
Faculty of Industrial Engineering, Mechanical Engineering and
Computer Science

University of Iceland
2013

Faculty of Industrial Engineering, Mechanical Engineering and
Computer Science

University of Iceland
2013

Parsing Table Generator for
Compiler Theory

Egill Búi Einarsson

PARSING TABLE GENERATOR FOR COMPILER
THEORY

Egill Búi Einarsson

12 ECTS project submitted in partial fulfillment of a
Scientiæ Baccalaureus degree in Computer Science

Advisor
Snorri Agnarsson Ph.D.

Faculty Representative
Snorri Agnarsson Ph.D.

Faculty of Industrial Engineering, Mechanical Engineering and Computer
Science

School of Engineering and Natural Sciences
University of Iceland
Reykjavik, June 2013

Parsing Table Generator for Compiler Theory
PTG
12 ECTS project submitted in partial fulfillment of a B.Sc. degree in Computer Science

Copyright c© 2013 Egill Búi Einarsson
All rights reserved

Faculty of Industrial Engineering, Mechanical Engineering and Computer Science
School of Engineering and Natural Sciences
University of Iceland
Hjarðarhagi 6
107, Reykjavik, Reykjavik
Iceland

Telephone: 525 4700

Bibliographic information:
Egill Búi Einarsson, 2013, Parsing Table Generator for Compiler Theory, B.Sc., Faculty
of Industrial Engineering, Mechanical Engineering and Computer Science, University of
Iceland.

Printing: Háskólaprent, Fálkagata 2, 107 Reykjavík
Reykjavik, Iceland, June 2013

Abstract

PTG is a command-line program that generates files containing parsing tables and
state machines for a formal language defined by an input grammar. Generated tables
are in either LATEX or HTML format which eases automated inserting of generated
elements. Likewise the state machines can be inserted directly into the LATEX source
files when the TIKZ format is used. Alternatively state machines can use Graphviz’s
digraph automaton format which is intended for use with Graphviz DOT.

Útdráttur

PTG er skeljarforrit til að finna þáttunartöflur og stöðuvélar fyrir formlegt mál út frá
gefinni mállýsingu. Þáttunartöflur eru annaðhvort á LATEX eða HTML skráarsniði
sem auðveldar sjálfvirka innsetningu gagna í aðrar skrár. Á sama máta er hægt að
setja stöðuvélar beint inn í LATEX skrár þegar notað er TIKZ skráarsnið en einnig er
boðið upp á Graphviz digraph automaton skráarsnið. Hið síðarnefnda þarf hinsvegar
að keyra í gegnum Graphviz DOT áður en það er nothæft.

Preface

The goal of this project was to create an open source teaching tool along with a
User Manual. The result is the command-line program PTG which generates files
contains either a parsing table or a state machine for the given grammar. It can
generate more than one file each time it is run.

Generating these tables and machines is a common and well defined problem when
studying compilers. Furthermore deterministic processes for solving these problems
are known and well documented. Sadly these processes have two faults, they are
both time consuming and prone to errors when carried out by a human.

Both faults can be circumvented by using a program that fulfills these tasks. PTG
saves the user time by having a low execution time and minimalistic input grammar
file format. PTG avoids errors by implementing well known processes to generate
the tables and state machines.

Why use PTG?

• Analyzing a grammar is time consuming. Analyzing a modified grammar is
nearly as time consuming. PTG allows the user to do this quickly and without
errors to see the subtle changes a slight modification can bring to a grammar.

• Analyzing a grammar by hand is painstaking and usually incomprehensible the
first few times. PTG allows a user to verify his solution in a simple manner.

• After analyzing a grammar the next step is often to digitalize the solution to
use in a document. The output of PTG is already in a digital format ready
for insertion.

PTG fulfills the stated goals of the project by generating files containing a FIRST,
FOLLOW, LL(1), SLR(1), LALR(1) or LR(1) parsing tables in either TEX and
HTML format. Furthermore files containing a LR(0), LALR(0) or LR(1) state
machine can be generated in either GraphViz Dot or TiKz format; although only the
latter can be used unmodified in TEX files. The downside of PTG is that it requires
more testing. The input grammar files and command line options intentionally
have very few restrictions but this means that finding input that causes unexpected

vii

results should be relativily easy. The program, User Manual and source code is open
for everyone at the PTG repository1 and the body of this thesis is just a retailoring
of the User Manual.

1https://github.com/EgillEinarss/PTG

viii

https://github.com/EgillEinarss/PTG

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Setup 3
2.1 Compiling the Source . 3

3 Command Line Arguments 5
3.1 <Grammar> Parameter . 5
3.2 <Options> Parameters . 5
3.3 <Table> Parameters . 6

3.3.1 <Table type> Argument . 6
3.3.2 <Table option> Argument . 7
3.3.3 <Filename> Argument . 7

3.4 <SM> parameters . 7
3.4.1 <SM type> Argument . 7
3.4.2 <SM options> Argument . 8
3.4.3 <Size> Argument . 8
3.4.4 <Orientation> Argument . 8
3.4.5 <Filename> Argument . 9

3.5 <All> parameter . 9
3.6 Examples of Command Line Arguments 9

4 Preparing the Input Grammar File 11

5 Using Generated Files 13
5.1 LATEX Tables . 13
5.2 HTML Tables . 14
5.3 TIKZ State Machines . 14
5.4 Graphviz Statemachines . 14

6 I Found a Bug, What Should I Do? 15

7 An Example 17

ix

List of Figures

7.1 LR(0) statemachine for examples/example.gra 17

7.2 LR(0) statemachine for examples/example.gra with TINY states along
with labels table. 19

xi

List of Tables

7.1 FIRST, FOLLOW and LL(1) parsing tables for example/example.gra 17

7.2 SLR(1) parsing table for examples/example.gra 18

xiii

Acknowledgments

I would like to thank Professor Snorri Agnarsson for his guidance and my fiancée
Helga Sigríður Ívarsdóttir for her support. I would also like to thank Alfred V. Aho,
Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman for the Dragon Book, officially
known as Compilers: Principles, Techniques, and Tools. Although not used as a
source for this project it was the book I used to learn the ropes.

xv

1 Introduction

PTG is run from a command-line terminal and generates parsing tables and state
machines for context insensitive formal grammars. A grammar’s FIRST, FOLLOW,
LL(1), SLR(1), LALR(1) and LR(1) parsing tables can be generated in either LATEX
or HTML format along with LR(0) and LR(1) state machines in Graphviz’s digraph
automaton format for use with DOT or TIKZ format for use directly in LATEX. The
idea is when creating a document studying formal languages, that features some or
all of these tables and machines, instead of writing the entites directly or copying a
generated file into the master file, PTG generated files can be dynamically linked in
the master file. The result is that if the formal languages change then only the PTG
grammar file needs to be updated and then the tables and state machines can be
represented by using PTG, Graphviz, etc.. This process can of course be automated
with a make or batch file with the exception of updating the grammar file.

1

2 Setup

Setup is simple as long as a JRE (Java Runtime Environment) has been setup. Go
to the PTG repository1 on Github.com and download PTG.jar. Place this file in
the current command line directory and run:

java −j a r PTG. j a r . . .

Along with any relevant arguments (detailed in the next section).

2.1 Compiling the Source

Required programs are git2 and make3. Use a command line. If needed, go to your
projects directory and get the project with the command:

g i t c l one https : // github . com/ Eg i l l E i n a r s s /PTG. g i t
cd PTG

Alternatively go to the PTG repository on Github.com4 and download what you
want or require.

Now the developement environment used to create PTG has been set up. To compile
the source and create the jarfile used to run PTG, type in the command:

make

PTG is an open source program and the source code can be found in the dirctory
src. Feel free to modify the source code. Any new Java source files can be added
into the src directory without causing problems. They will be compiled and added
to the PTG jar file when make is run without needing to modify the makefile.

1 https://github.com/EgillEinarss/PTG
2 http://git-scm.com/
3 http://www.gnu.org/software/make/
4 https://github.com/

3

https://github.com/EgillEinarss/PTG
http://git-scm.com/
http://www.gnu.org/software/make/
https://github.com/EgillEinarss/PTG
https://github.com/

3 Command Line Arguments

The syntax for command line execution is:

java −j a r PTG. j a r <Grammar> <Options> <Table> <SM> <All>

<Grammar> defines what file is to be used as the PTG grammar file. <Options>
define some of the grammar’s parameters. <Table>, <SM> and <All> define
output options for PTG. Each of the output options will create one or more files
using the base filename, followed by a suffix and lastly an appropriate file extension.
Which suffix is added reflects what type of parsing table or state machine was being
generated. Each of these parameters is detailed below in their own subsection. Note
that all keywords are given in capital letters, although PTG is case-insensitive.

3.1 <Grammar> Parameter

This is a required parameter and must be the first one supplied. It will be used as
the filename of the PTG grammar file to be parsed. Furthermore all characters up to
the first dot will be used as the default base filename for any output files generated
by PTG.

3.2 <Options> Parameters

These options help define the grammar. Any number of them may be used but each
must be followed by a string of non-whitespace ASCII characters. Below, this string
is called <token>.

5

3 Command Line Arguments

−START <token> Sets the grammar’s start variable to <token>. The first
variable listed in the supplied grammar is used as a default parameter.

−END <token> Sets the grammar’s end of input to <token>. The default
is "$".

−EMPTY <token> Sets the grammar’s empty string to <token>. The
default is "<e>".

Setting more than one of these parameters with the same <token> will result in
untested and undefined behaviour.

3.3 <Table> Parameters

Any number of <Table> parameters can be supplied in an argument. Each param-
eter defines one or two new files that PTG should create and determines which of
the parsing tables it should contain. The syntax for each is:

<Table type> <Table option> <Filename>

3.3.1 <Table type> Argument

This is a required argument of each <Table> parameter and the possible values are:

−FIRST Creates the First table. FIRST will be concatenated to the base
filename.

−FOLLOW Creates the Follow table. FOLLOW will be concatenated to the
base filename.

−LL1 Creates the LL(1) table. LL1 will be concatenated to the base filename.

−SLR1 Creates the SLR(1) table. SLR1 will be concatenated to the base
filename.

−LR1 Creates the LR(1) table. LR1 will be concatenated to the base filename.

−LALR1 Creates the LALR(1) table. LALR will be concatenated to the base
filename.

6

3.4 <SM> parameters

3.3.2 <Table option> Argument

This is an optional argument which limits the number of output files to one.

HTML The parsing table generated will be represented in HTML and have
the file extension .html.

LATEX The parsing table generated will be a LATEX tabular environment and
have the file extension .tex.

If this optional argument is not present then PTG will interpret it as though the
user wants both formats to be generated.

3.3.3 <Filename> Argument

The last optional argument is to override the default base filename of any generated
file.

3.4 <SM> parameters

Any number of <SM> parameters can be supplied in an argument. Each parameter
defines one or two new files that PTG should create and determines which of the
state machines it should contain. The syntax for each is:

<SM type> <SM option> <Size> <Orientat ion> <Filename>

3.4.1 <SM type> Argument

This is a required argument of each <SM> parameter and the possible values are:

−LR0M Creates the LR(0) state machine. LR0M will be concatenated to the
base filename.

−LR1M Creates the LR(1) state machine. LR1M will be concatenated to the
base filename.

−LALRM Creates the LALR(0) state machine. LALRM will be concatenated
to the base filename.

7

3 Command Line Arguments

3.4.2 <SM options> Argument

This is an optional argument which limits the number of output files to one.

GZ The state machine output will adhere to Graphviz’s digraph automaton
format and have the file extension .gz.

TIKZ The state machine ouput will adhere to the TIKZ automata format and
should be fully compatible with LATEX. It will have the file extension
.tex.

If this optional argument is not present then PTG will interpret it as though the
user wants both formats to be generated.

3.4.3 <Size> Argument

The optional <Size> argument defines the amount of text contained in each state
of the state machine, although it will always contain a label (an identifier). The
default state size is TINY.

TINY Each state will contain only a label.

LARGE Besides a label, each state will show which rules can be used to con-
tinue parsing an input string.

SMALL The same as LARGE state size but redundant rules are omitted.1

When the state size is TINY, two extra files will be generated containing tables
with the extra information that was omitted in comparison to the state size being
LARGE. One file will use HTML syntax and add label.html to the base filename
whereas the other will contain a LATEX tabular environment and add label.tex to
the base filename.

3.4.4 <Orientation> Argument

This is another optional argument that changes the orientation of the generated
state machine.

LR The state machine will grow from left to right.

If the option is unused then the state machine will grow from top to bottom.

8

3.5 <All> parameter

3.4.5 <Filename> Argument

The last optional argument is to override the default base filename of any generated
file.

3.5 <All> parameter

This will create all of the possible output options of PTG. The syntax is:

−ALL <Table option> <SM option> <Size> <Orientat ion>
<Filename>

All of these options behave as detailed in the <Table> Parameters and <SM>
Parameters subsections.

3.6 Examples of Command Line Arguments

Below are three examples:

java −j a r PTG. j a r example . gra −a l l

java −j a r PTG. j a r example . gra −a l l l a t e x t i k z l a r g e out

java −j a r PTG. j a r f i l ename −s t a r t Var2 −end EoF −empty e
− l l 1 html

The first generates all possible parsing tables in both LATEX and HTML format and
state machines in both Graphviz DOT and TIKZ format with tiny state sizes using
example as the base filename from the PTG grammar file example.gra. The second
generates all possible parsing tables in LATEX format and state machines in TIKZ
format with large state sizes using out as the base filename. It uses the same PTG
grammar file as the first. The third and last generates the LL(1) parsing table in
HTML format for the the PTG grammar defined in the file filename. For this
grammar the start variable is Var2, the end of input is EOF and the empty string is
denoted by e. The output file is named filenameLL1.html.

9

4 Preparing the Input Grammar
File

The Input Grammar File is a text file that contains the grammar to parse. There
are no intended constraints on the filename or it’s extension, the filename (that is
without the dot and extension) will be used as a default base name for any output
filenames unless a new name is supplied by command line arguments. In the file,
each line is one rule. Each rule contains a left-hand side, a seperator and a right-
hand side in that order. The left-hand side and the seperator are one symbol each
whereas the right-hand side is a string consisting of one or more symbols. A symbol
is a whitespace terminated string of characters.

To reiterate, a rule is a string of three or more symbols where the first is the left-hand
side and the second is a seperator. PTG will interpret any left-hand side symbols as
being a variable in the grammar and the left-hand side of the top rule is the default
start variable. Any symbols in a right-hand side that is not a variable is a terminal
symbol.

Care should be taken with the empty string symbol. All rules that uses the empty
string symbol should have a variable, followed by a seperator and then finally the
empty string symbol. The empty string symbol cannot be a variable. The default
empty string symbol is <e> but a new one can be defined in the command line
arguments. To learn more about rules, see this Wikipedia article1.

1 http://en.wikipedia.org/wiki/Formal_grammar\#Context-free_grammars

11

http://en.wikipedia.org/wiki/Formal_grammar#Context-free_grammars

4 Preparing the Input Grammar File

Lastly a grammar is terminated by an empty line. This allows a comment to follow
after the grammar for whatever reason. An example of a PTG grammar is shown
below, this is the same example used in the Example section. Here the default start
variable is S.

S −> S (S)
S −> <e>

A comment s t a r t s here .
This i s an example grammar f o r PTG and i s used to generate
the example t ab l e s and s t a t e machines in the manual .

12

5 Using Generated Files

After using PTG to generate files, a new problem arises regarding how to use them.
In this section, possible ways of displaying the generated files are discussed.

5.1 LATEX Tables

There are two simple ways to use generated LATEX tables, either by pasting them
into the master file or by using the input command. PTG generates only a tabular
environment instead of an actual table environment, this is because a table (or any
other container, for example a figure) has commands that relate to placement of the
environment in the document.1 The input command will allow the use of generated
LATEX files directly. This allows a user to update a grammar file, run PTG for that
grammar and then recompile the document. A table or figure environment can be
used to contain the input command. Below is an example of how to insert a file
named exampleTable.tex into a table environment:

\ begin { tab l e }
\ c en t e r i ng
\ input {exampleTable . tex }
\ capt ion {A capt ion f o r the t ab l e }
\ l a b e l {TableLabel }

\end{ tab l e }

Both the caption and label commands are optional and the arguments supplied for
them are nonsense. The centering command is also optional.

1The tabular environment can be used without a container.

13

5 Using Generated Files

5.2 HTML Tables

For now the recommendation is pasting the contents of the generated file into the
master file or just hyperlinking the generated file as an individual page from the
master file.2 There should be a work-around with Javascript and it is quite simple
to fix the problem with PHP.

5.3 TIKZ State Machines

To use TIKZ state machines some commands are required in the document’s pream-
ble, the preamble consists of everything before the \begin{document} command.
These commands are:

\ usepackage { t i k z }
\ u s e t i k z l i b r a r y {arrows , automata}
\ u s e t i k z l i b r a r y { shapes . mul t ipar t }
\ u s e t i k z l i b r a r y { shapes . misc }

Now a generated Tikz statemachine contained in the file exampleMachine.tex can
be added with:

\ input {exampleMachine . tex }

Check the TIKZ website3 for more details on how to use TIKZ.

5.4 Graphviz Statemachines

Graphviz statemachine files have the extension .gz and should be rendered using
Graphviz DOT. An example command to render exampleSM.gz as a png image file
named exampleSM.png would be:

dot −Tpng exampleSM . gz −o exampleSM . png

Check the DOT documentation4 for more details.
2The page will be lacking many of the frills associated with the HTML standard, for example a

header.
3 http://www.texample.net/tikz/
4 http://www.graphviz.org/pdf/dotguide.pdf

14

http://www.texample.net/tikz/
http://www.graphviz.org/pdf/dotguide.pdf

6 I Found a Bug, What Should I
Do?

Go to the PTG repository and check if it is a known issue, if not add it there.
Remember to supply all the necessary information to recreate and fix the bug. This
includes what you intended to do, what PTG did, the command line arguments you
used and lastly the input grammar file.
If you can’t wait, then feel free to modify the source code in hopes of fixing the bug.
Also feel free to send me a line through the repository with comments or complaints
regarding PTG.

15

https://github.com/EgillEinarss/PTG

7 An Example

Here is an example to demonstrate the use of PTG. The text for the example is in
the example.gra in the examples directory of the PTG repository and is as follows:

S −> S (S)
S −> <e>

A comment s t a r t s here .
This i s an example grammar f o r PTG and i s used to generate
the example t ab l e s and s t a t e machines in the manual .

The FIRST, FOLLOW and LL(1) parse tables can be generated by the command:

java −j a r PTG. j a r examples /example . gra − f i r s t −f o l l ow −LL1

X FIRST(X)

S
ε
(

X FOLLOW(X)

S

(
)
$

() $

S
ε

S (S)
ε

S (S)
ε

S (S)

Table 7.1: FIRST, FOLLOW and LL(1) parsing tables for example/example.gra

Now let’s generate LR(0) state machine in Graphviz format and create a png image
file with DOT.

java −j a r PTG. j a r examples /example . gra −LR0M la r g e gz
dot −Tpng examples /exampleLR0M . gz −o examples /exampleLR0M . png

Figure 7.1: LR(0) statemachine for examples/example.gra

17

https://github.com/EgillEinarss/PTG

7 An Example

State () $ S

I0 reduce S → ε reduce S → ε reduce S → ε I1

I1 shift I2 reduce S’ → S

I2 reduce S → ε reduce S → ε reduce S → ε I3

I3 shift I2 shift I4

I4 reduce S → S (S) reduce S → S (S) reduce S → S (S)

Table 7.2: SLR(1) parsing table for examples/example.gra

Lastly let’s generate the LR(1) state machine with TINY states along with a table
of the omitted information for each state:

java −j a r PTG. j a r examples /example . gra −LR1M t iny t i k z

18

I0start

I1

I2

I3

I4 I5

I6

I7

S

(

S

()

S(

)

State Current Rule Set

I0

S → · ε, $
S → · ε, (

S → · S (S), $
S → · S (S), (
S’ → · S, $

I1

S → S · (S), $
S → S · (S), (
S’ → S · , $

I2

S → · ε, (
S → · ε,)

S → · S (S), (
S → · S (S),)
S → S (· S), $
S → S (· S), (

I3

S → S · (S), (
S → S · (S),)
S → S (S ·), $
S → S (S ·), (

I4

S → · ε, (
S → · ε,)

S → · S (S), (
S → · S (S),)
S → S (· S), (
S → S (· S),)

I5
S → S (S) · , $
S → S (S) · , (

I6

S → S · (S), (
S → S · (S),)
S → S (S ·), (
S → S (S ·),)

I7
S → S (S) · , (
S → S (S) · ,)

Figure 7.2: LR(0) statemachine for examples/example.gra with TINY states along
with labels table.

In parting, I wish to point out that the full LATEX source file for this user manual
can be found in doc/UserManual.tex in the PTG repository.

19

https://github.com/EgillEinarss/PTG

	List of Figures
	List of Tables
	Introduction
	Setup
	Compiling the Source

	Command Line Arguments
	<Grammar> Parameter
	<Options> Parameters
	<Table> Parameters
	<Table type> Argument
	<Table option> Argument
	<Filename> Argument

	<SM> parameters
	<SM type> Argument
	<SM options> Argument
	<Size> Argument
	<Orientation> Argument
	<Filename> Argument

	<All> parameter
	Examples of Command Line Arguments

	Preparing the Input Grammar File
	Using Generated Files
	LaTeX Tables
	HTML Tables
	TIKZ State Machines
	Graphviz Statemachines

	I Found a Bug, What Should I Do?
	An Example

