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Abstract

Cloud computing is becoming a viable and common choice for software infrastruc-
tures. Quality assurance such as testing is an important aspect of any product and
technology. With a new technology new challenges are introduced to quality assur-
ance. Thus, software testing research is lacking in following the fast growing trends
of the cloud computing industry.

The thesis investigates the challenges of software testing in elastic cloud computing
environments and the applicability of the Jata test framework for testing distributed
cloud applications. Jata uses concepts from the Testing and Test Control Notation
version 3 (TTCN-3) to implement distributed test cases in Java. A cloud application
case study has been performed in this thesis. It reveals that there are speci�c
considerations to be made for testing of cloud applications to deal with the elastic
nature of clouds. The work furthermore suggests that Jata is a promising framework
for distributed testing, whether for cloud or non-cloud deployments.





Ágrip

Tölvuský eru orðin raunhæfur og algengur kostur fyrir hýsingu tölvukerfa. Pró-
fanir eru mikilvægur þáttur gæðatryggingar á tæknivörum og þjónustu. Með nýrri
tækni fylgja ætíð nýjar áskoranir fyrir gæðatryggingu, en rannsóknir á sviði hugbú-
naðarprófana má segja að skorti samfara hinni örri þróun tölvuskýja.

Í ritgerðinni eru áskoranir hugbúnaðarprófana í tengslum við tölvuský ígrundaðar
og notagildi Jata prófanaker�sins athugað í þeim tilgangi. Jata notar hugtök frá
TTCN-3 staðlinum (Testing and Test Control Notation version 3) sem grunn til að
styðja útfærslu dreifðra hugbúnaðarprófana. Tilraun þar sem Jata er notað til að
útbúa tölvuskýprófanir er framkvæmd og lýst í þessari ritgerð. Rannsóknin leiðir
í ljós atriði sem þarf að hafa sérstaklega í huga við tölvuskýsprófanir til dæmis til
að bregðast við aðstæðum vegna slembiúthlutunar tölvuskýja á IP netvistföngum.
Niðurstöðurnar sýna ennfremur að Jata er áhugaverður kostur fyrir hönnun og út-
færslu dreifðra prófa, hvort heldur sem er fyrir tölvuský eða hefðbundnar uppset-
ningar.
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1. Introduction

Cloud computing is a relatively new concept which has been emerging rapidly as an
alternative to traditional data-centers, grids, and private clusters. Cloud computing
can be seen as a new way of outsourcing hardware and software services, and it
promises that any organization can extend their IT infrastructure in a simple and
e�cient way. It also promises to help new businesses by requiring less upfront capital
expenses for IT infrastructure.

Though cloud computing o�ers the potential to improve productivity and reduce
costs it also poses many new challenges such as security and legal considerations,
technical challenges, including software testing challenges. There are various techni-
cal challenges that need to be considered when doing research for cloud integration
and it is far from trivial to integrate infrastructures to cloud models in a scalable and
secure way. The construction of distributed systems within clouds poses numerous
challenges on development and testing, because of their diversity and complexity. A
multitude of di�erent sub-systems and protocols make up a single distributed sys-
tem, and thus implementing and maintaining a distributed system is error-prone.
Reliability issues such as security, scalability, failure handling, concurrency, and
network related issues such as latency and throughput are all non-trivial testing
objectives. It is furthermore extremely di�cult to test all possible system con�gura-
tions where the software will be executed i.e. di�erent operating systems, hardware,
and software versions.

Software testing is a critical part of the quality assurance in software systems devel-
opment. It is one of the most challenging and costly process activities. Research and
experience show that software testing provides a strong support for the development
of high quality software. Security and technical challenges of cloud computing have
received a good focus in academic and commercial literature. Software testing of
cloud applications has unfortunately not been as well addressed. The goal of this
thesis is to improve on this.
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1. Introduction

1.1. Scope of this Thesis

The main goal of the thesis is investigation of the challenges imposed on software
testing for cloud applications. For this work the Jata test framework [60] is used in
a case study to implement test cases for a cloud application. Jata has recently been
created to support distributed component testing. It is a Java framework which
includes a meta-model for de�ning and structuring test cases. The meta-model uses
concepts from the standardized testing language TTCN-3 (Testing and Test Control
Notation version 3 ). Therefore an additional research goal was made to evaluate the
applicability of Jata for advanced distributed testing like in a cloud environment.

Cloud computing is not a fundamentally new paradigm. It is based on existing
distributed technologies such as utility computing and Software-as-a-Service (SaaS).
Much of the testing of cloud applications can be done with traditional distributed
testing methods regardless of the type of hardware or network infrastructure in use.

This thesis is largely inspired by Grid application testing methods introduced by
Rings, Neukirchen and Grabowski in Testing Grid Application Work�ows Using
TTCN-3 [50]. In their work TTCN-3 is used for de�ning and implementing test
cases for a distributed application running in a Grid environment. The focus of
their work is testing of the distribution management aspects of the system under
test, as is also the focus in this thesis. Jata uses TTCN-3 concepts and therefore it
is possible to use test structure ideas from the previous grid testing work.

This thesis focuses on black-box functional testing of distributed computing systems
using the Jata test framework. A case study was made where a distributed parallel
application was tested within the Amazon EC2 cloud environment. A parallel appli-
cation, which carries out computing concurrently on multiple machines, was chosen
in order to use advanced testing techniques. The objectives are to reveal what as-
pects of cloud computing need to be considered and addressed when doing software
testing of cloud applications, and furthermore to evaluate the Jata framework for
distributed testing.

1.2. Structure of this Thesis

An outline of the thesis is given in the following: After this introduction, the foun-
dations for this thesis are given in Chapter 2. This includes an overview of cloud
computing and the Amazon cloud services which are used in this thesis. Furthermore
the chapter includes an overview of software testing, the Testing and Test Control
Notation version 3 (TTCN-3), and the Jata test framework used in the case study.

2



1.2. Structure of this Thesis

Chapter 3 contains discussion of related work for this thesis. Literature on software
testing of cloud application is unfortunately still lacking and this chapter surveys
the work that relates to testing and cloud computing, even though the relationship
with this thesis topic is not strong. The chapter is divided into three categories:
Testing in the cloud, testing of the cloud, and migrating testing to the cloud.

The main contribution, a case study for testing a cloud application, is described in
Chapter 4. The chapter describes the design and implementation of a black-box test
case for a cloud application using Jata. The chapter begins with an overview of the
Turnip application that is under test in the case study. The Turnip application is
a cloud extension of the open-source Sun�ow image rendering system. The man-
agement of the distributed application is the focus of the testing. In later sections
of the chapter the test plan, test design and test case speci�cation with Jata are
covered in detail.

Subsequently, in Chapter 5, an evaluation is made concerning both software testing
of cloud applications and the Jata test framework. The evaluation is based on the
results of the case study.

Finally, a summary, and an outlook are given as a conclusion in Chapter 6. This
thesis is completed by a list of acronyms and the referenced bibliography. An ap-
pendix on the setup of the development environment for the case study is at the end
of the thesis.

3





2. Foundations

In this chapter background information is provided on Cloud Computing in Section
2.1. Section 2.2 contains a description of the Amazon Elastic Compute Cloud (EC2)
which is used as the cloud platform for the case study in this thesis. Finally, in
Section 2.3, Software Testing is covered.

2.1. Cloud Computing

Cloud Computing is a relatively new concept which has been emerging as an alterna-
tive to traditional data-centers, grids, and private clusters. It can help organizations
to start businesses with less upfront capital expenses for IT infrastructure. It also
gives the ability to scale the IT infrastructure, up or down, more easily and e�ciently
alongside the organization's growth.

Cloud computing is however not fundamentally a new paradigm. It is based on
existing distributed technologies such as utility computing and Software-as-a-Service
(SaaS). It can be seen as a new way of outsourcing hardware and software services,
and it promises that any organization can extend their IT structure in a simple and
e�cient way.

2.1.1. De�nition

Though it seems impossible to agree on a single de�nition for cloud computing, the
seemingly most acceptable one today is provided by the U.S. National Institute of
Standards and Technology (NIST):

Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of con�gurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management e�ort or service
provider interaction. This cloud model promotes availability and is com-
posed of �ve essential characteristics, three service models, and four de-
ployment models. [41]

5



2. Foundations

The �ve essential characteristics are On-demand self-service, Broad network access,
Resource pooling, Rapid elasticity, and Measured Service. The cloud service models
and deployment models are covered in sections 2.1.2 and 2.1.4.

Another new and widely used de�nition comes from the UC Berkeley Reliable Adap-
tive Distributed Systems Laboratory (RAD lab):

Cloud Computing refers to both the applications delivered as services
over the Internet and the hardware and systems software in the data-
centers that provide those services. The services themselves have long
been referred to as Software as a Service (SaaS). The data-center hard-
ware and software is what we will call a Cloud. When a Cloud is made
available in a pay-as-you-go manner to the general public, we call it
a Public Cloud; the service being sold is Utility Computing. We use
the term Private Cloud to refer to internal data-centers of a business
or other organization, not made available to the general public. Thus,
Cloud Computing is the sum of SaaS and Utility Computing, but does
not include Private Clouds. [7]

Many other de�nitions of cloud computing are available and substantial work has
been done to come up with a single de�nition, e.g. Vaquero et al. [58] and the work
of an expert group of 21 individuals [24]. Most of the de�nitions, as the two above,
harmonize well with the version of Vaquero et al. of a minimum de�nition which
groups a set of three common features for the di�erent cloud computing de�nitions:

Scalability, pay-per-use utility model and virtualization. [58]

The keyword in cloud computing is virtualization, which makes it possible for cloud
customers to dynamically scale their computing resources, such as storing and pro-
cessing capacity, to build tailored systems in an on-demand manner, paying only for
the resources needed.

2.1.2. Cloud Service Models

Cloud services are mainly divided into three services delivery models [41, 58], where
hardware and platform resources are provided as services in an on-demand way:

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

6



2.1. Cloud Computing

Figure 2.1 depicts the nature of the cloud services by comparing the levels of technol-
ogy stacks provided by the di�erent service types. The service type de�nitions repre-
sent the separation between the responsibilities of the consumer and the provider of
the services. In case of SaaS the complete software stack is provided by the vendor,
but in the other two cases it is the responsibility of the consumer to provide the
remainder of the stack.

Figure 2.1: Cloud service types

Software as a Service

In the SaaS model the whole software stack is provided by the cloud environment;
from hardware, to operating systems, to end user applications. This is an alternative
to locally executed software applications and the only client software needed is a web
browser. An example of SaaS is the on-line versions of typical o�ce applications
such as word processors and spreadsheet applications. A well known SaaS provider is
Google with its Google Apps including Google Docs and Google Mail. Another major
SaaS provider is Salesforce.com1 which provides on-demand customer relationship
management software (CRM).

Platform as a Service

The PaaS service type provides a software platform for systems, including operat-
ing systems, middleware and software development frameworks for developing ap-
plications on an abstract platform. Example of PaaS providers and solutions are
Microsoft Windows Azure and Google App Engine.

1Salesforce.com, inc. http://www.salesforce.com/
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Infrastructure as a Service

This IaaS model is basically a hardware-renting service where consumers can request
computer resources and are billed based on the actual time of usage. The consumer
is responsible of maintaining the software on the rented machines, including the
operating system. Example IaaS providers are Amazon2, Eucalyptus3, RackSpace4,
and GoGrid5.

This thesis focuses on software testing for applications within the IaaS model, and
uses Amazon's Elastic Compute Cloud (EC2) platform as the cloud infrastructure
of the test-bed.

2.1.3. Elastic and Auto-Scaling

Cloud services are elastic by nature where the number of resources are controllable at
any point in time. Organizations extend or shrink its infrastructure by launching or
terminating virtual machines which are called instances. One of the main objectives
of cloud services is the ability to respond quickly to di�erent loads and scale resources
either up or down automatically.

The auto-scaling feature is especially valuable for applications that have unpre-
dictable spikes in load on a regular (or irregular) basis, which allows them to be
prepared and extend the resources they need on-demand. In contrast to traditional
hosting, where a �xed number of resources are provided for a �xed amount of time,
and any changes of load can mean problems. In that case the only way for organi-
zations to secure themselves is by adding extra �xed resources to handle the peaks,
leading to wasted resources in regular hours. Using cloud technology it is possible to
be prepared for unexpected spikes in the load and utilization of resources therefore
becomes more e�cient.

2.1.4. Cloud Deployment Models

According to NIST's de�nition [41] the four cloud deployment models are:

• Private cloud

• Community cloud

2Amazon EC2. http://aws.amazon.com/ec2/
3Eucalyptus Systems, Inc. http://www.eucalyptus.com/
4Rackspace, US Inc. http://www.rackspace.com/
5GoGrid. http://www.gogrid.com/
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• Public cloud

• Hybrid cloud

The selection of cloud deployment model depends on the di�erent levels of security
and control required.

The Private cloud infrastructure is operated solely for a single organization with
the purpose of securing services and infrastructure on a private network. This de-
ployment model o�er the greatest level of security and control, but it requires the
operating organization to purchase and maintain the hardware and software infras-
tructure, which reduces the cost saving bene�ts of investing in a cloud infrastructure.
Rackspace, Eucalyptus, and VMware6 are example providers of private cloud solu-
tions.

A Community cloud infrastructure is shared by several organizations and supports
a speci�c community that has shared concerns. It may be established where organi-
zations have similar requirements and seek to share cloud infrastructure. Example
of community cloud is Google's Gov Cloud.

Public clouds provide services and infrastructure over the Internet to the general
public or a large industry group and is owned by an organization selling cloud ser-
vices. Major public cloud providers are Google and Amazon. These clouds o�er the
greatest level of e�ciency in shared resources, however they are also more vulnerable
than private clouds.

A Hybrid cloud infrastructure, as the name suggests, is a composition of private,
public, and/or community clouds possibly through multiple providers. Reasoning
for hybrid cloud infrastructure is to increase security, better management or fail-
over purposes. For some it may not be feasible to place assets in a public cloud,
therefore many opt for the value of combining di�erent cloud deployment models.
The drawbacks of a hybrid cloud however is the requirements of managing multiple
di�erent security platforms and communication protocols.

2.1.5. Challenges

Cloud computing o�ers potential to improve productivity and reduce costs but it
also poses many new challenges such as security and legal considerations, technical
challenges, and software testing challenges.

One of the main concerns for cloud computing are security issues. Some organiza-

6VMware, Inc. http://www.vmware.com/
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tion's data might be considered too sensitive to be stored in a non-private cloud.
Cloud customers must put trust in the cloud provider hands to not, intentionally nor
by accident, compromise their data. Even if the nodes of the cloud infrastructures
are secure, data encryption also needs to be in place for the various communication
channels.

There are numerous technical challenges that need to be considered when doing
research for cloud integration and it is far from trivial to integrate infrastructures to
cloud models in a scalable and secure way. Network problems, such as performance
issues, latency, and data transfer rates can for example be hard to manage.

Security and technical challenges have received good focus in academic and commer-
cial literature. Khajeh-Hosseini, Sommerville and Sriram address research challenges
for enterprise cloud computing in the journal paper Research Challenges for Enter-
prise Cloud Computing [37], which focuses on security and regulatory issues. Cloud
consultant John Roton describes technical and organizational challenges in his book
Cloud Computing Explained [48].

Software testing has however not been quite as well addressed. The aim of this
thesis is to improve this.

2.1.6. Grid Computing

Grid computing can be thought of as cloud computing's technical ancestor. Both
are resource packages (hardware, software, network) to be used on demand. The
main di�erence is that the resources in a grid can be global and provided by many
users or organizations, while cloud resources are generally only provided by a single
provider. There are also di�erences in applications to be deployed to the two di�erent
infrastructures. Grids are typically used for scienti�c computing while clouds are
for business.

Coulouris et al. describe the 'Grid' as a middleware that is designed to enable the
sharing of resources such as �les, computers, software, data and sensors on a very
large scale. The resources are shared typically by groups of users in di�erent orga-
nizations who are collaborating on the solution of problems requiring large numbers
of computers to solve them [19].

Example application that uses grid technology is the World-Wide Telescopce [26], a
data-intensive application shared by the astronomy community. Another example,
SETI@home, was created for an experiment in public-resource computing. The
SETI (Search for Extra-Terrestrial Intelligence) application uses personal computers
at volunteers' homes to detect intelligent life outside the earth [6].
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2.1.7. High Performance Computing (HPC) in the Cloud

With the introduction of cloud technology recent case studies show that developers
are seeking ways to utilize cloud platforms for scienti�c computing or what is known
as High Performance Computing (HPC). One example is an image processing appli-
cation, developed by NASA's Jet Propulsion Laboratory (JPL), which uses Amazon
AWS for parallel processing of satellite images7.

However care must be taken in designing and implementing HPC applications for
the cloud. Iosup et al. analyze performance of scienti�c computing applications
within di�erent cloud platforms. Their results indicate that the current clouds need
an order of magnitude in performance improvement to be useful to the scienti�c
community. They point out that the current commercial clouds have been built to
support web and small database workloads, which are very di�erent from typical
scienti�c computing workloads. Nevertheless they �nd that while current cloud
computing services are insu�cient for scienti�c computing at large, they may still be
a good solution for the scientists who need resources instantly and temporarily [35].

The NEON project (Northern Europe Cloud Computing), a cross-Nordic (Sweden,
Norway, Denmark, Finland and Iceland) - project, had the purpose of evaluating
the usefulness of private versus public cloud services for HPC in the Nordic eScience
community. The project's aim was to review the promises and summarize the overall
o�ering cloud computing could give to their community. The project's �ndings
are that private cloud solutions are now not mature enough for a transparent user
experience, which is however expected to be gained by the mid of 2012. It is further
stated that public clouds, especially Amazon AWS, are in a more mature stage
than private ones but still lack features that are necessary to include for cloud
resources in a transparent manner in national infrastructures. Public clouds are
already competitive in the low end for non-HPC jobs (low memory, low number
of cores) on price and public clouds are recommended for non-HPC and some HPC
users. About 20% of the jobs running on the current Nordic eScience supercomputer
infrastructure are potentially suitable for cloud-like technology [20].

Amazon is aware of the resource demand of scienti�cal computing, and they have
launched special services for HPC8. This new service is claimed to be suited for
complex computational workloads that are sensitive to network performance or in
need of substantial processing power.

7http://aws.amazon.com/solutions/case-studies/nasa-jpl/
8http://aws.amazon.com/about-aws/whats-new/2011/04/07/announcing-amazon-ec2-spot-
integration-with-hpc-instances/
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2.1.8. Distributed Systems

Cloud computing and distributed systems are closely related. Cloud technology adds
new organizational and technological ways of creating infrastructure for distributed
systems.

Resource sharing of computing power, printers, �les, web pages, and databases is
the motivating factor for creating distributed systems. These systems are every-
where and are largely connected together via the Internet. The systems come in
various �avors and are heterogeneous in nature. They can roughly be divided into
three types: distributed information systems, distributed computing systems, and
distributed pervasive/ubiquitous systems [11].

The construction of distributed systems poses many challenges because of their
complexity and diversity. A multitude of di�erent sub-systems and protocols make
up a single distributed system, and thus implementing and maintaining a distributed
system is very challenging; attributes such as security, scalability, failure handling,
concurrency and transparency must be considered [19].

Distributed systems pose numerous challenges on software testing. Because of the
diversity it is extremely di�cult to test all possible system con�gurations where the
software will be executed i.e. di�erent operating systems, hardware, and software
versions. Clustering and load-balancing architectures make matters even more com-
plicated. Reliability issues such as fail-over and redundancy and network related
issues such as latency and through-put are further non-trivial testing objectives.
These challenges fall under non-functional testing.

This thesis focuses on functional testing of distributed computing systems, mainly on
parallel computation which is a form of computation in which many calculations are
carried out concurrently [4]. Parallel computing is used in di�erent areas as diverse
as mathematics, medicine, molecular biology, astrophysics, and image rendering.
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2.2. Amazon Cloud Services

This thesis deals with software testing in an elastic cloud environment. The research
involves launching a distributed application within a cloud environment as a case
study for software testing. The cloud platform selected for the research was Amazon
Elastic Compute Cloud (EC2) which is part of Amazon Web Services (AWS).

2.2.1. Amazon Web Services (AWS)

Amazon is arguably a pioneer in o�ering cloud services and AWS has become the
de facto standard for cloud infrastructure services. Other IaaS services either com-
plement AWS or are considered competitors to them.

The story behind Amazon's rise in the IT sector was that they wanted to �nd ways
to make better use of underutilized peak computing power of their on-line retail.
High proportion of their sales are processed in the weeks before Christmas. The
company's peak day in on-line retail in the year 2010 was November 29, when more
than 13.7 million items where ordered worldwide across all product categories [31],
and it takes a tremendous amount of computing power to handle such a load.

Amazon launched AWS in 2002 to turn their IT cost weakness into an opportunity.
The initial plan was selling idle capacity to organizations who needed secure and
reliable computing infrastructure, at other times than around the Christmas sales.

Today Amazon o�ers a large number of cloud services, with largest attention on
Amazon EC2, described in section 2.2.2 and accommodating storage services de-
scribed in section 2.2.3.

2.2.2. Amazon Elastic Compute Cloud (EC2)

Amazon Elastic Compute Cloud (Amazon EC2) is the name of the service that
provides the re-sizable compute capacity, or what is referred to as a cloud. Included
in Amazon EC2 is a set of web services that allows users to launch and manage
Linux/UNIX and Windows server instances in Amazon's data centers, and load
them with custom application environment.

It is possible to commission from one up to thousands of server instances simulta-
neously. Public information on on how many instances EC2 customer can reserve
at a time is not available, but the default starting limit is twenty reserved instances
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that a customer can purchase each month. The limit can be raised by contacting
Amazon9.

Amazon provides web user interface for managing cloud resources. Figure 2.2 is a
snapshot of the AWS Management console EC2 view. The console provides manage-
ment for AWS's compute, storage, and other cloud features. For EC2 management
the console has options to start and stop EC2 instances and con�gure networking
and security features.

Figure 2.2: The AWS management console

Amazon furthermore provides a software development kit (SDK) for cloud service
management called Amazon AWS SDK. Currently the SDK's API has been im-
plemented for Java, Microsoft .NET, PHP, Python, and Ruby. Eclipse users can
download the AWS Toolkit plug-in which makes Java application deployment to in-
stances possible from within the Eclipse IDE, plus additional instance management
features [5]. The AWS SDK for Java is used for this thesis' case study, to manage
cloud instances for the test bed.

9http://aws.amazon.com/contact-us/reserved-instances-limit-request/
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Amazon Machine Image (AMI)

A core feature of cloud computing is virtualization. Virtual machines in Amazon
EC2 are called Amazon Machine Images (AMI). An AMI consists of a read-only
�le-system image which includes an operating system and typically some application
software (e.g. web application or a database).

Amazon provides prepackaged AMIs with Windows and Linux operating systems
installed. Various 3rd party vendor also provide prepackaged images, like Ubuntu
which provides o�cial Ubuntu Linux images on Amazon EC2. Users can also create
their own images from scratch or extend publicly available images and re-package
them with new instance IDs.

An AMI can be public, paid, or shared. A public AMI can be used by anyone: A
paid image requires subscription fees, and a shared AMI is private and can only be
used by Amazon EC2 users speci�ed by the owner of the image.

Amazon EC2 Hardware Speci�cations and Pricing

The hardware speci�cation for Amazon instances is selected at startup of each in-
stance and can be selected from prede�ned a set of instance types de�ned by Amazon
(e.g. Small, Large, or Extra Large). The instance type controls what resources the
AMI uses; RAM, CPU and disk size. Table 2.1 lists the variations for EC2 instances
and the di�erent prices in USD per hour based on computing power.

The prices shown in the table are for Linux/UNIX usage within the European region.
Windows operating system costs are roughly around 10-25% higher for each instance
type. The case study in this thesis uses the standard 'Small' instance type. The
cost for this thesis' research has summed up to be 112.59 USD for 1,186 instance
hours.

Amazon provides further pricing options for reserved instances on annual basis or
for spot-priced instances. Pricing details can be �nd on Amazon's EC2 website10.

2.2.3. Amazon Data Storage

Because of EC2's elastic nature permanent data persistence is not possible for AMIs.
Amazon provides various di�erent cloud services to address data persistence issues
in the cloud:

10Amazon EC2 Pricing: http://aws.amazon.com/ec2/pricing/
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Type RAM CPUs Instance I/O Price/
(GB) (EC2) Storage Platform Perform. hour

Micro Instances :
Micro 0.613 2 0 GB 32/64-bit Low $0.025

Standard Instances :
Small 1.7 1 160 GB 32-bit Moderate $0.095
Large 7.5 4 850 GB 64-bit High $0.38
Extra
Large

15 8 1,690 GB 64-bit High $0.76

High-Memory Instances :
Extra
Large

17,1 6.5 420 GB 64-bit Moderate $0.57

Double
Extra
Large

34,2 13 850 GB 64-bit High $1.14

Quadruple
Extra
Large

68,4 26 1,690 GB 64-bit High $2.28

High-CPU Instances :
Medium 1.7 5 350 GB 32-bit Moderate $0.19
Extra
Large

7 20 1,690 GB 64-bit High $0.76

Table 2.1: Amazon on-demand instance types (May 7, 2011)

• Amazon Simple Storage Service (S3) provides a web services interface for stor-
ing and retrieve data.

• Amazon Elastic Block Storage (EBS) provides block level storage volumes for
use with Amazon EC2 instances.

• Amazon SimpleDB is a non-relational data store for data queries via web
services.

The di�erence between S3 and SimpleDB is that SimpleDB is meant to be for
smaller amounts of data. SimpleDB was created for performance optimization and
in order to minimize costs across AWS services for large objects and �les which are
stored in S3. Meta-data associated with those �les is stored in the SimpleDB. It is
possible to run applications in Amazon EC2 and store data objects in Amazon S3.
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Amazon SimpleDB can then be used to query the object meta-data from within the
application in Amazon EC2 and return pointers to the objects stored in Amazon
S3. This allows for quicker search and access to objects, while minimizing overall
storage costs.11

2.2.4. Eucalyptus

Eucalyptus (Elastic Utility Computing Architecture for Linking Your Programs To
Useful Systems) is an open-source private cloud infrastructure, which implements
the Amazon speci�cation for EC2. Eucalyptus conforms to both the syntax and the
semantic de�nition of the Amazon API and tool suite, with few exceptions. Thus it
is possible to use the Amazon command-line tools directly for Eucalyptus12.

2.3. Software Testing

This section starts by introducing the fundamentals of software testing, before in-
troducing software testing techniques for distributed systems and cloud computing.
Common challenges for this area are discussed and what testing methods should be
considered for testing within cloud environments.

2.3.1. Fundamentals of Software Testing

Software testing is a critical part of the software development process. It is one
of the most challenging and costly process activities, and in its fullest de�nition it
provides strong support for the development of high quality software [15]. Testing
objectives can be seen as twofold:

• Evaluating quality and

• Defect detection

As other quality assurance activities, testing helps ensuring that software is built on
time, within budget, and is of the quality expected, de�ned by quality attributes such
as reliability, usability, performance, and the ability to meet users' requirements.

11Amazon S3 vs. SimpleDB. http://aws.amazon.com/simpledb/#sdb-vs-s3
12Eucalyptus FAQ. http://open.eucalyptus.com/wiki/FAQ
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2.3.2. Veri�cation and Validation

The testing process includes the Veri�cation and Validation (V&V) processes which
are a set of activities whose goal is to foster software quality during the development
life-cycle [33]. The processes are de�ned in IEEE Standard Glossary of Software
Engineering Terminology [47] as the following, with Boehm's [12] informal de�nitions
of the terms inside brackets.

Veri�cation is the process of determining whether or not the products of a given
phase of the software development cycle ful�ll the requirements established
during the previous phase.

(Am I building the product right?)

Validation is the process of evaluating software at the end of the software devel-
opment process to ensure compliance with software requirements.

(Am I building the right product?)

Veri�cation and validation are closely related to static- and dynamic testing where
veri�cation is usually associated with activities such as inspections, reviews and
walkthroughs (static testing). Validation on the other hand is usually associated
with running executable test cases on the code (dynamic testing), which this thesis
focuses on.

2.3.3. Types of Testing

Software testing is a complex activity. Figure 2.3 shows the many dimensions of soft-
ware testing which can cover the di�erent stages of a software development project.
Di�erent test case design strategies can be used at di�erent testing levels, and there
are many quality attributes of the software to consider when testing.

With black-box testing strategy the software under test is considered to be an opaque
box, with no knowledge of its inner structure. Testers have only knowledge of
what the software is supposed to do from the software speci�cations. Black-box
approaches can be can be used for all levels of testing from unit to acceptance, and
are especially useful for revealing requirements and speci�cation defects. Because
black-box testing only consider software behavior and functionality, it is often called
functional, or speci�cation-based testing.

White-box testing approaches, on the other hand, focus on the inner structure of
the software under test. White-box approaches are mainly used for unit testing and
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up to the integration testing level. They are especially useful for revealing design
and code logic defects in elements such as loops, branching and data �ow [14].

It is important that there are several degrees of freedom of what, where, and when
should be tested in a software system, and the key to successful testing is the se-
lection, and the execution, of appropriate methods in each case. This thesis focuses
on black-box functional integration testing, for validation of a software application
running in a cloud environment.

Figure 2.3: Types of testing [53]

2.3.4. Testing Distributed Systems

As described in Section 2.1.8, cloud applications can take on the form of various
types of distributed systems. Testing of distributed systems focuses on the interac-
tion between components of the distributed systems, as opposed to non-distributed
testing which do not usually involve any interaction with other systems or distributed
components. In distributed testing, the test system itself is often distributed as well,
i.e. test components can be distributed on the di�erent nodes of the system.

Distributed testing should not be confused with remote testing which is a method
to distribute test cases over many machines. No communication is between the
di�erent machines in case of remote testing, even though many machines are used
at once. Those tests do not involve any interaction between the di�erent processors
or the test components of the test cases.
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2.3.5. Testing Cloud Applications

When discussing software testing and cloud computing it is bene�cial to distin-
guish between the di�erent testing objectives. The Software Testing in the Cloud
(STITC)13, a special interest group, categorized the di�erent objectives of cloud test-
ing in the following three key areas at the 2nd International Workshop on Software
Testing in the Cloud, held in Paris, France in April 2010. The STITC workshop
was co-located with the 3rd IEEE International Conference on Software Testing,
Veri�cation, and Validation (ICST 2010).14

1. Testing in the cloud: Leveraging the resources provided by a cloud computing
infrastructure to facilitate the concurrent execution of test cases in a virtual-
ized environment.

2. Testing of the cloud: Testing applications that are hosted and deployed in a
cloud environment.

3. Migrating testing to the cloud: Moving the testing process, test assets, and
test infrastructure from their current state to facilitate either testing in the
cloud or testing of the cloud.

Testing in the cloud is about utilizing the cloud for testing, such as for con�guration
testing and load testing. Software testing of the cloud, the focus of this thesis, is
the least researched area. Very few papers have been published that focus directly
on testing applications in a cloud environment. Migrating testing to the cloud is a
hybrid category for the two other categories. Related work for these three categories
is discussed in Section 3.

Testing of the Cloud

This thesis focuses on testing of the cloud. Much of the testing of cloud applications
can be done with traditional distributed testing methods regardless of the type of
hardware or network infrastructure in use.

On the system testing level the whole system is tested via its user interface and the
transparency of the clouds should not impose any special requirements of conforming
to functional requirements of the software, so testing is not a�ected by the fact the
application is running within cloud environment. Same system testing approaches
can therefore be used as for non-cloud systems. The same goes for the unit testing

13Software Testing in the Cloud (STITC). http://www.stitc.org/
14ICST 2010. http://vps.it-sudparis.eu/icst2010/

20



2.3. Software Testing

level where classes are tested in isolation and should not interact with the cloud
environment. Unit testing can even be run outside the cloud in organization's local
test environment.

Within traditional, fully-controlled, and predictable test-beds IP address allocation
is usually not an issue, because the testers know the addresses of each machine used
in the testing. However, the elastic nature of clouds as described in 2.1.3, introduces
new challenges for software testing. This paper addresses issues regarding elastic
behavior of clouds, particularly IP address allocation of virtual machine instances.

The integration testing level, which lies between the unit testing and system testing
levels, is the focus of this thesis. The focus is on the communication on two (or more)
di�erent software components which run on two (or more) cloud instances. To be
able to test the communication, test components running on each of the involved
cloud instances are needed to perform actions on the components under test. The
problems for this type of testing have been solved with test technologies such as
TTCN-3 and researched for grid application work�ows [50].

This thesis case study uses the Jata test framework [60] which uses concepts of
TTCN-3 for setting up the communication points for the functional black-box inte-
gration testing of a cloud application. TTCN-3 and Jata concepts are described in
sections 2.4 and 2.5 respectively.

For testing within cloud environment there are also various considerations to be
made regarding non-functional requirements. Security testing and privacy-aware
testing probably being at the top of many organizations' list. Substantial amount
of work has been done to identify cloud computing security risks and privacy is-
sues [27, 56]. Another consideration is performance testing because virtualization
and resource time-sharing may introduce unexpected performance penalties when
applications are deployed in the cloud.

Testing of non-functional requirements for cloud applications, such as the challenges
for non-functional distributed system testing discussed in Section 2.1.8, are not
within the scope of this thesis.

2.3.6. Cloud Testing Tools

One area which targets software testing using the cloud, and is widely used, is
the easy access to large clusters of test machines for various purposes, e.g. load-,
stress- and performance testing. Several commercial testing tools exist that utilize
cloud computing for testing. They can for instance allow automation of functional
and con�guration testing such as cross browser testing of websites with di�erent
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browsers and di�erent operating systems. An example tool for this purpose is Cloud
Testing15.

PushToTest16 can be used within a Continuous Integration [21] environment, where
the build server can start the cloud testing tool automatically to deploy the system
under test and the test code to available test nodes in the cloud. The cloud testing
framework runs the test cases, collects results and tears down the cloud instances
afterwards.

SOASTA CloudTest17 supports performance and stress testing by leveraging the
compute power o�ered by cloud computing.

Test Lab as a Hybrid Cloud Example

One example of cloud service usage is cost reduction model for hardware and software
costs for software company's development- and test labs. The idea is to use a
hybrid cloud where the public cloud part is used to satisfy any spikes in load for
the operation of the system's infrastructure. Figure 2.4 shows how the contributed
cost can be set to lower levels than the maximum need for the spike loads. In this
example the cloud infrastructure is a hybrid cloud where the companies test lab is
a private cloud but is extended to the public cloud when more resources are needed
for cases such as integration-, load-, stress-, and performance testing.

Public Cloud: On-Demand

Private Cloud: Constant Hardware Cost

Hardware

Time

Performance Testing
Stress Testing

Figure 2.4: Hybrid cloud example for a software test lab

15Cloud Testing. http://www.cloudtesting.com
16PushToTest. http://www.pushtotest.com
17SOASTA CloudTest. http://www.soasta.com/cloudtest/
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The same argument holds for this cloud infrastructure as a cost reduction model for
on-line retail system, where spikes in load are at maximum around Christmas sales.
Amazon, the large on-line retailer, went the other way around and decided to make
use of their peak hardware investments to create services and pro�ts of their regular
basis underutilized computing resources. Amazon created AWS, a large set of web
services, which includes what is now known as one of the largest cloud services,
Amazon EC2, as described in Section 2.2.

2.3.7. Test Documentation

For structuring purposes the case study performed in this thesis uses a Software Test
Plan approach with added test design and test case details for describing a black-
box application testing of a cloud application. The test procedure is furthermore
covered.

A software test plan is a document describing the testing scope, approach, resources,
and activities of testing. The test plan holds the basis for formal testing. It identi�es
amongst others test items, the features to be tested, the test environment, and the
test design techniques.

The format and content of a software testing documentation can vary depending on
the processes, standards, and testing techniques used. The structure used in Sections
4.2 to 4.5 is based on concepts from IEEE Standard for Software and System Test
Documentation (IEEE Std 829-2008) [32], in particular concepts from the Level Test
chapters, listed in table 2.2.

IEEE Std 829 - Level Test Chapters
LTP Level Test Plan(s)
LTD Level Test Design
LTC Level Test Case
LTPr Level Test Procedure

Table 2.2: Level test chapters used from IEEE Std 829-2008

The sections used from the IEEE level test chapters are listed with comments in
table 2.3.
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IEEE-829
Section

Concept Description

LTP 1 Introduction Provides an overview of the test plan. Speci�es
goals, objectives, and any constraints.

LTP 2.1 Test items List of software/products and their versions.
LTP 2.3 Features to be

tested
Features of the software/product to be tested.

LTP 2.4 Features not to
be tested

Features of the software/product which will not be
tested, and the reasons.

LTP 2.5 Approach The overall approach to testing. Speci�es the test-
ing levels, the testing types, and the testing meth-
ods.

LTP 2.6 Item pass/fail
criteria

Speci�es the criteria that is used to determine
whether each test item has passed or failed testing.

LTP 3.2 &
LTC 2.5

Test environ-
ment

Properties of the test environment: hardware, soft-
ware, communications etc.

Table 2.3: IEEE Std 829-2008 concepts used for the case study documentation

2.4. The Test Language TTCN-3

The Testing and Test Control Notation version 3 (TTCN-3) is a test speci�cation
and test implementation language that supports black-box functional testing of dis-
tributed systems. It also has support for automatic execution of the speci�ed test
cases by adding an adaption layer. TTCN-3 can be used for di�erent levels of testing
such as system-, integration-, and unit testing. It is not only applicable for specify-
ing and implementing functional tests, but also for scalability, robustness, or stress
tests of huge systems [25, 43].

TTCN-3 originates from the telecommunication domain and it is published as an
international standard by the ETSI (European Telecommunication Standard Insti-
tute) [1]. As a standardized language TTCN-3 is supported by various tools and
used by industry and standardization bodies. Powerful tools are available for spec-
ifying, deploying, and executing test cases. TTCN-3 is applied in various other
domains than telecommunication (e.g. data communication, automotive, railway,
and �nance). However only one work [50] is known where the language is used in
the �eld of parallel systems [43].
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2.4.1. Conformance Testing Methodology and Framework

TTNC-3 is based on concepts of the of the international ISO/IEC standard 9646 OSI
Conformance Testing Methodology and Framework (CTMF) [36]. CTMF consists
of seven parts for de�ning a comprehensive procedure for the conformance testing
of Open Systems Interconnection (OSI) protocol implementations. The di�erent
parts contents are: 1) General concepts, 2) test suite speci�cation and test system
architectures, 3) test notation, 4) test realization, and 5-7) means of testing and
organizational aspects.

CTMF has been successfully applied for testing distributed telecommunication sys-
tems such as ISDN- and GSM-based systems. CTMF concepts were adapted by
Rings, Neukirchen and Grabowski in Testing Grid Application Work�ows Using
TTCN-3 [50], for functional testing of distributed Grid applications. Part 2 of the
CTMF standard, test suite speci�cation and test system architectures, was followed,
while other parts were too OSI or conformance testing speci�c to be used for grid
testing.

This thesis uses CTMF's multi-party test architecture, in accordance to [50], to
test the parallel application management functionality of a cloud application. The
conceptual test architecture is shown in �gure 2.5.

Figure 2.5: CTMF multi-party test architecture [50]

The system under test (SUT) is made up of the service provider (e.g. cloud or grid)
and the implementation under test (IUT). For cloud and grid testing it is assumed
that the service provider has already been adequately tested, and the focus is on
the communication aspects of the application's parallel functionality.
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The SUT is controlled by an Upper Tester function (UT) and one or more Lower
Tester functions (LT). The UT plays the role of a user of the service provided by
the SUT. IUT and the LTs play the role of peer entities, i.e. the LT and the IUT
realize together the service provided to the UT.

The Points of Control and Observation (PCO) are the interfaces used by UTs and
LTs to communicate with the SUT. UTs and LTs communicate by means of Test
Coordination Procedures (TCP). Further test architectures for distributed sys-
tems using CTMF concepts are described in details by Walter, Schieferdecker and
Grabowski [59].

2.4.2. TTCN-3 Concepts

This section contains description of TTCN-3 test architecture and language ele-
ments. The concepts covered are only subset of the TTCN-3 test language, i.e.
those concepts that are relevant for this thesis.

The TTCN-3 language is partly comparable to general programming languages, such
as C++, C#, and Java which include modules, data types, variables, functions, pa-
rameters, loops, and conditional statements. However TTCN-3 is based on concepts
which are independent from general programming languages, such as test cases, test
systems, test verdicts, and test components.

The building-blocks of TTCN-3 are modules, which can be parsed and compiled as
separate entities. A module can include one or more test cases, and describes the
execution sequence of them.

A test case is a complete and independent speci�cation of the actions required
to achieve a speci�c test purpose. Test cases de�ne the executable behaviors for
stimulating the SUT and analyzing the results. In a typical black-box test case, a
stimulus is sent to a SUT and the response observed to decide whether the SUT has
passed or failed the test.

Test Architecture

TTCN-3 architecture supports distributed testing via Test Components (TC). Not
only may the SUT be distributed or parallel, but also the test itself may consist
of several test components that execute test behavior in parallel. A TTCN-3 test
system consists of one Main Test Component (MTC) and zero or more Parallel Test
Components (PTCs). The MTC's behavior is speci�ed in the body of the test case
de�nition. Test components can dynamically create, start, and stop other PTCs.
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Each test component runs concurrently and can execute test behavior in parallel
with other test components. Test case execution ends when the MTC terminates.

Test cases are executed by a Test System. A test system con�guration consists of a
set of inter-connected test components with well-de�ned communication ports and
an explicit test system interface which de�nes the borders of the test system [1].
Figure 2.6 shows an overview of a TTCN-3 test system with test components com-
municating together via ports and to the SUT through layers of abstract and real
test system interfaces.

Figure 2.6: Conceptual view of a typical TTCN-3 test con�guration [1]

The de�nition of an abstract test system interface (as seen in Figure 2.6) is identical
to a test component de�nition, i.e. it contains communication ports through which
the test case is connected to the SUT.

The abstract test system interface is described using high-level TTCN-3 code with
abstract port de�nitions, whereas the real test system interface is realized by a low-
level adaptation layer that implements the ports. The real test system interface, i.e.
the physical connections, can be implemented with a programming language such
as Java. The speci�cation and implementation of the real test system interface is
outside the scope of TTCN-3 [1].

When designing test systems with TTCN-3 it is desirable to make the real test
system interface ports as 'thin' as possible, by implement all test case logic within
the abstract TTCN-3 layer. That way it is possible to re-use the port implementation
for other test cases.

27



2. Foundations

Communication Ports

For communication between test components or between TCs and the test system
interface (SUT), ports are used. Each test component has a set of ports which
control in- and out-directions. If two ports are connected, the in-direction of one
port is linked to the out-direction of the other, and vice versa. The out-direction
is directly linked to the communication partner, i.e., outgoing information is not
bu�ered.

Each port is modeled as an in�nite FIFO queue which stores the incoming messages
or procedure calls until they are processed by the component owning that port.
Port connections are created and destroyed dynamically at runtime and there are
no restrictions on the number of ports a component may have.

Communication between ports can be message-based and procedure-based commu-
nication. Message-based communication (e.g. low-level network messages) is based
on an asynchronous message exchange and the principle of procedure-based commu-
nication is to call procedures in remote entities (e.g. high-level procedure or function
calls). Figure 2.7 shows an example of test case port communication setup for three
test components and a SUT.

Figure 2.7: Example TTCN-3 port communication setup

Alt Statements

The alt statement is used where several alternatives can occur at a certain point
in time, for instance if two di�erent messages can be received as a response. Alt
statements express the sets of possible alternatives that form the tree of possible
execution paths by de�ning the branching of test behavior for receiving and handling
of events and responses, i.e. messages, timer events, and termination of PTCs [1, 25].

28



2.4. The Test Language TTCN-3

Code example in listing 2.1 shows a typical structure of a TTCN-3 test case using
an alt statement. The test stimulates the SUT by sending a message (line 11) and
a timer is started (line 13) to control the timeout for a response. For analyzing
the outcome multiple alternatives are de�ned (line 15-35). Expected valid response
makes the test pass. Invalid response (anticipated or unexpected) makes the test
fail and the timer functionality makes sure that the test case fails if the response is
not not received in time.

1 systemType { timer replyTimer ;
2
3 // The expec ted response
4 var charstring v_expectedResponse := "42" ;
5
6 // Map por t s between MTC and SUT ( system component )
7 map(mtc : pt_mtc , system : port_system ) ;
8
9 // Send the s t imu lu s v ia MTC' s por t
10 pt_mtc . send ( a_MeaningOfLifeRequestMessage )
11
12 replyTimer . start ( 1 00 . 0 ) ;
13
14 alt {
15 // Handle the case f o r an expec ted answer .
16 [ ] pt_mtc . ( receive ( a_ExpectedResponse ( v_expectedResponse ) ) {
17 replyTimer . stop ;
18 setverdict (pass ) ;
19 }
20 // Handle the case f o r an i n v a l i d ( but an t i c i p a t e d ) response .
21 [ ] pt_mtc . receive ( a_Inval idButAntic ipatedResponse ) {
22 replyTimer . stop ;
23 setverdict ( f a i l ) ;
24 }
25 // Handle the case f o r any o ther ( i n v a l i d ) response .
26 [ ] pt_mtc . receive ( ) {
27 replyTimer . stop ;
28 setverdict ( f a i l ) ;
29 }
30 // Handle t imeout .
31 [ ] replyTimer . t imeout {
32 setverdict ( f a i l ) ;
33 }
34 }
35 unmap(mtc : pt_mtc , system : pt_system ) ;
36 stop ;
37 }

Listing 2.1: TTCN-3 typical test case structure

It is possible to de�ne powerful and complex forms of behavior with TTCN-3 where
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sequences of statements are expressed as sets of possible alternatives to form a tree
of execution paths, as illustrated in �gure 2.8.

Figure 2.8: Illustration of alternative behavior in TTCN-3 [1]

Functions and Altsteps

Behavior de�ned in the body of test cases can be structured into functions and alt-
steps. TTCN-3 functions are similar to functions in typical programming languages,
i.e., they can be used to structure computation or to calculate a single value. Be-
havior of test components is generally de�ned by a function.

Altsteps are a combination of a function and an alt statement and are used to specify
default behavior or to structure the alternatives of an alt statement. Altsteps are
scope units similar to functions and may invoke functions and altsteps.

Test Verdict

The result of a test case execution is a test verdict. TTCN-3 provides a special test
verdict mechanism for the interpretation of test runs. This mechanism is imple-
mented by a set of prede�ned verdicts, local- and global test verdicts and operations
for reading and setting local test verdicts.

The verdict can have �ve di�erent values: pass, fail, inconc, none, and error which
are used for the judgement of complete and partial test runs. A pass verdict de-
notes that the SUT behaves according to the test purpose, a fail indicates that the
SUT violates its speci�cation, an inconc (inconclusive) describes a situation where
neither a pass nor a fail can be assigned and the verdict error indicates an error
(i.e. communication error) in any of the test devices which can make the test run

30



2.5. The Jata Test Framework

impossible to continue in a normal way. The verdict none is the initial value for
local and global test verdicts, i.e., no other verdict has been assigned yet [25].

Each test component maintains a local verdict for tracking its own individual ver-
dict. Additionally, the TTCN-3 run-time environment maintains a global test case
verdict that is updated when each test component (i.e. the MTC and each and every
PTC) terminates execution. The global test verdict, which is not accessible to test
components, is updated according to overwriting rules when a test component ter-
minates. The �nal global test verdict is returned to the module control part when
the test case terminates.

Figure 2.9 illustrated the relationship between test case, test components and ver-
dicts [1]. Test components can communicate with each other to co-ordinate their
actions or to come to a common test verdict.

Figure 2.9: Illustration of the relationship between verdicts in TTCN-3 [1]

The concepts of TTCN-3 allow creation of powerful distributed test architectures,
for example instantiations of the CTMF test methods [50]. This overview touches
only on the most common concepts and the ones which relate to distributed testing
such as testing for cloud applications, and the concepts Jata borrows from TTCN-3.

2.5. The Jata Test Framework

This thesis uses Jata [60], a Java test framework, in a case-study for testing a cloud
application, described in Section 4.2.

Jata was introduced in Jata: A Language for Distributed Component Testing, by Wu,
Yang and Luo [60]. It is a Java library which includes a meta-model for de�ning
and structuring test cases. The meta-model uses concepts from the well known stan-
dardized testing language TTCN-3, described in Section 2.4, to support distributed
component testing.

Jata's Java source code, binaries, and examples can be downloaded
from: http://code.google.com/p/jata4test/
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Jata was created to address issues in test automation for distributed testing. Its
approach is combining the strengths of two well known test frameworks: the de-
facto standard unit testing framework JUnit [10] and the TTCN-3 testing language.
Both are incredibly powerful, each in their own way, in specifying both simple and
complex test cases.

2.5.1. Jata vs. JUnit

JUnit is arguably the most popular test framework for Java and has become de-
facto standard for automated unit testing. It does however not focus on support
for distributed testing. JUnit runs in its own thread space and has no means of
supporting distributed communication back to its testing system context. In dis-
tributed testing, distributed test components need a way to communicate with the
test system, as supported by TTCN-3.

Jata is not based on JUnit nor does it use any concepts from JUnit. What is common
between them are that both are frameworks for creating and running repeatable
tests written in Java. JUnit focuses on locally executed unit testing, preferably
in isolation, while Jata focuses on distributed unit testing. In locally executed
unit testing there is no need for communication between di�erent units and test
doubles [42], such as stubs or mock objects [22], are used to eliminate dependencies
between components.

The fundamental di�erences between the two is that JUnit does not, out of the box,
support testing of distributed and parallel objects. JUnit test cases also terminate
the test execution as soon as an exception is caught while distributed tests need
to �nish all threads before analyzing the results, even though an error has been
discovered. Being a Java library it is possible to use JUnit from Jata test cases as
any other Java libraries. JUnit assertions provide optionally powerful and useful
features to use within Jata.

2.5.2. Jata's Meta-Model for Distributed Testing

For distributed testing a test technology that provides a systematic and structured
way of de�ning test cases is needed. With multi-threading test evaluation archi-
tecture Jata promises to support complex test scenarios in a �exible manner [60].
Jata's approach to distributed testing is providing rich constructs, using TTCN-3
concepts, to design test cases in a systematic and structured way.
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Jata's meta-model is shown in �gure 2.10. Testing concepts such as test components,
alternatives, communication ports, and codecs are borrowed from TTCN-3. Jata can
be seen as a minimal implementation of TTCN-3 testing concepts for Java.

Because of the similarity to TTCN-3 this section does not go into detail on Jata's
architecture, the corresponding concepts are described in Section 2.4, which includes
a high-level overview of TTCN-3 architecture. In the following section, 2.5.3, the
commonalities and di�erences between the two languages are described.

Figure 2.10: Jata's meta-model [60]

Usage of Jata is described in details in the case study in Section 4.2, where challenges
of testing cloud applications are investigated. Jata's usability and applicability for
testing applications in cloud environments is covered in the evaluation chapter of
the thesis (Chapter 5).
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Why Jata?

For testing distributed system within a cloud environment, TTCN-3 would be a
natural option to look at. There are couple of issues however regarding usage of
TTCN-3 for research as this one. Access to appropriate tools being one and another
being TTCN-3's relatively high learning curve.

Availability of tools for TTCN-3, because of licensing matters, is an issue for cloud
applications. Most TTCN-3 tools have a licensing scheme based on MAC network
addresses, which is unfortunate for cloud research. The elastic nature of clouds
makes it impossible to know beforehand the MAC address of the virtual machine
assigned each time, making cloud research with this type of licensing model di�cult.
Licensing issues are major obsticles for the cloud and need to be solved on case-by-
case basis between the software vendor and the cloud provider.

The Jata language was chosen for its simplicity and promising techniques for dis-
tributed systems testing based on combination of sound techniques from TTCN-3
and the �exibility of it being a Java library. Licensing issues played some role in the
selection, but it should be noted that a TTCN-3 tool sales representative was not
contacted for possibilities of research grant options. Early indications of Jata appli-
cability returned promising results for cloud testing, and it was therefore selected
for the research.

2.5.3. Jata and TTCN-3 Comparison

TTCN-3 is a widely recognized standard from ETSI for a testing speci�cation lan-
guage. TTCN-3 tools have been developed and widely used in the industry for
various testing purposes [25] while Jata's only usage is the authors introduction of
the language [60].

Jata does not implement the TTCN-3 standard, rather it selects the concepts needed
to implement a light-weight test framework for testing distributed systems. TTCN-3
can be considered a heavyweight approach which requires commercial tool support
and relatively high learning curve. Jata only uses subset of the TTCN-3 features,
and could be described as a trimmed down version of TTCN-3's core concepts. Table
2.4 lists the TTCN-3 concepts that map to Jata's meta-model, shown in �gure 2.10.

As seen in the list, Jata adopts the core concepts of TTCN-3 for specifying test
cases. Following sections describe how Jata uses the these TTCN-3 concepts for
test case de�nitions.
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TTCN-3 Concept
Test Case
Test Function
Main Test Component (MTC)
Parallel Test Component (PTC)
Port
Map/Unmap ports
Alt statements
Adapters
Codecs (Coders/Decoders)
Verdicts

Table 2.4: Adopted TTCN-3 concepts in Jata

Test Case and Test Function

To de�ne a test case in Jata the TestCase class is inherited. The actual test case
de�nition goes into the overriden Case method. The Case method has two input
parameters: the MTC and the SystemComponent. There are four things a test case
generally needs, independent of the type of the test [42]:

1. Setup (con�gure test components and prepare the test data)

2. Exercise (stimulate the SUT)

3. Verify (evaluate the response)

4. Tear-down (close connections and take down systems if needed)

The basics of how these things are structured and implemented in a Jata test case
is borrowed from TTCN-3.

The TestFunction meta-class is used to de�ne test behaviors, as functions are used
in TTCN-3. TestFunction has an overridable method Func for the actual de�nition.
The Func operation takes a test component (PTC) as a parameter which forces test
engineers to create the PTC outside the function's scope.

Test Components

Jata uses the concepts of test components as is done in TTCN-3. There are are
two types of test components in Jata: TestComponent and SystemComponent. The
former represents MTC and PTCs which are used for sending stimulation messages
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and receiving response messages from the SUT. As in TTCN-3 the MTC is created
automatically by the test system at the beginning of each test case execution and
the PTCs are dynamically created and stopped during the execution.

SystemComponent represents the abstract and real test system interfaces in TTCN-
3 and is used by test components for communication with the SUT for sending
and receiving messages. There is exactly one SystemComponent for each Jata test
system, but it can contain multiple system ports.

There is one major di�erence in the distribution, i.e. deployment, of parallel test
components between Jata and TTCN-3. In Jata it is not possible to distribute the
PTCs. MTC and PTCs must run inside the same Java virtual machine. Instead
remote ports are distributed on parallel nodes of the SUT (see following section on
communication ports).

Communication Ports

As in TTCN-3 test components contain communication ports. There are three
types of ports de�ned in Jata: AbstractPort (AP), SystemPort (SP) and TimerPort
(TP). AbstractPort owns an in�nite FIFO queue in which the incoming messages
are stored. SystemPort is composed of an AbstractPort and an Adapter. Timer-
ports are used to control timeouts and are special in the way that they do no connect
to other ports. An AP can map with either AP or SP, while a SP can only map with
an AP. Any message passing through a port is checked against the port speci�cation,
and validation exception is thrown (for the test system to handle) if the check fails.

For distributed testing SystemPorts can be distributed to remote machines, other
than the SystemComponent runs on. Test system communication with the SUT is
controlled through the SystemComponent's ports (local or remote). The remote im-
plementation of SystemPort is one of the main feature of Jata for distributed testing
support and is used in this thesis case-study for testing of parallel components.

Jata uses Java RMI is to connect remote ports with test system ports. Automated
port mapping in Jata is only supported within local execution context (see line 13
in listing 2.2 below). Mapping remote ports with test system ports requires manual
con�guration of the mapping (e.g. with RMI client and server con�guration).
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Alt statements

The alt (alternative) concept is the same as in TTCN-3. The response from a SUT
for a given stimulation message needs to be evaluated for correctness and also with
respect to response time. In TTCN-3 and Jata, alt statements are used to check the
possible responses. As in TTCN-3 a single Alt can have multiple branches and all
branches are evaluated sequentially according to the occurrence order. To see what
branch was hit in Jata, the result index maintained by the Alt class is checked.

The powerful expression of the TTCN-3 test language is clearly demonstrated in
the de�nition of alt statements (lines 15-35 in listing 2.1). The TTCN-3 alt state-
ment resembles a single switch-case sentence which is arguably easy to de�ne and
read. Jata relies on Java to express the same behavior using objects, methods and
conditions. The Alt class is used for the possible branches and the AltResult class
for the response (lines 18-27 in listing 2.2). The proc() method of the Alt class (line
25) has to be explicitly called to start the behavior. A conditional statement (lines
30-40) is then needed to structure the handling of the response. Those familiar with
TTCN-3 might grasp this structure easily, but for those who are not, this might
seem an awkward procedure.

Codecs and Adapters

Adapters are used in Jata for connecting the test system with the SUT. Codecs
(Coders/Decoders) are used to map between test system data types and the SUT
data types. When a test component stimulates the SUT, an encoding of the message
is done within the Adapter method of a system port. Decoding functionality for
messages from the SUT is implemented within the message object itself.

As described in Section 2.4.2, TTCN-3 has two layers for the SUT adaption: An
abstract test system interface and a real time test system interface as seen in �gure
2.6. Jata does not include this strict layering, the seperation is honored by the means
of the abstract (AP) and system ports (SP), where test components contain abstract
ports which are mapped to system ports encapsulated by the SystemComponent, i.e.
system adapter. The system ports contain the physical interface implementation.

Physical adapters and codecs concepts are not TTCN-3 language elements because
TTCN-3 focuses on abstract test suite de�nitions. TTCN-3 test engineers develop
adapter and codecs implementation in a general programming language such as Java.
In Jata these mappings are possibly simpler to maintain because the test system,
adapter layer and the codecs are all written in the same programming language.

37



2. Foundations

Verdicts

Jata uses the same verdict mechanism as TTCN-3. A test component maintains
the test result as a VerdictType. The verdict types are the same as in TTCN-3 and
share the same values: pass, fail, inconc, none, and error.

Code Example

Listing 2.2 shows a typical test case written in Jata. A main entry method (line 43)
is needed to start a test case. The test case itself is the Case method (line 7) which
is overridden from the Jata TestCase class.

Expected testing response is de�ned �rst (line 10). The port mapping is done with
the help of the PipeCenter class (line 13). In this case the MTC has a single ab-
stract port which is mapped to a system port for a single request-response stimulus.
This example does not use a remote port and the system adapter, along with its
port, runs in the same runtime context as the MTC. The stimulus is sent via the
MTC port which is mapped, as previously described, to the system port (line 16).
An alt statement is de�ned (lines 18-24) and then started (line 25). The result is
received (line 27) and handled based on de�ned branches of the alt statement (lines
30-40). If the expected response was received the MTC is indicated so, by a call
to its Pass() method (line 31). Jata does not provide test runners as JUnit, other
than textual logging, so the test verdict is written out at the end of the test (line 46).

1 public class MyTestCase extends TestCase<AbsComp , SysComp> {
2 public MyTestCase ( ) throws JataTestCaseException {
3 super (AbsComp . class , SysComp . class ) ;
4 }
5
6 @Override
7 protected void Case (AbsComp mtc , SysComp sys )
8 throws JataException {
9 // The expec ted response
10 St r ing expectedResponse = "42" ;
11
12 // Map por t s between MTC and SUT ( system component )
13 PipeCenter .Map(mtc . abstractPort , sys . systemPort ) ;
14
15 // Send the s t imu lu s v ia MTC' s por t
16 mtc . abs t rac tPor t . send (new QueryMsg ( "Meaning o f l i f e ?" ) ) ;
17
18 Alt alt = new Alt ( ) ;
19 Timer t = new Timer ( ) ;
20 t . start ( ) ;
21
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22 alt . addBranch (mtc . abstractPort ,
23 new ResponseMsg ( expectedResponse ) ) ;
24 alt . addBranch ( t , new SetTimeMessage (100) ) ;
25 alt . proc ( ) ;
26
27 AltResu l t r e s u l t = alt . g e tResu l t ( ) ;
28
29 // Handle the case f o r an expec ted answer .
30 i f ( r e s u l t . index == 0) {
31 mtc . Pass ( ) ;
32 }
33 // Handle t imeout
34 else i f ( r e s u l t . index == 1) {
35 mtc . Fa i l ( ) ;
36 }
37 // Handle any o ther message
38 else {
39 mtc . Fa i l ( ) ;
40 }
41 }
42
43 public stat ic void main ( St r ing [ ] argv ) throws JataException {
44 MyTestCase myTestCase = new MyTestCase ( ) ;
45 myTestCase . start ( ) ;
46 System . out . p r i n t l n ( "MyTestCase r e s u l t : " +
47 myTestCase . ge tVerd i c t ( ) ) ;
48 }
49 }

Listing 2.2: Jata typical test case structure

Compared to the TTCN-3 code example in listing 2.1 the two structures are very
similar and shows that Jata tries to mimic TTCN-3, as much as it can, in test case
structuring.
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3. Related Work

This chapter describes the related work where software testing meets cloud comput-
ing. It is worth noting that because of the recent introduction of cloud computing,
software testing researches are generally lacking for the �eld.

To get an overview of the importance of the research topic, and the availability
of literature, table 3.1 shows the number of articles found by searching for for the
keywords �Cloud-Computing� and �Software-Testing� in the literature search engines
Google scholar and LibHub1.

Year LibHub Google scholar
2010 22 97
2009 4 26
2008 3 9
2007 0 1

Table 3.1: Literature search results

No evaluation is made here on the relevance of the results returned, i.e. how relevant
each result is to both cloud computing and software testing. Of the 97 results
returned by Google scholar only very few relate to testing of cloud applications
or within the cloud. It can in fact be stated that research is lacking in the area
of software testing for clouds, especially for testing of the cloud. The numbers
indicate however that in the last years these concepts together have been receiving
more attention from academic researchers. This goes hand in hand with Google's
trend results on search trends for Cloud-Computing's rising popularity as seen in
�gure 3.1.

The upper section of the diagram shows search volume index for the two terms and
the lower for news reference volume. The blue line shows search trends for software
testing while the red one shows clearly the rising trend of cloud computing. Software
testing does not show up on the news reference volume while the news chart-line for
cloud computing bears signs of hype in the commercial community. The �ags on

1SemperTool's LibHub is Lund University search tool to discover and access the institution's
subscribed to and recommended information resources.
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Figure 3.1: Google trends diagram [57]

the cloud computing search chart-line, marked A-E, are links between certain news
items and changes in the graph, which is a special feature for trend analysis.

For an overview of related work in the �eld of software testing for cloud computing,
the work is grouped into the three categories of STITC (see Section 2.3.5). The
scope of this thesis is testing of the cloud, with related work discussed in Section
3.2.

3.1. Testing in the Cloud

Most of the current related work for software testing and cloud computing focuses
on testing in the cloud, e.g. for con�guration testing and load testing.

YETI on the Cloud, by Oriol and Ullah [44] discusses and proposes a testing tool
for distributing software testing over multiple computers in a cloud, for performance
gain in running the tests. YETI (York Extensible Testing Infrastructure)2 is an auto-
mated random testing tool for Java applications. A YETI testing session consists of
a sequence of calls made to methods at random using random generated arguments
(�monkey crash test�). Oriol's and Ullah's paper presents cloud-enabled version of
YETI which relies on on map/reduce implementation of Apache Hadoop3 to dis-
tribute the testing sessions on remote machines and recombine them at the end of
the test.

In Cloud-based Performance Testing of Network Management Systems, by Ganon

2YETI. http://yeti.origo.ethz.ch/
3Hadoop. http://hadoop.apache.org/
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and Zilbershtein [23], a method for performance testing of network management
systems (NMS) is presented by a case study where a NMS was tested using commer-
cial cloud computing services (Amazon EC2). The case study involved instantiation
of large numbers of virtual network elements in a cloud infrastructure, to simulate
large scale networks for NMS testing purposes. After the network of virtual elements
is up, it is used for performance testing of the NMS. They used cloud infrastruc-
ture instead of running a simulator or other infrastructure stating that the cloud
infrastructure provides less expensive and more scalable implementation.

Cloud9 [13, 16, 18] is a platform for automatic testing which parallelizes symbolic
execution, an e�ective, but still poorly scalable test automation technique to cloud
infrastructures. Currently supported platforms are Amazon EC2 and Eucalyptus.
Symbolic execution tries to eliminate the need for humans in selecting test inputs,
but the method faces many challenges, such as it is requires an �expensive� code
branch search algorithm. Symbolic execution algorithms require high memory con-
sumption and are CPU-intensive, both of which are roughly exponential in program
size. The aim of Cloud9 is to overcome these challenges and o�er symbolic testing
techniques as an easily accessible web service. By using large clusters of cloud in-
stances, the plan is to make this automated test case technique viable and practical
for software testing. Cloud9's service cost is proportional to the size of the SUT.
The pricing model is based on charges according to test goal speci�cations that users
provide.

D-Cloud [8, 28, 29] is an example of work that can fall either in category of testing
in the cloud, or of the cloud. It enables automation of system con�guration and
the ability to run test cases simultaneously, which places the framework in this
category of testing in the cloud. The framework has also the ability to emulate
hardware faults which can put it in the category testing of cloud applications, i.e.
how applications respond to and handle hardware failures. Eucalyptus is D-Cloud's
supported cloud management framework.

3.2. Testing of the Cloud

The focus of this thesis is testing of the cloud. Little work for testing of cloud
application has been published. Chan, Mei and Zhang [17] discuss testing of cloud
applications and propose testing criteria based on modeling of cloud applications.
One criterion is de�ned to test whether cloud application performs correctly af-
ter horizontal scaling of the cloud, and addresses the problem that the number of
possible scaling ways are potentially in�nite, and thus, infeasible to test every con-
�guration. Horizontal scaling, also known as scaling out, is adding more machines,
generally inexpensive commodity hardware, to the environment. Cloud computing
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strengths lie to a large degree in the concept of horizontal scaling. Vertical scaling,
also known as scaling up, in contrast means adding more hardware resources to the
same machine, generally by adding more processors and memory.

Various studies have been made for testing distributed systems. In Distributed Unit
Testing [54], by Runtao et al., the authors introduce the DisUnit framework to ad-
dress challenges of distributed testing. Issues such as synchronization, complex con-
�gurations, and test result management. Synchronization is one important aspect
in distributed testing and a time-out feature was not included in previous version
of JUnit, which DisUnit solves. The DisUnit framework is used to control testing
by automatically setting up remote machines, running test-cases and shutting down
the servers. DisUnit also removes the con�guration information from the test code,
which permits the test to run in di�erent environments and con�gurations without
having to edit the code, making DisUnit valuable for con�guration testing.

DisUnit's testing architecture is based on what is described as in-container test-
ing [40]. With in-container testing the test cases run within the same context as
the run-time container for the SUT, for instance a web server or application server.
Jakarta Cactus4 is an example of in-container test framework for Java Servlets, En-
terprise Java Beans and Java Tag libraries. By running the test cases within the
same runtime context as the components under test, the test cases have access to
semantic features like con�guration �les and available services which are valuable
for the test. DisUnit currently supports in-container testing for Java HORB5 and
CORBA applications. Detailed information on DisUnit's architecture and commu-
nication between the distributed testing components is however missing making it
di�cult to argue about the solution for distributed testing. The downloadable ver-
sion of the framework as promised by the paper is also missing.

Cloud computing has evolved from grid computing technologies. Some research has
been done on the testing of grid computing applications. Rings, Neukirchen and
Grabowski [50] use TTCN-3 for testing of a grid application, in particular testing
work-�ow of grid applications.

This thesis is largely inspired by the grid testing methods introduced by Rings,
Neukirchen and Grabowski [49, 50]. Instead of using TTCN-3 in a grid environment
this thesis investigates cloud testing challenges with the support of the Jata test
framework [60]. Jata uses TTCN-3 the concepts and therefore it is possible to use
testing architecture ideas from the previous grid work. The focus of the previous
work testing was on testing of the distribution management aspects of the SUT as
is also done in this thesis.

4Jakarta Cactus. http://jakarta.apache.org/cactus/
5HORB. DisUnit author's middleware for distributed Java ORB applications
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Jata combines the test case structure of JUnit and testing concepts of TTCN-3. Its
initial version and research ideas were published recently and it has only been used
by the authors in a case study for web services functional testing [60]. Usage of Jata
for testing parallel functionality of distributed systems or systems within cloud en-
vironment, as is done in the case study of this thesis, has not been addressed before.
TTCN-3 and Jata are described in foundation sections 2.4 and 2.5 respectively.

3.3. Migrating Testing to the cloud

This category contains ideas of testing as a service provided by the cloud vendor,
or other third party provider. The concept involves moving the testing process, test
assets, and test infrastructure from on-premises to the cloud.

In the cloud world it is common to name services in the style of X-as-a-Service.
Various work has been done in the �eld of Software-Testing-as-a-Service (STaaS).
The service was de�ned by Leo van der Aalst as:

Software Testing as a Service (STaaS) is a model of software testing used
to test an application as a service provided to customers across the In-
ternet. By eliminating the need to test the application on the customer's
own computer with testers on site, STaaS alleviates the customer's bur-
den of installing and maintaining test environments, sourcing and (test)
support. Using STaaS can also reduce the costs of testing, through less
costly, on-demand pricing. [2]

With STaaS the cloud can decrease costs for testing activities. Section 2.3.6 de-
scribed an example of test-lab for cost reduction related to resources needed for
di�erent testing activities. STaaS takes that model even further in the way that
not only hardware is scaled on-demand but also the testing software and even test
engineers. The idea can be seen as test service outsourcing where test machines,
test software and, possibly test engineers are outsourced.

When to Migrate Software Testing to the Cloud?, by Parveen and Tilley [45], was
presented at the 2010 Software Testing in the Cloud (STITC) conference. The paper
discusses what variables a�ect decisions in migrating testing to the cloud. According
to the authors the decision should be made by viewing the matter from two per-
spectives: the characteristics of an application under test, and the types of testing
performed on the application. Characteristics to consider are test case independence,
the operational environment (test bed) and the ability of an application's interface
to be tested against, i.e. does it have an API or only graphical user interface. They
conclude that the types of testing to be appropriate for testing in the cloud are unit
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testing, high volume automated testing (HVTA), and performance testing.

Riungu et al. did a qualitative study [51] to identify research issues for software
testing in cloud computing, where interviews were conducted with managers from
di�erent organizations. The motivation for the work was the fact that little had
been written about the topic before and academic research in the area is scarce.
The research aim was to explore and understand the conditions that in�uence soft-
ware testing as an on-line service in order to point out research issues for software
testing in the cloud. The discussion with the managers took into account the pros
and cons of using the cloud for various test services. They categorized their issue
�ndings according to application issues, management issues, and legal- and �nancial
issues. The authors claim that by addressing the issues listed under the categories,
researchers should be able to o�er reliable recommendation for practitioners in the
industry.

Riungu et al. made an earlier study [52] were they acknowledged that cloud com-
puting was going to be a central platform for on-line testing and service delivery
and also listed various research issues.

Cloud9, D-Cloud, and YETI on the cloud, which were covered in Section 3.1, can be
considered as an examples of STaaS services that have already available in the cloud.
Examples of commercial services are Sauce onDemand6 and UTest7. Sauce OnDe-
mand is based on Selenium8 web testing system, that enables web applications to
be tested by multiple browsers running in the cloud. Through UTest, test engineers
are available on-demand which provides software testing solutions to its customers
through access to professional testers community. Large available communities like
UTest have been described as crowd-sourcing [30].

Another testing service in the cloud is Test-Support-as-a-Service (TSaaS), and is
described by King and Ganti in Migrating Autonomic Self-Testing to the Cloud [38].
Autonomic self-testing (AST) and TSaaS make use of the processing capabilities
provided by the cloud to improve self-testing processes. TSaas provides cloud cus-
tomers automated test operations (setup, assertion, and tear-down) for remotely
hosted cloud services. The cloud vendors provide the self-test harness for monitor-
ing and validating dynamic adaptations and updates to their hosted services, with
the help of AST, where test managers are deployed throughout the cloud to validate
dynamic adaptations and updates of cloud instances.

6Sauce OnDemand. http://saucelabs.com/ondemand
7UTest. http://www.utest.com/
8Selenium. http://seleniumhq.org/
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In this chapter a case study for integration testing a distributed system within cloud
enviroment is described.

Section 4.1 contains an overview of the Sun�ow rendering system that is used as the
system under test for the case study, including a description on how Sun�ow was
adapted to run within a cloud environment. Section 4.2 introduces the testing for
the distributed rendering application in the cloud. In section 4.3 the test case design
and in section 4.4 the Jata test case speci�cation for the case study are described in
detail. Finally in section 4.5, the procedure of setting up and running the test bed
is described.

4.1. Cloud Application Under Test

This section describes the cloud application that is used as the system under test
(SUT) for the case study in this thesis. Sun�ow, multi processing image rendering
application, was selected as the application under test for its parallel functionality.

Sun�ow is an open source rendering system for photo-realistic image
synthesis. It is written in Java and built around a �exible ray tracing
core and an extensible object-oriented design.1

The reason for using parallelization and concurrent computing application is to
explore to the full, with advanced testing techniques, the challenges proposed in
testing distributed systems within a cloud environment.

Image rendering is an extremely time consuming computing task, therefore rendering
systems like Sun�ow have been created to split up the task into smaller subtasks for
parallel computing. For a typical rendering job, one master node is needed for the
application management and several worker nodes for solving individual rendering
tasks.

1Sun�ow. http://sun�ow.sourceforge.net/
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The control part or the distribution management of the application is therefore
a good candidate for testing within a cloud environment. One cloud instance is
needed for the master node and an arbitrary number of other instances for the
workers, where the focus of the testing is on the communication of the distributed
components involved.

4.1.1. Image Rendering

Image rendering is the process of generating an image from a model which is de�ned
in a scene �le. A scene �le contains information necessary for the rendering such as
geometry, viewpoint, texture, lighting and shading. Figure 4.1 shows a 3D view of
a model (scene) before any rendering has been done, whereas �gure 4.2 shows the
rendered image result.

Figure 4.1: 3D view af a scene [39] Figure 4.2: Rendering results [39]

An image rendering job is split into buckets of smaller tasks. Each bucket represent
a part of the image. The working threads for rendering a bucket is called a worker.
In the cloud computing environment each worker runs on a dedicated cloud instance.

4.1.2. Cloud Support for Sun�ow

Sun�ow's work distribution algorithm distributes the workload for parallel process-
ing to multiple CPU cores on a single computer. The system has however been
adapted to run on both grid and cloud platforms. Ragnar Skulason, fellow student
at the Faculty of Industrial Engineering, Mechanical Engineering and Computer Sci-
ence at the University of Iceland2, adapted Sun�ow to run on Amazon EC2, for his
Masters thesis research Architectural Operations in Cloud Computing [55].

2University of Iceland. http://www.hi.is/en/introduction
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Skulason's research is about usage of an Architectural Scripting Language (ASL) for
clouds. Architectural scripting is a way to model the dynamic aspect of runtime
and deployment-time software architecture. The notion of architectural scripting
and the exploration of its theoretical and practical utility was introduced by In-
gstrup and Hansen in Modeling Architectural Change: Architectural scripting and
its applications to recon�guration [34].

Skulason presents Cloud-ASL, an external domain speci�c language (DSL) which
enables architectural operations and architectural scripting in cloud computing envi-
ronments to create and initialize cloud instances. To model and test the Cloud-ASL,
a working architectural software prototype was implemented and named Turnip.
The Turnip software is an extension of Sun�ow to enable its distributed ray-tracing
features within a cloud computing environment.

The objective with the Sun�ow extension was to create a case study application to
use with Cloud-ASL, mainly for launching and destroying worker cloud instances [55].
In Turnip, Sun�ow is adapted to run the di�erent rendering workers on separate com-
puters in a cloud. The distribution algorithm is based on Helios3, which supports
Sun�ow distributed rendering computations on JGrid [46], a grid service imple-
mented with Jini4 technology.

Turnip is used in this thesis case study as the SUT with focus on testing the applica-
tion management features. For deployment and startup of the SUT within Amazon
EC2 the Cloud-ASL is utilized, but it is not part of the test focus in this thesis case
study. Figure 4.3 shows an overview of the machines and communication protocols
involved in the testing of the application. The following section 4.1.3 describes the
software architecture and communication protocols for Turnip.

Figure 4.3: Turnip rendering application in the cloud

3Helios. http://sfgrid.geneome.net/
4Jini. http://www.jini.org
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4.1.3. Turnip Rendering Application for the Cloud

The Turnip application includes a web management console. Figure 4.4 shows the
console when an image rendering is in process. The scene �le behind this particular
rendering uses 300 buckets to complete the job. In the partially rendered image
roughly 100 buckets have been rendered resulting in 30% of the �nal image.

Figure 4.4: Turnip web management console

The left hand side of the console contains the actions menu. The Turnip console
provides only the basic functionality needed to render images. Available actions are
'add worker', 'register worker', 'submit work', and 'display log'. In this prototype
version of Turnip, the console provides no means of selecting what scene �le should
be rendered. The �le needs to be uploaded to the server manually. Below the actions
menu is the list of workers, IP addresses, in use.

A typical scenario for the full life-cycle of a rendering job is following:

1. Start Turnip web application on a cloud machine

2. Add 1..n workers

3. Submit work (start rendering)

The actual rendering job (i.e. the image result) is not the focus of the testing.
Rather it is the application management behind a rendering job that is the focus of
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the black-box functional testing in this thesis. The following section describes the
application management features and the scenario which is tested.

Application Management

Figure 4.5 shows an architectural overview of the Turnip application in a cloud
environment. The application management functionality, which controls distribution
of work, is the point of interest for software testing in this case study.

Figure 4.5: Turnip application architecture

The application management part of the software is responsible for adding and
removing workers, and distributing rendering tasks (buckets) to the workers. Adding
a new worker involves launching a new cloud instance. After the number of workers
have been selected, a rendering task can be submitted. The software component
within Turnip which encapsulates the application management is called Request
Manager (see �gure 4.5).

The testing focus in this case study is on the application management behavior for
rendering jobs. The scenario is depicted in the sequence diagram in �gure 4.6. The
rendering scenario includes two workers in the cloud and only two buckets, for the
sake of simplicity. This particular scenario forms the basis for the application testing
described in 4.2.

For a rendering job the request manager is responsible for interpreting the scene
�le, assigning tasks to workers, and collecting and composing the results from the
workers. After a work request is submitted the request manager uses the Sun�ow
engine to divide the request into buckets for rendering. For each available worker
the request manager initializes it for rendering (interactions 2 and 3). After a worker
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Figure 4.6: Rendering job scenario

is initialized it asks for the next bucket for rendering (interactions 4 and 5). The
worker is returned task information about the bucket from the request manager,
which the worker uses for partial rendering of the image. After a worker �nishes a
task it sends an image part result back to the request manager (interactions 6 and
8), which is merged into the partial result image. The continuously changing image
is repeatedly written to a �le directory on the server, where it is available for the
web interface (interaction 7).

The result, partial and �nal, is presented in the Turnip web management interface,
by periodically polling the working image, using AJAX (Asynchronous JavaScript
and XML) features. Once all tasks are completed, the whole image is available
in the web interface and that fact is indicated with a �nished progress bar status
(interaction 9).

Software Architecture

The application software architecture in�uences the testing strategies described in
section 4.2. Figure 4.7 contains an UML deployment diagram for the Turnip appli-

52



4.1. Cloud Application Under Test

cation.

Figure 4.7: Deployment diagram for Turnip [55]

The Sun�ow application and the cloud support extension of Turnip is written in
Java. The Request Manager encapsulates the core functionality of the extension. It
is responsible for communication with workers, i.e. assigning tasks and publishing
the partially rendered image by saving a new copy of it in a web directory where
it is available for the user interface. The web user interface is implemented as a
Java Servlet and the web page functionality is provided through AJAX. The user
interface provides actions for rendering jobs and shows the progress of rendering
tasks by loading the current status of the rendered image provided by the request
manager.

The Cloud-ASL is responsible for con�guration and automatic deployment of ap-
plication components by means of the Open Services Gateway Initiative (OSGi)5

framework. The OSGi framework provides a runtime for component based life-cycle
management in Java, where services are packaged as bundles which provides the abil-
ity to dynamically install and uninstall deployment units to an OSGi runtime server.
The bundles also provide means to publish and search for packaged services [3].

5OSGi Alliance. http://www.osgi.org/
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The manager and workers are deployed as OSGi services and the communication
between manager and workers is via remote OSGi (R-OSGi). The workers are
created by the Cloud-ASL, which uses SSH and Telnet to access the OSGi remote
shell on the cloud instances. TheWorker Factory andWorker Manager components
encapsulate the OSGi communication for creating and launching workers within the
cloud. The manager bundle and the worker bundles include their own copy of the
Sun�ow Java library.

4.1.4. Amazon Machine Image

The AMI created by Skulason [55] used for this case study is public with ID ami-
4552bb2c in Amazon's instance store. The same image is used both for the manager
and worker machines. The runtime software installed on the AMI is listed in table
4.1.

Runtime Version Description
Operating System 32 bit Ubuntu 9.10 Commercially sponsored Debian-

derived Linux distribution.
Java runtime OpenJDK 1.6 Open source implementation of

Java SE 6
OSGi runtime Apache Felix 3.2.0 OSGi R4 Service Platform for

OSGi bundles
HTTP container Jetty (Eclipse/Codehaus) Included in the Felix distribution

Table 4.1: Run-time software for the case study application

The AMI includes the necessary runtimes for the Turnip rendering application, with
Ubuntu Linux as the operating system and Java SE 6 installed. Apache Felix is used
as the OSGi service platform, which includes the Jetty6 web application server.

Note that the Turnip application binaries are not part of the image, because they
are installed with Cloud-ASL features after the cloud instance has been launched.

6Jetty. http://www.eclipse.org/jetty/
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4.2. Test Plan

The structure of this section is based on concepts from the Test Plan chapter of
the IEEE Standard for Software and System Test Documentation (IEEE Std 829-
2008) [32]. The standard is introduced in section 2.3.7 on test documentation. This
section and the following describe the test plan, the test design, and the test case
speci�cation for a distributed image rendering application running in the Amazon
EC2 cloud environment. Jata was described in section 2.5 and the application
features were described in section 4.1.

Following the test plan in this section the test design is covered in section 4.3 whereas
the test case speci�cation is covered in 4.4. A brief description of the test procedure
is in section 4.5. Note that the IEEE format is only used as basis for the structure
of this thesis text. The following sections might omit details that are not relevant
to the research purpose of this thesis, but might be needed in a conventional test
documentation. The thesis also adds information to support the thesis work, such
as source code listings, as is normally not done in a conventional software test
documentation.

4.2.1. Introduction

The aim of this case study is to point out the challenges and obstacles in testing
applications running in elastic cloud environment. Another objective is to evaluate
Jata's applicability for the task. The focus is on software testing for cloud appli-
cation. The Turnip application [55], a cloud extension of Sun�ow rendering system
adapted for Amazon EC2, is used as the system under test. The application is a
parallel computing application that provides means for advanced software testing
techniques.

As opposed to 'real world' software testing the objective is not to reveal defects in
the application itself or the cloud service platform it runs on. Rather the objectives
are to reveal issues for software testing within cloud environment, and to evaluate
Jata for testing advanced cloud application functionality.

Figure 4.8 shows a high level overview of the components within the distributed
system under test. The main program, i.e. the application management, is the focus
of the test. It distributes rendering tasks to workers for rendering small parts of the
�nal image which is the output from the application. A common and straightforward
way of testing is by unit testing and system testing. Those levels are depicted,
however they are not the focus of this thesis.
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Figure 4.8: Application components

With system testing the whole application is used and the actual output is tested.
System testing would verify that the correct image output is created by composing
all partial images of the rendering tasks. In unit testing each worker, i.e. the partial
image rendering algorithm, is tested in isolation.

The objective in this case study is testing the distribution algorithm with integration
techniques. Figure 4.9 shows how test components are added to the test bed for
integration and communication testing. Following sections describes the integration
testing method.

4.2.2. Test items

The application management, i.e. the Request Manager in �gure 4.7, is the item
to be tested. The request manager, which provides the core functionality of the
Turnip application, takes orders from the user interface to add workers or to start
a rendering job. It uses the Sun�ow engine to split jobs into tasks and delegate to
workers. Finally it composes the �nal image out of all the image parts received back
from the workers.

Figure 4.9 shows how integration testing is enabled by installing test components
at each worker. A main test component (MTC) controls the stimulation and ver-
i�cation of the application behavior. Actual rendering does not take place, rather
dummy image parts are returned from the parallel test components.
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Figure 4.9: Integration testing of application components

4.2.3. Features to be tested

The testing focuses on the application management, i.e. the communication with
workers and the distribution of rendering tasks in order to verify that testing can be
performed within a cloud computing environment. The integration between the web
interface layer and the request manager is also under test. The testing is done by
simulating an HTTP request to the web layer which needs to interpret the request
correctly in order to start the application management. The rendering scenario
which forms the basis of the testing is shown in �gure 4.6.

Application output testing is done in the way that a �dummy� non-rendered image
is assembled and veri�ed. The dummy image does not represent the input scene �le
information. The application management uses the scene �le however in deciding the
number of buckets (tasks) needed for the job. The input scene �le used requires 300
rendering tasks to be handled resulting in 300 image parts. The disk �le size of the
composed dummy image is veri�ed in a simple manner to make sure all parallel test
components have been issued the precise number of rendering tasks and returned
dummy image parts accordingly.
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4.2.4. Features not to be tested

The testing assumes that Amazon EC2 is adequately tested and that failures do
not relate to the cloud service platform, but only to the cloud application, i.e. the
distribution management aspects of the application. Testing the cloud middleware
is therefore not within the scope of this thesis. The Cloud-ASL features of Turnip
are also not within the scope of testing.

As stated earlier real output generation is not tested, which would be done with a
system testing approach. Besides real output generation veri�cation the performance
of rendering might be of special interest from a user perspective.

It would be possible to utilize Jata for output veri�cation and performance testing.
Verifying the output is made in the case study for a composed dummy image. A
Jata test case for output veri�cation would be simple in the sense that it does not
require parallel testing components.

4.2.5. Approach

The testing approach is a black-box functional integration testing, which is imple-
mented with the Jata test framework. The Jata test architecture uses multi-party
testing concepts from CTMF and TTCN-3.

4.2.6. Item pass/fail criteria

The pass/fail criteria is based on the scene �le input for the rendering task. For
the application management features the testing veri�es that all available nodes are
utilized for task submissions. Furthermore, based on the scene �le, if 300 buckets
should be rendered, the test fails if not exactly 300 buckets are rendered. For output
evaluation, the �le size of the resulting image is veri�ed for correctness.

4.2.7. Test environment

The application under test was described in section 4.1. This section describes the
software and hardware used in the case study test bed.

Eucalyptus was considered as a runtime cloud provider for this thesis case study.
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However when starting the work, access to an Eucalyptus private cloud was not at
hand. What favored the Amazon EC2 was the availability of distributed application
source code and knowledge in our research group at the university [55]. Other
reasons include EC2's easy accessibility, inexpensiveness, and good software API
and documentation support.

Software Speci�cation

The runtime software used for the SUT is installed on Amazon Machine Image id
ami-4552bb2c, and was described in section 4.1.

Cloud-ASL features are used to launch the AMI within the Amazon EC2 cloud
and install the Turnip application on the machine. That node is referred to as the
application's 'manager' node.

The Turnip version has not been labeled but it is the latest version from the work
of Skulason [55]. The Amazon EC2 used is the current (May 2011) on-line cloud
service version. The Jata framework used for testing and is considered for evaluation
is version 0.1, downloaded from http://code.google.com/p/jata4test/.

Hardware Speci�cation

The hardware used for the case study is speci�ed by the cloud instance type con�g-
uration. The case study used the Amazon EC2 standard 'Small' instance type with
the attributes listed in table 4.2.

Type RAM CPUs Instance I/O Price/
(GB) (EC2) Storage Platform Perform. hour

Small 1.7 1 160 GB 32-bit Moderate $0.095

Table 4.2: Amazon 'Small' instance type (May 7, 2011)

Figure 4.10 shows the test bed for the case study. The test bed consists of four cloud
instances and one test engineer machine for control and monitoring purposes. The
four cloud machines roles are following:

• Instance 1: The test system (Jata)

• Instance 2: The Turnip master node

• Instance 3: Turnip rendering worker 1

• Instance 4: Turnip rendering worker 2
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Figure 4.10: The test bed

The test bed �gure includes communication protocols used in the testing. The
test engineer uses SSH (Secure Shell) to communicate with the Jata test system
machine, which runs in the cloud for simpler �rewall con�guration reasons. The
Jata test components use Java RMI (Remote Method Invocation) for exchanging
messages. RMI needs special security con�guration for the cloud if participants
are needed to run outside the cloud. Another argument in favor of including the
test system machine within the cloud is that it improves performance of test case
execution, because of the geographical location of involved instances.

The test system stimulates the SUT via HTTP through the application web inter-
face. The SUT services are packaged and deployed as OSGi bundles and internal
application communication uses the Remote-OSGi (R-OSGi) protocol.

4.3. Test Design

The following sections are structured using concepts from the Test Design Speci-
�cation chapter of the IEEE Standard for Software and System Test Documenta-
tion [32].

4.3.1. Conceptual Test Architecture

The multi-party test architecture from the Conformance Testing Methodology and
Framework (CTMF) is used for testing the parallel application management func-
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tionality. CTMF concepts were described in section 2.4.1, with conceptual view of
the multi-party test architecture shown in �gure 2.5.

The architecture of the SUT is shown in �gure 4.11. Users access the system through
a web interface where they can add workers and start rendering jobs. Each new
worker started runs on a new cloud instance.

Figure 4.11: System architecture

The CTMF test architecture for the system architecture is presented in �gure 4.12.
Parallel test components that include communication ports are implemented for
each rendering worker for the points of control and observation (PCO). High level
architecture of the test component introduction was shown in �gure 4.9.

According to rules of Jata and TTCN-3 the architecture includes a single main test
component (MTC) which controls the test case behavior and veri�cation. The archi-
tecture includes two parallel test components (PTCs), i.e. one for each worker. The
MTC has three communication ports. One HTTP port for SUT stimulation and two
input ports for messages from the PTCs. The SUT adapter is a Jata SystemCompo-
nent (adapter) and includes system ports for sending or receiving messages from the
SUT. Remote ports run on each worker instance (test double) which communicate
with the PTCs through the system adapter. The worker test double and remote
port functionality is described in section 4.3.3.

For simplicity the test case contains only two workers, and two corresponding PTCs.
The PTCs run on the same cloud instance, within the same Java virtual machine as
the MTC, because of Jata's abstract port implementation restrictions. Jata abstract
ports are implemented as POJOs (Plain Old Java Objects) without means of remote
communication. An arbitrary number of worker test doubles (and PTCs) can be
added to a test case.
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Figure 4.12: Detailed test architecture

A detailed description of the test components and their behavior is in the following
section on the features to be tested.

4.3.2. Features to be Tested - Conceptual Test Scenario

The behaviour of the application management under test was depicted in the se-
quence diagram in �gure 4.6. A conceptual view of the testing procedure is visualized
in the sequence diagram in �gure 4.13.

The interaction sequence is identical between the actual application rendering sce-
nario and the test architecture scenario. The di�erence is that test components
have been introduced to simulate both user behavior and bucket rendering in the
architecture to control the interactions. Instead of a user (web-browser) an MTC
is implemented to control stimulation and veri�cation. The rendering workers have
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Figure 4.13: Conceptual test sequence diagram

been replaced by PTCs with communication ports to receive and send information
intended for the workers. The MTC starts the test case by sending 'rendering job'
stimulus (interaction 1). The SUT, application management part, who thinks it is
announcing real workers to start rendering is actually calling PTCs (interactions 2
and 3). The PTCs ask for the next bucket to render as would be expected from
a worker (interactions 4 and 5). When a PTC receives the bucket information it
sends it to the MTC (interactions 6 and 8), which collects all knowledge about ren-
dering tasks for veri�cation. The PTC creates a dummy image to send back to the
application management as is expected from rendering tasks (interaction 7 and 9).
Finally when the MTC has received all expected bucket information it downloads
the composed image result from the SUT (interaction 10). The MTC veri�es the
number of messages it received from the PTCs and the �le size of the composed
dummy image.

To implement this behavior the PTCs need to be deployed on the worker instance
machines which is unfortunately not supported by Jata. The following section 4.3.3
describes a workaround with the help of a Test Double. Section 4.3.4 shows how the
conceptual test architecture is implemented with the help of the test double.

63



4. Testing Cloud Applications

4.3.3. Concrete Test Architecture Using Worker Test Double

In principle it is preferred to deploy the PTCs on the worker instances, which is
unfortunately not easy to achieve with Jata. To solve this issue a Test Double is
introduced. Test doubles are a group of testing objects such as: stubs, mock objects,
and fake objects, as described by Meszaros [42].

The reason for having a test double implementation for the worker component in-
stead of an actual PTC installed on the worker instance is that in the Jata environ-
ment PTCs are not able to run on remote machines like the case is with TTCN-3.
Instead remote ports need to be located at the remote machines. The test double
encapsulates Jata remote port functionality for workers.

The worker OSGi service was therefore switched out for a test double. The whole
OSGi service for the worker is replaced by a Java component that implements the
Java interface for the worker service. In the OSGi service descriptor �le the test
double is con�gured to be used instead of the real one. That way the test doubles
can be started with the same methods as real workers are started, i.e. through the
web interface command. Starting test doubles is not done within the test case itself.
It can be done in a test setup script or through a test UI utility made for this case
study. The test procedure details are covered in section 4.5.

This variation of a test double can be considered a stub that forwards rendering
information received by the worker to the test system. The stub is implemented
to support the remote port functionality in Jata, for forwarding information about
buckets to a corresponding PTC. The test double is also responsible for sending fake
image parts back to the request manager, without the need of Sun�ow. Instead of
using the Sun�ow engine for rendering tasks, the test double sends information about
buckets directly to the PTC through a remote port. With test double architecture
it is easy to factor out the usage of Sun�ow. Figure 4.14 depicts the functionality
and behavior of the test double worker in a partial view of the test system. Note
that in the picture the Jata SystemComponent (adapter) is omitted for simplicity
and the communication between the test double remote port and the PTC is shown
directly.

It would be preferred testing technique that the PTC would create the image part
based on bucket information and send it to the SUT, instead of making it the
worker's test double responsibility. There are however some di�culties with that
approach. The request manager expects a remote OSGi call back with the image
part, and the OSGi platform does not allow remote OSGi communication from non-
OSGi application. Remote OSGi method invocations can only be made from within
a OSGi container. The Jata test system runs as a standalone Java application and
can not communicate via OSGi to the SUT. Therefore communication from a PTC
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Figure 4.14: Worker test double implementation

to the request manager is not possible.

What could be done is to add a 'call-through' port to the test double that accepts
messages from the PTC and forwards them with R-OSGi calls to the request man-
ager. In �gure 4.14 this is shown with the grayed-out communication between the
PTC and the worker. That however introduces new challenges since using RMI for
the communication, which is the preferred Jata way of communication, is non-trivial
within OSGi containers. There are class loading issues to deal with when registering
RMI server components (There are however no issues using client RMI code from
within OSGi, which is what the test double remote port does). Therefore another
way of communication to OSGi components might be more feasible for this test case
structure, like through a web service interface.

What was decided to do for this case study was to follow the Agile simplest thing
that possibly works [9] design strategy. As a result, it is not the PTC that creates
and sends the image part for the SUT via the remote port, but the remote port
itself without an involvement of the PTC. It should however be emphasized that
testing functionality, for test case speci�cation readability and manageability, should
preferably be within test components (MTC and PTCs).

4.3.4. Concrete Test Scenario

This section shows how the conceptual test architecture, described in Section 4.3.2,
behaves using the test doubles for the workers. The test behavior for the application
management test case is visualized in a sequence diagram in �gure 4.15. The test
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system, i.e. the MTC, stimulates the SUT by submitting 'start rendering job' to the
web interface of the SUT (interaction 1). The stimulus is sent through an abstract
port of the MTC to an HTTP port (pt_http) of the system adapter.

Figure 4.15: Concrete test sequence diagram

The input scene �le for the rendering process is preloaded to the application man-
ager's node, so no input parameters are needed in the stimulation message. The
scene �le is used to determine the job's tasks for the rendering workers.

After loading the scene �le, the request manager sends 'run' (initialize) message
to each available worker node (interactions 2 and 3), announcing that they should
take part in a rendering job. After receiving a initialization message, the workers
themselves are responsible for making calls to the request manager asking for the
next bucket in line to render (interactions 4 and 5).

In the Jata test case implementation the worker OSGi service has been switched
out for a test double [42]. The test double can be described as a stub that forwards
rendering information from the request manager to the test system. It is also re-
sponsible for sending fake image parts back to the request manager instead of using
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Sun�ow. The test double architecture is further described in 4.3.3.

The Worker-1 test double sends the bucket information, through its remote port,
to PTC-1 (interaction 6). The pt_PTC port on the system adapter receives the
message and forwards it to the PTC abstract port (see ports structure in �gure
4.12).

The PTC listens for any messages to arrive and forwards them all to the MTC for
�nal composition veri�cation (interaction 7). The (pt_MTC) abstract ports of the
PTC and the MTC are used for that message delivery. If needed the PTC can
inspect the incoming message content and do veri�cation. In this test case however,
the MTC handles the veri�cation for all the messages at the end of the test case.

The test system is responsible for creating an image part, to send back to the
SUT, which is the expected result from a worker after being assigned a bucket for
rendering (interactions 8 and 11). For application management testing the image
part can simply be a fake. Because the application management is being tested, not
the rendering process itself, there is no need for real rendering with Sun�ow. The
worker's rendering implementation should be tested with other methods, such as
unit testing. The worker test double therefore sends the same all-black image part
back for all the rendering tasks. Ideally the PTC should create the image part based
on bucket information and send it to the SUT, instead of making it the worker's
test double responsibility. The grayed-out 'send image part' interactions (following
interactions 7 and 10) indicate this preferred option. Reasoning for the test double
implementation is discussed in section 4.3.3.

After a worker has �nished rendering a bucket, it asks the request manager for the
next bucket to render. Interactions from 10 to 13 are identical to the steps described
above, only for the second worker and corresponding PTC-2. The same interaction
sequence is used for all buckets until the rendering job �nishes.

When all of the expected image part results have been received by the request
manager, the whole image has been 'rendered' and clients can download the image.
The MTC downloads the image through an HTTP port (interaction 14). The test
verdict is based on the number of task submissions and the �nal image result. The
image result, which is composed of 300 black image parts, is shown in �gure 4.16.
The snapshot is actually taken just before the �nal image is ready. The red colored
square in the image is a Sun�ow feature to indicate what part of the images is being
rendered, which is the �nal one in this case. The actual image rendering result, for
the scene �le, was shown in �gure 4.4.

The test behavior for the application management testing is realized as a Jata test
case and described in Section 4.4.
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Figure 4.16: Dummy image result

4.4. Test Case Speci�cations

The following sections describe the Jata implementation for the case study testing
technique. The sections are structured using concepts from the Test Case Speci�-
cations chapter of the IEEE Standard for Software and System Test Documenta-
tion [32].

4.4.1. Introduction

The system under test is the Turnip application deployed within OSGi container on
an Amazon EC2 instance. The request manager component runs on the application
master node. It encapsulates the application management functionality that is to
be tested. The request manager delegates rendering tasks to other available nodes
and when all tasks have �nished correctly it composes a �nal image result.

The prerequisites for the test case, are that the SUT has been initialized and two
worker instances (test doubles) added. The worker instances with test double imple-
mentation are started through the Turnip web interface. The scene �le also needs to
have been uploaded to the master node. A description of how the test environment
is set up is in the Test Procedure section (4.5).

The test case stimulus results in the determination of 300 rendering tasks and a
composition of a resulting image. The number of tasks and the resulting fake image
are veri�ed.
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Objective

The testing focus is on the work of the distribution management of the application,
i.e. that distributing tasks and merging their partial rendering outputs works as
expected. The test checks if the management determines the tasks correctly and
distributes all of them to the available cloud nodes correctly. The communication
between distributed components in the cloud is under inspection.

Inputs

No parameters are needed in the request stimulation at the start of the test case.
The determination of rendering tasks is based on the preloaded scene �le, which
is uploaded to the master node by a test bootstrapping utility when the SUT is
initialized. The utility, made for this case study, is described in section 4.5. The
number of workers is also decided and launched with the test utility.

4.4.2. Test Case Structure

The Java code for the test case is shown in listing 4.1.

1 public class tc_TestTheApplicationManagement extends TestCase<Mtc , Sys>{
2 private St r ing sutIpAddress ;
3 private Map<Integer , MsgReceivedJob> rece ivedJobMessages = new

HashMap<Integer , MsgReceivedJob >() ;
4 private stat ic int EXPECTED_TASK_MESSAGES_COUNT = 300 ;
5 private stat ic int EXPECTED_FILE_SIZE = 3247 ; // s i z e o f 300 b l a c k

image par t s
6
7 public TAM_TestCase( S t r ing [ ] a rgs ) throws Exception {
8 super (Mtc . class , Sys . class ) ;
9 }
10
11 @Override
12 protected void Case (Mtc mtc , Sys sys ) throws JataException {
13 Ptc ptc1 = createPtc ( Ptc . class ) ;
14 Ptc ptc2 = createPtc ( Ptc . class ) ;
15
16 PipeCenter .Map( ptc1 . pt_PS , sys . pt_PTC1) ; // PTC−1 <−> System
17 PipeCenter .Map(mtc . pt_MP1, ptc1 .pt_PM) ; // PTC−1 <−> MTC
18 PipeCenter .Map( ptc2 . pt_PS , sys . pt_PTC2) ; // PTC−2 <−> System
19 PipeCenter .Map(mtc . pt_MP1, ptc2 .pt_PM) ; // PTC−2 <−> MTC
20 PipeCenter .Map(mtc . pt_system , sys . pt_http ) ; // MTC − System
21
22 try {
23 // Send s t imu lu s
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24 mtc . pt_systemHttp . send (new MsgStartRendering ( sutIpAddress ) ) ;
25
26 // Create and s t a r t PTC func t i on s
27 startPTC ( ptc1 ) ;
28 startPTC ( ptc2 ) ;
29
30 // Wait f o r a l l t a s k s parameters or t imeout
31 getReceivedJobMessages ( ) ;
32
33 // Ver i fy
34 ver i fyJobMessages ( ) ;
35 v e r i f yR e s u l t s F i l e S i z e ( ) ;
36 }
37 catch ( JataException e ) { // can rep re s en t a time−out
38 mtc . Fa i l ( ) ; // VERDICT=FAIL
39 System . out . p r i n t l n ( e . getMessage ( ) ) ;
40 return ;
41 }
42
43 mtc . Pass ( ) ; // VERDICT=PASS
44 }
45
46 private void getReceivedJobMessages ( ) throws JataException {
47 Timer jataTimer = new Timer ( ) ;
48
49 int timeOutSeconds = 20 ; // f o r a l l messages to a r r i v e
50 SetTimeMessage timeMsg = new SetTimeMessage ( timeOutSeconds ∗ 1000) ;
51 jataTimer . start ( ) ;
52
53 while ( true ) // wai t u n t i l a l l messages have a r r i v ed ( or a t imeout )
54 {
55 jataTimer . l o ck ( ) ;
56 Message m = jataTimer . waitHandle ( timeMsg ) ; // re turns

TimeOutException i f time exceeds
57 i f (m instanceof TimeOutMessage ) {
58 throw new JataTimerException (null , "Time out whi l e wa i t ing f o r

r e c e i v ed : " + timeOutSeconds + " seconds " ) ;
59 }
60
61 i f ( rece ivedJobMessages . s i z e ( )>=EXPECTED_TASK_MESSAGES_COUNT){
62 break ;
63 }
64
65 getReceivedJobMessage (mtc . pt_PTC1) ;
66 getReceivedJobMessage (mtc . pt_PTC2) ;
67 }
68 }
69
70 /∗∗
71 ∗ Receive incoming ta s k ( parameter ) messages .
72 ∗/
73 private void getReceivedJobMessage ( IAltBranch port ) throws
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JataException {
74 Alt alt = new Alt ( ) ;
75 Timer t = new Timer ( ) ;
76 t . start ( ) ;
77
78 alt . addBranch ( port , new MsgReceivedJob ( ) ) ;
79 alt . addBranch ( t , new SetTimeMessage (2000) ) ;
80 alt . proc ( ) ;
81
82 i f ( alt . g e tResu l t ( ) . index ==0){
83 MsgReceivedJob msg = (MsgReceivedJob ) alt . g e tResu l t ( ) . Result ;
84
85 int indexId = msg . getParameters ( ) . getBucketId ( ) /2 ;
86 rece ivedJobMessages . put ( indexId , msg) ;
87 }
88 else {
89 // Ignore : The t e s t case p o l l s the message−queue
90 // r e gu l a r l y , so i t can normal ly be empty at t imes .
91 }
92 }
93
94 private void ver i fyJobMessages ( ) {
95 i f ( rece ivedJobMessages . s i z e ( ) != EXPECTED_TASK_MESSAGES_COUNT){
96 throw new JataException ( "FAILURE: Number o f r e c e i v ed task

messages should be : " + EXPECTED_TASK_MESSAGES_COUNT) ;
97 }
98 // e l s e cont inue . . = mtc . Pass
99 }
100
101 private void v e r i f yR e s u l t s F i l e S i z e ( ) throws JataException {
102 mtc . pt_systemHttp . send (new MsgGetImage ( sutIpAddress ) ) ;
103
104 Alt alt = new Alt ( ) ;
105 Timer t = new Timer ( ) ;
106 t . start ( ) ;
107
108 alt . addBranch (mtc . pt_systemHttp , new MsgGetImageResponse ( ) ) ;
109 alt . addBranch ( t , new SetTimeMessage (3000) ) ;
110 alt . proc ( ) ;
111
112 AltResu l t r = alt . g e tResu l t ( ) ;
113
114 i f ( r . index == 0) {
115 MsgGetImageResponse msg = (MsgGetImageResponse ) alt . g e tResu l t ( ) .

Result ;
116
117 F i l e f i l e = ( F i l e )msg . Coder ( ) ;
118
119 i f (EXPECTED_FILE_SIZE != f i l e . l ength ( ) ) {
120 throw new JataAssertExcept ion ( " Fa i l u r e . Expected r e s u l t f i l e

s i z e : " + EXPECTED_FILE_SIZE + " . Actual s i z e : " + f i l e .
l ength ( ) ) ;
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121 }
122 System . out . p r i n t l n ( "Result f i l e s i z e c o r r e c t . " ) ;
123 }
124 else {
125 throw new JataAssertExcept ion ( " Fa i l u r e in r e c e i v i n g image" ) ;
126 }
127 }
128 }

Listing 4.1: Jata test case implementation

The private variables of the test case class are used in stimulation and expectations.
The structure of the test case Java method complies to the general test case structure
of Jata and TTCN-3. First the PTCs are created (lines 13 and 14), and then
the communication ports are mapped (lines 16-20), i.e. connected with each other
according to the test architecture. In Jata only local executed ports can be mapped
with the PipeCenter methods. Therefore the ports being mapped in the test case
can only be between test components (MTC and PTCs) or the system adapter
(SystemComponent). Remote ports cannot be mapped with Jata library methods
and need to be manually con�gured (with RMI). After the con�guration of test
components and ports the stimulus is sent (line 24). Then the PTC test functions
are created and started (lines 27-28).

The getReceivedJobMessages method (line 46) waits for all rendering messages to
arrive before continuing the test case. The method con�gures the timeout for re-
ceiving all rendering job messages to be 20 seconds (line 49) before starting a loop
(line 53) to collect the received job messages that the PTCs have received from the
test doubles (lines 66 and 66). The getReceivedJobMessage method (line 73) is called
periodically for both PTCs until another timeout occurs or all 300 messages have
arrived. If the job message from a PTC is the last one according to the expected
number of messages, the loop can break (line 61), and the test case continues to the
�nal veri�cation.

The getReceivedJobMessage method (line 73) uses an alt statement to receive mes-
sages through a PTC port of the MTC (line 78). When a PTC receives a message
from the test double it forwards it to the MTC. The PTC test function behavior is
described in listing 4.12. The alt statement contains a timeout de�nition (line 79)
so that the method does not get blocked if the PTC has not sent a message within
a certain time, or has �nished sending all the messages. The 'outer' timeout of 20
seconds (lines 49-51) is the timeout for all the messages to arrive. The Jata Timer
class is used for the timeout handle but Java Date/Time methods could also have
been used. The jataTimer.start method (line 51) starts the timer. The jataTimer.lock
method (line 55) stops (or locks) the time measurement, from the timer start to the
point of the lock. It is therefore possible to call the lock method in every round of
the loop until the de�ned timeout is received. The elapsed time is checked within
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the jataTimer.waitHandle method. The timer returns a message of TimeOutException
in case of a timeout (line 56).

When a message about a task submission is received at a MTC port, it is added to
the map collection of receivedJobMessages, a member variable of the MTC (line 86).
The bucket ID is contained in the message (line 85), so it is possible to make sure
that the same bucket information is not received twice or that all 300 bucket IDs
are received. (The division by 2 in line 85 is a way to deal with a 'bug' in the SUT,
which creates only even number bucket IDs).

The verify method calls (lines 34 and 35) make two di�erent assertions for the test
case. The verifyJobMessages method (line 94) veri�es that indeed 300 tasks were
used to render the image. When the test case has received expected number of
task messages (line 95), de�ned with the EXPECTED_TASK_MESSAGES_COUNT
constant, the test case can continue. If all messages do not arrive in the de�ned time,
the test case ends with a failure. The verifyResultsFileSize (line 101) veri�es the disk
�le size of the completed fake image. It uses the HTTP port to fetch the image as
a Java File object for veri�cation of its size. The method uses an alt statement as
the structure. The total size of 300 black image parts is exactly 3247 bytes (line
119), de�ned with the EXPECTED_FILE_SIZE constant. The HTTP port returns a
MsgGetImageResponse message result which contains the image coded as a �le object
(line 117).

Test Components and the System Adapter

Following listings (4.2, 4.3, 4.4) show the structure of the test components (MTC
and PTCs) and the system adapter of the test case. The relationship between the
components and communication ports is depicted in �gure 4.12.

1 public class Mtc extends j a t a . Component . TestComponent {
2 public PortMP pt_PTC1 ; // por t to PTC−1
3 public PortMP pt_PTC2 ; // por t to PTC−2
4 public PortSystem pt_system ; // mapped to system HTTP por t
5
6 public Mtc ( ) throws Exception {
7 super ( ) ;
8 pt_PTC1 = new PortMP( ) ;
9 pt_PTC2 = new PortMP( ) ;
10 pt_system = new PortSystem ( ) ;
11 }
12 }

Listing 4.2: Main Test Component
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The MTC is shown in listing 4.2. It has an abstract output port (pt_system) which
is mapped to the system HTTP port for sending stimulation message to the SUT via
HTTP. It has also input ports (pt_PTC1 and pt_PTC1) for the bucket information
messages received from the PTCs.

1 public class Ptc extends TestComponent {
2 public PortPS pt_system ; // por t to system ( adapter )
3 public PortPM pt_mtc ; // por t to mtc
4
5 public Ptc ( ) throws Exception {
6 super ( ) ;
7 pt_system = new PortPS ( ) ;
8 pt_mtc = new PortPM() ;
9 }
10 }

Listing 4.3: Parallel Test Component

Listing 4.3 shows the PTC de�nition which includes the port de�nitions to the MTC
(pt_mtc) and the system adapter (pt_system).

1 public class Sys extends SystemComponent{
2 public PortSP pt_PTC1 ;
3 public PortSP pt_PTC2 ;
4 public PortSystemHttp pt_http ;
5
6 public Sys ( ) throws Exception {
7 pt_PTC1 = new PortSP ( Config . getRmiConfig ( "PTC−1" ) ) ;
8 pt_PTC2 = new PortSP ( Config . getRmiConfig ( "PTC−2" ) ) ;
9 pt_http = new PortSystemHttp ( ) ;
10 }
11 }

Listing 4.4: System Component/Adapter

The SystemComponent, in listing 4.4, includes de�nitions for three ports. One (out-
going) system port for HTTP stimulation of the SUT (pt_http), and two (incoming)
RMI system ports mapped to each of the de�ned PTC (pt_PTC1 and pt_PTC2).
The RMI system ports support RMI functionality to receive messages from the SUT.
The Con�g class makes sure that each system port is initialized with a distinct RMI
port number.
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Messages

TheMessage object plays a vital role in a Jata test architecture. The communication
ports use message objects as a means of data transfer. The Jata message includes
methods for data encoding and decoding. Listing 4.5 shows the message for 'start
rendering' stimulation. The message includes the IP address of the SUT (line 2) so
that the HTTP system port can construct the correct HTTP request (the HTTP
port is described in listing 4.9). The message only contains a coding method (line
19) and not decoding because it is only used to stimulate the SUT and not to receive
a response.

1 public class MsgStartRendering extends Message{
2 private St r ing sutIpAddress ;
3
4 public MsgStartRendering ( ) {
5 this ( ( Message ) null ) ;
6 }
7
8 public MsgStartRendering ( S t r ing sutIpAddress ) {
9 this ( ( Message ) null ) ;
10 this . sutIpAddress = sutIpAddress ;
11 }
12
13 public MsgStartRendering (Message parent ) {
14 super ( parent ) ;
15 codeToType = " java . lang . S t r ing " ;
16 }
17
18 @Override
19 protected Object Coder ( ) throws JataException {
20 return sutIpAddress ;
21 }
22 }

Listing 4.5: Message 'Start rendering'

Listing 4.6 shows the response message created by the HTTP port after the start
rendering message has been sent to the port and handled. This particular message
could be analyzed in the test case method but is not. Instead the decoding method
(line 13) throws an assert exception if the HTML string from the stimulation is in-
correct (line 19). In principle the test case method should include an alt statement
and perform this veri�cation instead of the message, but it was not done for the
sake of simplicity.

1 public class MsgSutResponse extends Message{
2
3 public MsgSutResponse (Message parent ) {
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4 super ( parent ) ;
5 decodeFromType = " java . lang . S t r ing " ;
6 }
7
8 public MsgSutResponse ( ) {
9 this ( null ) ;
10 }
11
12 @Override
13 protected boolean Decoder ( Object stream ) throws Exception {
14 St r ing content = ( St r ing ) stream ;
15
16 // "Request submited !" s t r i n g i s the r e s u l t from the Turnip

a j a x S e r v l e t a f t e r s t a r t i n g a render ing job .
17 i f ( ! "Request submited ! " . equa l s IgnoreCase ( content ) ) {
18 throw new JataAssertExcept ion ( "Unexptected s t imu la t i on r e s u l t " ) ;
19 }
20 }
21 }

Listing 4.6: Message 'Stimulation response'

The MsgReceivedJob, shown in listing 4.7, is used for the information about ren-
dering jobs. It includes a JobParameters object (line 2), which holds the actual
information. The de�nition of the JobParameter class is included in the listing (line
39). The JobParameter class is simply a wrapper for the bucket information.

1 public class MsgReceivedJob extends Message implements S e r i a l i z a b l e {
2 private JobParameters jobParameters = null ;
3
4 public MsgReceivedJob (Message parent ) {
5 super ( parent ) ;
6 codeToType = " i s . h i . j a t a . example . pa ramete r t e s t ca s e . turn ip .

JobParameters " ;
7 decodeFromType = " i s . h i . j a t a . example . pa ramete r t e s t ca se . turn ip .

JobParameters " ;
8 }
9
10 public MsgReceivedJob ( ) {
11 this ( ( Message ) null ) ;
12 }
13
14 public MsgReceivedJob ( JobParameters jobParameters ) {
15 this ( ( Message ) null ) ;
16 this . jobParameters = jobParameters ;
17 }
18
19 public JobParameters getParameters ( ) {
20 return jobParameters ;
21 }
22
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23 @Override
24 protected Object Coder ( ) throws JataException {
25 return jobParameters ; // no coding requ i r ed . s imply us ing the POJO
26 }
27
28 @Override
29 protected boolean Decoder ( Object stream ) throws Exception {
30 i f ( stream instanceof JobParameters ) {
31 this . jobParameters = ( JobParameters ) stream ;
32 return true ;
33 }
34 else

35 return fa l se ;
36 }
37 }
38
39 public class JobParameters implements S e r i a l i z a b l e {
40
41 private int workerId ;
42 private int bucketId ;
43 private int frame ;
44
45 . . . g e t t e r s and s e t t e r s omitted from the l i s t i n g
46 }

Listing 4.7: Message 'Received job'

The last message described here is the MsgGetImageResponse, which the HTTP sys-
tem port sends as a response when the MTC fetches the image result. The message
encapsulates a Java File object which contains the composed image.

1 public class MsgGetImageResponse extends Message implements

S e r i a l i z a b l e {
2
3 private F i l e f i l e = null ;
4
5 public MsgGetImageResponse (Message Father ) {
6 super ( Father ) ;
7 codeToType = " java . i o . F i l e " ;
8 decodeFromType = " java . i o . F i l e " ;
9 }
10
11 public MsgGetImageResponse ( ) {
12 this ( null ) ;
13 }
14
15 @Override
16 protected Object Coder ( ) throws JataException {
17 return f i l e ;
18 }
19
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20 @Override
21 protected boolean Decoder ( Object stream ) throws Exception {
22 i f ( stream instanceof F i l e )
23 {
24 this . f i l e = ( F i l e ) stream ;
25 return true ;
26 }
27 else

28 return fa l se ;
29 }
30 }

Listing 4.8: Message 'Get image response'

Communication Ports

In this section the source code for the 'main' ports of the test case is shown. Not
all port source code is listed because of similarities or simplicity. Listing 4.9 shows
the code for the HTTP system port used in stimulation of the SUT. In �gure 4.12
this port is named pt_http within the SUT adapter (Jata SystemComponent).

1 public class PortSystemHttp extends SystemPort {
2
3 public PortSystemHttp ( ) throws JataException {
4 super ( ) ;
5 addInputType (Message . getICD (MsgStartRendering . class ) ) ;
6 addOutputType (Message . getICD (MsgSutResponse . class ) ) ;
7 addInputType (Message . getICD (MsgGetImage . class ) ) ;
8 addOutputType (Message . getICD (MsgGetImageResponse . class ) ) ;
9 this . PortMode = SystemPort . AdapterMode ;
10 }
11
12 @Override
13 protected AdapterPackage Adapter ( AdapterPackage pkg )
14 throws Exception {
15 i f ( pkg . MessageType . equa l s ( MsgStartRendering . class . getName ( ) ) ) {
16 St r ing u r l = ( St r ing ) pkg . stream ;
17 return new AdapterPackage ( submitWork ( u r l ) ) ;
18 } else i f ( pkg . MessageType . equa l s (MsgGetImage . class . getName ( ) ) ) {
19 St r ing u r l = ( St r ing ) pkg . stream ;
20 return new AdapterPackage ( getImage ( u r l ) ) ;
21 }
22 return null ;
23 }
24
25 private St r ing submitWork ( St r ing sutIpAddress ) throws Exception {
26
27 f ina l WebClient webClient = new WebClient ( ) ;
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28
29 St r ing ajaxMethod = "makeRequest" ;
30 St r ing ajaxUr l = "http :// " + sutIpAddress + " :9000/ turn ip / ajax /" +

method ;
31
32 f ina l HtmlPage page = webClient . getPage ( a jaxUr l ) ;
33 f ina l St r ing pageAsText = page . asText ( ) ;
34 as se r tTrue ( pageAsText . conta in s ( "work submitted " ) ) ;
35 webClient . closeAllWindows ( ) ;
36
37 return pageAsText ;
38 }
39
40 private F i l e getImage ( S t r ing sutIpAddress ) throws Exception {
41 St r ing f i l e U r l = "http :// " + sutIpAddress + " :9000/ images /

sunflowImage . png" ;
42
43 HttpCl ient c l i e n t = new Defau l tHttpCl i ent ( ) ;
44 HttpGet httpget = new HttpGet ( f i l e U r l ) ;
45 HttpContext context = new BasicHttpContext ( ) ;
46 HttpResponse getResponse = c l i e n t . execute ( httpget , context ) ;
47
48 St r ing r e spon s e s t a tu s = getResponse . ge tStatusL ine ( ) . t oS t r i ng ( ) ;
49 i f ( !STATUS_OK. equa l s ( r e spon s e s t a tu s ) ) {
50 throw new Exception ( "Result f i l e s t a t u s l i n e f a i l e d . " ) ;
51 }
52
53 URL ur l = new URL( f i l e U r l ) ;
54 BufferedImage image = ImageIO . read ( u r l ) ;
55
56 St r ing workingDir = System . getProperty ( " user . d i r " ) ;
57
58 F i l e f i l e = new F i l e ( workingDir + "/ r e s u l t . png" ) ;
59 ImageIO . wr i t e ( image , "png" , f i l e ) ;
60
61 return f i l e ;
62 }
63 }

Listing 4.9: HTTP system port

All ports de�ne their input and output message types in the constructor (lines 5 to 8).
The input/output message types are used from the owner component perspective,
i.e. input type message is a stimulation message. The message is sent 'in' to the port,
which then uses it for outgoing calls to the SUT. Output type message is a message
which goes 'out' from the port, i.e. response message after the port is called via the
'send' method. For instance if an MTC port and a system port are mapped together
the MTC port sends an 'input' type message to the system port, which returns the
call with an 'output' type message. The system HTTP port has an input message
type de�ned as 'start rendering' (line 5) with a corresponding output type as 'SUT
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response' (line 6). For the �nal image downloading, the port contains a 'get image'
input type (line 7) and a corresponding 'get image response' output message (line
8).

System ports override the Adapter method (line 11) which is called by the Jata
framework when messages are sent to the ports. The Adapter method is overridden
to create the appropriate stimulation request for the SUT. There are two ways of
sending messages with the port and the message type is used to distinquish between
the options (line 15 and 18). The IP address of the SUT web server is used to create
the correct HTML request for either request.

For the 'start rendering' stimulation in method submitWork (line 25), the port uses
HtmlUnit7, a Java HTML test library, for communication with the SUT web appli-
cation. The Turnip web application is implemented with AJAX so that requests,
such as starting a rendering job, can be made directly with URL requests. Using
HtmlUnit also gives the opportunity of making assertions on the returned HTML
content (e.g. line 27). The URL for submitting rendering job in Turnip looks like:

http://APPLICATION-HOST:9000/turnip/ajax/makeRequest.

For the 'get image' feature of the port, de�ned in method getImage (line 40), the port
uses Apache HttpClient8, because HtmlUnit does not support image downloading.
The communication is set up with HttpClient (lines 43 to 46) and the ImageIO class
used to download the image (line 54). The image is written to the test system �le
directory also with the help of ImageIO (line 59). The reason why it is written to a
disk is that then it can be encapsulated as a Java File object for �le size veri�cation
(line 61). The request URL for the image is:

http://APPLICATION-HOST:9000/images/sunflowImage.png.

Abstract Ports

Abstract ports are used to link test components together or to link test components
with the system adapter. Their de�nition is generally simple and does not need any
extra coding as the system ports. Listing 4.10 shows an abstract port that does not
implement any behavior, only input and output message de�nitions. The PortPS is
owned by an PTC and maps to a system port. PTCs receive job task submission
messages with information about tasks (buckets) through this port. The de�ned
input type message is 'received job' (line 4). Other abstract ports are just as simple

7HtmlUnit. http://htmlunit.sourceforge.net/
8Apache HttpClient. http://hc.apache.org/httpcomponents-client-ga/index.html/
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and do not need to be listed here. The seven test components' ports seen in the test
architecture diagram in �gure 4.12, are all abstract ports (PortPS is used to imple-
ment the ones identi�ed as pt_sys within the PTCs in the architecture diagram).

1 public class PortPS extends AbstractPort {
2 public PortPS ( ) throws JataException {
3 super ( ) ;
4 addInputType (Message . getICD (MsgReceivedJob . class ) ) ;
5 }
6 }

Listing 4.10: PTC's abstract port

Remote Port (Within the Test Double Worker)

The remote port is owned by the test double implementation of the worker. Listing
4.11 shows the code for the whole test double. The test double architecture and
behavior was described in Section 4.3.3. The test double extends the actual SUT
worker component (line 1) and is deployed on the worker instance in the cloud. The
test double only overrides the run method (line 11) of its parent, which is called by
the Request Manager.

The run method starts by setting up the communication port to the test system
adapter, in a call to the con�gJata method (line 12). As stated earlier remote ports
need a manual con�guration between the ports involved. Information about the
system adapter port is uploaded in a con�guration �le to the worker cloud instance
when it is started. The initialization procedure, described in section 4.5, takes care
of uploading the con�guration information.

After con�guration of the test double a new thread is started for handling rendering
tasks (lines 14 to 19). The render method (line 34) asks for next bucket to render
(line 37) and sends information about the task to the test system (line 38), through
the remote port. The PortWorkerToPtc (declared in line 6) is an RMI port for send-
ing messages via RMI to a Jata system adapter port (line 47). The receiving system
adapter port is mapped to an abstract port of a PTC (see �gure 4.12).

1 public class WorkerComponentTestDouble extends WorkerComponent {
2 /∗∗
3 ∗ Jata remote por t d e f i n i t i o n
4 ∗/
5 private PortWorkerToPtc portWorkerToPtc = null ;
6
7 /∗∗
8 ∗ S t a r t s the render ing ( c a l l e d by the r e que s t manager )
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9 ∗/
10 @Override
11 public void run ( ) {
12 con f i gJa ta ( ) ;
13
14 renderThread = new Thread (new Runnable ( ) {
15 public void run ( ) {
16 render ( ) ;
17 }
18 }) ;
19 renderThread . start ( ) ;
20 }
21
22 private void con f i gJa ta ( ) throws Exception {
23 FakeRenderWorkerConfiguration con f i g = new

FakeRenderWorkerConfiguration ( ) ;
24 c on f i g . workerId = Config . getWorkerId ( ) ;
25 c on f i g . ptcRmiConf igurat ion = Config . getPtcConf ig ( ) ;
26
27 try {
28 portWorkerToPtc = new PortWorkerToPtc ( c on f i g . ptcRmiConfigurat ion )

;
29 } catch ( Exception e ) {
30 System . out . p r i n t l n ( "WARNING: Could not c r e a t e PortToMtc" ) ;
31 }
32 }
33
34 private void render ( ) {
35 while ( ! doBreak ( ) ) {
36 try {
37 currentBucket = requestManager . getNextBucket ( currentFrame ,

workerId ) ;
38 sendParametersToJata ( ) ;
39 } catch ( EmptyStackException e ) {
40 break ; // s top render ing
41 }
42 }
43 }
44
45 private void sendParametersToJata ( ) {
46 try {
47 portWorkerToPtc . pipe2Me (new MsgReceivedJob (new JobParameters (

workerId , currentBucket . id , currentFrame ) ) ) ;
48 } catch ( JataPortException e ) {
49 System . out . p r i n t l n ( "Render worker−" + workerId + " f a i l e d to send

message to t e s t system : " + e . getMessage ( ) ) ;
50 }
51 }
52 }

Listing 4.11: Worker's Rendering Test Double
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PTC test function behavior

This section describes the behavior of the PTC test function. The function source
code is in listing 4.12.

1 public class ParameterPtcTestFunc extends TestFunction<Ptc>{
2
3 @Override
4 public void Func ( Ptc ptc ) throws JataException {
5 getReceivedJobMessages (ptc ) ;
6 ptc . Pass ( ) ;
7 }
8
9 private void getReceivedJobMessages ( Ptc ptc ) throws JataException {
10 Timer jataTimer = new Timer ( ) ;
11
12 int timeOutSeconds = 120 ;
13 SetTimeMessage timeMsg = new SetTimeMessage ( timeOutSeconds ∗ 1000) ;
14 jataTimer . start ( ) ;
15
16 while ( true ) {
17 jataTimer . l o ck ( ) ;
18 Message m = jataTimer . waitHandle ( timeMsg ) ;
19 i f (m instanceof TimeOutMessage ) {
20 // Time out e x c ep t i on s are caught in the MTC, which has another

loop f o r r e t r i e v i n g t h e s e messages .
21 break ;
22 }
23 rece iveMessage (ptc ) ;
24 }
25 }
26
27 /∗∗
28 ∗ Wait f o r incoming ta s k ( parameter ) messages from
29 ∗ the t e s t−doub le worker remote−por t .
30 ∗/
31 private void rece iveMessage ( Ptc ptc ) throws JataException {
32 Alt alt = new Alt ( ) ;
33 Timer t = new Timer ( ) ;
34 t . start ( ) ;
35
36 alt . addBranch (ptc . pt_system , new MsgReceivedJob ( ) ) ;
37 alt . addBranch ( t , new SetTimeMessage (2000) ) ;
38 alt . proc ( ) ;
39
40 i f ( alt . g e tResu l t ( ) . index == 0) {
41 MsgReceivedJob msg = (MsgReceivedJob ) alt . g e tResu l t ( ) . Result ;
42
43 // "Forward" PTC' s incoming parameter message to the MTC
44 ptc .pt_MTC. send (msg) ;
45
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46 // I d e a l l y send a r e s u l t image−par t to the SUT.
47 // ptc . portPS_out . send (new MsgImagePart ( ) ) ; −> Not ' p o s s i b l e '
48 }
49 else {
50 // Ignore : The t e s t f unc t i on p o l l s the message−queue
51 // r e gu l a r l y , so i t can normal ly be empty at t imes .
52 }
53 }
54 }

Listing 4.12: PTC test function

The purpose of this PTC test function is to retrieve the messages that the parallel
test component receives from the SUT, and forward them to the MTC for analysis
and veri�cation.

The PTC function is started in the main test case method (listing 4.1 lines 26 and
27). In this test case the MTC is responsible for collecting all bucket information
messages for veri�cation, and with this implementation, the MTC has all the mes-
sages and knowledge needed for validation of all the messages.

Just like the MTC (listing 4.1 line 46) the PTC function class de�nes a getReceived-
JobMessages method (line 9). The reason is that the worker test double remote port
sends the initial message to a system adapter port which forwards it to the PTC.
When the PTC receives such a message it instantly forwards it to the MTC through
its abstract port which is mapped to a MTC port.

In the getReceivedJobMessages method a timer is started (lines 12 to 14) before
entering a loop which receives all incoming messages within the de�ned timeout.
The timeout is made large enough for all rendering tasks to �nish. The MTC is
responsible for de�ning and controlling the timeout of the whole test case. In the
loop a call to the receiveMessage method (line 23) is made to receive each message
from the system port. The receiveMessage method includes an alt statement which
is made in the usual way (lines 36 to 38). For each MsgReceivedJob message received
(line 40) the message is forwarded to the MTC (line 44). Line 47 shows where image
parts should in principle be created and sent to the SUT if it were possible. The
test double workaround for the dummy image creation and sending is described in
Section 4.3.3.

4.5. Test Procedure

This section is structured using concepts from the Test Procedure chapter of the
IEEE Standard for Software and System Test Documentation [32].
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There are a few issues to be considered to be made for the execution of the test
case, such as security and runtime con�guration because of the elastic nature of the
cloud. Therefore a simple test harness utility was implemented to ease the setup
and execution of test cases. The test harness utility only helps with setting up the
test bed and start the test case. It is not possible to view the results from the utility.
Jata only includes a command line test runner (similar to the JUnit text UI runner),
so results must be veri�ed through the shell of the cloud instance that runs the test
system. Figures 4.17 and 4.18 show screen shots of the test engineer's environment
consisting of the special test harness utility and command line shell for reading the
output.

Figure 4.17: Test harness utility Figure 4.18: Test case result view (log)

The �rst thing that is done is starting the test system machine, which contains the
Jata test system. The instance is started with the help of Java code that uses the
Amazon AWS SDK for launching the instance and JShc9 (Java Secure Channel) for
uploading the required Jata binaries instance. JSch is a Java implementation of the
SSH (Secure Shell) network protocol for data exchange.

An important thing to mention is that for Amazon EC2 security, i.e. launching and
managing instances within the cloud, the Amazon EC2 account credentials need to
be available to the startup process. This is done by including a authentication �le
with the account information where the test utility can locate it.

The next step is starting the master Turnip machine. The test utility uses the
Cloud-ASL provided with the Turnip application for the startup and initialization
of the application. The SUT is initialized from the utility. The scene �le used for
the rendering needs to be uploaded to the SUT master node. JSch is used for the
uploading.

From within the utility the SUT workers (cloud instances) to be used in the test

9Java Secure Channel (JSch). www.jcraft.com/jsch
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case are added. The worker machines themselves are simply added through the
web interface (AJAX) of the Turnip application master node � previously started.
The worker OSGi service has been pre-con�gured to use the test double, described
in 4.3.3 instead of a real rendering implementation. An important step needs to
be made by the test harness utility at this stage. The step involves uploading a
con�guration �le about the test system machine for the remote port of the test
double to use in their RMI con�guration. The remote ports communicate with the
Jata system adapter of the test system and need to know the IP address and the
RMI port to connect to. Because of the elastic nature of clouds this information
cannot be provided at design-time and needs to be done at run-time.

After the four cloud instances are ready (the test system, Turnip master node and
two worker instances), the test case can be started. The test harness utility uses
SSH for starting the Jata test case on the test system. The output is redirected to an
output �le on the test system and also to the System.out console of the test harness
utility Java program � because of SSH features. The test results can therefore either
be viewed on the test machine or in the utility program's System.out console.

Ordered Description

Table 4.3 lists the test procedure for the most important activities in an ordered
description, as introduced in the IEEE test procedure documentation. The table
includes columns for the activity type and the actions/steps needed for the activity.
The right-most column 'Utility' indicates whether the activity can be controlled
from within the custom made test harness utility mentioned above.

Test Case Timing

Table 4.4 shows the mean time it takes to execute each activity in the testing. The
launching and setup of systems takes approximately six minutes, where each cloud
instance takes about three minutes to launch and become initialized for the test. The
workers are started in parallel, which takes around two minutes. The test case itself
runs in approximately 24 seconds, and 32 seconds go into tearing down the systems,
adding up to a total of approximately nine minutes for executing the whole test.
The test bed startup should be optimized in real case scenarios by adding parallel
support for instances startup. In this case the workers need to be started after the
master node but the test system machine could have been started in parallel with the
SUT master. Individual machines should have support for restart and reinitialize. If
for instance a tester needs to change a test case, the only thing needed is uploading
the new test case binaries to the test system and start the test case. There would be
no need to restart instances of the SUT. The same applies if code or con�guraiton
�xes need to by applied to nodes of the SUT.
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Type Actions/Steps Utility
Log: Java System.out statements in the system console of the

test system (and the test harness utility via SSH).
Yes

Setup: Amazon EC2 authentication �le needs to be in place.
The test system needs to be started. Then the SUT is
started and initialized and the scene �le is automatically
uploaded to the SUT master node if started from the
utility. Two workers need to be added.

Yes

Start: The Jata test case is started from the test utility. Yes
Proceed: No actions needed during the execution of the test case N/A
Measurement: Test measurements are made within the Jata test case. N/A
Shut down: It is not possible to temporarily suspend testing, when

unscheduled events dictate.
N/A

Restart: The Jata test case can be restarted without initializing
the SUT again.

Yes

Stop: It is not possible to stop the test case run N/A
Wrap-up: Cloud instances need to be terminated after the test run Yes
Contingencies: No actions are available to deal with anomalies that may

occur during execution.
N/A

Table 4.3: Ordered activities description

Activity Exec. Time (seconds)
Test system startup Total 167 s

- EC2 instance startup 52 s
- Java jars upload 115 s

Start Turnip master Total 180 s
- EC2 instance startup 52 s
- Upload scene �le 21 s
- Start Felix runtime 35 s
- Install OSGi bundles 54 s
- Start OSGi bundles 18 s

Add two workers (in parallel) Total 132 s
- EC2 instance startup 52 s
- Start Felix runtime 35 s
- Install OSGi bundles 36 s
- Start OSGi bundles 9 s

Run Jata test case Total 24 s
Terminate all instances Total 32 s
Total test execution time: 535 s

Table 4.4: Test activities execution times
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This chapter covers an evaluation of the performed case study. The objectives are
twofold: Investigating challenges in software testing for applications running in cloud
environment and evaluation of the applicability of Jata for distributed testing. In
section 5.1 the evaluation of software testing of cloud application is made whereas
section 5.2 covers an evaluation of the Jata test framework.

5.1. Software Testing of Cloud Applications

The main result revealed by the case study is that software testing for cloud appli-
cations is possible with traditional testing methods. However testing within a cloud
environment includes certain issues such as:

• Run-time con�guration required

• MAC address license issues

• Firewall issues

The elastic nature of the cloud demands that the test harness (i.e. a test setup
controller) has knowledge of all the machines, i.e. their IP addresses, participating
in the test bed. For con�guring distributed test components such as PTCs this
'knowledge' needs to be automated by a test harness. In traditional test beds the
IP addresses of participants can be con�gured at design-time in a con�guration �le
or a database. Design-time con�guration of distributed cloud test components is
however not possible and remote port mapping con�guration therefore needs to be
provided at run-time. This puts an extra burden on the test harness but can be
solved in various ways. The case study in this thesis used a test harness utility for
creating the cloud instances to be used and uploaded con�guration �les about the
test case to the test instances. The con�guration �le included RMI port information
for the remote port of the test double running on the instance.

Another concern related to the elastic behavior of instances is licensing issues. Many
test system providers, such as TTCN-3 tool providers, use MAC addresses licensing
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schemes for their products. Licensing based on MAC addresses is problematic for
the cloud and needs to be addressed by the software vendors.

Even if cloud vendors provide good �rewall con�guration support it is recommended,
for simplicity, that all participating machines in a test bed be located within the
cloud. In this case study, running the test system locally and the SUT in the cloud
using RMI as communication method between them was not possible in a simple
manner due to �rewall con�guration issues between the sites. Another argument in
favor of including all participants within the cloud is improved performance of test
case execution, because of the geographical location of involved instances. Mixing
private and public cloud infrastructures in a test bed can however be a good option
for security testing.

5.2. Jata

Jata's main bene�ts can be summarized in the following list:

• Light-weight

• Free of charge

• Common vocabulary (by using TTCN-3 concepts)

• Systematic way of de�ning test cases (by using TTCN-3 concepts)

• Java library

Jata is a light-weight Java library. Much like JUnit the only thing needed to get
up and running for writing Jata test cases is including the Jata jar �le in the Java
class-path. The framework is targeted at testing where the test cases and the com-
munication with the test system interface is written in Java. Jata bene�ts from
using Java since Java is a mature programming language, extremely powerful and
yet simple. Another bene�t is that the test cases can be compiled and built together
with the components under test, assuming they are also developed with Java, which
makes any changes between the test system and the SUT easier to handle. Conver-
sion between types (Codecs) is much simpler, or not even needed, if both the SUT
and the test system are written in the same language. Furthermore Java developers
do not need to learn a new language or syntax for the testing speci�cations.

What is good about Jata is that it borrows structuring from TTCN-3, essentially
from CTMF, in designing test cases. By this Jata forces test engineers to think
abstractly and express the software architecture by organizing the code into test
components (MTC and PTCs), ports, and alternatives. By using Jata a groundwork

90



5.2. Jata

is therefore laid for a common vocabulary as well as a systematic way of creating test
speci�cations. TTCN-3 is widely known and used by many professionals in various
�elds. Documentation and information for TTCN-3 concepts are easily available
but the TTCN-3 language and concepts can have some learning curve. It is however
necessary for Jata users to know at least the basic concepts of TTCN-3.

Jata is a newly introduced technology so it does not come without limitations. Most
notably it needs support for distribution of test components. Using Java lowers the
limitations of the framework, because theoretically the only limitations in imple-
menting test cases are the limitation of Java. Workarounds, as the test double
solution described in Section 4.3.3, can always be made. However additional encap-
sulation of concepts such as support for de�nition of distributed test components
and mapping of remote ports would improve the library base and possibly encourage
test engineers to use the framework.

Being a new framework little documentation is available. The framework is rela-
tively simple, but not so that documentation is not needed. Currently the only
available documentation is the introductory paper by the authors [60]. There are
code examples provided with the framework download package1. The code examples
are simple and do not deal with distributed test components, which also could use
improvements. Actually Jata does not support distribution of the test components
themselves. However, distributed ports may be used. The case study in this thesis
uses therefore a test double on the remote port instance.

Jata also needs to be improved to generate associated test reports, instead of relying
solely on a textual test runner. In the �rst run this might be achieved by using a log
utility such as Apache log4j2 to write the test output to a �le on the test system.
Result maintainability is an important aspect of testing activities. By writing the
output to a �le the di�erent test runs can be compared. In later stages it might be
feasible to write test outputs to XML �les, as JUnit is capable of, for build servers
to archive and use for graphical displaying of the test results.

A minor issue with Jata, though worth noting, is that it fails in a few places on
adhering to the common Java naming convention, which can be confusing. All
method names should start with a lowercase letter. Most notably are the Verdict
class methods ('Pass', 'Fail', 'Error' etc.), the 'UnMap' method of the IPipe interface,
'Result' method of the AltResult class, and the 'Adapter' method of the SystemPort
class.

1Jata download: http://code.google.com/p/jata4test/
2Apache Logging Services. http://logging.apache.org/
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Jata improvements can be summarized as follows:

• Add support for test components distribution

• Add support for remote port mapping

• Improve documentation

• Add test reporting features

• Refactor method names

While Jata can be seen as some sort of replacement for TTCN-3, some TTCN-3
concepts can only be used in an awkward way. For example, the convenient syntax
of a TTCN-3 alt statement cannot be used in Jata (Java). From that point of view,
Jata test cases look rather like the code that is typically generated by TTCN-3
compilers when translating TTCN-3 into some target language, e.g. Java.
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This chapter summarizes the results and provides an outlook. The results are re-
viewed and discussed in section 6.1, whereas the outlook is discussed in section 6.2.

6.1. Summary

In this thesis a test case was implemented with the Jata test framework for testing of
a cloud application. The cloud system under test and its management were analyzed
in order to implement an advanced test case for a parallel computing application.
The work revealed some challenges in testing of cloud applications. Software testing
of cloud application needs to deal with run-time con�guration of test-beds based
on the elastic nature of clouds. Other issues deal with �rewall con�guration and
tool licensing. A test harness utility was created in the thesis to support run-time
con�gurations of distributed test items.

The case study also showed that Jata is a promising test framework for distributed
testing. For the purpose of this thesis, Jata can be considered applicable for imple-
mentation of black-box functional test cases for cloud applications. The software
testing performed with Jata contributes to assuring the quality of applications within
cloud computing environment. It could be considered a weakness that Jata has only
been used by the authors in their introductory paper [60], however every child needs
to take its �rst steps somewhere. This thesis is the second step in keeping it on its
feet.

The importance of software testing can never be stressed enough. Recently Amazon
AWS experienced a major outage in one of its region service1. Amazon EC2 uses
multiple geographic regions to make their services more reliable. Amazon EC2 is
currently available in �ve regions: US East (Northern Virginia), US West (North-
ern California), EU (Ireland), Asia Paci�c (Singapore), and a second Asia Paci�c
(Tokyo). Each region contains multiple availability zones claimed to be designed
to be insulated from failures in other availability zones2. The outage was caused

1http://news.cnet.com/8301-30685_3-20056029-264.html
2http://aws.amazon.com/ec2/
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by a network event which a�ected multiple availability zones in the US-East region,
breaking the promise on the failure handling for AWS availability zones. The outage
brought down multiple public websites using Amazon's service. The outage failure
at Amazon is a reminder that both cloud customers and cloud vendors need to be
prepared for an outage. Distributed testing techniques help to explore and prepare
for the various types of failures that can occur within cloud infrastructures.

6.2. Outlook

This work on software testing cloud applications can be used to support further
research in the area. Improvements in the Jata framework can be, and should be,
made. Support for distributed parallel testing components is needed in Jata as
opposed to running all test components in the local context of the test system.
Remote port mapping between distributed test components needs improvements
with e.g. library con�guration methods for mapping ports. Further suggestions on
Jata improvements were made in the evaluation chapter (chapter 5). Jata is a light-
weight alternative to TTCN-3 tools. Its strengths lie in its simplicity and Jata
should continue focusing on being a light-weight option for distributed testing.

Besides Jata improvements various new research �elds, resulting from the establish-
ment of Jata, can be created. An interesting research topic is to create a TTCN-3 to
Jata converter, where abstract test cases could be de�ned with TTCN-3 and Java
code using Jata objects would be generated automatically.

Furthermore, the test case de�ned and implemented in this thesis can be used to run
the same tests on Eucalyptus which uses the same API as Amazon EC2. For other
cloud platforms the application under test used in this case study needs however
to be adapted. The test case in the thesis focused on the functionality of the
application management. Additional areas to cover could include testing quality
attributes of the cloud middleware itself, with focus on performance, reliability, and
security. Stress testing of components such as the application management could
furthermore be researched using Jata.

Finally, testing can be done where private and public cloud infrastructures are mixed.
In this case, the test components need be distributed in a way that some test com-
ponents run within a certain cloud infrastructure and others out of it. The focus
should be on test components communication. Remote ports in Jata can be used
for such a test architecture.
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Acronyms

AJAX Asynchronous JavaScript and XML

AMI Amazon Machine Instance

AP Abstract Port (Jata)

API Application Programming Interface

ASL Architectural Scripting Language

AWS Amazon Web Services

CTMF Conformance Testing Methodology and Framework

EC2 Elastic Compute Cloud (Amazon)

ETSI European Telecommunications Standards Institute

FIFO First In First Out

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

IUT Implementation Under Test

LT Lower Tester

MTC Main Test Component

OS Operating System

OSGi Open Services Gateway Initiative

OSI Open Systems Interconnection

PaaS Platform as a Service



Acronyms

PCO Point of Control and Observation

POJO Plain Old Java Object

PTC Parallel Test Component

RMI Remote Method Invocation

R-OSGi Remote OSGi

SaaS Software as a Service

SDK Software Development Kit

SP System Port (Jata)

SSH Secure Shell

SUT System Under Test

STITC Software Testing in the Cloud

TC Test Component

TCP Test Coordination Procedures

TP Timer Port (Jata)

TTCN-3 Testing and Test Control Notation version 3

UML Uni�ed Modeling Language

UT Upper Tester
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A. Appendix

This appendix contains instructions on how to set up the Java development envi-
ronment for the case study. Section A.1 contains description of the steps needed in
setting up the environment. Section A.2 lists the tools used for the development.
Section A.3 describes where the source code for the test case can be found. Finally
some considerations need to be made if the Jata core library needs to be rebuilt,
which is covered in A.4.

A.1. Development Environment Setup

The steps involved in the process of setting up the development environment are:

1. Download source code from SVN (Section A.1.1)
2. Install the AWS Toolkit for Eclipse (Section A.1.2)
3. Import Jata source code to Eclipse (Section A.1.3)
4. Import Turnip source code to Eclipse (Section A.1.3)
5. Provide Amazon EC2 security credentials (Section A.1.4)
6. Con�gure Amazon EC2 �rewall (Section A.1.5)
7. Build and package the Turnip application (Section A.1.6)
8. Upload Turnip �les to an HTTP server (Section A.1.7)
9. Run Jata test harness utility (Section A.1.8)

A.1.1. Download source code from SVN

The source code for both the Turnip application and the Jata case study is hosted
at XP-Dev.com1. The version control system used is Apache Subversion2. The URL
of the SVN is:

http://svn2.xp-dev.com/svn/cloudtest/trunk

1XP-Dev.com - http://www.xp-dev.com/
2Subversion. http://subversion.apache.org/
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The trunk directory contains two directories:

• /TurnipEclipseWorkspace

• /JataEclipseWorkspace

The TurnipEclipseWorkspace contains the Java source code for the Turnip appli-
cation used as the system under test. The application is described in Section 4.1.
The JataEclipseWorkspace contains the source code for Jata (version 0.1) and the
implemented case study test case, described in Section 4.2.

A.1.2. Install the AWS Toolkit for Eclipse

Eclipse is used for the Java development. The AWS Toolkit for Eclipse3 provided by
Amazon is an Eclipse plug-in which needs to be installed. The AWS Toolkit includes
the AWS SDK for Java which is used to create and terminate EC2 instances.

A.1.3. Import to Eclipse

The �rst thing to do within Eclipse is to create a new solution workspace. After
that all the Java projects under both the Jata workspace directory and the Turnip
workspace directory are imported into the solution workspace. The Java projects
for import are listed in table A.1.

Jata The Jata core framework
JataEC2 Contains the case study test harness utility to initialize

the test bed and run the test case
JataExamples Contains the case study implementation of the test case.
turnip_asl The Turnip ASL (Asynchronous Scripting Language)

core
turnip_library Interfaces and core code for the Turnip application. In-

cludes the Sun�ow source code
turnip_requestmanager Contains the Request Manager OSGi bundle
turnip_web Contains the web interface layer for Turnip
turnip_worker Worker OSGi bundle (deployed on worker instances)
turnip_workerfactory OSGi bundle responsible of creating worker instances

Table A.1: Eclipse Java projects for the case study

3AWS Toolkit for Eclipse. http://aws.amazon.com/eclipse/
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A.1.4. Provide Amazon EC2 credentials

In order to run the test case within Amazon EC2 the Amazon AWS account cre-
dentials need to be available to the startup process. This is done by including a
properties �les under the Turnip ASL Java project called AwsCredentials.properties.

• /turnip_asl/src/is/hi/turnip/cloud/aws/AwsCredentials.properties

The �le contains the two following credential properties shown in listing A.1.

1 secretKey=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
2 accessKey=xxxxxxxxxxxxxxxxxxxx

Listing A.1: Amazon AWS credential properties �le

A 40 character long secret key is needed and a 20 character access-key. The infor-
mation can be found within the AWS Management Console4, under the Security
Credentials menu.

A.1.5. Con�gure Amazon EC2 �rewall

Various TCP/IP ports need to be open within the cloud environment, both for
the Turnip application and the Jata test system. The ports for Turnip are HTTP,
telnet, and Remote-OSGi ports. The telnet port is used by the Cloud-ASL for
communicating with the Felix OSGi runtime. The HTTP port and the R-OSGi
ports are used by the Turnip application. The ports for the Jata test system are
Java RMI ports used for the Jata remote ports and system ports communication.
The TCP/IP ports are listed in table A.2. The cloud �rewall is con�gured within
the Amazon AWS management console.

Port Description
6666 Felix remote shell port (Telnet)
9000 Turnip web application port (HTTP port)
9279 Remote-OSGi port
1291 Jata RMI remote port (PTC-1)
1292 Jata RMI remote port (PTC-2)

Table A.2: Amazon EC2 Ports

4http://aws.amazon.com/console/
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A.1.6. Build and Package Turnip

The Turnip Java projects needs to be built and packaged as OSGi bundles. The
Java projects are built with ANT. All Turnip projects include an ANT build �le
which builds the Java project code and packages them as an OSGi bundle. A master
build �le is provided under the turnip_library project. Project's individual ANT
build �les are under each project's /resource directory. The master build �le is:

• /turnip_library/resources/build-main.xml

A.1.7. Upload Turnip Files to an HTTP Server

After building the Turnip bundles they need to be uploaded to an HTTP server,
along with other dependencies. The Cloud-ASL uses HTTP download features for
installing the bundles to the OSGi runtime server of the cloud instances when new
instances are started.

Currently no con�guration �le is used in Turnip so the HTTP server location is hard-
wired into the ASL startup classes (is.hi.turnip.asl.groovy.ASLGroovy) for the mas-
ter and (is.hi.turnip.workerfactory.impl.WorkerFactoryComponent) for the workers.
The corresponding Java source �les are:

• /turnip_asl/src/is/hi/turnip/asl/groovy/ASLGroovy.java

• /turnip_workerfactory/src/is/hi/turnip/workerfactory/

impl/WorkerFactoryComponent.java

Listing A.2 shows the Java code that uses ASL startup procedure to launch the
Turnip master node in the cloud (line 7 needs to be edited). Listing A.3 shows code
for the startup of Turnip workers (line 5 is the one that needs editing) As seen in
the listings not only the Turnip OSGi bundles need to be present but also OSGi
packaged versions of dependent libraries. The dependent jars can be found under
the turnip_lib project's library folder:

• /turnip_library/lib/

The jar �les that are needed to be available on a HTTP server are the following:

1. jata-bar.jar
2. turnip_asl.jar
3. turnip_library.jar
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4. turnip_requestmanager.jar
5. turnip_web.jar
6. turnip_workerfactory.jar
7. turnip_worker.jar
8. aws-java-sdk-1.0.005.jar
9. com.springsource.org.apache.commons.httpclient-3.1.0.jar
10. org.apache.servicemix.bundles.jsch-0.1.42_2.jar
11. jta26_bar.jar
12. groovy-all-1.7.3.jar
13. com.springsource.org.apache.commons.logging-1.1.1.jar
14. com.springsource.org.apache.commons.codec-1.3.0.jar
15. remote-1.0.0.RC4.jar
16. jslp-osgi-1.0.0.RC5.jar

1 public Device start ( ) {
2 DeviceImpl dev i ce = create_instance_dev ice ( "m1. smal l " ) ; // c r ea t e s

ec2 in s tance and s t a r t s Fe l i x on i t
3
4 ASL a s l = new ASLImpl ( ) ;
5 a s l . i n i t i a l i z e_d e v i c e ( dev i c e ) ;
6
7 St r ing path = "http ://www. myserver . com/ turn ip /" ;
8
9 insta l l_component ( device , path + " turn ip_as l . j a r " ) ;
10 insta l l_component ( device , path + " turn ip_l ib ra ry . j a r " ) ;
11 insta l l_component ( device , path + " turnip_requestmanager . j a r " ) ;
12 insta l l_component ( device , path + "turnip_web . j a r " ) ;
13 insta l l_component ( device , path + " turn ip_worker factory . j a r " ) ;
14 insta l l_component ( device , path + "aws−java−sdk −1 .0 .005 . j a r " ) ;
15 insta l l_component ( device , path + "com . sp r i ng sou r c e . org . apache . commons

. h t tp c l i e n t −3 . 1 . 0 . j a r " ) ;
16 insta l l_component ( device , path + "org . apache . s e rv i c emix . bundles . j sch

−0.1 .42_2 . j a r " ) ;
17 insta l l_component ( device , path + " jta26_bar . j a r " ) ;
18 insta l l_component ( device , path + "groovy−a l l −1 . 7 . 3 . j a r " ) ;
19 insta l l_component ( device , path + "com . sp r i ng sou r c e . org . apache . commons

. logg ing −1 . 1 . 1 . j a r " ) ;
20 insta l l_component ( device , path + "com . sp r i ng sou r c e . org . apache . commons

. codec −1 . 3 . 0 . j a r " ) ;
21
22 start_components ( ) ;
23
24 return dev i c e ;
25 }

Listing A.2: Java code for starting up the Turnip main node
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1 public void run ( ) {
2 Device dev i ce = a s l . c reate_instance_dev ice ( "m1. smal l " ) ;
3 a s l . i n i t i a l i z e_wo rk e r ( dev i c e ) ;
4
5 St r ing l ib_path = "http ://www. myserver . com/ turn ip /" ;
6
7 a s l . instal l_component ( device , l ib_path + " jata−bar . j a r " ) ;
8 a s l . instal l_component ( device , l ib_path + " turn ip_l ib ra ry . j a r " ) ;
9 a s l . instal l_component ( device , l ib_path + "remote −1 . 0 . 0 .RC4. j a r " ) ;
10 a s l . instal l_component ( device , l ib_path + " j s l p−osg i −1 . 0 . 0 .RC5. j a r " )

;
11 a s l . instal l_component ( device , l ib_path + "turnip_worker . j a r " ) ;
12
13 . . .
14 }

Listing A.3: Java code for starting up Turnip worker instances

A.1.8. Execute Jata Test Harness

To execute the test case, the test harness utility is used (�gure A.1). The test
procedure is described in section 4.5.

Figure A.1: Test harness utility

The Java main entry class for the utility is:

• /JataEC2/src/is/hi/amazon/turnip/TestHarnessUtility.java
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A.2. Software Tools Used

Table A.3 lists the tools used in the development of the Jata test cases in this thesis.

Purpose Tool
Version control Subversion hosted at XP-Dev.com
IDE Eclipse Java EE IDE for Web Developers
Test framework Jata version 0.1
OSGi BND tool Peter Kriens BND tool
Amazon EC2 Firewall The AWS management console
Test harness utility Custom made tool for the case study

Table A.3: Software used for the case study

A.3. Jata Test Cases source

The JataExamples project contains the source code for the Jata test cases. The
main Java package is:

• is.hi.jata.example.parametertestcase.turnip

This package contains code for the MTC, PTCs, the system adapter and the ports
used in the test case. The test case class is:

• is.hi.jata.example.parametertestcase.turnip.ParameterTestCase

A.4. Jata Core Changes (if needed)

If changes are done to the core Jata library, it needs to be re-bundled as an OSGi
bundle.

The Jata source is automatically built with Eclipse. What needs to be done however
is to export the Jata project from Eclipse as a Java jar �le. Furthermore the
resulting jata.jar �le needs to be bound as an OSGi bundle. The worker instances
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(test double implementation) use the Jata core library for the remote ports so the
Jata jar is needed at the workers' OSGi runtime (Felix).

Peter Kriens BND tool5 can be run on the Jata jar �le to bundle it. The bnd.jar
�le is under directory:

• /turnip_asl/resources/lib

The Java command line looks like:

java -jar bnd.jar wrap jata.jar

The output is an OSGi bundled version of the Jata library. Note! The �lename is
'jata.bar' which needs to be renamed to 'jata-bar.jar'. This �le needs then to
be uploaded to the HTTP server for the Cloud-ASL to access it (as described in
Section A.1.7).

5BND Tool. http://www.aqute.biz/Code/Bnd
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