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ÁGRIP
Utangenaerfðir (e. epigenetics) fjalla um upplýsingar tengdar erfðaefninu 

sem erfast við frumuskiptingu án þess að vera hluti af DNA röðinni sjálfri. 

Metýlun á DNA er mest rannsakaða utangenamerkið. Hún kemur við sögu 

í óvirkjun X litningsins, vörnum gegn stökklum, stýringu á vefjasérhæfðri 

tjáningu gena og tjáningu genagreyptra gena. Breytt DNA-metýlun er 

talin hluti af meingerð margra algengra sjúkdóma, þar á meðal 

krabbameins. Markmið doktorsverkefnisis var að beita lífupplýsinga- og 

líffræðilegum aðferðum til að auka skilning á dreifingu og hlutverki 

DNA-metýlunar í erfðamengi mannsins.

Til að auðvelda túlkun á mælingum á heildarmetýlun erfðaefnis 

var gerð lífupplýsingafræðileg greining á eiginleikum skerðiensíma sem 

unnt er að nota til slíkra mælinga. Sýnt var fram á að heildarmetýlun 

erfðaefnis og metýlun í stýriröðum ýmissa gena breyttist með tíma í 

tveimur mismunandi langsniðsþýðum frá Íslandi og Bandaríkjunum. 

Heildarmetýlun breyttist um meira en 10% hjá 29% einstaklinga í íslenska 

þýðinu (P<0.001). Breytingin var í báðar áttir, DNA-metýlun jókst hjá 

hluta en minnkaði hjá hluta einstaklinganna milli mælipunktanna tveggja. 

Í þýðinu frá Bandaríkjunum varð sambærileg breyting á heildarmetýlun, 

og reyndist varðveisla metýlmynstursins fjölskyldulægur eiginleiki 

(h2=0.99, P<0.001).

Þar sem erfitt er að afla sýna úr kímlínu mannsins, var þróað 

lífupplýsingafræðilegt merki fyrir metýlun kímlínunnar sem byggir á 

kortlagningu metýltengdra eins basapara erfðabreytileika (mSNP). Merkið 

var nýtt til að sýna fram á jákvæða fylgni milli DNA-metýlunar 

kímlínunnar og endurröðunar erfðaefnis (r=0.622, P<10-15) sem hélst þó 

leiðrétt væri fyrir bjagandi breytum (r=0.172, P<10-15). Merkið var einnig 

nýtt til að kanna samband milli metýlunar kímlínunnar og mismunandi 

undirfjölskyldna stökkla í erfðamengi mannsins. Í ljós kom neikvæð 
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fylgni milli mSNP merkisins og Alu undirfjölskyldunnar leiðrétt fyrir 

bjagandi breytum (r=-0.14, -0.16, -0.16, -0.20 fyrir 125, 250, 500 og 1000 

kb erfðamengisglugga). Fylgnimynstrið milli mSNP merkisins og L1 

undirfjölskyldunnar var breytilegt eftir gluggastærðum (r=-0.01, -0.01, 

-0.01, -0.17 fyrir 125, 250, 500 og 1000 kb erfðamengisglugga). Loks var 

aðferðum kerfislíffræði beitt til að kanna áhrif breyttrar tjáningar 

genagreyptra gena á efnaskipti mannsins. Mesta breyting í líkani af 

efnaskiptum varð þegar hermt var eftir breyttri tjáningu ATP10A gensins. 

Áhrif breyttrar tjáningar á efnaskipti studdu ekki tilgátu Haigs um 

samkeppni genagreyptra gena frá föður og genagreyptra gena frá móður, 

því niðurstöður einungis 50% genanna fylgdu forspá tilgátunnar (P=1.0).

Niðurstöður verkefnisins renna stoðum undir þá forsendu 

utangenaerfðafræðilegs líkans af meingerð algengra sjúkdóma að 

utangenamerki breytist með aldri (Grein II). Þá benda niðurstöður 

verkefnisins til þess að DNA-metýlun kímlínunnar sé tengd endurröðun 

erfðaefnis (Grein III). DNA-metýlun er ósennilega hluti af varnarkerfi 

gegn Alu stökklum, en hún kann að vera þáttur af vörnum gegn L1 

stökklum (Grein IV). Niðurstöður kerfislíffræðilegrar greiningar á 

áhrifum genegreyptra gena á efnaskipti studdu ekki tilgátu Haigs (Grein 

V). Aðferðir sem þróaðar voru nýtast til að túlka niðurstöður mælinga á 

heildarmetýlun erfðaefnis með skerðiensímum (Grein I), til að kortleggja 

DNA-metýlun kímlínu mannsins (Grein III) og til að kanna magnbundin 

áhrif tjáningar gena á efnaskipti mannsins með aðferðum kerfislíffræði 

(Grein V).

Lykilorð: Utangenaerfðir, DNA-metýlun, eins basa erfðabreytileiki, 

endurröðun, stökklar, kerfislíffræði
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ABSTRACT
Epigenetics is the study of DNA related information heritable through 

meiosis and mitosis that does not include the DNA code itself. DNA 

methylation is currently the most studied epigenetic mark. It is a part of 

the inactivation of the X chromosome, defense against transposable 

elements and the control of tissue-specific gene expression and the 

expression of imprinted genes. Changes in DNA methylation are thought 

to be involved in the pathogenesis of many common diseases, including 

cancer. The aim of the Ph.D. project was to apply bioinformatic and 

biological methods to further the understanding of the properties of DNA 

methylation in the human genome.

To assist interpreting results from global methylation assays, a 

bioinformatics analysis of the properties of methylation-sensitive 

restriction endonucleases suitable for such measurements was performed. 

Intra-individual changes in DNA methylation over time were 

demonstrated in longitudinal samples from two populations from Iceland 

and USA. Global methylation changed by more than 10% for 29% of the 

individuals in the Icelandic population (P<0.001). The change was bi-

directional; DNA methylation decreased for a part of the population but 

increased for another part of the population. The global methylation 

similarly changed in the USA population, and there was a familial 

clustering of conservation of methylation (h2=0.99, P<0.001). 

Since sampling the human germline is difficult, a genome-wide 

bioinformatic surrogate marker for germline methylation utilizing 

methylation-associated single base pair polymorphism (mSNP) was 

developed. It was used to demonstrate a positive correlation between 

germline methylation and homologous recombination (r=0.622, P<10-15) 

that remained significant after correcting for confounding variables 

(r=0.172, P<10-15). The marker was then used to explore the relationship 
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between germline methylation and subfamilies of transposable elements 

in the human genome. After correcting for confounding variables, a 

negative correlation was found between the mSNP marker and Alu 

subfamily (r=-0.14, -0.16, -0.16, -0.20 for 125, 250, 500 and 1000 kb 

genome windows) The correlation pattern between the mSNP marker and 

the L1 subfamily varied with window size (r=-0.01, -0.01, -0.01, -0.17 for 

125, 250, 500 and 1000 kb genome windows). Finally methods of systems 

biology were used to study the metabolic effects of different expression 

level of imprinted genes. The greatest perturbation in the metabolic 

reconstruction occurred when differential expression of the ATP10A gene 

was simulated. The simulated effects of differential expression on 

metabolism did not support Haig's parental intergenome conflict theory, 

since only 50% of the genes followed its predictions (P=1.0).

The results of the thesis support one prerequisite of an epigenetic 

model of common disease pathogenesis, i.e. that epigenetic marks change 

with time (Paper II). The results of the project suggest that DNA 

methylation of the germline is associated with homologous recombination 

(Paper III). The results indicate that DNA methylation is unlikely a part of 

a defense system against Alu elements, although it might participate in a 

defense system against L1 elements (Paper IV). The systems biology 

analysis of the metabolic effect of imprinted genes are not supportive of 

Haig's theorem (Paper V). Methods developed in this project can be used 

to interpret global DNA methylation analysis measurements with 

restriction endonucleases, to map the DNA methylation of the human 

germline and test dosage sensitivity of human metabolic genes.

Key words: Epigenetics, DNA methylation, single nucleotide 

polymorphism, transposon-derived repeats, systems biology.
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 1

 1 INTRODUCTION
The focus of this Ph.D. thesis is several aspects of DNA methylation in the 

human genome. The body of the work presented involves the development and 

application of bioinformatic and biological methods to quantify DNA 

methylation in the germline and somatic tissues and to test its conservation and 

correlation with genetic variables such as recombination and the amount of 

repetitive sequences.

 1.1 Epigenetics 

The concept of epigenetics was originally established by Conrad Waddington in 

1942 (Waddington, 1942). He proposed that environmental stimulus could be 

converted into an internal genetic factor by “canalization of development” 

(Waddington, 1942), explaining how complex phenotypes could form from 

interaction between genes and environment. Epigenetics focuses on DNA 

related information, heritable through both meiosis and mitosis, that does not 

involve the DNA sequence itself. Recently, an operational consensus definition 

of epigenetics was established (Berger et al., 2009). The official definition of 

epigenetic trait reads: “An epigenetic trait is a stably heritable phenotype 

resulting from changes in a chromosome without alterations in the DNA 

sequence” (Berger et al., 2009). 

Epigenetic marks (epigenetic maintainers) maintain the heritable 

chromosome changes (Berger et al., 2009). Currently, the best known marks are 

DNA methylation, post-translational histone modifications and nucleosome 

positioning. These epigenetic marks affect gene expression (Jones et al., 1998; 

Razin & Riggs, 1980) and have tissue-specific patterns (Eckhardt et al., 2006) 

underlying tissue-specific gene expression of genes (Musco & Peterson, 2008). 

The various epigenetic marks interact resulting in a complex epigenetic 

machinery (Ikegami et al., 2009; Ng & Bird, 1999). Disruption of this 
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machinery underlies the pathogenesis of many human diseases, such as cancer 

(Esteller, 2008).

 1.2 DNA methylation

 1.2.1 DNA methylation in the human genome  

DNA methylation in the human genome is a covalent addition of a methyl 

group to the fifth carbon of the cytosine base (Fig. 1). In humans the fraction of 

methylated cytosine is 0.76-1% depending on tissues, corresponding to 4-5% of 

all cytosine bases (Ehrlich et al., 1982). Approximately 70-80% of all CpGs in 

the human genome are methylated (Bird, 2002). However, embryonic stem cells 

seem to have a substantial amount of non-CpG methylation (Lister et al., 2009; 

Ramsahoye et al., 2000). The first whole-genome single nucleotide methylation 

analysis of two human cell lines indicated that while 99.98% of all cytosine 

methylation was within the CpG dinucleotide in a fetal fibroblast cell line, 

24,5% of cytosine methylation in an embryonic stem cell (ESC) line was within 

non-CpG cytosines (Lister et al., 2009). The majority of non-CpG methylation 

was within the cytosine base of the CWG (W=A or T) trinucleotide. After 

differentiation of the ESC line, cytosine methylation in non-CpGs disappeared 

and induction of the fibroblast cell line into a pluripotent state resulted in the 

reappearance of cytosine methylation of non-CpGs (Lister et al., 2009). This 

indicates that cytosine methylation of non-CpGs might be a part of a specific 

pluripotent cell mechanism.

Several methods are available to assess DNA methylation at individual 

cytosines. The most popular method involves treating the DNA sample with 

bisulfite. This converts unmethylated cytosine into uracil while methylated 

cytosine remains intact (Zilberman & Henikoff, 2007). Following this, the 

amount of conversion and thereby methylation is measured by performing 

either polymerase chain reaction (PCR) with targeted primers for methylated 
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and unmethylated DNA (bisulfite PCR) (Fraga & Esteller, 2002), hybridization 

of the sample onto microarray or direct sequencing (bisulfite sequencing) 

(Zilberman & Henikoff, 2007). Another popular method, methylated DNA 

immunoprecipitation (MeDIP), involves isolating methylated DNA with 

antibody specific for methylated DNA (Sørensen & Collas, 2009). After 

immunoprecipitation, the methylated and unmethylated part of the sample can 

be differentially labeled and applied to microarray (MeDIP-chip) or sequenced 

(MeDIP-seq) (Sørensen & Collas, 2009). Several methods are also available to 

measure global methylation of DNA. These include assays based on High-

performance liquid chromatography (HPLC) (Armstrong et al., 2010) and mass 

spectrometry (Rocha et al., 2010), in addition to methods measuring the amount 

of cut by methylation-sensitive restriction endonucleases (Karimi et al., 2006a). 

It was not clear how many suitable endonuclease pairs were available for such 

measurements prior to the work described in this thesis. Furthermore, knowing 

the frequencies of the restriction endonucleases within subsets of the genome 

can aid in the interpretation of global DNA methylation measurements and 

comparison with results by other methods. In paper I, the sequence specificity 

of restriction endonucleases potentially suitable for global methylation analysis 

in the human genome was analyzed. In particular two restriction endonuclease 

target sites suitable for global CpG dinucleotide methylation measurement and 

one target site suitable for global CWG trinucleotide methylation measurement 

were studied.

 1.2.2 The role of DNA methylation in mammalian genomes  

DNA methylation was proposed as a form of cellular memory in 1975 by two 

independent researchers (Holliday & Pugh, 1975; Riggs, 1975). They predicted 

the discovery of eukaryotic methyltransferases capable of maintaining 

methylation through cell division by high affinity for hemimethylated DNA 
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(Riggs, 1975). This enzyme, DNA methyltransferase I, was described eight 

years later (Bestor & Ingram, 1983). It belongs to the family of DNA 

methyltransferases (Dnmts) that establish and maintain DNA methylation in 

mammalian genomes (Cheng & Blumenthal, 2008) (Figure 1). Members of the 

Dnmt3 subfamily are responsible for de novo methylation (Okano et al., 1999).

DNA methylation has several roles in mammalian genomes. It is a part 

of the control of tissue-specific regulation of gene expression. Early evidence 

includes the silencing of the Aprt gene by methylation following insertion into 

mouse cells (Stein et al., 1982), and the expression of silenced genes on the X 

chromosome when cell cultures were treated with a methyltransferase inhibitor 

(5-azacytitine) (Venolia et al., 1982). CpG islands are long stretches of DNA 

with a high observed/expected ratio of CpGs, generally thought to be result 

from over-representation of non-methylated CpG dinucleotides that are less 

susceptible to mutations. They represent 0.7% of the human genome (Gardiner-

Garden & Frommer, 1987). Nearly all housekeeping genes and the majority of 

genes with tissue-specific expression contain one or more CpG islands in their 

promoter region (Cross & Bird, 1995). The methylation of the CpGs in these 

promoter regions correlates inversely with promoter activity (Weber et al., 

Figure 1: DNA methylation in the human genome 

a) Structure of cytosine and methylated cytosine. b) The dyad symmetry of the CpG 
dinucleotide, ensuring accurate maintenance methylation during cell division. Drawing 
based on Reik et al. (2001).
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2007) and gene expression (Song et al., 2005).

An important role for DNA methylation in mammals is its part in the 

maintenance of the inactive state of one of the female X chromosomes. The 

inactivation occurs by production of non-coding RNA by a single copy of the 

XIST gene that coats the entire chromosome (Brown et al., 1991). This is 

followed by histone tail modifications (Cohen et al., 2005) and later DNA 

methylation of gene bodies that maintains stable inactivation (Hellman & 

Chess, 2007; Venolia et al., 1982).

In mammals, DNA methylation is vital for genome stability, as shown 

by various mouse mutants of the methyltransferase genes. Homozygous mice 

for disruptive mutations in the Dnmt1 gene die at the embryonic stage (Li et al., 

1992). The offspring of female mice with conditional mutations of the 

DNMT3a die in utero and have lost methylation of long terminal repeats and 

allele specific methylation of normally maternally silenced loci (Kaneda et al., 

2004). Mice with mutations in the Dnmt3l gene similarly have no methylation 

of long terminal repeats and germ cell meiosis is arrested (Bourc'his & Bestor, 

2004). Patients with mutations in the C terminal DNA methyltransferase 

domain of DNMT3B gene on chromosome 20q develop immunodeficiency-

centromeric instability-facial anomalies (ICF) syndrome (Xu et al., 1999). They 

have hypomethylation of satellite repeats, affecting the centromere stability of 

chromosomes 1, 9 and 16 (Okano et al., 1999). 

Changes in DNA methylation and other epigenetic marks are involved in 

the pathogenesis of many human diseases. Feinberg and Vogelstein reported 

differences in the global methylation pattern between cancers and their healthy 

tissue counterparts in 1983 (Feinberg & Vogelstein, 1983). Since then, 

alterations in both DNA methylation and histone modifications have been 
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discovered in many cancer types and several treatments targeting these changes 

have emerged (Esteller, 2008). Epigenetic modifications have also been 

correlated with several non-malignant diseases, such as systemic lupus 

erythematosus (Javierre et al., 2010). 

An epigenetic and genetic model of disease pathogenesis has been 

suggested to explain several aspects of complex human disease (reviewed in 

chapter  1.4.1 ). One prerequisite of the model involves acquired changes in the 

pattern of epigenetic marks over time. However, limited data supporting this 

prerequisite existed at the time of the initiation of the Ph.D. project. The 

longitudinal measurement of acquired changes in the pattern of epigenetic 

marks in two cohorts was the focus of Paper II. DNA methylation was selected 

as the epigenetic mark since it only requires isolated DNA and not whole cells. 

We measured intra-individual changes in both global and local patterns of DNA 

methylation over 11-16 years. One of the cohorts included samples from 21 

families with up to three generations. This cohort was used to assess the 

familial correlation of DNA methylation conservation.
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 1.2.3 DNA methylation patterns in the germline  

An accurate reprogramming of germline DNA methylation patterns, including 

the differentially methylated regions of imprinted genes, is vital for normal 

development (Weaver et al., 2009). In mice following fertilization, a genome-

wide demethylation occurs (Fig.2). The male genome is actively demethylated 

by demethylating enzymes in a single cell cycle while the maternal genome 

undergoes passive demethylation over a few cell cycles (Santos et al., 2002; 

Weaver et al., 2009). However, imprinted regions are spared, and they keep 

their parent-of-origin specific methylation patterns. Several cis and trans acting 

Figure 2: Reprogramming of the germline methylation pattern during embryogenesis. 

Shown is the reprogramming, both genome wide (top) and at imprinted loci (bottom) 
for both maternal (red) and paternal (blue) genomes during embryogenesis. Genome-
wide demethylation occurs at ED (embryonic day) 5 sparing imprinted loci. At gonadal 
sex differentiation (GSD) the formation of primordial germ cells, DNA methylation 
patterns in the germline are reset to establish transfer of correct information on parental 
origin to the offspring. This continues into adult development (AD). Drawing based on 
Reik et al. (2001), Jirtle et al. (2007) and Weaver et al. (2009). 
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proteins participating in this protection have been proposed (Weaver et al., 

2009). Furthermore, the maintenance of methylation is carried out by a 

cooperation of two isoforms of the Dnmt1 methyltransferase (Hirasawa et al., 

2008).

After the initial cell division and following the demethylation wave, a 

population of primordial germ cell has been produced and sex specification and 

gonadal cell differentiation is initiated (Weaver et al., 2009). Thereafter, the 

germline undergoes a second wave of demethylation, completed at embryonic 

day 12-13 (Reik & Walter, 2001). This time, however, the imprinted regions are 

also demethylated (Hajkova et al., 2002). Following this process, methylation 

patterns of imprinted genes are established by de novo methylation to secure 

correct transfer of parent-of-origin information (Reik & Walter, 2001). The 

experimental measurement of DNA methylation in the human germline is 

limited by sampling difficulties. The only readily available sample of the human 

germline is sperm, the final product of the male germline. Samples of the 

female germline and the earlier stages of the male germline are much more 

difficult to obtain. In paper III, we therefore took a novel approach and 

developed a bioinformatic marker based on hypermutability of methylated 

cytosine (reviewed in chapter  1.5 ) that represents germline methylation. This 

marker was subsequently used to test its correlation with homologous 

recombination (Paper III) and the correlation with various classes of repetitive 

elements in the human genome (Paper IV).

 1.2.4 DNA methylation and imprinted genes.  

Imprinted genes have allele-specific expression patterns based on parental 

origin of the allele in at least one tissue. DNA methylation maintains the stable 

expression patterns of imprinted genes in mammalian genomes (Reik & Walter, 

2001). Alternation in the expression of several imprinted genes, that can result 
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from changes in methylation of their control elements, can lead to severe 

disease. Several suggestions of the role of imprinted genes exist. Haig's parental 

conflict theory suggests differential metabolic effects of paternally and 

maternally imprinted genes (reviewed in chapter 1.8.2 ). In Paper V, we 

simulated the metabolic effects of differential expression of imprinted genes in  

silico by applying methods of systems biology on a recent reconstruction of the 

human metabolic network.

 1.3 Histone modifications and nucleosome positioning

Several epigenetic marks other than DNA methylation exist, although an in 

depth review of them is outside the scope of this thesis. The nature of their 

effects on gene expression and relationship with other cell mechanisms is 

currently under active research that has been greatly advanced by progress in 

immunoprecipation methods.

Post-translational modifications of histones are not all epigenetic in 

origin, since some of them are not stable under cell division (Berger, 2007; 

Berger et al., 2009). Histone modifying proteins modify the amino- and 

carboxy terminal of the histone tails changing their properties to alter the access 

of transcriptional factors to the DNA (Berger, 2007). Examples include histone 

lysine acetylation that increases transcriptional activity (Soutoglou et al., 2000) 

and lysine sumoylation that repress transcription (Verger et al., 2003). Other 

histone modifications display a more complex relationship with DNA 

transcription, suggesting that they are just a part of the complex transcriptional 

machinery (Berger, 2007).

Patterns of DNA methylation and post-translational histone 

modifications correlate (Lister et al., 2009). An example is the binding of the 

MeCP2 CpG binding protein (Fuks et al., 2003) to methylated DNA and 
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subsequent recruitment of histone deacetylase to repress transcription (Jones et  

al., 1998).

Epigenetic and genetic factors also participate in establishing epigenetic 

memory. Most of those are factors affecting the stability of the nucleosome, a 

146 base pair (bp) long stretch of the DNA strand wrapped tightly around a 

histone protein octamer (Henikoff, 2008). Proteins involved in chromatin 

assembly locate nucleosomes at positions interfering with transcription 

(Henikoff, 2008). The sequence preference of nucleosome positioning is not 

random (Kaplan et al., 2009) and has been suggested to be an epigenetic 

phenomena (Segal & Widom, 2009).

 1.4 Age-associated changes in methylation and their potential role in 
complex disease pathogenesis (Paper II)

The pathogenesis of many common human diseases is a complex relationship 

between genetic and environmental factors. Several models explaining this 

relationship have been proposed (Bjornsson et al., 2004; Jiang et al., 2004). 

One of those is the CDGE (Common Disease genetic epidemiology in the 

context of both Genetic and Epigenetic variation) model (Bjornsson et al., 

2004). It supplements a purely genetic model of disease pathogenesis by adding 

epigenetic variability layers that can be pathogenic, either by themselves or in 

combination with genetic variants. An important prerequisite of the model is 

changes in patterns of epigenetic marks over time. Testing acquired intra-

individual changes in epigenetic marks was the focus of the work presented in 

Paper II. Previously, this had mostly been studied in cross-sectional cohorts. We 

used DNA methylation as our epigenetic mark as it only requires DNA rather 

than whole cells required for histone modifications. Changes in global 

methylation and gene promoter specific methylation over 11-16 years was 

measured in two longitudinal cohorts with more than 100 participants each.
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 1.4.1 Epigenetic model of complex human disease  

A classical genetic model of disease pathogenesis suggests that it results from 

genetic disruptions, but the phenotype might be modified by the environment. 

Examples of diseases adhering to this models are Mendelian disorders such as 

phenylketonuria (Scriver, 2007). However, the vast majority of human diseases 

have complex genetics and do not segregate as simple monogenic traits. This is 

demonstrated by low disease concordance rates for monozygotic twins, such as 

40% for diabetes mellitus (Knip et al., 2005). Furthermore, the majority of 

genome-wide association studies have discovered genome variants that 

commonly explain only a fraction of the cases and the presence of the variant 

found is neither necessary nor sufficient for establishment of disease (Manolio, 

2010). Several factors could contribute to the pathogenesis of diseases with 

complex genetics, such as numerous genetic loci contributing to disease 

pathogenesis and their interaction, different or variable penetrance of mutations, 

acquired somatic mutations or gene/environment interaction.

The CDGE (common disease genetic epidemiology in the context of 

both genetic and epigenetic variation) model adds an epigenetic layer of 

information to supplement the genetic model of complex human disease 

(Bjornsson et al., 2004). According to the model, genetic and epigenetic 

variation can interact differently to establish a pathogenic phenotype. A 

sequence variant contributing to disease can either be independent from 

epigenetic effects, or epigenetic modifications can modify its penetrance. 

Furthermore an epigenetic variability can either contribute independently to a 

disease phenotype or be affected by genetic variants. Several sources of 

epigenetic variability have been suggested, such as individual environment, 

parental environment, stochastic changes and age-dependent degeneration of 

epigenetic marks (Bjornsson et al., 2004). 
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A number of observations support this. Folic acid is a key component of 

single carbon metabolism necessary for maintenance of DNA methylation. 

Hyperhomocysteinemia is a significant risk factor for cardiovascular disease 

(Homocysteine Studies Collaboration, 2002) and Alzheimer's disease (Seshadri 

et al., 2002). Uremic individuals with hyperhomocysteinemia have abnormal 

patterns of DNA methylation corrected by folic acid supplementation (Ingrosso 

et al., 2003). Neural tube defects are both a relatively common and severe type 

of birth defects. Recently, global levels of DNA methylation in the brain were 

found to be significantly lower in human fetuses with neural tube defects 

compared control fetuses, and the level of hypomethylation correlated with the 

severity of the defect (Chen et al., 2010). Homozygous mice for mutations in 

the Dnmt3B gene are unable to perform adequate de novo methylation, and their 

offspring suffer from neural tube defects (Juriloff & Harris, 2000). 

Supplementation of folic acid during pregnancy or food fortification with folic 

acid has greatly reduced the risk of neural tube defects (Obican et al., 2010; 

Zeisel, 2009). Maternal exposure to famine during pregnancy has been shown 

to stably affect DNA methylation of the IGF2 gene in the offspring (Heijmans 

et al., 2008). Furthermore, studies of mice with the Avy allele of the Agouti gene 

have revealed that epigenetic patterns can be transferred between generations 

(Morgan et al., 1999), and that the parental environment can affect the pattern 

of epigenetic marks in the offspring (Waterland & Jirtle, 2003). Collectively, 

this evidence supports the suggestion that environmental factors can affect the 

establishment and maintenance of epigenetic marks and affect disease 

pathogenesis.

Since the publication of the CDGE model, vast amount of supporting 

evidence has been discovered, in addition to results from Paper II. Stochastic 

changes in DNA methylation in cancer compared to healthy tissue have been 
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known for many years (Feinberg & Vogelstein, 1983) and epigenetic 

mechanisms are now thought to contribute to cancer pathogenesis (Esteller, 

2008). Monozygous twins discordant for systemic lupus erythematosus were 

recently found to differ markedly in DNA methylation patterns for 49 genes, 

and the greatest differences were in genes relevant for autoimmune disease 

(Javierre et al., 2010). A recent revision of a genome-wide data on genetic 

variants associated with type II diabetes found a new association correlating 

with adjacent methylation when the sequence variants were reviewed in light of 

parental origin (Kong et al., 2009). This suggested that imprinted and 

epigenetic mechanisms might be involved in the pathogenesis of this common 

disease.

 1.4.2 Epigenetic marks and aging  

Acquired changes in epigenetic marks have been suggested to be a part of the 

age-dependent onset of many human diseases (Feinberg, 2004; Feinberg, 2007). 

At the time of publication of the CDGE model, few studies on changes in 

epigenetic marks with aging existed. In an inbred mouse experimental system, 

female X chromosome inactivation, maintained by DNA methylation, decreased 

with increasing age of the mice (Bennett-Baker et al., 2003). Furthermore, the 

expression of the inactive allele of two imprinted genes (Atp7a and Igf2) was 

found to increase with aging (Bennett-Baker et al., 2003). In humans, the 

results from studies of the possible decay of X chromosome inactivation with 

age were contradicting (Busque et al., 1996; Racchi et al., 1998). The 

methylation of a CpG island in the promoter region of the estrogen receptor 

(ER) was found to increase with age in colonic mucosa of 39 healthy 

individuals (Issa et al., 1994). The same CpG island was hypermethylated in 45 

colorectal cancers (Issa et al., 1994). Similarly, the methylation of the IGF2 

promoter in 34 individuals aged 8-90 years was found to increase with age. 
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Furthermore, the methylation of both alleles of the differentially methylated 

region within the IGF2 promoter increased with age in the 25 individuals 

suitable for testing (Issa et al., 1996). The methylation of the non-methylated 

allele approached the methylation of the methylated allele with increased age of 

the subjects. Hypermethylation of the promoter region of the IGF2 gene was 

also found in various tumors, including colorectal tumors and premalignant 

adenomas of the colon (Issa et al., 1996). However, out of six other genes 

involved in the pathogenesis of colorectal cancer, only two (MYOD, N33) were 

found to have similar age-related promoter hypermethylation in colonic 

mucosa, while the methylation of the other genes (p16, THBS1, HIC-1,  

CALCA) did not change significantly (Ahuja et al., 1998). This indicates that 

age-associated changes in epigenetic marks might be site-specific. 

A more comprehensive analysis compared the methylation of 1.9 million 

CpGs in a cross-sectional sample of old and young individuals (mean age 68 vs. 

26 years). The average DNA methylation changed significantly in two out of 

five tissues tested (Eckhardt et al., 2006). The changes were in CD4+ 

lymphocytes and dermal fibroblasts, while no change was observed in liver, 

heart muscle and skeletal muscle (Eckhardt et al., 2006). The authors concluded 

that DNA methylation is likely to be more stable than previously thought 

(Eckhardt et al., 2006). 

A recent cross-sectional study measuring the methylation of more than 

27,000 CpGs in promoters of the human genome in whole blood from 93 

individuals found 213 sites with age-associated hypermethylation and 147 sites 

with age-associated hypomethylation (Rakyan et al., 2010). These findings 

were replicated using both monocytes and T-cells of peripheral blood in an 

independent cohort. Furthermore, the age-associated hypermethylated sites 

were found to be located within bivalent chromatin domains (containing 
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epigenetically activating and repressing factors) and regions hypermethylated in 

multiple adult-onset cancers (Rakyan et al., 2010).

The results from cross-sectional studies on the effect of age on 

epigenetic marks can be difficult to interpret, as several possibly confounding 

genetic and environmental variables remain unaccounted for. Furthermore, if 

changes in epigenetic marks are not all uni-directional (e.g. if DNA methylation 

could either increase or decrease), then they are likely missed with a cross-

sectional approach. No changes in X inactivation patterns were found when 

they were compared in two samples from 133 individuals sampled with a 13-21 

year interval (Sandovici et al., 2004). Similarly, the methylation of the region 

controlling the expression of the IGF2 gene did not change significantly with 

time (Sandovici et al., 2003). 

Fraga et al. studied differences in epigenetic marks between 40 pairs of 

monozygous (MZ) twins of various age and environmental backgrounds (Fraga 

et al., 2005). For the female twins, 13 out of 16 pairs had the same X 

chromosome methylation pattern. However, a total of 35% (14 out of 40 MZ 

pairs) differed significantly in both global cytosine methylation levels, global 

H3 acetylation levels and global H4 acetylation levels (Fraga et al., 2005). 

Furthermore, while the youngest MZ twin pairs were epigenetically 

indistinguishable, the older pairs differed more. Remarkably, those twin pairs 

who reported having spent less of their life together and/or those who differed 

markedly in their medical history demonstrated the greatest differences in these 

global markers of epigenetic marks. This suggests that different amount of 

shared environment might explain the observed differences in the pattern of 

epigenetic marks. The sites that differed markedly between MZ twins were 

enriched in Alu elements and single-copy genes. These differences were also 

observed in gene expression levels (Fraga et al., 2005).
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Two other twin studies supporting these results have recently emerged. 

Probing the methylation of approximately 6000 DNA loci in 59 twin pairs, 

monozygous (MZ) twins were found to be more epigenetically similar than the 

dizygous (DZ) twins (Kaminsky et al., 2009). This suggests a genetic 

contribution to the conservation of epigenetic marks. Additionally, information 

on mono or dichorionic status of 20 MZ twin pairs was available. In dichorionic 

MZ twins, blastocyst separation of the twins occurs within four days of 

fertilization whereas in monochorionic MZ, the separation occurs later. 

Interestingly, monochorionic MZ twins were more epigenetically similar than 

dichorionic twins (Kaminsky et al., 2009). This suggests that in addition to 

identical DNA sequence, different phenotypes of MZ twins might arise due to 

differences in epigenetic marks as early as by blastocyst separation (Kaminsky 

et al., 2009). In a recent study of young MZ and DZ twins sampled at 5 year 

intervals, the methylation of all three genes tested changed significantly 

between the sample points (Wong et al., 2010). Furthermore, the change in all 

three genes was bi-directional (i.e. some individuals lost methylation while 

others gained methylation) (Wong et al., 2010). However, the changes in MZ 

twins were not significantly different from DZ twins, suggesting that common 

environment rather a genetic variability caused the observed change (Wong et  

al., 2010). 

Several other studies on the conservation of epigenetic marks have been 

published recently. In 718 subjects (age 55-92) sampled repeatedly over 8 years, 

DNA methylation of the Alu elements was found to decline steadily (0.089% 

decrease in cytosine methylation of Alu elements per year). In contrast, the 

methylation L1 repeats, the other major repeat subfamily tested, did not change 

significantly (Bollati et al., 2009). A microarray and restriction endocuclease-

based methylation profiling of colonic mucosa compared the methylation of 
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promoter regions in 3627 genes between young (<12 months) and old (>12 

months) inbred mice (Maegawa et al., 2010). The study found that 774 (21%) 

of the gene promoters showed increased methylation in the older mice while 

466 (13%) showed decreased methylation. Out of those, 11 regions that 

revealed clear change in methylation in small intestine were examined in other 

tissues. This revealed variable levels of change in methylation between young 

and old mice (Maegawa et al., 2010). Furthermore, the expression of four genes 

demonstrating promoter hypermethylation with age, one gene demonstrating 

promoter hypomethylation with age and two genes with no changes with age 

was compared between younger and older mice. The expression changes 

corresponded to the methylation changes (Maegawa et al., 2010).

 1.5 Hypermutability of methylated cytosine and its use for bioinformatic 
assays of germline methylation (Paper III)

Due to limited availability of samples, direct measurements of DNA 

methylation in the human genome can be difficult. The germline tissue usually 

available for biologic analysis is sperm, the final product of the male germline. 

Therefore, alternative assays of the human germline methylation are useful. In 

Paper III, we developed and validated a novel bioinformatic marker of human 

germline methylation, the methylation-associated SNP (mSNP). This relied on 

using the density of mutations due to the hypermutable methylated cytosine, as 

a surrogate measurement of germline methylation. Subsequently, the marker 

was applied to test suggested correlation with homologous recombination and 

subfamily-specific density of repeated elements.

 1.5.1 The hypermutability of methylated cytosine  

A spontaneous deamination of unmethylated cytosine forms uracil and an 

uracil-guanine mismatch (Lindahl, 1974) (Fig. 3a). This mutation is readily 

repaired by uracil DNA glycosylase, which efficiently removes the uracil base. 
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Deamination of methylated cytosine causes a transition from cytosine to 

thymine (Fig. 3a). This transition results in a mismatch between thymine and 

the guanine on the complementary DNA strand (Cooper & Youssoufian, 1988; 

Coulondre et al., 1978)(Fig 3b). A thymine DNA glycosylase enzyme (MBD4), 

which removes thymine from G/T mismatches, exists in mammals (Hendrich et  

al., 1999). Mice homozygous for mutations in the Mbd4 gene had significantly 

higher accumulation of C→T mismatches with age compared to controls 

(Millar et al., 2002).

The G/T mismatch repair system seems to be much less efficient in 

repairing the point mutation correctly than the G/U mismatch repair system. An 

analysis of the repair of G/T mismatches introduced into mammalian cells 

revealed that although 99% of the mismatches were corrected, the thymine base 

was removed (correct repair) in only 92% of the cases, while the guanine base 

Figure 3: Instability of methylated cytosine in the human genome.

 a) Deamination of cytosine results in an uracil base readily identified by the DNA repair 
system while deamination of methylated cytosine results in thymine. b) Following 
deamination of methylated cytosine, the G/T mismatch is repaired less efficiently, 
resulting in a high frequency of C→T transitions within the CpG dinucleotide.
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was removed (incorrect repair) in 8% of the cases (Brown & Jiricny, 1987) (Fig 

3b). 

As a result, methylated cytosine is hypermutable. Almost a third of all 

point mutations are C→T transitions within the CpG dinucleotide (Cooper & 

Youssoufian, 1988). This is likely the cause for a great under-representation of 

the CpG dinucleotide in the human genome (Bird, 1980; Josse et al., 1961).

The mutation rate of the male germline is substantially higher than the 

mutation rate of the female germline (Huang et al., 1997). The proposed 

mechanism behind this is that mutations predominantly occur via errors in 

replication, and that the male germline undergoes more cell divisions than the 

female germ line. However, if the mechanism behind C→T mutations in the 

methylated CpG dinucleotide is predominantly deamination, then the male bias 

in the CpG dinucleotides should be substantially less than in non-CpG 

dinucleotides. This was verified when the mutation spectra obtained by 

comparing the human and chimpanzee genomes was compared between the X 

chromosome and the autosomes (Taylor et al., 2006). The male bias (α) was ~6-

7 for the non-CpGs, similar to the ratio of male/female germ line divisions. In 

contrast, the male bias in CpG dinucleotides was only ~2-3. The male bias was 

similar for non-CpGs and CpGs within CpG islands (Taylor et al., 2006). This 

is indicative of an alternative mechanism explaining mutations within the CpG 

dinucleotides. 

 1.5.2 Bioinformatic markers of germline methylation  

In the germline, an incorrect repair of a C→T point mutation of a methylated 

cytosine is inherited to the progeny. Accumulation of such germline mutations 

in populations results in C/T (or G/A) single nucleotide polymorphisms (SNP) 

or the depletion of CpG dinucleotides. These mutations and CpG depletion 
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patterns can be used to create bioinformatic surrogate markers of germline 

methylation.

Several researchers have used measurements of CpG density as a 

surrogate marker for germline methylation. Xing et al. used the ratio of CpG vs. 

non-CpG substitutions in Alu elements to estimate the germline methylation of 

elements of different age (Xing et al., 2004). Kim et al. calculated the ratio of 

observed versus expected frequency of the CpG dinucleotides in several 

families of repetitive elements (Kim et al., 2007). The CpG depletion should be 

inversely correlated to the overall germline methylation of the elements. They 

found that most repetitive elements had substantial CpG depletion apart from 

those in close proximity to CpG islands. In addition, CpG depletion was greater 

for two Alu element when their orientation was inverted (Kim et al., 2007).

The density of C/T and G/A mutations within human genes was 

correlated against the density of adjacent repetitive elements to infer their 

germline methylation (Bjornsson et al., 2006). In paper III of the Ph.D. thesis, a 

germline methylation marker based on the density of C/T and G/A mutations 

within the CpG dinucleotide was developed. Xie et al. similarly counted 

clusters of C/T and G/A SNPs in the dbSNP database and used the cluster 

density as a surrogate marker for germline methylation. Subsequently they 

counted the number of the cluster adjacent to several subfamilies of repetitive 

elements and genes to infer their germline methylation (Xie et al., 2009).

 1.6 Homologous recombination and its genetic and epigenetic aspect in 
the human genome (Paper III)

Homologous recombination is the exchange of chromosomal parts by 

homologous chromosomes at meiosis or mitosis. Homologous recombination in 

mitosis is a fundamental part of the DNA repair system used to repair double-

stranded breaks, lesions that form during DNA replication and due to DNA 
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damaging agents (Moynahan & Jasin, 2010). Along with genetic mutation, 

homologous recombination in meiosis is responsible for the majority of genetic 

variation, thus being an essential part of evolution. Meiotic recombination rate 

is unevenly distributed around the genome. Recombination hot spots, short 

areas with high recombination rate, exist in most species. Although several 

sequence features affect regional recombination rate they do not explain all 

variation in the rate of recombination. An epigenetic contribution to 

recombinational rate variability has been suggested. In Paper III, the density of 

the mSNP bioinformatic marker of germline methylation was correlated with 

regional levels of homologous recombination.

 1.6.1 Homologous recombination  

In 1911, Thomas Hunt Morgan suggested that crossing over, or recombination, 

explained why traits that were thought to be linked occasionally separated 

(Lobo & Shaw, 2008). Twenty years later, Creighton and McClintock reported 

meiotic cross over in maize (Creighton & McClintock, 1931) and Stern reported 

mitotic cross over in Drosophila (Coe & Kass, 2005; Stern, 1931).

The dominant mechanistic model of homologous recombination is the 

Szostak double-strand break repair (DSBR) model (Szostak et al., 1983), a 

modification of the original recombination model posed by Holliday (Holliday, 

1964). It involves a double-stranded break (DSB) of a single non-sister 

chromatid followed by a resection of the 5' strand (Fig. 4a and 4b) (Szostak et  

al., 1983). The 3' overhanging end invades a non-sister chromatid, and DNA 

synthesis is initiated. In the DSBR, double Holiday junctions are formed as the 

loop anneals to the homologous chromatid. Two different strand cuts result 

either in a no cross-over or cross-over molecule (Fig. 4d and 4e) (Szostak et al., 

1983). Following this, either DSBR or synthesis-dependent strand annealing 

(SDSA) occurs (McMahill et al., 2007). In SDSA, the synthesized strands re-
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anneals to the original strand, resulting in no crossover (Fig. 4f) (McMahill et  

al., 2007).

Support for the mechanistic models of recombination in addition to the 

discovery of the proteins involved in the recombination machinery is largely 

based on yeast studies (Krogh & Symington, 2004). The SPO11 protein is a key 

protein that interacts with other proteins to form double-stranded breaks that 

initiate meiotic recombination (Keeney, 2001). Large recombination nodules 

including the RAD51 and DMC1 proteins then catalyze the recombination 

reaction (Handel & Schimenti, 2010). The part of the meiotic break sites that 

Figure 4: Homologous recombination.

 a) Both DNA strands of homologous chromosomes are shown. b) A double-stranded 
break is initiated followed by a resection of the 5' strand, leaving 3' overhangs. c) The 3' 
overhang invades a non-sister chromatid and forms a Holliday junction. Two pathways 
can then be followed, double-strand break repair (DSBR) or synthesis-dependent strand 
annealing (SDSA) pathway. In DSBR, double Holiday junctions are formed and their 
resolution and ligation can either result in d) no cross-over or e) crossover molecule. 
Sites of cleavage and ligation are pictured with broken lines. f) Alternatively, synthesis-
dependent strand annealing yields no crossover molecules. Drawn based on Hawley & 
Walker (2002), Szostak et al. (1983) and McMahill et al. (2007).

SDSADSBR

a)

b)
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e)d) f)
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become cross-overs are marked by the MLH1 and MLH3 proteins (Handel & 

Schimenti, 2010).

Homologous recombination at meiosis must involve a mechanism for 

accurate separation of sister vs. non-sister chromatids, as recombination 

between sister chromatids does not generate genetic variation. This mechanism 

is probably not based on differences in the DNA sequence itself, as inbred 

experimental animals exhibit efficient recombination (Paigen & Petkov, 2010). 

DNA methylation (hemimethylation) has been suggested to be a part of this 

mechanism, but evidence is lacking (Paigen & Petkov, 2010).

Non-allelic homologous recombination (NAHR) affects genomic 

stability by causing duplications, deletions and inversions (Sasaki et al., 2010). 

NAHR is the molecular mechanism for many human genomic disorders, such 

as Charcot-Marie-Tooth disease 1A, Sotos syndrome, congenital adrenal 

hyperplasia and diGeorge syndrome (Sasaki et al., 2010).

 1.6.2 Cross-over interference  

Genomic cross-overs are not spaced equally, and there seems to be a minimum 

distance between the events. This mechanism is called cross-over interference 

and its molecular basis is largely unknown (Berchowitz & Copenhaver, 2010). 

Several models have been proposed. According to the mechanical stress model, 

cross-over stress is relieved in a linear fashion from the breakpoint location 

after a cross-over event (Kleckner et al., 2004). The counting model suggests 

that between each cross-over event, a fixed number of non-cross-over events 

must occur (Foss & Stahl, 1995). The third model, the polymerization model, 

suggests that cross-over precursor molecules are spread on the chromosome 

independent of each other, with an even probability of initiating crossover 

(King & Mortimer, 1990). A binding of the cross-over machinery and crossover 
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results in inhibition or removal of adjacent cross-over precursor molecules 

(polymers). However, the molecules are yet to be identified. Suggestions for a 

potential interference molecule include a protein or an epigenetic factor such as 

DNA methylation or histone tail modifications (Berchowitz & Copenhaver, 

2010).

 1.6.3 Recombination in the human genome at the chromosomal level  

With improved methodology, several genome-scale recombination maps of the 

human genome have shed light on the non-random distribution of 

recombinational events in the human genome. The Marshfield recombination 

map was created by mapping >8000 short repeat polymorphisms in eight 

families (Broman et al., 1998). It has a resolution of ~3 cM (centiMorgan, 1% 

likelihood of cross-over in a single generation) and reveals both individual and 

sex-specific differences in recombination rates (Broman et al., 1998). The 

deCODE recombination map was created by mapping >5000 polymorphic 

microsattelite markers in 146 families (1,257 meioses), increasing the resolution 

of the map to approximately 0.6 cM (Kong et al., 2002). It confirmed higher 

recombination rate of females. A multiple linear regression model of sex-

averaged recombination rates in 3 megabase (Mb) resolution suggested that the 

polyA/polyT (multiple A/T bases) ratio, CpG counts and GC ratio were the 

most significant predictor variables (Kong et al., 2002). Further analysis in 5 

and 10 Mb windows revealed that additionally the Wn>9 (W: A or T, n>9 : more 

than nine bases in a row) ratio and Rn>10 (R: A or G) ratio, distance from 

centromere and chromosome length significantly contributed to the 

recombination rate (Jensen-Seaman et al., 2004).

 1.6.4 Recombinational hot spots  

Recombinational hot spots, i.e. areas with a high recombination frequency, have 

been found in all eukaryotes, although the recombination rate and the size of the 
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hot spots vary between species (Nishant & Rao, 2006). Hot spots of 

recombination were first discovered in the lambda phage (McMilin et al., 

1974), and have been known in humans for more than twenty years 

(Chakravarti et al., 1984; Chakravarti et al., 1986). Using laborious polymerase 

chain reaction (PCR)-based techniques of assaying recombination in sperm 

samples, more than thirty recombinational hot spots have been discovered in the 

human genome (Jeffreys & May, 2004; Jeffreys & Neumann, 2005; Jeffreys et  

al., 2001; Jeffreys et al., 2005; Paigen & Petkov, 2010). These hot spots are 1-2 

kilobase (kb) long areas of high recombinational activity and some are located 

at regions that benefit from large scale genomic shuffling such as the human 

major histocompatibility complex (Jeffreys et al., 2001).

The presence of population-based fine-scale SNP genotyping increased 

the discovery rate of recombination hot spots greatly. SNPs form haplotype 

blocks, areas of non-random association between adjacent SNPs (where the 

SNPs are in linkage disequilibrium) (Wall & Pritchard, 2003). These haplotype 

blocks are generally 5-100 kb long. The junctions of those haplotype blocks 

correspond to recombination hot spots (Paigen & Petkov, 2010). Recombination 

hot spots found with linkage disequilibrium maps include experimentally 

discovered hot spots (McVean et al., 2004), and mapped hot spots have been 

experimentally verified (Webb et al., 2008). 

Using a fine resolution (~1 kb) recombination map including more than 

25,000 recombination hot spots, it has been shown that approximately 80% of 

recombination occurs in 10-20% of the sequence (Myers et al., 2005). This 

suggests that recombination hot spots mediate the majority of recombination 

activity. Furthermore, several DNA sequence features correlating with 

recombination have been discovered using these recombination maps. On the 

scale of 16-1024 kb, only GC content has a consistent positive correlation with 
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recombination rate (Myers et al., 2006). However, in a some window sizes, 

exon density (128-512 kb), repeats (16 kb) and CpG density (16 kb) have a 

negative correlation with the recombination rate (Myers et al., 2006). On the 

smallest scale (1-8 kb), several DNA motifs have been discovered to have a 

correlation with regional recombination rate (Myers et al., 2006). The seven 

nucleotide motif CCTCCCT was found to be significantly enriched within 

recombinational hot spots (Myers et al., 2005). Its occurrence within two 

repetitive elements (THE1A and THE1B) resulted in 60% likelihood that the 

repetitive elements were included in a recombination hot spot, although it 

explained only a fraction of hot spot activity (Myers et al., 2005). Mild over-

representation of CT and GA rich repeats, but under-representation of GC rich 

repeats, TA rich repeats and certain L1 elements was found near hot spots of 

recombination (Myers et al., 2005). Recently, this analysis was repeated using a 

much larger SNP data set from the HapMap II project (Myers et al., 2008). This 

suggested that a 13-mer DNA motif, CCNCCNTNNCCNC was within about 

40% of all human recombination hot spots. The new motif includes the previous 

7-mer and is found in several of the hot spots previously located by sperm 

typing (Myers et al., 2008).

 1.6.5 Epigenetic aspect of recombination  

Although several features of the DNA sequence contribute to recombination 

rates, the DNA sequence in cis does not provide the whole explanation for 

recombinational variability. The recombination rate for hot spots of 

recombination has been shown to differ about 50-fold despite identical DNA 

sequence in the 15 kb region studied (Neumann & Jeffreys, 2006). Even though 

the sequence of the chimpanzee genome differs only about 1% from the human 

genome, almost no recombination hot spots are shared between the two species 

(Winckler et al., 2005). This indicates that DNA sequence in cis is not the sole 
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determinant of recombination rate. Additionally, regions adjacent to imprinted 

genes have a high recombination rate of imprinted genes (Lercher & Hurst, 

2003; Pàldi et al., 1995; Robinson & Lalande, 1995; Sandovici et al., 2006). 

Therefore, several authors had suggested that unexplained features of 

recombination rate might partly be due to differences in epigenetic marks either 

locally or in distal elements (Neumann & Jeffreys, 2006; Sandovici et al., 2006; 

Winckler et al., 2005). However, DNA sequence features in trans cannot be 

ruled out.

A regulator of recombinational activity on the mouse chromosome 1 was 

recently found on chromosome 17 in humans (Myers et al., 2010; Parvanov et  

al., 2009). This regulator, PRDM9 (PR domain containing 9), is a protein with 

three domains; 1) a protein-protein binding domain on the N-teminus, 2) a 

central domain with a histone H3K4 trimethylating properties and 3) a terminal 

zinc finger domain (Parvanov et al., 2010). The regulator is expressed in male 

and female meiosis and its knockout results in abnormal meiosis (Parvanov et  

al., 2010). The zinc binding domain was found to bind to the DNA motifs 

(CCNCCNTNNCCNC that includes the CCTCCCT motif) previously 

discovered to be enriched in recombination hot spots (Baudat et al., 2010). 

Several PRDM9 alleles coding for different zinc fingers exist (Berg et al., 

2010). These different zinc fingers have variable binding affinity to the 

CCNCCNTNNCCNC motifs (Baudat et al., 2010; Berg et al., 2010). 

Individuals with different alleles of the PRDM9 gene have different 

recombinational activity of hot spots either containing or lacking the 13 bp 

DNA motif (Berg et al., 2010). Therefore the protein might bind to other 

sequences. These findings suggest that global genomic recombinational system 

acting in trans exists. The PRDM9 protein has an epigenetic aspect (at least via 

histone H3K4 trimethylation) (Parvanov et al., 2010), although its binding to 
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DNA is sequence-specific.

 1.7 Repetitive elements in the human genome and defense against their 
harmful activity (Paper IV)

Approximately 45 % of the human genome is comprised of transposon derived 

repeats (TDRs) from several families (Lander et al., 2001). Their activity can 

result in mutations such as insertions, deletions and inversions (Belancio et al., 

2008). A global defense system based on DNA methylation has been suggested 

(Yoder et al., 1997). Any defense system against harmful TDR activity ought to 

be active in the germline. If a global defense system based on methylation is 

operative in the germline, the germline methylation landscape should be greatly 

shaped by the TDR landscape despite its overall hypomethylation. As genome-

wide methods measuring DNA methylation generally lack power in TDR-rich 

areas, our mSNP marker might be suitable for testing this relationship. In Paper 

IV, we tested the correlation between our mSNP marker of germline 

methylation and regional density of different TDR subfamilies, with special 

emphasis on those families with active elements.

 1.7.1 Repetitive elements in the human genome  

Only a few TDRs in the human genome are currently capable of 

retrotransposition within the genome, The currently active TDR belong to two 

TDR families. A total of 21% of the human genome consists of approximately 

850,000 long interspersed nucleotide elements (LINE) (Lander et al., 2001). 

The 6 kb full length element contains two open reading frames (ORFs); the first 

ORF codes for a protein with chaperon activity and the second one codes for an 

endonuclease and a reverse transcriptase necessary for transposition (Belancio 

et al., 2008). The majority of LINE elements belong to the L1 subfamily (17% 

of the human genome), the largest family currently capable of retrotransposition 

(Dombroski et al., 1991). L1 elements frequently reside within AT rich 
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sequences. Recently mobilized L1 elements are, however, located within 

sequences with a higher GC ratio than the fixed L1 elements (Boissinot et al., 

2004). The 20 kb regions adjacent to de novo L1 insertions have the genome 

average GC ratio (Gasior et al., 2007). This is suggestive of a non-biased 

insertion followed by post-insertional selection (Gasior et al., 2007). The 

estimated insertion frequency in two recent studies was one insertion in every 

95-270 births (Ewing & Kazazian, 2010b) and one insertion every 108 births 

(Huang et al., 2010).

The second major TDR family is the family of short interspersed 

nucleotide elements (SINE), representing approximately 13% of the human 

genome. SINEs are the most numerous TDRs, with approximately 1,500,000 

copies of 100-400 bp length present in the human genome (Lander et al., 2001). 

The major subfamily is the primate-specific Alu subfamily (10.6% of the human 

genome), approximately 300 bp long elements transcribed by RNA polymerase 

III (Belancio et al., 2008). As SINEs do not code for proteins, the currently 

active Alu subfamily of SINEs is thought to be dependent on the LINE ORF2 

retrotransposition machinery for transposition (Dewannieux et al., 2003). 

However, Alu elements are preferentially located within GC- and gene rich 

regions of the genome (Lander et al., 2001), indicating differential post-

insertional selection for Alu elements compared to L1 elements (Gasior et al., 

2007). Several effects of Alu elements suggest that their inclusion might 

potentially be beneficial to the host genome. Alu elements are a part of the 

regulation of mRNA transcription (Ponicsan et al., 2010). After heat shock, the 

transcription of Alu is increased (Liu et al., 1995). The transcribed Alu RNA 

binds to polymerase II at repressed genes, and mediates transcriptional 

repression (Mariner et al., 2008). Also B1, the murine Alu analogous element, 

has been found to be a boundary element regulating transcription of the growth 
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hormone during organogenesis (Lunyak et al., 2007), suggesting that these 

elements might participate in specific gene transcription regulation. Alu RNA 

elements included in mRNA can also affect splicing of flanking exons (Alu 

exonization), thereby participating in alternative splicing (Lev-Maor et al., 

2008; Lev-Maor et al., 2003; Sorek et al., 2002).

 1.7.2 The effects of TDRs on genome stability  

The retrotransposition of active TDR can affect the stability of the host genome. 

Insertions of TDRs are estimated to account for about 0.2% of all human 

mutations resulting in disease (Kazazian, 1999). This is probably an 

underestimation given the limitations of PCR based methods to detect TDR 

insertions and deletions. A substantial threat to genome stability also results 

from the effects of TDRs on repair mechanisms relying on sequence homology, 

such as the repair of double-stranded breaks using homologous recombination 

(Hedges & Deininger, 2007). Currently, 0.17% of all human genetic disease is 

estimated to result from non-homologous Alu/Alu recombination (Callinan & 

Batzer, 2006). Further genomic rearrangements associated with TDRs involve 

deletions of adjacent genomic material following a retrotransposition of a TDR, 

the formation of microsatellites and introduction of double-stranded breaks 

(Arcot et al., 1995; Callinan et al., 2005). Since methylation can spread from 

TDRs to adjacent sequences, TDRs could also mediate epigenetic modification 

affecting gene transcription in metastable epialleles (Morgan et al., 1999). 

 1.7.3 Genome defense systems against TDR activity  

Several species have defense systems against TDR that involve DNA 

methylation. For example, the repeat-induced point mutation process in 

Neurospora crassa introduces C→T mutations into duplicated sequences, and 

the adjacent sequences are heavily methylated (Galagan & Selker, 2004). The 

methylation might mediate epigenetic silencing or render the repeats 
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hypermutable (Galagan & Selker, 2004). Similarly, transposons are the primary 

target of RNA-directed DNA methylation in Arabidopsis thaliana, where 

methylation mediates scilencing (Matzke et al., 2007).

Given the abundance of TDRs in the human genome and their 

destructive potential, the observed number of deleterious events is low. The 

“Genome Host Defense” hypothesis proposed by Yoder et al. suggests that 

DNA methylation might be a key mediator in genome defense against harmful 

TDR effects (Yoder et al., 1997). The model was originally supported by the 

large proportion of DNA methylation located within TDRs in somatic tissues 

and the generally inhibitory effects of DNA methylation on transcription (Yoder 

et al., 1997). Later, methylation has been demonstrated to control L1 

transcription in vitro (Hata & Sakaki, 1997). In addition, a deletion of the 

Dnmt3L (DNA (cytosine-5-methyltransferase 3-like) gene in mice results in 

both loss of L1 and LTR methylation as well as a corresponding increase in 

their transcription (Bourc'his & Bestor, 2004). The Genome Host Defense 

hypothesis has been challenged. A defense system against TDRs ought to be 

critical in the germline. However, several TDRs are actively transcribed and 

hypomethylated in the germline, arguing against a global defense system (Bird, 

1997). Also, the most striking examples of DNA methylation as a host defense 

system are limited to L1 elements and the IAP (Intracisternal A-particle) 

element in mouse (Zamudio & Bourc'his, 2010).

Several other genome defense mechanisms against TDR activity have 

been described (Zamudio & Bourc'his, 2010). RNA editing enzymes alter the 

properties of RNA transcripts from TDRs, thereby stopping their potentially 

harmful activity (Zamudio & Bourc'his, 2010). These enzymes include the 

APOBEC3 family that inhibit TDR retrotransposition by deamination of 

cytosine into uracil (Belancio et al., 2008). Some of the family members 
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(APOBEC3A and B) inhibit transposition of both L1 and Alu elements (Bogerd 

et al., 2006) while others (APOBEC3G) are selective for inhibition of Alu 

retrotransposition (Hulme et al., 2007). Short interfering RNA (siRNA) 

molecules containing L1 sequences (and other TDRs) are produced by oocytes 

(Tam et al., 2008), although their importance in TDR defense is unknown 

(Zamudio & Bourc'his, 2010).

Recently, a germline-specific defense system against TDR activity based 

on small RNA molecules has been described in the human and mouse. Members 

of the Argonaute protein family, the PIWI (P-element induced wimpy testis) 

proteins, form the basis of this defense system (Zamudio & Bourc'his, 2010). 

Mice homozygous for mutations in the PIWI subfamily protein genes (Mili,  

Miwi2) are sterile and do not destroy L1 and IAP transcripts (Aravin & 

Bourc'his, 2008; Carmell et al., 2007), suggesting their importance for germline 

stability via suppression of TDRs. The PIWI proteins bind to piRNA (PIWI-

interacting RNA) elements. These elements are 24-30 nt long RNA products 

that are found in clusters on most human and mouse chromosomes (Girard et  

al., 2006). Their location is not dependent on repeat or gene density (Girard et  

al., 2006). 

After the global demethylation phase, TDRs are be transcribed. The 

mRNA elements are efficiently cleaved into piRNAs by the PIWI proteins 

(Zamudio & Bourc'his, 2010). Potentially, all mRNA can be cleaved. However, 

both the sense and antisense transcript of TDRs is transcribed, resulting in a 

multiplication cycle (ping-pong mechanism) increasing their relative abundance 

compared to mRNAs from genes. In particular, LINE and long terminal repeats 

(LTR) are in abundance during this period and are subsequently dominant in the 

piRNA transcripts (Aravin & Bourc'his, 2008). In addition to the destruction of 

TDR transcription by their cleavage, a complex including PIWI protein bound 
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to TDR piRNAs moves into the nucleus (Aravin et al., 2009) where the piRNAs 

direct methylation of their corresponding TDR elements by recruiting Dnmt3L / 

Dnmt3A methyl-transferase proteins by a currently unknown mechanism 

(Zamudio & Bourc'his, 2010). This mechanism thereby links a protein- and an 

RNA-based TDR defense mechanism and DNA methylation, albeit mostly for 

LTR and L1 elements.

 1.8 Imprinted genes and their metabolic effects (Paper V)

An important function of DNA methylation in the human genome is the 

maintenance of parent-of origin specific expression pattern of imprinted genes. 

To date, around 65 genes are known to be imprinted in at least one human tissue 

although they are presumed to be more common. Loss of imprinting of 

imprinted genes is associated with the appearance of several human diseases. 

Several hypotheses on the physiological function of imprinted genes exist. 

Amongst those is the Haig's parental conflict hypothesis of differential 

metabolic effects of maternally and paternally imprinted genes.

Discovery of imprinted genes has traditionally been based on mapping 

loci associated with diseases with a distinct pattern of heritage. In paper V, we 

applied methods of systems biology on an in silica reconstruction of the human 

metabolic network to simulate the effects of differences in expression of 

imprinted genes. This can be used to test Haig's hypothesis. Additionally, if a 

particular systemic response results from expression perturbations of imprinted 

genes, this might be used to predict imprinted genes.

 1.8.1 Imprinted genes  

Imprinted genes have an allele-specific expression pattern based on parental 

origin. To date, there is an experimental evidence of imprinting for 64-68 genes 

in the human genome in at least one tissue (www.geneimprint.com and 
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www.igc.otago.ac.nz, accessed 2010/09/18). This is likely an underestimation, 

and sequence pattern algorithms applied to the human genome have recently 

suggested that 156 additional genes are likely to be imprinted (Luedi et al., 

2007). Furthermore, novel analysis of five single nucleotide polymorphisms 

(SNPs) associated with cancer and type II diabetes demonstrated a parent-of-

origin based association with several phenotypes (Kong et al., 2009). This 

suggests that imprinted genes are more common than originally thought. 

The majority of known imprinted genes cluster on several 

chromosomes. This might reflect a knowledge bias, since uniparental disomies 

that involve chromosomes with clusters of imprinted genes are likely to result 

in more severe phenotypes and thus more likely to be discovered. The 

imprinting clusters often contain imprinting control elements that affect the 

expression of one or more imprinted genes simultaneously (Reik & Walter, 

2001). Two examples of such regulation elements lie within the 11p15.5 and the 

15q11 imprinting clusters in the human genome (Verona et al., 2003). The 

cluster of chromosome 11 includes the paternally expressed IGF2 gene and the 

maternally expressed H19 gene. Uniparental disomy of the region can cause a 

loss of imprinting (LOI) of the IGF2 gene resulting in Beckwith-Wiedemann 

syndrome (Maher & Reik, 2000). Loss of imprinting of the IGF2 gene has been 

shown in colon cancer (Cui et al., 1998) and individuals with a family or 

personal history of colon cancer have a significantly higher odds ratio of having 

LOI of IGF2 in colon mucosa (Cui et al., 2003).

An interesting but unexplained phenomena of imprinting clusters is their 

increased frequency of homologous recombination. A sex-specific pattern of 

recombination was observed near the imprinting clusters of chromosomes 11 

(Pàldi et al., 1995) and 15 (Pàldi et al., 1995; Robinson & Lalande, 1995) 

including both male-specific and female-specific recombination hot spots. This 
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has been expanded with larger data sets of imprinted genes and more dense 

recombination information. Using pedigree-based recombinational mapping a 

higher female recombination rate was found adjacent to imprinted genes 

(Lercher & Hurst, 2003). High-density recombination rate analysis using 

linkage disequilibrium data also found a higher recombination rater in regions 

containing imprinted genes (Sandovici et al., 2006).

Parent-of-origin expression of the majority of imprinted genes is stably 

maintained with differential methylation of the parental alleles, exemplified by 

the effects of mutations in methyltransferases on the expression of imprinted 

genes (Bourc'his & Bestor, 2004; Kaneda et al., 2004). The majority of 

imprinted genes contain differentially methylated regions (DMRs) (Reik & 

Walter, 2001). For example, the methylation of a DMR between the IGF2 and 

H19 genes controls their expression. Methylation of the paternal allele results in 

the expression of IGF2 gene enhanced by sequences downstream of the H19 

gene. The maternal allele has an insulator factor bound to the unmethylated 

DMR box. The binding of the insulator to the DMR results in blockage of IGF2 

expression and subsequent enhancement of H19 expression by the enhancer 

(Hark et al., 2000).

 1.8.2 The metabolic effects of imprinted genes  

The parental intergenome conflict theory was proposed by Haig in 1991 to 

explain the physiologic implications of imprinted genes. It suggests that 

imprinted genes influence growth based on parental origin; paternally and 

maternally expressed genes increase and decrease pre- and postnatal growth, 

respectively (Moore & Haig, 1991). This was originally supported by the 

observed phenotypes from disruption of two imprinted genes in mice (Haig & 

Graham, 1991). With more clinical phenotypes from uniparental disomies 

recognized, an analysis of the phenotypes in light of Haig's theory found that 
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only 7 out of 15 imprinted had a metabolic profile as predicted by the parental 

conflict theory (Tycko & Morison, 2002). However, the metabolic phenotypes 

resulting from changed expression of imprinted genes is only known for a 

handful of genes, so the available experimental evidence is limited. Therefore 

alternative methods must be sought, such as simulating the metabolic effects of 

changed expression of imprinted genes using methods of systems biology.

 1.8.3 A primer on systems biology and reconstruction of the human   
metabolism

Although a formal definition of systems biology is lacking, systems biology is 

generally described as a multidisciplinary field involving description and 

analysis of molecular components of a biological system and their interaction 

(Palsson, 2009b; Palsson, 2006). It involves studying complex biological 

information by applying computational and mathematical methods. Three of the 

currently most commonly applied aspects of systems biology methods include: 

a) the analysis of complex high throughput data (such as microarrays, and high 

throughput sequencing data), b) reconstruction and analysis of computational 

models for complex biological systems (such as metabolism and transcriptional 

regulation) and c) predicting and engineering of biological systems based on the 

reconstructed biological systems (Kitano, 2002). Since metabolism is one of the 

best studied systems and data generated from decades of research exists, 

metabolic systems biology has been at the forefront of methodological 

development within systems biology (Palsson, 2009a).

Reconstruction of a metabolic network can follow either top-down or 

bottom-up approach. The top-down approach involves a computational analysis 

of a high throughput data (genomic sequence, gene transcription sequence etc.) 

to determine the most statistically likely connections between components of 

the network. The bottom-up approach is a laborious process that involves 
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manually surveying existing literature on components within the network and 

their connectivity. Knowledge gaps are highlighted by this approach, but they 

can be automatically filled after reconstruction to provide a more complete 

reconstruction (Palsson, 2009b; Palsson, 2006; Thiele & Palsson, 2010).

A reconstructed metabolic network involves a mathematical 

representation of each reaction included in the model. The collection of 

reactions is termed the stoichiometric matrix S. Other information matrices can 

be linked to this network (such as information on enzyme isozymes, gene-

protein information, metabolite matrix, etc.). To convert the reconstruction into 

a functioning model, a set of constraints must be applied to each reaction in S. 

These constraints include the conservation of energy and mass, pH and 

temperature. In addition, the flux of molecules through each reaction and its 

reversibility is constrained by applying flux range limits (Palsson, 2009b; 

Palsson, 2006). 

Environmental and genetic perturbations can be simulated using the 

mathematical form of a reconstructed metabolic network. Methods of linear 

algebra are applied to obtain a solution space of flux vectors v fulfilling the 

criteria of S∙v=0 under assumption of a steady state (i.e. no metabolites are 

accumulated or depleted) (Palsson, 2009b). A range of methods have been 

developed to assay the model properties and perform various simulations (Price 

et al., 2004), including the analysis of gaps, phenotype simulation, analysis of 

metabolic network evolution and bioengineering (Oberhardt et al., 2009). These 

methods have been included in the COBRA (Constraint-based reconstruction 

and analysis) toolbox that allow the simple and efficient study of metabolic 

models on a personal computer (Becker et al., 2007). 

Three reconstructions of the human metabolism exist. Two 
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reconstructions, the HumanCyc (Romero et al., 2005) and the Edinburgh 

Human Metabolic network (Hao et al., 2010; Ma et al., 2007) were built using 

an automated top-down approach. The Human Recon 1 metabolic 

reconstruction, in contrast, is a bottom-up approach (Duarte et al., 2007). It was 

compiled by six researchers in an iterative manner, assigning each reaction 

within the network a confidence score and applying rigorous quality controls to 

the input data. Gaps were analyzed and filled to produce a functional model of 

human metabolism. Before completion, the resulting model was able to 

correctly simulate 288 core metabolic functions of human metabolism (such as 

creation of all non-essential amino acids from essential amino acids) (Duarte et  

al., 2007). The human Recon 1 model accounts for 1496 genes coding for 2004 

metabolic proteins. It has 1510 transport and exchange reactions in addition to 

2233 biochemical reactions operating in eight cellular compartments (Duarte et  

al., 2007).

Several applications have been published since the release of Recon 1. 

Expression profiling data has been applied to Recon 1 to produce tailored 

metabolic networks for ten human tissues (Shlomi et al., 2008). Mapping 

human diseases onto Recon 1 revealed functional relationships, possibly 

explaining disease co-morbidity (Lee et al., 2008). Recently, gene homology 

data was used to create a functional reconstruction of mouse metabolism based 

on Recon 1. The resulting model was used to address the phenotype prediction 

properties of compartmentalized metabolic models of complex organisms 

(Sigurdsson et al., 2010).
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 2 AIMS
The general aim of the thesis was the development and application of biological 

and bioinformatic assays to study several aspects of DNA methylation in the 

human genome. The specific aims were:

 1. To analyze the sequence specificity of restriction endonucleases suitable 

for measurements of whole-genome methylation (Paper I). 

 2. To use both whole-genome methylation assay and site-specific 

methylation to measure the longitudinal change in somatic DNA 

methylation in two populations, and a familial component of the 

conservation of DNA methylation (Paper II). This might support 

acquired changes in epigenetic marks, an important prerequisite for an 

epigenetic model of the pathogenesis of complex diseases.

 3. To create and validate a novel bioinformatic assay of human germline 

DNA methylation (Paper III).

 4. To apply the bioinformatic assay to study the relationship between: 

(a) The germline DNA methylation and homologous recombination

(Paper III).

(b) The link between germline DNA methylation and transposable 

elements in the human genome (Paper IV).

 5. To develop and apply methods of systems biology to study the 

biological role of imprinted genes in the human genome (Paper V).
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 3 MATERIALS AND METHODS
 3.1 Analysis of methylation sensitive restriction endonucleases suitable 
for whole-genome methylation analysis in the human genome (Paper I)

A list of candidate restriction endonucleases suitable for whole-genome 

methylation analysis in the human genome was created by two means: 1) From 

McClelland et al. (McClelland et al., 1994) and 2) from the REBASE database 

of restriction endonucleases (Roberts et al., 2010) (Accessed 2010/09/08). 

Criteria for inclusion into study were: i) two available isoschizomeric restriction 

endonucleases differing in 5-methylcytosine sensitivity; ii) Target sequence 

includes either CG, representing CpG methylation in all cell types or CWG 

(W=A or T), representing the recently discovered non-CpG methylation in 

embryonic stem cells (Lister et al., 2009).

The properties of the target sequences selected were analyzed by writing 

software (Restrictionsearch 1.0 and CpGsearch 1.0) in the JAVA programming 

language searching for the target sequences of the restriction endonuclease pairs 

used, in addition to the CpG dinucleotide and CWG trinucleotide. All programs 

were validated by comparing the output file from programs to a manual search 

for the target sequences and CpG in a 500 bp modified DNA sequence. Program 

runs counting the target sequence frequency in 500 kilobase (kb) windows for 

the entire human genome (NCBI36, hg 18, March 2006) were performed on a 

personal computer. Data tables on CpG islands (Gardiner-Garden & Frommer, 

1987), exons (Hsu et al., 2006), and repeated elements (Jurka et al., 2005) were 

downloaded from the UCSC table browser (Kent et al., 2002) in the 

NCBI36/hg18 version. The target sequence frequency for all endonucleases was 

determined in each data set using modified programs for a genome-wide 

analysis. 
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 3.2 Change in somatic DNA methylation over time (Paper II)

 3.2.1 Samples  

Initial analysis tested the effect in a cross-sectional and longitudinal manner. 

For the cross-sectional study, DNA isolated from whole blood of 84 individuals 

participating in AGES (Age, Gene/Environment Susceptibility Reykjavik study) 

(Harris et al., 2007). The sample included 35 individuals with type II diabetes, a 

common acquired metabolic disorder, and 49 control individuals. For the 

longitudinal study, 111 individuals from the AGES cohort were chosen for 

measurement of whole-genome methylation. Of those, 61 individuals were 

chosen based on the amount of DNA available from two different time points, 

in addition to 50 individuals alive with a diagnosis of cancer at adulthood. This 

allowed us to compare methylation changes in a cohort with a disease that 

presents at late age with controls.

For replication of the longitudinal result in an independent cohort, DNA 

from whole blood from the Salt Lake City CEPH pedigrees (680 individuals 

from 48 three generation families) (Sandovici et al., 2003) were used. Of those, 

126 individuals from 21 families donated a second blood sample and had 

sufficient DNA from both time points for the analysis. Seven individuals were 

sampled repeatedly (2-4 times) over 30 days to test the short-term stability of 

DNA methylation in stored DNA from whole blood. All individuals signed an 

informed consent form, and the study was approved by the Icelandic National 

Bioethics committee (FS-04-001), the Icelandic Data Protection Authority 

(2005/497) and the institutional review boards of the Johns Hopkins Bloomberg 

School of Public Health and the University of Utah.

White blood cells were isolated from whole blood using the buffy coat 

method. DNA was extracted from the total extract of white blood cells using 

phenol-chloroform extraction.
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 3.2.2 The LUMA assay for analysis of global methylation  

The luminometric methylation assay (LUMA) is a whole-genome methylation 

assay. It is based on quantifying the cut of isoschizomeric restriction 

endonucleases differing only in methylation sensitivity (Karimi et al., 2006b)

(Fig. 5). The MspI/HpaII restriction endonucleases were used in the 

measurements. They both cleave the target sequence CCGG, leaving a GC 3' 

overhang. However, HpaII is sensitive to methylation at the fifth carbon of the 

second cytosine whereas MspI is insensitive to methylation. As a control for 

DNA input and restriction activity, a double digestion with EcoRI was done. 

EcoRI cleaves at the GAATTC sequence, leaving TTAA 3' overhang.

DNA was quantified using fluorescence measurements of PicoGreen 

Figure 5: Principles of LUMA. 

Following restriction by isoschizomer endonucleases differing in methylation 
sensitivity, pyrosequencing is performed to quantify the endonuclease cut. Incorporation 
of dNTPs matching the overhanging ends results in the generation of light by the 
Pyrosequencing enzyme system. The amount of light corresponds to the amount of 
overhanging ends. The difference in light between the isoschizomeres is proportional to 
the overall methylation of the restriction target sequence.
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(Invitrogen, USA) reagent binding to double-stranded DNA. Following this, 1 

μg of DNA was divided into two 0.2 mL PCR reaction tubes and a double 

endonuclease digestion at 37° C for four hours performed with either HpaII / 

EcoRI (tube A) or MspI / EcoRI (tube B) (New England Biolabs, USA) using 

the Tango buffer (Fermentas, USA) for optimal reaction conditions for all 

endonucleases. A total of 5 IU of each endonuclease was used in a total volume 

of 10 μL. Following the digestion, the amount of overhangs (corresponding to 

amount of DNA cut) was quantified by Pyrosequencing (Biotage, Sweden) (Fig. 

5). The product from the restriction endonuclease reaction was mixed with 12 

μL Annealing buffer (Biotage, Sweden) and 3 μL put in each well of a 96 well 

Pyrosequencing plate and placed in a Pyrosequencer loaded with the enzyme 

reaction mix (containing DNA polymerase and Luciferase) and deoxynucleotide 

triphosphates (dNTPs). The base dispensation sequence was modified from the 

original LUMA protocol as follows. The base dispensation order which the 

Pyrosequencer used was GTGTGTCACACATGTGTGTGTG. Using this order, 

the first six dispensations of guanine dNTP and thymine dNTP will bind to 

degraded DNA and not overhangs left by the restriction endonucleases. The 

next six dispensations will bind to the overhangs in addition to degraded DNA. 

The light peaks formed at dispensation number 13 (EcoRI, v13,A and v13,B) and 14 

(MspI / HpaII, v14,A and v14,B) were collected and used for analysis.

For each sample, the ratio of HpaII and MspI digestion was calculated 

using the absolute measured luminometric values from the Pyrosequencer for 

tubes A (HpaII / EcoRI digestion) and B (MspI / EcoRI digestion) using the 

formula:

r=
v14, A/v13, A

v14, B/v13, B
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The r value was converted into absolute percentage methylation using a 

standard curve. The curve was created by methylating lambda phage DNA with 

SssI CpG methylase (New England Biolabs, USA) and mixing 100% with 0% 

methylated lambda phage DNA in various proportions of methylation (0%, 

25%, 50%, 75% and 100%). The LUMA measurement of each sample was done 

in triplicate. The results were used to create a standard curve for conversion of 

measurement of endonuclease cut into whole-genome methylation percentage. 

For a further validation of the LUMA assay, DNA isolated from the Het116 and 

DKO Dnmt1 knockout cell lines was used as controls for the whole-genome 

luminometric methylation assay (LUMA), as the DKO cell line has 

significantly lower global DNA methylation compared to the Het116 parent cell 

line (Rhee et al., 2002). Each sample was measured in triplicate.

 3.2.3 Bisulfite microarray analysis of individual genes  

 A subset of 41 individuals was chosen for a microarray assessment of 

methylation changes within gene promoters between the two time points. 

Selection was based on results from the global methylation analysis (17, 5 and 

19 individuals with the greatest loss, least change or greatest gain of 

methylation, respectively). A total of 0.5 μg of DNA was bisulfite-treated with 

the EZ DNA methylation kit (Zymo Research, USA). Bisulfite treatment of 

DNA converts unmethylated DNA into uracil while methylated DNA remains 

unchanged. The converted DNA was applied to the Illumina GoldenGate 

Methylation Solution plate, using the Cancer Panel I platform (Illumina, USA). 

The microarray determines the methylation status of 1505 CpGs selected from 

the promoter regions of 807 genes in the human genome. It has been validated 

by both direct bisulfite sequencing and methylation-specific PCR (Bibikova et  

al., 2006).
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 3.2.4 Statistical analysis  

Intra-individual changes in methylation over time in the Icelandic data set was 

assessed by permutation. For each individual, six methylation measurements 

were selected randomly (three replications of two time points) and the 

difference between the two time points calculated. The distribution of 10,000 

permutations performed was then compared to the observed distribution of 

methylation difference. Furthermore, the ratio of variance in methylation across 

all six measurements over the variance within each time point were calculated, 

and compared between the permutations and the observed values. Permutation 

testing was performed using the SAS statistical software (version 9.1).

Heritability estimate for methylation difference was estimated by 

calculating the change between time 2 and time 1 adjusted for time 1 values. 

Residual values at time 2 were used for maximum likelihood estimate of 

heritability. This was done with variance components models in the ASSOC 

program of the SAGE statistical package (version 5.2.0).

For microarray analysis, readings from different samples were quantile-

normalized after pooling all raw data. The normalized values were then 

separated again and log ratios of intensities for methylated/unmethylated 

(red(cy5)/green(cy3)) calculated. Significance testing for changes in 

methylation across time points for those individuals of interest was done with t-

testing of the log ratios. However absolute differences in percentage 

methylation were reported, as they are more easily interpreted than the 

logarithmic transformation.
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 3.3 A bioinformatic assay of human germline DNA methylation and its 
correlation with homologous recombination and TDR subfamilies (Paper 
III and IV)

 3.3.1 Definitions  

A methylation-associated SNP (mSNP) was defined as any C/T (corresponding 

to a C-T polymorphism on the read strand) or G/A (corresponding to a C/T 

polymorphism on the opposite strand) polymorphism with a 3' guanine base 

(i.e. within a CpG dinucleotide). In any given database of SNPs, the mSNP 

subset therefore includes all possible methylation-associated mutations 

occurring within the CpG dinucleotides. To increase specificity of the mSNP 

method in the genome-wide associations, an additional criteria was used to 

define mSNPGENOME as all mSNPs within the HapMap data set with evidence 

that the ancestral allele was either C or G requiring that the transition causing 

the SNP was a C→T transition. This should theoretically increase the likelihood 

that it was due to methylation.

To correct for possible confounders in the germline methylation map, a 

methylation index (MI) for each 500 kilobase window of the human genome 

was plotted. MI was defined as:

MI=
N mSNP

N CpG⋅N SNP

Where NmSNP is the number of mSNP in the window, NCpG is the number of CpG 

dinucleotides in the window, and NSNP is the total number of SNPs in the 

window. The numerator reflects the observed number of mSNPs while the 

denominator reflects a size directly proportional to the expected number of 

mSNPs. The window size (500 kb) was chosen so sufficient number of SNPs 

were available for each window. This reduces the error in the estimation of 

methylation based on mSNP counts. The benefit of using the mSNP approach 
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over e.g. observed/expected CpG ratio is that the mSNP approach does not rely 

on the evolutionary conservation of methylation. However, the approach 

inherently inherently risks losing methylation variability on a smaller scale 

given its more limited resolution.

 3.3.2 Data sets  

The entire second release (July 2006) of the non-redundant genotype data set 

for all 22 autosomal chromosomes was downloaded from the International 

HapMap Consortium (www.hapmap.org) (HapMap Consortium, 2007). To test 

if the mSNP subset was subject to positive selection, the integrated haplotype 

score (www.haplotter.uchicago.edu/selection, downloaded on 2009/01/01) 

(Voight et al., 2006) was compared between the mSNP and non-mSNP subset. 

Furthermore, a derived alleles data set was used to determine ancestral SNPs 

based on comparison with the chimpanzee and macaque genomes (Thomas et  

al., 2007).

The entire ENCODE (ENCyclopedia of DNA elements) data set for 10 

500 kb human genome regions was downloaded 

(www.hapmap.org/downloads/encode1.html, accessed 2008/07/11) (The 

ENCODE Project Consortium, 2004).

For both the genome-wide and the ENCODE data sets, all four 

populations included were pooled after searching for mSNP, and redundant 

polymorphisms erased prior to further analysis. The analyzed data set therefore 

contained a single copy of every mSNP available in at least one population.

The entire human genome sequence (NCBI build 35, UCSC hg 17) in 

addition to the ENCODE regions (NCBI build 34, UCSC hg 16) was 

downloaded from the UCSC genome browser. Information on recombination 

rate and recombination hot spots was downloaded from the HapMap website 
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(www.hapmap.org). Data tables on CpG islands (Gardiner-Garden & Frommer, 

1987), exons (Hsu et al., 2006), and repeated elements (Jurka et al., 2005) were 

downloaded from the UCSC table browser (Kent et al., 2002) in the appropriate 

genome release.

A list of experimentally imprinted 

genes was downloaded from the 

GeneImprint website 

(www.geneimprint.org, accessed at 

2009/03/01). A list of computationally 

predicted imprinted genes was downloaded 

from Luedi et al. (Luedi et al., 2007). A list 

of housekeeping genes was downloaded 

from Eisenberg et al. (Eisenberg & 

Levanon, 2003).

The entire human epigenome data 

set (HEP) containing bisulfite sequencing 

results of 2524 amplicons from three 

chromosomes in 12 different tissues was 

downloaded from the HEP web site 

(Eckhardt et al., 2006).

 3.3.3 Programs and data flow  

All data processing programs were written in JAVA programming language 

(Sun, USA) and thoroughly tested prior to usage by comparing automatic and 

manual data processing. Data processing using the scripts were performed 

either on a personal computer or a cluster computer. A local CENSOR server 

(version 4.2) (Jurka et al., 2005) was set up on a cluster computer to search for 

Figure 6: Data flow in the  
creation of the mSNP data set. 

Large boxes describe SNP 
statistics, small boxes indicate 
programs used for data 
processing.
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repeats within submitted sequences. Table 1 describes the various features of 

the major data processing programs used (several versions were created of each 

version to fit various data sets). Figure 6 describes the data flow from the raw 

data to the finalized mSNPGENOME.

Table 1: Name and description of major programs written for data handling.

SNP programs Data handling and statistical programs

Name Function Name Function

Transition-Miner Finds C/T and G/A SNPs TableSplitter Splits any UCSC table according to 
chromosome

JoinPopu-lations Joins all HapMap populations and 
erases redundancies

Genome-Splitter Splits genome sequence into tiny 
fragment to speed computing

Prepare-
MEtMutMatrix

Counts mSNPs in genome windows Create-
Statistical-Matrix

Combines searches for genomic 
features into single matrix, performs 
lognormal transformation, removes 
windows with sequence gaps.

GetAdjacent-
Bases

Locates bases next to SNP or genomic 
location

TableRepeats-
Splitter

Split repeats table based on repeat 
subfamilies

getiHScore Gets integrated haplotype score for 
SNPs of choice

ResultMatrix Creates results matrix from Censor 
searches of repeats

SNPsearcher Searches for SNPs adjacent to 
genomic location

pullout-
Low/Average/Hi
gh

Selects amplicons from Human 
Epigenome Project data set with 
certain average methylation values

Genome sequence/tables programs
MethyMap Data visualization program

RandomGene Creates a random set of genes.

Name Function RandomPoly Creates a random set of SNPs

prepare-
repeatsmatrix

Counts repeats of any subfamily in 
genome windows

OutlierSelector Selects a subgroup of the microarray 
data representing outlier methylation 
values.

prepare-
CpGisland-
matrix

Counts CpG islands in genome 
windows

CreateCensor-
OutputFile

Creates a file for repeats analysis by 
the CENSOR server

prepareGene-
DensityMatrix

Counts exon bases in genome 
windows

MonteCarlo-
Simulation

Randomly divides the TDR searches 
for HEP amplicons into two groups 
10,000 times and calculates TDR 
statistics between the two groups. 
Creates 10,000 random samplings of 
amplicons into two groups and 
calculates TDR statistics for the 
randomly created groups.

Recombination-
ratesWA

Calculates recombination rate of given 
location in genome

ExonSplitter Splits exons to give a single copy of 
each exon in the genome

ChromoBand Estimates Giemsa banding of genome 
windows

CpA/C/G/T-
search

Counts dinucleotides in genome 
windows
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 3.3.4 Statistical analysis  

Data on mSNP counts, SNP counts, GC ratio, CpG density and gene density in 

addition to the density of different TDR subfamilies was transformed with Box-

Cox lognormal transformation prior to multiple linear regression analysis. For 

genome-wide association between mSNPs and sequence features, correlations 

were done in four different window sizes (125 kb, 250 kb, 500 kb and 1000 kb). 

For the ENCODE regions, two different window sizes were used (25 kb and 50 

kb). The genome was divided into non-overlapping windows of the appropriate 

size. For each window, programs counting mSNP, total number of SNPs, CpG 

dinucleotides, GC ratio, observed/expected CpG ratio,number of bases within 

exons, DNA motifs and number of bases within TDR subfamilies were written. 

These counts were then used to calculate the exon and TDR proportion in each 

window. Windows containing sequencing gaps were removed prior to analysis.

Single and multiple correlations were done with Spearman's ranked 

correlation, since all variables failed tests of normality. Multiple linear 

regression of recombination rate, proportion of recombination hot spot and 

various TDR subfamilies as a function of other assayed genomic and 

epigenomic variables (mSNPs density and germline tumor methylation) was 

performed choosing predictor variables based on results from single/multiple 

correlations, available literature and an automatic stepwise backward method. 

To compare the contribution from each predictor variable to the model, the 

standardized β was used. It reports the number of standard deviations that the 

outcome variable will change as a result of one standard deviation change in the 

predictor variable.

The average CpG methylation was calculated for each amplicon. 

Average methylation between the group of amplicons within recombination hot 

spots and the group of amplicons not within recombination hot spots were 
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compared with Welch's t-test. To compare searches for repeats flanking hyper-

and hypomethylated amplicons (>80% and <20% methylation, respectively) the 

amplicons were randomly split into two groups 10,000 times, using an in-house 

Monte Carlo simulation program. For each randomization, the difference in 

TDR proportions were calculated between the two groups and the observed 

difference compared against the distribution of values from randomized data to 

estimate a P value.

A P value less than 0.05 was considered statistically significant. To 

correct for multiple testing when n tests were performed, a Bonferroni adjusted 

P value of 0.05/n was considered statistically significant. Several of the 

genomic values are inter-correlated, such as GC ratio and CpG density. 

Therefore, the Bonferroni adjustment is likely too stringent, resulting in a 

greater likelihood that a false null hypothesis is not rejected (Type II error). A 

part of the multiple linear regression was done in SPSS version 15, all other 

statistical analysis and figure preparation was done in the R statistical package, 

versions 2.5-2.11.

 3.4 Systems biology approach to study the function of imprinted genes in 
humans (Paper V)

 3.4.1 Definitions and data preparation  

Experimentally verified imprinted genes were listed from two public databases 

(www.geneimprint.com and www.otago.ax.nz/IGC, accessed 2008/08/26). 

Computationally predicted imprinted genes were from Luedi et al. (Luedi et al., 

2007). Both lists were crossed against the list of 1,496 metabolic genes in the 

Recon 1 reconstruction of human metabolism (Duarte et al., 2007).

 3.4.2 Setup of human metabolic network model  

The human metabolic network reconstruction, Recon 1, was used allowing all 

internal and external metabolic reactions. However, the only unconstrained 
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cellular uptake was of vital amino acids, vital fatty acids, glucose, molecular 

oxygen, protons, sulfate and phosphate. The model was set up to optimize for 

cellular biomass (Sheikh et al., 2005).

 3.4.3 Flux balance and flux variability analysis  

 A mathematical form of a reconstructed network (such as the human metabolic 

network) including constraints on each reaction (representing maximal and 

minimal flux and reversibility of the reaction) can be used for network 

properties calculations. Flux balance analysis (FBA) calculates a set of fluxes in 

a metabolic network in a mathematical form that maximizes a given biological 

objective (such as biomass) (Orth et al., 2010). Several derived applications use 

FBA to analyze metabolite flow through a model. Flux variability analysis 

(FVA) uses quadratic or linear programming methods to find for each reaction 

in the reconstruction the absolute maximum and minimum flux values that 

result in the optimal solution of the objective function selected (Mahadevan & 

Schilling, 2003). It therefore gives a boundary box of the solution space of 

fluxes resulting in the optimal solution for each reaction in the model (Fig. 7e). 

The FVA solutions of a particular metabolic network can be compared for two 

different conditions (for example wild type vs. gene knockout) to study the 

change in solution space boundaries for the pertubation.

Both FBA and FVA have been successfully applied to prediction of 

metabolic phenotypes in microbes (Feist & Palsson, 2008). For example, FBA 

analysis has an 85% success in predicting lethality from knockouts of 555 genes 

(Shlomi et al., 2005). Data on the predictive capability of FBA and FVA in 

models of multicellular organisms is limited. However, FVA analysis of a 

reconstruction of mouse metabolism based on the human Recon 1 indicated that 

out of 17 genes with experimental data and prediction of essentiality by FVA, 

14 were indeed essential (Sigurdsson et al., 2010). Also, FVA correctly 
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predicted metabolic changes resulting from mutations in the LPL gene 

(Sigurdsson et al., 2010). No genes involved in the human Recon 1 had a clear 

anabolic or catabolic phenotype assigned to them in the OMIM database.

For analysis of the metabolic effects of imprinted genes, a FVA with no 

additional constraints was first evaluated to get maximum (Fmax) and minimum 

(Fmin) flux resulting in the optimized objective function (biomass). Three 

differential conditions were created for each imprinted gene, simulating three 

epigenotypes (Fig. 7a). For the normal epigenotype (single allele expression 

epigenotype II), flux through all reactions coded by the imprinted gene were set 

to ½ Fmax. For the simulation of neither allele expression (epigenotype I), the 

flux through all reactions coded by the imprinted gene were set to zero. For the 

simulation of biallelic expression, the flux through all reactions coded by the 

imprinted gene was set to Fmax.

For each imprinted gene simulated, FVA was performed for all three 

epigenotype simulations. The FVA results from each abnormal epigenotype (I 

and III) were then compared against the FVA result from the normal 

epigenotype (II). Each of the 3,311 reaction was assigned a status of increased 

flux capacity, decreased flux capacity and unchanged flux capacity (Fig 7e). 

Increased and decreased flux capacity correspond to increased and decreased 

flux of molecules through the reaction, respectively.

For each of the 97 subsections of human metabolism in Recon 1, the 

number of reactions with decreased and increased flux capacity were counted. 

The counts were compared against even probability of increased and decreased 

flux capacity using a single value Chi-Square test with one degree of freedom. 

Those sections with a significant difference in reactions with increased and 

decreased flux capacity given multiple testing (P< 0.05/97) were considered 
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contributing to phenotype. As FVA on the whole human metabolic 

reconstruction is very computationally demanding, permutation maintaining 

autocorrelation structure was not possible to assess significance.

 3.4.4 Computer runs and statistical analysis  

Model setup and calculations were done in MATLAB (Mathworks Inc.) with 

the COBRA toolbox (Becker et al., 2007) using the Tomlab Optimization 

Environment linear solver (Tomlab Inc.). Output processing was done using a 

customized JAVA program. Statistics and charts were done with the R statistical 

package, version 2.5.1.
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Figure 7: In silico epigenotype simulation and FVA analysis. 

a) Two abnormal epigenotypes (no expression (epigenotype I) and biallelic expression 
(epigenotype III)) are compared against single copy expression for an imprinted gene. b) 
The expression pattern is translated into constraints set on the metabolic network. c) and 
d) The network homeostasis is calculated and compared to predict phenotypes originating 
from the abnormal epigenotypes. e) Flux variability analysis (FVA) determines the 
boundaries of flux ranges for each reaction in the metabolic network that result in the 
optimal solution for the objective value (here: biomass). For epigenotype II, fluxes 
through reactions R1 and R2 pictured in b) are within the parallelogram (red). 
Epigenotype I results in an increased flux capacity through R2 but zero flux capacity 
through R1, depicted by the blue line. Epigenotype III results in increased flux capacity 
for R1 but decreased flux capacity for R2 (blue).
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 4 RESULTS
 4.1 Analysis of the sequence specificity of methylation sensitive 
restriction endonucleases suitable for global methylation analysis (Paper I)

To aid in selection of restriction endonucleases suitable for global methylation 

analysis and the interpretation of such assays, a bioinformatic analysis of the 

sequence specificity of the target sequences of endonucleases suitable for such 

analysis was done. This involved counting the number of different target 

sequences in the human genome to determine if the frequency was sufficient to 

give consistent signal in global methylation assays such as LUMA, and to test 

representation of the target sequences in subsets of the genome. The ideal target 

site is sufficiently frequent, not over-represented in genome repeats and over-

represented or neutral in CpG islands and genes.

Results from database and literature searches for appropriate target 

sequences suitable for global methylation analysis are shown in Table 2. 

Expected number of cuts is estimated by the probability of each target 

sequence, given the estimated nucleotide frequency in the human genome 

(A=0.3, C=0.2, G=0.2 and T=0.3). The observed frequency is the counted 

frequency of the target sequence in the human genome (hg18, UCSC36).

Out of the nine endonuclease pairs studied, three had an observed target 

sequence frequency in the human genome high enough to be efficient in 

genome-scale methylation analysis. The target sequences of those pairs are 

CCGG and GCGC for assays of CpG methylation and CCWGG (W=A or T) for 

assays of non-CpG methylation. The CCGG target sequence is the target of the 

HpaII/MspI endonuclease pair traditionally used in the LUMA assay. The 

CCGG and GCGC target sequences represent 8.1% and 5.9% of all CpG 

dinucleotides in the human genome and the CCWGG target sequence represents 

8.5% of all CpWpG trinucleotides in the human genome. However, it is 
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possible that the endonucleases with target sites that are less frequent might be 

usable in more sensitive assays than currently known.

Table 2: Methylation sensitive restriction endonucleases sequences chosen for the study.

Sequence Cut by Blocked by Expected frequency of  
target sequence 

(per Mb)

Observed frequency of  
target sequence (per  

Mb)

Obs/Exp

CCGG MspI HpaII 1600 802 0.50

ACCGGT CspAI AgeI 144 19 0.13

CCCGGG XmaI SmaI 64 131 2.05

TCCGGA AccIII BsoMII 144 33 0.23

TTCGAA AsuII BstBI 324 37 0.11

TCGCGA NruI SpoI 144 5 0.04

GCGC HhaI CfoI 1600 578 0.36

ACCWGGT MabI SexAI 86 103 1.19

CCWGG AjnI Psp6I 960 3425 3.57

The CpG dinucleotide is greatly underrepresented in the genome (Bird, 

1980). The observed/expected value for the CpG dinucleotide in the sequenced 

human genome was 0.25 (data not shown). The observed/expected values for 

the restriction sites GCGC (0.36) and CCGG (0.50) were also low. This might 

be due to germline methylation and subsequent hypermutability of the target 

sequence. The high observed/expected value of the CCWGG target sequence 

might indicate hypomethylation of this sequence in the human germline. 

However, there were also notable discrepancies between the observed/expected 

values of several sequences with the same core sequence, such as CCGG / 

ACCGGT (0.50 vs 0.13) and CCCGGG / TCCGGA (2.05 vs. 0.23). This cannot 

be explained by differences in cytosine methylation, so alternative explanations 

for different observed/expected ratios, such as differential selection, cannot be 

ruled out.

Table 3 demonstrates the average target sequence frequency (fseq) within 



58

various subsets of the genome, normalized by the average genome frequency 

(fgenome). For most target sequences, there was a slight over-representation in 

repeats, especially in SINE elements. Figure 8 shows the distribution of relative 

frequencies of the three most interesting target sequences chosen for further 

analysis (CCGG, GCGC and CCWGG) within gene-related sequences. The 

distribution was similar for all target sequences, but the skewed distribution was 

less for the CCWGG target sequence compared to the CCGG and GCGC target 

sequences. The CCGG target sequence was slightly overrepresented in repeats, 

especially SINE. However, it was greatly over-represented in both CpG islands, 

gene promoter regions and gene exons. The GCGC target sequence had similar 

distribution but more over-representation in CpG islands, gene promoter 

regions and gene exons (Table 3)(Fig. 8). The CCWGG target sequence had a 

slight over-representation in CpG islands, gene promoters and exons (Table 3)

(Fig. 8).

Many chromosomes demonstrated enrichment for the target sequences 

near the chromosome ends. Figure 9 shows the distribution of the three most 

interesting target sequences in chromosome 16 as an example. Appendix I 

contains chromosome frequency images for the three target sequences chosen 

for further analysis.

Therefore, using the CCGG and GCGC target sites for endonuclease-

based assays of global CpG methylation analysis is probably feasible, as the 

target sites are relatively frequent, and are over-represented in intersecting 

subsets of the genome, such as CpG islands and genes while not being very 

over-represented in repetitive elements. Similarly, the CCWGG target site is 

probably the most useful target site for assessing global CWG methylation.
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Table 3: Relative frequencies of target sequences of methylation sensitive restriction  
endonucleases studied in repeats and gene-related sequences. 

Sequence
 Relative frequency in repeats Relative frequency in gene-related  

sequences

% 
within
repeats

All repeats 
fseq/fgenome

LINE
fseq/fgenome

SINE 
fseq/fgenome

CpG islands
fseq/fgenome

Promoters
fseq/fgenome

 Exons
fseq/fgenome

CCGG 53% 1.2 0.3 2.0 11.7 5.7 3.9

ACCGGT 46% 0.8 0.6 0.6 4.7 2.9 2.6

CCCGGG 62% 1.6 0.1 3.1 11.3 5.5 3.0

TCCGGA 43% 0.9 0.5 1.1 8.1 4.6 4.3

TTCGAA 43% 0.9 0.8 0.9 1.7 1.8 1.9

TCGCGA 46% 1.1 0.3 1.8 20.7 12.4 5.0

GCGC 55% 1.3 0.3 2.3 16.4 8.3 4.5

CCWGG 56% 1.4 0.5 2.2 2.0 1.5 1.5

ACCWGGT 45% 0.9 0.7 0.9 1.3 1.1 1.6

Figure 8: Relative frequency distribution of CCGG, GCGC and CCWGG target  
sequences within gene-related sequences.

 Shown are the representation in CpG islands, promoters and exons times the genomic 
average representation. Broken line shows average genome representation of each target 
sequence.
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Figure 9: Relative frequency distribution for CCGG, GCGC and CCWGG in 500 kb  
windows within chromosome 16. 

As an example, the frequency in chromosome 16 is shown, normalized for GC ratio in 
the window. Height of the bars indicates the absolute frequency, while the color of the 
bars indicates the relative frequency compared to the genome average. The relative 
frequency ranges from zero (blue) to two times (red) the genome average.
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 4.2 Intra-individual change over time in DNA methylation with familiar 
clustering (Paper II)

To compare intra-individual change in DNA methylation over time, we decided 

to measure both changes in global DNA methylation and site specific changes 

in promoter regions of 807 genes. For the global DNA methylation analysis, we 

used the recently developed LUMA assay. Prior to its usage, the assay was 

thoroughly validated and optimized.

Figure 10: A standard curve demonstrating linearity of LUMA. 

The curve was subsequently used to convert measurements of HpaII/MspI 
endonuclease cut into absolute percentage of HpaII/MspI target sequence 
methylation.
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 4.2.1 Properties of the LUMA assay  

A standard curve for LUMA was done by mixing 100% and 0% methylated 

lambda phage DNA and performing LUMA measurements of each mixture in 

triplicate. The curve demonstrated linearity of the LUMA method over a wide 

range of methylation values (Fig. 10). Furthermore, the curve was used for 

conversion of r values representing ratios of HpaII/MspI endonuclease cuts 

normalized by EcoRI endonuclease cuts into an absolute methylation 

percentage in the following studies.

As a biological control, the methylation of DNA methyltransferase I 

(Dnmt1) double knockout cell line was compared against the methylation of its 

parent cell line (HCT116). Previously, a double knockout of the Dnmt1 gene 

was found to be necessary to significantly affect global DNA methylation levels 

(Rhee et al., 2002). The findings were confirmed using LUMA. The average 

HpaII/MspI target sequence methylation of the HCT116 line was 82% while the 

average methylation of the DKO cell line was 31% (P=0.001). The variance of 

the assay was established by performing three separate enzymatic digestions of 

25 samples and measuring methylation with LUMA. This revealed an average 

variance of 2% (data not shown). To test the stability of methylation in samples 

from whole blood, seven individuals were sampled 2-4 times over 30 days (Fig. 

11). No significant change in HpaII/MspI target sequence methylation was 

found in DNA from total blood or the dominating cell type in buffy white coat 

layer used for DNA isolation of all study samples. Also, 18 measurements from 

nine individuals demonstrating the most extreme differences were repeated one 

year after the original measurement confirming the initial measurements (data 

not shown).
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 4.2.2  Cross-sectional analysis of changes in global DNA methylation over   
time in an Icelandic cohort

First, we tested changes in global DNA methylation in a cross-sectional cohort. 

This was both done to test the LUMA assay and to compare LUMA 

measurements of global methylation changes by birth year to results from other 

studies, that had generally found no change with age using cross-sectional 

cohorts. LUMA measurements of HpaII/MspI target sequence methylation in a 

cohort of 84 Icelanders born between 1940-1949 revealed no linear trend for 

methylation based on the year of birth (ANOVA test, P=0.96)(Fig. 12). No 

obvious biological explanation was found for outliers within the group, who 

had consistent triplicate measures of their methylation value. Additionally, half 

Figure 11: Short-term stability of methylation of HpaII/MspI target sequence in peripheral  
blood measured by LUMA.

 Seven individuals (ID1-ID7) were sampled repeatedly 2-4 times over 30 days to test short-
term stability of LUMA measurements. Each measurement was done in triplicate.
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of the cohort was with type II diabetes, an acquired metabolic disease whose 

incidence increases with age. The LUMA measurements of HpaII/MspI target 

sequence methylation did not differ significantly between the group with 

diabetes and the control group (t-test, P=0.46) (Fig. 13).

Figure 12: Cross-sectional analysis of changes in methylation with age. 

A total of 84 individuals born between 1940-1949 were measured, each 
in triplicate. There was no association between global methylation 
measured by LUMA and year of birth.



 65

Figure 13: DNA methylation by diabetes status. 

There difference in global DNA methylation measured by LUMA was not significant 
between individuals with type II diabetes(n=35) and control individuals (n=49).
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 4.2.3 Longitudinal analysis of changes in global DNA methylation over time   
in the Icelandic cohort

Since changes could not be demonstrated in a cross-sectional cohort, we tested 

intra-individual changes in global methylation in a longitudinal manner, using 

two samples from each participant sampled with a considerable time interval. A 

total of 111 individuals from the Icelandic longitudinal study population had 

valid measurements in triplicate from both time points. The average time 

between sampling was 11 years. The mean inter-individual difference in 

methylation over an average of 11 years was zero. However, individuals 

demonstrated intra-individual changes with time. Figure 14 shows the change in 

absolute HpaII/MspI methylation between the two time points for all 

individuals. Notably, the change was bi-directional; some individuals gained 

methylation between sampling while other individuals lost methylation. A total 

of 70 individuals (63%) had an absolute change in HpaII/MspI methylation of 

at least 5% between the two measurements, a total of 33 individuals (30%) had 

an absolute change of at least 10% and a total of 9 individuals (8%) had an 

absolute change of 20% or more between the two measurements. The observed 

differences did not occur in 10,000 permutations of the data when the two time 

points were randomly created for each individual, using all six measurements, 

simulating no change in methylation between the two time points (Fig. 14, gray 

area). Furthermore, the observed ratio of variation within each individual and 

variation within each time point (R=Varbetween/Varwithin=11.23) did not occur 

during the 10,000 permutations (P<0.001 of no change over time). 

The LUMA measurements did not correlate with measurements of 

inflammation markers (C-reactive proteins, absolute and differential white 

blood cell count, erythrocyte sedimentation rate). Age or length of storage for 

the samples was not correlated with the results.
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Half of the longitudinal population had a diagnosis of adult-onset 

cancer. As DNA methylation is involved in the pathogenesis of many adult-

onset cancers, the global methylation changes were compared between 

individuals with and without lifetime diagnosis of cancer. There was no 

difference in the methylation change between the two time points for 

individuals diagnosed with cancer compared to individuals not diagnosed with 

cancer (Fig. 15).

Figure 14: Longitudinal results for the Icelandic population. 

Difference in methylation measured by the LUMA assay between the two time points for each 
individual is shown (black points). The gray area represents the null hypothesis of no effects 
with time, created by 10,000 permutations of the data.
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 4.2.4     Genome-wide changes in DNA methylation over time in Utah cohort   
and heritability analysis of the changes

In the Utah cohort, a total of 126 individuals had valid measurements from two 

time points with an average of 16 year interval. Figure 16 shows the change in 

absolute HpaII/MspI methylation between the two time points for all 

individuals. The mean inter-individual difference in methylation over an 

average of 16 years was zero like in the Icelandic population. Similar to the 

results from the Iceland cohort, the effect was found to be bi-directional. A total 

of 50 individuals (40%) had an absolute change in HpaII/MspI methylation of 

at least 5% between the two measurements, a total of 23 individuals (18%) had 

an absolute change of at least 10% and a total of 13 individuals (10%) had an 

Figure 15: Methylation changes by cancer status.

Shown is the absolute difference in methylation measured between the two time 
points for individuals with cancer of any kind (n=50) or individuals without 
cancer (n=61).
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absolute change of 20% or more between the two measurements.

The Utah population represented individuals from up to three 

generations of 21 families. Most families had two adult generations (average 

age at sampling was 17 and 32 years for time 1 and 2 respectively). This 

indicates that the household was not shared for a substantial amount of time in 

the sampling interval. A tight clustering was seen for many families, both within 

those losing and gaining methylation over time (Fig. 17). After adjusting the 

value at time 2 for the value at time 1, the residual value was used as a 

phenotype for heritability analysis. The heritability analysis, done with the 

ASSOC program in SAGE, estimates the familial correlation in a model of a 

continuous trait (h2). There was a high heritability estimate (h2=0.99, P<0.001) 

that remained high ( h2=0.74, P=0.003) even after removing the family with the 

most extreme values (family 21). The heritability analysis indicates a significant 

Figure 16: Longitudinal results for the Utah population. 

Difference in methylation measured by the LUMA assay between the two time points for 
each individual is shown (black points).
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genetic component in the maintenance of methylation or shared environmental 

factors between family members.

 4.2.5     Site-specific longitudinal DNA methylation changes in a subset of   
individuals from both cohorts

Given the results on intra-individual bidirectional changes in global 

methylation, we next tested if these changes could also be observed at specific 

sites in the genome. A subset of 41 individuals from the Icelandic and Utah 

cohort were studied further by applying bisulfite treated DNA onto Golden Gate 

methylation microarray probing the methylation of 1505 CpG dinucleotides in 

807 genes. The samples used were from the 17 and 19 individuals 

demonstrating the greatest loss and gain of methylation in addition to five 

individuals with the least change between the two time points based on the 

Figure 17: Longitudinal methylation changes by families. 

Shown is the change in HpaII/MspI sequence methylation measured by LUMA between the 
two time points in the Utah cohort categorized by families.
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LUMA measurements.

In general, trends in methylation changes assessed with the microarray 

followed the global changes found by LUMA. There was a tight clustering in 

family 21, the same family that demonstrated the most extreme changes and 

clustering in the LUMA assay. All five family members lost global methylation 

between the two time points. Similarly, out of the 50 CpG methylation probes 

with the greatest change between the two time points, 49 of them indicated loss 

of methylation (P<0.001 against even odds of gain/loss of methylation) (Table 

4). There was a slight enrichment for imprinted genes within the list of genes 

with most changes (5/50 vs. 28/807, P=0.047). Out of the 50 CpGs with the 

greatest differences across all individuals, 13 were shared with family 21. 

Several genes involved in immunological mechanisms were included in the list 

of genes with large changes in CpG methylation between the two time points 

(Table 5). Unfortunately, no phenotype information was available for the Utah 

cohort, so the effects of the methylation change on phenotype are unknown.
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Table 4: Fifty genes with the greatest change in methylation over time for five members of  
family 21. 

No. Gene 
symbol 

Chr Δm P value No. Gene 
symbol

Chr Δm P value

1 PWCR1i 15 -0.723 <0.001 26 G6PD X -0.177 0.005

2 IL1B 2 -0.42 0.001 27 FMR1 X -0.177 0.023

3 KCNK4 11 -0.402 0.001 28 BCAP31 X -0.174 0.002

4 AIM2 1 -0.372 <0.001 29 SNRPNi 15 -0.172 0.001

5 PI3 20 -0.306 0.003 30 BAX 19 -0.17 0.001

6 CSF3R 1 -0.301 0.01 31 SYK 9 -0.169 0.013

7 GLA X -0.274 0.001 32 GLA X -0.169 0.007

8 PLA2G2A 1 -0.259 0.007 33 VBP1 X -0.168 0.006

9 NOTCH4 6 -0.255 0.001 34 IL10 1 -0.168 0.055

10 TRPM5i 11 -0.251 0.001 35 LMO2 11 -0.163 0.076

11 HDAC6 X -0.247 0.003 36 MPL 1 -0.162 0.012

12 GFAP 17 -0.246 <0.001 37 TRIP6 7 -0.162 0.037

13 HOXA5 7 -0.242 0.011 38 IRAK1 X -0.16 0.068

14 PTK6 20 -0.226 0.014 39 VBP1 X -0.158 0.001

15 G6PD X -0.21 0.017 40 BIRC4 X -0.155 0.027

16 ELK1 X -0.205 0.005 41 SLC22A18i 11 -0.154 0.016

17 G6PD X -0.204 0.041 42 LCN2 9 -0.152 0.007

18 ERCC3 2 -0.202 0.063 43 SLC22A2i 6 -0.152 0.002

19 LMO2 11 -0.201 0.021 44 IL16 15 -0.151 0.012

20 CSF2 5 -0.2 0.001 45 SNCG 10 -0.142 0.11

21 LIF 22 0.2 0.006 46 LCN2 9 -0.142 0.11

22 ELK1 X -0.195 0.003 47 DNASE1L1 X -0.142 0.014

23 PLG 6 -0.19 0.001 48 EMR3 19 -0.138 0.004

24 ARAF X -0.18 0.004 49 ELK1 X -0.138 0.059

25 DKC1 X -0.18 0.19 50 DNASE1L1 X -0.135 0.076
a)Fractional difference in DNA methylation between the two time points is shown (Δm). 
Negative values indicate loss of DNA methylation between the two time points. Imprinted 
genes are marked with i. P-values are unadjusted, but values reaching significance after 
Bonferroni correction (P<0.05/807) are typeset in bold. Chr-chromosome.
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Table 5: A list of genes with greatest difference in methylation over time in all individuals.  
Shown are the 13 genes on the list that also revealed the greatest difference over time  
individuals of family 21. 

Gene symbol Gene function

AIM2im Interferon gamma inducible transcript

CSF3Rim Colony stimulating factor 3 receptor

HOXA5 Hox gene

PTK6 Protein tyrosine kinase

ERCC3 Helicase with excision-repair functions

LMO2im Role in erythropoiesis and in T-cell leukemogenesis

SYKim Spleen-tyrosine kinase

IL10im Cytokine

BIRC4 Apoptosis inhibitor

IL16im Cytokine

LCN2im Protein associated with neutrophil gelatinase

TRIP6 Regulates lysophosphatidic acid induced cell migration

EMR3im Myeloid-myeloid interactions during immune and inflammatory 
responses

a)Genes involved in immunological mechanisms are marked with im.
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 4.3 Development of a surrogate marker for germline methylation (Paper 
III)

 4.3.1 Development and properties of methylation-associated SNP (mSNP)   
markers

Since the human germline is subject to sampling difficulties, alternative 

approaches of assessing germline methylation might be sought. One possibility 

is to develop bioinformatic markers. This was done in Paper III.

To create a bioinformatic marker of germline methylation using the 

hypermutability of methylated cytosine, a large well validated data set of SNPs 

in the human genome is needed. We decided to use the HapMap database of 

human SNPs as the creation of the dataset aimed at typing at least one SNP 

every 5 kb that increases the homogeneous distribution of SNPs, and 

information on population frequency and ancestral allele is readily available.

In the second phase HapMap database, 2,252,113 non-redundant C/T or 

G/A SNPs were found within the autosomal chromosomes. Of those 763,035 

were within a CpG dinucleotide. Using a derived allele data set (indicating the 

ancestral allele for the majority of HapMap SNPs), 1,239,485 C/T or G/A non-

redundant SNPs were located in the autosomal chromosomes. Of these 434,198 

(35%) were within CpG dinucleotide and the ancestral allele was either C or G 

(indicating C→T or A→G mutation). These therefore met the criteria for 

mSNPGENOME. The average ± standard deviation mSNPGENOME density was 79 ± 

39 mSNPGENOME per 500 kb of sequence.

In the 10 Mb of sequence within the ENCODE regions, 9809 non-

redundant C/T or G/A were found. A total of 2987 SNPs were within the CpG 

dinucleotide, meeting the criteria of mSNPENCODE. The derived allele criteria was 

not applied to the ENCODE data set to maximize the resolution of these 

regions. The average ± standard deviation mSNPENCODE density was 299±123 
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mSNPENCODE per 500 kb of sequence.

Most substitutions in DNA sequences are caused by genetic drift and not 

selection and have negligible effects on fitness (Kimura, 1991). SNPs are 

generally functionally neutral and represent the local mutation frequency. 

Fixation or elimination is dependent on population size but independent from 

SNP type. Therefore methylation-associated SNPs, mSNPs, are assumed to 

reflect the mutation rates of methylated cytosines and not to be more affected 

by selection than non-mSNPs.

To test if the subset of mSNPs undergoing recent selection was larger 

than the subset of non-mSNPs, the integrated haplotype score (iHS) was 

compared between the two subsets. The iHS score is a measurement of the ratio 

of haplotype decay in the 1 MB region adjacent to a SNP between the ancestral 

and the derived SNP allele (Voight et al., 2006). It is a normally distributed 

parameter with a mean of 0 and a standard deviation of 1. An iHS score of 0 

indicates no selection whereas an iHS score of more than 2.5 indicates recent 

selection.

Table 6 shows the population statistics for the iHS parameter for all 

populations. Both the mSNPs and non-mSNPs subsections had a mean iHS 

score around 0 and standard deviation of 1. Furthermore, approximately 1 % of 

all SNPs in all subsets had absolute iHS scores of more than 2.5 indicating 

recent selection. The mean iHS score did dot differ significantly between the 

mSNP and the non-mSNP subsets. The number of SNPs with an iHS absolute 

value of more than 2.5 either did not differ significantly between mSNP or non-

mSNP or the non-mSNP subset had a slightly higher number of SNPs with high 

iHS scores. This indicates that the mSNP subset is not subject to more selection 

than the non-mSNP subset. As an example, Figure 18 shows the distribution of 
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iHS scores for mSNPs and non-mSNPs for the east Asian population, the 

combined Japanese and Chinese populations. 

Table 6: iHS summary statistics for mSNP and non-mSNP subsets of all populations within  
HapMap. 

Non-mSNP mSNP

Pop. iHS |iHS|>2.5 iHS |iHS|>2.5

N Mean SD n % N Mean SD n %

ASI 749,791 -0.066 1.005 8,494 1.1 235,639 -0.008 0.993 2,521 1.1

CEU 931,439 -0.071 1.001 10,353 1.1 281,911 0.002 0.995 3,173 1.1

YRI 1,216,014 -0.052 1.005 15,481 1.3 313,138 0.019 0.992 3,811 1.2
a) Mean and SD for iHS values were similar for the mSNP and non-mSNP subset for all 
populations. Similar ratio of SNPs within the mSNP and non-mSNP subsets had absolute iHS 
values over 2.5. ASI: East Asian Population, CEU: Northern and Western European Population, 
YRI: Youruba Population.

Several methods were used to validate the assumption that mSNP counts 

represented the hypermutability of methylated cytosine bases and could 

therefore be used as a surrogate marker for germline methylation.

Figure 18: Distribution of integrated haplotype scores (iHS) for mSNPs and non-mSNPs  
in the East Asian population. 

An iHS score of 0 indicates no signs of recent selection whereas iHS of more than 2.5 (or 
less than -2.5) indicates recent selection. 
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A total of 26,635,559 out of 548,370,281 (4.9%) cytosines are within a 

CpG dinucleotide. If cytosine dinucleotides were not hypermutable, 4.9% of all 

C/T polymorphisms should be within CpG dinucleotides. Therefore, the 

estimated number of C/T polymorphisms within CpG dinucleotides would be 

60,205 and 476 C/T for the genomic and ENCODE data sets, respectively. 

However, the observed numbers (434,198 and 2987) demonstrate a 7.2 and 6.3 

fold over-representation, respectively (P<10-15 for both). The ratio is in a similar 

range to the observed five to sixfold mutation frequency of CpG sites in the 

human genome due to methylation (Zhao & Zhang, 2006). This suggests that 

the mSNP data sets represent hypermutability of methylated cytosine within the 

CpG dinucleotide.

The observed mSNP counts were used to estimate the ratio of mSNPs in 

both data sets likely to represent methylation. For the genomic data set:

RatiotrueMeth=
mSNPobs−mSNPexp

mSNPobs

=
434,198−60,205

434,198
=0.86

For the ENCODE data set:

RatiotrueMeth=
mSNPobs−mSNPexp

mSNPobs

=
2,987−476

2,987
=0.84

Therefore, approximately 84-86% of the SNPs defined as mSNP are estimated 

to result from the hypermutability of methylated cytosines.

It is likely that the assignment of ancestral base at CpG sites is more 

error-prone than at non-CpG sites due to the hypermutability of methylated 

CpGs. Nonetheless, there were significantly more C/T or G/A SNPs within the 

CpG dinucleotide with C (or G) as the ancestral allele compared with T (or A) 

as the ancestral allele (443,657 vs. 333,606, ratio 1.32, P<10-15 against even 

probability). However, the large number numbers of C/T or G/A SNPs with T 
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(or A) as the ancestral allele indicates that many of those might represent 

methylation as well. Table 7 compares absolute counts of SNPs in the derived 

allele data set between C/T and G/T SNPs, both within and not within the CpG 

dinucleotide. There was an increased relative proportion of C/T SNPs within the 

CpG dinucleotide and with C as the ancestral allele (0.54 vs. 0.24 for C vs. G as 

the ancestral allele). This suggests that the derived allele data set represents the 

known hypermutability of methylated DNA.

Table 7: Number of SNPs in the derived allele data set within the CpG and CpH (H=A, C, T)  
dinucleotide. 

SNP type Count SNP type Count Ratio

(C*/T)pG 434,198 (C*/T)pH 805,207 0.54

(G*/T)pG 54,550 (G*/T)pH 227,845 0.24

(T*/C)pG 324,960 (T*/C)pH 677,057 0.48

(T*/G)pG 76,920 (T*/G)pH 180,319 0.43
a)Two types of SNPs, C/T and G/T were compared. The derived allele is marked with (*). 
According to the model, (C*/T)pG SNPs are informative of methylation based on 
hypermutability of methylated cytosine.

 4.3.2 A genome-wide map of germline methylation  

For mapping purposes, a methylation index (MI) was calculated as explained in 

chapter 3.3.1 for all autosomal chromosomes in a 500 kb resolution. There was 

a positive correlation between adjacent windows (r=0.362, P<10-15) (Data not 

shown), indicating that MI defines a genome feature extending over at least 500 

kb. The MI had a strong negative correlation (Fig. 19) with the number of bases 

within CpG islands (r=-0.483, P<10-15), consistent with the known 

hypomethylation of these sequences.

Figure 20 shows a plot of germline methylation in human chromosomes 

1-22 using the MI as a surrogate marker. These plots were used in a specially 

made data viewer (MethyMap) to generate a visual representation of the MI 
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marker along with several sequence features for hypothesis generation. The 

lowest mean MI was within chromosome 19 (Fig. 21). While this chromosome 

has the highest proportion of CpG islands (Grimwood et al., 2004), it is also 

notable for the lowest density of recombination hot spots (Myers et al., 2005).

Figure 19: Correlation between the methylation index (MI), and bases in CpG islands.

Shown is the a smoothed scatterplot of MI and number of bases within CpG islands in 500 kb 
genome-wide windows.
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Figure 20: A genome-wide map of the methylation index (MI), a bioinformatic surrogate  
marker of germline methylation.

MI was calculated in a 500 kb resolution where sufficient data existed. Y axis values 
and color indicate MI normalized by the average genomic MI (MIAV).The MI of dark 
chromosomal bands was significantly higher than the MI of light chromosomal band 
(3.7·10-5 vs 3.9·10-5, P<10-15).
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 4.4 Correlation between mSNP density and meiotic homologous 
recombination in the human genome (Paper III)

 4.4.1 Genome-wide correlation between the mSNP marker of germline   
methylation and regional recombination

The mSNP marker developed in Paper III might be suitable to support our 

suggestion that epigenetic mechanisms such as germline methylation might be 

involved in the mechanism behind homologous recombination. This was 

therefore pursued in Paper III, initially by correlating the density of the mSNP 

marker and regional levels of homologous recombination and density of 

recombination hot spots.

The absolute correlation between two markers of recombination activity 

in the window-based approach (recombination rate of window and number of 

bases within recombination hot spots) was high and positive in all four window 

sizes, i.e. 0.725, 0.747, 0.782 and 0.822 in 125, 250, 500 and 1000 kb windows, 

Figure 21: Average methylation index (MI) of the 22 human autosomes. 
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respectively (P<10-15 for all observations). Both recombination rate and number 

of bases within recombination hot spots were used in the further analysis. 

Furthermore, to allow correction for multiple confounders, mSNPs were used as 

a marker of germline methylation in a multiple linear model holding the other 

components of the MI constant (density of CpG and SNPs).

There was a significant positive absolute correlation between the 

number of mSNPGENOME per window and recombination rate in all window sizes 

tested (Fig. 22 and Table 8). Furthermore, there was a significant positive 

absolute correlation between the number of mSNPGENOME and the number of 

bases within recombination hot spots in all window sizes tested (Fig. 22 and 

Table 8).

Confounding variables were selected on model properties and available 

literature on homologous recombination. Sequence factors known to affect 

Figure 22: Correlation between mSNP and measurements of recombination.

Smoothed scatterplot of mSNP and measurements of recombination. Shown is correlation 
in 500 kb resolution between the mSNP marker and recombination rate (r=0.622, P<10-15) 
and bases within recombination hot spots per window (r=0.508, P<10-15). 
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recombination at window sizes of 125-1000 kb are GC content, repeats and 

exons (Myers et al., 2006; Smith et al., 2005). The 7 bp DNA motif did not 

correlate with recombination activity in window sizes greater than 8 kb (Myers 

et al., 2006). There was a significant positive correlation between the density of 

the 13 bp motif (CNCCNNTNCCNCC) and both recombination rate and 

density of recombination hot spots. The methylation marker is also sensitive to 

SNP density and CpG density. Therefore, confounding variables included were 

GC ratio and the density of CpG dinucleotides, exons, repeats, the 13 bp DNA 

motif and SNPs. 

Table 8: Absolute correlation between mSNP and other sequence features and either  
recombination rate or bases within recombination hot spots. 

Recombination Rate Recombination Hot spots

125 kb 250 kb 500 kb 1000 kb 125 kb 250 kb 500 kb 1000 kb

mSNP density 0.502 0.564 0.622 0.641 0.377 0.45 0.508 0.556

SNP density 0.357 0.358 0.355 0.349 0.245 0.249 0.239 0.231

Repeats density -0.255 -0.294 -0.332 -0.348 -0.178 -0.216 -0.255 -0.276

Exon density NS NS 0.07 0.112 NS 0.049 0.104 0.142

GC ratio 0.346 0.37 0.39 0.41 0.274 0.321 0.365 0.399

CpG density 0.27 0.308 0.353 0.402 0.212 0.267 0.333 0.389

DNA motif 0.201 0.236 0.273 0.314 0.175 0.221 0.277 0.318
a)Shown is the Spearman's correlation coefficient (r) of all significant (P<0.0001) correlations 
for four window sizes tested. NS=not significant. DNA motif is CCNCCNTNNCCNC (Myers 
et al., 2008).

A positive partial correlation correcting for the above confounders 

showed a significant albeit attenuated correlation between mSNPGENOME and 

recombination rate in all window sizes tested (r=0.099-0.142, P<0.0001 for 

window sizes 125-1000 kb). Similarly, a positive partial correlation between 

mSNPGENOME and number of bases within recombination hot spots was observed 

in all window sizes tested (r=0.088-0.157, P<0.0001 for window sizes 125-

1000 kb).
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 4.4.2 Genome-wide multiple linear regression model of homologous   
recombination

Multiple linear modeling allows estimation of the relative contributions from 

each variable while holding the other variables constant. This was used to 

follow up the results found by correlation. A multiple linear model was pursued 

using either recombination rate or bases of recombination hot spots as a 

response variable and mSNP in addition to confounding variables (SNP density, 

repeats density, exon density, GC ratio and CpG density). The mSNPGENOME was 

the fourth strongest predictor variable for recombination rate in 250 kb and 500 

kb window sizes (Table 9). The variability proportion of the recombination rate 

explained by the linear model (R2) was 0.337-0.523 (Table 9). Similarly, 

mSNPGENOME was the strongest predictor for bases within recombination hot 

spots in 250 kb and 500 kb window sizes, respectively (Table 9). The variability 

proportion of bases within recombination hot spots explained by the model (R2) 

was 0.199-0.372 depending on window size (Table 9). The 13mer DNA motif 

CCNCCNTNNCCNC had a significant positive contribution to the model of 

recombination rate for 125 kb windows and recombination hot spots for 125 kb, 

250 kb and 500 kb windows. Analysis of non-log-transformed data gave similar 

results, but the R2 values of the models were lower (Data not shown).
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Table 9: Multiple linear regression model of recombination rate or bases within  
recombination hot spots as a function of mSNP and sequence features. 

Recombination Rate Recombination Hot Spots

125 kb 250 kb 500 kb 1000 kb 125 kb 250 kb 500 kb 1000 kb

mSNP density 0.149 0.148 0.182 0.116 0.218 0.227 0.283 0.204

SNP density 0.269 0.328 0.353 0.441 0.139 0.183 0.171 0.266

Repeat density -0.147 -0.144 -0.141 -0.147 -0.065 -0.095 -0..110 -0.092

Exon density -0.138 -0.179 -0.155 -0.151 -0.106 -0.109 -0.098 -0.121

GC ratio 1.030 0.232 0.229 0.203 0.470 0.157 0.112 -0.153*

CpG density -0.934 0.269 0.351 0.540 2.652 0.125 0.186 0.358

DNA motif 0.113 0.016* -0.046* -0.117* 0.072 0.066 0.071 -0.023*

Model R2 0.337 0.406 0.470 0.523 0.199 0.267 0.336 0.372
a)The standardized β (shown) is the number of standard deviations that the outcome variable 
will change as a result of one standard deviation change in the predictor variable. All variables 
have P<0.0001 except those marked with *. RM=variable was removed in modeling. DNA 
motif is CCNCCNTNNCCNC (Myers et al., 2008).

The mSNP approach was also compared to using the ratio of observed vs. 

expected CpGs (CpG O/E). This is an alternative germline methylation marker. 

Changing the CpG count to CpG O/E in the linear models did not increase their 

R2 ratio, and mSNPGENOME was stronger predictor of recombination rate than 

CpG O/E ratio (Table 10). The mSNP count was the third the strongest 

predictor of recombination rate in 250 kb and 500 kb window sizes (Table 10). 

The variability proportion of the recombination rate explained by the linear 

model (R2) was 0.386-0.462 (Table 10). Similarly, mSNPGENOME was the 

strongest predictor for bases within recombination hot spots in 250 kb and 500 

kb window sizes, respectively (Table 10). The variability proportion of bases 

within recombination hot spots explained by the model (R2) was 0.189-0.245 

depending on window size (Table 10). 
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Table 10: Multiple linear regression model of recombination rate or bases within  
recombination hot spots as a function of observed/expected CpG ratio (O/E)  
and sequence features. 

Recombination Rate Recombination Hot Spots

125 kb 250 kb 500 kb 1000 kb 125 kb 250 kb 500 kb 1000 kb

mSNP density 0.097 0.129 0.140 0.187 5.210 3.917 2.030 0.129*

SNP density 0.441 0.382 0.401 0.347 7.825 4.000 1.484 1.024

Repeat density -0.138 -0.132 -0.123 -0.121 -3.863 -1.562 -0.703 -0..201

Exon density -0.136 -0.100 -0.050 -0.014* -3.340 -0.847 -0.183* -0.319*

GC ratio 0.971 0.397 0.429 0.267 19.012 2.511 0.178* 0.292*

CpG O/E -0.071 0.059 0.057* 0.181 -0.410* -0.069* 0.022* 0.229

DNA motif 0.001* -0.026* -0.065* -0.061* 1.261 0.729* 0.866 0.265*

Model R2 0.393 0.389 0.406 0.473 0.189 0.222 0.241 0.245
a)The standardized β (shown) is the number of standard deviations that the outcome variable 
will change as a result of one standard deviation change in the predictor variable. All variables 
have P<0.0001 except those marked with *. RM=variable was removed in modeling. DNA 
motif is CCNCCNTNNCCNC (Myers et al., 2008).

 4.4.3 High-resolution correlation between the mSNP marker of germline   
methylation and regional homologous recombination

The ENCODE regions comprise a detailed haplotype analysis of 5 Mb of 

human genome sequence. They include a threefold higher resolution of SNP 

information. This data set was used to study the relationship between 

mSNPENCODE and recombination in a 25 and 50 kb window resolution.

There was a significant positive absolute correlation between the 

number of mSNPENCODE per window and recombination rate in both window 

sizes tested (Fig. 23 and Table 11). The partial correlation between 

recombination rate and mSNPENCODE, after correcting for the same confounding 

variables as in the genome-wide approach, was significant and positive in both 

window sizes (25 kb: r=0.335; 50 kb: r=0.445, P<0.0001 for both window 

sizes). Similarly, the partial correlation between bases within recombination hot 

spots and mSNPENCODE was significant and positive for both window sizes (25 
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kb: r=0.211, P=0.003; 50 kb: r=0.209, P=0.042).

Table 11: Absolute correlation in the ENCODE regions between mSNP and sequence features  
and recombination rate. 

Recombination Rate Recombination Hot Spots

25 kb 50 kb 25 kb 50 kb

r P value r  P value r P value r  P value

mSNP density 0.319 <0.0001 0.301 0.002 0.136 0.055 0.116 0.252

SNP density -0.084 0.235 0.027 0.79 -0.109 0.123 -0.121 0.229

Repeat density -0.05 0.481 -0.136 0.177 -0.074 0.297 -0.019 0.851

Exon density 0.061 0.392 0.045 0.656 0.162 0.022 0.161 0.11

GC ratio 0.363 <0.0001 0.211 0.035 0.268 <0.0001 0.267 0.007

CpG density 0.266 <0.0001 0.172 0.087 0.278 <0.0001 0.282 0.004
a)Shown is the Spearman's correlation coefficient (r) and P value for both window sizes tested.

 4.4.4     Multiple linear regression model of homologous recombination in the   
ENCODE regions

A multiple linear model of the recombination rate as a function of mSNPENCODE 

and sequence features for the ENCODE regions revealed that mSNPENCODE was 

the strongest predictor of recombination for both window sizes (Table 12). A 

Figure 23: Correlation between mSNP and recombination rate in the ENCODE regions.

Shown is the correlation in window sizes of a) 25 kb (r=0.319 P<0.0001 and b) 50 kb 
(r=0.301 P=0.002). 
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linear model of bases within recombination hot spots lacked power because 150 

out of 200 25 kb windows and 60 out of 100 50 kb windows did not have any 

recombination hot spot.

Table 12: Multiple linear regression model of recombination rate as a function of mSNP and  
sequence features for the ENCODE regions.

25 kb 50 kb

β P value β P value

mSNP density 0.49 <0.0001 0.661 <0.0001

SNP density -0.293 <0.0001 -0.462 <0.0001

Repeat density RM RM RM RM

Exon density -0.165 0.043 -0.214 0.06

GC ratio RM RM RM RM

CpG density 0.298 <0.0001 0.301 0.013

Model R2 0.235 0.394

 4.5 Relationship between recombination and germline methylation in a 
biological data set (Paper III)

After establishing a positive correlation between levels of the mSNP marker 

and recombination, we sought to show the same relationship in a biological data 

set.

The Human Epigenome Project has released a data set containing the 

methylation status of 2524 amplicons in three different human chromosomes 

for 12 tissues. Each amplicon contains on average 16 CpG and the average 

amplicon length is 411 bp (Eckhardt et al., 2006). Methylation was determined 

by bisulfite sequencing, the current gold standard of methylation analysis 

(Eckhardt et al., 2006).

The data set from sperm, the final product of the male germline, was 

used. For each amplicon, the methylation was averaged for all CpGs. Then, the 

amplicons were sorted based on whether they were within a recombination hot 
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spots (n=219) or not (n=1745).

After averaging, the distribution was still bimodal (Fig 24a), suggesting 

that each amplicon was either hypomethylated or hypermethylated. The density 

of amplicons in the hypomethylated range of methylation was higher for the 

amplicons not within hot spots of recombination (Fig 24a). The average 

methylation of amplicons within hot spots of recombination was significantly 

higher than the average methylation of amplicons not within hot spots (Fig 

24b).

 4.6 The density of mSNPs adjacent to imprinted genes (Unpublished)

Imprinted genes are hot spots of recombination (Sandovici et al., 2006). 

Therefore, the mSNP counts might be higher adjacent to imprinted genes 

compared to non-imprinted genes, given the positive correlation between 

mSNPs and regional recombination rates. This was tested by comparing mSNP 

counts flanking either imprinted or non-imprinted genes.

Figure 24: Methylation in sperm within or not within recombination hot spots. 

a) Density plot, showing the distribution of average methylation for amplicons located 
within hot spots of recombination (black) or not within hot spots of recombination (gray). 
Density was estimated with the Gaussian smoothing kernel; b) The average methylation of 
amplicons within hot spots of recombination (RH) was significantly higher than the average 
methylation of amplicons not within hot spots of recombination (0.632 vs. 0.557, P=0.007) 
Blue bars indicate 95% confidence interval. 
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The mSNP density was calculated in 125, 250, 500 and 1000 kb flanks 

around the center of imprinted genes. Two sets of genes were tested, genes with 

experimental verified imprinting status and genes computationally predicted to 

be imprinted.

There was a significantly higher mSNPGENOME density adjacent to genes 

with experimentally verified imprinting status in all flank sizes compared with 

randomly chosen genes (Fig. 25). Similarly, there was a significantly higher 

mSNPGENOME density adjacent to experimentally predicted imprinted genes 

compared with randomly chosen genes in three out of four flank sizes (125, 

250, 500 kb) (Fig. 26). In contrast, there was no significant difference in 

mSNPGENOME density adjacent to genes expressed in all somatic cells under all 

conditions (housekeeping genes) compared with randomly chosen genes (data 

not shown).

Figure 25: mSNP density of sequences flanking experimentally verified imprinted vs.  
random genes.

Shown are results from the four flank sizes studied. P values are from t-tests comparing 
the mSNP density (mSNP/kb) flanking either imprinted genes (n=50) (I, white) or a set 
of 500 genes randomly chosen from the human genome (C, gray).
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Figure 26: mSNP density of sequences flanking computationally predicted imprinted vs.  
random genes.

Shown are results from the four flank sizes studied. P values are from t-tests comparing 
the mSNP density (mSNP/kb) flanking either imprinted genes (n=113) (I, white) or a set 
of 500 genes randomly chosen from the human genome (C, gray).
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 4.7 Correlation between mSNP and TDR subfamilies in the human 
genome (Paper IV)

If a global TDR defense system based on methylation is active in the germline, 

then patterns of germline methylation should be shaped by the TDR pattern, 

even if the germline is overall hypomethylated. This might be especially 

evident for TDR subfamilies including active elements. The mSNP marker is 

suitable for testing if a relationship between germline methylation and 

subfamilies of TDR exists, prior to experimental verification and causal 

determination of such relationship. This can be done by correlation study 

followed by linear regression analysis of the major subfamilies as a function of 

variables confounding variables and the mSNP marker density in a similar 

manner as done in the previous chapter (Paper III).

 4.7.1 Genome-wide correlation between the mSNP marker and TDR   
subfamilies

The correlation between mSNPGENOME density and the proportion of TDRs and 

TDR subfamilies was tested in a similar manner as the homologous 

recombination followed by a partial correlation correcting for confounders (GC 

ratio, recombination rate, gene density, SNP density, CpG dinucleotide density 

and repeat density). This was supplemented by multiple linear modeling of the 

major TDR subfamilies. The study was mainly focused on the two TDR 

subfamilies that currently have active elements in the human genome (L1 of the 

LINE and Alu of the SINE). In addition, a subset of about 11,000 repeat 

elements (Alu, L1 and SVA elements) that are differentially present in the 

human and chimpanzee genome, indicating that they include active elements, 

was used (Nichol & Pearson, 2002). Those elements were collectively termed 

active elements.

There was a strong negative correlation, both absolute and partial, 
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between the mSNPGENOME density and proportion of TDRs in all window sizes 

tested (Table 13). This was mostly explained by a strong negative correlation 

between mSNPGENOME density and proportion of Alu elements in all window 

sizes (Table 13). In contrast, there was a significant negative correlation 

between mSNPGENOME density and proportion of L1 elements only in the largest 

window size tested (1000 kb). In other window sizes any observed absolute 

correlation was eliminated by correcting for confounders (Table 13).

Correlation patterns for long terminal repeats (LTR) was similar to L1 

element patterns in all window sizes. There was a significant positive 

correlation between the mSNPGENOME marker and proportion of simple repeats in 

all window sizes tested (Table 13). These results validate the approach as the 

methylation of simple repeats is critical for genome stability, at least in somatic 

cells (Nichol & Pearson, 2002). The proportion of active elements had a 

significant negative correlation with the mSNPGENOME marker in all window 

sizes similar to the Alu elements (Table 13).
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Table 13: Genome-wide correlation between TDR families and the mSNP marker of germline  
methylation. 

125 kb 250 kb 500 kb 1000 kb

Absolute Partial Absolute Partial Absolute Partial Absolute Partial

Total -0.29**** -0.15**** -0.32**** -0.18**** -0.35**** -0.19*** -0.44**** -0.39****

LINE -0.20**** -0.01 -0.23**** -0.01 -0.28**** -0.02 -0.43**** -0.18***

L1 -0.21**** -0.01 -0.25**** -0.01 -0.29**** -0.01 -0.45**** -0.17***

L2 0.09*** -0.02* 0.09*** -0.02 0.09*** -0.03 0.10** 0.03

SINE 0.02 -0.18**** 0.04** -0.21**** 0.08** -0.22**** 0.20*** -0.18***

MIR 0.30**** 0 0.32**** -0.01 0.34**** -0.01 0.37**** 0.06

AluY -0.16**** -0.14**** -0.16**** -0.16**** -0.12*** -0.16*** -0.03 -0.20***

AluJ -0.06*** -0.12**** -0.04** -0.15**** 0 -0.15*** 0.12** -0.12**

AluS -0.04** -0.14**** -0.02 -0.17**** 0.03 -0.17*** 0.14*** -0.18***

LTR 0.02 -0.01 0 0 -0.02 0.03 -0.20*** -0.14***

DNA transposons 0.04** 0.01 0.05** 0.02 0.07** 0.01 0.08* 0.02

Simple repeats 0.18**** 0.11**** 0.22**** 0.16**** 0.26**** 0.18*** 0.25*** 0.14***

Active elements -0.10*** -0.15**** -0.08*** -0.18**** -0.03 -0.18*** 0.09** -0.21***

a)Shown are results for all window sizes tested, both absolute correlation and partial correlation. 
In partial correlations correction was made for GC ratio, recombination rate and density of 
SNPs, CpG dinucleotides and exons. Number indicates Spearman's correlation coefficients, 
and levels of statistical significance are marked with asterisks; P<10-50 (****), P<10-10 (***), 
P<10-5(**) and P<0.002 (*). Given multiple testing P<0.002 is the lowest level of significant 
correlation

 4.7.2 Multiple linear regression of the density of major TDR subfamilies  

A multiple linear regression model of Alu element proportions as a function of 

mSNPGENOME and confounding variables was pursued. There was a consistent 

negative contribution from mSNPGENOME to the model in all window sizes, with 

mSNPGENOME being the second strongest predictor of Alu element proportions in 

all windows tested (Table 14). The amount of variability explained by the 

models (R2) was 0.530-0.769 based on window size (Table 14).
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Table 14: Multiple linear regression model of the Alu elements proportion as a function of  
mSNP and sequence features for the whole genome.

Alu 1000 kb 500 kb 250 kb 125 kb

β P value β P value β P value β P value

mSNP density -0.28 < 10-15 -0.33 < 10-15 -0.26 < 10-15 -0.22 < 10-15

SNP density 0.11 3·10-10 0.20 < 10-15 0.16 < 10-15 0.13 < 10-15

Exon density 0.13 < 10-15 0.14 < 10-15 0.13 < 10-15 0.12 < 10-15

GC ratio -0.17 7·10-10 -0.21 < 10-15 -0.21 < 10-15 0.04 1·10-7

CpG density 0.98 < 10-15 1.00 < 10-15 0.90 < 10-15 0.63 < 10-15

Recombination Rate -0.10 7·10-13 -0.10 < 10-15 -0.10 < 10-15 -0.11 < 10-15

Non-Alu elements 
proportion

-0.18 < 10-15 -0.12 < 10-15 -0.13 < 10-15 -0.12 < 10-15

Model R2 0.769 0.720 0.643 0.530
a)Shown is the standardized β value and corresponding P value. The β is the number of standard 
deviations that the outcome variable will change as a result of one standard deviation change in 
the predictor variable.

A multiple linear regression model of L1 elements revealed a significant 

negative contribution from mSNPGENOME density to the model in the 1000 kb 

windows, where mSNPGENOME density was the third strongest predictor of L1 

elements proportion. For 125 kb windows, mSNPGENOME density was the sixth 

strongest predictor and the contribution was insignificant in other window sizes 

(Table 15). The amount of variability explained by the models (R2) was 0.384-

0.607 based on window size (Table 15).
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Table 15: Multiple linear regression model of the L1 elements proportion as a function of mSNP  
and sequence features for the whole genome. 

L1 1000 kb 500 kb 250 kb 125 kb

β P value β P value β P value β P value

mSNP density -0.24  < 10-15 -0.02 0.45 -0.03  0.07 -0.10  < 10-15

SNP density -0.14 6·10-11 -0.01 0.77 -0.01 0.50 0.03 0.002

Exon density -0.03 0.048 -0.04  0.002 -0.08 < 10-15 -0.10 < 10-15

GC ratio -0.01 0.863 -0.12 1·10-15 -0.04 0.02 0.42  < 10-15

CpG density -0.32 2·10-15 -0.41  < 10-15 -0.45  < 10-15 -0.64 < 10-15

Recombination Rate -0.13 9·10-13 -0.12  < 10-15 -0.11  < 10-15 -0.12 < 10-15

Non-L1 elements 
proportion

-0.30  < 10-15 -0.20  < 10-15 -0.17  < 10-15 -0.15  < 10-15

Model R2 0.607 0.534 0.462 0.384

Results for the active elements were similar to the results for Alu 

elements. There was a significant negative contribution from mSNPGENOME 

density to the model of active elements. For all window sizes, mSNPGENOME was 

the third strongest predictor of active element proportions (Table 16). The 

amount of variability explained by the models (R2) was 0.483-0.730 based on 

window size (Table 16).

Neither analysis with a non-log-transformed data nor exchanging exon 

density for gene density changed the magnitude or statistical significance of any 

results (data not shown).
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Table 16: Multiple linear regression model of the active elements proportion as a function of to  
mSNP and sequence features for the whole genome.

 

Active elements 1000 kb 500 kb 250 kb 125 kb

β P value β P value β P value β P value

mSNP density -0.29 < 10-15 -0.36 < 10-15 -0.29 < 10-15 -0.26 < 10-15

SNP density 0.10 1·10-7 0.21 < 10-15 0.18 < 10-15 0.15 < 10-15

Exon density 0.10 2·10-15 0.10 < 10-15 0.10 < 10-15 0.09 < 10-15

GC ratio -0.29 < 10-15 -0.29 < 10-15 -0.30 < 10-15 -0.10 < 10-15

CpG density 1.19 < 10-15 1.20 < 10-15 1.09 < 10-15 0.81 < 10-15

Recombination Rate -0.10 1·10-12 -0.10 < 10-15 -0.11 < 10-15 -0.12 < 10-15

Non-Active elements 
proportion

-0.01 0.315 0.46 9·10-6 0.05 6·10-11 0.08 < 10-15

Model R2 0.730 0.668 0.578 0.483

 4.8 Analysis of TDR subfamilies flanking differentially methylated 
regions in a biological data set (Paper IV)

To study the relationship of TDR subfamilies and methylation on a smaller 

scale in an independent data set, we used the HEP dataset. This data set includes 

the results from bisulfite sequencing of a small section of the genome for 

methylation analysis in a number of tissues.

The 2,524 amplicons from the HEP sperm methylation data set were 

divided into two groups; hypermethylated amplicons (>80% methylation, 1001 

amplicons) and hypomethylated amplicons (<20% methylation, 701 

amplicons). The methylation criteria was based on the initial analysis of the 

data of the HEP group (Eckhardt et al., 2006). Four different flank lengths (3, 5, 

10 and 15 kb) were extracted from the human sequence for each amplicon and 

submitted to the CENSOR server searching the sequence for TDRs. Results of 

the TDR analysis were then compared between the hypermethylated and 

hypomethylated amplicon group. To estimate a P value, the amplicons were 

randomly divided into two groups including 1001 and 701 amplicons, to 
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simulate no effects of methylation on flanking TDRs. The observed difference 

in TDR subfamilies were compared against the simulated difference and an P 

value estimated for each TDR subfamily.

The proportion of Alu elements flanking hypermethylated amplicons 

was significantly lower than the proportion flanking hypomethylated amplicons 

(Fig. 27a, Table 17). There was a significantly higher proportion of L1 elements 

flanking hypermethylated amplicons compared to hypomethylated amplicons 

only in 3 and 5 kb flanks (Fig. 27b, Table 17). For the other two flank sizes 

tested (10 and 15 kb) the differences were not significant. Results for LTR 

elements had a similar trend as the results for L1 elements, but they were not 

statistically significant (Table 17).

Figure 27: The difference (Δ%=%hypermethylated - %hypomethylated) between absolute proportion of  
repeats flanking hypermethylated and hypomethylated amplicons (vertical line) against the  
distribution of 10,000 permutations of the data regardless of methylation (bell curve). Shown  
is the difference for a) Alu and b) L1 repeat families. 

The observed difference (Δ%) (vertical line, -1.7% and 1.0% for Alu and L1, respectively) 
was compared against the distribution of Δ% when the data was sampled randomly into two 
groups regardless of methylation (bell curve). The observed differences occurred 0 and 4 
times in 10,000 simulations, giving estimated P values of <0.0001 and 0.0004 for Alu and 
L1 elements.
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Table 17: Proportion of TDR subfamilies in 3-15 kb flanking hypermethylated and  
hypomethylated amplicons from the HEP data set. 

3 kb flanks 5 kb flanks

Hyperm. Hypom. Hyperm. Hypom.

Family kb % kb % Δ % P value bp % bp % Δ % P value 

Total 1,183 19.9 764 18.6 1.4 0.0098 1,860 18.6 1,28
1

18.4 0.2 0.6862

LINE 331 5.6 167 4.1 1.5 <0.0001 568 5.7 303 4.3 1.3 0.0001

L1 230 3.9 102 2.0 1.4 <0.0001 406 4.1 212 3.0 1.0 0.0004

L2 88 1.5 58 1.4 0.1 0.3496 137 1.4 79 1.1 0.2 0.0253

SINE 502 8.5 383 9.3 -0.8 0.0126 708 7.1 619 8.9 -1.8 <0.0001

Alu 414 7.0 327 7.9 -1.0 0.0041 608 6.1 540 7.7 -1.7 <0.0001

MIR 72 1.2 42 1.0 0.2 0.0106 73 0.7 46 0.7 0.1 0.0829

LTR 193 3.2 106 2.6 0.7 0.0061 323 3.2 198 2.8 0.4 0.0514

DNA 
transp. 

76 1.3 53 1.3 0.0 0.4625 116 1.2 71 1.0 0.1 0.1331

Simple 
rep. 

81 1.4 54 1.3 0.1 0.284 144 1.4 88 1.3 0.2 0.0186

Analyzed 
bases

5,934 4,116 10,010 6,970

10 kb flanks 15 kb flanks

Hyperm. Hypom. Hyperm. Hypom.

kb % kb % Δ % P value bp % bp % Δ % P value

Total 3,190 15.9 2,357 16.8 -0.9 0.0176 4,333 14.4 3,236 15.4 -1.0 0.038

LINE 1,074 5.4 641 4.6 0.8 0.0051 1,535 5.1 939 4.5 0.6 0.0642

L1 840 4.2 492 3.5 0.7 0.0113 1,246 4.2 749 3.6 0.6 0.0785

L2 189 0.9 125 0.9 0.1 0.2362 231 0.8 154 0.7 0.0 0.3458

SINE 1,084 5.4 1,038 7.4 -2.0 <0.0001 1,398 4.7 1,365 6.5 -1.8 <0.0001

Alu 946 4.7 915 6.5 -1.8 <0.0001 1,220 4.1 1,212 5.8 -1.7 <0.0001

MIR 85 0.4 49 0.3 0.1 0.0049 91 0.3 54 0.3 0.0 0.0801

LTR 552 2.8 375 2.7 0.1 0.3254 697 2.3 502 2.4 -0.1 0.3986

DNA 
transp. 

162 0.8 115 0.8 0.0 0.4425 197 0.7 137 0.7 0.0 0.4849

Simple 
rep. 

310 1.5 186 1.3 0.2 0.0001 495 1.6 289 1.4 0.3 0.0008

Analyzed 
bases

20,020 14,020 30,030 21,030

Shown are both absolute numbers (kb) and percentages (%). The absolute difference between 
hypermethylated (Hyperm.) and hypomethylated (Hypom.) amplicons was compared against 
10,000 permutations of the data to estimate a P value.
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 4.9 A network analysis of the metabolic effects of human imprinted genes 
(Paper V)

DNA methylation is involved in the control of the expression of imprinted 

genes. Haig's hypothesis of anabolic effects of paternally imprinted genes and 

catabolic effects of maternally imprinted genes on metabolism has limited 

support. The available data is only based on a handful of imprinted genes. We 

were interested in applying methods of metabolic systems biology to test the 

effects of expression changes of imprinted genes on human metabolism. 

Additionally, these methods might be used to test dosage sensitivity of other 

genes, and even to suggest novel imprinted genes. Unfortunately, no positive 

control was found for either anabolic or catabolic phenotype. However, a mouse 

metabolic reconstruction highly homologous to the human reconstruction has 

been successfully used to predict both gene essentiality and softer phenotypes 

(Sigurdsson et al., 2010).

A list of experimentally verified and computationally predicted 

imprinted genes was crossed against a list of 1496 genes in the reconstructed 

human metabolic network. A total of three experimentally confirmed imprinted 

genes (ATP10A, SLC22A2, and SLC4A2) and six computationally predicted 

imprinted genes were found (CYP1B1, FUCA1, GPT1, NDUFA4, PPAP2C and 

SLC4A2). Allowing cellular uptake of minimum medium (essential amino 

acids, essential fatty acids, glucose, oxygen, sulphate, phosphate and vitamins), 

three epigenotypes were simulated as described in Materials and Methods 

(Chapter 3.4.2). The simulations tested expression of no copy, one copy (wild 

type) and two copies of each gene. Flux variability analysis (FVA) of each 

model was then performed and the results from each FVA compared against the 

wild type FVA. The absolute number of reactions with increased or decreased 

flux capacity compared to the wild type were then counted. Counts within 97 
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subsections of metabolism (Table 18) were then compared to suggest a resulting 

phenotype.

The average number of subsections of metabolism with a significant 

change was 15 when no expression was simulated, compared to 16 subsections 

changing when expression of both alleles was simulated (Table 19). 

In general, the results were lopsided and consistent for most of the 

simulated genes. Generally, simulating no expression caused increased flux 

capacity within many metabolism subgroups and simulating the expression of 

two copies resulted in decreased flux capacity within many subgroups (Table 

19). The gene with the greatest metabolic perturbation resulting from simulating 

expression changes was ATP10A, the only gene of the simulated genes with a 

known clinical phenotype from abnormal expression. Simulation of no 

expression resulted in significant changes within 27 metabolic subsections, and 

simulation of the expression of both alleles resulted in significant changes 

within 29 subsections (Table 19). Simulation of no gene expression of six genes 

(CYP1B1, GPT1, PPAP2C, SLC22A2, SLC22A3,and FUCA1) revealed 

increased flux capacity for metabolic subsections within structural 

carbohydrates (such as keratan sulfate and N-glycan pathways) and lipid 

metabolism, while simulation of both allele expression revealed an opposite 

flux pattern. This might be consistent with an anabolic and a catabolic 

phenotype resulting from no expression and expression of both alleles, 

respectively. Simulation results of no expression of the NDUFA4 gene revealed 

decreased flux capacity for lipid and structural carbohydrate metabolism while 

simulation of both allele expression revealed increased flux capacity for 

structural carbohydrate metabolism but decreased flux capacity for lipid 

metabolism. The overall effect was therefore hard to predict. Epigenotype 

simulation for SLC4A2 suggested negligible effects of the epigenotypes on 
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metabolism.

The loss of expression simulation results for ATP10A are shown in 

Figure 28. No subsections had decreased flux capacity, whereas 27 had 

increased flux capacity compared to wild type. Of those, 10 subsections were 

within lipid metabolism and eight within carbohydrate metabolism, including 

structural carbohydrates such as keratan sulfate. In that perspective it is likely 

that an anabolic phenotype resulting in obesity might result from no expression 

of the ATP10A. This is supported from several literature sources on the 

phenotype. A maternal deletion of the homologous gene in mice results in 

increased body fat (Dhar et al., 2000). The mouse model of Angelman 

syndrome (including loss of expression of ATP10A) has an obese phenotype 

(Cattanach et al., 1997). Furthermore, a subset of patients with Angelman 

syndrome have an obese phenotype resembling Prader-Willi syndrome, and this 

phenotype is suggested to result from absent ATP10A expression (Gillessen-

Kaesbach et al., 1999; Meguro et al., 2001).

When simulation results were reviewed in light of Haig's parental 

conflict theory, the metabolic profiles from the simulation of four genes 

(ATP10A, GPT1, NDUFA4, PPAP2C) fitted the theory while the profiles from 

four other genes (SLC22A2, SLC22A3, CYP1B1, FUCA1) did not (P=1.0).
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Table 18: Metabolic subgroups in Recon 1

ID Name ID Name ID Name ID Name

1 Alanine and Aspartate 
Metabolism

26 Fatty Acid Metabolism 51 Miscellaneous 76 Steroid Metabolism

2 Alkaloid biosynthesis II 27 Fatty acid oxidation 52 N-Glycan Biosynthesis 77 Stilbene, coumarine and 
lignin biosynthesis

3 Aminosugar 
Metabolism

28 Fatty acid oxidation, 
peroxisome

53 N-Glycan Degradation 78 Taurine and hypotaurine 
metabolism

4 Arginine and Proline 
Metabolism

29 Folate Metabolism 54 NAD Metabolism 79 Tetrahydrobiopterin

5 Ascorbate and Aldarate 
Metabolism

30 Fructose and Mannose 
Metabolism

55 Nucleic acid degradation 80 Thiamine Metabolism

6 beta-Alanine 
metabolism

31 Galactose metabolism 56 Nucleotide Sugar 
Metabolism

81 Transport, Endoplasmic 
Reticular

7 Bile Acid Biosynthesis 32 Glutamate metabolism 57 Nucleotides 82 Transport, Endoplasmic 
Reticular

8 Biotin Metabolism 33 Glutathione Metabolism 58 O-Glycan Biosynthesis 83 Transport, Extracellular

9 Blood Group 
Biosynthesis

34 Glycerophospholipid 
Metabolism

59 Others 84 Transport, Golgi Apparatus

10 Butanoate Metabolism 35 Glycine, Serine, and 
Threonine Metabolism

60 Oxidative Phosphorylation 85 Transport, Lysosomal

11 C5-Branched dibasic 
acid metabolism

36 Glycolysis/Gluconeogenesis 61 Pentose and Glucuronate 
Interconversions

86 Transport, Mitochondrial

12 Carnitine shuttle 37 Glycosylphosphatidylinositol 
(GPI)-anchor biosynthesis

62 Pentose Phosphate Pathway 87 Transport, Nuclear

13 Cholesterol Metabolism 38 Glyoxylate and Dicarboxylate 
Metabolism

63 Phenylalanine metabolism 88 Transport, Peroxisomal

14 Chondroitin / heparan 
sulfate biosynthesis

39 Heme Biosynthesis 64 Propanoate Metabolism 89 Triacylglycerol Synthesis

15 Chondroitin sulfate 
degradation

40 Heme Degradation 65 Purine Catabolism 90 Tryptophan metabolism

16 Citric Acid Cycle 41 Heparan sulfate degradation 66 Pyrimidine Biosynthesis 91 Tyr, Phe, Trp Biosynthesis

17 CoA Biosynthesis 42 Histidine Metabolism 67 Pyrimidine Catabolism 92 Tyrosine metabolism

18 CoA Catabolism 43 Hyaluronan Metabolism 68 Pyruvate Metabolism 93 Ubiquinone Biosynthesis

19 CYP Metabolism 44 IMP Biosynthesis 69 R Group Synthesis 94 Urea cycle/amino group 
metabolism

20 Cysteine Metabolism 45 Inositol Phosphate 
Metabolism

70 Riboflavin Metabolism 95 Valine, Leucine, and 
Isoleucine Metabolism

21 D-alanine metabolism 46 Keratan sulfate biosynthesis 71 ROS Detoxification 96 Vitamin A Metabolism

22 D-arg and D-orn 
metabolism

47 Keratan sulfate degradation 72 Salvage Pathway 97 Vitamin B12 Metabolism

23 Eicosanoid Metabolism 48 Limonene and pinene 
degradation

73 Selenoamino acid 
metabolism

98 Vitamin B6 Metabolism

24 Fatty acid activation 49 Lysine Metabolism 74 Sphingolipid Metabolism 99 Vitamin D

25 Fatty acid elongation 50 Methionine Metabolism 75 Starch and Sucrose 
Metabolism
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Table 19: Results from epigenotype simulation of the nine imprinted genes found. 

Gene 
symbol

A IK Epigenotype I, no copy expressed Epigenotype III, both copies expressed

Decreased flux Increased flux Decreased flux Increased flux

ATP10A M E None 4, 8, 12, 13, 25, 26, 
27, 28, 29, 30, 33, 
34, 35, 38, 45, 46, 
47, 52, 53, 57, 58, 
61, 68, 69, 75, 76, 

85

7, 8, 9, 12, 13, 23, 
25, 27, 28, 29, 33, 
34, 38, 44, 45, 46, 
47, 52, 53, 57, 58, 
61, 68, 69, 74, 75, 

76, 85, 95

95

SLC22A2 P E 7, 74, 9 68, 26, 25, 69, 34, 
12, 57, 29, 13, 76, 

45, 46, 47, 52

86, 27, 34, 29, 25, 
69, 13, 7, 57, 76, 9, 
45, 12, 52, 46, 74, 

47

None

SLC22A3 P E 7, 74, 9 68, 26, 25, 69, 34, 
12, 57, 29, 13, 76, 

45, 46, 47, 52

86, 27, 34, 29, 25, 
69, 13, 7, 57, 76, 9, 
45, 12, 52, 46, 74, 

47

None

CYP1B1 P C None 52, 47, 46, 45, 57, 
76, 12, 34, 29, 7, 

69, 25

52, 47, 74, 46, 12, 
45, 9, 57, 76, 7, 69, 

34, 25, 29, 27

None

FUCA1 P C 47 68, 27, 26, 35, 25, 
69, 34, 57, 29, 13, 

76, 12, 45, 52

68, 27, 57, 29, 35, 
69, 34, 25, 13, 76, 

7, 52, 45, 12

47

GPT1 M C None 35, 86, 69, 25, 34, 
29, 92, 7, 57, 12, 
76, 45, 9, 46, 74, 

47, 52

27, 35, 29, 25, 69, 
34, 13, 7, 57, 76, 9, 
45, 12, 46, 74, 47, 

52

None

NDUFA4 P C 26, 35, 76, 29, 34, 
13, 57, 45, 46, 47, 

52

25, 12 27, 76, 13, 74, 69, 
25, 7, 9, 12, 26

95, 29, 45, 46, 47, 
52

PPAP2C M C None 85, 25, 69, 74, 35, 
29, 34, 12, 13, 76, 
57, 45, 46, 47, 52

27, 35, 29, 7, 57, 
34, 25, 69, 13, 12, 
76, 45, 52, 46, 47

9, 74

SLC4A2 M C 46 52 46 52
a)Shown is the expressed allele (A; M=maternal, P=paternal), the imprinting information (IK; 
E=experimentally verified, C=computationally predicted) and the ID number of metabolic 
subsections (Table 18) with a decreased or increased flux capacity.
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Figure 28: Simulation results for no expression of ATP10A gene. 

Absolute number of reactions with increased flux capacity (red) and decreased flux 
capacity (green) compared to wild type. In total, 27 metabolic subsections changed 
significantly and are shown in the figure.
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 5 DISCUSSION
 5.1 Summary of results

In this Ph.D. thesis, several aspects of DNA methylation in the human genome 

were explored. In paper I, the target sequence properties of restriction 

endonucleases suitable for global methylation analysis in the human genome 

were analyzed. The sequence specificity properties of two target sequences 

suitable for global CpG methylation analysis and one target sequence suitable 

for global CWG methylation analysis were described. The results aid in 

interpretation of measurements of global methylation with restriction 

endonucleases. In Paper II, longitudinal changes in both global and gene 

promoter methylation in two cohorts were measured. The observed change in 

both cohorts was bi-directional; while some individuals lost methylation 

between measurements others gained methylation. A familial component in the 

conservation of methylation was also observed. In paper III, a novel surrogate 

bioinformatic marker for germline methylation in the human genome was 

developed. After validation of the marker, a positive correlation between 

homologous recombination and the marker was found. In paper IV, the marker 

was used to test the correlation between germline methylation and subfamilies 

of TDRs, in particular subfamilies with active elements. This revealed a 

negative correlation between DNA methylation and the Alu subfamily, but a 

variable correlation for the L1 subfamily based on resolution. In paper V, the 

metabolic properties of imprinted genes were evaluated with the methods of 

systems biology. Simulations using reconstruction of the human metabolism 

predicted that the metabolic effects of the imprinted genes whose expression 

was simulated in the study were generally lopsided and consistent. Out of the 

nine simulated genes, the single gene with a known clinical phenotype resulted 

in the greatest metabolic perturbation. 
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 5.2  Sequence specificity of restriction endonucleases suitable for global 

methylation analysis in the human genome (Paper I)

Changes in global methylation, especially in repetitive elements, are cardinal 

features of tumorigenesis (Esteller, 2008). They have recently been shown to 

predict clinical outcomes in patients with acute myelogenous leukemia 

(Deneberg et al., 2010). Global methylation changes might therefore become a 

tumor marker suitable for classifying and staging selected cancers. Methods for 

quantifying global methylation could subsequently become clinically useful, 

provided they are accurate, robust, reproducible, and scalable to process a large 

amount of samples with reasonable resources. 

Several assays for global methylation analysis are available (Fraga & 

Esteller, 2002). Global methylation assays based on restriction endonucleases, 

especially when coupled with accurate and fast quantification methods such as 

pyrosequencing, are feasible for high-throughput and reproducible results 

(Karimi et al., 2006a; Karimi et al., 2006b). 

When interpreting the results from restriction endonuclease assays and 

comparing with results from other methods, knowledge of the target sequence 

specificity of the restriction endonuclease pair used is helpful. This was 

important for understanding the results on the longitudinal change in global 

methylation that was measured in Paper II. 

In Paper I, the commercially available restriction endonuclease pairs 

available for global methylation analysis were systematically reviewed and their 

target sequence frequencies in various subsets of the human genome estimated. 

As expected, the target sequence that has generally been used for evaluating 

methylation with restriction based endonucleases (CCGG, exemplified by the 

HpaII/MspI isoschizomers and used in LUMA), had several attractive features. 

These include a high frequency of the target sequence in the human genome and 
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an over-representation in interesting subsets of the genome such as promoters, 

exons and CpG islands. Approximately 53% of the target sequences are within 

repeats, with an over-representation in LINE repeats and an underrepresentation 

in SINE repeats. 

The analysis also identified a second target sequence, (GCGC, 

exemplified by the HhaI/CfoI isoschizomers) that has several attractive 

properties, including a similar overall genome frequency as the CCGG target 

sequence. In addition, the GCGC sequence has more over-representation in 

several interesting subsets of the human genome such as promoter regions and 

exons. A double digest by restriction endonucleases targeting both CCGG and 

GCGC sequences probes the methylation of approximately 14% of all CpGs in 

the human genome.

The discovery of non-CpG methylation in the CWG in embryonic stem 

cells, where 25% of all methylated cytosines reside within CWG trinucleotides 

(Lister et al., 2009), calls for development of experimental methods for its 

analysis. One target sequence, CCWGG, seems suitable for global methylation 

analysis of the CWG trinucleotide. It seems to be fairly homogeneously 

represented within repeat sequences and gene-related sequences. However, it 

shares the observed over-representation of the target sequence near 

chromosome ends with the other target sequences mapped. Recently, 

endonucleases targeting CCWGG were used in a modified LUMA protocol to 

probe non-CpG methylation in myocytes in various stages of differentiation 

(Barrès et al., 2009).

The results from Paper I aid in selecting restriction endonucleases 

suitable for global methylation analysis, and interpreting the results of such 

assays. Further experiments should compare experimentally measurements of 
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global CpG methylation by endonucleases targeting the two suggested target 

sequences, and determine the feasibility of using them together. The target 

sequence including the CWG trinucleotide can be used in a global CWG 

methylation assay to further the understanding of this recently described stem 

cell mechanism. Finally the programs written in Paper I could be used to 

analyze the frequencies of other target sequences in other organisms.

 5.3 Intra-individual changes in DNA methylation with time and 
assessment of familial clustering (Paper II)

An important prerequisite of the epigenetic model of complex human disease is 

the suggestion of acquired change in epigenetic marks (Bjornsson et al., 2004). 

At the time of the publication of the model, limited data existed supporting this 

prerequisite. Most results were based on cross-sectional populations (Issa et al., 

1994; Issa et al., 1996) and only a handful of CpG sites (Issa et al., 1994; Issa 

et al., 1996; Sandovici et al., 2003) or levels of X inactivation (Busque et al., 

1996; Racchi et al., 1998; Sandovici et al., 2004). The most comprehensive 

study available on epigenetic changes with age was based on 40 MZ twins, 

indicating significant changes in global DNA methylation and patterns of 

histone modifications (Fraga et al., 2005). 

The results from Paper II substantially added to the picture of age-

associated changes of epigenetic marks. The study was based on longitudinal 

data sets of DNA extracted from blood sampled at two different time points 

with an 11-16 year interval. Individuals came from two different cohorts of 111 

individuals from Iceland and 126 individuals from Utah. For each individual, 

global methylation was compared between the two time points by measuring 

the methylation of the CCGG target sequence with LUMA. This revealed more 

than 5% change in global methylation in 40% and 63% of the population from 

the Utah and Iceland cohorts, respectively. The methylation changed by more 
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than 10% in 10% and 30% of the population from the Utah and Icelandic 

cohorts, respectively. One explanation of the discrepancies between the 

populations could be the fact that the Icelandic population was significantly 

older than the Utah population. If true, this would suggest an increasing rate of 

acquired changes in DNA methylation with age.

Interestingly, the results were bi-directional; whereas some individuals 

gained methylation others lost methylation between the two time points. This 

finding has been replicated by other researchers, both in mice (Maegawa et al., 

2010) and humans (Wong et al., 2010). The observed bi-directionality of the 

changes could explain why a large cross-sectional study of human methylation 

failed to demonstrate any changes, as the average change in a cross-sectional 

cohort bidirectional change can become zero (Eckhardt et al., 2006).

Since the Utah samples were from families with samples available for 

up to three generations, conservation of methylation within families could be 

tested. This revealed a high correlation of conservation of methylation within 

members of the same family. This could be due to genetic factors or shared 

environment. An example of an environmental factor that might be shared in 

family members could be availability of factors critical for maintenance of 

single carbon metabolism, such as folic acid. A genetic component to the 

conservation of methylation is extremely interesting. Candidate genes could be 

one of the human methyltransferase genes, in particular the DNMT1 gene 

responsible for maintenance methylation. An interesting follow-up study would 

be to combine measurements of conservation of DNA methylation and typing 

of polymorphisms near or within the genes participating in maintenance of 

methylation.

A microarray based experiment probing the methylation of 807 CpG 
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dinucleotides within gene promoters established the same trends as found with 

the global methylation analysis. This argues against suggestions that acquired 

changes in DNA methylation only occur in non-coding regions. There were 

more imprinted and immunological genes within the genes with the greatest 

methylation changes than expected by chance. The enrichment of imprinted 

genes is interesting in light of the metabolic perturbations resulting from 

changes in expression of imprinted genes presented in Paper V. Perhaps changes 

in promoter methylation of the dosage-sensitive imprinted metabolic genes 

could contribute to acquired metabolic disease, such as diabetes mellitus and 

obesity. 

The results support an important prerequisite of a model of complex 

disease pathogenesis based on genetic and epigenetic mechanisms, that 

epigenetic marks undergo acquired changes (Bjornsson et al., 2004). These 

changes might in part explain the late onset of many common diseases, such as 

cancer. The model is consistent with other well known mechanisms contributing 

to acquired disease (including cancer pathogenesis), such as acquired somatic 

mutations. For example, epigenetic mechanisms that might explain the late 

onset of many types of cancer might involve both increased expression of 

oncogenes (perhaps modified by loss of inhibition by methylation) and 

silencing of tumor suppressor genes (perhaps modified by methylation of their 

promoter regions). 

The longitudinal results have since publication been supported by 

several other studies. A recent study comparing the methylation of 3627 genes 

in young and old inbred mice found a bidirectional change in methylation with 

age with approximately 21% and 13% of the genes with increased and 

decreased promoter methylation, respectively (Maegawa et al., 2010). Changes 

in expression of all genes tested were correlated with the methylation changes 
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in their promoters (Maegawa et al., 2010). Also, DNA extracted from the blood 

of MZ twins sampled at two time points revealed bidirectional changes in 

promoter regions of three genes between the two time points (Wong et al., 

2010). In a cohort of 718 subjects sampled twice over 8 years, methylation of 

Alu elements declined significantly between the measurements, while L1 

elements methylation was unchanged (Bollati et al., 2009). The results were, 

however, not bidirectional between individuals. The LUMA assay targets 

repeats of most subfamilies and non-repeats. As presented in Paper I, the target 

site of the restriction endonucleases used for our LUMA assay is under-

represented in the SINE family (that include Alu elements) and over-

represented in the LINE family (that include L1 elements). Therefore, methods 

targeting only specific subfamilies of repeats might give different results than 

those obtained with LUMA measurements. 

Further studies on the age-associated change in epigenetic marks should 

focus on establishing if these patterns can be replicated in other tissues, given 

their availability. Furthermore, a possible link between tissue-specific changes 

in methylation with time and disease progression in the same organs should be 

sought. An example of diseases suitable for such studies would be e.g. adult 

onset diabetes mellitus, immunological diseases such as rheumatoid arthritis 

and various cancers that demonstrate increased incidence with age.

 5.4 Development of a surrogate marker for germline methylation (Paper 
III)

A novel marker of germline methylation, the mSNP marker, was developed and 

tested in Paper III. The marker is based on searching in large genome variation 

databases for mutations that stem from the hypermutability of methylated 

cytosine, and use the density of these mutations as a surrogate marker for 

germline methylation. The mSNP marker was validated by demonstrating that 



 113

the mutation databases used had mutation spectra representing the 

hypermutability of methylated cytosine, Furthermore, there was an inverse 

correlation between the marker and the density of CpG islands, that are 

normally spared of cytosine methylation. Compared with using the 

observed/expected CpG ratio as a marker of germline methylation, the mSNP 

approach is not dependent on the conservation of methylation. In contrast, the 

observed/expected CpG ratio can be applied in a higher resolution to capture 

variation in methylation on smaller scales.

Several limitations to the approach must be mentioned. Inevitably not all 

germline methylation is represented by mSNPs. Also, an estimated 16-17% of 

the SNPs defined as mSNPs do not represent germline methylation. The marker 

also cannot differentiate methylation patterns between the male and female 

germline. The resolution of the information on germline methylation is 

furthermore dependent on SNP density. 

The usage of bioinformatic germline methylation surrogate markers as a 

hypothesis generating tool can be very beneficial. Future work might increase 

the resolution of the germline methylation surrogate markers by using the 

emerging large scale databases of genomic variation, such as from the 1000 

genomes project (Durbin et al., 2010).

 5.5 A positive correlation between the mSNP marker and regional 

homologous recombination in the human genome (Paper III)

In paper III, a positive correlation between the mSNP marker and regional rates 

of homologous recombination was found, both at a genome-wide scale of 125-

1000 kb resolution and in a limited region with sufficient data for 25-50 kb 

resolution. Furthermore, reanalyzing methylation data from sperm revealed that 

the methylation of sequences within hot spots of recombination was 
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significantly higher than sequences not within hot spots. The marker was more 

informative than the observed/expected CpG ratio in the same size range. 

However, the observed/expected CpG ratio is likely to be more useful in higher 

resolution.

The results increase the understanding of the causes of discrepancy 

between regional DNA sequence and recombination rate. Examples of this are 

variable recombination rate despite identical sequence (Neumann & Jeffreys, 

2006) and different locations of hot spots of recombination in human and 

chimpanzee despite a high sequence homology (Winckler et al., 2005). They 

support earlier notions that epigenetic mechanisms might be involved in the 

control of recombination rate (Neumann & Jeffreys, 2006; Sandovici et al., 

2006). Furthermore, since the publication of our results, the discovery of the 

PRDM9 protein and its role in recombination has further illuminated the control 

mechanism influencing recombination rate. The protein has three domains 

including a domain with histone methylating properties and a zinc finger 

domain that binds to the DNA motif previously found to be enriched in hot 

spots of recombination (Parvanov et al., 2010). Variations of the protein affect 

recombination rate (Berg et al., 2010; Kong et al., 2010). The discovery of this 

protein suggests an epigenetic aspect to the control of homologous 

recombination, similar to our observation of a regional epigenetic mechanism 

that correlates with recombination. Currently no known link between DNA 

methylation and PRDM9 activity exists, but testing such link would be of an 

considerable interest.

Although a cause-and effect relationship cannot be determined based on 

correlation data, several testable hypotheses can be generated based on the 

results from Paper III. Two suggested models could explain the results, and they 

are not mutually exclusive. Perhaps the preferred sites of recombination in the 
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genome are be marked by methylation. Alternatively, sites that have recently 

undergone homologous recombination might be secondarily marked by 

methylation. A second recombination in the same meiosis close to the first 

recombination might erase the potential benefit of the first event. The molecular 

mechanism behind cross-over interference is largely unknown. Perhaps DNA 

methylation might be a part of the molecular mechanism mediating cross-over 

interference (Berchowitz & Copenhaver, 2010). Additionally, methylation 

might suppress non-homologous recombination and enhance homologous 

recombination. This is exemplified by chromosomal instability resulting from 

mutations in the DNMT3b methyltransferase gene (Xu et al., 1999). In paper II, 

a correlation in the conservation of DNA methylation patterns within families 

was found. Perhaps similar methylation patterns between the parental genomes 

minimize the likelihood of harmful non-homologous recombination? In this 

context, the positive correlation between kinship and fertility of human couples, 

with a peak in reproductive success at the level of third and fourth cousins is an 

interesting observation (Helgason et al., 2008). This level of kinship might 

maximize the positive effects of homologous recombination on fertility against 

the harmful effects from inbreeding.

Under the assumption that epigenetic marks change with time in the 

germline following a similar general pattern as observed in somatic cells and 

described in Paper II, several hypotheses can be generated. For example, 

recombination rate could change with increasing age, following changes in 

methylation patterns of the germ line. This is interesting in light of observations 

of a positive correlation between recombination rate and maternal age (Kong et  

al., 2004). Furthermore, the recombination rate was an independent predictor of 

family size and the effect increased with maternal age (Kong et al., 2004). This 

effect might be mediated by changes in germline methylation patterns similar to 
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those demonstrated in somatic cells in Paper II. 

If the relationship between DNA methylation and somatic (mitotic) 

recombination is similar to the relationship between germline DNA methylation 

and meiotic homologous recombination, an interesting mechanism of acquired 

disease can be suggested based on our observed changes in DNA methylation 

over time (Paper II). Perhaps acquired changes in somatic DNA methylation 

might interfere with repair mechanisms based on somatic homologous 

recombination (Moynahan & Jasin, 2010). In contrast, if DNA methylation 

follows repair by meiotic homologous recombination, the methylation of 

repaired sites might affect expression of nearby genes. This interference might 

participate in the pathogenesis of diseases with increased age-associated 

incidence, such as cancer. This might be tested by comparing acquired 

methylation changes in a well defined cancer patient cohort. The cancers 

initially selected could be those previously associated with disruptions in 

somatic recombination, such as breast cancer.

Future experiments should try to determine the cause-and-effect of 

relationship between DNA methylation and homologous recombination. Several 

experiments can be suggested to test this. Comparing the recombination rate of 

a methyltransferase deficient mouse mutant with wild type, decreased 

homologous recombination rate would be suggestive of methylation preceding 

recombination. Using male sperm, the final product of the male germline, direct 

measurements of recombination rate of recombination hot spots could be 

correlated with the methylation of the adjacent sequence. In addition to an 

experimental verification of the bioinformatics result, the strength of the 

relationship might suggest the underlying cause-and effect relationship. A 

significant and strong positive correlation would suggest that methylation 

precedes recombination. A weak or no relationship might be suggestive of 
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methylation following recombination, as the methylation of the relatively few 

recombinant molecules (<1%) would not cause a significant correlation. The 

methylation of single recombinant molecules could furthermore be compared 

with non-recombinant molecules (e.g. by single molecule PCR). A higher 

methylation of recombinant molecules compared to non-recombinant molecules 

would be suggestive of methylation following recombination, while similar 

methylation of recombinant and non-recombinant molecules might be 

suggestive of methylation preceding recombination or no relationship. Ideally, 

these experiments should also compare the methylation and recombination rate 

of individuals with differential PRDM9 alleles to generate hypotheses regarding 

the relationship between the PRDM9 protein, homologous recombination and 

DNA methylation.

 5.6 Methylation-based defense systems against TDR activity in the 
human genome (Paper IV)

In Paper IV, the mSNP germline methylation marker was applied to 

study the subfamily specific relationship between TDRs and germline 

methylation of adjacent sequences. The host defense system proposed by Yoder 

et al. suggests that DNA methylation is a cornerstone of a global defense 

system against genome instability caused by TDR insertions (Yoder et al., 

1997). Given that the methylation of TDRs affects the methylation landscape of 

adjacent sequences (Jähner & Jaenisch, 1985), the genome host defense theory 

predicts a positive correlation between major subgroups of TDRs and germline 

methylation. This should hold even if the germline is overall hypomethylated.

However, after controlling for confounders, there was a consistent 

negative correlation between regional proportion of Alu elements and the mSNP 

marker. The same results were found using bisulfite sequencing results from 

sperm. The results were less clear for L1 elements, the other TDR subfamily 
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with active elements. There were more L1 elements flanking hypermethylated 

regions when the relationship was studied with small flank sizes (3-5 kb). 

However, the relationship diminished with increasing window size and the 

correlation became negative in 1000 kb window resolution.

These results suggest that DNA methylation is unlikely to be a global 

defense mechanism against the Alu TDR subfamily. This is in line with the 

recent discoveries of alternative defense systems targeted at Alu elements, such 

as the APOBEC3G family (Hulme et al., 2007). However, a DNA methylation-

based TDR defense system might exist for L1 elements based on the results 

presented in Paper IV. This system might influence methylation of a few 

kilobases of adjacent sequence, according to our results. Recently a TDR 

defense system based on piRNA elements linked to proteins from the PIWI 

family was discovered in the human germline (Zamudio & Bourc'his, 2010). 

The PIWI-piRNA complexes recruit DNA methyltransferases to L1 and LTR 

elements and mediate their methylation in the germline via unknown 

mechanisms (Aravin & Bourc'his, 2008). 

The positive correlation between L1 elements and DNA methylation in 

the flanking 3-5 kb observed in Paper IV supports a PIWI-piRNA defense 

system targeting L1 elements and mediating their methylation. Further studies 

of the relationship between DNA methylation and TDR defense should focus on 

the PIWI-piRNA pathway and its effects on the germline methylation of L1 

elements. The mSNP marker could even be used to generate hypotheses 

regarding this mechanism. With the emerging knowledge of the high insertion 

frequency of L1 elements in the human genome (Ewing & Kazazian, 2010a; 

Ewing & Kazazian, 2010b), further understanding of defense mechanisms 

against these elements is critical.
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The results can be used to generate hypotheses as to the nature of the 

relationship between TDR subfamilies and DNA methylation of the germline, 

although a causal relationship cannot be established based on correlation data. 

According to the most parsimonious model explaining all correlation results 

between the germline methylation marker and the TDR subfamilies including 

active elements presented in Paper IV, a preferential insertion of the two major 

repeat subfamilies (Alu and L1) into relatively hypomethylated regions of the 

human genome is suggested. This is supported by similar insertional 

preferences of both families (Gasior et al., 2007). The fates of the two families 

are proposed to be different. According to the model, L1 elements might 

undergo post-insertional methylation, perhaps by a defense system such as the 

PIWI-piRNA system. Alternatively, there could be a negative selection against 

L1 elements insertion or a positive selection for Alu elements insertion into 

gene-rich and hypomethylated regions. The negative effects of insertional 

mutagenesis could be counteracted by positive effects of Alu insertions such as 

exonization (Lev-Maor et al., 2008) or positive effects on gene expression 

(Eller et al., 2007). As genome-scale sequencing becomes more accurate and 

cost-effective, testing this model should become feasible. With sufficient 

sequencing resolution, novel L1 and Alu germline insertions could be found by 

comparing sperm and whole blood sequencing of the same individual. This 

could determine the adjacent sequence of novel TDR insertions. Additionally, a 

whole genome bisulfite sequencing of the germ cells could also highlight the 

methylation landscape adjacent to TDR and novel TDR insertions.

The recombination results from Paper III and the TDR results from 

Paper IV can also be interpreted together. Non-homologous recombination of 

Alu elements is often harmful to the host genome (Callinan & Batzer, 2006). If 

DNA methylation marks sites of the germline suitable for recombination, it is 
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unlikely that Alu elements are heavily methylated in the germline, since this 

might result in increased non-homologous recombination. If DNA methylation 

comes after a recombination (either homologous or non-homologous), then the 

low degree of Alu methylation might be indicative of an alternative defense 

mechanism against non-allelic recombination.

 5.7 Simulating the metabolic effects of human imprinted genes (Paper V)

The biology of imprinted genes was visited in Paper V. The second motive for 

the project was to provide insight into the application of systems biology 

methods to study the genotype-phenotype relationship for large multicellular 

organisms. Such applications are highly dependent on the quality of the 

reconstruction and the data used to generate the model. Methods of predicting 

phenotypes are also being further developed as knowledge of the field is gained.

The monoallelic expression of imprinted genes is stably maintained by 

differential methylation of alleles based on parental origin. Using methods of 

systems biology on the recently compiled genome-scale reconstruction of the 

human metabolic network, both loss of expression and biallelic expression of 

metabolic imprinted genes were simulated. The simulation results were 

interpreted based on the imprinting status of the gene and in light of Haig's 

parental intergenome conflict theory that suggests that maternally imprinted 

genes repress growth whereas paternally imprinted genes increase growth 

(Moore & Haig, 1991). Several metabolic subsets were affected for each gene 

tested. In general, the simulated effects on the metabolic system were lopsided, 

with no expression resulting in increased flux capacity of many metabolic 

subsets, but increased expression resulting in decreased flux capacity of a large 

number of metabolic subsets. Of the genes tested, the simulation of loss of 

expression of the maternally imprinted gene ATP10A resulted in the greatest 

perturbation of the metabolic system, and the overall effect was likely anabolic. 
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This was in line with the obese phenotype observed mouse model with ATP10A 

knock-out (Cattanach et al., 1997). It supports that a subgroup of patients with 

Angelman syndrome with an obese phenotype suffers from deletion of the 

maternal allele of ATP10A (Gillessen-Kaesbach et al., 1999; Meguro et al., 

2001). 

The simulation results presented in Paper V were, however, not 

supportive of Haig's intergenome conflict theory. The same number of 

simulated phenotypes were in accordance to the theory as expected by chance. 

The simulation results are similar to the results of systematical review of human 

and mouse phenotypes resulting from abnormal expression of imprinted genes 

(Tycko & Morison, 2002). The genes reviewed were not the same as tested in 

Paper V. The review found that only 7 out of 15 genes had phenotypes as 

predicted by the theory, a similar number as expected by chance (Tycko & 

Morison, 2002). 

The lopsided effects of expression changes of imprinted genes might be 

indicative of their dosage sensitivity, and warrants further research. A 

prerequisite for this would be to compare the results of expression changes in 

non-imprinted genes with imprinted genes. If this is true, than the methods of 

system biology applied in Paper V might be used to test the gene dosage 

sensitivity of genes and suggest novel imprinted genes. 

In summary, the work presented in this thesis aimed at developing 

several novel methods to assay human DNA methylation on a genome-wide 

scale. These assays were then applied to address interesting questions regarding 

the biology of DNA methylation in the human genome. The observation that 

changes occur over time both in global and site-specific methylation support an 

epigenetic model of disease pathogenesis. The changes in methylation might 
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contribute to the pathogenesis of common human diseases, such as cancer. The 

bidirectional changes might be explained by differences in environment, genetic 

factors, or both. An example might be genesis of cancer by loss of methylation 

and increased expression of oncogenes or increased methylation and decreased 

expression of tumor suppression genes. The positive relationship between a 

marker of germline methylation and homologous recombination suggests that 

methylation might be involved in the control of recombination. Currently, 

experimental evidence for an epigenetic aspect of homologous recombination 

involves a histone modification. Methylation might either contribute 

independently to recombination control or via recruitment of other epigenetic 

mechanism, such as histone tail modifications. Although DNA methylation is 

not be important in the defense against all TDRs according to the findings in the 

thesis, then it is likely to be important for defense against particular TDR 

families, such as the L1 subfamily. The bioinformatic assays developed can be 

applied to other data from the human or other genomes to further the 

understanding of this fundamental epigenetic mechanism and its relationship 

with other genomic and epigenomic variables. 
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 7 APPENDIX I

Relative frequency distribution for CCGG, GCGC and CCWGG sequences 
measured in 500 kb windows for the human genome. Shown is the frequency in 
each window divided by the GC ratio of the window. Colors represent the over-
representation or under-representation compared to the genomic average 
frequency normalized by the genomic average GC ratio.

Color legend (Genomic average=1)
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GCGC (cont)
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CCWGG (cont)
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