INVESTIGATION OF MULTI-CUT

PRUNING IN GAME-TREE SEARCH
Research report

Spring 2011
Hrafn Eiriksson
B.Sc. in Computer Science

Leidbeinandi: Yngvi Bjérnsson T-619-LOKA
Profdomari: Magnus Mar Halldérsson School of Computer Science

Abstract

Computers have long surpassed humans when it comes to playing chess, but
this did not happen overnight. Modern chess programs are the product of
decades of research which has predominantly dealt with the topic of game
tree search. Consequently, there exist many search enhancement techniques
for improving the effectiveness and decision quality of such programs.

In this report, we give a brief historical overview of how search paradigms
in computer chess have shifted over the years. We also present a discussion
on game tree search and popular search enhancement techniques. In par-
ticular, we investigate one such technique, multi-cut pruning, and introduce
enhancements to it. The enhanced technique is implemented in our own chess
program and quantitative experiments are carried out which demonstrate a
statistically significant improvement over the original technique. Moreover,
the enhanced technique is examined in the context of other popular search
enhancements like null-move pruning and we find that it complements them
much better than its predecessor.

Utdrattur

Pad er langt sidan ad tolvur toku fram Gr manneskjunni hvad vardar getu
i skak, en petta gerdist po ekki & einni néttu. Nutimaskakforrit eru afuro
aratugalangra rannsokna sem varda fyrst og fremst leit { leitartrjam. Ein af
afleidingum pessara rannsokna er fjoldi leitaradferda sem hjalpa skikforritum
sem og 00rum forritum sem nyta sér leit 1 leitartrjam ad taka betri akvardanir
& styttri tima.

I pessari skyrslu litum vid Orstutt & pad hvernig helstu einkenni leitar i

tolvuskak hafa proast sidustu aratugi. Vio fjollum einnig almennt um leit

i leitartrjam og tokum fyrir nokkrar vinseelar leitaradferdir og kynnum peer.

Sérstaklega tokum vid po fyrir eina leitaradferd, multi-cut pruning, og kynnum

til sogunnar endurbeetta ttgafu af henni. Endurbeetta ttgéfan var ttferd i

okkar eigin skakforriti og tilraunir framkveemdar. Nidurstodur tilraunanna

syna med tolfredilega markteekum heetti ad hun ber héfud og herdar yfir

upprunalegu ttgafuna. Jafnframt skooum vio endurbaettu ttgafuna i samhengi
vid adrar vinseelar leitaradferdir eins og null-move pruning en svo virdist sem

hiin falli par betur inn en forveri sinn.

Contents
1 Introduction

2 Background
2.1 Minimax
2.2 The af Algorithm
2.3 Node Types in the Minimal
2.4 Algorithmic Enhancements

Tree

2.4.1 Principal Variation Search (PVS)

2.4.2 Transposition Tables
2.4.3 Quiescence Search .
2.4.4 Null-Move Pruning

2.4.5 Other Selective Enhancements

3 Multi-Cut
3.1 Multi-Cut Idea
3.2 Multi-Cut Implementation

4 Enhancements
4.1 Applicability
4.2 Piece Independency
4.3 Move Reordering

4.4 Enhanced Multi-Cut Implementation

5 Empirical Analysis

5.1 Experimental methods in chess programs

5.2 Test-suite results
5.3 Results of self-play matches

6 Conclusion and Future Work

10

14
14
16
17
17

19
19
21
23

25

1 Introduction

The birth of the computer chess programs TECH [10] and CHESS 4.X [1] in
the mid-1970s marked an end of an era in the computer chess field. Until
then, most chess programs had been trying to emulate the way human chess
players think by relying on extensive chess knowledge to determine what
subset of the positions in the search tree needed further investigation. This
resulted in large parts of the search tree being pruned away which again,
led to serious tactical shortcomings. When fast brute-forcers like TECH and
CHESS 4.X emerged, their dominance over the selective programs quickly
marked a shift in the computer chess field.

Typical brute-forcers of the following era employed little selectivity in their
search, or none at all. It was not until the beginning of the 1990s—with the
introduction of null-move pruning |3,9,11]—that selective search in chess pro-
grams experienced a renaissance. Null-move pruning enabled chess programs
to search deeper with minor tactical risk and quickly this kind of speculative
pruning searchers began their reign which has continued ever since.

Since the introduction of the null-move pruning many selective search tech-
niques have been developed and a modern state of the art game-playing
program typically employs several such techniques concurrently. With new
search enhancements being introduced every few years, and with continuous
development in the field, it is only natural that some search techniques get

left behind.

With this project, we plan to reinvestigate the effectiveness of one such tech-
nique, multi-cut [4,5,24]. This method has been employed in at least two
world-class chess programs [4], SHREDDER and HYDRA, although the last
published results of the effectiveness of the method are almost a decade old.
This report introduces our enhanced multi-cut algorithm and demonstrates
empirically its improved efficiency in comparison to the original multi-cut
algorithm.

We begin by reviewing some necessary background material concerning game
tree search in Section 2. Section 3 reviews the original multi-cut algorithm
and in Section 4 we present the enhancements we made to the algorithm.
Section 5 presents the results of our experiments and Section 6 contains
concluding remarks and future work.

2 Background

Chess programs use game tree search to reason about their decision making.
Game trees are essentially directed acyclic graphs or DAGs (despite being
called game trees) whose nodes are positions in a game and whose edges
are legal moves from a given position to another. Unfortunately, the game
trees for many games experience an exponential growth as their nodes are
expanded. In chess, for example, there is an average of 35-38 legal moves
per position, meaning that the average branching factor for a chess game
tree is between 35 and 38. This means that finding the best possible move
for an arbitrary chess position can be time consuming. But as mentioned
in the introduction, much research has been established in the field of game
tree search and computers have long surpassed humans when it comes to
playing chess. However, in other games such as Go and shogi, humans are
still far superior than the best computer players so there is still much room
for additional research in this field.

2.1 Minimax

Finding the best move for a given chess position obviously involves exploring
the game tree, but due to the vastness of it the computer is rarely able to
search until it reaches a terminal node—that is, a node with a known out-
come. Instead, it searches to a certain depth and uses a static evaluation
function to estimate the desirability attractiveness of the leaf nodes. These
values are then propagated up the tree resulting in a game value—the out-
come when both players play perfectly. At least in theory, the best move for
a given position can be found this way, but one has to be aware that the
evaluation function only gives an estimation of the “goodness” of a node, and
can thus be in error. The first search algorithms that dealt with this kind
of two-person zero-sum perfect-information games, recursively expanded all
possible continuations from the initial node to the leaf nodes and used the
minimax rule to propagate the leaf node evaluations back to the initial node.
With the minimax rule, Maz, the player to move tries to maximize its gains
by choosing the move that maximizes its value, while its opponent Min tries
to minimize Max’s gains by choosing the moves with the minimal value.

2.2 The af Algorithm

The minimax algorithm exhaustively explores all possible moves of the game
tree. This is impractical in most cases, since in fact only a subset of the
game tree needs to be searched to reach the game value. This subtree is
often referred to as the critical- or the minimal tree. The fact that only
a subset of the game tree has to be searched serves as a basis for a much
more effective and a fundamental algorithm in game tree search, namely the
af algorithm [19]. The af algorithm does this by establishing lower and
upper bounds (named alpha and beta, respectively) on the range of possible
values that subtrees being searched can have. When values fall outside of
these bounds, the game tree can effectively be pruned without it affecting
the search result; that is the game value. Ideally, we want the o/ algorithm
to explore the “best” moves first, since the number of nodes that it will
expand greatly depends on the move ordering. A good move ordering ensures
that a tight bound is established early, allowing for more of the tree to be
pruned. In worst case, the af algorithm will traverse the full game tree as
the minimax algorithm does, but in the best case it will only traverse the
minimal tree. According to Knuth and Moore [15] the number of nodes that
the a8 algorithm traverses in the best case is approximately the square root
of the number of nodes that minimax needs to traverse.

2.3 Node Types in the Minimal Tree

Knuth and Moore realized that the nodes in the minimal tree could be clas-
sified into three categories which they simply called type-one, type-two and
type-three. We will however use the more descriptive terminology introduced
by Marsland and Popwich [18], who identified them as PV nodes, CUT nodes
and ALL nodes, respectively:

e PV nodes are nodes that have all of their moves investigated. At least
one of the moves returns a value above the lower bound (alpha), but
no moves return a value greater than the upper bound (beta). Their
value thus ends up being between the lower- and upper bound of the
af algorithm, that is alpha < value < beta.

e CUT nodes are nodes where a so-called beta-cutoff occurs (often just
referred to as a cutoff). This happens when the value backed up by
the search of one of its moves is greater or equal to the upper bound
(beta), that is value > beta. Intuitively, it means that the search found
something that was “too good”, meaning that the opponent has some

4

way, already found by the search, of avoiding this position. When this
happens no further moves need to be searched and a value of beta is
returned. This also means that a minimum of one move needs to be
investigated when dealing with a CUT node. These beta-cutoffs are the
primary source of pruning that can be done within the af framework
and a good move ordering (where good moves are ordered first) is vital
for these beta-cutoffs to occur early.

e ALL nodes are nodes containing no moves returning a value exceeding
alpha, thus for all moves value < alpha. This means that every move
at an ALL node needs to be investigated and if none of them return a
value exceeding alpha, a value of alpha is returned.

Chess programs often try to predict the type of a node before it is actually
searched. A node is then referred to as an expected PV node, expected CUT
node or an expected ALL node. But predictions are not always correct: If
none of the moves at an expected CUT node causes a beta-cutoff, the move
subsequently becomes an ALL node. If one of the moves at an expected ALL
node causes a beta-cutoff, the move becomes a CUT node. And when all
expected CUT nodes on a path from the root to a leaf node have become
ALL nodes, a new principal variation has emerged—all the nodes on the
same path have in fact become PV nodes.

2.4 Algorithmic Enhancements

The af algorithm can be improved and over the years a number of enhance-
ments have been proposed with this intent. These enhancements can be
categorized into the two following groups:

(a) Enhancements that deal with improving the search-efficiency of the a3
algorithm without affecting the result of the search. These enhancements
will often make use of a good move ordering.

(b) Enhancements that search the tree more selectively, where some lines of
play are terminated prematurely (speculative pruning) whereas others are
explored more deeply (search extensions). These types of enhancements
may alter the result of the search.

In this report we will only cover the enhancements directly related to this
project. For a more detailed discussion consider looking at [4,16].

2.4.1 Principal Variation Search (PVS)

In 1982, Tony Marsland and Murray Campbell introduced principal variation
search [17] or PVS. The idea behind PVS is that when the o algorithm finds
a PV move (a move leading to a PV node), the move ordering will be good
enough that a better move will not be found. A “better move” in this context
can both be a better PV move or a move that leads to a beta-cutoff (causing
the node to become a CUT node). PVS is essentially an extension to the a8
algorithm that assumes that once it has found a PV move, the rest of the
moves only need to be proven inferior to that move. To prove this, the moves
assumed to be inferior are searched with a null- or zero window with bounds
(alpha, alpha + 1) instead of the normal (alpha, beta) bounds, causing more
beta-cutoffs. If however the assumption is wrong and some move happens
to return a value greater or equal to alpha + 1 the search has to be re-done
with the normal bounds. When such double-evaluations occur, time and
search effort is wasted. With good move ordering, however, this should be
infrequent enough not to outweigh the gains from the increased number of
beta-cutoffs.

The PVS algorithm is often split up into two routines: (a) PVS - the main
driver which searches the PV nodes and (b) NWS (null window-search) - for
the null-window searches of the CUT and ALL nodes. Another formulation
and probably a more popular one as of today only uses one PVS routine to
avoid unnecessary code repetition. The formulations are otherwise identical,
that is they expand the same tree and return the same results.

2.4.2 Transposition Tables

In some board games it is possible that different sequences of moves lead to
the same position on the board. When some sequence of moves results in a
position that may also be reached by another sequence of moves it is called
a transposition. An example of this is demonstrated in Figure 1, where two
simple sequences of moves are shown to result in the same position.

Chess programs encounter the same positions repeatedly when searching.
Without a so-called transposition table these positions would need to be
searched down to a given depth each time they were encountered. Instead,
chess programs employ a large hash table—a transposition table—that stores
information about the outcome of previous searches as indexed by the posi-
tion on the board. When an identical position is encountered later on, the
outcome of the search can be retrieved from the transposition table without

1 e2-e4 e7-e5 2 Ngl-f3
or
1 Dgl-f3 eT-e5 2 e2-e4

Figure 1: A transposition which can for example be reached by the two
sequences of moves above.

any further search.! To be able to index a table like this by a position on the
board, a hash function has to be employed that converts a board position
into a almost unique, scalar signature. An example of a efficient, widely used
hash function was introduced by Zobrist in 1970 [25].

Due to the upper bound of the number of reachable chess positions being
approximately 10¢ [7] it is obvious that transposition tables can only hold
a small fraction of them. Corollary, transposition tables have to assume
that hash collisions will occur. These hash collisions are dealt with using
some kind of a replacement schema. There exist many implementations of
replacement schemas for use with transposition tables but those will not be
covered here (for those interested see Breuker [6]).

2.4.3 Quiescence Search

When the search reaches the leaf nodes (with depth = 0) the position is
rarely evaluated immediately. Instead a more limited quiescence search [2,14]
is employed. Quiescence search plays out all tactical moves until a “quiet
position” is achieved (a position where no winning/tactical moves can be
made). At that point it does a evaluation of the position. It is easy to

! Assuming that the depth of the previous search was deep enough.

imagine a position where this is mandatory, for example in chess where white
has just captured a black piece and instead of giving black the opportunity
to recapture, a evaluation of the position is returned immediately. This
evaluation will be in huge error. This is the so-called horizon effect which is
caused by the fixed search depth nature of the search algorithm.

2.4.4 Null-Move Pruning

Every chess player knows that in most cases making a move will be better
than doing nothing.? This is of course with the exception of checked positions
and zugzwang® positions; a position where every move will lead to a worse
position, or in many cases a lost one. In the chess programming world, this
observation is called the null-move observation and provides the foundation
for many selective search techniques in computer chess, the most widely used
one being null-move pruning (3,9, 11].

Null-move pruning, also called null-move heuristic, is probably the most
widely used selective search enhancement in computer chess and can be de-
scribed as follows: If the side to move can give up the right to move (pass),
letting the opponent play two moves in a row, and still have a good position,
then clearly the side to move has a very strong position. In programming
terms it reduces the search space by forfeiting a turn (making a null-move)
and then performing an af search on the resulting position to a shallower
depth than it otherwise would have. This depth reduction is usually referred
to as R. If the shallow search yields a beta-cutoff, it assumes that a deeper
search would also have yielded a beta-cutoff. However, if it fails to yield a
beta-cutoff, the program must redo the search and now to the full depth.
Even though null-move pruning is applied recursively and can thus be ap-
plied often along the same search path, the technique only exhibits minor
technical weaknesses while reducing the search space substantially.

Like most selective enhancements null-move pruning cannot, or should not,
be used under some conditions. The most obvious conditions are the ones
that we have already mentioned; when the side to move is in check or is
experiencing a zugzwang position. But then again it is not trivial to detect
whether a given position is a zugzwang position or not.

Many extensions to the null-move pruning technique have been proposed in
later years. In 1999 Ernst A. Heinz proposed varying the depth reduction

2It must be noted though, that “doing nothing” is an illegal action in chess.
3German for “forced to move”.

R with depth. This is known as adaptive null-move pruning [13] and is
employed by most top chess programs today. Another widely used exten-
sion proposed by David and Netanyahu in 2002 is called verified null-move
pruning 8] and manages to detect most zugzwang positions.

2.4.5 Other Selective Enhancements

Since the popularization of null-move pruning in the 1990s many selective
enhancements have been introduced. One of the more recent ones is called
late move reductions 22| and although the idea behind it has been around for
a long time, it only recently became popular within the chess programming
community. It is based on the simple observation that in a program with
a good move ordering, a beta-cutoff will usually occur either at the first
node or not at all. Late move reductions make use of this observation by
searching the first few moves with full depth, but the remaining ones with
a reduced depth. If one of the reduced moves surprises by returning a good
value, the move is re-searched with full depth. As with null-move pruning,
some conditions need to be set on what moves to reduce; programs will for
example typically not reduce tactical moves like captures and promotions.

Another important selective search enhancement that most modern chess
programs will utilize is futility pruning [12]. Futility pruning comes in many
flavours, but in its pure form it is applied at so-called frontier nodes; one ply
above the leaf nodes. It reduces the search space by doing a static evaluation
of the frontier node and adding to it a futility margin, a constant or variable
denoting the largest conceivable positional gain. If this score is still not good
enough futility pruning is triggered and the search will not advance to the
next level since it is assumed that nothing good will be found there.

3 Multi-Cut

3.1 Multi-Cut Idea

Multi-cut [4,5,24] is a domain-independent, speculative pruning algorithm
introduced by Yngvi Bjornsson in 1998. It is based on the observation that
in practice, it is common that if the first move does not cause a cutoff at a
expected CUT node, one of the alternative moves will. Therefore, expected
CUT nodes, where many moves have a good potential of causing a beta-
cutoff, are less likely to become ALL nodes, and consequently such lines are

unlikely to become part of a new principal variation. Central to the multi-cut
algorithm is the definition of a mc-prune which goes as follows.

When searching node N to depth d + 1 using an of3-like search,
if at least ¢ of the first e children of N return a value greater or
equal to beta when searched to depth d — r, an mc-prune is said
to occur and the local search returns.

Figure 2 illustrates the basic idea. At node N, before we dive into a normal
af search which expands the subtree of m; to a full depth of d, we may
decide that we want to apply multi-cut first. In that case, the subtrees for
the first e moves (mq, ma, ..., m.) is expanded to a reduced depth of (d —r).
Each time one of these shallower searches return a value greater or equal
to beta—a beta-cutoff—we increment a counter by one. If and when this
counter ever reaches ¢ we say that an mc-prune has occurred and the search
returns. That is if ¢ of the first e moves, which are expanded to a reduced
depth of (d — r) return a beta-cutoff, a mec-prune occurs and the search
returns. The moves (msg, ..., m.) represent the extra search overhead that
is introduced by the algorithm. This overhead would not be incurred by the
normal af algorithm. The dotted lines however represent the savings that
are possible if the mc-prune is successful. Because of the exponential nature
of the game tree these savings can be substantial. If the mc-prune condition
is never met we are left with the overhead but no savings and in that case
we retreat to a normal af search. It should be clear that by searching m;
to a reduced depth, we risk overlooking some tactic that could be found had
we searched m; to a full depth, but we are willing to take this risk because
we expect at least one of the ¢ moves that return a value greater or equal to
beta when searched to a reduced depth to have caused a genuine beta-cutoff
when searched to a full depth.

3.2 Multi-Cut Implementation

Algorithm 1 lists the pseudo-code for a null-window search (NWS) routine
using the original multi-cut algorithm. As described in Section 2.4.1, the
NWS routine is a part of the PVS algorithm and since the multi-cut algo-
rithm is never applied at PV nodes, we only need to list the updated NWS
routine here and not the PVS routine. For clarity we have omitted various
details in the pseudo-code concerning transposition tables, time manage-
ment, draw detection, quiescence search, move ordering schemes, and other
search enhancements that are irrelevant to our discussion. A description of
the pseudo-code follows. We, however describe it only in details sufficient

10

Figure 2: Multi-cut applied at node N.

to highlight the changes that we made during this project—which will be
presented in Section 4.

The original multi-cut algorithm begins (lines 1-3) by checking whether it
has reached the search horizon, that is whether it has reached a leaf node.
If so, it does a evaluation of the current position which then propagates up
the tree (in practice quiescence search would be called). Line 6 determines
whether to apply multi-cut or not. The original algorithm applies multi-cut
at expected CUT nodes, meaning that it is applied at every other layer in the
null-window search. This is achieved with the negation of the cut variable
in the recursive calls. Furthermore, multi-cut is not applied at levels of the
tree close to the horizon, thus reducing the time overhead involved in the
method. Lines 7-18 perform the actual multi-cut pruning and lines 20-30 do
a normal af search if the multi-cut pruning is not applied, or fails to cause
a me-prune.

Evidently, the configuration of the three multi-cut parameters F, C' and R
greatly influences both the efficiency and the error rate of the search.

e Number of cutoffs needed (C): This parameter specifies the num-
ber of cutoffs needed to cause a mc-prune. Setting this parameter too
low will result in too many erroneous mc-prunes that will make the

11

method too risky. On the other hand, setting this too high will result
in a safe method that makes few mistakes but expands too much of
the search tree. Ideally this parameter would lead to reasonably safe
prunings without exploring too much of the tree.

Number of moves to extend (£): The F parameter specifies how
many moves to investigate at most when looking for a mec-prune. Again,
setting this too high will result in too much of the tree being expanded.
Given a program with a good move ordering, we should be able to keep
this fairly low.

The depth reduction (R): Reducing the depth of the search too
much involves a great risk of overlooking some tactic. But yet again
we have to keep the reduction high enough so that we will gain some
node savings.

As one can see from these descriptions, it takes a good deal of adjustments
and fine-tuning to find the appropriate values for these parameters. In his
thesis, Yngvi presents the results of his experiments with various composi-
tions of the three parameters:

and,

“The depth reduction was fixed at 2, but the C' and E parameters
were allowed to vary from 2-6 and 2-12, respectively. We also
experimented with different depth reduction factors, but we found
that a value of R = 1 offers only limited node savings, while values
of R > 2 were too error prone.”

“..], setting C = 3 and E somewhere in the high range of 8-12
looks the most promising. These settings give a substantial node
savings (about 20%), while still solving over 99% of the problems
that the standard version does.”

These were the values that we used as a baseline when we began enhancing
the original algorithm. But it must be kept in mind that a certain config-
uration that works well for one program will not necessarily work well for
another program.

12

Algorithm 1 Standard multi-cut — meNW S(pos, depth, alpha, beta, cut)
Require: FE is the number of moves to expand when checking for a mec-prune
Require: C' is the number of beta-cutoffs needed to cause a mc-prune.
Require: R is the depth reduction for multi-cut searches.

1: if depth < 0 or isTerminal(pos) then

2: return evaluate(pos)

3: end if

4: best <~ —o0
5: moves < generate Moves(pos)
6: if depth > R and cut then
7
8
9

c+0
for all m; in moves such that 1 <¢ < E do
: make(pos, m;)
10: v+ —meNW S(pos, depth — 1 — R, —beta, —alpha, —cut)

11: retract(pos, m;)
12: if v > beta then
13: c=c+1

14: if ¢ = C then
15: return beta
16: end if

17: end if

18: end for

19: end if

20: for all m in moves do

21: make(pos, m)

22: v+ —mcNWS(pos, depth — 1, —beta, —alpha, ~cut)
23: retract(pos, m)

24: if v > best then

25: best < v

26: if best > beta then
27: return beta

28: end if

29: end if

30: end for

31: return best

13

4 Enhancements

The goal of this project was to reinvestigate the effectiveness of multi-cut
as a search enhancement. Since multi-cut is a domain-independent pruning
enhancement, we decided to focus our attention on the domain of chess. The
motivation behind all of this is driven by the fact that none of the open
source chess programs today seem to be utilizing multi-cut, despite it being
a fairly known enhancement in the computer chess community. Joona Kiiski,
one of the authors of the strongest open-source chess program STOCKFISH
had, for example, this to say about his attempts to integrate multi-cut into
his program: “Tried this with Stockfish. Couldn’t make it work. I don’t
know why. (I also like the idea)” [23]. The need for a reinvestigation of the
technique thus obviously exists.

As multi-cut seems to be a very effective method in domains other than chess,
one of the first things that we had to figure out was why it is not as effective
in chess. Our conclusion is that there exists a rather simple explanation for
this. Namely, that multi-cut “collides” with null-move pruning. That is, if
one method decides to prune a certain branch of the tree the other will in
most cases choose to do the same. Null-move pruning (see Section 2.4.4)
is the most widely used search enhancement in chess programs since it is
incredibly effective while still making very few erroneous decisions. Multi-
cut and null-move share at least two major similarities. First, they both
prune the tree based on beta-cutoffs. Second, they both use reduced depth
searches to compute an estimate for the value of the node and prune the
trees if these estimates are above beta. But the two methods still differ in at
least one major way, and this is probably the reason that null-move pruning
is superior to multi-cut in the domain of chess: While multi-cut does not
make any assumptions about its domain, null-move pruning makes a rather
big one; that making any move will always be better than doing nothing.
Due to this we came to the conclusion that we wanted our enhanced multi-
cut algorithm to somehow complement null-move pruning and our empirical
analysis in Section 5 reflect this decision. The next three Sections introduce
the main enhancements that we made.

4.1 Applicability

The original multi-cut algorithm expects that it will only be successful at
expected CUT nodes. Since expected CUT nodes appear on approximately
every other layer of the game tree this happens quite frequently. Winands et

14

al. [24] also experimented with applying multi-cut at expected ALL nodes,
slightly modifying the PVS algorithm with mixed results.

One of our enhancements addresses where multi-cut is applied in the game
tree. Instead of applying it at expected CUT or ALL nodes we apply it at
nodes which are known to have caused a cutoff when they were searched to
a lesser depth in a previous search. We can retrieve this information from
the transposition table. Before each search, chess programs begin by doing
a transposition table lookup of the current position and depending on the
results of this lookup some action is taken. In Figure 3 we see a typical
decision diagram for the results of these lookups. The dashed lines represent
our enhancement to the diagram.

Transposition table lookup

No entry found J& Entry found

} M }

Do normal a.B-search Examine search depth of the entry
Not deep enough but caused a beta-cutoff Deep enough
'r !
1
r====== _v_ ______ |
. Do multi-cut | Return the results from the entry

Figure 3: A decision diagram showing how chess programs typically deal
with the results of transposition table lookups. The dashed lines represent
our changes.

What this essentially means is that we will only perform multi-cut when a
shallower, previous search of the same position has resulted in a beta-cutoff.
The rationale behind this is that if a shallow search resulted in a beta-cutoff it
is often a good indicator that a deeper search will also result in a beta-cutoff.
Since transpositions are very common in chess this will happen frequently.
It will however not happen as frequently as in the previous scheme; that is
at expected CUT nodes. The expectation is thus that we will be applying
multi-cut at fewer nodes but with a better probability of success.

15

Figure 4: A position where the white queen is threatened.

4.2 Piece Independency

As explained in Section 3, a mc-prune will occur in multi-cut search if C' of
the first £ moves yield a beta-cutoff when searched to a reduced depth. A
potential problem with this approach is that it might very well be that the
same piece is causing all of these cutoffs. For an example of this, consider the
position in Figure 4. In this position the white queen is threatened by the
knight on square ¢6. This would mean that if we were to search this position
with the original multi-cut algorithm it would quickly result in a mc-prune
since the queen only has to evade being captured and there are many ways
to achieve this evasion. The original multi-cut algorithm would thus come
to the conclusion that this particular position was very good for white, when
it really is not. While this would not really be a problem in the position in
Figure 4, it could easily become a problem in a more complex position. To
make the algorithm even more safe we propose an enhancement that states
that the beta-cutoffs that occur need to be independent of each other. One
way to guarantee this independency is to require that the beta-cutoffs must
be caused by different pieces. Thus when we are searching the moves with
the multi-cut algorithm and come across a piece which has already caused a
beta-cutoff we simply skip it and continue with the rest of the moves. This
should in theory make the algorithm even more safe but will of course reduce
the number of mc-prunes that will occur.

16

4.3 Move Reordering

The third enhancement that we propose in this report is what we call mowve re-
ordering. This enhancement was also used by Winands et al. in [24]. This is a
fairly simple and intuitive enhancement that should—at least theoretically—
boost the effectiveness of the multi-cut algorithm. Move reordering tries to
make use of multi-cut applications that fail to cause a mc-prune. As we saw
in Algorithm 1, the original multi-cut algorithm will retreat to normal af
search if it fails to cause a mc-prune. Now let us assume that we configure
multi-cut so that 3 beta-cutoffs are needed to cause a mc-prune (C' = 3).
Since three beta-cutoffs are needed, positions that cause 2 or less will thus
be a waste of time and resources. This enhancement tries to make some
use of the moves that cause beta-cutoffs in the multi-cut search but do not
lead to a mc-prune. This is done by “remembering” the moves that cause
beta-cutoffs in the multi-cut search, so when the search routine retreats to a
normal o search it will begin by searching the moves that caused beta-cutoffs
during the reduced multi-cut search. Again, the rationale behind this is that
reduced depth search for a certain position will most often give a good es-
timate on a deeper search of the same position. Moves that will cause a
cutoff at reduced depth should therefore have a higher probability to cause a
cutoff when searched with full depth and should thus be searched as quickly
as possible.

4.4 Enhanced Multi-Cut Implementation

Algorithm 2 lists the pseudo-code for our enhanced version of the multi-
cut algorithm which includes all three aforementioned enhancements. As
with the pseudo-code for the original multi-cut algorithm in Algorithm 1,
we skip many details. One of the things that we do not specify is how our
enhancements should be implemented when it comes to data structures. The
main reason for this is the fact that chess programs vary greatly in terms
of their architecture and internal data structures. It should be up to the
authors to decide how to implement each search enhancement. The pseudo-
code thus only shows the absolute necessary functionality associated with
our enhancements.

Lines 3-5 represent the “Applicability”-enhancement described in Section 4.1.
Instead of doing multi-cut at an expected CUT node, we do it when the
transposition table recognizes that a cutoff occurred in a shallower, previous
search of the same position. Again we omit transposition table code that

17

Algorithm 2 Enhanced multi-cut — emcNW S(pos, depth, alpha, beta)

Require: FE is the number of moves to expand when checking for a me-prune
Require: C' is the number of beta-cutoffs needed to cause a mc-prune.
Require: R is the depth reduction for multi-cut searches.

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

if depth < 0 or isTerminal(pos) then
return evaluate(pos)

2
3: end if

4: entry < transLookup(pos) // Addition.

5: cut < entry.depth < depth and entry.isCutof f // Addition.
6:
7
8
9

best <+ —o0

: moves <— generateMoves(pos)
. if depth > R and cut then

c+ 0
for all m; in moves such that 1 <i¢ < E do
// Added “if” block:
if get Piece(m;) has not caused a cutoff before then
make(pos, m;)
v < —emcNW S(pos,depth — 1 — R, —beta, —alpha)
retract(pos, m;)
if v > beta then
markAsCutof f(m;) // Addition.
c=c+1
if ¢ = C then
return beta
end if
end if
end if
end for
end if
moveCutof fsInFront(moves) // Addition.
for all m in moves do
make(pos, m)
v« —emcNW S(pos,depth — 1, —beta, —alpha)
retract(pos, m)
if v > best then
best <— v
if best > beta then
return beta
end if
end if
end for
return best

18

does not directly concern our algorithm. In line 12 we introduce a new “if”
block which enforces that only pieces that have not caused a cutoff in the
past are examined as Section 4.2 explains. Line 17 and 26 represent our last
enhancement, the move reordering (see 4.3). Line 17 marks the move that is
causing the cutoff as a cutoff-move. This means that line 26 somehow has to
order the moves that are marked as cutoff-moves appropriately in the list of
moves to be searched. This will in most cases simply put these moves at the
front.

5 Empirical Analysis

To evaluate the feasibility of our enhanced multi-cut algorithm extensive
experiments had to be carried out. These experiments were conducted on
our own chess program, ZIGGY. ZIGGY is an open-source®, highly config-
urable Java based chess program with state of the art enhancements like null
move pruning, late move reductions, multi-cut, PVS, static exchange eval-
uation [20,21] and a two-level transposition table. It is built to serve as a
test-bed for search enhancement development and analysis.

5.1 Experimental methods in chess programs

Before we introduce the results of the empirical analysis we want to discuss
briefly the experimental methods that can be used when analyzing the ef-
fectiveness of enhancements and changes to chess programs, as well as the
drawbacks of these methods. Research papers in computer chess often use
a mixture of these testing methods and our experiments are no exception
thereof.

Test-suites using fixed time search

A popular method of testing chess programs is based on test-suites. Test-
suites are essentially a series of chess positions that pose some tactical chal-
lenge and have a known “best move”. They have been used as a human chess
exercising material for a long time and many of them were originally designed
with humans in mind. The benefits of using test-suites as a testing method

4For those interested, the source code is publically available at https://github.com/
krummi/ChessEngine/.

19

in chess programs are first and foremost that it does not take a long time
to run them and that they provide the developer with some approximation
on how much impact a change has introduced to his chess program. One
should however be careful to tune programs based on test-suite results since
they do not necessarily correlate with practical playing strength in matches
against other opponents, which is the main problem with using test-suites as
a testing mechanism.

When chess programs use test-suites to test their strength they are always
given some restriction on for how long/how deep they can search each po-
sition. A fixed time restriction will for example only allow the programs to
search each position in the test-suite for a fixed amount of time, usually in
the range of 1 second (for the easier test-suites) to over 60 seconds (for the
harder ones). The results of these tests will often just be a single number:
how many positions the program solved given the limited time-frame, which
can then be used for comparison purposes. The strength of chess programs
can for example be tested in this way before and after some change has been
made and the number of positions that it solves can then be compared. The
problem with this type of time restriction testing is however the fact that
the results are most often just a single number. Further, “time” is a fuzzy
phenomena to computers and due to that, running the same test-suite twice
with the same fixed time-frame can theoretically give two different results.

Test-suites using fixed depth search

As opposed to the fixed time restriction we can also decide to use a fixed
depth restriction. This will simply search each of the positions in the test-
suite to a certain depth no matter how much time it takes. This means that
some positions will be searched very quickly while others may take much more
time to be searched. The merit of using fixed depth testing is that it does not
only allow for a comparison of the number of positions that are solved, but
it also provides a comparison on the size of the trees that are searched. This
can be done because most chess programs keep statistics about how many
nodes they have searched in each search. For example, if we were to test
two different versions of a chess program (a) with a new search enhancement
and (b) without it, we could use fixed depth testing to estimate how many
nodes (a) searches as compared to (b). If (a) searches 15% fewer nodes while
solving the same number of positions as (b) one can assume that the new
search enhancement has paid off. But this hypothesis can only be tested in
a self-play match between (a) and (b), or by making them compete against

20

the same opponent and to compare the results of these matches.

Matches

Most commonly though, chess program testing involves matching distinct
versions of a program against each other in a series of matches and by ana-
lyzing the results. The reason is simply that this is by far the most reliable
way of comparing chess programs. A single match will make the programs
think about many realistic positions that are evenly distributed between the
start /mid- and end-game with realistic time controls. The problem with this
approach is however that many matches need to be played out to get a result
that is statistically significant and can thus be used to state whether some
enhancement has made a difference or not. To be able to play this many
matches a considerable amount of time and computing power needs to be at
hand, especially time if realistic time controls are used.

5.2 Test-suite results

Test-suites served an important role during the course of this project. Fixed
depth test-suite testing allowed us to objectively compare new revisions of
the multi-cut algorithm to older ones, providing us both with data on the
number of positions solved and on the size of the tree expanded. Our main
test suite during the experiments was the “Win At Chess” (WAC) test-suite
which contains 300 positions. This test-suite seemed ideal since our program
solved more than 80% of the positions in a matter of minutes when searched
to a fixed depth of 8. While tests that utilize test-suites are usually done in a
very systematic fashion with a test-suite containing more than 1000 positions
that was not an option in our case. This was due to the fact that the process
that we used during this project was very iterative: First we came up with
some enhancement and carried out tests that we found fitting. We then
made the results of these tests guide us and based on them we most often
performed additional tests with some changes or parameter alterations. If
we found a particular configuration interesting during the test-suite testing
we made it a candidate for match testing.

Table 1 lists some of the main candidates that we used in the self-play
matches. It must be noted though that we only show those that we find
necessary. Their multi-cut configuration is shown, how they did against the
test-suite and the number of nodes they explored. The original multi-cut

21

parameters are shown in the first three columns (R, C' and E). The fourth
column (“Apply at”) tells where multi-cut is applied (see 4.1): at expected
CUT nodes (“Cut”) or when a previous, shallower search indicates a beta-
cutoff in the transposition table (“trans”). The fifth column (“Ind.”) tells
whether independency checking (see 4.2) is on or off and the sixth whether
reordering (see 4.3) is done or not.

Table 1: A list of the main candidates, their configuration and test-suite
performance. z-none neither employs null-move nor multi-cut pruning and
is the baseline configuration. z-nm only employs null-move pruning. Others
employ both null-move and multi-cut pruning.

Multi-cut configuration
R C FE Apply at Ind. Reorder Nodes % Solved 1D
- - - - - - 1,991,573,761 100.0% 252/300 z-none
- - - - - - 583,740,779 29.3% 246/300 z-nm
2 3 10 Cut Oft Oft 548,886,666 27.6% 238/300 z-thesis
2 2 10 Trans Off Off 467,711,698 23.5% 236/300 =-1
2 2 10 Trans On Off 480,274,921 24.1% 240/300 z-2
2 2 20 Trans On Off 455,480,763 22.9% 237/300 z-ind.
2 2 20 Trans On On 430,812,352 21.6% 237/300 z-trans
2 2 16 Cut On On 412,961,310 20.7% 236/300 z-cut
2 3 16 Trans On On 597,443,206 30.0% 245/300 =2-3
3 3 16 Trans On On 505,147,481 25.4% 240/300 z-main

Originally our experiments were focused on trying to decrease the number of
cutoffs needed for a mc-prune (C') from 3 to 2 and thus increase the number of
mc-prunes. We were hoping to achieve this by introducing the independency
check enhancement (see for example z-ind. and z-trans in Table 1). This
worked well and outperformed the original multi-cut configuration but it
never got to the point of outperforming the version of our program that only
employed null-move pruning. That is, no multi-cut configuration of this type
in blend with null-move pruning seemed to outperform a version that only
employed null-move pruning (z-nm in Table 1)—which in turn meant that
multi-cut was actually doing more harm than good. This told us that using
a configuration with C' = 2 along with the independency check was probably
still too aggressive and consequently too error-prone. Instead we decided
to try something completely different: to increase C' to 3 while keeping the
independency check on. We knew that this would result in a safer method
that expanded too much of the tree (z-3 in Table 1). But since we were now

22

making very safe mc-prunes, we realized that we could risk increasing the
depth reduction factor to R = 3. The test-suite results seemed fine and we
decided to match this version (z-main in Table 1) against the only-null-move
configuration. Surprisingly this did very well and not only outperformed the
original multi-cut configuration but the only-null-move configuration as well,
as will be demonstrated in the next section.

5.3 Results of self-play matches

Self-play matches were used to assess two things. First, to estimate the im-
provement for each of the proposed enhancements. Second, to estimate the
overall improvement of our enhanced multi-cut algorithm. Self-play matches
consisted of around 200 matches where both programs had 5 minutes of
thinking time, making each match at most 10 minutes. To prevent the pro-
grams from playing the same game over and over, fifty well-known opening
positions were used as a starting point for each match. The programs played
each opening once from the white side and once as black. Finally results
were gathered and ELO ratings were computed with 95% confidence inter-
vals based on a student t-test.

Enhancement improvements

To measure the improvement that each of the proposed enhancements in-
troduced we simply ran two configurations of the program: one with the
enhancement turned on and one with it turned off. This sounds logical but
a few problems exist with this approach: First, you need to settle for some
basic configuration. We used the basic configuration of R = 2 and C' = 2
since it was our best configuration at the time of these experiments. Sec-
ondly, some of the enhancements rely on other enhancements—for example
we would never use the independency check enhancement without using the
applicability enhancement—and since they are not strictly independent their
concurrent use can lead to skewed results. What follows is the results of these
experiments.

As can be seen from these results the applicability enhancement seems to
introduce the most improvement. The independency check introduces sur-
prisingly little gains, but again this was an example of a enhancement that
was hard to measure. The move reordering does not seem to provide us with
any improvement. But on the other hand, a configuration of C' = 2 means

23

Table 2: The results of matching versions of the program with and without
the applicability enhancement against each other.

Applicability enhancement
z-trans (with) vs. z-cut (without)
Score Winning % | ELO difference

109.5 - 86.5 55.9% | 41 £+ 34

Table 3: The result of matching versions of the program with and without
the independency check enhancement against each other.

Independency check enhancement
z-ind. (with) vs. z-1 (without)
Score Winning % | ELO difference

102.5 - 95.5 51.8% | 13 £+ 34

Table 4: The result of matching versions of the program with and without
the reordering enhancement against each other.

Reordering enhancement
z-trans (with) vs. z-ind (without)
Score Winning % | ELO difference
96.5 - 99.5 49.2% | =5+ 34

that the move reordering enhancement never moves more than a single move
to the front of the move-queue and given a good move ordering these moves
will probably already be at the front of the queue.

Overall improvements

Ultimately, we wanted our enhanced multi-cut algorithm to (a) outperform
the original multi-cut algorithm and (b) outperform the version of the pro-
gram which only used null-move pruning and no multi-cut. The results of
these matches follow.

As can be seen our main configuration outperformed both (a) and (b). As
expected, the results against (a) show a definite improvement. Although
not as convincing, the results against (b) are encouraging. At least there
seems to be something there that may be worth examining more closely in a
high-performance chess program like STOCKFISH.

24

Table 5: Results of our main configuration against (a).

z-main (enhanced) vs. z-thesis (original)
Score Winning % | ELO difference
111 - 86 56.3% | 45 + 36

Table 6: Results of our main configuration against (b).

z-main (enhanced) vs. z-nm (only null-move)
Score Winning % | ELO difference
105 - 90 53.8% | 26 + 36

6 Conclusion and Future Work

In this report we have given a brief historical overview of how search paradigms
in chess have shifted over the years and how brute-force searchers have long
lost their dominance to searchers that employ selective search techniques. We
have also covered some of the basic components that make up chess programs.
Furthermore we have reviewed the selective search technique multi-cut and
introduced enhancements to it. Our enhanced multi-cut algorithm has been
implemented and experimented with in our own chess program. The results
of these experiments demonstrate a statistically significant improvement over
the original multi-cut algorithm. The enhanced algorithm also seems to com-
plement null-move pruning better than the original algorithm did, giving rise
to optimism. But while our chess program served well as a first test-bed for
the enhanced multi-cut algorithm, its real strength improvement cannot be
assessed without it being implemented and experimented with in a high-
performance, state of the art chess program.

25

References

[

5]

6]

[10]

[11]

[12]

[13]

L. Atkin and D. Slate. Chess 4.5-the northwestern university chess pro-
gram. In Computer chess compendium, pages 80-103. Springer-Verlag
New York, Inc., New York, NY, USA, 1988.

D. F. Beal. Mating Sequences in the Quiescence Search. ICCA Journal,
7(3):133-137, 1984.

D. F. Beal. Experiments with the null move. In Advances in Computer
Chess 5, pages 65-79. Elsevier, 1989.

Y. Bjornsson. Selective Depth-First Game-Tree Search. PhD thesis,
University of Alberta, 2002.

Y. Bjornsson and T. A. Marsland. Multi-cut pruning in alpha-beta
search. In Proceedings of the First International Conference on Com-
puters and Games, CG 1998, pages 15-24, London, UK, 1999. Springer-
Verlag.

D. Breuker. Memory versus Search in Games. PhD thesis, Universiteit
Maastricht, The Netherlands, 1998.

S. Chinchalkar. An Upper Bound for the Number of Reachable Positions.
ICCA Journal, 19(3):14-18, 1996.

O. David and N. S. Netanyahu. Verified null-move pruning. ICGA
Journal, 25(3):153-161, 2002.

C. Donninger. Null Move and Deep Search: Selective-Search Heuristics
for Obtuse Chess Programs. ICCA Journal, 16(3):137-143, 1993.

J. J. Gillogly. The technology chess program. In Computer chess com-
pendium, pages 67-79. Springer-Verlag New York, Inc., New York, NY,
USA, 1988.

G. Goetsch and M. S. Campbell. Experiments with the null-move heuris-
tic. In Computers, Chess, and Cognition, pages 159—168. Springer-Verlag
New York, Inc., New York, NY, USA, 1990.

E. A. Heinz. Extended Futility Pruning. ICCA Journal, 21(2):75-83,
1998.

E. A. Heinz. Adaptive null-move pruning. ICCA Journal, 18(2):123-132,
1999.

26

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

H. Kaindl. Quiescence Search in Computer Chess. SIGART Newsletter,
(80):124-131, 1982.

D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning.
Artificial Intelligence, 6(4):293-326, 1975.

Y. J. Lim. On Forward Pruning in Game-Tree Search. PhD thesis,
National University of Singapore, 2007.

T. A. Marsland and M. Campbell. Parallel search of strongly ordered
game trees. ACM Comput. Surv., 14:533-551, December 1982.

T. A. Marsland and F. Popowich. Parallel game-tree search. IFEE
Transactions on Pattern Analysis and Machine Intelligence, 7:442-452,
1985.

A. Newell, J. C. Shaw, and H. A. Simon. Chess-playing programs and
the problem of complexity. IBM J. Res. Dev., 2:320-335, October 1958.

F. Reul. New Architectures in Computer Chess. PhD thesis, Maastricht
University, 2009.

F. Reul. Static exchange evaluation with af-approach. ICGA journal,
33(1), 2010.

T. Romstad. An Introduction to Late Move Reductions. http://www.
glaurungchess. com/1lmr.html, 2007. [Online; accessed 7-May-2011].

TalkChess.com. Multi-cut, SE and ETC. http://www.talkchess.com/
forum/viewtopic.php?t=35697, 2006. |Online; accessed 8-May-2011].

M. H. M. Winands, H. J. van den Herik, J. W. H. M. Uiterwijk, and
E. C. D. van der Werf. Enhanced forward pruning. Inf. Sci., 175:315—-
329, November 2005.

A. Zobrist. A New Hashing Method with Application for Game Playing.
Technical Report #88, Computer Science Department, The University
of Wisconsin, Madison, WI, USA, 1970.

27

