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Abstract 
The aim of this thesis is to examine what drives the changes in the price of carbon credits in the 

European Union’s Emission Trading Scheme (EU ETS) and to make predictions based on these 

relationships. The study, which is based on the British energy market and global equity indices, starts 

with a large dataset which is reduced in dimension using correlation and principal component analysis. 

Predictions are then made by multiple linear regression, principal component regression and latent root 

regression. Correlation is the preferred dimension reduction technique to be followed by principal 

component regression. Certified emission reduction units (CERs) are shown to be the only same-day 

market relationship which provides useful predictions of European Union Allowance prices (EUAs), 

however this relationship is lost when data is lagged by one business day. No significant correlation is 

found between EUAs and the UK power market and the theoretical price of carbon credits; switching 

price, is shown to be a poor indicator of the price of carbon credits. The latent root model shows a 

notable performance out-of-sample, capturing the overall trend of EUAs over the prediction horizon. 

Keywords: EU ETS, EUAs, Carbon Credits, Principal Component Analysis, Latent Root Regression 
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Útdráttur 
Rannsókn þessi heitir á íslensku: Verðþróun losunarheimilda á ETS-markaði Evrópusambandsins: 

Fylgni-, meginþátta- og eigingildagreining. Markmiðið með rannsókninni er að kanna hvaða þættir 

hafa áhrif á verðbreytingar gengis losunarheimilda á markaði Evrópusambandsins (EU ETS) og 

byggja spálíkön á þeim samböndum. Rannsóknin, sem byggir á breskum orkumarkaði og alþjóðlegum 

hlutabréfavísitölum, notast við stórt gagnasafn sem síðan er minnkað með tveimur tölfræðilegum 

aðferðum: fylgnigreiningu og meginþáttagreiningu (e. Principal Component Analysis). Spálíkön eru 

svo byggð með margfaldri línulegri aðhvarfsgreiningu (e. Multiple Linear Regression), meginþátta-

aðhvarfsgreiningu (e. Principal Component Regression) og eigingilda-aðhvarfsgreiningu (e. Latent 

Root Regression). Fylgnigreiningin reyndist besta aðferðin til að minnka vídd gagnanna fyrir 

samdægurssambönd. Svo skyldi beita meginþátta-aðhvarfsgreiningu á hið minnkaða gagnasafn. Gengi 

CERs hefur mikla samdægursfylgni við gengi losunarheimilda (e. EUAs), en þetta samband hverfur 

þegar gögnum er seinkað um einn dag. Enga fylgni mátti greina milli gengis losunarheimilda og 

gengis raforku á breskum markaði. Ennfremur reyndist hið fræðilega verð losunarheimilda (e. 

switching price) ekki góður mælikvarði á verðþróun losunarheimilda. Eigingilda-líkanið sýndi ágæta 

frammistöðu þegar það var prófað á nýjum gögnum, sem höfðu ekki verið notuð við 

afhvarfsgreiningu, þar sem líkanið nær að endurspegla heildarstefnu verðþróunar losunarheimildanna á 

spátímabilinu. 

Efnisorð: EU ETS, losunarheimildir, græn vottorð, meginþáttagreining, eigingilda-aðhvarfsgreining 
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1 Introduction 
The increased concentration of green house gases in the atmosphere is now a generally accepted fact 

among scientists and politicians. More important is the consensus that the concentration is largely due 

to human activity and that the increased concentration is directly linked to the phenomena of global 

warming and climate change (Stern, 2007). Should no action be taken, the earth’s average surface 

temperature could rise by 4°C by the year 2100, which could result in catastrophic effects. 

To address this risk, countries of the world gathered for the Earth Summit in Rio de Janeiro in 1992 

and agreed on an international treaty; the United Nations Framework Convention on Climate Change 

(UNFCCC). The aim of the treaty was to slow down green house gas emissions and the convention 

addressed important issues of climate change mitigation, new technology and promoting education. 

The treaty was however not legally binding so in 1997 an addition to the treaty was adopted, known as 

the Kyoto Protocol. According to the Kyoto Protocol, overall emissions will be reduced by five 

percent compared to 1990 levels over the period from 2008 to 2012, known as the Kyoto commitment 

period. 

Following the Kyoto Protocol the European Union (EU) began preparing an EU carbon market to 

facilitate EU Member States to meet their commitments in a cost-effective way. On January 1st 2005 

the European Union Emission Trading Scheme (EU ETS), the first international trading system of its 

kind, was launched. The EU ETS is a cap and trade system where overall emission levels are capped 

but members are free to buy or sell emission allowances as needed. It is currently the largest multi-

country, multi-sector emission trading scheme in the world where trading in 2009 accumulated to over 

$ 118 billion. 

Understanding the market and its key price-drivers is essential for managing large-scale investment 

choices as well as successfully planning existing operations, especially in the energy intensive 

industrial sector. As exact predictions on the market are virtually impossible, knowledge of what 

drives changes in the price of carbon credits is extremely valuable in constructing optimal hedging and 

investment strategies. 



2  1  Introduction 

 

Although the theoretical foundation of carbon markets is widely acknowledged, empirical studies have 

only been published recently or are forthcoming. Several analyses have been carried out on the subject 

of carbon-price development. 

Taschini & Paolella (2006) focused on the econometric modeling of the allowances. They conducted 

an analysis of the statistical distribution of emission trading allowances and constructed GARCH-

models to address the tail behavior and heteroskedastic dynamics in the returns. Benz & Truck (2009) 

examined different phases of price and volatility behavior in the returns with the use of Markov 

switching and AR-GARCH models for stochastic modeling. The models were found to be effective in 

capturing short-term behavior. Daskalakis et al. (2009) compared three main markets under the EU 

ETS: Powernext, Nord Pool and ECX and concluded that spot prices were better approximated by 

Geometric Brownian motion augmented by jumps as the spot prices are likely to be characterized by 

jumps and non-stationarity. Uhrig-Homburg & Wagner (2009) examined the relationship between spot 

and futures markets in the EU ETS and concluded that futures markets lead the price discovery 

process of carbon credits. The above analyses are however based on data from phase I of the market 

environment, i.e. from 2005-2007. 

Bataller et al. (2007) analyzed the effect of different factors on the price of allowances, including 

weather. They concluded that the most emission intensive energy sources were the principal factors in 

the determination of carbon prices and that only extreme temperatures could influence the prices. 

Alberola et al. (2008) came to a similar conclusion stating that EUA spot prices not only react to 

energy prices, but also to unanticipated temperature changes during colder events. In a Master’s thesis, 

Obermayer (2009) explored the relationship between carbon credits and German energy complex 

assets, including electrical power, coal, natural gas and oil. He found power to be the only significant 

correlation to EUAs and suggested further work on British data. Frunza et al. (2010) showed that 

energy, natural gas, oil, coal and equity indices acted as major factors in driving the carbon allowance 

prices. They then used an arbitrage pricing model via a hidden Markov chain model to predict futures 

prices and found the model to be effective both in and out-of-sample. Frunza et al. (2010) also briefly 

touched on the subject of principal component analysis. Finally Zhang & Wei (2010) summarized the 

main arguments of empirical studies on the EU ETS completed thus far. 

To this date no analyses have been done focusing on British data, to the knowledge of this author, 

despite the fact that the United Kingdom is the second largest emitter of the OECD countries included 

in the EU ETS, after Germany (International Energy Agency, 2009). An in depth principal component 

analysis has also yet to be presented. Earlier studies have mainly focused on time-series models based 

on the EUA returns but fewer have examined market-relationships to EUA prices. A quantitative or 

semi-quantitative method of dimension reduction has not been examined with an application to the 

prediction of EUA prices.  
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The goal of this thesis is therefore to answer the following two questions: 

1.  What drives the changes in the price of emission allowances and can predictions be made based 

on that knowledge? 

2. Considering a large-dimension dataset, what is the most effective way of reducing the dimension 

of the data to a manageable, yet useful size? 

To address these topics and thereby the goals of this thesis a large dataset is collected, covering over 

thirty different variables based on British power market data, global equity indices and relevant 

currencies. The dimension of the data is reduced using two different methods: correlation and principal 

component analysis. In and out-of-sample predictions are then made using multiple linear regression, 

principal component regression and latent root regression. 

The results show that the dimension reduction based on correlation and principal component analysis 

yield two completely different sets of variables. Correlation generates a dataset of equity indices along 

with CERs while the principal component analysis highlights dark spread, clean spark spread and WTI 

crude but switching price is rejected as a useful predictor of EUA returns. Dimension reduction based 

on correlation is the most effective in providing a strong same-day relationship able to capture over 

80% of the variability of the data, but the relationship is lost when data is lagged by one business day. 

When testing out-of-sample none of the models is able to capture the variability of the returns, 

however the same-day and lag-1 day latent root models are able to capture the overall trend of EUA 

prices over the period of the prediction horizon. 

British data do not seem to provide a useful relationship to EUA returns and British energy returns are 

weakly correlated to EUA returns, as opposed to German energy returns as shown by previous studies. 

The multiple linear regression and principal component regression prove to be useful tools for 

modeling if the reduced dataset is highly correlated to EUA returns. 

The thesis is structured as follows: Chapter 2 gives the relevant background and development to this 

date of the international climate policy and the Kyoto Protocol as well as describing the fundamentals 

of the European Union’s Emission Trading Scheme. Chapter 3 describes the theoretical framework 

and methods used to solve the problems presented above. Chapter 4 then examines the data used for 

the analysis and briefly describes the fundamental theory of the theoretical relationship between 

carbon price and the energy sector. In chapter 5 the main-results of the analysis are presented and in 

chapter 6 conclusions are drawn based on those results. The appendix then follows with more detailed 

results for the enthusiastic reader. 
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2 Background 
The chapter describes the development of the international climate policy from which the European 

Union’s Emission Trading Scheme has emerged. The first section covers the Kyoto protocol, followed 

by a section which explains the key-rules and structure of the EU ETS. 

2.1 Climate Change and the International Climate Policy 

The increased concentration of green house gases1 (GHGs) in the atmosphere is now a generally 

accepted fact among scientists and politicians. More important is the consensus that the concentration 

is largely due to human activity and that the increased concentration is directly linked to the 

phenomena of global warming and climate change (Stern, 2007). 

The earth‘s surface temperature has risen by 0.74°C on average since the dawn of the industrial 

revolution in the 18th and 19th century and green house gas emissions have risen by more than 30 

percent (Labatt & White, 2007). A temperature increase of another 1.8 to 4 degrees is expected by the 

year 2100 assuming no action is taken to reverse the development. To address this risk, countries of 

the world gathered for the Earth Summit in Rio de Janeiro in 1992 and agreed on an international 

treaty; the United Nations Framework Convention on Climate Change (UNFCCC). The aim of the 

treaty was to take the first steps towards reversing or slowing down global warming by reducing 

emissions of green house gases and to define the objectives and principles of the member countries, 

known as the Parties, with respect to green house gas emission. The convention addressed the 

important issues of climate change mitigation, developing new technology, promoting education, 

research and information exchange (“United Nations Framework Convention on Climate Change,” 

2010). 

With 194 Parties, the convention is close to universal membership. The Parties of the UNFCCC are 

differentiated into three groups; the Annex I Parties, refering to the developed nations which are 

members of the Organization for Economic Co-operation and Development (OECD) plus economies 

in transition (the EIT Parties); the Annex II Parties, including only the OECD members; and finally 

                                                             
1
 The UNFCCC identifies six primary green house gases: carbon dioxide (CO2), methane (CH4), nitrous oxide 

(N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6) 
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non-Annex I Parties which include Annex II and other parties which are mostly developing countries. 

Although the UNFCCC was an important step towards reducing green house gas emissions, the treaty 

was not legally binding. In December 1997 a number of nations attending the third session of the 

Conference of the Parties (COP3) adopted an addition to the treaty. The addition is known as the 

Kyoto Protocol (Depledge & Lamb, 2005). 

The protocol recognizes that the majority of emissions stem from developed countries (Annex I) and 

therefore places a heavier burden on industrialized nations, imposing “common but differentiated 

responsibilities” (“United Nations Framework Convention on Climate Change,” 2010). The Kyoto 

protocol contains legally binding emissions targets for 37 industrialized countries, stating that on 

average, Parties will reduce emissions by 5 percent against 1990 levels over the period from 2008 to 

2012, also known as the Kyoto commitment period. To date 184 Parties have ratified the treaty which 

entered into force on February 16th 2005 when the target of 55 Parties had ratified the treaty and 

accounted for a minimum of 55% of 1990 emissions. To date all but one Annex I Party have ratified 

the treaty, the only exception being the United States of America. 

In reality the developed countries are facing much more than a 5% reduction. Many of the OECD 

countries did not meet their non-binding emission reductions to 1990 levels by the year 2000, in fact, 

emissions rose compared to 1990 levels. This trend is now reversing, but in order to meet targets the 

required overall emission reduction is nearly 20% by the end of 2012 should no abatement attempts be 

made (“What is the EU doing on climate change?,” 2010). To facilitate the required emissions 

reductions for countries with commitments under the Kyoto Protocol some means of mitigation are 

offered. These are known as the Kyoto flexible mechanisms: International Emissions Trading (IET), 

The Clean Development Mechanism (CDM) and Joint Implementation (JI). 

The economic basis for international emissions trading is that the marginal cost of abating emissions 

differs between countries. Under IET, Annex I Parties receive (or purchase) a predetermined (desired) 

amount of credits, so-called assigned amount units (AAUs). One AAU gives the right to emit one ton 

of carbon dioxide equivalent (CDE)2. If desired the Parties may choose to trade their AAUs. A country 

with low abatement costs could therefore sell its redundant AAUs to another country where abatement 

costs are higher and hence increase the efficiency of the Kyoto agreement. 

The clean development mechanism and joint implementation are so-called project-based mechanisms 

which generate emission reductions via specific projects. CDM is designed to encourage Annex I 

                                                             

2 The carbon dioxide equivalent is a metric measure used as a comparison between various GHGs. The carbon 

dioxide equivalent of a certain GHG is based on their global warming potential (GWP). The equivalent is 

commonly expressed in million metric tons of carbon dioxide equivalent (MMTCDE) (Taschini & Paolella, 

2006). 
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countries to invest in emission reduction

every ton of CDE reduced a certified emission reduction unit (

Annex I countries can then use to 

countries (Annex I) to carry out joint implementation projects with other industrialized countries 

granting them either emission reduction unit

the type of project (“United Nations Framework Convention on Climate Change,

shows a schematic view of the flexible mechanisms and their credits.
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trading scheme marks the beginning of phase I, known as the trial period. Phase II spans the five year 

Kyoto commitment period from 2008 to 2012, phase III runs from 2013-2020 and the fourth trading 

period runs from 2021-2028. 

In order for a country to receive allowance units it must draw up a national allocation plan (NAP), 

which determines the country’s overall emission levels and how the EUAs are to be distributed within 

the country’s installations. By the end of the year, each installation reports its total emissions which 

can then be credited with the allocated EUAs. If the installation is long, EUAs can either be sold or the 

allowances banked (however banking was prohibited during phase I). When allowances are banked the 

owner of the allowances is in fact saving the credits to a later date when he has use for them. If, for 

instance, an installation meets its annual emission goal and is long EUA allowances, the allowances 

can be banked and used the following year or when needed. The allowances can also be sold 

immediately for market spot price. If the installation is short allowances it can choose to buy EUAs or 

participate in JI or CDM projects to meet emission reduction targets. Non-compliance results in a fine. 

During phases I and II the fine for non-compliance has been €30/ton, but is scheduled to be raised to 

over €100/ton in phase III, which is much higher than the spot price of EUAs. 

The EU ETS is an artificial market, meaning that there is no actual demand for carbon credits other 

than the one imposed by law and regulations. The market therefore depends heavily on the quality of 

regulatory framework and phase I was a trial period used to get the necessary regulatory bodies up and 

running. From the beginning, the EU ETS has covered power stations and other combustion plants 

above a certain capacity threshold, oil refineries and coke ovens as well as iron and steel plants. 

Factories making pulp, paper, board, cement, glass, lime and bricks were also included. 

A key rule in phase I was the banning of banking carbon credits to phase II. The market experienced 

an early crash in 2006 where price of credits plummeted to near zero after the announcement that the 

market would be long at the end of phase I. Most blame the national allocation plans, saying that 

emissions had been over-allocated and many countries therefore holding soon to be worthless carbon 

credits because of the rule of no banking. Some have however suggested that the fault was not over-

allocation, but rather over-abatement (Ellerman & Buchner, 2008). Regardless of the reason, the 

market survived and despite extremely low spot prices, the futures market for phase II credits still 

maintained high prices indicating a common belief that the market regulations would adjust to this 

newfound knowledge. Although phase I is a clear example of market crash due to regulatory mistakes 

it also establishes that the cap and trade system is highly transparent and new information influences 

price formation quickly. 

During phase I all allowances were allocated to installations free of charge and the redundant/missing 

EUAs sold or bought when needed. For phase II a marginal amount of credits was auctioned and 

banking to phase III allowed. Phase II coincides with the legally binding Kyoto period to reduce 
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but probably mostly due to the global financial crisis. Demand for energy has 

a price drop in the 2009 spot prices for carbon credits 

from 2008 to 2009 indicating a high level of speculation and overall the market value of the 

transactions was higher in 2009 (Kossoy & Ambrosi, 2010)
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meaning that installations will no longer 

default method of allocation, although some sectors and sub

will still receive free allowances. The number of free allowances to be given to industrial installations 

will be decided in 2011 (Kossoy & Ambrosi, 2010)

by the end of phase IV the vast majority of all carbon allowances will be auct

partnered with the annual reductions of overall available allowances

the price of EUAs, hence forcing companies to either pay more for the right to emit or 

technologies and projects to reduce or offset their emissions.

aviation and the aluminum industry.

Figure 2.2: Key facts for EU ETS phases
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emissions against 1990 levels. Emissions have in fact been reduced, in part by means of abatement, 

probably mostly due to the global financial crisis. Demand for energy has dropped accordingly 

a price drop in the 2009 spot prices for carbon credits is evident. Trading volumes did however double 
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The EU ETS was the only mandatory emission trading scheme in the world until New Zealand’s ETS 

was entered into force in November 2009. New Zealand’s government did however announce that the 

of the trading scheme could be delayed unless other developed countries 

s. Following the Copenhagen climate conference in 2009

expectations for a legally binding global agreement were not met, the sense of uncertainty of

uctions effort increased. 

Expectations were lower when the 16th session of the Conference of the Parties took place in Cancun, 

The climate change conference did however achieve important progress 

towards an international agreement after the Kyoto period by agreeing upon a “balanced package” of 

decisions to help countries address climate change. The package also provides the necessary 
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foundation for further negotiations on a comprehensive agreement, covering all major emitters 

(“United Nations Framework Convention on Climate Change,” 2010). 

Currently the EU ETS is the only framework that promises to reduce green house gases after the 

Kyoto period, i.e. beyond 2012. 
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3 Theoretical Framework 
The chapter covers theory pertinent to the analysis. First a section on time series analysis, then a brief 

chapter about correlation and its relevance to the analysis followed by a section about principal 

component analysis, multiple linear regression, principal component regression and finally latent root 

regression. The sections on time series analysis and correlation rely on Tsay (2002), the section on 

principal component analysis and latent root regression is mostly based on Jolliffe (2002) and 

Webster, Gunst & Mason (1974) respectively and finally the section on multiple linear regression is 

based on Montgomery & Runger (2007) and Gujarati & Porter (2009). 

3.1 Time Series Analysis 

3.1.1 Returns 

Consider an asset, having price �� at time �. The one period simple gross return from time � � 1 to � 

can be written as 

 1 � R� 	 P�P���     or    P� 	 P����1 � R�� (3.1) 

The simple return or simple net return, R�, is 

 R� 	 P�P��� � 1 	 P� � P���P���  (3.2) 

Taking the natural logarithm of the simple gross return yields the continuously compounded return, ��. 

Let ��  and ����  denote the natural logarithm of ��  and ����  respectively. The continuously 

compounded return or log return is therefore 

 r� 	 ln�1 � R�� 	 ln � P�P���� 	 ln�P�� � ln �P���� 	 p� � p��� (3.3) 

For small returns, a commonly used approximation is 

 R� � r� (3.4) 
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3.1.2 Moments of a Random Variable 

Now consider a continuous random variable, �. Let ���� be the probability density function (PDF) 

and let � denote the expectation operator. The ℓth moment of � is then defined as 

��ℓ 	 � �ℓ! 	 " �ℓ����#�$
�$  

When analyzing distributions other than the normal distribution the first four moments are of 

particular interest. The first moment measures the central location of the distribution of �, also known 

as the mean or expectation of �. Provided that the integral exists, the ℓth central moment of � about 

the mean %& is defined as 

��ℓ 	 ��� � %&�ℓ 	 " �� � %&�ℓ����#�$
�$  

The second central moment of �, the variance, denoted by '&( , measures the variability of �. The 

positive square root of the variance is the standard deviation, '& . The third central moment is a 

measure of symmetry or lopsidedness, with respect to the mean and the fourth central moment is a 

measure of the tail behavior of �. In statistics the third and fourth normalized or standardized central 

moments are referred to as skewness and kurtosis, denoted by )���  and *���  respectively, as a 

measure of asymmetry and tail thickness  

)��� 	 � +�� � %&�,'&, -                *��� 	  � +�� � %&�.'&. -  
A distribution that is skewed to the right will have positive skewness but negative skewness if skewed 

to the left. Furthermore, the property *��� � 3 is known as the excess kurtosis, since the kurtosis for a 

normal distribution is equal to three. A distribution with positive excess kurtosis will have heavier tails 

than a normal distribution. 

Now consider the random sample 0��, �(, … , �34 of � with 5 observations where 6 	 1,2, … , 5. Let %̂&, '9&(, )̂��� and *:��� denote the sample mean, sample variance, normalized sample skewness and 

normalized sample kurtosis respectively. Then 

 %̂& 	 15 ; �<
3

<=�  (3.5) 

 σ?@( 	 1N � 1 ;�xC � µ9@�(E
C=�  (3.6) 

 s9�x� 	 1�N � 1�σ?@, ;�xC � µ9@�,E
C=�  (3.7) 
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and k:�x� 	 1�N � 1�σ?@. ;�xC � µ9@�.E
C=�  (3.8) 

represent the unbiased sample estimators as counterparts to the population central moments. 

3.1.3 Multivariate Returns and Covariance 

Let H 	 ���, �(, … , �I�  be a random vector consisting of �  random variables. Provided that the 

expectations exist the mean vector and covariance matrix of H are defined as 

��H� 	 J& 	 K�����, ���(�, … , � �I!LM
 

NOP�H� 	 Q 	 ES�T � U@��T � U@��V 
whose sample counterparts are simply vector notations of equations (3.5), (3.6), (3.7) and (3.8) 

(assuming that the population mean is not known). Thus, the covariance of a random variable with 

itself is simply the variance of the random variable. Furthermore assuming that the population mean is 

unknown the covariance of two random variables, � and W is 

 NOP��, W� 	 �K�� � %&��W � %X�L 	 15 � 1 ;��< � �Y��Z< � Z[�3
<=�  

(3.9) 

 

where �Y and Z[ represent the sample means of � and W respectively according to equation (3.5). 

3.2 Correlation 

Correlation is an important factor in both principal component analysis and regression introduced in 

later sections. It is a measurement of how two random variables move together, i.e. the strength of the 

linear dependence between them. Let � and W be two random variables. The correlation between � 

and W is then defined as 

 \&,X 	 NOP��, W�]^_����^_��W� 	 �K�� � %&��W � %X�L
`��� � %&�(��W � %X�( (3.10) 

 

It can be shown that �1 a \&,X a 1 and \&,X 	 \X,&. � and W are completely uncorrelated if \&,X 	 0. 

Now consider again a sample of 5 observations from both � and W. The sample correlation is then 

represented as 

 \9&,X 	 ∑ ��< � �Y��Z< � Z[�3<=�]∑ ��< � �Y3< �( ∑ �Z< � Z[�(3<  
(3.11) 

 

where �Y and Z[ represent the sample means of � and W respectively according to equation (3.5). 
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Correlation also has a useful geometric property. Consider �  and W  as two vectors in space. Let ^_���� and ^_��W� represent the squared lengths of the vectors and let their mutual projection in the 

Euclidian space be given by NOP��, W�. Let d be the angle between the two vectors. Equation (3.10) 

can then be rewritten as 

 \&,X 	 NOP��, W�]^_����^_��W� 	 cos�d� (3.12) 

The correlation between �  and W  can therefore be readily interpreted by examining a graphical 

representation. This property will be utilized further in the principal component analysis in section 

5.1.3. 

Another important factor when analyzing time series is autocorrelation. Consider again the return 

series ��, where � is the time index and the greatest time index is g. The concept of autocorrelation is a 

generalized version of correlation when the linear dependence between �� and its past values ���ℓ is of 

interest. The correlation coefficient between �� and ���ℓ is denoted by \ℓ and refered to as the lag-ℓ 

autocorrelation of ��. Autocorrelation is further defined as 

 \ℓ 	 NOP��� , ���ℓ�]^_�����^_�����ℓ� (3.13) 

whose lag- ℓ sample autocorrelation counterpart is 

 \9ℓ 	 ∑ ��� � �Y�����ℓ � �Y�h�=ℓi�
`∑ ��� � �Y�h�=ℓi� ( ∑ ����ℓ � �Yh�=ℓi� �( (3.14) 

Iteratively calculating the lag-  ℓ  autocorrelation for increased values of ℓ , generates the function \9�, \9(, …, called the sample autocorrelation function (ACF) of �� which can be plotted against ℓ to 

capture the linear dynamic of the data to identify any serial correlations of the returns. 

3.3 Principal Component Analysis 

Principal component analysis (PCA) is a dimension reduction technique. Given a multidimensional 

data set in jI, the aim of PCA is to describe the data in a lower dimension using synthetic variables 

which are linear combinations of the original variables. The synthetic variables are also known as the 

principal components (PCs). Reducing the dimension of the data generally incurs a loss of 

information, but PCA performs this reduction in such a way as to minimize this loss. 
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3.3.1 Definition 

Suppose that k is a vector of � centered4 random variables whose covariance structure and correlations 

between the � variables is of interest. PCA is applied to Q, the covariance matrix of k. Furthermore let l�  be a vector of �  constants m��, m�(, … , m�I . The first principal component, n� , is the linear 

combination of the elements of k having maximum variance, 

n� 	 kl� 	 ��m�� � �(m�( � o � �Im�I 	 ; �pm�p
I

p=�  

To find the second PC, a linear combination kl(, uncorrelated with kl�, is found in the direction of 

maximum variance (apart from the first PC) and so on. At the *th stage of the process a linear function klq is found that has maximum variance subject to being uncorrelated with kl�, kl(, … , klq�� . The *th linear function is the *th PC. In general the *th PC can be written as 

 nq 	 klq 	 ��mq� � �(mq( � o � �ImqI 	 ; �pmqp
I

p=�  (3.15) 

where * r � is an integer. If k consists of simple returns of � assets then nq is the return of a portfolio 

that assigns the weight mqp  to the sth asset. In order to maintain the proportional allocation assigned to 

the sth asset the vector lq is standardized such that lqM lq 	 1. Up to � PCs can be found, but the goal 

of the method is to reduce the dataset so that most of the variation in the data is accounted for by the 

first � PCs, where � t � is determined according to a selection criteria which will be covered in the 

next section. 

In matrix form, equation (3.15) can be rewritten as 

 u 	 Hv (3.16) 

where u is a 5 w � matrix whose *th column contains the *th PC, H is the centered 5 w � data matrix 

and v  is an orthogonal   � w �  matrix whose * th column, lx  is called the * th eigenvector of the 

covariance matrix, Q. 
Using properties of linear combinations of random variables it can be shown that 

 Qv 	 vz (3.17) 

where z is a diagonal � w � matrix whose *th diagonal element is {q; the *th eigenvalue of Q also 

referred to as the *th latent value. The diagonal elements of z are ordered by decreasing magnitude 

such that {� | {( | o {I | 0 . Furthermore considering the * th diagonal element of z  it can be 

shown that 

                                                             
4 Centered, meaning that each column mean has been subtracted form the column values 
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 {q 	 ^_��kmq� 	 ^_��nq� (3.18) 

It then follows from equations (3.17) and (3.18) that 

 }�Qv 	 z (3.19) 

and the covariance matrix can be reconstructed from the PCs by 

 Q 	 vz}� (3.20) 

3.3.2 Selection Criteria 

When choosing the number of PCs to retain after the analysis several selection criteria exist. Three 

will be explained for the purpose of the analysis. 

The first, and most widely used, is the cumulative proportion of variance accounted for by the 

eigenvalues. Again let k~  denote the � th column vector of H , n~  represent the � th PC, {~  the � th 

eigenvalue and ���Q� denote the trace of the covariance matrix. The variance of k~ is then 

 ; ^_��k~� 	I
~=� ���Q� 	 ; {~

I
~=� 	 ; ^_��n~�I

~=�  (3.21) 

The result of equation (3.21) yields the semi-quantitative selection criteria; proportion of cumulative 

variance of the *th PC (Tsay, 2002) 

 ^_��nq�∑ ^_��k~�I~=� 	 {q{� � {( � o � {I (3.22) 

The criterion is semi-quantitative because the final decision of the number of PCs, �, to retain is 

qualitative – often a rule of thumb5. 

The second method, backward elimination, involves iteratively eliminating the most dominant variable 

of the PC having the lowest latent value until a certain number of variables are left. The most 

dominant variable is the variable whose coefficient in the linear combination has the highest absolute 

value. 

The third method, forward selection, is the opposite of backward elimination. Instead of eliminating 

poor candidates, the method iteratively chooses the most dominant variable of the PC having the 

highest latent value. The process is repeated until a sufficient number of variables has been selected. 

                                                             
5 A common approach is choosing � such that the PCs account for over 80 percent of the total variability of the 
data. 
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3.3.3 Singular Value Decomposition 

To physically compute the principal components further definitions are needed. The PCs can be 

expressed by performing singular value decomposition (SVD). The SVD of the centered 5 w � data 

matrix H is defined as 

 H 	 ��vM (3.23) 

where � is an 5 w �  orthogonal matrix spanning the column space of H and v, as defined above, 

spans the row space. � is a � w � diagonal matrix with diagonal entries �� | �( | o �I | 0, called the 

singular values of H (Hastie, Tibshirani, & Friedman, 2008; Jolliffe, 2002). The sample covariance 

matrix is given by � 	 H�H/�5 � 1� and hence from equation (3.23) 

 ��5 � 1� 	 HMH 	 v��vM (3.24) 

is the eigen decomposition of HMH. The columns of v are called the principal component directions or 

eigenvectors of HMH and as previously mentioned the first PC has the property of having the largest 

sample variance of all the possible linear combinations of the columns of H. By definition of singular 

values and eigenvalues the sample variance of the *th PC is easily found to be 

 ^_��nq� 	 ^_��Hmq� 	 �q(5 � 1 	 {q (3.25) 

and in fact nq 	 Hmq 	 �q�q meaning that the columns of �� also give the PCs of H. The importance 

of using SVD for PCA is twofold; it provides an efficient method to find the PCs as well as yielding 

the eigenvectors and singular values, and hence the eigenvalues and variance of the PCs for the sample 

covariance matrix. The scaled versions of the PC scores given by � 	 u��� are a bonus (Jolliffe, 

2002). 

3.4 Multiple Linear Regression 

Linear regression is a statistical technique often used to capture the relationship between different 

variables. The variables are referred to as dependent variables and independent variables or regressors. 

As is implied by the name, the dependent variable is a function of the independent variables. Multiple 

linear regression treats the scenario where a single dependent variable is a function of multiple 

regressors. 

3.4.1 Definition 

To define the regression model let again � 	 �~�, �~(, … , �~I, � 	 1,2, … , 5, be a vector of � random 

variables each having 5 observations and let W be the dependent variable, also of 5 observations. The 

linear relationship between � and W can be defined by 
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 Z~ 	 �� � ���~� � �(�~( � o � �I�~I          � 	 1,2, … 5   

where ��, ��, … , �I  are constants, to be estimated, that assign weights to the regressors. The 

relationship is however rarely strictly linear so an error term is added 

 Z~ 	 �� � ���� � �(�( � o � �I�I � �~          � 	 1,2, … , 5 (3.26)  

called a multiple linear regression model with � regressors, where the error term, �~, is a random error 

with mean zero and an unknown variance '(. Using matrix notation the model can be expressed as 

 � 	 H� � � (3.27)  

where the first column of H is the column vector �.  

Although the model is called a linear regression model it can accommodate non-linear terms such as 

the interaction term ��(���( by simply setting �Ii� 	 ��( and �Ii� 	 ���(. In fact, any regression 

model whose parameters are linear is a linear regression model regardless of the shape of the 

generated plane. 

3.4.2 Least Squares Estimation of Parameters 

In order to find the “best fit” to the data an estimation of the betas, denoted by ��, needs to be made. 

The method of ordinary least squares (OLS) or sum of squared errors can be used to estimate the 

regression parameters (betas). The goal is to minimize the least squares function �6 

 � 	 ; �~( 	 �M� 	 �3
~=� � � H����� � H�� (3.28)  

The least squares estimator ��  is then found by taking the partial derivatives of �  and finding the 

minimum 

 ���� 	 � (3.29)  

Equation (3.29) yields the equations that must be solved 

 HMH�� 	 H�� (3.30)  

Multiplying both sides of equation (3.30) by �H�H��� then gives the least squares estimate of the betas 

 �� 	 �H�H���H�� (3.31)  

                                                             
6 Note that this is not the same matrix � as in the SVD in the PCA section. 
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The fitted model can then be represented as �? 	 H��. The difference between the actual observations 

and the fitted values is known as the error or residual defined by 

 � 	 � � �? (3.32)  

3.4.3 Assumptions of the Classical Model and the Gauss-Markov assumptions 

Several assumptions underlying the method of least squares have to be met in order to draw inferences 

about the true betas of the population. The Gaussian, standard classical linear regression model 

(CLRM), the cornerstone of most econometric theory, makes seven assumptions: 

A1. The model is linear in its parameters as discussed in section 3.4.1 

A2. Regressors are independent of the error term, i.e. NOP��~, �~� 	 0 

A3. The expected value of the error terms is zero, i.e. �S�~V 	 0 

A4. The errors are homoskedastic, have constant variance, i.e. ^_���~� 	 '( 

A5. No autocorrelation between the errors, i.e. NOP �~, �p! 	 0 where � � s 

A6. The number of observations, 5, must be greater than the number of estimated parameters, � 

A7. The given � values must not all be the same, i.e. � must have variability 

Under the above assumptions the OLS estimators are both unbiased and have minimum variance 

among all alternative estimators. Given a model that upholds the assumptions of the CLRM, 

inferences can be made about the population with the added assumption that the errors are normally 

distributed with mean zero and variance '(. 

When the sole purpose is parameter estimation, but not to draw conclusions about the population the 

estimation can be based on fewer assumptions. A best linear unbiased estimator (BLUE) is defined by 

the assumptions underlying the Gauss-Markov theorem7. An OLS estimator ��  is said to be a best 

linear unbiased estimator (BLUE) of � if the following holds: 

A1. The model is linear 

A2. The parameter estimate is unbiased 

A3. It has minimum variance, i.e. it is an efficient estimator 

The residuals do not need to be normally distributed nor homoskedastic for an estimator to be BLUE 

(Gujarati & Porter, 2009). 

3.4.4 Significance Testing: The t-statistic and White’s robust t-statistic 

When an estimate of the betas has been found it is often desirable to verify the significance of the 

estimated parameters. This can be done using the t-test statistic. To test whether an individual 

                                                             
7 The Gauss-Markov theorem states that given the assumptions of the CLRM, the OLS estimators in the class of 
unbiased linear estimators, have minimum variance and are BLUE. 
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regression coefficient, �p , equals a value �p�  the hypothesis  �� 	 �p 	 �p�  and �� 	 �p � �p�  is 

tested with the statistic 

 g� 	 ��p � �p�
`'(Npp

 (3.33)  

where Npp  is the diagonal element of the inverse of the covariance matrix of H , �H�H��� , 

corresponding to the estimated beta, ��p . The null hypothesis is rejected if |��| � �� (⁄ ,<��Ii��. 
Significance testing is based on the assumptions of normally distributed, homoskedastic residuals. The 

homoskedasticity assumption is often hard to meet, rendering the parameter confidence intervals 

unreliable. White (1980) offered a remedy called a heteroskedasticity-consistent covariance matrix 

estimator to treat heteroskedastic residuals in a manner that yields reliable confidence intervals of the 

estimator without changing the regression coefficients. Furthermore the estimator holds regardless of 

the shape of the heteroskedasticity of the residuals. White’s robust t-statistic, HC0, is defined as 

 �N0 	 �HMH���HMdiagK�~(LH�H�H��� (3.34)  

where the entries on the main diagonal of HC0 are the estimated squared standard errors of the 

regression coefficients. Dividing the regression coefficients by these standard errors gives a ratio that 

can be used to derive the �-values for hypothesis testing (Hayes & Cai, 2007). 

According to Hayes & Cai (2007) a weighted version of White’s t-statistic is more reliable. The HC4 

statistic was introduced by Cribari-Neto, (2004) and is defined as 

 �N4 	 �HMH���HMdiag + �~(�1 � ¡~~�¢£- H�H�H��� (3.35)  

where, 

 ¤ 	 min ¦4, 5¡~~� � 1§ (3.36)  

where ¡~~ 	 k~�HMH���k~M. The ¡~~s are the diagonal elements in the “hat” matrix ¨ 	 H�HMH���H� 
and also know as leverage values8. The ¤ controls the level of discounting for the �th observation with 

the truncation point at 4. The �-values can be extracted from HC4 in the same way as for HC0 (Hayes 

& Cai, 2007). 

                                                             
8 “The use of leverage adjusted residuals is based on an extensive literature on the finite-sample bias of HC0.“ 
(Hayes & Cai, 2007) 
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3.4.5 Model Adequacy Checking 

After a model has been fitted to data there is no guarantee that the model adequately describes the 

relationships between the variables. It is interesting to examine how much of the variation in the data 

is absorbed by the error terms. There are many means to this end but four will be examined for the 

sake of the analysis; the coefficient of determination, ©(, the adjusted coefficient of determination, ©ª«p( , the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). 

The coefficient of determination is a measure of how much variation of the dependent variable is 

explained by the model. The basis of ©( lies in the concept of analysis of variance (ANOVA) which is 

mainly comprised of three concepts: the error sum of squares, ¬¬­, the regression sum of squares, ¬¬® 

and the total corrected sum of squares, ¬¬h. Where ¬¬­ 	 ∑ �Z~ � Z9~�(3~=� ,  ¬¬® 	 ��MHM� �  ∑ X££̄°± !²
3   

and  ¬¬h 	 ��� �  ∑ X££̄°± !²
3 . For a linear model the sums are connected by the relationship ¬¬h 	

¬¬® � ¬¬­. Furthermore the quantity ³¬­ 	 ¬¬­/�5 � �� is called the error mean square or mean 

squared error. Using the above relationships the coefficient of determination is the defined as 

 ©( 	 1 � ¬¬­¬¬h 	 ¬¬®¬¬h (3.37)  

This statistic should however be used with caution. Generally ©( increases every time a new variable 

is added to the model but that does not always imply a better model. Adding new variables to the 

model incurs a loss of one error degree of freedom meaning that in order for the model to be superior 

the error sum of squares of the new model should be reduced by an amount equal to the original error 

mean square. To counter this tendency an adjusted version of ©( exists, where 

 ©ª«p( 	 1 � ¬¬­/�5 � ��¬¬h/�5 � 1� 	 1 � ³¬­¬¬h/�5 � 1� (3.38)  

Equation (3.38) states that the adjusted coefficient of determination will only increase if the error 

mean square is reduced when a new variable (increased value of �) is added to the model, therefore ©ª«p(  is a good guard against overfitting. 

The AIC and BIC statistics are also measures of goodness of fit and can be said to describe the 

tradeoff between bias and variance. Both punish for including more parameters in the model but BIC 

includes a larger penalty for overfitting. The AIC and BIC are defined as follows: 

 ´µN 	 5 log �¬¬�5 � � 2� (3.39)  

 ¶µN 	 5 log �¬¬�5 � � � log �5� (3.40)  



22  3  Theoretical Framework 

 

where � stands for number of variables and 5 is the number of observations or data points. When 

comparing models by their respective AIC and BIC, the model having the lowest value is considered 

the best model in terms of AIC and BIC. 

3.5 Principal Component Regression 

Now consider again the standard regression model as defined by equation (3.27) and the principal 

components as defined by equation (3.16). Since v is orthogonal, H� can be written as Hvv��� 
(assuming again that H is a centered matrix) and equation (3.27) can therefore be rewritten as 

 � 	 u· � � (3.41)  

where · 	 v���. The predictor variables have simply been replaced by their PCs in the regression 

model. If predictors are near-singular or are related via multicolinearity the model explained by 

equation (3.41) is unsatisfactory. The high inter-correlations of the predictor variables are transformed 

into low variances of the PCs. These low-variance relationships can be detected by examining the 

latent values (eigenvalues) as indicated by equation (3.25). Principal component regression (PCR) 

tackles this by reducing the dataset to a subset of � PCs. Having chosen the � PCs to retain, the 

reduced model can be written as 

 � 	 u¸·¸ � �¸ (3.42)  

A least squares estimate can then be used to find an estimate for the new parameters according to the 

equation 

 �� 	 v·? (3.43)  

Applying least squares to equation (3.43) is equivalent to finding �� by applying least squares directly 

to equation (3.27). It is however more straight forward to find the estimate using equation (3.41). The 

vector ·? is then defined as 

 ·? 	 �uMu���uM� 	 ���u�� (3.44)  

where � is the diagonal matrix containing the eigenvalues as defined in the section on SVD. 

Using the PCs as predictor variables instead of the original regressors enables the contributions of 

each PC to be more easily interpreted than those of the original variables. Furthermore, because the 

PCs are uncorrelated, the contribution and estimated parameters of each PC to the model are 

unaffected by the addition of other PCs to the regression whereas for the original variables both the 

contributions and coefficients can change dramatically when another regressor is added to the model. 

This is especially true in the presence of multicolinearity where the main advantage of PC regression 

occurs. Even if multicolinearity is not a problem, regressing on the PCs can still have advantages for 

computation and interpretation. It should however be noted that although interpretation of the 
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contributions is improved by regressing on the PCs, the interpretation of the regression equation itself 

may be futile if the PCs do not have a clear meaning. 

3.6 Latent Root Regression 

In the presence of multicolinearities the OLS estimation of parameters can result in very poor 

estimates. For instance if there is an almost exact linear dependence among the regressors, the ©( can 

be very close to one. This type of ill-conditioning of the data is referred to as near singularity. Latent 

Root Regression (LRR), suggested by Webster, Gunst & Mason in 1974, is a modified version of OLS 

which identifies near singularities, determines whether these near singularities have predictive value or 

not and then obtains the modified (biased) least squares estimates of the parameters having adjusted 

for the non-predictive near singularities using the latent roots and latent vectors of the data. 

Consider again equation (3.27). Let Z~¹ 	 �Z~ � Z[�/º where º( 	 ∑ �Z~ � Z[�(3~=� . Define the matrix ¶ 	  S�¹: HV, i.e. the 5 w � � 1 matrix of dependent and independent variables. After having applied 

PCA on ¶ the least squares coefficients are defined as 

 � 	 �º ¼; {~¹��I
~=� ½

��
; m�p{p��lp�

I
p=�  (3.45)  

with residual sum of squares 

 ¬¬� ��, �(, … , �I! 	 º( ¼; {~¹��I
~=� ½

��
  (3.46)  

where m�p  is the coefficient for the dependent variable of the sth eigenvector, lp� is a vector which 

contains all elements of the sth eigenvector, except the first one (the dependent variable) and {~¹ 	 ¾£�¿£²  

(Webster et al., 1974). 

As mentioned in section 3.3 the *th principal component, nq  is represented in terms of the latent 

vectors. Furthermore the *th latent root, corresponding to the *th latent vector, measures the spread of 

the 5 data points in the direction defined by the latent vector. If m�q is nearly zero the *th principal 

component is nearly orthogonal to the �¹ axis so if both m�q  and {q are small, the *th latent vector, mq , reveals a non-predictive near singularity, i.e. a strong linear dependence in the independent 

variables only, resulting in little or no change in the dependent variable. 

Now suppose that the latent vectors l�, l�, … , lq�� correspond to non-predictive near singularities. 

Setting the corresponding entries of ¶ equal to zero the modified least squares coefficients are defined 

as 
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 �¹ 	 �º ¼; {~¹��I
~=q ½

��
; m�p{p��lp�

I
p=q  (3.47) 

 

 

Similarly the residual sum of squares for the modified coefficients are 

 ¬¬� ��, �(, … , �I! 	 º( ¼; {~¹��I
~=q ½

��
 (3.48)  

Thus the coefficients have been estimated utilizing only linear combinations not having both {q and m�q small and thus having adjusted for the effect of non-predictive near singularities (Webster et al., 

1974).  
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4 Data 
The chapter covers data relevant to the analysis. First is a section on the trends of EUA prices and 

trading volumes. Then a section on the suggested connection between carbon allowance prices and the 

energy sector and finally a section describing the complete datasets chosen for the analysis and the 

sources used to obtain the data. 

4.1 European Union Allowance Units 

Since the dawn of the EU ETS in 2005 the price changes of allowances have been very volatile. Figure 

4.1 shows the evolution of the spot price and the December 2008 futures contract for EUAs. The 

relevant trading volumes are shown in figure 4.2. 

 

Figure 4.1: EUA prices for phases I and II (Source: “Point Carbon,” 2010). 

The market experienced an early crash in April 2006 when the spot price of carbon fell by almost two 

thirds in a single day from over 30 €/ton to just 9 €/ton prompted by uncoordinated announcements of 

several countries that the 2005 emissions were well within the total cap. The imminent surplus of 

EUAs on the market quickly devalued the spot price of carbon. An apparent surprise to the sector 

analysts, the crash of April 2006 registered the lowest prices since the launch of the market in January 

2005. (Jones, 2006). By the end of 2006 and during early months of 2007 EUA price had dropped to 

virtually zero or under €1. The price spread between the spot price and the Dec 2008 futures contracts 

had increased from €3-5 to over €16. Market players reported buying inexpensive EUAs for phase I 

compliance and banking any project-based CERs delivered in 2005-2007 to phase II. The prohibition 
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of banking EUAs to phase II accompanied by the surplus on the market contributed to making phase I 

EUAs almost worthless at the close of phase I (Capoor & Ambrosi, 2007). 

 

Figure 4.2: Monthly EUA trading volumes for phases I and II (Source: “Point Carbon,” 2010). 

Despite the severe crash of phase I EUAs the market still appeared to have faith in the EU ETS. The 

high prices of the December 2008 futures prices against the phase I spot price showed an increased 

interest in phase II as the EU announced tighter caps for the next trading period as well as allowing 

phase II allowances to be banked to phase III. The turmoil in 2006 and 2007 EUA prices is also a 

testimony of the efficiency in price formation of the carbon market. New information appears to be 

reflected in price quickly, suggesting market transparency. 

Starting phase II, EUA prices rose and expectations grew again, but the price-increases were short-

lived – carbon was hit by the recession in mid-year 2008 as economic slowdown reduced the demand 

for carbon. Commodity prices fell and energy intensive production of various kinds was cut back, 

reducing emissions. The need to purchase allowances was also reduced, since credits had been 

allocated for free prior to phase II when demand for commodities was strong, emissions higher and the 

economy was healthy. After the recession hit the European economy many struggled with raising 

funds. In a difficult credit environment companies who were long allowances chose to sell EUAs on 

the market to raise cheap cash and shore up their balance sheets causing record breaking daily and 

monthly trading volumes at the time, especially in the spot market. The increased supply was not met 

by demand hence driving lower prices for carbon well into 2009. 

The companies’ decision to sell EUAs was boosted by the fact that the allowances had never been paid 

for, but had been granted for free. Amplifying the problem was the fact that there was an overlap in the 

time when allowances for 2009 were issued (February 2009) and the time when 2008 allowances were 

to be surrendered (April 2009). Many market participants therefore chose to sell their 2008 allowances 

for cash knowing that they could cover any shortage with the 2009 allowances. Furthermore they 

could hedge their position by buying later maturity futures or options at attractive prices, in effect 
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yielding a discount-priced loan when attaining credit was expensive or even impossible (Capoor & 

Ambrosi, 2009). 

In February 2009 EUA prices had fallen to €8, compared to €30 nine months earlier stocking fear 

amongst market participants that phase II would repeat the end of phase I. However, by May 2009 the 

worst had passed and prices rebounded rather quickly and stabilized around €13 to €16 for the 

remainder of the year and well into 2010. 

Given the above summary of the price history of EUAs there have been some concerns that the high 

volatility of carbon credits will discourage investment in emission reduction projects. The price 

volatility of phase I was primarily driven by regulatory mistakes as phase I, or the “learning phase” as 

named by the EU, ran its course. Phase II then correctly reflected the macro-economic situation in the 

world as commodity prices fell and demand for carbon assets was reduced accordingly. A fixed price 

of carbon cannot be accommodated by a cap-and-trade system such as the EU ETS due to the fact that 

the market should adjust to the level of scarcity of carbon. If a fixed price were the target a tax scheme 

would be more appropriate. While the increased proportion of auctioned allowances should help 

stabilize the price of carbon, given the current scheme the price will continue to reflect short and long 

term supply and demand. 

Carbon trading volumes (refer to figure 4.2) have continued to grow as the trading scheme matures. 

Over-the-counter (OTC) forward contracts have been responsible for most transactions although 

forward contracts on exchanges have been growing for the past couple of years. The spot market has 

also been growing steadily. From its birth the EU ETS carbon market has grown fast, tripling its size 

in the first year and doubling in size between 2006 and 2007 when considering trading volumes. 

Despite the recession, the market value rose between 2008 and 2009 and trading volumes doubled. As 

shown in table 4.1 the value of the EU ETS market in 2009 is fifteen times larger than it was four 

years earlier as the trading done in 2009 accumulated to $ 118 billion (€85 billion). 

Table 4.1: Carbon market volumes and values in 2005-2009*. 

 2005 2006 2007 2008 2009 

EU ETS Value [M $]** 7,908 

(99%) 

24,436 

(99%) 

49,065 

(99%) 

100,526 

(99%) 

118,474 

(96%) 

EU ETS Volume [MtCO2]** 321 

(98%) 

1,104 

(97%) 

2,060 

(98%) 

3,093 

(94%) 

6,326 

(86%) 

Total Value [M $] 7,971 24,699 49,361 101,492 122,822 

Total Volume [MtCO2] 328 1,104 2,108 3,278 7,362 

*Source: Capoor & Ambrosi, 2007; 2008; 2009; Kossoy & Ambrosi, 2010. 

**Numbers in brackets represent percentage of the total market value or volume respectively. 
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Table 4.1 also shows overall trading volumes and value of the carbon market worldwide. In the last 

couple of years other allowance markets besides the EU ETS have also started to grow notably 

especially trading of AAUs of the Kyoto protocol as well as under the Regional Green House Gas 

Initiative (RGGI)9 (Kossoy & Ambrosi, 2010) but the EU ETS is by far the largest market with market 

share of over 99% of total worldwide trading value during phase I and 97-98% of total market volume. 

Focusing on the EU ETS should therefore give a realistic view of the global market. 

4.2 The Power Sector and EUAs 

The power sector is one of the largest market players of the EU ETS accounting for over 70% of all 

emissions in 2007 and 2008 (Report on 2008 EU Emissions Trading System emissions data, 2009). 

Given its size, the power sector is the most dominant influence on the demand side and could thereby 

influence market dynamics. 

Prior to the initialization of the EU ETS the profit or spread made by power plants could be stated as 

the difference between the price of electricity on the market and the price of the fuel used to generate 

power having considered the efficiency of the plant and disregarded operational costs. These 

somewhat crude relationships are referred to as dark spread (DS) and spark spread (SS). Dark spread 

represents the theoretical profit made when a coal-fired power plant sells a unit of electricity. 

Similarly, spark spread represents the profit made when a gas-fired power plant sells a unit of 

electricity. Dark spread and spark spread can be expressed as follows: 

 À¬ 	 �­ÁÂÃ�Ä~Ã~�X � �ÅÆªÁ · 1\ÅÆªÁ  (4.1)  

 ¬¬ 	 �­ÁÂÃ�Ä~Ã~�X � �ÈªÉ · 1\ÈªÉ (4.2)  

where �­ÁÂÃ�Ä~Ã~�X represents the price of base load electricity per megawatt hour (MWh) sold on the 

market, �ÅÆªÁ is the price of coal per MWh, �ÈªÉ  is the price of natural gas per MWh and \ÅÆªÁ  and \ÈªÉ are efficiencies of the coal-fired and gas-fired power plants respectively. The values of \ÅÆªÁ  and \ÈªÉ  vary from plant to plant but \ÅÆªÁ 	 0,40  and \ÈªÉ 	 0,55  are often used as industry-wide 

averages (International Energy Agency, 2005). Figure 4.3 shows historical coal, natural gas and base 

load electricity prices. 

After the EU ETS emerged the simple economic equations above have been altered, rendering changes 

in the competitive environment in the European power sector. Given the price of the right to emit one 
                                                             
9 The RGGI is the first mandatory, market- based effort in the USA to reduce GHG emissions. Ten participating 
states have capped CO2 regionally and require the power sector to surrender tradable CO2 allowances for each 
ton of emitted CO2. The ten participating states are Conneticut, Delaware, Maine, Maryland, Massachusetts, 
New Hampshire, New Jersey, New York, Rhode Island and Vermont.  
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ton of CO2, the clean dark spread (CDS) and clean spark spread (CSS) can be defined. Clean dark 

spread represents the dark spread having adjusted for the price of CO2 and similarly clean spark spread 

represents the spark spread after adjusting for the price of CO2. The clean dark spread and clean spark 

spread are defined as follows: 

 NÀ¬ 	 �­ÁÂÃ�Ä~Ã~�X � Ë�ÅÆªÁ · 1\ÅÆªÁ � �ÅÌ² · �ÅÆªÁÍ (4.3)  

 N¬¬ 	 �­ÁÂÃ�Ä~Ã~�X � Ë�ÈªÉ · 1\ÈªÉ � �ÅÌ² · �ÈªÉÍ (4.4)  

where �ÅÌ² stands for the price of carbon allowances per ton CO2 and �ÅÆªÁ  and �ÈªÉ  are so-called 

emissions factors in tons CO2 per MWh where �ÅÆªÁ 	 0,86 and �ÈªÉ 	 0,3610 (Tendances Carbone - 

No. 3, 2007). 

 

Figure 4.3: Historical natural gas, coal and base load electricity prices in Euros per megawatt hour (Source: 

Bloomberg). 

Setting equation (4.3) equal to (4.4) and solving for �ÅÌ² the switching price of carbon can be derived: 

                                                             
10 Hence gas-fired power plants are both more efficient than their coal-fired counterparts and pollute less. 
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 �ÏÐ~�ÃÑ 	  �ÅÆªÁ\ÅÆªÁ � �ÈªÉ\ÈªÉ�ÈªÉ � �ÅÆªÁ 
(4.5)  

Switching price is a fictional price representing equilibrium between clean dark spread and clean spark 

spread. It can be interpreted as the price of carbon where it becomes equally profitable to generate 

electricity by burning coal and by burning natural gas. It therefore represents the price of carbon above 

which it becomes more profitable in the short term to switch from coal fired production to the cleaner 

natural gas and below which it is more profitable to switch from natural gas to coal (Tendances 

Carbone - No. 3, 2007). Figure 4.4 shows the historical development of dark and spark spreads as well 

as clean dark and spark spreads.  

 

Figure 4.4: Historical dark spread, spark spread, clean dark spread and clean spark spread prices in Euros per 

megawatt hour (Source: Bloomberg). 

By the theory of supply and demand, the demand for carbon allowances should decrease when more 

electric power producers choose to burn natural gas creating downward pressure on the price of carbon 

until it stabilizes around or above the implicit switching price. An assumption of switching price 

theory is stable electricity prices, but in reality they are not as can clearly be seen in figure 4.3. Many 

electricity producers simply stabilize their clean dark spreads and clean spark spreads by passing on 

the cost of carbon to consumers through higher energy prices (Obermayer, 2009). 
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Examining figure 4.5 below it is clear that the actual price of carbon does not follow the theoretical 

price, indicating that other factors than the fundamental power sector pricing theory heavily influence 

the price. Although carbon prices are considered volatile the switching price, based on the two 

commodities coal and natural gas, becomes even more unstable and does not appear to capture the 

price dynamics of EUAs. 

 

Figure 4.5: Switching price versus EUA spot price in Euros per ton CO2 (Source: Bloomberg). 

4.3 Data Description 

The analysis aims at testing a large dataset of various time series using dimension reduction 

techniques to gain a-priory knowledge for regression modeling. It is known that traders targeting 

carbon closely follow energy, as well as commodities such as brent crude oil, gasoil, natural gas, coal 

and sometimes also equity indices. Table 4.2 shows the chosen data for the analysis, their source as 

well as the period available. The table also includes the derived time series described in equations 

(4.1)-(4.5). Since the aluminum industry will be included in phase III of the EU ETS, LME aluminum 

prices are included in the database. A weather index is also included since other analyses have 

concluded that weather may be a factor in EUA prices as mentioned in the introduction. Two datasets 

are then defined; the training data set, which spans the period from September 2008 to August 2009, 

and the test data set, which spans the one year period from October 2009 to October 2010. 
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Table 4.2: The data chosen for the analysis (Source: Bloomberg). 

Time Series: Exchange: Ticker: Quoted unit: Data: 

EUA Spot Bluenext 
PNXCSPOT Index 

PNXCSPT2 Index 

EUR/Metric ton 24.6.2005-22.10.2010 

CER futures ICE ECX CARZ0 Comdty EUR/Metric ton 14.3.2008-22.10.2010 

WTI crude futures  EN1 Comdty  3.2.2006-22.10.2010 

Gasoil futures  QS1 Comdty  4.1.2005-22.10.2010 

Natural gas futures  FN1 Comdty p/therms 4.1.2005-22.10.2010 

Electricity Base Load  AT1 Comdty GBP/MWh 4.1.2005-22.10.2010 

Electricity Base Load  AT2 Comdty GBP/MWh 4.1.2005-22.10.2010 

Electricity Peak Load  AI1 Comdty GBP/MWh 4.1.2005-22.10.2010 

Electricity Peak Load  AI2 Comdty GBP/MWh 4.1.2005-22.10.2010 

Brent crude oil  CO1 Comdty  4.1.2005-22.10.2010 

Coal   XWZ0 Comdty USD/Metric ton 10.9.2007-22.10.2010 

Aluminum Primary LME LMAHDS03 LME 
Cmdty 

USD/ton 4.1.2005-22.10.2010 

Aluminum Alloy LME LMAADS03 LME 
Cmdty 

USD/ton 4.1.2005-22.10.2010 

Dark Spread*   EUR/MWh 11.09.2007-22.10.2010 

Clean Dark Spread*   EUR/MWh 11.09.2007-22.10.2010 

Spark Spread*   EUR/MWh 4.1.2005-22.10.2010 

Clean Spark Spread*   EUR/MWh 4.1.2005-22.10.2010 

Switching Price*   EUR/Metric ton 11.09.2007-22.10.2010 

Weather  UGHIE Index 7.2.2008-22.10.2010 

Nasdaq 100 Index  NDX Index Index 4.1.2005-22.10.2010 

Standard & Poor’s 500 Index SPX Index Index 4.1.2005-22.10.2010 

FTSE 100 Index  UKX Index Index 4.1.2005-22.10.2010 

Deutscher Aktien Index DAX Index Index 4.1.2005-22.10.2010 

Compagnie des Agents de Change CAC Index Index 4.1.2005-22.10.2010 

Amsterdam Stock Exchange AEX Index Index 4.1.2005-22.10.2010 

Portuguese Stock Index PSI20 Index Index 4.1.2005-22.10.2010 

USD/GBP  USDGBP Currency 4.1.2005-22.10.2010 

USD/EUR  USDEUR Currency 4.1.2005-22.10.2010 

EUR/GBP  EURGBP Currency 4.1.2005-22.10.2010 

*Calculated from other time series according to equations (4.1)-(4.5). “AT1 Comdty” is used for �­ÁÂÃ�Ä~Ã~�X. 
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5 Results 
The chapter describes the results of the study. The first section is a statistical analysis of the data, 

including the first four moments, key correlations and the principal component analysis. The second 

section shows in-sample regression results, including base-line regressions, principal component 

regression and latent root regression. The third section tests the regression models on out-of-sample 

data and finally, the fourth section provides a summary of the results. 

5.1 Statistical Analysis of phase II data 

5.1.1 Data Distribution 

The distribution of EUA returns is shown in table 5.1. The mean of the returns is negative over the 

duration of the period in question. The standard deviation is high relative to equity indices, indicating 

high volatility, and the positive skewness indicates that the distribution is skewed to the right, meaning 

that the right tail of the distribution is somewhat longer. The distribution has heavier tails than a 

normal distribution since the excess kurtosis is close to one.  

Table 5.1: The first four moments of European Union Allowance Units for the training data set. 

 
Mean 

Standard 
deviation 

Skewness Kurtosis 
Excess 

kurtosis 
EUA -0.0015 0.0319 0.0913 3.9285 0.9285 

 

A complete table, showing the first four moments for all variables used in the analysis is shown in 

table 1 of the appendix. Examining table 1 shows that switching price dominates the variability of the 

data with standard deviation of 1.9620. The next highest standard deviation is 0.0952 for coal. The 

variability of switching price is therefore over twenty times larger than the next highest variability. 

A graphical representation of the results of table 5.1 are shown in figure 5.1. The histogram (left) 

shows the actual EUA returns with a fitted normal curve. The positive skew is not obvious but the 

heavier tails are more apparent. Plotting the sample quantiles of EUAs (right) versus theoretical 

quantiles from a normal distribution also shows that the returns are not normally distributed. The slight 

s-shaped curve formed by the EUA returns indicates heavier tails. 
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Figure 5.1: A histogram of EUA spot returns with a fitted normal PDF (left) and a qq-plot of the sample 

quantiles of EUAs shown in blue versus theoretical quantiles from a normal distribution, shown in red (right). 

5.1.2 Correlation Analysis 

Correlations of the sample data were analyzed for same-day as well as lagged values. Lagged values 

were 1 business day, 2 business days, 1 business week and 1 business month. Correlations were low 

for values lagged by one business day and onward. Top ten correlations to EUA returns are shown in 

table 5.2. 

Table 5.2: Top ten correlations to EUA returns by lag-value, in order of decreasing value. 

Same-day Lag-1 business day Lag-2 business days Lag-1 business week 

EUA 1.00 EUA 1.00 EUA 1.00 EUA 1.00 

CER 0.91 CER 0.17 SPX -0.19 SS 0.09 

CAC 0.40 NDX 0.17 NDX -0.18 Weather -0.09 

PSI20 0.40 SPX 0.15 Brent crude -0.17 PSI20 -0.09 

DAX 0.38 Weather -0.14 CER -0.15 CSS 0.08 

Gasoil 0.37 EUR/GBP 0.09 UKX -0.15 Brent crude -0.08 

UKX 0.37 Gasoil -0.09 AEX -0.15 UKX -0.08 

WTI crude 0.36 WTI crude 0.08 WTI -0.14 Electr. PL 2 0.07 

Brent crude 0.32 Coal 0.07 Gasoil -0.14 DS 0.07 

CDS 0.32 Natural gas 0.07 Natural gas -0.13 CDS 0.07 

AL Primary 0.27 USD/GBP 0.07 DAX -0.12 CAC -0.07 

The same-day correlations are strongest, especially the correlation between EUAs and CERs, reaching 

over 90 percent. The next three highest correlations are all equity indices. Moving to lag-1 business 

day, the correlations have fallen substantially. CERs, which formerly had the greatest correlation to 

EUAs now show low correlation. Reaching the lag of one business week all correlations are weak. 
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Tables 2-6 of the appendix show the complete top ten correlations and inter-correlations for the phase 

II sample data for same-day, lag-1 business day, lag-2 business days, lag-1 business week and lag-1 

business month. 

The autocorrelation of EUAs was also examined. As shown in figure 5.2 no substantial autocorrelation 

was found. Most points are within the confidence limit and no pattern is visible. The autocorrelation of 

the remainder of the training data set was examined using a visual inspection as seen in the figure 

below. No substantial autocorrelation was found. 

 

Figure 5.2: Autocorrelation of EUA returns from zero to twenty lags. The red dots indicate the value of the 

correlation and the blue lines represent the confidence level of two standard deviations or approximately 95%. 

Based on correlations the top five variables of each lag were chosen as input variables into a baseline 

regression model, i.e. the top five correlations to EUA returns of each column in table 5.2. Regression 

results are explained in section 5.2.1. 

5.1.3 Principal Component Analysis of phase II data 

A principal component analysis was performed on the training data set. However, switching price had 

to be excluded from the analysis. As mentioned in section 5.1.1, the standard deviation of switching 

price was very large, dominating all other variables. This became apparent in the PCA since switching 

price, if included, was responsible for over 99% of the variability of the first PC. Regressing using 

only switching price did not yield reliable results and it was therefore eliminated from the PCA and 

regression analysis. 
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Table 5.3 shows results for the PCA excluding switching price. The dominant variable in each PC is 

the variable having the highest coefficient in the linear combination which defines the PC, i.e. the 

largest contributor to that particular PC. The table then shows the corresponding latent value and the 

cumulative proportion of total variance. 

Table 5.3: PCA results. 

Principal 
Component 

Dominant Variable Coefficient Latent Value 
Cumulative 
%Variance 

1 DS 0.608044 0.020094 0.450114 

2 CSS 0.583827 0.007582 0.619960 

3 WTI crude 0.435572 0.006313 0.761384 

4 Natural gas 0.556801 0.003033 0.829334 

5 WTI crude 0.554578 0.001611 0.865421 

6 Weather 0.779301 0.001039 0.888703 

7 Weather 0.489392 0.000833 0.907371 

8 Electricity PL AI2 0.479754 0.000738 0.923899 

9 CER 0.622906 0.000705 0.939685 

10 AL Alloy 0.523707 0.000561 0.952254 

11 Gasoil 0.596883 0.000490 0.963231 

12 Electricity PL AI1 0.448033 0.000399 0.972169 

13 Brent crude 0.643844 0.000215 0.976974 

14 Electricity PL AI1 0.623862 0.000204 0.981537 

15 Electricity BL AT2 0.741246 0.000184 0.985655 

16 USD/GBP 0.571120 0.000126 0.988488 

17 DAX 0.631926 0.000113 0.991011 

18 AL Primary 0.585925 0.000108 0.993432 

19 PSI20 0.652388 0.000084 0.995315 

20 EUR/GBP 0.499297 0.000068 0.996848 

21 UKX 0.463253 0.000037 0.997679 

22 UKX 0.531602 0.000033 0.998419 

23 NDX 0.558473 0.000029 0.999073 

24 CAC 0.819821 0.000021 0.999548 

25 Electricity BL AT1 0.719882 0.000017 0.999934 

26 SS 0.670489 0.000003 0.999998 

27 EUR/GBP 0.583759 0.000000 1.000000 

Principal component 1 (PC1) accounted for over 45% of the variation of the data. The next three PCs 

accounted for approximately 38%. Looking at the first four PCs over 80% of the variation of the data 

was accounted for. The most dominant variables in the first five PCs were therefore dark spread, clean 
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spark spread, WTI crude and natural gas. These variables were used as input to the principal 

component regression which will be covered in section 5.2.2. 

A graphical representation of the data with respect to the first two PCs is shown on a biplot in figure 

5.3. The horizontal axis represents principal component 1. Dark spread is the most dominant variable 

with respect to this axis and also highly correlated to PC1 as the cosine of the angle between the PC 

direction and the eigenvector gives the correlation between the two as discussed in section 3.2. In 

terms of the first two PCs the biplot confirms the results of table 5.3. 

 

Figure 5.3: Biplot showing graphical PCA results for the first two PCs. 

An interesting result is revealed in figure 5.3. The eigenvectors, apart from coal, seem to fall into two 

clusters near the two principal components. The first cluster consists of clean dark spread and dark 

spread. The second cluster groups spark spread and clean spark spread. The first two PCs therefore 

represent two different types of power plants; coal fired power plants versus the more environmentally 

friendly gas fired power plants. Zooming in on the figure reveals that both brent crude and WTI crude 

also lie near PC1, indicating variability in a similar direction as dark spread, high correlation with 

PC1. Also interesting is the fact that the returns for both peak load (PL) and base load (BL) electricity 

lie in between the first two PCs, although closer to the direction set by PC2, which is consistent with 

the fact that the UK generates more electricity from gas fired power plants than from coal fired power 

plants. Of UK’s total electricity supplied in 2010, 103.2 TWh were generated from coal but 171.5 
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TWh from gas. (MacLeay, 2011)11. Looking at these two fuel sources, coal fired plants generate 37% 

of the energy created using these two fuel sources and natural gas covers the remaining 63%. 

Referring again to figure 5.3 this proportion is somewhat reflected as the energy returns cluster lies 

closer to PC2, the direction which was previously linked to gas fired power plants than to PC1, the 

direction previously linked to coal fired power plants. 

Figure 5.4 shows principal component 1 against principal component 3. PC3 contains equity indices as 

well as materials such as aluminum, WTI crude, brent crude, gasoil and natural gas. PC2 lies straight 

into the page. Heavier oils and refined products follow PC1, which is consistent with the earlier 

definition of PC1, lead by dark spread and clean spark spread as discussed above. 

 

Figure 5.4: Biplot showing graphical PCA results for the first and third PC. 

PCA was used to select variables for regression by dimension reduction based on the selection criteria 

explained in section 3.3.2. Variables chosen using simple PCA were the most dominant variables in 

the top five PCs of table 5.3 accounting for over 80% of the cumulative proportion of variance of the 

total dataset. 

Five variables were also chosen using backward elimination. Table 5.4 shows the variables retained 

after the backward elimination process as well as their coefficients, latent values and cumulative 

proportion of variance. 

                                                             
11 In 2010 47,3% of UK power was generated from gas, 28,4% from coal, 15,6% by nuclear plants, 6,9% from 
renewable sources and 1,8% from other sources of energy (MacLeay, 2011). 
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Table 5.4: PCA results using backward elimination. 

Principal 
Component 

Dominant Variable Coefficient Latent Value 
Cumulative 
%Variance 

1 WTI crude 0.7321 0.0152 0.6461 

2 Coal 0.9024 0.0041 0.8213 

3 DS 0.9588 0.0021 0.9115 

4 CSS 0.6569 0.0012 0.9609 

5 Weather 0.9845 0.0009 1.0000 

Table 7 of the appendix shows the order in which the variables were eliminated. 

The forward selection process was repeated until five variables were obtained. Table 5.5 shows the 

order of which variables were selected using the forward selection method. 

Table 5.5: The order of variables generated by forward selection PCA. 

Principal 
Component 

Dominant Variable Coefficient Latent Value 
Proportion of 

Variance* 

1 DS 0.6080 0.0201 0.4501 

2 Coal 0.7687 0.0129 0.3509 

3 CDS 0.5127 0.0089 0.3195 

4 CSS 0.5841 0.0074 0.3164 

5 WTI crude 0.4326 0.0068 0.3440 

*Note that this is not the cumulative percentage of variance, but the proportion of variance for the PC in each 

iteration. 

Table 8 of the appendix shows the cumulative proportion of variance based on the above results.  

Examining the results of the dimension reductions shown in the above tables for simple PCA, 

backward elimination PCA and forward selection PCA, reveals that three variables are included in all 

cases, i.e. dark spread, clean spark spread and WTI crude. The fourth and fifth variables are then 

natural gas, coal, weather or clean dark spread depending on the type of dimension reduction method 

used. Of the variables listed above, the top five variables chosen using correlation as the dimension 

reduction technique shown in table 5.2 only included weather. 

5.2 Predicting Phase II Prices 

5.2.1 Base-Line Regressions 

As a mean of comparison the base-line regressions were set using correlation as the dimension 

reduction technique. The top five correlations were used in each case as previously discussed in 

section 5.1.2. Regressions were done on same-day data as well as data lagged by one day. The same-

day results are shown in table 5.6. 
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Table 5.6: Base-line regression results for same-day training data. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -6.7119 E-06 -0.0082 0.9935 -0.0082 0.9935 

CER 0.8874 30.5127 4.2736 E-86 27.3495 5.6866 E-77 

CAC 0.0446 0.5004 0.6172 0.4133 0.6797 

PSI20 0.0286 0.3746 0.7083 0.3322 0.7400 

DAX 0.0132 0.1780 0.8588 0.1296 0.8970 

Gasoil 0.0534 1.7734 0.0774 1.8723 0.0623 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 1.7134 E-04 83.50% 83.17% -2,161 -2,062 

 

The only variable whose adjusted p-value (HC4) was within the confidence interval of 95% (p-value 

below 0.05) was CER. The regression was therefore repeated using only CERs plus a constant as 

regressors. The results are shown in table 5.7 below. 

 

Table 5.7: Base-line regression results for same-day training data after adjustment. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.0785 0.9375 -0.0789 0.9372 

CER 0.9296 34.8001 1.9622E-98 33.8877 4.9931E-96 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 1.7668E-04 82.72% 82.65% -2,150 -2,050 

 

There seems to be a strong same-day relationship between EUA returns and CERs as the model 

captures over 80% of the variability of EUAs. The residuals of the model were stationary but did not 

pass a normality test and a qq-plot showed heavy set tails, indicating higher probability of extreme 

events. They also showed some degree of heteroskedasticity. The adjusted t-statistic (HC4) is however 

heteroskedasticity consistent. No signs of autocorrelation could be detected. Figure 5.5 below shows 

the results of table 5.7 graphically. Since the EUA returns are not strictly normal and some number of 

outliers is present in the heavy tails, the above results were compared to the results of a robust 

regression. The robust regression yielded similar results and the influence of extremities therefore 

rejected. 



5  Results  41 

 

 

 

Figure 5.5: The actual vs. predicted same-day price and returns for EUAs using the base-line model. 

 

Regressing on data which had been lagged by one business day yielded the result shown in table 5.8. 

Table 5.8: Base-line regression results for lag-1 day training data. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0016 -0.8109 0.4182 -0.7847 0.4334 

CER 0.1695 2.5940 0.0101 1.7320 0.0845 

NDX 0.3566 1.5105 0.1322 1.4405 0.1510 

SPX -0.2239 -0.9536 0.3412 -0.8435 0.3997 

Weather -0.1510 -2.3477 0.0197 -2.0236 0.0441 

EUR/GBP 0.3317 1.2980 0.1955 1.1452 0.2532 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 9.6027 E-04 7.84% 5.98% -1,714 -1,616 

 

The only variable whose p-value (HC4) was within the confidence interval of 95% (p-value below 

0.05) was weather. The regression was therefore repeated using only weather plus a constant as 

regressors. The results are shown in table 5.9 below. 
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Table 5.9: Base-line regression results for lag-1 day training data after adjustment. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0017 -0.8385 0.4026 -0.8400 0.4017 

Weather -0.1502 -2.3048 0.0220 -2.1340 0.0338 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 1.0043 E-03 2.06% 1.68% -1,699 -1,600 

 

Residuals of the model were normally distributed, stationary and no autocorrelation was detected. As 

before, heteroskedasticity was present when residuals were investigated as a function of time. Figure 

5.6 shows the results of table 5.9 graphically. 

 

Figure 5.6: The actual vs. predicted lag-1 day price and returns for EUAs using the base-line model. 

As shown in the figure the relationship previously present has completely disappeared when moving to 

data lagged by one business day. Regressions were also done for lagged values of one business week 

and one business month. The relationship between EUAs and the regressors continued to deteriorate as 

the lagged interval increased and no predictive value was found to be present in the data. These results 

will therefore be omitted for all methods. 
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5.2.2 Principal Component Regression 

Using the three dimension reduction procedures mentioned in section 5.1.3 principal component 

regression (PCR) was used to model same-day relationships and relationships lagged by one day 

between EUA returns and the chosen regressors. Table 5.10 shows the results of the regression 

performed on the variables chosen using simple PCA. 

Table 5.10: Simple PCA regression results for same-day training data. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.8124 0.4174 -0.7949 0.4274 

DS -0.0630 -3.1224 0.0020 -2.6867 0.0077 

CSS 0.1281 4.2957 2.4951E-05 3.4906 0.0006 

WTI crude 0.1946 4.6840 4.6201E-06 3.4992 0.0006 

Natural gas 0.0077 0.1222 0.9029 0.0923 0.9265 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 8.6177 E-04 16.71% 15.38% -1,748 -1,649 

 

The variables whose p-values (HC4) were within the confidence interval of 95% (p-value below 0.05) 

are dark spread (DS), clean spark spread (CSS) and WTI crude. The regression was therefore repeated 

using these variables. The results are shown in table 5.11. 

Table 5.11: Simple PCA regression results for same-day training data after adjustment. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.8133 0.4168 -0.8014 0.4237 

DS -0.0606 -2.9983 0.0030 -2.5925 0.0101 

CSS -0.1446 -4.5275 9.2257E-06 -3.7328 0.0002 

WTI crude 0.1878 4.5163 9.6882E-06 3.4548 0.0006 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 8.5968 E-04 16.58% 15.58% -1,748 -1,649 

 

The same day relationship based on variable selection using simple PCA does not outperform the 

simple base-line model. The base-line model gives much stronger results in all goodness of fit 

parameters. The mean squared error is higher, ©( and ©ª«p( , are over 70 percentiles lower and AIC and 

BIC show higher numerical values, indicating a lower quality model. The residuals did however 

uphold all the necessary criteria; they were normally distributed, stationary and no autocorrelation was 

present. A slight heteroskedasticity was again visible, but using the adjusted t-statistic and its relevant 

p-value the results became statistically reliable. Figure 5.7 shows the results of table 5.11 graphically. 
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Figure 5.7: The actual vs. predicted same-day price and returns for EUAs using the simple PCA model. 

 

The results for data lagged by one day are shown in table 9 in the appendix. As in the earlier case, no 

relationship was visible after moving to data lagged by one business day. 

Table 5.12 shows results of the regression based on variables chosen by backward elimination. 

Table 5.12: PCA using backward elimination regression results for same-day training data. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.8285 0.4082 -0.8003 0.4243 

WTI crude 0.0428 2.9233 0.0038 2.0107 0.0454 

Coal -0.0501 -1.7834 0.0757 -1.5189 0.1301 

DS 0.2474 6.3124 1.2507E-09 5.1552 5.1650E-07 

CSS 0.0674 1.2728 0.2043 0.8516 0.3953 

Weather -0.1883 -3.1644 0.0017 -2.1710 0.0309 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 8.2851 E-04 20.24% 18.64% -1,760 -1,660 

 

The variables whose p-values (HC4) were within the confidence interval of 95% (p-value below 0.05) 

are WTI crude, dark spread (DS) and weather. The regression was therefore repeated using these 

variables. The results for the adjusted regression are shown in table 5.13. 
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Table 5.13: PCA using backward elimination regression results for same-day training data after adjustment. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.8169 0.4147 -0.8002 0.4243 

WTI crude 0.0757 3.6626 0.0003 3.1041 0.0021 

DS -0.2288 -5.6386 4.6038 E-08 -4.4760 1.1547 E-05 

Weather 0.1626 2.7072 0.0073 1.7969 0.0736 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 8.5217 E-04 17.31% 16.32% -1,750 -1,651 

 

Residuals were normally distributed, stationary and heteroskedastic. No autocorrelation was detected. 

Again comparing to the base-line model of section 5.2.1 the base-line model outperforms the 

regression based on backward elimination shown in the table above. The mean squared error (MSE) of 

the base-line model is lower than the MSE of the regression based on backward elimination, R( and RÒÓÔ(  are higher and both AIC and BIC are lower, all indicating a stronger model set by the base-line 

regression. Figure 5.8 shows the results of table 5.13 graphically. 

 

Figure 5.8: The actual vs. predicted same-day price and returns for EUAs using the backward elimination PCA 

model. 
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The results for data lagged by one day are shown in table 10 in the appendix. No relationship was 

visible after moving to data lagged by one business day. 

Table 5.14 shows results of the regression based on variables chosen by forward selection. 

 

Table 5.14: PCA using forward selection regression results for same-day training data. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -1.3658 0.1732 -1.2659 0.2067 

DS -0.0467 -5.9145 1.0935 E-08 -2.5616 0.0110 

Coal -0.0363 -2.1600 0.0317 -1.1611 0.2467 

CDS 0.2673 11.4291 0.0000 8.1374 1.9318 

CSS -0.0997 -3.3394 0.0010 -2.0184 0.0446 

WTI crude 2.6300 20.4457 0.0000 9.7707 0.0000 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.0487 E-04 70.65% 70.06% -2,014 -1,915 

 

The variables whose p-values (HC4) were within the confidence interval of 95% (p-value below 0.05) 

are dark spread (DS), clean spark spread (CSS) and WTI crude. The regression was therefore repeated 

using these variables. The results are shown in table 5.15. 

 

Table 5.15: PCA using forward selection regression results for same-day training data after adjustment. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.8133 0.4168 -0.8014 0.4237 

DS -0.0606 -2.9983 0.0030 -2.5925 0.0101 

CSS -0.1446 -4.5275 9.2257 E-06 -3.7328 0.0002 

WTI crude 0.1878 4.5163 9.6882 E-06 3.4548 0.0006 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 8.5968 E-04 16.58% 15.58% -1,748 -1,649 

 

Residuals were normally distributed, stationary and heteroskedastic. No autocorrelation was detected. 

By eliminating the variables which were not statistically significant the coefficient of determination 

fell by over 50 percentiles, the mean squared error increased and the AIC and BIC increased in value, 

all indicating a lower quality model. The results of table 5.15 therefore do not outperform the base-line 

model of section 5.2.1. The results are shown graphically in figure 5.9 below. 
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Figure 5.9: The actual vs. predicted lag same-day price and returns for EUAs using the forward selection PCA 

model. 

The results for data lagged by one day are shown in table 11 in the appendix. No relationship was 

visible after moving to data lagged by one business day. 

5.2.3 Biased estimators using Latent Root Regression 

As a final comparison to the base-line model, latent root regression (LRR) was performed on same-

day training data and training data lagged by one day. Components were considered non-predictive 

near-singularities if the relevant eigenvalue was smaller than 0.05 and the coefficient in the linear 

combination was smaller than 0.10. Non-predictive near singularities were iteratively eliminated and 

near singularities passing the above criteria retained. The result of the latent root regression for same-

day data is shown in table 5.16 and a graphical representation is shown in figure 5.10. 

None of the parameters in table 5.16 were statistically significant at the 95% confidence interval which 

is no surprise as the parameters are purposefully biased. The latent root model does however not 

exceed the standard set by the base-line model and should therefore be rejected. 
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Table 5.16: Latent root  regression results for same-day training data. 

PC No. �  t-stat p-value HC4 p HC4-value 

3 -0.0043 -8.6554 6.6613 E-16 -0.0697 0.9445 

6 0.0025 1.1682 0.2439 0.0086 0.9932 

7 0.0063 5.7089 3.2765 E-08 0.0585 0.9534 

8 0.0031 2.2743 0.0238 0.0167 0.9867 

19 0.0667 47.3027 3.3661 E-125 0.4882 0.6259 

20 0.2378 155.1403 1.3049 E-246 1.4327 0.1532 

21 0.0264 48.4720 1.5095 E-127 0.3007 0.7639 

22 0.0395 59.0875 5.8850 E-147 0.3436 0.7315 

24 0.0471 86.9719 3.4909 E-186 0.6832 0.4951 

26 0.1283 60.9882 4.1173 E-150 0.6135 0.5401 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 9.7693 E-04 6.03% 2.58% -1,758 -1,722 

 

 

Figure 5.10: The actual vs. predicted same-day price and returns for EUAs using the latent root model. 

 

Regressing on data which had been lagged by one business day yielded the results shown in table 5.17 

and a graphical representation of the results is shown in figure 5.11 below. 
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Table 5.17: Latent root  regression results for lag-1 day training data. 

PC No. �  t-stat p-value HC4 p HC4-value 

6 0.1416 0.4336 0.0000 1.3732 0.1709 

7 -0.1185 -0.3660 0.0000 -1.2019 0.2305 

10 -0.1319 -0.7739 0.0000 -2.0235 0.0441 

11 0.2010 1.0088 0.0000 2.0476 0.0416 

12 0.0262 0.1081 0.0000 0.2562 0.7980 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 1.1690 E-03 5.67% 4.15% -1,710 -1,692 

 

Two of the parameters of table 5.17 were statistically significant at the 95% confidence interval. Again 

it should be kept in mind that these parameter estimates are biased and therefore not BLUE. The latent 

root model for data lagged by one business day exceeds the standard set by the adjusted base-line 

model for data lagged by one business day and yields similar results as the original unadjusted base-

line model shown in table 5.8. 

 

Figure 5.11: The actual vs. predicted lag-1 day price and returns for EUAs using the latent root model. 
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5.3 Testing Out-of-Sample 

5.3.1 Base-Line Regression Models 

Based on the results in sections 5.2.1 - 5.2.3 the base-line models performed best. To test their ability, 

out-of-sample predictions were made using the models presented in table 5.7 and table 5.9 on 

predefined test-data spanning one year from October 2009 to October 2010. The out-of-sample results 

for same-day predictions of the base-line model are shown in table 5.18 and a graphical representation 

is shown in figure 5.12. 

Table 5.18: Out-of-sample regression results for same-day test data for the base-line model. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -.09705 0.3327 -1.7736 0.0000 

CER 0.9296 11.2515 0.0000 0.3183 0.2188 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.9635 E-05 88.47% 88.42% -2,755 -2,748 

The model’s performance holds out-of-sample, however, based on figure 5.12, the model performs 

well on a short horizon during the first two to three months of the test-period. After that the model 

seems to overestimate negative returns and underestimate positive returns. 

 

Figure 5.12: The actual vs. predicted same-day price and returns for out-of-sample EUAs using the base-line 

model. 
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The out-of-sample results for test data lagged by one day for the base-line model are shown in table 

5.19. 

Table 5.19: Out-of-sample regression results for lag-1 day test data for the base-line model. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0017 -0.6766 0.4992 -1.4434 0.1501 

Weather -0.1502 -1.2893 0.1984 -2.1558 0.0320 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.6781 E-04 4.38% 4.03% -2,141 -2,134 

 

All goodness of fit parameters show improvement, indicating the validity of the model itself. 

Examining figure 5.13 reveals that the model neither captures the trends of the EUA price nor the 

direction of its development. While the price of EUAs was slowly trending upwards, the predicted 

price steadily decreased for the duration of the test-period. 

 

Figure 5.13: The actual vs. predicted lag-1 day price and returns for out-of-sample EUAs using the base-line 

model. 
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examined. Table 5.20 shows the out-of-sample results for same-day test data using the simple PCA 

model. 

Table 5.20: Out-of-sample regression results for same-day test data for simple PCA. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.7139 0.4759 -1.3034 0.1935 

DS -0.0606 -1.5237 0.1288 -2.2795 0.0234 

CSS -0.1446 -2.9385 0.0036 -3.5799 0.0004 

WTI crude 0.1878 1.5922 0.1125 2.8809 0.0043 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.5277 E-04 14.86% 13.90% -2,158 -2,144 

 

Again all goodness of fit parameters show a deterioration, apart from AIC and BIC which have 

improved slightly. Examining figure 5.14 again shows that the model is incapable of following the 

trends of actual EUA prices. 

 

Figure 5.14: The actual vs. predicted same-day price and returns for out-of-sample EUAs using the simple PCA. 

The results for data lagged by one day are shown in table 12 in the appendix. No relationship was 

visible after moving to data lagged by one business day. 

The backward elimination PCA model was tested and results are shown in table 5.21. All goodness of 

fit parameters have deteriorated and the model does not capture the overall trends of the EUA price as 

Oct-2009 Nov-2009 Jan-2010 Mar-2010 May-2010 Jul-2010 Sep-2010

9

10

11

12

13

14

15

16

P
ri
c
e

 

 

Actual

Predicted

Oct-2009 Nov-2009 Jan-2010 Mar-2010 May-2010 Jul-2010 Sep-2010

-0,05
0

R
e
tu
rn
s



5  Results  53 

 

 

shown in figure 5.15. As with the out-of-sample testing of the base-line model, the backward 

elimination PCA model seems to capture the price changes to some extent on the short horizon, during 

the first two or three months, but then fails to model the actual price trend. 

Table 5.21: Out-of-sample regression results for same-day test data for PCA using backward elimination. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.6598 0.5099 -1.0347 0.3017 

WTI crude 0.0757 0.5933 0.5535 0.9348 0.3507 

DS -0.2288 -5.3209 0.0000 -4.5553 0.0000 

Weather 0.1626 1.5361 0.1257 2.0086 0.0456 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 5.5658 E-04 22.67% 21.80% -2,034 -2,020 

 

 

Figure 5.15: The actual vs. predicted same-day price and returns for out-of-sample EUAs using the backward 

elimination PCA. 
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shown in figure 5.16. As with the out-of-sample testing of the base-line model, the forward selection 

PCA model seems to capture the price changes to some extent on the short horizon, during the first 

two or three months, but then fails to model the actual price trend. 

 

Table 5.22: Out-of-sample regression results for same-day test data for forward selection PCA. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0015 -0.7139 0.4759 -1.3034 0.1935 

DS -0.0606 -1.5237 0.1288 -2.2795 0.0234 

CSS -0.1446 -2.9385 0.0036 -3.5799 0.0004 

WTI crude 0.1878 1.5922 0.1125 2.8809 0.0043 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.5277 E-04 14.86% 13.90% -2,158 -2,144 

 

 

Figure 5.16: The actual vs. predicted same-day price and returns for out-of-sample EUAs using the forward 

selection PCA. 

The results for data lagged by one day are shown in table 14 in the appendix. The model tested 
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Oct-2009 Nov-2009 Jan-2010 Mar-2010 May-2010 Jul-2010 Sep-2010

9

10

11

12

13

14

15

16

P
ri
c
e

 

 

Actual

Predicted

Oct-2009 Nov-2009 Jan-2010 Mar-2010 May-2010 Jul-2010 Sep-2010

-0.05

0

R
e
tu
rn
s



5  Results  55 

 

 

5.3.3 Latent Root Regression Models 

Lastly the latent root models were tested on out-of-sample data. The results are shown in table 5.23. 

Compared to the in-sample results the coefficients of determination have improved as well as both the 

AIC and BIC, which show better performance. Of all the same-day out-of-sample models tested the 

latent root model seems to perform the best in capturing the macro-trend of the EUAs, although the 

model seems to underestimate both positive returns and negative returns as shown in figure 5.17. 

Table 5.23:Out-of-sample regression results for same-day test data for the latent root model. 

PC No. �  t-stat p-value HC4 p HC4-value 

3 -0.0043 -0.0342 0.0007 -0.0535 0.9574 

6 0.0025 0.0036 0.7184 0.0040 0.9968 

7 0.0063 0.0286 0.0046 0.0187 0.9850 

8 0.0031 0.0091 0.3648 0.0056 0.9956 

19 0.0667 0.3849 0.0000 0.5656 0.5721 

20 0.2378 1.2432 0.0000 2.0823 0.0383 

21 0.0264 0.0799 0.0000 0.0876 0.9303 

22 0.0395 0.1593 0.0000 0.1643 0.8696 

24 0.0471 0.7068 0.0000 0.7972 0.4260 

26 0.1283 0.2668 0.0000 0.3358 0.7373 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.5121 E-04 8.69% 5.55% -2,154 -2,118 

 

Figure 5.17: The actual vs. predicted same-day price and returns for out-of-sample EUAs using the latent root 

model. 
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Repeating the test for data lagged by one business day yielded the results shown in table 5.24. 

Goodness of fit parameters have again improved for the out-of-sample data. Depsite the low 

coefficient of determination the model captures the overall trend in the EUA price, which other lag-1 

day out-of-sample models failed to do. As in the case of same-day data of the latent root model, the 

lag-1 day model underestimates both positive and negative returns, but manages to capture the price 

trend over the whole test period. 

Table 5.24:  Out-of-sample regression results for lag-1 day test data for the latent root model. 

PC No. �  t-stat p-value HC4 p HC4-value 

6 0.1416 21.5767 0.0000 1.0543 0.2927 

7 -0.1185 -18.6673 0.0000 -0.8104 0.4184 

10 -0.1319 -34.2287 0.0000 -1.6342 0.1034 

11 0.2010 75.6918 0.0000 2.9787 0.0032 

12 0.0262 4.8604 0.2004 0.2001 0.8416 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.6904E -04 6.62% 5.22% -2,137 -2,119 

 

Figure 5.18: The actual vs. predicted lag-1 day price and returns for out-of-sample EUAs using the latent root 

model. 
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5.4 Summary 

The chapter covered three topics: a statistical analysis, including a principal component analysis, in-

sample predictions of EUA allowance prices and out-of-sample predictions. 

The statistical analysis showed that EUA returns are right skewed and have heavy tails, indicating 

non-normal behavior. No autocorrelation was found in the returns. The first four moments were 

analyzed for all the data and most notable was the extremely high standard deviation of the returns of 

switching price. Switching price was therefore eliminated from the analysis. A correlation analysis 

was carried out and the top ten correlations examined for same-day, lag-1 business day, lag-2 business 

days and lag-1 business week. All correlations based on lagged data were found to be weak, but same-

day correlations highlighted CERs and equity indices. 

The principal component analysis indicated a clear division between the first three principal 

components. The first PC was linked to coal-fired power plants and heavier oils. The second PC was 

linked to the more environmentally friendly gas-fired power plants and finally the third PC contained  

equity indices. Another interesting result was the fact that power prices fell between the first two 

principal components, capturing the actual coal to natural gas proportion used for power generation in 

the United Kingdom. After performing dimension reduction using three different PCA-techniques the 

variables highlighted by PCA were dark spread, clean spark spread and WTI crude with the addition 

of natural gas, coal, weather and clean dark spread depending on the type of selection method used. 

In-sample predictions showed that correlation was the best dimension reduction technique since the 

base-line model performed best on same-day data as well as day-ahead predictions. The latent root 

models provided similar results, however the beta-estimates were not statistically significant at the 

95% confidence interval as the estimates were purposefully biased. 

Out-of-sample predictions confirmed the predictions made in-sample. The base-line model continued 

to perform best for same-day data as well as day-ahead predictions. Finally the latent root models were 

able to capture the overall price trends of the EUA allowances but they were not able to capture the 

subtle price changes and volatility of the returns. 
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6 Conclusion 
In this thesis market relationships have been examined to establish whether they act as key driving 

forces on the development of carbon prices within the EU ETS and if predictions can be made based 

on these relationships. The study, which is based on the British energy market, global equity indices 

and three relevant currencies, also focuses on which dimension reduction technique is likely to be 

useful in selecting the reduced set of variables. 

Correlation is the preferred dimension reduction technique to be followed by principal component 

regression. CERs are shown to be the only market relationship which provided useful predictions of 

EUA prices however this relationship is lost when data is lagged by one business day. 

The study shows that dimension reduction, based on correlation analysis and principal component 

analysis, generates two completely different sets of reduced data sets. Correlation generates a dataset 

of equity indices along with CERs, which are highly correlated to EUAs, but the principal component 

analysis highlights dark spread, clean spark spread and WTI crude along with natural gas, weather or 

clean dark spread, depending on the type of selection criteria used, as the relevant variables. 

The reduced dataset generated by the correlation analysis on same-day data is shown to be a useful 

input for a multiple linear regression model. Same-day correlations, highlighting CERs, provide a 

dataset of good predictors of EUA price development but all correlations are low when data is lagged 

by one business day and the regression model fails to provide useful predictions. No significant 

correlation is found between EUA returns and electricity returns. Earlier studies have however found a 

high correlation to German power returns. 

The principal component analysis shows three main clusters on the first three principal component 

axes. The first principal component is found to represent coal-fired power plants, or in other words, 

energy stemming from fuel sources yielding high CO2 emissions. The second principal component is 

shown to represent “cleaner” energy, mainly gas-fired power plants. The third principal component 

then groups equity indices. A graphical representation of the principal components is shown to reflect 

the proportion of energy sources used to generate power in the United Kingdom. Predictions based on 

the dataset generated by the PCA do however not capture the volatility nor the overall trend of the 

EUA returns. 
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Latent root regression performs similarly as principal component regression when applied to in-sample 

data. However the latent root approach appears to capture the overall EUA trend when tested out-of-

sample but it does not manage to capture the volatility of the returns. 

The theoretical carbon price or switching price is rejected as a useful indicator of the price 

development of EUAs as have previous studies. Leading carbon analysts, such as Point Carbon and 

bulletins such as Tendances Carbone do however track the development of clean dark spread, clean 

spark spread and switching price daily, perhaps reflecting the market’s view that the EU ETS is still a 

young and immature market which might slowly start to reflect these theoretical prices in the future. 

Further research could be done by repeating this study on EU-wide data, focusing on correlations and 

principal component regression or independent component regression as the regressors often show 

high intercorrelations. The greatest price fluctuations have been prompted by exterior announcements 

or events, most recently by the nuclear crisis after the devastating tsunami in Japan. Only days later, 

the price of carbon had risen by over 10%. A model able to account for jumps would provide an 

interesting study. Another interesting topic would be to conduct further research on the EUA-CER 

spread. In light of the high volatility of the market and the difficulty in providing useful predictions an 

analysis of hedging strategies is also called for. 

The EU ETS is a young and immature market and the volatility is increased by changes in the 

regulatory framework. As time goes by, and hopefully as a global climate agreement is reached, this 

turmoil is likely to subside as the rules and regulations of the market become clearer. The result: a 

more stable market and hopefully more reliable predictions. 
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Appendix 
Table 1: First four moments of phase II sample data. 

 
Mean 

Standard 
deviation 

Skewness Kurtosis 
Excess 

kurtosis 
EUA -0.0015 0.0319 0.0913 3.9285 0.9285 

CER futures -0.0018 0.0312 -0.0912 4.7843 1.7843 

WTI crude futures -0.0050 0.0458 0.4428 4.1368 1.1368 

Gasoil futures -0.0032 0.0310 0.4733 3.9092 0.9092 

Natural gas futures -0.0033 0.0376 0.6240 5.8469 2.8469 

Electricity Base Load -0.0033 0.0273 -0.0565 5.7926 2.7926 

Electricity Base Load -0.0034 0.0276 -0.0632 8.1262 5.1262 

Electricity Peak Load -0.0010 0.0308 -0.4753 9.2520 6.2520 

Electricity Peak Load -0.0016 0.0295 0.2421 8.3863 5.3863 

Brent crude -0.0001 0.0400 0.2190 3.7114 0.7114 

Weather -0.0007 0.0305 0.2652 4.5582 1.5582 

NDX 0.0004 0.0277 0.2567 5.9748 2.9748 

SPX 0.0003 0.0281 0.1282 5.3269 2.3269 

UKX -0.0007 0.0242 0.2054 6.0631 3.0631 

DAX -0.0002 0.0261 0.5859 6.3961 3.3961 

CAC -0.1150 0.0267 0.4488 6.0640 3.0640 

AEX -0.1150 0.0283 0.1752 5.5179 2.5179 

PSI20 0.0002 0.0198 0.2030 9.1735 6.1735 

Aluminum Alloy -0.0005 0.0224 0.2938 5.1011 2.1011 

Aluminum Primary -0.0003 0.0214 -0.0836 2.9701 -0.0299 

Coal -0.0003 0.0952 1.1273 15.7951 12.7951 

Dark Spread -0.0005 0.0883 1.5595 15.4367 12.4367 

Clean Dark Spread -0.0009 0.0668 0.9899 13.1282 10.1282 

Spark Spread -0.0002 0.0492 0.3956 5.4259 2.4259 

Clean Spark Spread -0.0002 0.0605 0.4664 5.0254 2.0254 

Switching Price 0.2042 1.9620 0.1887 34.6467 31.6467 

USD/GBP 0.0005 0.0102 0.4608 4.6862 1.6862 

USD/EUR 0.0002 0.0091 0.0247 4.9677 1.9677 

EUR/GBP 0.0004 0.0076 -0.2420 7.5537 4.5537 
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Table 2: Same-day top ten correlations of phase II sample data. 

 
EUA CER 

WTI 
Crude 

Gasoil 
Brent 
crude 

UKX DAX CAC PSI20 
AL 
Primary 

CDS 

EUA 1.00 0.91 0.36 0.37 0.32 0.37 0.38 0.40 0.40 0.27 0.32 

CER 0.91 1.00 0.35 0.34 0.32 0.36 0.34 0.36 0.36 0.26 0.25 

WTI crude 0.36 0.35 1.00 0.46 0.87 0.51 0.46 0.50 0.39 0.41 0.19 

Gasoil 0.37 0.34 0.46 1.00 0.57 0.45 0.40 0.42 0.42 0.41 0.30 

Brent crude 0.32 0.32 0.87 0.57 1.00 0.56 0.49 0.54 0.47 0.46 0.26 

UKX 0.37 0.36 0.51 0.45 0.56 1.00 0.87 0.95 0.83 0.45 0.24 

DAX 0.38 0.34 0.46 0.40 0.49 0.87 1.00 0.90 0.74 0.50 0.28 

CAC 0.40 0.36 0.50 0.42 0.54 0.95 0.90 1.00 0.83 0.48 0.28 

PSI20 0.40 0.36 0.39 0.42 0.47 0.83 0.74 0.83 1.00 0.39 0.24 

AL Primary 0.27 0.26 0.41 0.41 0.46 0.45 0.50 0.48 0.39 1.00 0.18 

CDS 0.32 0.25 0.19 0.30 0.26 0.24 0.28 0.28 0.24 0.18 1.00 
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Table 3: Lag-1 business day top ten correlations of phase II sample data. 

 
EUA CER 

WTI 
crude 

Gasoil 
Nat. 
gas 

Wea-
ther 

NDX SPX Coal 
USD/
GBP 

EUR/
GBP 

EUA 1.00 0.17 0.08 -0.09 0.07 -0.14 0.17 0.15 0.07 0.07 0.09 

CER 0.17 1.00 0.35 0.34 0.20 0.09 0.22 0.26 -0.06 0.02 0.00 

WTI crude 0.08 0.35 1.00 0.46 0.14 0.01 0.37 0.42 -0.09 0.00 0.10 

Gasoil -0.09 0.34 0.46 1.00 0.15 -0.01 0.19 0.23 -0.16 -0.12 0.01 

Natural gas 0.07 0.20 0.14 0.15 1.00 -0.08 0.10 0.13 0.00 0.00 0.10 

Weather -0.14 0.09 0.01 -0.01 -0.08 1.00 -0.07 -0.06 0.02 -0.19 -0.05 

NDX 0.17 0.22 0.37 0.19 0.10 -0.07 1.00 0.95 0.10 0.02 0.03 

SPX 0.15 0.26 0.42 0.23 0.13 -0.06 0.95 1.00 0.11 0.01 0.03 

Coal 0.07 -0.06 -0.09 -0.16 0.00 0.02 0.10 0.11 1.00 -0.12 -0.11 

USD/GBP 0.07 0.02 0.00 -0.12 0.00 -0.19 0.02 0.01 -0.12 1.00 0.50 

EUR/GBP 0.09 0.00 0.10 0.01 0.10 -0.05 0.03 0.03 -0.11 0.50 1.00 
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Table 4: Lag-2 business days top ten correlations of phase II sample data. 

EUA CER WTI Gasoil 
Nat. 
gas 

Brent 
crude 

NDX SPX UKX DAX AEX 

EUA 1.00 -0.15 -0.14 -0.14 -0.13 -0.17 -0.18 -0.19 -0.15 -0.12 -0.15 

CER -0.15 1.00 0.35 0.34 0.21 0.32 0.22 0.26 0.36 0.34 0.35 

WTI -0.14 0.35 1.00 0.46 0.14 0.87 0.37 0.42 0.51 0.46 0.49 

Gasoil -0.14 0.34 0.46 1.00 0.14 0.57 0.19 0.23 0.45 0.40 0.45 

Natural gas -0.13 0.21 0.14 0.14 1.00 0.20 0.10 0.13 0.17 0.14 0.18 

Brent crude -0.17 0.32 0.87 0.57 0.20 1.00 0.42 0.45 0.57 0.50 0.54 

NDX -0.18 0.22 0.37 0.19 0.10 0.42 1.00 0.95 0.54 0.63 0.57 

SPX -0.19 0.26 0.42 0.23 0.13 0.45 0.95 1.00 0.60 0.68 0.62 

UKX -0.15 0.36 0.51 0.45 0.17 0.57 0.54 0.60 1.00 0.87 0.94 

DAX -0.12 0.34 0.46 0.40 0.14 0.50 0.63 0.68 0.87 1.00 0.87 

AEX -0.15 0.35 0.49 0.45 0.18 0.54 0.57 0.62 0.94 0.87 1.00 
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Table5: Lag-1 business week top ten correlations of phase II sample data. 

 
EUA 

Electr.  
PL 2 

Brent 
crude 

Wea-
ther UKX CAC PSI20 DS CDS SS CSS 

EUA 1.00 0.07 -0.08 -0.09 -0.08 -0.07 -0.09 0.07 0.07 0.09 0.08 

Electr. PL 2 0.07 1.00 0.23 0.00 0.28 0.26 0.25 0.31 0.34 0.39 0.33 

Brent crude -0.08 0.23 1.00 -0.03 0.57 0.54 0.47 0.23 0.26 0.02 -0.04 

Weather -0.09 0.00 -0.03 1.00 -0.02 0.00 0.03 -0.03 -0.01 0.05 0.03 

UKX -0.08 0.28 0.57 -0.02 1.00 0.95 0.83 0.19 0.24 0.10 0.04 

CAC -0.07 0.26 0.54 0.00 0.95 1.00 0.83 0.22 0.27 0.11 0.05 

PSI20 -0.09 0.25 0.47 0.03 0.83 0.83 1.00 0.19 0.24 0.11 0.06 

DS 0.07 0.31 0.23 -0.03 0.19 0.22 0.19 1.00 0.99 0.29 0.25 

CDS 0.07 0.34 0.26 -0.01 0.24 0.27 0.24 0.99 1.00 0.30 0.23 

SS 0.09 0.39 0.02 0.05 0.10 0.11 0.11 0.29 0.30 1.00 0.98 

CSS 0.08 0.33 -0.04 0.03 0.04 0.05 0.06 0.25 0.23 0.98 1.00 
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Table.6: Lag-1 business month top ten correlations of phase II sample data. 

 
EUA 

WTI 
crude 

Nat. 
gas 

Electr.
BL 2 

Electr. 
PL 1 

DAX DS CDS 
USD/ 
GBP 

USD/ 
EUR 

EUR/ 
GBP 

EUA 1.00 0.04 -0.06 -0.09 -0.03 0.04 -0.08 -0.07 0.11 0.07 0.06 

WTI crude 0.04 1.00 0.14 0.13 0.14 0.46 0.14 0.19 0.01 -0.09 0.10 

Natural gas -0.06 0.14 1.00 0.42 0.42 0.15 0.26 0.28 0.00 -0.11 0.12 

Electr. BL 2 -0.09 0.13 0.42 1.00 0.65 0.20 0.31 0.34 0.00 -0.04 0.04 

Electr. PL1 -0.03 0.14 0.42 0.65 1.00 0.16 0.35 0.39 -0.07 -0.06 -0.03 

DAX 0.04 0.46 0.15 0.20 0.16 1.00 0.23 0.28 -0.03 -0.08 0.05 

DS -0.08 0.14 0.26 0.31 0.35 0.23 1.00 0.99 -0.01 -0.06 0.06 

CDS -0.07 0.19 0.28 0.34 0.39 0.28 0.99 1.00 0.01 -0.06 0.09 

USD/GBP 0.11 0.01 0.00 0.00 -0.07 -0.03 -0.01 0.01 1.00 0.68 0.51 

USD/EUR 0.07 -0.09 -0.11 -0.04 -0.06 -0.08 -0.06 -0.06 0.68 1.00 -0.29 

EUR/GBP 0.06 0.10 0.12 0.04 -0.03 0.05 0.06 0.09 0.51 -0.29 1.00 
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Table 7: Order of variables for backward elimination PCA. 

Principal 
Component 

Dominant Variable Coefficient Latent Value 

1 WTI crude 0.7321 0.0152 

2 Coal 0.9024 0.0041 

3 DS 0.9588 0.0021 

4 CSS 0.6569 0.0012 

5 Weather 0.9845 0.0009 

6 CER 0.8455 0.0007 

7 Gasoil 0.8109 0.0006 

8 NDX 0.6227 0.0005 

9 Electricity PL AI2  0.7254 0.0005 

10 AL Alloy 0.8928 0.0004 

11 Natural gas 0.6648 0.0003 

12 DAX 0.7688 0.0002 

13 Electricity BL AT2 0.7354 0.0002 

14 Brent crude 0.4817 0.0002 

15 Electricity PL AI1 0.4831 0.0002 

16 PSI20 0.6951 0.0001 

17 AL Primary 0.5963 9.82E-05 

18 USD/GBP 0.9380 8.02E-05 

19 AEX 0.6665 6.98E-05 

20 UKX 0.7832 3.32E-05 

21 SPX 0.6781 2.97E-05 

22 USD/EUR 0.6388 2.48E-05 

23 Electricity BL AT1 0.5773 2.26E-05 

24 CAC 0.7396 2.08E-05 

25 CDS 0.6116 1.42E-05 

26 SS 0.6705 2.85E-06 

27 EUR/GBP 0.5838 1.00E-07 

 

Table 8: PCA performed on the variables shown in table 5.5. 

Principal 
Component 

Dominant Variable Coefficient Latent Value 
Cumulative 
%Variance 

1 Coal  0.6307 0.0192 0.7101 

2 CSS 0.8661 0.0042 0.8666 

3 WTI crude 0.9088 0.0022 0.9476 

4 Coal 0.5688 0.0013 0.9973 

5 CDS 0.7946 0.0001 1.0000 
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Regressing on data which had been lagged by one business day yielded the result shown in table 9. 

Table 9: Simple PCA regression results for lag-1 day training data. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0014 -0.7131 0.4765 -0.7075 0.4799 

DS 0.0138 0.6288 0.5300 0.6593 0.5103 

CSS 0.0263 0.8106 0.4184 0.7220 0.4710 

WTI crude 0.0586 1.2954 0.1964 1.1217 0.2631 

Natural gas -0.0765 -1.1213 0.2632 -1.2381 0.2168 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 1.0214 E-03 1.58% 0.00% -1,698 -1,599 

 

None of the betas was statistically significant at the 95% confidence level. Comparing to the base-line 

model of section 5.2.1 again shows that the regression based on simple PCA did not match or exceed 

the base-line model. Dimension reduction based on simple PCA is therefore rejected. Figure 1 shows 

the results graphically. The model clearly does not capture the changes in returns from day to day. 

 

Figure 1: The actual vs. predicted lag-1 day price and returns for EUAs using the simple PCA model. 
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Regressing on data which had been lagged by one business day yielded the result shown in table 10. 

Table 10: PCA using backward elimination regression results for lag-1 day training data. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0014 -0.7188 0.4730 -0.7089 0.4791 

WTI crude -0.0150 -0.9315 0.3525 -0.9663 0.3348 

Coal -0.0095 -0.3083 0.7581 -0.3033 0.7619 

DS 0.0685 1.5861 0.1140 1.4795 0.1403 

CSS 0.0488 0.8362 0.4038 0.6451 0.5194 

Weather 0.1445 2.2051 0.0284 1.9673 0.0503 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 1.0050 E-03 3.52% 1.57% -1,703 -1,604 

 

No variable was statistically significant according to adjusted p-values. Residuals were stationary, but 

not normally distributed. No autocorrelation was present. Figure 2 shows the results of table 10 

graphically. 

 

Figure 2: The actual vs. predicted lag-1 day price and returns for EUAs using the backward elimination PCA 

model. 
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Regressing on data which had been lagged by one business day yielded the result shown in the table 

below. 

Table 11: PCA using forward selection regression results for lag-1 day training data. 

Variable � t-stat p-value HC4 p HC4-value 

Constant -0.0014 -0.7181 0.4734 -0.7028 0.4828 

DS 0.0113 0.7871 0.4320 0.6669 0.5055 

Coal -0.0028 -0.0917 0.9270 -0.0929 0.9261 

CDS 0.0753 1.7701 0.0779 1.5764 0.1162 

CSS -0.0289 -0.5324 0.5949 -0.3806 0.7038 

WTI crude 0.4946 2.1151 0.0354 1.5067 0.1331 

Goodness  MSE ©( ©ª«p(  AIC BIC 

of fit 1.0074 E-03 3.32% 1.37% -1,703 -1,604 

 

No variable was statistically significant at the 95% confidence interval according to adjusted p-values. 

Residuals were stationary, but not normally distributed. The qq-plot revealed heavy tails indicating an 

increased probability of extreme events. No autocorrelation was present. The lag-1 forward selection 

PCA model matched the performance set by the base-line model of table 5.9. Figure 3 shows the 

results of table 11 graphically. 

 

Figure 3: The actual vs. predicted lag-1 day price and returns for EUAs using the forward selection PCA model. 
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Testing the simple PCA model using test data lagged by one day yielded the results shown in table 12 

shown below. 

Table 12: Out-of-sample regression results for lag-1 day test data for simple PCA. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0014 -0.6358 0.5255 -1.2440 0.2146 

DS 0.0138 0.2418 0.8091 0.3807 0.7037 

CSS 0.0263 0.3585 0.7203 0.6671 0.5053 

WTI crude 0.0586 0.4718 0.6374 0.8708 0.3846 

Natural gas -0.0765 -.06389 0.5235 -1.0032 0.3167 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.4469 E-04 4.32% 2.88% -2,156 -2,138 

 

The model shows a slight improvement in this case compared to the training dataset, but as before, the 

performance does not capture day to day price changes nor the overall trend of the actual EUA price. 

The results are shown graphically in figure 4. 

 

Figure 4: The actual vs. predicted lag-1 day price and returns for out-of-sample EUAs using the simple PCA. 
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Repeating the test for data lagged by one business day yielded the results shown in table 13. Goodness 

of fit parameters have all improved, but the model’s performance does not capture the day to day price 

changes nor the overall trend of EUA prices in either case as shown in figure 5. 

Table 13: Out-of-sample regression results for lag-1 day test data for backward elimination PCA. 

Variable �  t-stat p-value HC4 p HC4-value 

Constant -0.0014 -0.7177 0.4735 -1.1688 0.2435 

WTI crude -0.0150 -0.1363 0.8917 -0.2109 0.8332 

Coal -0.0095 -0.0991 0.9211 -0.1174 0.9066 

DS 0.0685 1.2988 0.1951 1.8473 0.0658 

CSS 0.0488 1.0573 0.2913 1.7261 0.0855 

Weather 0.1445 1.5890 0.1133 2.1746 0.0305 

Goodness  MSE ©(  ©ª«p(   AIC BIC 

of fit 3.8602 E-04 7.94% 6.20% -2,124 -2,102 

 

 

Figure 5: The actual vs. predicted lag-1 day price and returns for out-of-sample EUAs using the backward 

elimination PCA. 
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Repeating the test for data lagged by one business day yielded the results shown in table 14. Goodness 

of fit parameters are much better for the out-of-sample data. The model manages to capture the 

volatility best during the first quarter of the prediction horizon as shown in figure 6. This model 

outperforms the lag-1 base-line model as all goodness of fit parameters show improvement. However, 

none of the betas, except WTI crude, are statistically significant at the 95% confidence interval. 

Table 14: Out-of-sample regression results for lag-1 day test data for the forward selection PCA. 

Variable � t-stat p-value HC4 p HC4-value 

Constant -0.0014 -0.7830 0.4343 -0.9979 0.3193 

DS 0.0113 0.0720 0.9427 0.0844 0.9328 

Coal -0.0028 -0.0313 0.9751 -0.0310 0.9753 

CDS 0.0753 0.3232 0.7468 0.3915 0.6957 

CSS -0.0289 -0.6587 0.5106 -0.8629 0.3890 

WTI crude 0.4946 4.7854 0.0000 4.9233 0.0000 

Goodness  MSE ©( ©ª«p(  AIC BIC 

of fit 5.2065 E-04 15.60% 14.01% -2,043 -2,021 

 

 

Figure 6: The actual vs. predicted lag-1 day price and returns for out-of-sample EUAs using the forward 

selection PCA. 
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