are gravity walls, cantilever walls, 

anchored wall and sheet-pile walls.  The subject of this chapter will be methods proposed 

to design cantilevered retaining walls. 

4.1 Requirements 

Frost heave 

The soil mass on which the structure is founded should not be subject to frost heave.  If the 

in situ soil has frost heaving properties it should be exchanged for a material that does not.  

This also applies to the masses immediately behind the structure and should be done to the 

depth of the frost line.  This problem can also be solved be means of frost isolation (Statens 

vegvesen, 2010) 

Drainage 

Groundwater should be drained from behind the structure and its base (Statens vegvesen, 

2011).  If the structures serviceability and stability depend upon a successful drainage 

system it is required that a maintenance plan be established and followed or a drainage 

checking system to check if maintenance is required. 

Loads 

Retaining structures are to be dimensioned in accordance with load combinations from the 

ultimate limit state.  Design loads should be considered as proposed by Håndbok 185 

(Statens vegvesen, 2009). 

Roughness safety factors and soil mobilization 

The roughness number for a particular should be selected in accordance with Table 4.1. 
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Table 4.1: Proposed design values for the roughness number,  , according to HB016. 

Roughness, 𝒓 State Comment 

     ULS Used when structure rotates about foundation, slides outwards or 

masses behind the wall settle more than the structure.  Shear 

stresses onto structure act at a downward angle.   SLS 

0 - 
Used when there is no relative movement between the structure 

and the retained masses. 

-0,5 - 
Used when the structure settles more than the retained masses.  

Shear stresses onto structure act at an upward angle. 

 

Structures on rock should be dimensioned using    .  Other values are acceptable on 

special occasions such as when the backfill is poorly compacted. 

For the ultimate limit state the material safety factor    are to be selected in with respect to 

the failure mechanism and the consequences of failure of the proposed structure.  The 

material factors for the design should be selected in accordance with Table 4.2 

Table 4.2: Proposed design values for the material factor, γM, according to HB016. 

Consequence 

class 

Failure mechanism 

ductile, dilatant 

failure 

neutral failure brittle, contractant 

failure 

1 - Less serious 1,25             1,40* 1,30              1,40* 1,40 

2 - Serious 1,30             1,40* 1,40 1,50 

3 - Very serious 1,40 1,50 1,60 

 

The split cells in Table 4.2 are a result of minimum requirements in Eurocode 7: 

Geotechnical design, when analyzing on a total stress basis. 

A guideline for deciding a consequence class for a proposed project is provided in Table 

4.3. 

  



54 

Table 4.3: Proposed scheme to select design consequence class, CC, according to HB016. 

Consequence 

class 
Description Example 

CC3 

Large consequences in the form of loss 

of life or large economical-, social- or 

environmental consequences. 

Spectator stands or other building 

where large crowds gather and the 

consequences of failure are great. 

CC2 

Medium consequences in the form of 

loss of life, moderate economical-, 

social- or environmental 

consequences. 

Private residences and offices, public 

buildings where consequences of 

failure are moderate. 

CC1 

Small consequences in the form of loss 

of life, and small or insignificant 

economical-, social- or environmental 

consequences. 

Building where people normally do 

not reside or stay for long periods of 

time. 

 

When the expected consequence class and failure mechanism has been evaluated the 

roughness number for the ultimate limit state can be calculated in accordance to Table 4.1.  

The mobilized friction angle for the design can then be calculated with equation (7) where 

the capital letter F is exchanged for the value of   . 

For the serviceability limit state the roughness can be evaluated in accordance with Table 

4.1 where   is given by Table 4.4. 

Table 4.4:  Proposed design values for the degree of mobilization,  , according to HB016. 

Foundation Flexible 

structure 

Normal 

structure 

Stiff 

structure 

Soft 0,8 0,75 0,70 

Medium 

stiff 

0,75 0,70 0,65 

Stiff / Rock  0,70 0,65 0,60 

 

Earth pressures 

The methods used in the backfill process and compaction have an effect on the resulting 

earth pressures.  Guidelines on the backfill and compaction process are given in Håndbok 

100-1 (Statens vegvesen, 1996) and Håndbok 018 (Statens vegvesen, 2011) 

Earth pressures should be calculated for the ultimate limit state, ULS, as well as the 

serviceability state, SLS. The most critical case shall be used for the design of the 

concrete/reinforcements of the structure.  

Where no relative movement is expected between the soil and structure, it is proposed that 

at rest earth pressure be used as design pressure for the retaining structure.  For normally 

consolidated earth, no relative movement is defined as lateral movement of less than 

     of the walls height. 
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For structures that are founded on rock and the distance between wall and rock-face is 

small in comparison to the height, the earth pressures shall be calculated in accordance 

with chapter 5.4.1 in HB016 (Statens vegvesen, 2010). 

Earth pressures from surface loading should not affect the structure to a greater depth than 

5 meters.  Tensile stresses in cohesive soils should be neglected as they will disappear with 

the first tension crack.  It is assumed that the stresses increase linearly with depth from 

zero at terrain level in the case of tensile stresses, this assumption both adds to the resulting 

lateral force and pulls its arm of application towards the surface, which adds to its force 

lever,   . 

These assumptions create four stress cases that can be seen in Figure 4.1. 

 
Figure 4.1:  possible stress cases according as proposed by HB016. 

The geometry shown in Figure 4.1 is controlled by the height of the structure, the terrain 

load, inclination of the terrain, unit weight of the soil, the roughness, the cohesion and the 

friction angle.  How the stress points listed in Figure 4.1 are calculated in each case for a 

flat terrain behind the structure is shown in Table 4.5. 

Table 4.5:  Points in stress-shapes for the case of flat terrain, according to HB016. 

Point 
number Case A Case B 

(     ) (    ) (    ) 
(     ) (        (   )      ) (        (       )      ) 

(     ) (        (       )      ) (    ) 

(     ) (    )  

 Case C Case D 
(     ) (    ) (     ) 

(     ) (        (   )      ) (        (       )        ) 

(     ) (        (       )        ) (        (     )        ) 

(     ) (        (     )        ) (        (     )      ) 

(     ) (        (     )      ) (    ) 

(     ) (    )  
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The variable   stands for the depth of application of the earth pressures originating from 

the terrain load.  HB016 requires this value to be equal to     .  The coordinates for the 

stress points, as seen in Figure 4.1, when the backfill is sloped are shown in Table 4.6. 

Table 4.6: Points in stress shapes for the case of sloped terrain, according to HB016. 

Point 

number 
Case A Case B 

(     ) (     ) (     ) 

(     ) (         (   )  
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       ) 
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(     ) (         (   )  
 

    
        ) (         (       )  

 

    
         ) 

(     ) (         (       )  
 

    
          ) (         (     )  

 

    
          ) 

(     ) (         (     )  
 

    
          ) (         (      )  

 

    
       ) 

(     ) (         (      )  
 

    
       ) (    ) 

(     ) (    )  

 

The earth pressure cross section is taken to be from the heel of the footing in a vertical line 

to the terrain.  The height of this cross section will in the case of a sloped terrain differ 

from the height of the structure.  Therefore the variable   has been interchanged with the 

variable    in Table 4.6 representing the height of the section.  The magnitude of the earth 

pressure force is calculated using the values from either Table 4.5 or Table 4.6 and  

equation (G1) given in Appendix G.  The point of application,   , is calculated with the 

same values using equation (G3).  Note that because the points are oriented in a clockwise 

direction, both equations should be used with a change in sign. 

For structures connected to the road system the passive earth pressures should not be 

considered in the design because of the risk that the earth in front of the structure could 

later be dug away to make room for infrastructural facilities such as pipes and cables. 

Bearing capacity 

Bearing capacity is to be calculated as described in chapter 2.4.  Effective stress analysis is 

usually applied but if cohesive materials are found within 1,5 x the foundation width the 

bearing capacity shall be calculated using the total stress analysis or alternatively an 

effective stress analysis including the effect of excess pore pressures. 

The design roughness under the foundation, rb, for structures up to the height of 5 meters 

should be selected in accordance with Table 4.1. 
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Table 4.7:  Proposed foundation roughness, rb, according to HB016. 

Horizontal terrain in front of structure Sloped terrain in front of structure 

Roughness, 𝒓  Material under base Roughness, 𝒓  Material under base 

≤ 0,9 Sand, gravel, blasted rock ≤ 0,8 Gravel and blasted rock 

≤ 0,8 Clay and silt ≤ 0,7 clay, silt and sand 

 

For higher structures it should be investigated if lower values of    should be used in the 

calculations.   

Furthermore it is a requirement that when cohesive soils are used as foundation material, 

they should be undisturbed, drained and unfrozen to decrease the risk of the base sliding on 

the foundation. 

Geometrical uncertainties 

Any uncertainty in geometry should be taken into account in the design phase with the 

formula 

            (63) 

where    is the design geometrical value,      is the proposed/expected value and    is 

the uncertainity allowed for in the geometry.  Values for    vary but for the base an 

uncertainty of about         is to be expected if special measures are not taken to 

reduce it. 

For a cantilever wall    should be estimated as 10% of the height above the baseplate, 

with the maximum value of 0,5 meters. 

Geotechnical parameters 

The geotechnical parameters of the backfill and foundation control the pressures acting 

against the structure and the bearing capacity of the foundation.  To ensure a safe design it 

is essential to adjust each design to the local ground conditions. 

In some cases previous soil investigations have been conducted in the immediate area 

where the proposed structure will rise and a desk study will provide a solid ground to base 

a design on.  This is however not always the case and therefore the need for further 

investigations may arise.  There are many methods available to determine various 

geotechnical parameters and they vary in extent, price and quality.  It is important to 

evaluate how precise results are required from the investigations to ensure that an 

economically feasible solution is chosen. 

If however no information other than a general visual description is available for ground 

conditions, some general parameters are given for the assumed earth types.  The 

parameters proposed by HB016 can be seen in Table 4.8. 
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Table 4.8: Proposed strength parameters for assumed earth types, according to HB016. 

Position Material Unit 

weight 

Characteristic 

friction angle 

Attractio

n 

[kN/m
3
] 

ϕ' 

[°] 

tan(ϕ') 

[-] [kPa] 

Behind and 

in front of 

retaining 

structure 

Compacted 

fill masses * 

Blasted rock ** 19 42 0,90 0-10 

Gravel 19 38 0,78 0 

Sand 18 36 0,73 0 

Uncompacted 

natural 

masses 

Gravel 19 35 0,70 0 

Sand 17 33 0,65 0 

Silt 18 31 0,60 0 

Clay and 

clayey silt 

Firm *** 20 26 0,49 0 

Wet *** 19 20 0,36 0 

Under 

footing 

Compacted 

fill masses * 

Blasted rock** and **** 19 42/45 0,90-1,00 10 

Gravel ***** 19 38/40 0,78-0,84 10 

Sand 18 36 0,73 10 

Uncompacted 

natural 

masses 

Gravel 
Compacted 19 38 0,78 0-10 

Loose 18 36 0,73 0-5 

Sand 
Compacted 18 36 0,73 0-10 

Loose 17 33 0,65 0-5 

Silt 
Firm 19 33 0,65 0-10 

Wet 18 31 0,60 0-5 

Clay and 

clayey silt 

Firm *** 19 26 0,49 0-20 

Wet *** 19 20 0,36 0-5 

        * Compacted in layers on land 

     ** Blasted and machine crushed rock. If high quality higher values can be used. 

 *** Clays or clayey silt, strength parameters should be obtained from undisturbed samples 

**** The highest values can be used for blasted rock of high quality under footing 

 ***** The highest values can be used for gravel of high quality under footing 

   

Values found in Table 4.8 provide a sort of frame for the values that could be encountered 

in practical applications while designing retaining structures.  The values highlighted with 

bold letters in Table 4.8 will be used as a base for the calculations in the following chapter. 
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4.2 Cantilever walls 

A cantilever retaining wall is a relative thin wall that uses a moment to counter the lateral 

earth pressures. This moment can be created with a base plate buried behind the wall, a 

base plate that extends out in front of the wall or a combination of both variants.  Figure 

4.2 shows a variant of both cases in a sloped terrain and how the geometrical parameters 

are defined. 

 
Figure 4.2:  A general case of a cantilever wall showing main geometrical parameters. 

In the case of a cantilever retaining wall it is the general assumption that the earth 

pressures act upon a plane that stretches from the heel of the footing directly up to the 

terrain.  In the case of a sloping backfill, this will have an effect on the stress-shape 

coordinates put into equations (G1) and (G3).  The earth mass above the heel is calculated 

as a part of the structure itself. 

 

Figure 4.3: Forces acting on a general case of a cantilever retaining wall. 
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4.2.1 Calculation procedure 

The force resultant that the structure exerts on to the foundation,   , can be calculated by 

summing up all vertical forces in Figure 4.3.   

                           (    ) (64) 

where       is the weight of the concrete structure,       is the weight of the soil on top of 

the toe,       is the weight of the soil on top of the heel,   is the vertical force acting on the 

top of the vertical wall,     is the vertical force caused by the active shear stress and     is 

the vertical force caused by the passive shear stress.  The eccentricity,  , of the force 

resultant can be calculated by setting up a moment equilibrium about the point O.  This 

yields the equation 

   
                                           (            )

  
 (65) 

where    is the active force resultant,     is the passive force resultant and    to    are the 

force levers.  The last terms in equations (64) and (65) come from the passive force.  For 

structures connected to the road system this force should be neglected and these variables 

should be omitted. 

Once the eccentricity has been calculated the effective foundation width,   , can be 

evaluated with equation (47).  The force resultant is assumed to be equally distributed over 

the effective foundation width.  This gives the foundation load as 

   ̅̅ ̅  
  

  
 (66) 

One of the design requirements in HB016 is that the foundations bearing capacity, 

calculated using equation (44) or (48), be greater than the foundation load. 

   ̅̅ ̅    ̅̅ ̅ (67) 

 

The roughness between foundation and the base of the structure can be derived using 

formula (21) as 

    
    ⁄

(  ̅̅̅̅       )    (  )
 (68) 

where    is the horizontal force acting on the structure and     is the excess pore pressure 

under the footing.  The requirement is that the value of    not exceed the values given in 

Table 4.7. 

For practical purposes it is important to ensure that the foundation roughness requirements 

are met.  This is because the iterative process presented by equations (46) becomes 

unstable for high values of roughness combined with high friction angles. 
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4.2.2 Assumptions and constraints 

Calculating whether a retaining wall as seen in Figure 4.2 will be stable requires a great 

number of input parameters both in the geometry of the structure and terrain as well as in 

geotechnical parameters.  In order to investigate trends when parameters are varied, a few 

variables will be fixed while others are varied. 

Geotechnical parameters 

The foundation and backfill are assumed to be comprised of two materials.  They will be 

varied between types highlighted with bold letters in Table 4.8. 

The material factor of safety for the calculations is set to       , as it can be taken as a 

mean value from Table 4.2.  The safety factor for the load and the effect of gravity will be 

set equal to          . 

Geometry of the wall and terrain 

The geometry of the wall will have a few fixed points.  The base plate will have the same 

thickness behind and in front of the vertical wall.  Because the height of the wall will vary 

greatly it will be fixed to a large value of           . Although the vertical wall will 

vary in height, its thickness at its bottom and at its crown will be kept constant.  The values 

used will be         and        . 

 
Figure 4.4: Shows the simplified geometry used in hand calculations. 

When designing a cantilever wall its eventual height is often one of the few variables that 

are fixed throughout the design process.  In order to achieve a stable structure other 

geometrical variables will have to be varied.  The stability depends on many variables but 

the one with the greatest influence is the width of the base. 

4.2.3 Calculated cases 

The base plate widths of cantilevered walls resulting in the same foundation load as the 

bearing capacity is calculated for wall heights ranging from      to        .  This 

is done for each combination of soil types in foundation and backfill highlighted with bold 

letters in Table 4.8, both for a horizontal and an inclined backfill.  The optimal position of 

the vertical wall is then calculated for each case and the minimum base plate witdth as 

well.  The total number of cantilever walls designed in this study with hand calculation 

methods is around 360.  The safety factor of each case when the surface load has been 

removed is calculated again with my own implementation of the Phi/c reduction method, 
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this sums up to around 720 design variants.  Some cases did not yield an answer and others 

yielded answers of little practical importance as can be seen for selected cases in Table 0.2 

and Table 0.3 in Appendix H. 

4.2.4 Critical base width for L-shaped cantilever wall 

Assuming a toe width equal to        , a horizontal backfill with a terrain load of 

        the width of the footing that gave the same foundation load as the bearing 

capacity was calculated.  Each case has been solved so that the vertical load is equal to the 

bearing capacity.  This results in a limit design that only has the material factor of safety, 

      , that acts against failure.  A selection from the results from these calculations can 

be seen in Table 4.9. 

Table 4.9:  Wall heights and widths resulting in        for varying soil types. 

Case  H 

[m] 

W 

[m] 

Wtoe 

[m] 

EA 

[kN] 

rb 

[-] 

RV 

[kN] 

e 

[m] 

B0 

[m] 

qv 

[kPa] 

Foundation 

material 

Backfill 

material 

1 3 1,4 0,0 36,3 0,523 100,2 -0,31 0,75 133,3 Bl. Rock Bl. rock 

2 5 2,3 0,0 84,1 0,465 266,9 -0,43 1,45 183,6 Bl. Rock Bl. rock 

3 7 3,2 0,0 140,9 0,418 502,6 -0,55 2,10 239,3 Bl. rock Bl. rock 

4 10 4,6 0,0 261,6 0,393 1004,6 -0,70 3,17 316,6 Bl. rock Bl. rock 

5 3 2,3 0,0 66,8 0,594 159,6 -0,37 1,55 103,1 Bl. rock Clay or cl. silt 

6 5 4,2 0,0 156,0 0,487 465,7 -0,45 3,26 142,7 Bl. rock Clay or cl. silt 

7 7 6,2 0,0 262,9 0,408 949,4 -0,52 5,16 184,0 Bl. rock Clay or cl. silt 

8 10 9,8 0,0 490,2 0,348 2104,6 -0,57 8,65 243,2 Bl. rock Clay or cl. silt 

9 3 1,7 0,0 47,5 0,558 121,9 -0,34 1,04 116,6 Bl. rock Gravel 

10 5 3,0 0,0 110,2 0,480 335,6 -0,45 2,11 159,3 Bl. rock Gravel 

11 7 4,3 0,0 184,6 0,422 649,1 -0,55 3,16 205,4 Bl. rock Gravel 

12 10 6,3 0,0 342,8 0,383 1341,3 -0,66 4,96 270,2 Bl. rock Gravel 

13 3 2,7 0,0 36,3 0,572 181,9 -0,11 2,50 72,6 Clay or cl. silt Bl. rock 

14 5 4,1 0,0 84,1 0,548 440,6 -0,18 3,71 118,8 Clay or cl. silt Bl. rock 

15 7 5,2 0,0 140,9 0,521 776,6 -0,27 4,66 166,6 Clay or cl. silt Bl. rock 

16 10 7,0 0,0 261,6 0,508 1479,3 -0,37 6,27 235,9 Clay or cl. silt Bl. rock 

17 3 6,9 0,0 66,8 0,428 448,1 -0,04 6,80 65,9 Clay or cl. silt Clay or cl. silt 

18 5 10,6 0,0 156,0 0,396 1130,4 -0,07 10,49 107,7 Clay or cl. silt Clay or cl. silt 

19 7 14,0 0,0 262,9 0,365 2067,4 -0,11 13,81 149,7 Clay or cl. silt Clay or cl. silt 

20 10 19,3 0,0 490,2 0,348 4039,6 -0,15 19,04 212,2 Clay or cl. silt Clay or cl. silt 

21 3 4,0 0,0 47,5 0,530 257,4 -0,09 3,79 67,9 Clay or cl. silt Gravel 

22 5 6,0 0,0 110,2 0,502 629,9 -0,15 5,70 110,5 Clay or cl. silt Gravel 

23 7 7,7 0,0 184,6 0,472 1122,0 -0,22 7,29 153,8 Clay or cl. silt Gravel 

24 10 10,5 0,0 342,8 0,457 2152,5 -0,30 9,89 217,5 Clay or cl. silt Gravel 

25 3 2,3 0,0 36,3 0,455 153,4 -0,16 1,94 79,0 Gravel Bl. rock 

26 5 3,4 0,0 84,1 0,432 375,1 -0,25 2,91 128,8 Gravel Bl. rock 

27 7 4,4 0,0 140,9 0,405 669,7 -0,36 3,72 180,2 Gravel Bl. rock 

28 10 6,0 0,0 261,6 0,393 1281,5 -0,48 5,04 254,3 Gravel Bl. rock 

29 3 6,4 0,0 66,8 0,309 417,3 -0,06 6,28 66,4 Gravel Clay or cl. silt 
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Case  H 

[m] 

W 

[m] 

Wtoe 

[m] 

EA 

[kN] 

rb 

[-] 

RV 

[kN] 

e 

[m] 

B0 

[m] 

qv 

[kPa] 

Foundation 

material 

Backfill 

material 

30 5 10,0 0,0 156,0 0,282 1065,8 -0,09 9,83 108,4 Gravel Clay or cl. silt 

31 7 13,4 0,0 262,9 0,257 1973,8 -0,13 13,12 150,4 Gravel Clay or cl. silt 

32 10 18,6 0,0 490,2 0,243 3882,0 -0,17 18,22 213,0 Gravel Clay or cl. silt 

33 3 3,4 0,0 47,5 0,408 224,3 -0,12 3,18 70,6 Gravel Gravel 

34 5 5,2 0,0 110,2 0,383 554,6 -0,19 4,84 114,6 Gravel Gravel 

35 7 6,8 0,0 184,6 0,356 1000,3 -0,28 6,29 159,0 Gravel Gravel 

36 10 9,3 0,0 342,8 0,342 1929,5 -0,37 8,60 224,3 Gravel Gravel 

 

The results in Table 4.9 show that the base width is largest when founded on soils with 

lower friction angles and it gets larger as the height of the structure is increased.  This is as 

is to be expected as the bearing capacity is linked to the friction angle through all the 

bearing capacity factors   ,    and   , although the last one is not used in this case.  

Cases involving backfill masses with lower friction angles require larger base widths.  This 

is as is to be expected as Figure 2.8 shows that the active earth pressure coefficient is 

higher for soils with lower friction angles resulting in larger overturning moments. 

Plotting the width of the structure as a function of its height gives a clearer picture of what 

is going on, this is shown for each foundation type in Figure 4.5 to Figure 4.7 with a 

smaller height interval than was given in Table 4.9. 

 
Figure 4.5:  Base widths for varying backfill soils on blasted rock foundation. 
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Figure 4.6:  Base widths for varying backfill soils on gravel foundation. 

 
Figure 4.7:  Base widths for varying backfill soils on clay or clayey silt foundation. 

From figures Figure 4.5 to Figure 4.7 it is clear that with stronger materials both in the 

foundation and behind the structure the base width necessary to retain the backfill is 

reduced.  What is noticeable is how slowly the curve representing clay or clayey silt rises 

in Figure 4.5 in comparison to the other two.  As the blasted rock material used in the 

foundation is the only material with a non-zero attraction it raises the question if the 

attraction has such a large effect on the base width.  The calculations have been done again 

for this case with the assumption of zero attraction; this can be seen in Figure 4.8. 
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Figure 4.8:  Base width for varying backfill soils on blasted rock foundation, a=0. 

Comparing Figure 4.8 to Figure 4.5 reveals that the attraction in the foundation material 

has substantial impact on the required foundation with.  It can be seen in Figure 4.8 that the 

curve representing the backfill mass with the lowest friction angle is most affected by this 

change. 

4.2.5 Effect of varying the toe width of cantilever walls 

All the examples calculated in the previous chapter are for cantilever retaining walls with 

zero toe width, or in other words “L”-shaped cantilever walls.  By examining Figure 4.4 it 

is clear that when the toe width is increased while keeping the total width constant the 

earth mass that rests on top of the heel is decreased.  This results in a decrease in total 

vertical force as well as a change in the internal moment balance, affecting the effective 

footing width as well. 

In order to study the effect of various toe widths the case of a     ,        wall 

founded on gravel and retaining a gravel mass has been chosen.  This case is highlighted 

with bold letters in Table 4.9.  The base width is kept constant while the width of the toe is 

varied and for each case the resulting vertical pressure is subtracted from the bearing 

capacity.  These calculations are shown in Figure 4.9. 
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Figure 4.9:  Shows the remaining bearing capacity as a function of base toe width. 

Figure 4.9 shows that a clear peak in remaining bearing capacity is reached in this case 

when the base toe width is equal to           .  Designing a structure that utilizes the 

optimal toe width to maximize bearing capacity is important because it allows the designer 

to reduce the width of the structures base thereby reducing the volume of concrete used in 

the structure. 

The dashed part of the curve represents a region where the maximum allowed base 

roughness of        is reached.  The reason for this is that as the width of the toe is 

increased, less mass rests on top of the heel lowering the vertical load on the foundation 

while keeping the horizontal load constant.  The resisting shear strength is linearly 

connected to the normal stress so when resisting shear strength drops it leads to a decrease 

in the divider in equation (68).  This results in an increase in   . 

The bearing capacity equation (44) dependent on the bearing capacity factor,   .  It can be 

seen in Figure 2.15 that for a constant friction angle, the bearing capacity factor    reduces 

as the foundation roughness increases, resulting in lower bearing capacity.  As the 

foundation roughness has a theoretical maximum value of      the bearing capacity 

reaches its minimum value there as well.  Increasing the toe width further will therefore 

lower the vertical load resulting in an increase in the remaining bearing capacity.  This 

behavior is mathematically understandable but at this point failure in the soil mass under 

the base is already reached and therefore this peak in bearing capacity is not important.  It 

is useful to know why this the remaining bearing capacity increases but it is outside the 

scope of theoretical interest. 

To further study the effect of varying the toe width it is possible to calculate the 

mobilization of the friction angles that result in a critical design for each toe width.  The 

mobilization is done as is explained with equation (8) and equation (7) can then be used to 

calculate the factor of safety  . 

To implement this method to the hand calculations the original mobilized friction angle    

is noted and then set equal to     , resulting in zero mobilization of the friction angle 
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and failure in the model.  The mobilized friction angle of the backfill mass is then 

incrementally increased until the point of stability is reached.  This mobilization marks the 

point of a model factor of safety of        .  Dividing the tangent of this fully 

mobilized friction angle with the tangent of the original one gives an overall model factor 

of safety.  It should be noted that this process of reducing material strength is done by 

assuming that all materials have the same degree of mobilization and then increasing the 

all them all by the same mobilization increment.  It should be noted that the increment in 

mobilization    does not necessarily mean equal increments in friction angles between the 

model materials.  The results from these calculations, for varying toe widths, can be seen in 

Figure 4.10. 

 
Figure 4.10:  Shows the factor of safety as a function of base toe width. 

The safety factor plotted in Figure 4.10 is the added safety factor when the material safety 

factor is also applied.  It in other words shows how much extra safety is added to the 

design.  The figure shows that when the remaining bearing capacity is at its highest value, 

so is the overall factor of safety and it peaks at around 4% and it happens at a toe width of 

around          .  This method of hand calculating a factor of safety is my own 

product and has the advantage that is shows clearly when the foundation roughness is fully 

utilized.  The main disadvantage with this method is that requires a significantly larger 

number of calculations.  Most of the cases calculated in this chapter are design problems 

that result in a vertical load equal to the bearing capacity, therefore most of result in an 

added model factor of safety of       .  This means that no added factor of safety if 

found in the final designs and thus this method does not help with the design of the 

structures.  It does however produce information on effects of variations from the 

optimized designs.  The finite element program PLAXIS implements a similar function to 

evaluate the model factor of safety called “Phi-C reduction method”.  In principle it is 

defined in the same way but PLAXIS uses actual stresses to calculate the factor of safety, 

which my method does not. 

Comparing the two is nevertheless interesting and will be done by calculating the factor of 

safety,   , of the structures designed for a terrain load of         without the added 
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surface load.  To provide a comparison an additional “Phi-C” reduction calculation phase 

is introduced in PLAXIS before the load is applied to the model. 

Using the optimal toe width from Figure 4.9 and calculating the necessary width of footing 

again reveals that the new width needs to be       .  This is a change of around 

        or a decrease of about   .  This result is valid, and the new design requires 

less concrete than was used before but as the optimal toe width is linked to the total base 

width this solution is not optimal.  Plotting the remaining bearing capacity as a function of 

the toe width for this reduced base width is done in Figure 4.11. 

 
Figure 4.11:  Shows the remaining bearing capacity after the first iteration. 

Figure 4.11 shows that the remaining bearing capacity is zero at            but that the 

peak of the curve has shifted and the remaining bearing capacity is also zero at      
    .  Finding the optimal design is therefore an iterative process.  Repeating the 

calculations several times for this case yields the optimal base width to be        and 

the optimal toe width to be          .  This result is shown in Figure 4.12. 

 
Figure 4.12:  Shows the remaining bearing capacity after several iterations. 
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To evaluate the effect of this design change the results from the last iteration and the values 

given in Table 4.9 have been listed together, this has been done in Table 4.10. 

Table 4.10:  Wall heights and widths resulting in        for varying soil types. 

H 

[m] 

W 

[m] 

Wtoe 

[m] 

EA 

[kN] 

rb 

[-] 

RV 

[kN] 

e 

[m] 

B0 

[m] 

qv 

[kPa] 

Foundation 

material 

Backfill 

material 

7,0 6,8 0,0 184,61 0,356 1000,3 -0,28 6,29 159,0 Gravel Gravel 

7,0 6,3 0,9 184,61 0,434 820,6 -0,01 6,26 131,1 Gravel Gravel 

 

It is clear that by altering the width of the toe the total base width could be reduced by 

around         for this case.  The vertical load is also reduced by around 20% while 

the effective footing is about the same size.  It is interesting to see that the eccentricity of 

the vertical force is almost zero for the optimal design, and it makes sense that this would 

be the case as this maximizes the effective width of the footing.  The eccentricity is plotted 

as a function of toe width along with the remaining bearing capacity in Figure 4.13. 

 
Figure 4.13:  Remaining bearing capacity and eccentricity of the vertical force. 

Figure 4.13 shows that the eccentricity rises from a negative value for the L shaped wall, 

meaning an overturning moment, to a positive value as the width of the toe is increased.  

The optimal toe width is           and it is at that point that the eccentricity is zero. 

All the cases listed in Table 4.9 have been optimized with respect to the toe width by using 

this iterative process.  The result of these calculations can be seen in Table 0.1 in Appendix 

H.  It can be seen in the table that only cases involving a material with high friction angles 

in either backfill or foundation result in optimal toe-width cases with non-zero values of 

eccentricity. 

Table 0.1 shows that the width of the base plate can be reduced in all cases from Table 4.9 

by varying the width of the toe.  The development of the eccentricity of the vertical force 

as a function of varying toe width varying cases of foundation materials and a gravel 

backfill for      high structures with optimized foundation widths can be seen in 
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Figure 0.8 to Figure 0.10.  When the backfill is of a blasted rock material the maximum 

remaining bearing capacity is reached when the eccentricity is near its minimum absolute 

value, but it never reaches zero. 

To illustrate how much can be saved by optimizing the design of the toe of the structure 

the case of gravel foundation and a backfill of gravel for a      high structure was 

again chosen.  The optimized base width of        is used as a reference and the toe 

width is incrementally increased, and for each toe width the base width that results in the 

same bearing capacity as foundation resulting vertical pressure.  This new base width is 

then divided with the optimized width.  The result from these calculations can be seen in 

Figure 4.14. 

 

Figure 4.14:  Percent increase in foundation width from the optimal. 

Figure 4.14 illustrates that the width of the toe has considerable effect on the necessary 

width of the footing.  In this case the L-shaped wall requires foundation widths that are less 

than 10% over the optimal width.  If the toe width is increased far past the optimal width 

the required base width is greatly increased. 

To finalize the discussion of optimal toe widths and its effect on the required base width 

the base widths of the cases in Table 4.9 are plotted with the optimized cases in Table 0.1 

in Figure 4.15 to Figure 4.17. 
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Figure 4.15: Optimized base widths for varying backfill soils, blasted rock foundation. 

 
Figure 4.16: Optimized base widths for varying backfill soils, gravel foundation. 
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Figure 4.17:Optimized base widths for varying backfill soils, clay or clayey silt foundation. 

The lines with crosses in Figure 4.15 to Figure 4.17 represent the base widths of structures 

with optimized toe widths; the darker-colored and dashed lines represent the base widths 

derived for each case with L-shaped walls.  The figures show that for a backfill mass with 

average strength properties the required base width can be reduced in all cases.  The effect 

of this optimization gets larger as the structures are higher.  The difference is greatest in 

the case of a foundation of high strength.  It worth noting that in the case of a blasted rock 

backfill the optimized toe width did not reduce the necessary base width substantially in 

any case. 

As the blasted rock foundation material is the only material in this check that is not a 

frictional soil, investigating the effect of the attraction is an interesting task.  In Figure 4.18 

the toe width has been optimized for the case of a blasted rock foundation with zero 

attraction.  The curves from Figure 4.8 are also plotted darker colored and dashed for 

comparison. 
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Figure 4.18:  Optimized base widths for structures on blasted rock foundation, a=0. 

Comparing Figure 4.18 to Figure 4.15 shows that even though the foundation soil has zero 

attraction it does not have a large impact on the base width that can be saved by varying 

the width of the toe.  The change in strength properties has the biggest effect on the curves 

representing the case of a clay or clayey silt foundation, and it seems that less can be saved 

by this optimization when the foundation has zero attraction. 

4.2.6 The effect of backfill inclination 

One of the results from chapters 3.1 and 3.3.1 is that there seems to be consistency 

between methods on how to calculate active earth pressures when the backfill is inclined at 

an angle.  The stressfield method and Coulomb‟s method produce almost exactly the same 

results and there is a clear correlation to the values proposed by EC7.   

To investigate the effect of an inclined backfill on the necessary foundation width the case 

of a backfill inclination of       is selected.  This angle is selected as the equations 

proposed to calculate the active earth pressures yield values when the angle of the backfill 

is less or equal to the friction angle.  Using a material factor of safety of        results 

in a mobilized friction angle of          for clay or clayey silt materials, so all equations 

should yield an answer.  As the figures in EC7 propose that it is the ratio between the 

friction angle and the terrain angle that should give correlating curves, the soils tested 

should give a good spread over the most of the range. 

As before the necessary foundation width was calculated for the L-shaped structure and 

then the geometry was optimized by stepwise increasing the width of the toe and 

decreasing the total width of the base.  The results from these calculations can be seen in 

Figure 4.19 to Figure 4.21. 
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Figure 4.19: Structure base widths for a sloped backfill on blasted rock foundation 

In Figure 4.19 it is evident that the depth of application of the surface load has effect on the 

required base width of the structure.  A clear break is now visible between the calculated 

heights of      and        in the case of a clay or clayey silt backfill mass.  This 

trend is not as evident in the other two curves.  The numerical values for these calculations 

can be seen with wider intervals in Table 0.2 and Table 0.3 in Appendix H.  When 

designing for a backfill mass of materials of weak to average strength the width of the toe 

has considerable effect on the required width of the base. 

 
Figure 4.20: Structure base widths for a sloped backfill on gravel foundation. 

Figure 4.20 shows that as the foundation strength is decreased the required foundation 

width is increased.  In this case the curve for a gravel backfill material now shows a jump 

in the required base widths for structure heights less than     .  The case of clay or 

0

5

10

15

20

0 2 4 6 8 10 12

B
as

e
 w

id
th

, W
 [

m
] 

Structure height,  H [m] 

Calculated structure base-width for various backfills on blasted rock foundation. 

Blasted rock

Gravel

Clay or clayey silt

Global parameters:   r=0,71.   -   rb=0,8.   -   q=20 [kPa].   -   β=18 [°].   -   γm=1,4. 

0

5

10

15

20

0 2 4 6 8 10 12

B
as

e
 w

id
th

, W
 [

m
] 

Structure height,  H [m] 

Calculated structure base-width for various backfills on gravel foundation. 

Blasted rock

Gravel

Global parameters:   r=0,714.   -   rb=0,8.   -   q=20 [kPa].   -   β=18 [°].   -   γm=1,4. 



75 

clayey silt backfill yielded much larger required widths of footings and is therefore not in 

the figure. 

 
Figure 4.21: Structure base widths for a sloped backfill on clay or clayey silt foundation 

As the strength of the foundation material is decreased even further the curves are pushed 

up the scale representing higher values of required base widths as can be seen in Figure 

4.21.  The case of clay or clayey silt backfill mass yielded no results in this case.  The 

breakpoint of the application depth of the terrain load is now clearly visible in both the 

case of the blasted rock and gravel backfill masses.  It is also evident that the effect of an 

optimized toe is in this case small. 
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5 Analysis of stability using PLAXIS 

PLAXIS is a program that applies the principles of the finite element method (FEM) to soil 

models.  The program is available in several packages and the one used in this thesis is the 

PLAXIS 2D version, which is designed to solve two dimensional plane-strain problems.  It 

was first developed at the technical university of Delft in the Netherlands as a project to 

evaluate possible movements of the Oosterschelde-dam.  Later it was launched as a 

commercial product and a company with the same name was created to manage its 

development and marketing (PLAXIS, 2011). 

5.1 Finite element method in PLAXIS 

The element method works by splitting the geometry up into elements that all have to 

apply certain mathematical rules regarding stiffness, based on the theory of elasticity.  The 

elements provided by PLAXIS are a 6-node triangle and a 15-node triangle, where in the 

case of plane-strain each node has two degrees of freedom (d.o.f.).  The 15-node triangle 

should give better results when the system nears global collapse or shows large plastic 

strains, but using it means solving more equations and therefore uses more calculation 

power. 

 
Figure 5.1: The 15-node element as used in PLAXIS with d.o.f.-s and nodal forces. 

Using the theory of elasticity the program sets up a set of equations for each element as 

 [
          

   
            

]  [
   

 
    

]  [
   
 

    

] (69) 

where the matrix on the left is called the stiffness matrix,  ,     is a displacement 

increment of the i-th d.o.f. and     is the load increment for the i-th d.o.f.  Each column of 

the matrix   represents the force vector required to give the corresponding degree of 

freedom a unit displacement while keeping the others equal to zero.  The nodal 

displacements of each connected element are linked so that they move together.  The 

stiffness from all elements connected to a node is added to create a global nodal stiffness 

matrix.  The equation then becomes 

         (70) 

where the size of the matrix  , and the vectors    and    is controlled by the type and 

number of elements in the model.  The notation in equation (70) differs for the most 

elementary case of the finite element method as the response of a soil model is not always 

linear.  To cope with this behavior the program adds the load in increments and calculated 
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the response before adding the next load increment, this is why equation (70) has terms 

involving delta,  .  The stiffness for each element is calculated numerically using the 

theory of virtual work. 

When the system stiffness matrix has been calculated it is possible to add a load increment 

and calculating the displacement increment.  Using the displacement increments both the 

resulting strain increments and the stress increments are calculated in each element.  The 

stress calculations are done in internal integration points in each element.  The stress 

calculation process is repeated with smaller increments if the calculations show to large 

unbalanced forces.  The incremental displacements and stresses are then finally added to 

the total deformations and stresses and the process repeated for the next load increment.  

Detailed description on the inner workings and calculational procedures in PLAXIS can be 

found in the PLAXIS scientific manual (PLAXIS, 2010). 

5.2 Application of PLAXIS to evaluate method 
proposed by HB016 

The method recommended by HB016 to evaluate the stability of retaining structures is 

derived by using the classical theory of both earth pressures and bearing capacity.  These 

methods were derived by modeling idealized problems and as such provide good results 

for those problems.  To apply the equations directly on retaining structures involves some 

simplifications.  To check if these simplifications provide accurate results some selected 

cases from the previous chapter will be modeled and analyzed using PLAXIS. 

The size of the element mesh in the model has an effect on the results; the theory behind 

FEM is that with finer meshing the results should converge to the correct ones if the model 

is properly set up.  The downside to this is that the method errors on the unsafe side 

predicting more stiffness against failure than is theoretically present.  All calculations in 

this thesis are done using a standard mesh setting called “Fine”, for at least one case in 

each soil-combination the mesh size is refined by two size-steps to check if the size of the 

mesh has a large effect on the results.  An averaged sized model with a “fine” mesh size 

has around 450 elements while a locally refined mesh has around 1000-2000 elements with 

most of them located around the failure surface.  The large gap in the number of elements 

for the refined case depends entirely of the input geometry of the problem and the 

automated mesh generator in PLAXIS. 

To simulate the cases calculated in the previous chapter the derived limit state design, 

representing a factor of safety          , will be modeled.  This ac done in 6 steps 

1. Build model 

2. Apply initial stresses 

3. Reset displacements 

4. Reduce strength of materials until failure occurs 

5. Start from step 3 and add the terrain load to the model 

6. Reduce strength of materials until failure occurs 
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The model is built as with the same base-geometrical restrictions as are introduced in 

chapter 4.2.2 and the calculated base- and toe widths are listed in Table 0.1 in Appendix H. 

5.2.1 Material models 

The behavior of materials in the calculations is described with two material models.  A 

perfectly elastic model is chosen to describe the behavior of the structure and the Mohr-

Coulomb model is used to describe the behavior of the soil. 

The elastic model used to describe the structure clusters does not allow for any plastic 

behavior.  The stiffness is set very high so that only very small deformations are observed 

compared to those found in the soil clusters.  As the goal of this study is to study the 

material factors of safety that lead to failure in the soil mass based on a specific geometry 

this approach is considered elegant as it allows for a specific geometry of the structure. 

The Mohr-Coulomb model used to describe the behavior of the soil is a linearly elastic – 

perfectly plastic model.  The basic idea behind this type of model is that when the material 

is in the elastic range all deformations are reversible but once the yield surface is reached 

the stiffness against extra stress is zero and all extra stress goes into plastic strains that are 

not reversible.  An illustration of this can be seen in Figure 5.2 b).  The yield surface is 

fixed so that it is only defined by input parameters and independent of the stress path 

leading to failure.  An illustrative figure of the MC yield surface in a principal stress space 

without cohesion can be seen in Figure 5.2 a).  The illustration presented in Figure 5.2 a) 

and b) are borrowed from the PLAXIS material model manual (PLAXIS, 2010). 

 
Figure 5.2: shows a) the MC yield surface in 3D b) an illustrative stress-strain curve. 

To address the issue of tensile stresses the default setting for the MC material model in 

PLAXIS is used.  By default any tensile stresses in the model result in a tensile cutoff.  

Another value of the cutoff stress can be chosen but this was not done in this analysis. 

For the elastic material only the elastic parameters are used,   and  , along with the unit 

weight.  For the MC material model additional parameters are inserted to describe the 

plastic behavior.  They are the well-known MC parameters; the friction angle,   , and the 

cohesion,  , as well as the dilatancy angle.  The linearity of the MC material model 

produces obvious simplifications and in many applications it has been shown to produce 

inaccurate results.  As an example it has been shown with laboratory tests that in some soil 

types the stiffness is dependent of the effective stress level.  This behavior is not accounted 

for in the MC material model.  For a simple ultimate strength simulation it has been shown 
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that a MC model where the strength parameters have been derived for the stress interval 

encountered in the calculations gives reasonable results (Nordal, 2009).  The parameters 

used in the hand calculations are the same ones as are used in the MC model; this provides 

a solid ground to base a comparison of the methods.  The input parameters used for each 

soil cluster type can be seen in Table 5.1. 

Table 5.1:  Material strength and stiffness parameters used in PLAXIS calculations. 

Description Model material 

name 

 Strength parameters Stiffness 

parameters 

Unit 

weight 

Friction 

angle 

Attraction 

a 

Cohesion 

c E ν 

[kN/m
3
] 

ϕ'               

[°] 

tan(ϕ')    

[-] [kPa] [kPa] [kPa] [-] 

Backfill soils 

B-Blasted rock 19 42 0,90 0 0 2·10⁴ 0,25 

B-Gravel 19 35 0,70 0 0 2·10⁴ 0,25 

B-Clay_clayey silt 20 26 0,49 0 0 5·10³ 0,30 

Foundation 

soils 

F-Blasted rock 19 42 0,90 10 9 2·10⁴ 0,25 

F-Loose gravel 18 36 0,73 0 0 2·10⁴ 0,25 

F-Clay_clayey silt 19 26 0,49 0 0 5·10³ 0,30 

Structure S-Concrete 24 - - - - 2·10⁷ 0,25 

 

The strength of the soil is reduced in calculations steps 4 and 6 so the initial strength 

parameters of each soil type are inserted into the program with the material factor of safety 

    .  The stiffness parameters used are selected generally for each soil type; they do 

influence the factor of safety but to a much less extent than the strength parameters.  The 

dilatancy angle is set to      in all calculations, this is has been found to be conservative 

(Nordal, 2009). 

5.2.2 The “Phi/c reduction” method in PLAXIS 

After initial stresses have been calculated and displacements reset in calculation phases 2 

and 3 the material strength is reduced until failure.  This is done in two phases; with and 

without the surface load. 

The initial value of the material strength is registered and when failure has occurred in the 

soil mass the material factor of safety is calculated as is shown with equation (7) in the 

case of a drained material and as is shown with equation (4) in the undrained case.  It is left 

to the user to decide when failure has fully developed by requiring that a point be selected 

in the soil mass.  The displacement of this point can then be plotted against the calculated 

material factor of safety of each calculation step.  When each calculation step produces 

large point displacements a plateau forms and the material factor of safety can be 

estimated.  This has been done for the case of a sand backfill on a gravel foundation in 

Figure 5.4.  The estimated average values are displayed on the right side of the figure.  

This kind of analysis is carried out on all PLAXIS models and the resulting safety factor-

curves can be seen for each case in Appendix J. 
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5.2.3 Modeling and documenting failures in soil masses 

As the material strength is reduced until failure occurs in the model it is important that the 

model be set up in such a way that the boundaries do not affect the development of the 

failure mechanism.  This is done by using a large model, allowing for failure in the soil 

mass on both sides of the structure.  In the case of a horizontal backfill the model size is 

           .  The bottom front corner of all structures is placed at the point 
(     )  (     ).  The rest of the geometry is then defined as previously described.  In 

the cases involving an inclined backfill the simulated failure mechanisms stretched further 

into the backfill than in the horizontal cases; as a result the model size has been increased 

in these cases. 

Once the model is built and materials have been assigned the initial stress state is modeled 

by incrementally building up the effect of gravity.  PLAXIS offers a choice between this 

method and a simple    method.  In some of the cases the terrain will be sloped at an angle 

so the gravity method is better suited to simulate real in situ stresses.  For the sake of 

consistency this method is used on all cases. 

The model is activated using a staged construction step.  This means that the whole 

structure and backfill is put into place simultaneously, but with no internal stresses other 

than hydrostatic water pressures in the foundation. 

Adding the effect of gravity adds stresses to the model.  The material model reacts to 

added stress with volume change.  In reality the structure would be built to the 

specifications in a constant gravity field so the displacements from gravity loading are set 

to zero after the phase is complete. 

Reducing the strength of the materials will then both reduce the bearing capacity of the 

foundation and add to the earth pressures from the backfill.  As the stress state in the model 

is calculated it is possible to calculate the strength mobilization that leads to failure as well 

as illustrate how the most critical shear surface will develop. 

Table 0.1 lists 36 geometrical cases that will be modeled, Figure 5.3 shows the geometry in 

as it is set up for case 1 in PLAXIS along with the “Fine” element mesh used in the 

calculations. 

 
Figure 5.3: Shows the PLAXIS model of case 35; gravel backfill and foundation. 
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Figure 5.3 shows the setup used in the calculations of case 35.  The backfill mass is 

modeled with the material “B-Gravel”, the foundation is “F-Loose gravel” and the 

structure is of the elastic material “S-Concrete”;  as defined in Table 5.1.  The terrain load is 

set to the value of        .  The boundary conditions in the model are that the bottom 

boundary is constrained in both the horizontal and vertical direction but the vertical 

boundaries are only constrained in the horizontal direction. 

The bearing capacity equation, equation (48), uses effective parameters for the weight of 

the soil.  The equation provides no factor to implement partially submerged foundation so 

there is a choice to calculate the foundation as submerged to terrain elevation or to omit the 

effect of water from the equation.  In northern countries the groundwater is usually 

relatively close to the terrain, therefore the foundation is assumed to be fully saturated in 

all hand calculations and all PLAXIS models. 

To measure if failure is reached in the model an internal point is picked in the expected 

failure wedge near terrain level behind the structure.  The strength reduction is run until the 

model factor of safety forms a plateau when plotted against the point displacement.  This is 

shown for the case 35 with and without the surface load in Figure 5.4. 

 
Figure 5.4:  Shows the factor of safety plotted against the point displacement. 

Figure 5.4 shows that the factor of safety reaches a state of equilibrium just above    
    for the case without the surface and just below        when the surface load is 

included.  As a result of this strength reduction large point displacements are observed in 

the failure mass.  The numerical value of the displacements is after failure only a function 

of how many calculation steps are run and therefore not of importance in this case. 

After the strength of the model has been reduced until failure occurs in the soil body the 

failure mechanism can be inspected in several ways.  Plotting the displacement is one way 

of inspecting failure as it shows how the body has moved as the soil collapsed.  This is 

done in Figure 5.5 for case 35-b (with surface load), both with a deformed mesh and a 

shaded plot of the total incremental displacements. 
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Figure 5.5: Shows the deformed mesh and total incremental displacements of case 35. 

It is clear from Figure 5.5 that the shaded plot of the total incremental displacements 

provides a better visual description of the failure mode but it can only be assumed to 

provide a visualization of the boundary of the failure mechanism, the internal failures 

within the failure wedge are not portrayed. 

Finer mesh size improves our chances of viewing the failure surfaces but fines mesh also 

means longer calculation times.  Figure 5.6 shows the deformed mesh of case 35-b where 

the mesh has been locally refined two steps above the maximum provided general setting 

of “very fine” in PLAXIS. 

 
Figure 5.6: Shows the deformed mesh of case 35(refined) after failure in soil mass. 

The calculation time to produce the deformed mesh seen in Figure 5.6 was well over an 

hour while the calculation time of the case shown in Figure 5.5 took 21 seconds.  A finer 

mesh will decrease the discretization error of in the problem but if the goal is only to better 

visualize the failure mechanism it is not a very effective solution. 

As failure has occurred in the model the stiffness against extra loading is zero and all 

added stress is transferred into strains in the planes of failure.  By plotting the strain 
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increments calculated from the last loading step it is possible to better visualize where in 

the soil mass failure takes place.  This is called an incremental strain plot and is shown for 

the case above in Figure 5.7. 

 
Figure 5.7: Shows the incremental strains of case 35 after failure in soil mass. 

Figure 5.7 shows where the movement occurs in the model as a result of the last load step.  

The numerical value of the strain increments is not important as this is done after failure 

has occurred and large strains follow each load increment. 

Inspecting Figure 5.7 it is evident that some of the assumptions made in the hand 

calculations are not accurate.  As an example the soil above the heel of the structure does 

not behave as a part of the structure itself.  Two distinct failure planes develop behind the 

structure forming a wedge that slides down as the structure moves out.  The planes 

intersect at the base of the heel; no curved failure surface is observed in the active failure 

zone. 

Large strains are formed at the base of the toe as it is there that the structure both sinks into 

the foundation and the foundation slides up and out from under it. 

PLAXIS evaluates stresses in the elements with numerical integration of internal stress 

points and the 15-noded element used in these calculations has 12 of them.  A plastic point 

plot shows what stress points have reached the MC-failure curve.  This plot is shown for 

the case above in Figure 5.8. 

 
Figure 5.8: Shows the plastic points of case 35(with mesh refinement) after failure. 
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Figure 5.8 shows the same failure outline that is shown in Figure 5.7.  The main result that 

can be read from the figure is that the plastic points connected to the failure are well 

contained to in the model and most of them fall within the refined mesh grid.  It can be 

seen that a secondary failure mechanism has started to form from the boundary of the 

surface load but it does not show up on Figure 5.7.  Although this plot does not show the 

boundary of the failure mechanism as clearly as the incremental strain plot it is extremely 

useful as it shows very clearly if the boundaries of the model are linked to the failure 

mechanism and thereby influence the result.  This model seems to be set up in an adequate 

way. 

Most of the cases designed with hand calculations for the case of a horizontal backfill were 

also designed for the case of an inclined backfill of      .  A few cases did not yield a 

result and others resulted in base plates that where ten times the structures height, those 

cases are omitted in the PLAXIS analysis.  The geometry differs from the cases of 

horizontal backfills but the calculation methods used are exactly the same.  The 

incremental strains for case 35-β with an inclined backfill after failure has occurred can be 

seen in Figure 5.9. 

 
Figure 5.9: Shows the incremental strains of case 35β after failure in soil mass. 

The failure surface in the active stressfield has the form of a plane, just as in the case of a 

horizontal backfill.  The main difference in the failure mechanism is that the inclinations of 

the failure planes are different to those seen in Figure 5.7. 

The failure surfaces in the foundation have a similar form as was seen in Figure 5.7.  Both 

are consistent with the form that the theory assumes for failure involving a shear stress on 

the surface; a rotated cut-Rankine zone under the foundation with a planar failure surface, 

Prandtl zone with a curved shear surface and another Rankine zone with a failure plane to 

the surface. 
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5.3 Results from PLAXIS simulations 

Each case in Table 0.1 and most of the cases in Table 0.3 were simulated using PLAXIS;  a 

total of 64 cases with different wall geometries.  The failure modes of each simulated case 

can be seen in Appendix I and the development of the material factor of safety leading to 

the failure can be seen for each case in Appendix J.  If models with refined mesh are 

counted seperately then results from 86 PLAXIS models are presented in this paper; 

additional 12 models were built for various checks but are not presented here, bringing the 

total number of separate PLAXIS models to 98. 

Using the methods presented in HB016 each case in Table 0.1 is designed so that the 

model has a material factor of safety (MFS) equal to       .  Then the surface load was 

removed from those designs and the factor of safety calculated again using my own version 

of the “Phi/c reduction” method.  This was done for the height interval of         

from      to        . 

With this approach it is possible to compare the safety factors derived with hand 

calculations to those derived by PLAXIS simulations.  The results are divided into 

subchapters by foundation material varying from the strongest to the weakest.  For each 

case of foundation material the backfill material is varied from the strongest to the 

weakest. 

5.3.1 Blasted rock foundation – horizontal terrain 

The results from hand calculations and PLAXIS simulations for the case of a blasted rock 

foundation can be seen in Figure 5.10 to Figure 5.12. 

 
Figure 5.10: Cases with blasted rock foundation and blasted rock backfill. 
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Figure 5.11: Cases with blasted rock foundation and gravel backfill. 

 
Figure 5.12: Cases with blasted rock foundation and clay or clayey silt foundation. 

The red curves in Figure 5.10 to Figure 5.12 show the results from the PLAXIS analysis 

while the blue curves show the hand calculated values.  Generally the blue curve with 

markings will have a constant MFS of        as it is the limit design with this material 

factor of safety according to HB016.  In a few cases where the terrain is inclined at an 

angle the roughness criteria caused the design to have a slightly lower MFS. 

The green marks show the results from PLAXIS simulations where the number of elements 

has been significantly increased around the expected failure surface.  The difference 

between the results derived with coarser mesh and refined mesh is around 5-20% 

depending on the case and the refined mesh always produced lower factors of safety.  

Further refinements produced slightly less but similar results.  Due to exponential growth 

in calculation time this was only tested on very few cases. 
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I assume that the red curve provides an accurate description of the changes in factor of 

safety between cases and for the sake of comparison I assume that the green points 

represent accurate values although they have been found to be slightly high.  The 

combined assumption is then that if the red curve is shifted so that it passes through the 

green point, we get an accurate description of what would happen if all cases were 

calculated using a very fine mesh. 

Bearing this in mind it can be interpreted from Figure 5.10 to Figure 5.12 that the factor of 

safety of the designs is generally slightly lower according to the PLAXIS simulations than 

it is according to HB016.  Variation of the backfill material does in this case not seem to 

have a large influence on the result.  The red curves clearly indicate that the factor of safety 

in the HB016 designs decreases as the structures are higher.  It can therefore be stated that 

the factors of safety according to HB016 are in agreement with the ones calculated with 

PLAXIS simulations for lower structures in the case of a blasted rock material in the 

foundation. 

The difference between values from the simulations with and without the surface load is in 

some agreement with the difference found with my method.  They both show large 

difference for low structures that decreases as the structures get higher.  This is due to the 

fact that the surface load,  , is proportionally much larger for smaller structures and 

therefore influences the active pressure field to a much greater extent. 

5.3.2 Gravel foundation – horizontal terrain 

The results from hand calculations and PLAXIS simulations for the case of a gravel 

foundation can be seen in Figure 5.13 to Figure 5.15. 

 
Figure 5.13: Cases with gravel foundation and blasted rock backfill. 
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Figure 5.14: Cases with gravel foundation and gravel backfill. 

 
Figure 5.15: Cases with gravel foundation and clay or clayey silt backfill. 

Interpreting the results shown in Figure 5.13 to Figure 5.15 with the same assumptions as 

before reveals that in the case of a gravel foundation material HB016 grossly overestimates 

the MFS of the designs for the case of a blasted rock backfill material.  If the red curve 

with markings is shifted to the green point it is clear that a       high structure has a 

factor of safety of around       ; in other words on the verge of failure.  It would seem 

that in this case the method presented in HB016 does not require a wide enough foundation 

in this case. 

As the strength of the backfill is decreased the red curves are shifted up the scale.  Two 

refinement models were calculated in the case of a gravel backfill.  It can be seen in Figure 

5.14 that they mark a slightly less inclined curve than was calculated using a coarser mesh 

and are slightly lower than the limit design line.  The results can be considered to agree 

with design proposed by HB016 in this case. 
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It can be interpreted from Figure 5.15 that according to the PLAXIS simulations HB016 

proposes a design that overshoots the desired MFS in the case of a clay or clayey silt 

backfill material. 

5.3.3 Clay or clayey silt foundation – horizontal terrain 

The results from hand calculations and PLAXIS simulations for the case of a clay or 

clayey silt foundation can be seen in Figure 5.16to Figure 5.18. 

 
Figure 5.16: Cases with clay or clayey silt foundation and blasted rock backfill. 

 
Figure 5.17: Cases with clay or clayey silt foundation and gravel backfill. 
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Figure 5.18: Cases with clay or clayey silt foundation and clay or clayey silt backfill. 

It is easy to deduct from Figure 5.16 and Figure 5.17 that according to the PLAXIS 

simulations the design proposed by HB016 grossly overestimates the MFS.  The cases 
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factor of safety below       .  The inclination of the red curves indicate that for lower 

structures the factor of safety increases but can be assumed to be in the critical range for in 

the entire range. 

In the case of a clay or clayey silt backfill material the simulated material factor of safety is 

greater than in the other two cases.  It is clear from Figure 5.18 that the MFS is still a bit 
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5.3.4 Blasted rock foundation – inclined terrain 

The results from hand calculations and PLAXIS simulations for the case of a blasted rock 

foundation can be seen in Figure 5.19 to Figure 5.21. 

 
Figure 5.19: Cases with blasted rock foundation and blasted rock backfill. 

 
Figure 5.20: Cases with blasted rock foundation and gravel backfill. 
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Figure 5.21: Cases with blasted rock foundation and clay or clayey silt backfill. 

Interpreting Figure 5.19 and Figure 3.18 with the same assumptions as before reveals that 

the results from PLAXIS simulations are similar to the ones derived with the methods in 

HB016; in both cases the results from simulations with mesh refinements lie close to the 

MFS of       .  The inclination of the marked red curve in Figure 5.19 indicates a 

decrease in material factor of safety for higher walls. 

The results in Figure 5.21 differ from all other results in this study as the strength reduction 

resulted in slope failure and not a failure of retaining capabilities of the structure.  This can 

be seen in Figure 0.63 to Figure 0.66 in Appendix I.  This result can be verified in a very 

simple way in this case as 
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This is in good agreement with the results from the PLAXIS simulation. 

Another interesting part of Figure 5.21 is that for the first three heights the factor of safety 

according to HB016 is not equal to       .  This is because that in these cases the 

foundation roughness exceeded the maximum allowed value of       .  The method I 

used to design the width of the footing only depends on finding the root of the remaining 

bearing capacity as is shown in Figure 4.9, Figure 4.11 and Figure 4.12. 

This maximum value of    is low for a blasted rock foundation according to Table 4.7 but 

was used in all calculations.  The roughness was found to be critical in one other case in 

the study.  This was in the case of a      high wall on blasted rock with a gravel 

backfill innclined 18° as is shown in Figure 5.20.  The calculated roughness in that case is 

is         .  This can be seen in Table 0.3 in Appendix H. 
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5.3.5 Gravel foundation – inclined terrain 

The results from hand calculations and PLAXIS simulations for the case of a gravel 

foundation can be seen in Figure 5.22 and Figure 5.23. 

 
Figure 5.22: Cases with gravel foundation and blasted rock backfill. 

 
Figure 5.23: Cases with gravel foundation and gravel backfill. 

Figure 5.22 shows that in the case of a gravel foundation and a blasted rock backfill the 

PLAXIS simulations revealed considerably lower MFS than is calculated using the 

methods proposed by HB016.  If we accept the trend shown with a coarser mesh and 

extend it from the green mark we could end up with a design that will fail under initial 

conditions for structures with heights of around      . 

Figure 5.23 shows a much better fit between the MFS derived with the methods in HB016 

and the values from the PLAXIS simulations.  As the red curves shows an increase in the 

0,0

0,5

1,0

1,5

2,0

2,5

0 2 4 6 8 10 12

M
at

e
ri

al
 f

ac
to

r 
o

f 
sa

fe
ty

, γ
M

 [
-]

 

Structure height,  H [m] 

Factor of safety for the case of a gravel foundation and a blasted rock fillmass. 

Limit design with load
Without load
PLAXIS with load
PLAXIS without load
PLAXIS refined mesh with load

β=18 [°]. 

0,0

0,5

1,0

1,5

2,0

2,5

0 2 4 6 8 10 12

M
at

e
ri

al
 f

ac
to

r 
o

f 
sa

fe
ty

, γ
M

 [
-]

 

Structure height,  H [m] 

Factor of safety for the case of a gravel foundation and a gravel fillmass. 

Limit design with load
Without load
PLAXIS with load
PLAXIS without load
PLAXIS refined mesh with load

β=18 [°]. 



94 

MFS as the structure height is decreased a better fit is expected for lower structures if the 

mesh size were reduced there as well. 

The case of a clay or clayey silt backfill yielded extremely large limit design foundation 

widths and was not modeled in PLAXIS. 

5.3.6 Clay or clayey silt foundation – inclined terrain 

The results from hand calculations and PLAXIS simulations for the case of a clay or 

clayey silt foundation can be seen in Figure 5.24 to Figure 5.25. 

 
Figure 5.24: Cases with clay or clayey silt foundation and blasted rock backfill. 

 
Figure 5.25: Cases with clay or clayey silt foundation and gravel backfill. 
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The case of a blasted rock backfill shown in Figure 5.24 yielded failure under initial 

loading for the case of a H=7m high wall and a MFS of         for the case of a 

     high wall.  This should be considered critical as a finer mesh size would lower 

this number slightly resulting in failure under initial loading. 

In the case of a gravel backfill yielded somewhat higher MFS but they are so close to the 

factor        that they could be considered critical. 

5.3.7 Summary of PLAXIS simulation results 

Horizontal backfill 

For the case of a blasted rock foundation material all the tested structure designs produced 

a similar MFS in PLAXIS simulations as were derived with methods proposed by HB016.  

The backfill material does not appear to have a large influence on this result. 

For the case of gravel foundation material variations in backfill materials has a large effect 

on the MSF for each design when calculated with PLAXIS.  Stronger backfill materials 

produce a lower MFS than weaker materials.  The case of a gravel backfill material seemed 

to create the best fit to the values derived with methods proposed by HB016.  For a blasted 

rock backfill material the simulated MFS was lower than the methods in HB016 suggested 

and could even be considered critical for high structures. 

For the case of a clay or clayey silt foundation material both the case of blasted rock- and 

gravel backfill materials produced MFS indicating failure under initial conditions.  The 

case of clay or clayey silt backfill material proved to have a MFS higher than the other two 

cases but still lower than the ones calculated with methods proposed by HB016.  It should 

be mentioned that the foundation widths required to produce those MFS are around two 

times the structures height. 

Inclined backfill 

For the case of a blasted rock foundation material PLAXIS simulations of the tested 

designs yielded similar MFS as were derived with methods proposed by HB016.  This 

result holds true for all tested backfill materials. 

For the case of a gravel foundation material the PLAXIS simulations of the designs 

resulted in MFS lower than the ones calculated with methods proposed by HB016.  The 

MFS increased as the strength of the backfill mass decreased.  The cases with a clay or 

clayey silt backfill materials resulted in excessive base widths and were therefore not 

simulated in PLAXIS 

For the case of a clay or clayey silt foundation material variations in the backfill material 

had some effect on the MFS simulated in PLAXIS.  The case of a blasted rock backfill 

material resulted in a critical MFS for a      high structure and failure under initial 

conditions for a      high structure.  The case of a gravel fillmass yielded slightly 

higher MFS but could still be considered critical.  The cases with a clay or clayey silt 

fillmass material gave no solution with hand calculation methods and therefore there was 

no basis for a comparison with PLAXIS.  It should be mentioned that for the case of a 

gravel backfill on a clay or clayey silt foundation the required base widths ranged from 2 to 

3 times the structures height for the tested height interval. 
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6 Conclusions 

6.1 Study of earth pressures 

In the study of earth pressures both Coulomb‟s method and the stressfield method were 

found to deliver similar values of active earth pressure coefficients.  There is a slight 

difference between the two as the stressfield method assumes a curved failure surface 

while Coulomb‟s method assumes a failure plane.  In the case of an inclined backfill both 

methods assume failure planes for all values of wall friction and produce almost identical 

results.  The case of passive earth pressures revealed that for higher values of roughness 

Coulomb‟s method produces much higher pressure coefficients than the stressfield method.  

This behavior is a result of the fact that an increase in the angle of wall friction forces the 

failure plane to tilt closer to the horizontal; as the angle of the shear plane nears the 

inclination angle of the backfill small variations in the tilt angle have large effect on the 

length of the failure plane.  For inclined backfill both methods assume a planar failure 

surface and show deliver almost identical results. 

When compared to the values provided in Eurocode 7 both methods were found to provide 

very similar results in the case of active earth pressures although the stressfield method 

was a better fit in the case of a horizontal backfill.  As the difference between the values 

provided in Eurocode 7 and the ones calculated with the classical earth pressure theories is 

found to be small I assume that both methods can be used to calculate the active pressures 

to the standards requirements.  The same cannot be said for the case of passive earth 

pressures where the calculated values cannot be assumed to give the same results as the 

ones given in Eurocode 7.  I tried to develop a simple modification of the stressfield 

method to incorporate the effect of curved failure surfaces in the case of inclined backfills.  

The modification solved the problem of exponential growth in passive pressures for high 

roughness but did not provide a good fit to the values provided by Eurocode 7.  The 

chapter is in the Norwegian annex marked as informative and therefore designers can still 

use the conventional methods to calculate earth pressures. 

6.2 Structure design with hand calculation 
methods 

Using the methods prescribed in HB016 I designed the optimal base- and toe widths of 

cantilevered retaining walls with varying foundation and backfill materials for a number of 

height intervals.  Some base geometrical features were kept constant in all of them in order 

to have a better chance to evaluate the effect of change in other parameters.  All cases are 

calculated without passive pressures to avoid errors originating in the inconsistencies 

found between calculational methods mentioned above.  In this analysis the base widths of 

180 structures have been optimized with respect to the toe width with an iterative process 

for the case of a horizontal backfill and a terrain load representing heavy traffic without an 

additional safety factor.  This process is repeated for all cases when the backfill is inclined 

at an angle of 18°, although not all those cases yielded results.   
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The results from the hand calculations are the limit designs that are supposed to have a 

material factor of safety of        according to the methods proposed by HB016 as well 

as calculated material factor of safety for each case where the surface load has been 

removed. 

The cases for a blasted rock foundation were calculated again with the cohesion set to zero.  

It is shown that the cohesion has a noticeable influence on the required base widths but the 

difference was greatest for a backfill material with substantially lower strength than that 

used in the foundation. 

The influence of the depth of application of the surface load is not clearly visible in any 

case for a horizontal backfill mass.  The surface load is set to a value that is supposed to 

represent heavy traffic so I was expecting to see a breakpoint in the design curves around 

that height. 

The effect of the terrain load is clearly visible in the case of inclined backfill.  This effect is 

exaggerated when either the backfill material or the foundation material have friction 

angles close to the inclination angle of the slope.  When the material factor of safety of 

       has been added to the clay or clayey silt material the mobilized friction angle is 

around      .  The small difference between the mobilized friction angle in the backfill 

material and the inclination of the backfill explains why so large foundation widths were 

required in the case of a gravel foundation and why no solution was found in the case of a 

clay or clayey silt foundation. 

Optimizing the toe width revealed that for many of the hand calculated cases the 

eccentricity of the vertical force is around zero and only cases involving a blasted rock 

material in either foundation or backfill produced designs with nonzero eccentricity. The 

eccentricity was plotted against the toe width for some of the cases where the optimal toe 

width did not coincide with zero eccentricity.  It was found that the minimum absolute 

value of the eccentricity was very close to the optimal toe size.  This makes sense as the 

effective footing is largest for small values of eccentricity. 

For each final design the surface load was removed and the resulting addition in material 

factor of safety of the model was calculated using a simplified version of the Phi-C 

reduction method. 

6.3 Evaluation of proposed designs using 
PLAXIS 

A selection of the designs derived with hand calculation methods were modeled in 

PLAXIS.  The strength parameters for each soil type were put in without any added safety 

factors and stiffness parameters were selected generally for each soil type.  The strength of 

the materials in the model was reduced until failure occurred in the soil mass both with and 

without the surface load applied. 

The results from the comparison between numerical and handcalculation methods are in 

some cases alarming.  It seems that the handcalculation methods underestimate earth 

pressures from strong backfill materials; according to PLAXIS simulations some of the 

tested designs involving strong backfill materials are on the verge of failure under initial 
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conditions.  The comparison also shows that according to PLAXIS simulations the 

handcalculation methods overestimate the strength of weak foundation materials and many 

of the tested designs failed under initial conditions.  Failure of large structures founded on 

weak materials is perhaps not a very important point as it is standard practice to exchange 

weak materials for stronger ones in the foundation. 

I chose to design the test models with only a material factor of safety against failure; in real 

life other safety factors will have to be taken into account that would probably improve 

over all factor of safety of the construction. 

For the cases with a blasted rock foundation material the material factors of safety 

calculated with PLAXIS are in agreement with those derived with hand calculation 

methods.  This holds true for both a horizontal backfill as well as a backfill that is inclined 

by      .  The backfill material does not seem to have much influence on this result 

although for the case of clay or clayey silt backfill material with an inclined backfill did 

result in a slope failure and not a failure of the retaining capabilities of the structure. 

For the cases with a gravel foundation material the material factors of safety calculated 

with PLAXIS were greatly influenced by the backfill material.  Assuming that the trend 

shown for a coarser element mesh holds true for finer meshes it is estimated that some of 

the proposed designs with a blasted rock backfill material will fail under initial conditions 

indicating a material factor of safety of less than       .  This is true for both the case of 

a horizontal backfill as well as a backfill inclined by      .  When the fillmass is 

modelled as a gravel material the PLAXIS simulations resulted in material factors of safety 

slightly lower but close to those evaluated with hand calculation methods.  This is true for 

both the case of a horizontal backfill as well as a backfill that is inclined by      .  
Fillmass with a clay or clayey silt material had a material factor of safety higher than the 

ones proposed by the methods in HB016 for the cases with a horizontal backfill, the cases 

with an inclined backfill yielded large base plate widths and as a result were not modeled 

in PLAXIS. 

The cases with clay or clayey silt backfill material the material factors of safety calculated 

with PLAXIS were lower than the ones derived with hand calculation methods in all cases.  

When the backfill was modeled with a blasted rock material some of the designs failed 

under initial conditions in both the case of a horizontal and an inclined backfill.  Assuming 

that the trend shown with a coarser mesh also applies for finer mesh the PLAXIS 

simulations revealed that none of the designs produced with methods in HB016 meet the 

material factor of safety requirements of HB016.  The cases with a gravel backfill material 

produced slightly higher material factors of safety than the cases with blasted rock backfill 

material when modeled in PLAXIS.  In the case of a horizontal backfill many of the 

designs still fail under initial conditions but the cases with an inclined backfill had a bit 

higher material factors of safety according to PLAXIS simulations.  For the case of clay or 

clayey silt backfill material and a horizontal backfill PLAXIS simulations yielded much 

higher material factors of safety than was found for stronger backfill materials. 

As there are large discrepancies between material factors of safety derived with hand 

calculation methods and the ones simulated in PLAXIS a direct comparison of the effect of 

omitting the surface load from the designs cannot be carried out.  Comparing the difference 

between the material factor of safety curves with and without loads from PLAXIS 

simulations and hand calculation methods shows that the hand calculation method gives an 
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increase in the factor of safety close to that simulated with PLAXIS.  Because of the large 

difference in material factors of safety between hand calculation methods and PLAXIS 

simulations for the limit designs this result, although extremely pleasing, is of little 

practical importance. 

6.4 Geometry of simulated failure surfaces 

The most noticeable result from the PLAXIS simulations is that the failure surfaces in the 

backfill are in all cases almost planar; this can be seen more clearly in the results obtained 

with a finer mesh size.  As the method to calculate earth pressures for the case of a 

horizontal backfill proposed by HB016 assumes a roughness that depends on the material 

factor of safety it follows that the failure surface should in all cases have a curved section.  

The assumption that all the soil on top of the heel acts as a part of the structure and that a 

vertical failure plane will develop from the heel of the base to the surface does not appear 

to be accurate according to the PLAXIS simulations.  What is found with finite element 

simulations is that a planar shear surface develops into the mass that rests on top of the 

heel.  This shear plane reaches the back of the vertical wall and then travels along it to the 

surface or if the base plate is long enough travels along one plane to the surface.  It is clear 

that modeling the earth mass resting on top of the heel as a part of the structure does not 

provide an accurate description of the failure modes that were found with numerical 

simulations. 

It is possible that by taking into account the probable geometry of the failure wedge when 

calculating earth pressures a better model can be created to design cantilevered structures.  

An idea for a study on this could be to measure the angles of shear surfaces from simulated 

failures with the finite element method for different types of backfill materials.  If a 

connection between the inclinations of the shear surfaces into the mass above the base and 

the friction angle and inclination of the backfill can be established it can be used as an 

equivalent wall inclination angle input parameter in Coulomb‟s equation. 

Using the same logic as for equation (34) it is possible to derive a relationship between the 

frictional force and the driving force in the force diagram of Figure 2.12.  Knowing the 

equivalent-wall inclination angle, the angle of the failure plane and the friction angle of the 

backfill it should be possible to calculate the angle of roughness from simulated cases.  If 

the roughness angle is known it is possible to calculate the shear stress acting along the 

plane of the equivalent back wall. 

It is possible that such a study would change both the size and orientation of the active 

earth pressures used to design the geometry of cantilevered retaining walls and perhaps 

contribute to a better relationship between the design material factors of safety and the 

ones derived with numerical methods. 

 



101 

References 

Bourke Paul Calculating The Area And Centroid Of A Polygon [Online] // Paul Bourke. - 

July 1988. - 02 12, 2011. - http://www.paulbourke.net/geometry/polyarea/. 

Das Braja M. Principles of Geotechnical Engineering [Book]. - Pacific Grove, CA. : 

Brooks/Cole, 2002. 

Døssland Torgeir Bereevne for sålefundament i skråterreng [Report]. - Trondheim : NTH, 

1980. 

Døssland Torgeir Skjerflategeometri og vertikal jordreaksjon ved ulike teoretiske 

løysingar for bereevnefaktoren Nγ [Report]. - Trondheim : NTH, 1980. 

Erlingsson Sigurður Reference material for the subject "Jarðtækni og grundun 1" // 

Jarðtækni og grundun 1. Lecture notes. - Reykjavík : [s.n.], 2006. 

Eurocode EN 1992-1-1:2004 [Book]. - Brussels : CEN, 2004. 

Eurocode NS-EN 1997-1:2004+NA:2008 [Book]. - Lysaker : Norsk Standard, 2008. - 

Vol. I. 

Grande Lars Olav Samvirke mellom pel og jord [Book]. - Trondheim : Norges Tekniske 

Høgskole Universitetet I Trondheim, 1976. 

Janbu Nilmar [et al.] Reference material for the subject "Theoretical Soil Mechanics" // 

Theoretical Soil Mechanics. - Trondheim : NTNU, August 2006. 

Janbu Nilmar, Grabde Lars Olav and Eggereide Kåre Effective Stress Stability 

Analysis For Gravity Structures [Book]. - Trondheim, Norway : NTH, 1976. 

Nordal Steinar Finite Elements In Geotechnical Engineering // Lecture notes: TBA 4115 

Finite Elements In Geotechnical Engineering. - Trondheim : NTNU, 2009. 

PLAXIS Plaxis - Plaxis company history [Online] // Plaxis. - Plaxis, April 2011. - April 

24, 2011. - http://www.plaxis.nl/page/4863///History/. 

PLAXIS PLAXIS 2D 2010 - Material model manual [PDF document]. - Delft : PLAXIS ; 

PLAXIS, 2010. 

PLAXIS PLAXIS 2D 2010 - Reference manual [PDF document]. - Delft : PLAXIS, 2010. 

PLAXIS PLAXIS 2D 2010 - Scientific manual [PDF document]. - Delft : PLAXIS, 2010. 

Sandven Rolf Geotechnics, Material Properties // TBA4110 - Geotechnics, Material 

Properties - Equipment, proceidures and parameter interpretation. - Trondheim : NTNU, 

2000. 



102 

State of California Department of Transportation Division of Structure Construction 

Trenching And Shoring Manual Revision 12 [Book]. - Sacramento : State of California 

Department of Transportation - Division of Structure Construction, 1990. 

Statens vegvesen Håbdbok 100 [Book]. - Oslo : Statens vegvese - Bruavdelingen, 1985. 

Statens vegvesen Håndbok 016: Geoteknikk i vegbygging [Book]. - Oslo : Statens 

Vegvesen, Vegdirektoratet - Trafikksikkerhet, miljø- og teknilogiavdelingen, 2010. 

Statens vegvesen Håndbok 018: Vegbygging [Book]. - Oslo : Statens Vegvesen, 

Vegdirektoratet - Trafikksikkerhet, miljø- og teknilogiavdelingen, 2011. 

Statens vegvesen Håndbok 100: Bruhåndbok-1 [Book]. - Oslo : Statens vegvesen - 

Bruavdelingen, 1996. 

Statens vegvesen Håndbok 185: Bruprosjektering (normal) [Book]. - Oslo : Statens 

vegvesen - Teknologiavdelingen, Bruseksjonen, 2009. 

Ugural Ansel C. and Fenster Saul K. Advanced Strength And Applied Elasticity, fourth 

edition [Book]. - New Jersey : Prentice Hall Professional Technical Reference, 2003. 

Wikipedia European Committee for Standardization [Online] // Wikipedia. - Wikimedia 

Foundation, Inc, February 11, 2011. - April 21, 2011. - 

http://en.wikipedia.org/wiki/European_Committee_for_Standardization. 

 

  



103 

Appendix A: Stress on an arbitrary plane 

Using a soil element with a shear plane with stresses acting on it, as is shown in Figure 0.1, 

it is possible to set up equations of equilibrium. 

 
Figure 0.1:  A soil element and a free body diagram. 

If we define the long edge in the free body diagram as having a unit length we can easily 

set up a force diagram for this situation in the direction of the normal stress and normal 

shear stress as: 

           ( )    ( )        ( )    ( )       ( )    ( )        ( )    ( ) (A1) 

and 

           ( )    ( )        ( )    ( )       ( )    ( )        ( )    ( ) (A2) 

By noting that        , (Ugural, et al., 2003), these equations reduce to: 

          ( )        ( )         ( )    ( ) (A3) 

         ( )    ( )       ( )    ( )     (   
 ( )      ( )) (A4) 

These equations can be further simplified by the introduction of double angles as: 

    
     

 
 

     

 
   (  )        (  ) (A5) 

    
     

 
   (  )        (  ) (A6) 
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Principal planes 

We can calculate the extreme values of    as the inclination of the plane,  , increases by 

differentiating with respect to   and setting it equal to zero, this yields the equation 

    (  )     (    )  
   

 

 
(     )

 
    

 
 

 
(     )

 (A7) 

These tangents can be represented graphically as is done in Figure 0.2. 

 
Figure 0.2:  two different angles of the solution. 

These two cases yield two distinct possibilities for the value of    (  ) and    (  ) 
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and 
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These angles represent two planes that are perpendicular to each other.  If we put these 

values into the equation (A5) we get the well-known formulas 

      
     

 
 √(

 

 
(     ))

 

    
  (A10) 

      
     

 
 √(

 

 
(     ))

 

    
  (A11) 

However if we put them into equation (A6), we get zero in both cases.  The two planes for 

which this is true are called the principal planes and the stresses that act on them are named 

major- and minor-principal stresses, represented by    and   .  As can be verified with 

equations (A6), (A8) and (A9), principal planes do not have shear stresses acting on them 

by definition. 
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If the coordinate system in Figure 0.1 is defined so that the edges of the element are 

perpendicular to the principal planes the boundary shear forces reduce to zero and 

equations (A10) and (A11) reduce to 

    
     

 
 

     

 
   (  ) (A12) 

    
     

 
   (  ) (A13) 

We can find the maximum shear stress by using equation (A7) and setting     equal zero 

and getting that 

    (     )    (A14) 

This means that    
 

 
 or rather   

 

 
 which then finally gives us the maximum shear 

stress as 

      
     

 
 (A15) 

And it acts upon a plane inclined 
 

 
 from the horizontal. 
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Appendix B: The MC-failure criterion and the 

beauty of the attraction 

The Mohr coulomb failure criterion in a     space is defined by equation (6) and 

graphically presented by Figure 0.3.  However in practical applications it can often be 

useful to present the failure envelope in other spaces.  One practical reason might be that 

identifying the friction angle and cohesion by finding a best tangent line through a set of 

half circles is mathematically more challenging than calculating a best fit line through a 

point set.   

There are many ways to define the MC failure criterion in the two dimensional space and 

this chapter is dedicated to four of them.  The main reason for these derivation is to 

establish that while they all have their special properties, one property in particular is 

common to all of them.  The first case is to derive the MC failure criterion in the       

space as    and    are often the two known variables from experiments/exercises.  Case 2 

is the     space, which is a bit simpler version of case 1.  Case 3 is the      space 

which is a popular presentation of the MC failure envelope as it keeps the volumetric and 

distortional stress separate and is therefore a common way to present effective stress paths 

from triaxial tests (Nordal, 2009).  Finally we will derive the failure criterion for the 

deviator/NTH plot, which is popular as its variables are directly related to the forces 

applied to a sample in a triaxial cell. 

Case 1:  the   -   space 

 
Figure 0.3:  The Mohr-Coulomb failure envelope along with key variables. 

Looking at the right angled triangle defined by the failure envelope, the half circles radii 

and the line     
  we can define the following equation: 

    (  )  
  
    

 

 

  
    

 

 
 

 

   (  )

 (B1) 

From which we can derive 

   
    (  )    

    (  )        (  )    
    

  (B2) 
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And trying to isolate   
  on the left side we get 

   
 (     (  ))        (  )    

 (     (  )) (B3) 

Then finally isolating the minor principal stress by division we get the well-known formula 

   
    

      (  )

     (  )
  

      (  )

     (  )
 (B4) 

or if we twist it around as 

   
    

      (  )

     (  )
  

      (  )

     (  )
 (B5) 

This formula is often noted as  

   
    

    (  )     (B6) 

This is done with substitution in order to retain the form of the original MC-criterion but it 

should be noted that      and      .  However if we instead substitute in for   with 

        (  ) (B7) 

we get 

    
    

      (  )

     (  )
  

      (  )

     (  )
 (B8) 

Now by adding   to both sides we get 

 (  
   )    

      (  )

     (  )
  

      (  )

     (  )
  

     (  )

     (  )
 (B9) 

and with a little algebra we get the desired result 

 (  
   )  (  

   )
     (  )

     (  )
 (B10) 

It can be verified that the intersection of equation (B10) and the symmetry line   
    

  is 

the point (–     ). 

Case 2:  the     space 

Another popular form of the MC failure criterion is to define the radius and the center of 

Mohr circle as variables (MIT– NGI-plot). 

    
  
    

 

 
 (B11) 

   
  
    

 

 
 (B12) 

Then we can set up the same initial equation as was done in equation (B1) 
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    (  )  
 

    
 (B13) 

which is turned to the relation 

   (    )   (  ) (B14) 

If we now investigate the intersection with the   axis we get 

       (B15) 

 

Case 3:    -  space in a triaxial test 

The mean stress is defined as  

    
 

 
(        ) (B16) 

and because we are taking the special case of the triaxial test we have      which gives 

    
 

 
(      ) (B17) 

The deviator stress is defined as  

   (     ) (B18) 

we can continue from (B14) as       

         (  )        (  ) (B19) 

if we write out the principal stresses and substitute       (  )⁄  we get 

   (     )   ( 
 )        (  ) (B20) 

With a little twist we get 

   
 

 
((       )       )   ( 

 )        (  ) (B21) 

With substitution we can turn (B20) into 

   (    
 

 
)    (  )        (  ) (B22) 

we scale this to get 

          (  )      (  )        (  ) (B23) 

factor and get 

  (     (  ))        (  )        (  ) (B24) 
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and finally we get the desired result 

   
      (  )

     (  )
 

      (  )

     (  )
 (B25) 

If we now investigate the intersection with the    axis we get 

      
   (  )

   (  )
    (B26) 

Case 4: The deviator plot 

For completeness sake we define 

    
     (  )

     (  )
 (B27) 

and name    the minor principal stress ratio and define 

    
     (  )

     (  )
 (B28) 

and we name    the major principal stress ratio, as it is contains the link between the 

principal stresses that have been shifted by the attraction.  It is worth noting that (   
  )    and  (   )

    . 

Substituting equation (B28) into equation (B10) we get 

 (  
   )  (  

   )     (B29) 

we subtract and divide and get 

 
 

 
((  

   )  (  
   ))  

 

 
((  

   )     (  
   )) (B30) 

Then we have derived the desired result 

 
(  

    
 )

 
 

(    )(  
   )

 
 (B31) 

If we now investigate the intersection with the   
  axis we get the familiar result 

   
     (B32) 

Conclusion 

We have now defined the MC failure criterion using different variables and notations.  Out 

of four commonly used presentations of the Mohr-Coulomb failure criterion, three had the 

intersection with the horizontal axis as the numerical value of –   and the fifth has a special 

connection to the variable as well.  It is clear that the attraction,  , is a common factor to 

all of them and can be used along with the friction angle,   , to link the major and minor 

principal stresses. 
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Appendix C:  Stresses on critical and inclined 

planes 

We now continue on this path and advance what we know about the principal stress ratio 

and then examine stresses on other planes than the critical planes in a soil element that has 

reached its shear strength. 

Stresses on the critical plane 

In Figure 0.4 the Mohr-Coulomb failure criterion has been shifted by the attraction and 

both the shear and normal stress have been normalized by (  
   ). 

 
Figure 0.4:  A dimensionless version of the MC failure envelope. 

Because the triangle     has two sides equal it also has two equal angles.  It is easy to 

establish the angle      as the triangle it forms with the scaled MC failure line is a right 

triangle.       it therefore equal to 

      
 

 
      (

 

 
 

  

 
)      (C1) 

With a little algebra we can calculate that the other two angles of     are equal to   .  By 

noting that  

              
 

 
 

  

 
 (C2) 

The angle    complements the angle   , and thus we know that 

              
 

 
 

  

 
 (C3) 

Furthermore the two sides connecting to point   are equal in length and because the point 

  has been normalized to be equal to one we get that they are equal to    (  ). 

The power of point theorem gives the relationship 
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    (  )     (  )       (C4) 

which can be written out as 

 
     (  )

     (  )
     (

 

 
 

  

 
) (C5) 

Let‟s now extrapolate another relationship for   .  The line    in Figure 0.4 is parallel to 

  .  Therefore we know from before that the angle      is equal to the angle     .  

Therefore we can conclude that the triangle     is an isosceles triangle.  We can calculate 

the distance |  | as 

 |  |     (  ) (C6) 

therefore the distances |  | and |  | are equal to 

 |  |  |  |  √    (  )    (C7) 

The distance |  | can now be calculated as 

 |  |  |  |     (  )  √    (  )    (C8) 

Using the same method as used in equation (C4) we can now conclude that 

        (
 

 
 

  

 
)  (   (  )  √    (  )   )

 
 (C9) 

Let‟s now inspect the relationship between the actual stress acting on the critical plane and 

the major and minor principal stresses acting on the specimen.  We note that the triangles 

    and      have a common angle and a right angle and thus we have 

 
|  |

|  |
 

|   |

|  |
 (C10) 

Writing |  | and |  | in terms of   (noting equation (C4)) we get the relationship 

 |   |  
  
   

  
   

 
   

    
 (C11) 

Using equations (C11), (B29) 

 and the simple relationship between equations (B27) and (B28) it is possible to show that 

 
  
   

  
   

 
   

    
 (C12) 

Now we have formulated equations linking the major and the minor principal stress to the 

normal stress acting on the critical plane (Janbu, et al., 2006) 
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Stresses on an inclined plane – passive case 

We have now discussed how to calculate stresses acting on the on the most critical plane so 

we have the tools to calculate the stresses transferred from the soil to a structure if the 

connection between the two is completely rough.  Let‟s investigate on what happens when 

the stress triangle hits the structure at an angle other than the most critical one.  By using 

equation (21) we can define a reduced failure criterion that results in a cut-shear element.  

This is illustrated in Figure 0.5. 

 
Figure 0.5: a) dimensionless MC-criterion b) the cut shear element passive pressures. 

By investigating Figure 0.5 a) it is possible to derive a relationship between the magnitude 

of |  |, he principal stress ratio   , and the passive cut angle   .  This is done by noting 

that 

 |  |     (  )  |  | (C13) 

and 

 |  |     (  )  |  | (C14) 

By noting that the triangle     is right triangle, the distance |  | can be defined as 

 |  |  √|  |  |  |  (C15) 

or as 

 |  |  √    (  )  (|  |  |  | ) (C16) 

By substitution this becomes 

 |  |  (    )     (  ) (C17) 

The distance |  | can now be expressed as 

|  |  (    )      (  ) 

We can create the desired link as 

    
 

  
   

  
   

   (    )      (  ) (C18) 
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By noting equation (C4) this can be developed further as 

    
 

  
   

  
   

   
(    )

      (  )
   

    (  )  

      (  )
 

    (  )     (  )

      (  )
 (C19) 

We now define    as the mobilization of    using the same principle as in equation (8) 

    
   (  )

   (  )
 (C20) 

Now by substituting equation (C20) into equation (C19) we get the desired result as 

    
 

  
   

  
   

 
(  

   )   

    
     (C21) 

We can develop a relationship between the variable    in equation (C20) and   further by 

using the fact that the triangles     and     have the same shape.  Therefore the 

following applies 

 
     (  )

 
 

(   
  )   (  )

   

 (C22) 

substituting in for    
 using equation we get 

      (  )  
(
(  

   )        
    

    
    )    (  )

(  
   )   

    
    

 (
(  

   )        
    

(  
   )   )     (  ) (C23) 

which reduces to  

      (  )  
(    )    (  )

(  
   )    (C24) 

We note that the term (    ) is in fact the diameter of the half circle in Figure 0.5 and 

we substitute it for two times the radius of the half circle    

      (  )  
        (  )

(  
   )    (C25) 

We note that by looking at the triangle     in Figure 0.5 a) and remembering that one 

term in equation (C4) represents the distance |  | that 

    (  )  
  

   (  )
 (C26) 

We substitute this in for    (  ) and    in equation (C25) with equations (C20) and 

(C26)and get 

      (  )  
     (  )    (  )       (  )

(  
   )    (C27) 

Using equation (C4) this reduces to  
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 (C28) 

and can by use of the quadratic formula be turned into the desired result 

    
 

 
(  √    ) (C29) 

where   is selected as a primary parameter (Grande, 1976).  The other solution from the 

quadratic formula is of no practical importance. 

It is clear that the only factor that controls the how mobilized the stress on the stress on the 

rotated plane is the roughness,  .  The resulting stresses on the arbitrary plane will then be  

   
     

 (  
   )    (C30) 

and 

          (  )  (  
   ) (C31) 

Stresses on an inclined plane – passive case 

Deriving the equations for the active earth pressures is similar to the case of passive 

pressures.  For those interested to try on their own, the easiest way to begin is to normalize 

figure Figure 0.5 a) with the major principal stress instead of the minor principal stress.  

The important equations will be presented here without derivations. 

The plane mobilization number   , only depends on the roughness so equations (C28) and 

(C29) apply for both cases.     has another definition, see equation (C20), and it differs 

between the active and passive case.  For the active case it becomes 

    
   (  )

   (  )
 (C32) 

Knowing the roughness number,  , it is possible to calculate    and finally the resulting 

angle to the arbitrary plane   .  The stress ratio    
 is expressed as  

    
 

  
   

  
   

 
(  

   )   

    
     (C33) 

The resulting stresses on the arbitrary plane will then be 

   
     

 (  
   )    (C34) 

And 

          (  )  (  
   ) (C35) 
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Appendix D:  The logarithmic spiral 

As is stated in chapter 2.3.3, the shape of the curved part of a failure surface behind a 

retaining structure is commonly thought of as a logarithmic spiral.  In Figure 0.6 a) we see 

the building block of the logarithmic spiral. 

 
Figure 0.6: The logarithmic spiral from building block to moment diagram. 

The angle    in Figure 0.6 a) is considered so small that the arcs can be approximated with 

lines and the little triangle is assumed to have a right angle.  From this we can set up the 

following equation 

       
  

   (  )
 (D1) 

By isolating the variables we are able to integrate both sides 

 ∫    (  )  
  

  
 ∫

  

  

  

  
 (D2) 

and get 

    (  )      (
  

  
) (D3) 

We raise both sides to the power of   and multiply with    to get the final result 

       
   (  )   (D4) 

So the logarithmic spiral has the property that the angle from the radius to the tangent of 

the curve is conveniently defined as   .  This becomes very convenient when we look at 

the forces acting on the boundary adjacent to the origin.  Because we are looking at stress 

fields where one of the prerequisites is that every part of the soil is on the verge of failing 

then we also know by inspecting Figure 2.3 that the normal and shear stresses are on the 

MC failure line,   
  and   .  The relationship between the two is then simply 

    (  )  
  

(  
   )

 (D5) 
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The resulting force acting on the boundary of the spiral will then be oriented backwards by 

the angle    at the same time that the trajectory of the spiral is angled outwards by the 

angle   .  The end result is that the boundary force,    in Figure 0.6 c) is directed towards 

the origin.  If we take a moment equilibrium about the origin we can omit the shear forces 

and the outer boundary forces and get 

    (     )
  

 
    (     )

  

 
   (D6) 

We can deduct from this that  

 
  
 

  
  

(     )

(     )
 (D7) 

Putting together equations (D4) and (D7) we get the desired result 

 (     )        (  )  (     ) (D8) 

A special case is when we assume undrained conditions as can be seen in Figure 2.2.  Then 

the friction angle is zero and we end up with a unit multiplier in equations (D4) and (D7).  

This means that the spirals in Figure 0.6 b) reduce to circles and the stress acting on one 

side is the same as the stress acting on the other. 
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Appendix E:  Stressfields in weightless soils 

The earth pressures caused by stressfields in weightless soils has been defined for the case 

of completely smooth wall in Appendix B.  In Appendix D a way to calculate the stress 

distribution through a rotation of the stressfield is provided.  Let‟s finish this topic by 

examining what happens when the walls surface is neither completely smooth nor 

completely rough.  A stressfield behind a vertical structure with a roughness number,  , 

between   and   can be described by using a complete Rankine zone connected to a 

Prandtl zone with an arbitrary opening angle and another Rankine zone that cuts the 

structure at an angle.  This is shown schematically in Figure 2.6. 

It clear that the opening angle of the logarithmic spiral shown in Figure 2.6 is the same 

angle as the angle of the arbitrary shear plane that cuts the structure.  This means that for a 

given roughness and a friction angle of the soil it is possible to calculate the opening angle 

of the logarithmic spiral with equations (C29) and (C20) or (C32), depending on the earth 

pressure case.  The total earth pressure from the combined fields can be calculated by 

tracing the stress from the planes    to    and finally   . 

Combined stressfields – passive case 

The stressfield combined from two Rankine zones and a Prandtl zone as a result of a 

roughness between   and   for the passive case is shown in Figure 2.6 a).  The stresses 

acting on plane     can be calculated by means of equation (C11) as 

     

    
   

    
 (  

   ) (E1) 

The stresses acting on plane     can be calculated by means of equation (D8) as 

     

             (  )  (    

   ) (E2) 

The stresses acting on plane     can be calculated by means of equations (C11) and (C21) 

as 

     

    
(  

   )   

    
     

(    
   )

   

    

 (E3) 

By means of substitution we can now present the stress acting on the structure as a function 

of the surface load as 

     

    
(  

   )   

    
     

 

   

    

          (  )  
   

    
 (  

   ) (E4) 

Which simplifies to the desired result as 

     

    
(  

   )   

    
              (  )  (  

   ) (E5) 

Combined stressfields – active case 

The stresses acting on plane     can be calculated by means of equation (C11) as 
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 (  

   ) (E6) 

The stresses acting on plane     can be calculated by means of equation (D8) as 

     

    
(    

   )

         (  )
 (E7) 

The stresses acting on plane     can be calculated by means of equations (C11) and (C21) 

as 

     

    
(  

   )   

    
     

(    
   )

   

    

 (E8) 

By means of substitution we can now present the stress acting on the structure as a function 

of the surface load as 

     

    
(  

   )   

    
     

 
   

    
          (  )

 
   

    
 (  

   ) (E9) 

Which simplifies to the desired result as 

     

    
(  

   )   

    
               (  )  (  

   ) (E10) 

What is interesting to see is that if we now change signs for    in the active case.  Equation 

(E10) transforms into (E5).  Equation (E5) will therefore be presented in thesis without 

identifying the earth pressure case. 

The Stressfields shown in Figure 2.6 are valid for    .  Although this is not covered in 

this thesis, the NTNU method proposes a planar shear surface for negative values of 

roughness and the earth pressures in that case can be calculated using equation (23).  For 

sloped terrain behind the wall, the parameter   in equation (23) is interchanged for the 

parameter  .  This is an approximation and is not without limitations (Janbu, et al., 2006). 

The derivations shown for both cases of pressures are done with the assumption that the 

soil is weightless.  The general assumption is then that the equations also apply for soils 

with weight.  When calculating earth pressures against structures the term   
  in equations 

(E5) and (E10) is then substituted with   
 
 which is calculated using equation (2). 
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Appendix F:  At rest coefficient of earth pressure 

The generalized Hooke‟s law for an isotropic homogenous material can be presented as 

 

    
 

 
(   

      
      

 )

    
 

 
(     

     
      

 )

    
 

 
(     

      
     

 )

 (F1) 

Where   stands for the strain,    is the principal stress and   is Poisson‟s ratio (Ugural, et 

al., 2003). Hook‟s law implies that if we have a change in strain in one principal direction 

we will create stresses in the other two principal directions and causing either strains there 

as well.   

If look at the situation created in an oedometer we do not allow for any strains in the minor 

principal direction and the stress in the minor and intermediate principal direction is the 

same.  The oedometer situation can be seen in Figure 0.7. 

 
Figure 0.7:  A soil sample under compression in an oedometer cell. 

Using the equation for the minor principal strain in equations (F1) and putting    
    

 
 

and zero strain we can derive the relationship 

    
     

  
 

   
 (F11) 

Thus creating a link between the horizontal and vertical stress by means of the theory of 

elasticity.  The term involving Poisson‟s ratio can be called    as referred to by equation 

(9) (Nordal, 2009). 
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Appendix G: Calculations by coordinates 

The area of a non-self-intersecting polygon defined by finite number of points, (     ), 
can be calculated as 

   
 

 
 ∑ [               ]

   
    (G1) 

The centroid of the polygon can then be calculated as 

    
 

  
 ∑ [(       )  (               )]

   
    (G2) 

And 

    
 

  
 ∑ [(       )  (               )]

   
    (G3) 

This method assumes that the points be in order around the perimeter and to get a correct 

sign on the area their number should increase along a counterclockwise direction (Bourke, 

1988).  As I have chosen to increment the point numbers along clockwise paths around the 

stress shapes, see Figure 4.1, equations (G1) to (G3) is used with a change in sign. 

While there are more common methods of calculating the area and center of mass of stress 

shapes, this one is chosen because it can easily be extended to account for more complex 

stress cases. 
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Appendix H:  Results from hand calculations 

Table 0.1:  Shows the results from toe optimization of cases in Table 4.9. 

Case  H 

[m] 

W 

[m] 

Wtoe 

[m] 

EA 

[kN] 

rb 

[-] 

RV 

[kN] 

e 

[m] 

B0 

[m] 

qv 

[kPa] 

Foundation 

material 
Backfill 
material 

1 3 1,4 0,3 36,3 0,599 86,4 -0,29 0,77 111,6 Bl. rock Bl. rock 

2 5 2,2 0,5 84,1 0,565 216,4 -0,36 1,51 143,2 Bl. rock Bl. rock 

3 7 3,1 0,8 140,9 0,532 389,9 -0,45 2,18 179,1 Bl. rock Bl. rock 

4 10 4,3 1,2 261,6 0,516 754,7 -0,51 3,31 228,3 Bl. rock Bl. rock 

5 3 2,2 0,5 66,8 0,695 133,3 -0,31 1,62 82,5 Bl. rock Clay or cl. silt 

6 5 3,9 1,2 156,0 0,662 332,7 -0,25 3,35 99,4 Bl. rock Clay or cl. silt 

7 7 5,4 1,9 262,9 0,636 592,2 -0,17 5,08 116,5 Bl. rock Clay or cl. silt 

8 10 8,1 2,6 490,2 0,566 1266,8 0,00 8,05 157,3 Bl. rock Clay or cl. silt 

9 3 1,7 0,4 47,5 0,649 103,0 -0,30 1,08 95,2 Bl. rock Gravel 

10 5 2,9 0,8 110,2 0,616 256,3 -0,34 2,17 117,8 Bl. rock Gravel 

11 7 3,9 1,2 184,6 0,585 458,4 -0,37 3,21 142,6 Bl. rock Gravel 

12 10 5,7 1,9 342,8 0,571 883,7 -0,33 5,02 176,2 Bl. rock Gravel 

13 3 2,7 0,2 36,3 0,608 171,1 -0,05 2,63 65,2 Clay or cl. silt Bl. rock 

14 5 4,0 0,4 84,1 0,598 403,5 -0,05 3,94 102,3 Clay or cl. silt Bl. rock 

15 7 5,1 0,6 140,9 0,585 690,8 -0,06 5,02 137,6 Clay or cl. silt Bl. rock 

16 10 6,9 0,9 261,6 0,580 1294,0 -0,05 6,80 190,3 Clay or cl. silt Bl. rock 

17 3 6,8 0,1 66,8 0,440 435,6 0,00 6,78 64,2 Clay or cl. silt Clay or cl. silt 

18 5 10,4 0,2 156,0 0,409 1094,5 0,00 10,45 104,8 Clay or cl. silt Clay or cl. silt 

19 7 13,7 0,3 262,9 0,380 1985,1 0,00 13,71 144,8 Clay or cl. silt Clay or cl. silt 

20 10 18,9 0,4 490,2 0,363 3880,1 0,00 18,89 205,5 Clay or cl. silt Clay or cl. silt 

21 3 3,9 0,3 47,5 0,570 239,1 0,00 3,89 61,5 Clay or cl. silt Gravel 

22 5 5,8 0,4 110,2 0,546 578,8 0,00 5,83 99,3 Clay or cl. silt Gravel 

23 7 7,5 0,6 184,6 0,525 1009,9 0,00 7,46 135,4 Clay or cl. silt Gravel 

24 10 10,1 0,8 342,8 0,509 1932,1 0,00 10,08 191,6 Clay or cl. silt Gravel 

25 3 2,2 0,4 36,3 0,535 130,5 -0,06 2,09 62,5 Gravel Bl. rock 

26 5 3,3 0,7 84,1 0,529 306,1 -0,07 3,16 96,9 Gravel Bl. rock 

27 7 4,2 1,0 140,9 0,517 525,7 -0,10 4,03 130,3 Gravel Bl. rock 

28 10 5,7 1,4 261,6 0,513 982,8 -0,11 5,48 179,4 Gravel Bl. rock 

29 3 6,2 0,2 66,8 0,324 397,2 0,00 6,21 64,0 Gravel Clay or cl. silt 

30 5 9,7 0,2 156,0 0,297 1012,8 0,00 9,70 104,5 Gravel Clay or cl. silt 

31 7 12,9 0,3 262,9 0,272 1861,4 0,00 12,90 144,3 Gravel Clay or cl. silt 

32 10 17,9 0,4 490,2 0,257 3670,6 0,00 17,91 205,0 Gravel Clay or cl. silt 

33 3 3,2 0,5 47,5 0,480 190,9 0,00 3,22 59,2 Gravel Gravel 

34 5 4,9 0,7 110,2 0,456 465,8 0,00 4,87 95,6 Gravel Gravel 

35 7 6,3 0,9 184,6 0,436 815,1 0,00 6,28 129,7 Gravel Gravel 

36 10 8,5 1,2 342,8 0,420 1571,8 0,00 8,54 184,0 Gravel Gravel 
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As the eccentricity of the vertical resultant force is not always zero as can be seen in Table 

0.1 it is interesting to see how the eccentricity of the force resultant for changes with 

varying toe width for different cases of foundation and backfill masses.  This has been 

done for the selected cases highlighted with bold letters in Table 0.1 and can be seen fin 

Figure 0.8 to Figure 0.10. 

 
Figure 0.8:  Eccentricity and remaining bearing capacity, blasted rock foundation. 

 
Figure 0.9:  Eccentricity and remaining bearing capacity, gravel foundation. 

 

Figure 0.10:  Eccentricity and remaining bearing capacity, clay/clayey-silt foundation. 
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The results from hand calculations of L-shaped retaining walls with varying height, 

foundation material and backfill material for the backfill inclination of       and a 

surface load of         can be seen in Table 0.2. 

Table 0.2:  Wall heights and widths with a sloping backfill resulting in       . 

Case  H 

[m] 

W 

[m] 

Wtoe 

[m] 

EA 

[kN] 

rb 

[-] 

RV 

[kN] 

e 

[m] 

B0 

[m] 

qv 

[kPa] 

Foundation 

material 
Backfill 
material 

1β 3 1,7 0,0 56,8 0,577 141,9 -0,35 1,11 127,3 Bl. rock Bl. rock 

2β 5 3,1 0,0 139,5 0,522 393,6 -0,49 2,15 183,1 Bl. rock Bl. rock 

3β 7 4,3 0,0 234,1 0,476 735,4 -0,63 3,01 244,7 Bl. rock Bl. rock 

4β 10 6,1 0,0 450,6 0,455 1493,3 -0,80 4,54 329,1 Bl. rock Bl. rock 

5β 3 5,1 0,0 209,2 0,680 435,1 -0,36 4,32 100,8 Bl. rock Clay or cl. silt 

6β 5 9,8 0,0 581,5 0,591 1437,3 -0,33 9,17 156,8 Bl. rock Clay or cl. silt 

7β 7 14,0 0,0 1008,5 0,527 2843,8 -0,33 13,36 212,8 Bl. rock Clay or cl. silt 

8β 10 22,3 0,0 2179,7 0,496 6614,2 -0,14 22,04 300,1 Bl. rock Clay or cl. silt 

9β 3 2,6 0,0 89,5 0,625 204,3 -0,39 1,84 110,9 Bl. rock Gravel 

10β 5 4,7 0,0 225,5 0,554 596,2 -0,50 3,69 161,7 Bl. rock Gravel 

11β 7 6,5 0,0 379,8 0,497 1135,5 -0,62 5,26 215,7 Bl. rock Gravel 

12β 10 9,7 0,0 750,2 0,470 2400,6 -0,73 8,21 292,5 Bl. rock Gravel 

13β 3 4,4 0,0 81,0 0,670 347,1 -0,03 4,29 80,8 Clay or cl. silt Bl. rock 

14β 5 6,5 0,0 188,0 0,646 835,0 -0,08 6,31 132,3 Clay or cl. silt Bl. rock 

15β 7 7,9 0,0 296,9 0,613 1389,8 -0,18 7,56 183,8 Clay or cl. silt Bl. rock 

16β 10 10,8 0,0 565,3 0,605 2682,1 -0,25 10,32 259,9 Clay or cl. silt Bl. rock 

17β 3 - - - - - - - - Clay or cl. silt Clay or cl. silt 

18β 5 - - - - - - - - Clay or cl. silt Clay or cl. silt 

19β 7 - - - - - - - - Clay or cl. silt Clay or cl. silt 

20β 10 - - - - - - - - Clay or cl. silt Clay or cl. silt 

21β 3 8,9 0,0 188,1 0,655 824,0 0,31 8,29 99,4 Clay or cl. silt Gravel 

22β 5 13,0 0,0 422,4 0,637 1904,0 0,36 12,21 155,9 Clay or cl. silt Gravel 

23β 7 14,9 0,0 615,9 0,610 2896,2 0,24 14,42 200,8 Clay or cl. silt Gravel 

24β 10 20,6 0,0 1189,6 0,603 5661,8 0,34 19,92 284,2 Clay or cl. silt Gravel 

25β 3 3,2 0,0 69,5 0,539 248,6 -0,15 2,90 85,8 Gravel Bl. rock 

26β 5 4,9 0,0 163,5 0,516 610,8 -0,25 4,34 140,7 Gravel Bl. rock 

27β 7 6,1 0,0 264,7 0,484 1054,5 -0,38 5,36 196,6 Gravel Bl. rock 

28β 10 8,4 0,0 503,2 0,476 2038,9 -0,50 7,35 277,6 Gravel Bl. rock 

29β 3 48,4 0,0 2756,2 0,475 11187,9 5,38 37,66 297,1 Gravel Clay or cl. silt 

30β 5 69,5 0,0 5815,6 0,466 24042,1 7,36 54,75 439,1 Gravel Clay or cl. silt 

31β 7 75,5 0,0 7167,7 0,448 30823,3 7,27 60,94 505,8 Gravel Clay or cl. silt 

32β 10 107,5 0,0 14528,5 0,447 62604,3 10,36 86,78 721,4 Gravel Clay or cl. silt 

33β 3 5,6 0,0 132,1 0,545 467,4 -0,03 5,54 84,3 Gravel Gravel 

34β 5 8,5 0,0 309,3 0,519 1147,5 -0,07 8,36 137,2 Gravel Gravel 

35β 7 10,7 0,0 489,4 0,483 1953,5 -0,16 10,36 188,6 Gravel Gravel 

36β 10 14,7 0,0 940,3 0,475 3813,2 -0,21 14,32 266,3 Gravel Gravel 
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Table 0.3: Shows the results from toe optimization of cases in Table 0.2. 

Case  H 

[m] 

W 

[m] 

Wtoe 

[m] 

EA 

[kN] 

rb 

[-] 

RV 

[kN] 

e 

[m] 

B0 

[m] 

qv 

[kPa] 

Foundation 

material 
Backfill 
material 

1β 3 1,7 0,7 50,0 0,720 96,8 -0,28 1,12 86,1 Bl. rock Bl. rock 

2β 5 2,9 1,1 122,5 0,677 259,2 -0,33 2,21 117,2 Bl. rock Bl. rock 

3β 7 3,9 1,4 207,4 0,632 479,4 -0,41 3,10 154,6 Bl. rock Bl. rock 

4β 10 5,6 1,9 395,3 0,615 951,6 -0,44 4,72 201,8 Bl. rock Bl. rock 

5β 3 4,0 2,1 136,9 0,904 196,9 -0,08 3,86 51,0 Bl. rock Clay or cl. silt 

6β 5 7,8 1,7 433,6 0,716 863,2 -0,01 7,82 110,4 Bl. rock Clay or cl. silt 

7β 7 11,6 1,7 803,7 0,609 1935,9 -0,01 11,59 167,0 Bl. rock Clay or cl. silt 

8β 10 21,0 0,7 2019,1 0,514 5895,7 0,00 20,99 280,8 Bl. rock Clay or cl. silt 

9β 3 2,3 1,0 73,2 0,801 123,9 -0,26 1,81 68,5 Bl. rock Gravel 

10β 5 4,0 1,7 180,2 0,761 332,0 -0,22 3,61 91,9 Bl. rock Gravel 

11β 7 5,5 2,3 304,2 0,717 608,2 -0,21 5,11 119,0 Bl. rock Gravel 

12β 10 8,0 3,4 581,9 0,704 1205,8 -0,05 7,93 152,1 Bl. rock Gravel 

13β 3 4,3 0,1 79,4 0,680 335,1 0,00 4,32 77,6 Clay or cl. silt Bl. rock 

14β 5 6,4 0,3 182,5 0,664 789,2 0,00 6,39 123,5 Clay or cl. silt Bl. rock 

15β 7 7,8 0,6 283,3 0,646 1258,5 0,00 7,75 162,4 Clay or cl. silt Bl. rock 

16β 10 10,6 0,7 539,7 0,638 2429,8 0,00 10,56 230,2 Clay or cl. silt Bl. rock 

17β 3 - - - - - - - - Clay or cl. silt Clay or cl. silt 

18β 5 - - - - - - - - Clay or cl. silt Clay or cl. silt 

19β 7 - - - - - - - - Clay or cl. silt Clay or cl. silt 

20β 10 - - - - - - - - Clay or cl. silt Clay or cl. silt 

21β 3 8,9 0,0 188,1 0,655 824,0 0,31 8,29 99,4 Clay or cl. silt Gravel 

22β 5 12,9 0,0 422,4 0,637 1904,0 0,36 12,21 155,9 Clay or cl. silt Gravel 

23β 7 14,9 0,0 615,9 0,610 2896,2 0,24 14,42 200,8 Clay or cl. silt Gravel 

24β 10 20,6 0,0 1189,6 0,603 5661,8 0,34 19,92 284,2 Clay or cl. silt Gravel 

25β 3 3,0 0,7 61,3 0,618 191,1 0,00 3,01 63,5 Gravel Bl. rock 

26β 5 4,5 1,0 145,8 0,602 466,3 0,00 4,54 102,8 Gravel Bl. rock 

27β 7 5,7 1,4 234,3 0,593 760,9 0,00 5,68 133,8 Gravel Bl. rock 

28β 10 7,7 1,8 446,4 0,582 1479,0 0,00 7,73 191,4 Gravel Bl. rock 

29β 3 48,4 0,0 2756,2 0,475 11187,9 5,38 37,66 297,1 Gravel Clay or cl. silt 

30β 5 69,5 0,0 5815,6 0,466 24042,1 7,36 54,75 439,1 Gravel Clay or cl. silt 

31β 7 75,5 0,0 7167,7 0,448 30823,3 7,27 60,94 505,8 Gravel Clay or cl. silt 

32β 10 107,5 0,0 14528,5 0,447 62604,3 10,36 86,78 721,4 Gravel Clay or cl. silt 

33β 3 5,5 0,2 128,0 0,555 444,1 0,00 5,49 80,9 Gravel Gravel 

34β 5 8,3 0,3 296,7 0,535 1068,7 0,00 8,26 129,4 Gravel Gravel 

35β 7 10,1 0,6 457,1 0,511 1723,4 0,00 10,13 170,2 Gravel Gravel 

36β 10 14,0 0,8 882,5 0,501 3396,3 0,00 14,01 242,5 Gravel Gravel 

 

As the backfill inclination nears the internal friction angle of the clay and clayey silt 

material with the material safety factor of        the variable   in equation (26) nears 

the value of    .  This means that   in equation (25) nears the value of     resulting in 
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a large value for the active earth pressure coefficient.  The cases involving clay or clayey 

silts in the backfill mass reveal much larger values of the necessary foundation width than 

the other two backfill materials.  I was unable to find a solution for the case of a structure 

founded on clay or clayey silt retaining a backfill of the same material. 

Two cases of a      high structure founded on a blasted rock material exceeded the 

maximum allowed foundation roughness       , they have been marked with brackets.  

The case for clay or clayey silt backfill on gravel foundation revealed extremely large 

foundation widths, the values are presented for the sake of completeness. 
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Appendix I: Failure modes from numerical 

simulations 

The numerical simulation is done as is described in chapter 5.2.  A general mesh 

coarseness of “fine” is selected for the initial analysis; at least one case of each material 

combination was selected for further analysis with local mesh refinements.  This 

refinement entails creating a material cluster around the expected failure surface and 

increasing the number of elements with the refinement process two times.  This is done to 

get an idea of how the discretization affects the results.  For each case two separate 

analyses were run; one without terrain loading and one without.  These figures show 

results from the 5.th step, strength reduction of model with terrain load         

applied. 

“Fine”-mesh size – horizontal backfill 

 
Figure 0.11:  Failure mode of case 1 with terrain load. 

 
Figure 0.12:  Failure mode of case 2 with terrain load. 
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Figure 0.13:  Failure mode of case 3 with terrain load. 

 
Figure 0.14:  Failure mode of case 4 with terrain load. 

 
Figure 0.15:  Failure mode of case 5 with terrain load. 

 
Figure 0.16:  Failure mode of case 6 with terrain load. 
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Figure 0.17:  Failure mode of case 7 with terrain load. 

 
Figure 0.18:  Failure mode of case 8 with terrain load. 

 
Figure 0.19:  Failure mode of case 9 with terrain load. 

 
Figure 0.20:  Failure mode of case 10 with terrain load. 
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Figure 0.21:  Failure mode of case 11 with terrain load. 

 
Figure 0.22:  Failure mode of case 12 with terrain load. 

 
Figure 0.23:  Failure mode of case 13 with terrain load. 

 
Figure 0.24:  Failure mode of case 14 with terrain load. 
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Figure 0.25:  Failure mode of case 15 with terrain load. 

 
Figure 0.26:  Failure mode of case 16 with terrain load. 

 
Figure 0.27:  Failure mode of case 17 with terrain load. 

 
Figure 0.28:  Failure mode of case 18 with terrain load. 
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Figure 0.29:  Failure mode of case 19 with terrain load. 

 
Figure 0.30:  Failure mode of case 20 with terrain load. 

 
Figure 0.31:  Failure mode of case 21 with terrain load. 

 
Figure 0.32:  Failure mode of case 22 with terrain load. 



132 

 
Figure 0.33:  Failure mode of case 23 with terrain load. 

 
Figure 0.34:  Failure mode of case 24 with terrain load. 

 
Figure 0.35:  Failure mode of case 25 with terrain load. 

 
Figure 0.36:  Failure mode of case 26 with terrain load. 
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Figure 0.37:  Failure mode of case 27 with terrain load. 

 
Figure 0.38:  Failure mode of case 28 with terrain load. 

 
Figure 0.39:  Failure mode of case 29 with terrain load. 

 
Figure 0.40:  Failure mode of case 30 with terrain load. 
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Figure 0.41:  Failure mode of case 31 with terrain load. 

 
Figure 0.42:  Failure mode of case 32 with terrain load. 

 
Figure 0.43:  Failure mode of case 33 with terrain load. 

 
Figure 0.44:  Failure mode of case 34 with terrain load. 
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Figure 0.45:  Failure mode of case 35 with terrain load. 

 
Figure 0.46:  Failure mode of case 36 with terrain load. 

Locally refined mesh size – horizontal backfill 

 
Figure 0.47:  Failure mode of case 1 with locally refined mesh and terrain load. 
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Figure 0.48:  Failure mode of case 3 with locally refined mesh and terrain load. 

 

Figure 0.49:  Failure mode of case 7 with locally refined mesh and terrain load. 

 
Figure 0.50:  Failure mode of case 11 with locally refined mesh and terrain load. 
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Figure 0.51:  Failure mode of case 15 with locally refined mesh and terrain load. 

 
Figure 0.52:  Failure mode of case 19 with locally refined mesh and terrain load. 

 
Figure 0.53:  Failure mode of case 21 with locally refined mesh and terrain load. 

 
 Figure 0.54:  Failure mode of case 23 with locally refined mesh and terrain load. 
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 Figure 0.55:  Failure mode of case 27 with locally refined mesh and terrain load. 

 
 Figure 0.56:  Failure mode of case 31 with locally refined mesh and terrain load. 

 
 Figure 0.57:  Failure mode of case 33 with locally refined mesh and terrain load. 

 
 Figure 0.58:  Failure mode of case 35 with locally refined mesh and terrain load. 



139 

“Fine”-mesh size – inclined backfill 

 

 
Figure 0.59:  Failure mode of case 1β with terrain load. 

 
Figure 0.60:  Failure mode of case 2β with terrain load. 

 
Figure 0.61:  Failure mode of case 3β with terrain load. 
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Figure 0.62:  Failure mode of case 4β with terrain load. 

 
Figure 0.63:  Failure mode (*) of case 5β with terrain load. 

 
Figure 0.64:  Failure mode (*) of case 6β with terrain load. 
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Figure 0.65:  Failure mode (*) of case 7β with terrain load. 

 
Figure 0.66:  Failure mode (*) of case 8β with terrain load. 

 
Figure 0.67:  Failure mode of case 9β with terrain load. 
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Figure 0.68:  Failure mode of case 10β with terrain load. 

 
Figure 0.69:  Failure mode of case 11β with terrain load. 

 
Figure 0.70:  Failure mode of case 12β with terrain load. 
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Figure 0.71:  Failure mode of case 13β with terrain load. 

 
Figure 0.72:  Failure mode of case 14β with terrain load. 

 
Figure 0.73:  Failure mode of case 15β with terrain load. 
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Figure 0.74:  Failure mode of case 16β with terrain load. 

 
Figure 0.75:  Failure mode of case 21β with terrain load. 

 
Figure 0.76:  Failure mode of case 22β with terrain load. 



145 

 
Figure 0.77:  Failure mode of case 23β with terrain load. 

 
Figure 0.78:  Failure mode (**) of case 24β with terrain load. 

 
Figure 0.79:  Failure mode of case 25β with terrain load. 
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Figure 0.80:  Failure mode of case 26β with terrain load. 

 
Figure 0.81:  Failure mode of case 27β with terrain load. 

 
Figure 0.82:  Failure mode of case 28β with terrain load. 
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Figure 0.83:  Failure mode of case 33β with terrain load. 

 
Figure 0.84:  Failure mode of case 34β with terrain load. 

 
Figure 0.85:  Failure mode of case 35β with terrain load. 
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Figure 0.86:  Failure mode (**) of case 36β with terrain load. 

 

*) A slope failure; structure does not fail! 

**) failure mechanism touches the boundaries of the model.  A larger model is required to 

produce good results 

Locally refined mesh size – inclined backfill 

 
Figure 0.87:  Failure mode of case 1β with a locally refined mesh and terrain load. 
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Figure 0.88:  Failure mode of case 3β with a locally refined mesh and terrain load. 

 
Figure 0.89:  Failure mode (*) of case 7β with a locally refined mesh and terrain load. 

 
Figure 0.90:  Failure mode of case 11β with a locally refined mesh and terrain load. 
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Figure 0.91:  Failure mode of case 12β with a locally refined mesh and terrain load. 

 
Figure 0.92:  Failure mode of case 13β with a locally refined mesh and terrain load. 

 
Figure 0.93:  Failure mode of case 15β with a locally refined mesh and terrain load. 
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Figure 0.94:  Failure mode of case 21β with a locally refined mesh and terrain load. 

 
Figure 0.95:  Failure mode of case 23β with a locally refined mesh and terrain load. 

 
Figure 0.96:  Failure mode (**) of case 24β with a locally refined mesh and terrain load. 



152 

 
Figure 0.97:  Failure mode of case 25β with a locally refined mesh and terrain load. 

 
Figure 0.98:  Failure mode of case 27β with a locally refined mesh and terrain load. 

 
Figure 0.99:  Failure mode of case 33β with a locally refined mesh and terrain load. 
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Figure 0.100:  Failure mode of case 35β with a locally refined mesh and terrain load. 

 
Figure 0.101:  Failure mode (**) of case 36β with a locally refined mesh and terrain load. 

 

(*) Case resulted in slope failure but a secondary failure mechanism is nearly formed 

(**) Results are shown for an increased model size as the failure mechanism touched the 

original model boundaries 
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Appendix J: Development of results from 

numerical simulations 

The development of the factor of safety leading to model failure during all PLAXIS 

simulations is given in this chapter.  An average has been taken for the part of each curve 

that is assumed to have reached an equilibrium state.  Some cases produced a very distinct 

plateau but others had more difficulties reaching a good balance, in those cases the 

simulation was run until I was satisfied that the results oscillated around a specific 

solution.  The assumed average values from the simulations have been drawn in each 

figure as with a blue line representing case-a, failure without surface load, and a red line 

represents case-b, failure with surface load.  The numerical value of the assumed average 

values is presented on the right side of each figure. 

“Very fine” mesh coarseness – horizontal backfill 

 
Figure 0.102: Results from PLAXIS run of case 1. 

 
Figure 0.103: Results from PLAXIS run of case 2. 
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Figure 0.104: Results from PLAXIS run of case 3. 

 
Figure 0.105: Results from PLAXIS run of case 4. 

 
Figure 0.106: Results from PLAXIS run of case 5. 

 
Figure 0.107: Results from PLAXIS run of case 6. 

1,0

1,2

1,4

1,6

1,8

2,0

2,2

0,0 0,1 0,2 0,3 0,4 0,5

Fa
ct

o
r 

o
f 

sa
fe

ty
,  
γM

, [
-]

 

Point displacement |u|, [m] 

CASE 3 CASE 3-a: 1,52 
CASE 3-b: 1,43 

1,0

1,2

1,4

1,6

1,8

2,0

2,2

0,0 0,1 0,2 0,3 0,4 0,5

Fa
ct

o
r 

o
f 

sa
fe

ty
,  
γM

, [
-

] 

Point displacement |u|, [m] 

CASE 4 CASE 4-a: 1,36 
CASE 4-b: 1,31 

1,0
1,2
1,4
1,6
1,8
2,0
2,2
2,4

0 10 20 30 40 50

Fa
ct

o
r 

o
f 

sa
fe

ty
,  
γM

, [
-]

 

Point displacement |u|, [m] 

CASE 5 CASE 5-a: 2,17 
CASE 5-b: 1,76 

1,0

1,2

1,4

1,6

1,8

2,0

2,2

0 10 20 30 40 50

Fa
ct

o
r 

o
f 

sa
fe

ty
,  
γM

, [
-]

 

Point displacement |u|, [m] 

CASE 6 CASE 6-a: 1,83 

CASE 6-b: 1,64 



156 

 
Figure 0.108: Results from PLAXIS run of case 7. 

 
Figure 0.109: Results from PLAXIS run of case 8. 

 
Figure 0.110: Results from PLAXIS run of case 9. 

 
Figure 0.111: Results from PLAXIS run of case 10. 
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Figure 0.112: Results from PLAXIS run of case 11. 

 
Figure 0.113: Results from PLAXIS run of case 12. 

 
Figure 0.114: Results from PLAXIS run of case 13. 

 
Figure 0.115: Results from PLAXIS run of case 14. 
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Figure 0.116: Results from PLAXIS run of case 15. 

 
Figure 0.117: Results from PLAXIS run of case 16. 

 
Figure 0.118: Results from PLAXIS run of case 17. 

 

 
Figure 0.119: Results from PLAXIS run of case 18. 
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Figure 0.120: Results from PLAXIS run of case 19. 

 
Figure 0.121: Results from PLAXIS run of case 20. 

 
Figure 0.122: Results from PLAXIS run of case 21. 

 
Figure 0.123: Results from PLAXIS run of case 22. 
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Figure 0.124: Results from PLAXIS run of case 23. 

 
Figure 0.125: Results from PLAXIS run of case 24. 

 
Figure 0.126: Results from PLAXIS run of case 25. 

 
Figure 0.127: Results from PLAXIS run of case 26. 
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Figure 0.128: Results from PLAXIS run of case 27. 

 
Figure 0.129: Results from PLAXIS run of case 28. 

 
Figure 0.130: Results from PLAXIS run of case 29. 

 
Figure 0.131: Results from PLAXIS run of case 30. 
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Figure 0.132: Results from PLAXIS run of case 31. 

 
Figure 0.133: Results from PLAXIS run of case 32. 

 
Figure 0.134: Results from PLAXIS run of case 33. 

 
Figure 0.135: Results from PLAXIS run of case 34. 
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Figure 0.136: Results from PLAXIS run of case 35. 

 
Figure 0.137: Results from PLAXIS run of case 36. 

Locally refined mesh coarseness 

 
Figure 0.138: Results from PLAXIS run of case 1 with locally refined element mesh. 

 
Figure 0.139: Results from PLAXIS run of case 3 with locally refined element mesh. 
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Figure 0.140: Results from PLAXIS run of case 7 with locally refined element mesh. 

 
Figure 0.141: Results from PLAXIS run of case 11 with locally refined element mesh. 

 
Figure 0.142: Results from PLAXIS run of case 15 with locally refined element mesh. 

 
Figure 0.143: Results from PLAXIS run of case 19 with locally refined element mesh. 
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Figure 0.144: Results from PLAXIS run of case 23 with locally refined element mesh. 

 
Figure 0.145: Results from PLAXIS run of case 27 with locally refined element mesh. 

 
Figure 0.146: Results from PLAXIS run of case 31 with locally refined element mesh. 

 
Figure 0.147: Results from PLAXIS run of case 33 with locally refined element mesh. 
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Figure 0.148: Results from PLAXIS run of case 35 with locally refined element mesh. 

“Very fine” mesh coarseness – inclined backfill 

 
Figure 0.149: Results from PLAXIS run of case 1β. 

 
Figure 0.150: Results from PLAXIS run of case 2β. 

 
Figure 0.151: Results from PLAXIS run of case 3β. 
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Figure 0.152: Results from PLAXIS run of case 4β. 

 
Figure 0.153: Results from PLAXIS run of case 5β. 

 
Figure 0.154: Results from PLAXIS run of case 6β. 

 
Figure 0.155: Results from PLAXIS run of case 7β. 
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Figure 0.156: Results from PLAXIS run of case 8β. 

 
Figure 0.157: Results from PLAXIS run of case 9β. 

 
Figure 0.158: Results from PLAXIS run of case 10β. 

 
Figure 0.159: Results from PLAXIS run of case 11β. 
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Figure 0.160: Results from PLAXIS run of case 12β. 

 
Figure 0.161: Results from PLAXIS run of case 13β. 

 
Figure 0.162: Results from PLAXIS run of case 14β. 

 
Figure 0.163: Results from PLAXIS run of case 15β. 
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Figure 0.164: Results from PLAXIS run of case 16β. 

 
Figure 0.165: Results from PLAXIS run of case 21β. 

 
Figure 0.166: Results from PLAXIS run of case 22β. 

 
Figure 0.167: Results from PLAXIS run of case 23β. 
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Figure 0.168: Results from PLAXIS run of case 24β. 

 
Figure 0.169: Results from PLAXIS run of case 25β. 

 
Figure 0.170: Results from PLAXIS run of case 26β. 

 
Figure 0.171: Results from PLAXIS run of case 27β. 
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Figure 0.172: Results from PLAXIS run of case 28β. 

 
Figure 0.173: Results from PLAXIS run of case 33β. 

 
Figure 0.174: Results from PLAXIS run of case 34β. 

 
Figure 0.175: Results from PLAXIS run of case 35β. 
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Figure 0.176: Results from PLAXIS run of case 36β. 

Locally refined mesh coarseness – inclined backfill 

 
Figure 0.177: Results from PLAXIS run of case 1β with locally refined element mesh. 

 
Figure 0.178: Results from PLAXIS run of case 3β with locally refined element mesh. 

 
Figure 0.179: Results from PLAXIS run of case 7β with locally refined element mesh. 
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Figure 0.180: Results from PLAXIS run of case 11β with locally refined element mesh. 

 
Figure 0.181: Results from PLAXIS run of case 13β with locally refined element mesh. 

 
Figure 0.182: Results from PLAXIS run of case 15β with locally refined element mesh. 

 
Figure 0.183: Results from PLAXIS run of case 21β with locally refined element mesh. 
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Figure 0.184: Results from PLAXIS run of case 23β with locally refined element mesh. 

 
Figure 0.185: Results from PLAXIS run of case 25β with locally refined element mesh. 

 
Figure 0.186: Results from PLAXIS run of case 27β with locally refined element mesh. 

 
Figure 0.187: Results from PLAXIS run of case 33β with locally refined element mesh. 
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Figure 0.188: Results from PLAXIS run of case 35β with locally refined element mesh. 

Enlarged models with locally refined mesh coarseness – inclined backfill 

 
Figure 0.189: Results from PLAXIS run of case 35β with locally refined element mesh. 

 
Figure 0.190: Results from PLAXIS run of case 35β with locally refined element mesh. 
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