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Abstract

Generally intelligent robots and systems should be evaluated based on their ability to learn new
tasks over a wide range of domains. Few if any of the available evaluation methods for artificial
intelligence (AI) systems address this need, and most even leave out important aspects of intelligence,
such as a system’s ability to learn. As a result, ad-hoc methods of evaluation are commonly used,
and no standardized evaluation methods have been accepted. Furthermore, evaluation of controllers
in physically realistic task-environments has been left mostly unaddressed. In short, there are vast
opportunities for improvement in the way AI systems are evaluated. However, not all AI systems
are alike or created equal. This could be addressed if we had a toolkit where developers could easily
construct appropriate tasks for evaluating and comparing their systems on a variety of tasks. To be
generally applicable such a toolkit should provide answers about the efficiency, both in time and energy,
of various control systems, so that they could be ordered with respect to their practical utility in the
most general way possible.

In this thesis we present a prototype framework that allows modular construction of task-environments,
rooted in physics, and its early-state implementation, the Framework for Modular Task-Environment
Construction (FraMoTEC). Simulation is used to evaluate control systems’ performances in terms of
expended time and energy. In our approach tasks are dissected into dimensions to be controlled by the
system to be evaluated; simpler tasks contain only a few dimensions to be controlled sequentially; more
complex tasks have a large number of dimensions, some of which must be controlled simultaneously
to achieve the task. In FraMoTEC components can be flexibly modified and changed through the
inherent modularity, allowing evaluating control systems on a single or multiple tasks, as well as on a
family of tasks.

The utility of FraMoTEC as an AI evaluation framework was demonstrated by evaluating the
performance of various controllers (such as SARSA reinforcement learners) on a collection of task-
environments, using both simple tasks and a suite of scalable N-dimensional tasks. The results show
that FraMoTEC allows both simple and complex state of the art controllers to be flexibly evaluated on
a family of physical tasks in a straightforward manner. The evaluation can be along the dimensions of
of efficiency (time, energy, or both), failures, learning rate, etc. and any combination thereof. Further
theoretical analysis of N-dimensional tasks indicates the approach can scale to be suitable for advanced
controllers with higher levels of intelligence, learning capacity, etc., making the approach a promising
direction to pursue in the context of AI and robotics evaluation.
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Chapter 1

Introduction

1.1 Background

The world is full of tasks of all kinds. Children are often assigned simple tasks such as taking out the
trash or feeding the family pet; as they get older they learn about other tasks such as loading and
unloading the dishwasher and moving the car out of the driveway. The general rule of thumb is that
younger individuals are assigned simpler tasks than older individuals, as young individuals may not
have the necessary experience to complete a task considered more suitable for an older individual. This
has to do with the life-long learning of the individuals as they gain various problem-solving abilities
and as their physical capabilities increase. It is relatively easy to teach a 6 year old to take a bag
from mother’s hand and place it in the trash (assuming no physical limitations), but a 6 year old will
probably not have the necessary skills required to meticulously detail grandfather’s sports car — a
task more suitable for adolescents.

This begs the question on how can we assess whether or not someone (— or something) is capable
of doing some task — one way would be to simply put the individual to the test, a potentially risky
approach (imagine tasks like nuclear safety inspection or firefighting). We could instead test the
individual in a more controlled environment — whether that be a written examination, a virtual
demonstration or something else. In this way we do not place any individuals in danger despite the
target task being inherently dangerous.

Ultimately, artificially intelligent control systems will be used for controlling real-world systems
(e.g. robots). These systems will need to account for resource expenditure, as they will be expected
to solve tasks in a limited amount of time without exceeding some energy allowance.

In this thesis we will address the construction of environments in which artificially intelligent sys-
tems can be evaluated (both in terms of time and energy) with simulation. We call such environments
task-environments1 and those interacting with it agents.

Humans are an example of an intelligent system that we have studied for a long time, and we
already have some general ideas on how to evaluate a human’s capabilities. Evaluating humans is
greatly simplified by the intuitive understanding that humans have of their own sensors and effectors,
but this is a luxury that does not necessarily carry over to artificially intelligent systems.

1We use the term task-environment to refer to the pairing of a task with the environment in which it must be
accomplished; in some cases simply task or environment could be used in its place.
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Despite the existence of several methods that can be used to evaluate intelligent systems, all existing
methods have fundamental problems. The Turing Test2 was proposed by Alan Turing in 1950 and
was the first proposal for how to evaluate intelligence in a machine [Turing, 1950]. Unfortunately, the
machines most likely to come close to passing the Turing test do not come close to being intelligent.
Passing the Turing Test can say nothing about a system’s ability to learn, as it could have learned the
solution to every sub-goal prior to taking the test or had the knowledge programmed in — although
the Turing Test can be useful, it should not be used as a benchmark. Other evaluation methods may
be slightly more suited for benchmarking, AI evaluation has focused on checking whether machines
can do tasks well instead of evaluating whether the AI is intelligent [Hernández-Orallo, 2014]. The
Piaget-MacGyver Room problem [Bringsjord and Licato, 2012], Lovelace Test 2.0 [Riedl, 2014] and
Toy Box problem [Johnston, 2010] all come with the caveat of being defined very vaguely — these
evaluation methods may be likely to come up with a reasonable evaluation for intelligence, but it is very
difficult to compare two different agents (or controllers) that partake in the their own domain-specific
evaluations, which is what frequently happens when agents are tailored to pass specific evaluations.

In essence, most of the evaluation methods currently at our disposal leave out important aspects
of intelligence, such as evaluating a system’s ability to learn. Evaluation methods should evaluate
controllers without changing the task-environment so that the performance of the controller performing
the task can be quantified. Quantifiably evaluating different systems in the same task-environment
allows us to compare the systems critically and to judge the effects of slight adjustments to the systems
more easily. Being able to create abstract versions of various classes of tasks enables yet another level
of control in evaluating automatic learners and artificial intelligence systems [Thórisson et al., 2016].

In this thesis we present a tool for constructing task-environments and evaluating adaptive control
systems regulating those task-environments, which we will call FraMoTEC: a Framework for Modular
Task-Environment Construction. This framework will simulate control systems in task-environments
to evaluate the time and energy expenditure of the control system solving the task.

AI systems interact with “environments” that contain all relevant existing objects and the rules
by which they interact, while “tasks” assigned to an agent describe specific environment states that
should be brought about or avoided. The term task-environment will often be used when we refer
to the tuple of a task (which can itself be a set of tasks) and the environment in which it must be
accomplished [Thórisson et al., 2016]. An important consideration here is that although the bodies of
agents are embedded in the environment, their control systems (their “minds”) are not. This implies
that any evaluation actually evaluates the collective control strategy of all agents. Figure 1.1 demon-
strates the difference between these terms and their relationships. An environment is constructed with
small atomic elements such as objects, transitions, sensors and motors, and some containers such as
what we simply call “systems”. One could argue that only objects and transitions are necessary to
construct environments but convenience components such as sensors and motors have advantages such
as facilitating interfacing — we could for instance imagine a MAPE-K 3 controller interfacing with an
environment created by FraMoTEC simply by connecting the sensors and motors of each software.
In addition to this, the system component aides task designers in designing tasks at varying levels of
abstraction.

2Alan Turing’s intention of the Turing Test was not to answer whether machines can think (or whether they are truly
intelligent), but rather digital machines could conceivably make humans believe they are intelligent by succeeding in
“the imitation game”.

3[IBM et al., 2006].
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Figure 1.1: A diagram of terms and their relationships used throughout this thesis.

1.2 Motivation

A strong initial motivating factor for constructing a framework for evaluating AI and AGI systems is the
potential to push AGI in the right direction — adequate evaluation methods will facilitate optimization
of cognitive architectures and AGI-aspiring systems. When AGI systems become feasible, we can start
imagining a myriad of uses for them that could improve human quality of life significantly.

Here we view agents, AGI-aspiring systems, and other regulators as “controllers”, as we are in-
terested in evaluating the control system of the agent and not the specifics of their embodiment, for
example, whether the agent has prongs or suction cups; the embodiment of the controllers we want to
evaluate are considered part of the task environments, and thus the controllers can be viewed as being
“embedded” in their task-environments.

Microsoft’s Malmo can be used to implement tasks within Minecraft; it has been used to evaluate
and compare several control strategies in challenging tasks such as visual hill climbing. [Abel et al.,
2016]. Projects such as Malmo demonstrate a need for easy task-environment construction to facil-
itate evaluations. However, the focus is on improving upon reinforcement learning algorithms and
experimenting in visual domains, not on task-environment construction. The contribution outlined
in this paper aims to improve the status quo of evaluation methods, supporting faster research and
development in the field by focusing on facilitating task-environment construction.

A prerequisite to evaluating systems in task-environments is the construction of task-environments.
Conant and Ashby [1970] elegantly illustrates that a successful regulator implies that a sufficiently
similar model must have been built (implicitly or explicitly). Therefore, any AGI-aspiring system and
any agent that are able to successfully solve the problems presented in a task-environment must have
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built some kind of model of the environment. By simulating controllers in environment models, we can
compare the performance of different controllers in similar (or different) environments. Furthermore,
environment models should be complete representations of the target environment while retaining
some grounding with the physical world. Tasks and environments in the physical world are composed
of smaller parts, often spanning 2 or 3 orders of magnitude (on the time and/or space dimensions),
and thus a toolkit for modeling task-environments in simulation would better support that kind of
modularity.

As highlighted in Hernández-Orallo [2014], there is still a huge margin of improvement in the way
AI systems are evaluated. Ad-hoc methods of evaluation are commonly used and no standardized
evaluation methods have been employed over a vast range of AI-aspiring agents. Furthermore, evalua-
tion of controllers in physically realistic task-environments has not been properly addressed. A major
motivation for the work outlined in this thesis is the need for a framework that would allow multiple
kinds of agent controllers to be evaluated in continuous task-environments. Hopefully, future exten-
sions will allow the generation of a varied set of task-environments that will even allow for certain
cognitive abilities to be probed. Cognitive abilities are defined as a property of individuals that allows
them to perform well in a range of information-processing tasks [Hernández-Orallo, 2014].

Toolkits exist for evaluating reinforcement learning algorithms, such as rllab. Such toolkits facili-
tate reinforcement learning development by enabling benchmark evaluations such as the suite described
in Duan et al. [2016]. OpenAI’s Gym is a new toolkit for developing and comparing reinforcement
learning algorithms which contains a large collection of various kinds of environments. These toolkits
demonstrate the need for better evaluation tools.

Thórisson et al. [2015] lists a collection of properties of flexible intelligence evaluation frameworks
considered to be important, putting emphasis on easy construction of task-environments and variants.
Being able to compose or decompose environments, as well as scale or tune them facilitates construction
and increases potential for procedural generation of task-environments. Different task-environments
could be compared by decomposing them into the smallest structures and analyzing the relationships
between them, but this requires some task theory as a guide. This is something that FraMoTEC
aims to facilitate by enabling construction based on building block composition.

Thórisson et al. [2016] contains further motivations for this thesis, touching on evaluation of intel-
ligent systems and the importance of a task theory. A task theory would enable critical comparison
of task-environments and with some grounding in physics we can formalize simulable tasks by con-
structing them from simulable granules. This would also help us expand, simplify or modify task
environments in systematic ways — see section 2.4 for related work on task theory.

Expanding on this, there is great motivation for a tool that would allow the evaluation of agents
in task-environments by simulation. Such a tool could allow for plotting of evaluation results that
visually demonstrates time and energy requirements for agents in certain task-environments. The plot
should contain information about the maximum time and energy and the agents’ resource management.
Section 4.5 covers plotting in more detail.

1.3 Summary

There is still a huge margin of improvement in the way AI systems are evaluated [Hernández-Orallo,
2014]. All current evaluation methods have fundamental problems, leaving out important aspects of
intelligence. AI systems will ultimately be used to control real-world systems that will need to manage
resource expenditure. This is something that has not been addressed. This thesis is motivated by
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the need for a tool that can be used to construct task-environments and evaluate controllers’ resource
management in solving those task-environments. Thórisson et al. [2015] provides an excellent reference
as a guide towards the creation of such a tool.

The structure of this thesis is as follows: Chapter 1 covers introduction and motivations. Chapter
2 presents related work, touching on some foundations for a task theory. Chapter 3 outlines some
applications for task theory, and proposes a prototype for a framework that can be used to evaluate and
compare agents, environments and tasks. Chapter 4 focuses on the prototype framework introduced in
chapter 3, going into details about the implementation and a discussion about its current state. Chapter
5 demonstrates use cases for the proposed framework, comparing various controllers in several task-
environments and diving deeper into practical applications. Finally, chapter 6 concludes the thesis and
outlines future work.
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Chapter 2

Related work

We will look at the relevant prior work from three main angles — cybernetics, including modeling,
controllers and regulation, simulation and Newtonian Physics, evaluation methods and lastly recent
work on a task theory for AI.

2.1 Systems and Control

Cybernetics is concerned with those properties of systems that are independent of their concrete
material or components. This is at the very heart of modeling and abstraction and allows cybernetics
to describe physically different systems with the same concepts and to look for isomorphisms between
them [Heylighen and Joslyn, 2001]. Heylighen and Joslyn [2001] further discusses entropy and modeling
dynamics, but goes into great detail on circular processes and control theory, concluding on the topic of
cognition a discussion on the relationship between learning and model building. As we are interested
in being able to construct any task-environment from the set of simulable task-environments, we
should ensure that all mechanisms of regulation are possible in task-environments constructed with
the framework to fully cover the set of all possible regulators for any given task-environment.

As illustrated in Scholten [2011] which revisits the work of Conant and Ashby [1970], models are
everywhere in science, using examples ranging from linear algebra to abstract concepts. Conant and
Ashby prove a theorem stating that all good regulators must model the systems that they regulate,
more specifically that the simplest optimal regulator of a system models the system it regulates. The
theorem can also be interpreted as saying that optimal regulators that are not models of their regulands
are either unnecessarily complex or simply not good regulators [Conant and Ashby, 1970]. Scholten
[2011] goes even further claiming that every good solution must be a model of the problem it solves.

An important consideration in our modeling is the connection to physics. Learning agents such
as Hutter [2001]’s AIXI may be promising, but can not be realistically expected to solve problems in
task-environments with time and energy restrictions. This may be due to AI research being derailed by
premature formalization and reliance on Turing machines, which does not account for time or energy
at all. This oversimplification has decoupled AI research from the physical world and shifted the focus
towards control theory with no regard to time or energy limitations. Thórisson [2013] addresses this
specific issue.

Our work aims to create practical time- and energy sensitive task-environment models that can be
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used to evaluate control systems by simulation and thus the approach taken here rests on several of
the assumptions made by cybernetics, namely that natural and artificial intelligence systems are likely
to be based on similar organizational principles which to a large extent determine their exact nature
as control systems.

2.2 Simulation

Rosen [1993] raises the question of whether mathematical systems are simulable, claiming that most are
not, but covers the special case for mathematical systems which are already models with an interesting
corollary for simulable models of mathematical systems. By ensuring that a model of some system
is simulable, we can assert that running a simulation of that model is equivalent to a simulation of
that system. This allows us to transmute the Church-Turing thesis into an assertion leading to the
reductionist’s dream [Rosen, 1993]. Furthermore, this tells us that all constructed task-environment
models can be made simulable by simply enforcing models to be constructed of smaller simulable
models all the way down to the smallest building blocks.

By constructing models with systems composed of smaller sub-parts, we can factor different parts
of the model (e.g. we could simulate multiple parts of a system in parallel, provided that we wish
to evaluate the current state of the evaluated agent and not the learning progress). We consider de-
composition a necessary feature for the reasons previously outlined and to encourage the construction
and use of sub-environments (or prefab systems to place in environments) [Simon, 2000][Thórisson and
Nivel, 2009].

The Model-View-Controller architecture is a software programming paradigm that applies a three-
way factoring of an application. The model is responsible for describing the application domain, the
view represents the interface between applications (or the user) and the controller governs operations
within the application (more specifically, operations on the model which in turn affect views). In
this way all possible views in an application can be imagined as the application’s state space while
the controller dictates how changes can be made to the model (which propagate to the view). The
meaningful decoupling of components suggested by the MVC architecture encourages code re-use and
simplifies pluggability (generally by employing standardized interfaces). [Krasner et al., 1988]

The prototype framework proposed in this thesis does not use the MVC architecture, although
section 6.2.1 hints at why implementing the framework with a model-view-controller architecture could
be a good idea. The prototype framework presented in this thesis describes an implementation with a
more model-driven architecture — the controller is embedded in the top-level model (i.e. the “largest”
model in its own task-environment).

Advantages to simulating task-environments have been discussed in the context of cognitive research
in humans in Gray [2002]. Although our focus is on evaluating artificial cognitive systems, most of
the same principles apply — it is just as useful to put an AI into a flight simulator before letting it
loose in an actual cockpit. Gray also discusses three dimensions on which simulated task-environments
differ: (i) Tractability (ii) Correspondence (iii) Engagement. Tractability is an important but relative
dimension. Important considerations like the training, usability and expense of running the simulation
can affect tractability differently based on the research questions being asked. Correspondence can
vary from one aspect of many systems to many aspects of one system as the research goal becomes
more specialized. The engagement dimension arises from the needs of the participant [Gray, 2002]. It
is not always clear what exactly the needs of an adaptive control system are and thus the engagement
dimension is not easily mappable from human participants to machine participants.
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Saitta and Zucker’s book on abstraction in AI and complex systems touches on simulation and how
exploiting generality in parts simulations can greatly enhance performance, using commonly recognized
examples such as LOD (level-of-detail) control [Saitta and Zucker, 2013]. This ties in with the idea of
(de)composability, in an environment of multiple agents whose interactions do not affect each other in
any way for some time period, each agent can be simulated in its own sub-environment in parallel until
any interactions in the sub-environments propagate outward, at which point the simulations would
need to be synchronized (or merged). The same principle applies for multiple non-interacting systems
within an environment.

Due to the nature of performing complex tasks, we insist on simulating (models of) complex systems
as our main approach, in a way that takes into consideration how exactly this can be achieved in a
practical manner. We can begin considering some of the simplest mathematical representations of
complex systems such as cellular automata, but we are already limited by their discrete nature. We
aim to simulate complex systems whose behavior can be described by continuous dynamics (as opposed
to discrete dynamics) while coupling the passage of time and expenditure of energy into the simulation
with Newtonian physics.

2.3 Evaluation Methods for AI Systems

Toolkits such as rllab and OpenAI’s Gym implement various kinds of task-environments for evaluating
reinforcement learning algorithms. However, these toolkits are focused on reinforcement learning and
algorithm development. Implemented tasks include classic control tasks like Mountain-Car and Cart-
Pole Balancing, locomotion tasks, algorithmic tasks, board games and more. [Duan et al., 2016].
Microsoft’s Malmo takes things a step further, using Minecraft to implement challenging tasks for
comparing control systems. [Abel et al., 2016].

Hernández-Orallo [2010] defines an environment class Λ that allows procedural generation of task-
environments requiring a suite of abilities that can be appropriately sampled and weighed. This
environment class uses a cellular spatial approach and implements rewards as a function of the evaluated
agent’s position and the positions of two agents “Good” and “Evil”. Hernández-Orallo and Dowe [2010]
introduces an intelligence test that can be applied to any kind of intelligent system in any amount of
time (although more time leads to more reliable results). The environment class Λ is used in Insa-
Cabrera et al. [2011] to show that the approach outlined in Hernández-Orallo and Dowe [2010] is
feasible by evaluating a Q-learning algorithm. The environment class Λ does not cover environments
with time and energy restrictions, as there is no connection to physics.

Hernández-Orallo argued that in order to assess general intelligence, that the assessment should
cover the testing of a range of abilities required for a range of tasks. The need for ability-oriented
evaluation as opposed to task-oriented evaluation is highlighted in Hernández-Orallo [2014]. Task-
oriented evaluation methods may be suitable for some AI systems such as those operating in a fixed
domain, but ability-oriented evaluation methods are more suitable for more general systems that we
might expect to solve previously unseen tasks. [Hernández-Orallo, 2014]

Hernández-Orallo and Dowe [2010] includes an entire section on time but focuses on the intelligence
and not the speed of the evaluated agent. Hernández-Orallo [2015] revisits the concepts of task and
difficulty in the context of universal psychometrics. The notion of asynchronous-time stochastic tasks is
introduced, paving the way for new ways to evaluate task difficulty and instance difficulty. Synchronous
environments are described as a special subclass of asynchronous environments, highlighting the need
for asynchronous-time tasks for universal evaluation methods.
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Thórisson et al. [2015] discusses a lack of appropriate tools available for artificial intelligence re-
search and that derailments have occurred that has caused the ideas of time and energy to be dismissed
in favor of symbol manipulation and premature formalization. Thórisson et al. [2015] lists three require-
ments for intelligence evaluation frameworks and a collection of properties considered to be important
for the construction of evaluable task-environments:

(A) Offering easy construction of task-
environments, and variants with a wide
range of features and complexity dimen-
sions. This would include the ability
to (a) compose and decompose desired
task-environments and parts thereof, and
(b) to scale and tune them, in part and in
whole, along various parameters and prop-
erties, with predictable effects, especially
for increasing and decreasing their com-
plexity along known dimensions.

(B) Ability to specify, at any level of de-
tail, the procedural generation of task-
environments with specific features, con-
straints, etc., and how they should (auto-
matically) grow, possibly depending on the
progress of the system under evaluation.

(C) Facilitation of analysis in terms of pa-
rameters of interest, including task com-
plexity, similarity, observability, controlla-
bility, etc.

1. Determinism: stochasticity should be
controllable

2. Ergodicity: reachability of states (or sub-
states)

3. Controllable Continuity: discretization
granularity

4. Asynchronicity: any action may operate
on arbitrary time scales

5. Dynamism: environments can range
from static to dynamic

6. Observability: what the agent can per-
ceive

7. Controllability: agent control

8. Multiple Parallel Causal Chains: sup-
porting co-dependent objectives

9. Number of Agents: should not be lim-
ited (1→ many)

10. Periodicity: repeating patterns

11. Repeatability: experimental repeatabil-
ity

Left: The three requirements for intelligence evaluation frameworks.
Right: The 11 properties an intelligence evaluation framework should be able to tune
(or gradually construct), along with brief explanations.

Adapted from Thorisson et al. [2015].

Arguments for why artificial intelligence research is in dire need of a task theory can be found in
Thórisson et al. [2016]. Other fields have strong theories of tasks in their domain that allows them to
thoroughly evaluate their design by methodical manipulation of well understood parameters of known
importance. A task theory would allow tasks — however similar or different — to be measurably
compared with appropriate formalization and classification techniques. This could be used not only
to compare tasks but also to systematically construct tasks for specific purposes such as for training
machine learning algorithms [Thórisson et al., 2016].

The current thesis is an attempt at taking the first step in the direction described by Thórisson
et al. [2015]. Our method is based on a fusion of object-orientation and agent-based simulation —
by focusing on (de)composability, we aim to facilitate the procedural construction of ability-oriented
task-environments while retaining a connection to physics.
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2.4 Foundations for a Task Theory

A task theory provides methods for the representation and analysis of tasks, environments and their
relations. There does not currently exist a proper task theory. This section outlines the work leading
up to what will hopefully become proper task theory.

Russell and Norvig [1995] contains a chapter on intelligent agents which goes into the relation-
ship between agents and their environments. There, environments are defined in a variety of flavors
depending on their properties. Environments are defined to be either accessible or inaccessible, de-
terministic or non-deterministic, episodic or non-episodic, static or dynamic (or semi-dynamic if time
affects the agent’s performance but not the environment itself) and finally, discrete or continuous. The
“hardest” environments are described as inaccessible, non-episodic, dynamic and continuous and that
for all practical purposes, the most complex environments must be treated as non-deterministic. More
recent publications have adopted the term “task-environment”, defining a task-environment as a pair of
an environment and a specification Ψ that needs to be satisfied in order for the task to be considered
successfully completed [Wooldridge, 2009].

However, despite this existence of terminology, no proper task-theory has been presented. Although
task theory in itself is not the topic of this thesis, it does build on the assumption of some task theory.
Building on task theory can greatly facilitate comparison of different task-environments, as highlighted
in Thórisson et al. [2016]. Thórisson et al. [2016] addresses the difficulty for comparing agents built
for and evaluated in different tasks by pointing out issues with the status quo, what we might want
from a task theory and its various applications.

The definition of task-environments as the pair (Env,Ψ) (where Ψ represents a task and Env an
environment) is a good starting point, but lacks explicit information about time and energy — it would
make sense for Ψ to contain limitations on time and energy expenditure. The environment Env can be
further defined as the set Env = (V, T ) where V is a set of all variables and T is a set of all transitions
describing how the variables in V can change. We can elaborate further and re-define Ψ as a set of
Problems (Wooldridge defines Ψ as a specification), each of which is a set of Goals with all relevant
constraints that need to be accomplished in order to consider the task to be successfully completed. A
task-environment needs to include at least one Problem in order to be considered a task-environment,
otherwise it is simply an environment [Thórisson et al., 2016]. See Thórisson et al. [2016] for further
details and elaborations on task theory conceptualization ideas.

In Wooldridge’s book on multiagent systems, tasks are classified into achievement tasks andmainte-
nance tasks. Achievement tasks are self-explanatory — the regulator should achieve some goals (make
some goals true). Maintenance tasks are those in which some specification Ψ must be maintained (i.e.
the environment needs to be regulated to prevent any goals from becoming unreachable). For how
long must they be regulated? It is tempting to simply say “Infinity!” — but it is in fact unreasonable
to assume that a task must be regulated for infinite time, especially in the context of evaluation.

Following the assumption of insufficient knowledge and resources (AIKR) [Wang, 2011][Thórisson,
2013], it follows that tasks have a limit on time and energy. If there were no limit on time or energy,
there would be no need for intelligence, as a random search for the correct solution would be successful
without resource restriction [Thórisson et al., 2016]. From this we can assert that task-environments
must not only have a minimum time and energy associated with them, but that it would be reasonable
to assume that the Problems in the task-environment (in Ψ) place some restrictions on maximum time
and energy as well. A task like “move my car out of the driveway” would probably contain a Problem
with the maximum time representing the urgency of the task and the maximum energy representing
the efficiency — the task can certainly not be solved if the car runs out of fuel, unless the parameters
allow the agent to go and fetch more fuel and refill the gas tank before the time limit has been reached.
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2.5 Candidate Tools

Many of the questions we address have been the subject of prior research in one form or another. One
question we must answer before starting the work is whether we can make use of some prior tools. The
work described in this thesis is somewhat interdisciplinary between fields such as theoretical computer
science, simulation and physics. As such we may be interested in examining tools such as verifiers,
simulators, proof tools etc. There are several considerations to be taken into account in selecting
suitable candidates — we want to be able to construct a task theory that supports modular task
construction with such a tool and would need to be able to tie in some physics.

We are interested in addressing how to formulate tasks in a convenient way so that it scales from
simple tasks, such as e.g. opening a money safe (turning a few dials) towards much more complex tasks
(the proto task theory from the previous section), e.g. traversing complex disaster areas to retrieve
survivors, and finding convenient ways of implementing such a task theory in a powerful tool.

We can start by considering tools such as OMNeT++ and Rebeca. OMNeT++ is a C++ class li-
brary providing a modular component architecture similar to that of FraMoTEC [Varga et al., 2001].
Rebeca is an actor-based language with a formal foundation for modeling concurrent and distributed
systems, designed to bridge the cap between formal verification approaches and real applications [Sir-
jani, 2007], so it might seem quite appropriate for modeling complex task environments and although
these tools are not meant specifically to deal the concerns of our work, we should still take them into
consideration. Unfortunately, many such tools, including these two, are discrete in nature. Even if
we could extend them to support continuous variables, we would still hit a wall due to state space
limitations and would be restricted from many of the kinds of tasks intelligent machines might do. It is
also questionable whether they could scale to the kinds of complex tasks we target. Imagine an agent
confronted with a simple combination bicycle lock: Turning a number half-way could be modeled (e.g.
with Rebeca) as an “invalid number” state or it could be discretized. For a 4-value combination lock
this would only produce 10000 states, but what about a slightly more difficult lock, such as one found
on a bank safe, and what if the task is to crack three different safes? Some complication could easily
bring the state space billions higher. In order to accommodate for state space limitations we would
most likely have to resort to manual fiddling for such complex (yet simple) tasks, as simply flattening
the state space or downsampling would not be sufficient to surpass practical limitations. It seems clear
that just a slightly more complex task would bring these tools well beyond what is practically possible.

Among other functionalities we need are simulation and physics. Many physics simulators exist,
such as NEWTON, Bullet or Golems. However, the simulation techniques we are interested in do
not necessarily have to target accurate physics simulations, we are more interested in being able to
simulate modularly constructed tasks interactively. Before we might leverage such physics simulators,
we have to understand how we want to express physics with task theory. Building on pre-existing
tools may be a bit premature in this area since they don’t help us answer the questions we are most
interested in, but this is something that can be revisited in the future.
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(a) A bicycle lock (b) A safe

Figure 2.1: These two real world tasks are quite similar and can be modeled by various means, but
there is an insurmountable number of states in the safe-cracking task, rendering a simulation of such
a model intractable without continuous variables.

FraMoTEC offers a mapping from a proto task theory to a tool, along with utilities for easy
modular construction of task-environments. The simulation component is not very mature but provides
a connection to physics and facilitates rudimentary analysis and visualization. While simple, it is
sufficiently functional and — more importantly lightweight and integrated — to help us explore the
key research questions and topics targeted, e.g. help us experiment with how to conveniently represent
task theory.

Ptolemy II is a rather comprehensive set of Java packages supporting heterogeneous, concurrent
modeling and design. It includes a suite of domains, each of which realizes a model of computation.
Examples of models of computation include discrete-event systems, dataflow, process networks, syn-
chronous/reactive systems, and communicating sequential processes. Ptolemy II takes advantage of
the actor model and comes with a large array of components that can be used to build models of
complex systems and includes a number of support packages[Ptolemaeus, 2014].

It is reasonable to ask whether we could use this tool, which is quite powerful and mature. One
focus for Ptolemy II is on the assembly of concurrent components — a focus shared by FraMoTEC.
However, Ptolemy II builds on a key underlying principle: the use of well-definedmodels of computation
(or domains). The model of computation employed by FraMoTEC aims to be as general as possible
to facilitate the maintenance of a mapping between a theoretical task theory and a practical tool. Also,
and more importantly, Ptolemy II does not at this point help with many of the key questions we focus
on.

In conclusion, although tools exist that could potentially be of use to us, using them prematurely is
more likely to introduce technical debt than to build one from scratch. In doing so we can more easily
examine the applications of task theory during its development. In the future, tools such as Ptolemy
II might prove indispensable, but at this point in time using such tools would be overkill.
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Chapter 3

Components of a Framework for
Evaluating Task Performance

3.1 The Framework

It should be apparent that research in the vast field of artificial intelligence could benefit from a
tool that allows flexible construction of tasks, automation of evaluation and analysis of performance
[Thórisson et al., 2015]. Since all AI systems will ultimately perform something in the physical world,
and a large part of future AI systems will be deployed to control physical devices, whether it be robots,
automatic doors, electricity and airflow in skyscrapers, or distributed interconnected things (internet
of things), it is imperative to include time and energy in any tool we might construct for this purpose.
This way, the tool would be applicable well beyond the decision-centric AI systems of the past.

We propose a framework for evaluating controllers (or agents, system regulators) based on their
time and energy requirements for solving a task. A draft of such a framework has been implemented
in Python with an object-oriented approach, using a layered composition of small building blocks to
describe entire environments. Chapter 4 covers framework-specific details for the prototype. The base
constructs used by the framework are Objects, Transitions, Systems, Motors and Sensors, as these
components can be arranged to create models at varying levels of abstraction.

The building blocks come together, forming what is finally called the model — i.e. the complete rep-
resentation of the task-environment (and by extension, the natural system that the model represents).
The model is responsible for maintaining any “bookkeeping” operations required by the framework,
such as incrementing the simulation clock and inspecting the energy usage. It should provide references
to every building block within the model in an organized manner.

3.1.1 Building blocks

Constructing task-environments requires using the building blocks provided by the framework. These
building blocks are designed to be as basic as possible to allow for a wide variety of behaviors to emerge
from the different combinations of organization of the blocks. Most of the organizational complexity
emerges from the creation of systems of objects with custom transitions. The following building blocks
have been designed for the framework: (i) Objects (ii) Transitions (iii) Systems (iv) Goals (v) Motors
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(vi) Sensors (vii) The model itself, which acts as a container for other building blocks.

In terms of composability, the model is the outer layer of the task-environment and defines the task
in the task-environment in terms of solution goals. Objects (and transitions1) can be viewed as the
most basic constructs, followed closely by goals, sensors and motors.

Object Physics

The framework implements basic one-dimensional kinematics individually for each object. Objects
have physical properties like velocity, mass, friction and might even contain values for gravitational
acceleration at some angle. This allows the object to naturally transition: the velocity after delta_time
seconds is computed based on the current velocity and the input power (and direction) from any
actuators, then the value is updated based on the velocity. Although the framework does not currently
implement other object behavior, it should be simple to envision extending the framework. We could
for instance extend objects to radiate some of their mass over time and use such an extension to create
tasks that are time-sensitive internally. 3.3 covers the natural transition of objects in more detail.

Transitions

Transitions come in two forms, the natural form and the designed form. Designed transitions are
specified by the task-environment designer. Designed transitions expand upon the natural behavior of
an environment by adding custom logic to it without requiring the framework to be extended specif-
ically. Natural transitions are not specified by the task designer but are provided by the framework
automatically, like the natural transition of an object or system. A transition will only affect objects
it is designed to affect but there is currently no reason to prevent a transition from modifying an-
other transition’s list of affected objects (this can be done to produce dynamic behavior). Transitions
serve to modify the behavior of an object or system — the transition, when fired, will perform some
computation that might result in some modification of the object (or system). We could for example
implement a transition that causes some objects to radiate some of their mass over time instead of
extending the framework.

Systems

Systems facilitate composition immensely by acting not only as a container for objects but also as an
encapsulator of the objects’ behaviors. We can for example model a particle whose mass decays at a
rate of 0.01 kg per second by placing that object in a system that contains a transition like var.mass
-= 0.01 * delta_time. The natural transition of a system is to apply all transitions within. Since
transitions affect only the objects they are designed to affect, one could even stuff thousands of objects,
each with their respective transition functions into a single system — if it made sense to do so.

The composability of systems allows for all kinds of behaviors in the environment model. One
could conceive of a controller of a system within an environment, modeled with systems of objects,
transitions and motors.

1Transitions are the basic building block that allow object behavior and interaction to be changed/introduced.
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Goals

Goals are necessary to describe tasks and ultimately form the solution to a given task-environment.
A goal specifies a target object along with a goal value and tolerance. Goals can also depend on
other goals to be satisfied (i.e. the goal can require other goals to be met before it can consider itself
satisfied).

Once a goal has been satisfied, it is forever considered satisfied unless it is reset, in which case both
the goal itself and any prerequisites will be reset recursively. This allows the state of the task to be
evaluated based on the number of achieved goals with disregard to the current environment state.

In an example task in which the task is to “press button X, but not button Y”, we would set a goal
for button X as “X has a value of Xp ±Xp_tol” where Xp ±Xp_tol represents all states in which the
button is considered to be pressed. Likewise for the goal for button Y, we would set the goal as “Y has
a value of Ynp ± Ynp_tol” where Ynp ± Ynp_tol represents all states in which the button is considered
NOT to be pressed.

Motors

Motors can be considered the “effectors” or “actuators” in environments, that can be utilized to solve
the task. They are foundation for being able to account for energy expenditure in task-environment
simulations.

Motors are currently the only object actuator. Motors have properties relating to the maximum
power and whether or not it can run in the opposite direction (and if so, at what power). Activating
a motor with more power than it is capable of outputting results in energy being wasted — it will be
recorded as expended but a motor can never output more than its maximum power.

Motors can be placed in systems of objects with custom transitions to create “new” behavior. For
example, we can imagine that we must control the 2D position of some objects in a system, but we
only have access to a control motor that we can rotate with a selection motor. From this description it
should be clear that this control task is feasible, but what is not necessarily clear is how to construct
such a mechanism. A specific example is outlined in 4.4.2.

Sensors

Standardized read access to objects’ values can be provided via sensors. A Sensor reads an object’s
value, optionally applies some distortion and rounds the value to a certain number of digits. Sensors
can also read other sensors in multiple layers, overlaying distortions or rounding at any level.

3.2 Task Construction

Tasks are constructed modularly using the smallest possible constructs, in the spirit of Thórisson
and Nivel [2009]’s publication on peewee granularity. The most simple environment conceivable is a
single system containing one object and one motor capable of affecting that object. The simplest task-
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environment contains a solution system2 consisting of the aforementioned environment (as a System)
and a Goal, with the goal value and tolerance as variables in the solution system. The model of such
a task-environment contains only this solution system and some limits on maximum time and energy.

We can construct more complicated tasks by adding more objects and/or motors to the environ-
ment. We can enforce systems behavior as desired by implementing appropriate transitions. We can
for example create a system in which X and Y move independently except if Y < 20 by implementing a
transition that checks if Y < 20, locking X in place (freezes its state) if so, and unlocking it otherwise.

Although objects in task-environments can be interacted with directly, it should be preferable to
create a Sensor that provides access to the reading of some object. The reading on the sensor can be
rounded and distortion can be added to the value before rounding.

Constructing tasks modularly with composition not only allows the model to be factored, but
allows other models to make use of its sub-models. Sharing sub-models between task-environments
can facilitate comparisons of task-environments despite a lack of proper task theory. Factoring task-
environment models into smaller sub-models enables sub-models to be simulated independently (even
in parallel) until changes within the sub-model propagate outward (at which point synchronization
is necessary to continue). As an added bonus, this approach makes it much easier to compare agent
embodiments (or measuring the effects of various body features).

An interesting result of this composition is that implementing relationships such as orthogonal-
ity between two dimensions would require implementing the interactions resulting in orthogonality
becoming a weakly emergent property of the environment.

3.2.1 Examples

One-dimensional Drag Racing

In 1D drag racing3, the destination is simply a point on a number line with some width epsilon in
either direction. The racer is an object we will call car4. Our task model then consists of the solution
goal satisfied by destination - epsilon < car < destination + epsilon. In order for this goal
to be attainable, a motor must be attached to either car or destination. For this particular example,
it doesn’t make much sense to move the destination, so a motor for car is created and configured to the
liking of the task designer. The task-environment is now complete for the purpose of being solvable,
but still requires a Sensor for car (and optionally for destination) so that a controller can interface
with it without cheating.

Since this task is being modeled in a single dimension, the condition destination - epsilon <
car < destination + epsilon will become true as long as the car passes by the destination, since
the goal becomes satisfied immediately as the car falls between destination ± epsilon. Notably,
the intermediate value theorem tells us that even if the car overshoots the destination, it will still have
satisfied the goal at some point. Unfortunately, it is possible to overshoot goals with the framework
as it is and rectifying this error (however unlikely) is left as future work.

2Modeling a ’solution system’ allows the goal values to be changed at runtime, but hard-coding the goals into the
task-environment is possible, in which case a solution system is unnecessary.

3Figure 5.1 depicts an instance diagram of this environment.
4Although we call our object car, the physics in the model more closely represents a block being pushed than a car

rolling on wheels.
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Figure 3.1: A visual representation of what 1D drag racing could look like. This representation shows
us that the task is defined on a single independent dimension.

One-dimensional Plotting

In the previous example, the only requirement was for the car to pass by the destination, i.e. the
task would be considered solved if at any time, the solution condition is satisfied. We can imagine a
similar task5 more analogous to a printer, in which we redefine our car as the location of the ink-jet
and the destination would then be the point at which ink is to be applied (although the car could
be unbounded, it would make sense to bound the plotter’s position). We must add another object,
indicative of whether or not ink is being actively applied at the plotter’s current position and a motor
to enable some controller to ’plot here’. The task-environment solution for a single-point plotting task
would then require both the plotter’s location and ink application to be within the right ranges.

To make the task-environment stricter (and to prevent a controller from simply plotting ’every-
thing’), we could introduce an object acting as a counter for incorrect ink applications. This could be
implemented with a transition that checks if the ink-jet is being applied while not in a goal position
— then the solution would include the goal that this counter object must be equal to its starting value
(or below some threshold if errors are acceptable).

Of course, it is hardly realistic of a task to require only a single point to be plotted, so in order to
plot meaningful images we can consider the solution to be a set of goal points that need to be plotted
and our error-counting object would have to be incremented only if plotting is done within none of
those goals.

Extending 1D tasks to N dimensions

One dimensional tasks are inherently easy and therefore not particularly interesting. In the racing
example, we can solve the task every time by simply applying maximum power to our only motor until
the task is solved (as long as the direction is correct). In the plotting example, we can clearly see
that by introducing new dimensions we can start to model printing of complete images and even 3D
printing.

Fortunately, each dimension usually governs a single component in the physical world, so to extend
1D racing to ND racing we could simply replace each object with N similar objects, one for each
component. Likewise, we would want to introduce additional motors to allow controllers to operate
in all dimensions. We could also replace all motors with a single ’Multi-Motor’ and some way of
configuring the motor so that the controller could decide how much of the total input energy would go
into each component. For the plotting task, we would probably prefer using separate motors for each
dimension for more fine-grained control, but the transformation from one dimension to many remains
the same.

5See figure 5.2 for an instance diagram.
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Figure 3.2: A visual representation of 2D racing. The car’s position in 2D-space is represented by the
objects carx and cary. Note that although this task is defined on two dimensions we call x and y, no
relationship has been defined between these two dimensions (other than, “both must be true for the
task to be solved”).

The Goal of the Mole

The plotting task described above goes a long way in capturing the essence of more “realistic” tasks,
such as the carnival game ‘Whack-a-Mole’. In Whack-a-Mole, the player must whack as many moles
with a hammer as moles pop up through holes in the machine.

A simplified model of this game would model the agent’s body as the position of the hammer in
space, it would in fact be quite similar to the plotting task. We could then either make hitting each
mole a goal of its own, or make the goal to whack at least some threshold number of moles — or
both! We could define one goal as “Solve more than X goals from the goal collection Moles” and then
generate a goal for each mole that pops up in the environment.

3.3 Object Physics

The framework prototype currently implements a single natural transition for Objects, which describes
the Object’s change in position and velocity based on its actuators. The only currently allowed actuator
type is the Motor, although future expansions should allow other kinds of actuators (like Systems or
other Objects for collision physics). See chapter 4 for details about the implementation. The physics
formulae governing the laws of motion under constant power can be found in the 1930 Ohio Journal
of Science. The laws provide a means to anchor power (and by extension, energy) into the framework.
[Taylor, 1930].

We define an Object’s natural transition as the change occurring due to a passage of dt seconds:

1. If the object is in a non-changing state (no velocity, zero angle towards gravity, no actuators),
or if it is locked, then it does does not change during the transition.

2. Otherwise, first the velocity is updated:

• If the velocity is zero, we calculate the forces due to actuators, gravity and friction, see
equations 3.1. If the force does not overcome static friction, velocity remains unchanged
(any input energy is wasted).

• If the velocity is nonzero, we calculate the change in velocity and update the velocity
accordingly. See equations 3.2. Note that if the sign changes, we can use the intermediate
value theorem to determine that the object came to rest during the time period. The

22



simulator currently approximates this by setting the velocity to zero6.

3. Finally, the position is updated:
s = s0 + v · dt

If the velocity is zero, we calculate the forces due to actuators, gravity and friction. If the force
does not overcome static friction, velocity remains unchanged (any input energy is wasted). Otherwise,
the velocity is updated as per equations 3.1:

apower = sgn(P ) ·
√
|P |

2m · t
acceleration due to power from actuators

amove = apower − sin(θ) · g acceleration due to gravity and actuators
Fmove = amove ·m total force in the direction of movement
Fnet = sgn(Fmove) · (|Fmove − Fkin_fric|) net force in direction sgn(Fmove).

a =
Fnet

m
⇔ F = ma

v = a · dt final velocity determined

(3.1)

. . . where sgn(x) is the sign function and t is an actuator property.

If the velocity is nonzero, we calculate the change in velocity and update the velocity accordingly:

m · dv
dt

=
P

v
+ F (F = ma rewritten)

⇒ dv = (
P

v
+ F ) · dt

m
solve for dv

(or) dv = (
P

v
+ F0 + F1 + · · ·+ Fn) · dt

m
(as components)

FP =
P

v
force due to power input

FG = −mg · sin(θ) force due to gravity
Fkin_fric = −sgn(v0) ·mg · cos(θ) · µk force due to friction
Fnet = FP + FG + Fkin_fric net force

dv = Fnet ·
dt

m
final change in velocity

(3.2)

. . . where sgn(x) is the sign function.

If the sign changes (i.e. sgn(v0) 6= sgn(v0 + dv)), we can use the intermediate value theorem to
determine that the object came to rest during the time period. The simulator currently approximates
this by setting the velocity to zero.

This approach enables the physical properties of an agent and its environment to be taken into
account when evaluating the efficiency with which a particular controller could achieve some physical
task, both with respect to time and with respect to energy (or a combination).

6This approximation may result in slight loss of energy, which may become apparent with very low time resolutions
(large dt) or extreme forces.
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3.4 Simulation

As previously established, time and energy usage are key metrics to consider when evaluating the
performance of agents in a given set of task-environments. It goes without saying that an agent that
spends 2 minutes and 20 KJ of energy to solve a specific task-environment is worse at solving the task
than an agent that spends 30 seconds and 700 J in that same task-environment.

Naturally, we can continuously measure the time and energy expenditure of an agent to quantify
the total amount of time and energy required to come up with a solution to some task. In this sense
we are not evaluating an agent’s ability, but an agent’s ability to improve some ability (i.e. the agent’s
ability to learn). Perhaps one agent spends more time learning about the environment while another
happens upon a more favorable solution to some task early on. We can evaluate both agents multiple
times and see how they progress for an idea about an agent’s learning speed. We can further extend
both these approaches to a set of tasks in lieu of a single task, allowing for a more comprehensive
evaluation and comparison of all kinds of agents.

The proposed framework should facilitate such comprehensive evaluations and comparisons as much
as possible, which finally brings us to the importance of simulation. The designers of task-environments
ultimately produce formalizable models — this is a natural implication of the framework building on
simple, simulable causal processes (the building blocks and their interaction). As stated in Rosen
[1993], a simulation of the model becomes a simulation of the natural system that the model represents,
transmuting Church’s Thesis into an assertion (all systems that can be modeled by the framework are
simulable).

The simulation component of the framework would ideally be truly continuous, but the nature of
the Von Neumann architecture encourages stepwise integration. As such, every simulation step (or
tick) regardless of length should optimally ensure that:

• All objects in the task-environment should naturally transition (if applicable)

• All custom transitions should fire on all applicable objects

• Goals should be asserted to evaluate whether success (or failure) conditions have been met

• The time passed during the frame must be recorded and added to an accumulator

• The energy used by any motor during that time frame should be recorded and added to an
accumulator

• Current time and energy usage should be compared with task time and energy limits

See section 4.2.2 on simulation for details about the implementation of the simulator in the proto-
type framework.

3.5 Summary and Discussion

In this chapter we have covered the principle ideas of a framework for evaluating agents in task-
environments while measuring time and energy expenditure. We have described a set of building blocks
with which task-environments can be constructed and how they interact with each other. Section 3.2
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covers task construction and provides examples on how to construct task-environments modularly.
Finally, section 3.4 explains how simulation can be used to evaluate agents.

To summarize, starting with the three requirements for intelligence evaluation frameworks listed
in Thórisson et al. [2015], the proposed framework provides a means for which construction can be
made easy by exploiting modularity, including some limited variation. The same can be said for
procedural generation of task-environments at different levels of detail (requirement (B)) — although
the framework doesn’t directly implement procedural generation of task-environments, the ground work
has been laid out. The final requirement is the facilitation of analysis in terms of parameters of interest.
Constructing tasks modularly by composing structures of smaller structures facilitates not only static
analysis of task-environments, but dynamic analysis of agents’ interactions in task-environments as
well. In this sense it is fair to conclude that the proposed framework does not currently fulfill all
requirements fully, but considerations towards enabling the requirements to be easily implemented as
features have been taken.

Alongside these three requirements, Thórisson et al. [2015] also lists 11 properties that should be
controllable (i.e. tunable or can be gradually constructed). The principles of the framework ensure
that none of these properties are impossible, although as discussed in chapter 4, the prototype does not
implement the necessary features for each and every property. A detailed evaluation of FraMoTEC
in light of the desired features is presented in section 4.6.

The flexibility of the framework allows it to fulfill other purposes than just evaluation of agents in
task-environments and comparisons of task-environments. Using the proposed framework, it would be
possible to create controlled settings (or models of settings) to not only evaluate agents, but for learning
purposes. We could factor a complex task-environment into sub-task-environments representative of
some fundamental systems of interactions (which would be the target for teaching) [Bieger et al., 2014].

Imagine an example competitive fish-eating task-environment. The agent is embodied as a small
fish and must control its movement by rotating itself (with side fins) and going forwards (with the
tail). In the “real” environment, there may be multiple competing agents and a top-level goal of
accumulating a certain amount of mass. In order to accumulate such mass, the agent should either eat
food pellets scattered around the environment or eat smaller fish. Throwing an intelligent agent into a
sea of fish and pellets might sound like a good idea, until reality sets in and chance allows other agents
to accumulate so much mass that the agent is unable to compete with them most of the time. This
becomes a problem if the agent doesn’t manage to learn anything about its environment before being
eaten, in this case it would make sense to let it learn in a sandbox rather than in the harsh ocean —
the exact same embodiment can be situated in a fish tank in which there are only food pellets, this
allows the agent to peacefully learn that it should eat food pellets to accumulate mass. The same can
be done for an environment where competing fish are introduced only once the agent has accumulated
X mass — repeating the exercise and decreasing X every time allows the agent to become gradually
accustomed to “the real task”, moving away from the experimental setting.

By limiting the set of task-environments supported by the framework by the set of simulable
environments, we can exploit the simulation engine to not only evaluate agents and task-environments,
but also for experimentation which can also be used to e.g. evaluate agents’ learning speeds.
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Chapter 4

Software Implementation

4.1 FraMoTEC: Framework for Modular Task Environment Con-
struction

The framework described in chapter 3 has been implemented in Python. Implementation follows closely
the layout described in the prior chapter — “objects” of the framework, motors, goals, etc., have been
implemented as software objects and the physical constraints as methods that define how these objects
interact. An intelligent controller connects to task-environment instances by interacting with sensors
and actuators in the environment.

Section 4.2 discusses the modularity of task-environments that can be constructed with the frame-
work. Section 4.2.1 outlines the mapping from the framework as it was described in chapter 3 to the
FraMoTEC prototype, followed by section 4.2.2 on simulation and section 4.3 on controller inter-
facing. Section 4.4 demonstrates some task modeling examples followed by section 4.5 on supporting
tools. Finally, the chapter is concluded by a summary and discussion in section 4.6.

FraMoTEC is implemented as a collection of object-oriented Python classes1. The most notable
class in the framework is the Model class, which encapsulates the behavior necessary to run a simulation
of the model. The Model owns a System representing the environment and a collection of Goals that
should be satisfied representing the task. Simulation parameters are also maintained in the Model
object, along with values for maximum time and energy expenditure during simulation.

4.2 Construction and (de)composition

Figure 4.1 depicts a high-level class diagram of the task-environment model as implemented in FraMoTEC.
By exploiting the recursive power of modularity, we can describe a wide range of environments com-
posed entirely of these depicted classes. Figures 5.1 and 5.2 depict examples of environments visualized
as instance diagrams, demonstrating composition from base components.

Section 4.2.1 provides a nice overview of the building blocks available in the framework and how
they interact with each other. What it does not mention are hidden building blocks. It is possible to

1The FraMoTEC code is available at https://github.com/ThrosturX/task-env-model.
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Figure 4.1: FraMoTEC class diagram

create building blocks that do not get counted in the Model’s bookkeeping operations. This could for
example be a hidden Motor that gets activated by a custom Transition but is otherwise inaccessible;
such a Motor would need to be created as an actuator on some Object. A more explicit approach
is also possible, which does not result in hidden building blocks. This approach involves creating a
System and populating it with the building blocks that would have been hidden, adding that System
to the environment. If the hidden block is a Motor, then that energy expenditure must not doubly
counted. This can be accomplished by resetting the usage and wasted_power attributes of appropriate
motors in the transition functions that the hidden motors are used in.

A key feature of the modular design of task-environments is the ability to re-use parts of environ-
ments by working at the System level of abstraction. In essence, everything can be a system. A 3D
crate can be modeled as the 9 objects, one “core” object and 8 locations of boundaries, with all of its
behavior encapsulated within a System with a custom transition. The crate system becomes re-usable
and could even be placed in a system with a transition function that does simple collision detection
between systems — now implement the agent as a collidable system and the agent can interact with
all the crates!

Furthermore, being able to abstract at the System level allows systems to be replaced “from the
inside out”. We can imagine an environment of amoebae, with each amoeba modeled as a System
of center and radius objects. Perhaps bigger amoebae are able to ingest smaller amoebae (like
in the fish example in 3.5), but a discovery is made that renders the current modeling technique
obsolete — comparing the radii of the competing amoebae incorrectly determines the winner as this
level of modeling does not account for the altered shape caused by extended pseudopods. Instead of
re-constructing the entire environment model, we can simply replace the generic circle-based amoeba
system implementation with an implementation of higher fidelity.

4.2.1 Building Block Implementations

The Model owns a System named environment. The purpose of this system is to act as container for
everything that represents an environment. To understand the hierarchical composition explained in
4.2, one should examine the implementations of the building blocks implemented for task-construction
with the framework. The Model also governs a list of Goals named solution — the task is considered
solved if every Goal in solution is satisfied.
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The Object class

The Object class represents the smallest environment building block, but despite this it implements a
fair amount of logic. The logic is implemented in the UnboundedObject class, but the framework im-
plements the Object class as an extension that places upper and lower bounds on the position of the
Object. The UnboundedObject class inherits all the methods defined in the AbstractVariable class
and implements the logic necessary for simulation by implementing a natural_transition function
that updates the Object based on the formulae in 3.3 if the instance is not locked. Object instances
can be locked to prevent the natural_transition from happening. The AbstractVariable class
implements some syntactic sugar that allows Objects’ values to be compared with implicit compar-
isons.

The Transition class

The Transition class contains a list of Objects and a transition function implemented in Python.
It can optionally include a separate precondition function that must evaluate to True in order for
the transition to be appliable. A transition can be applied on its affected objects and any additional
arguments. If it does not have any affected objects, it must take some arguments instead (this is
to defensively prevent transitions from being called that should have arguments if they are missing).
When the apply_transition method is called, the transition function is executed.

The System class

Every instance of the System class owns a collection of (i) Objects (ii) Transitions (iii) Motors
(iv) Sensors and (v) Systems with an implementation of the natural_transition function that
applies every transition in the transitions collection. It also implements accessors to all Objects,
Motors, Sensors and Systems in the context of the current System instance and any instances in
its systems collection along with convenience methods to lock or unlock all items in the objects
collection.

The Goal class

The Goal class inherits from the AbstractVariable class and implements methods to (i) add other
goals as prerequisites (ii) inspect the current condition of the goal itself (iii) asses whether or not
the current condition along with all prerequisites are satisfied ⇒ if they are, that instance has its
satisfied property set to True; and (iv) set the satisfied property to False (in itself and any
prerequisite goals).

Motors and Sensors

Every Motor instance has a set of properties governing whether the motor is reversible and the
maximum output of the motor in each direction. Activating a Motor sets the Motor’s power_level
and maintains any bookkeeping regarding power usage and waste (energy is considered wasted if the
Motor is activated for more power than its maximum power in that direction). Every Sensor instance
allows read access to a single Object’s value with some specified amount of random distortion and
digit or decimal place rounding.
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Implementation note: Although the Sensor class is the proper way to read object values, there is
nothing to restrict access to “inaccessible” objects or other constructs. This facilitates the theoretical
creation of Instructors that could then base instruction on non-observable environment data.

4.2.2 Simulation

The framework implements a class-level method tick(self, delta_time) on the Model. Section 3.4
on Simulation depicts an ideal implementation of such a method. The implementation differs slightly.
One small difference is that current time and energy limits are not evaluated in the framework during
each tick (although this can be easily done by adding a single statement somewhere in the function
body). Additionally, the framework prototype requires that for all (non-natural) transitions, any
transition that should be fired must be a part of a system containing both that transition and any
objects on which it should fire. This may introduce some complexity in the form of inter-dependencies
between systems for some environments, but greatly facilitates re-use of complex systems by being
explicit in the formalization.

A high level description of the tick method is as follows:

1. For all systems: naturally transition for dt seconds (recall that any system’s natural transition
fires all transitions within)

2. For all objects: naturally transition for dt seconds

3. Once all objects and systems have transitioned, check for solutions

4. For all motors: increment the motor’s usage by (Pmotor + Pwasted) · dt

5. Increment the clock by dt seconds

Due to the rudimentary state of the framework with regard to setting up evaluations, the tick
method does not check for failures to facilitate using constructed environments for learning or explo-
ration. Hopefully, future incarnations of the framework will properly deal with conditions such as
failure due to over-use of time or energy, but currently the responsibility to restart or end a simulation
due to such conditions falls on the user.

4.3 Interface to controllers

The task-environment modeling framework allows controllers to manipulate any part of the model, it
is up to the discretion of the programmer connecting the controller to the task-environment to allow
only read access to Sensors and write-access to motor power levels that are a part of the agent’s body
in the environment model. The framework does not provide any specific rewards but there is of course
room for extending the framework in the future.

Evidently, some kinds of controllers require more assistance in others in functioning properly. A
SARSA learning controller would require some method to evaluate the ’current state’ relative to other
states and custom logic might be involved in computing the reward for the any state in the task-
environment. It is possible to use the framework to approximate such a value by checking how much
energy is required to solve the task from the current state. It is limited however, as it doesn’t help
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Figure 4.2: Diagram of the relationship between the controller and its embodiment in the 1D drag
racing task-environment from example 3.2.1.

much in creating a reward function when it is implicitly necessary to “move away” from the goal in
order to actually reach it.

An important consideration in using this framework is that the controller’s body is a part of
the environment — the agent is already in the environment, it is just missing a control mechanism.
Therefore, a controller would need to either learn what actions are available and what information it
has access to, or have that knowledge programmed into it. In the general case, a controller will be
able to read any sensor and adjust the power level of any motor. See figure 4.2 for an example of a
controller in the 1D drag racing from 3.2.1. The TaskEnvironmentModel class provides access to all
motors and sensors in the environment via the motors() and sensors() methods.

4.4 Modeling Examples

4.4.1 Environments

We consider simple environments to be those without custom transition functions and hidden objects.
The 1D drag racing environment from 3.2.1 (also the first environment in section 5.1.2) would be con-
sidered a simple environment (in fact, the described environment is in the simplest environment class).
These environments are considered simple since a solution to the environment should be attainable
simply by inspecting the structure of the environment (if a solution exists). Adding custom transitions
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not increases the level of complexity but also raises the bar for the domain of the task-environment.

The examples from 3.2.1 are described without custom transitions and are therefore simple. Chapter
5 makes use of the 1D drag racing example and some complex environments.

Environments with custom transition systems introduce some domain knowledge into the model
of the environment. The second environment described in 5.1.2 contains a simple custom transition
function that locks or unlocks the position object in place based on the value of the plot_it object.
This transition function creates a causal relationship between position and plot_it that can be
considered a part of the task domain but more importantly, that can be learned.

4.4.2 Custom Systems

In 3.1.1 on Motors, a system of a rotating motor was mentioned. In order to implement this system
with the framework, a system must be created that encapsulates the behavior of the rotating motor,
with respect to the variables it controls. Let us say that it must control two variable objects, pos_x
and pos_y.

We define a new object angle and give it bounds like [−π, π] to represent all angles in a circle.
We must also create a motor rotator for this object to allow control over the angle and a motor
main_motor to act as the accessible interface of the motor system’s power level.

We also create a dummy object, which exists only for the main motor. Since the main motor’s
effect on pos_x and pos_y depends on angle, we create the dummy object main_power to serve as a
reference to the motor that sets the power level. Now we create two motors, mx and my, each responsible
for the movement along a specific axis (i.e. controlling pos_x and pos_y) and a transition function.

Note that we could also have implemented a complicated transition function in lieu of the two
hidden motors, but for simplification purposes we will assume that we actually want to control two
motors that can be controlled indirectly with the rotator and main_motor motors.

The transition function can access the power level of the main motor by querying the main_power
object for any actuators (the main motor should be the only actuator). Now it can simply compute
the powers for mx and my with basic trigonometry:

power_x = cos(angle) · total_power

power_y = sin(angle) · total_power

Now mx and my are ready to be activated with power_x and power_y respectively. The transition
function should also reset the usage of mx and my to prevent counting the usage twice. Alternatively,
the usage on the main motor can be reset instead.

The resulting system should contain the objects pos_x, pos_y, angle and main_power, the cus-
tom transition function, the motors mx, my, rotator and main_motor and any sensors (pos_x, pos_y
and angle would be typical targets for sensors).
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4.5 Supporting Tools

A plotting program is included with the framework. The plotter reads an input file and plots any valid
data points. Any invalid data points are ignored, but the color of each plotted data point depends
on the number of data points before it (invalid data points are counted for the color incrementor, so
many fails followed by a few successful trials will look different than a few successful trials right from
the get-go).

The plotting program also plots a curve for the task itself, indicating the maximum energy expen-
diture along with the points for minimum time and minimum energy. It is of course desirable to be
as close to the minimum time and energy points as possible (the preference over time or energy is
arbitrary and depends on the task).

The plotter uses an immature feature of the framework that generates time-energy profiles based
on the physical properties of the task-environment. Task theory has not come far enough, for it is still
unclear how the composition of objects in the task-environment should be represented in terms of time
and energy — is the minimum time for a task-environment equal to the sum of the minimum times
for each sub-task, or the maximum lowest time? These kinds of questions can be answered for specific
cases, but can be hard to generalize. This may lead to some bizarre looking plots in environments with
multiple dimensions or custom transitions.

In addition to plotting the default plots, the plotter can be used to plot time and energy progression
over evaluations (in two separate plots). The plotter is currently the only supporting tool in the
framework and was used to create the plots depicted in chapter 5.

4.6 Summary and Discussion

In this chapter we have discussed the implementation of FraMoTEC prototype, specifically covering
architecture, simulation and supporting tools (and lack thereof). The architecture of FraMoTEC
was covered by analysis of the task-environment structure. The simulator is coupled with the task-
environment model, but 6.2 on future work discusses how the two can (and should) be separated.

Thórisson et al. [2015] lists a collection of properties as important for the construction of evaluable
task-environments. The three requirements listed in 3.5 are largely isomorphic between the prototype
implementation and the proposed implementation of the framework. We can however attempt to
evaluate the prototype implementation of the framework by going through this list of properties:

To summarize, FraMoTEC addresses each of the desired features identified in Thórisson et al.
[2015] in the following way:

1. Determinism
Both full determinism and stochasticity must be supported. Non-determinism can be imple-
mented with custom transition functions. The framework also provides the option of partial
stochasticity out-of-the-box, such as in the creation of objects (start values can be randomized)
and in sensor readings.

2. Ergodicity
This controls the degree to which the agent can undo things and get second chances. The
framework imposes no restrictions on this other than a fundamental rule: Expended time and
energy cannot be un-expended. If the agent spends time or energy doing the wrong thing, that
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time and energy will still have been spent and the task-environment needs to be reset in order to
give the agent a second chance with regard to the energy and time expenditure. Task-environment
designers have full control over what states are reachable (as long as time and energy are ignored).

3. Controllable Continuity
This point notes that it is crucial to allow continuous variables, and that the degree to which
continuity is approximated should be changeable for any variable. The nature of all objects in the
framework are continuous variables, discretized only by floating-point inaccuracies by default. It
is possible use the Sensor class to further discretize (or distort) any accessible variables. It is
also possible to tweak the time resolution of the simulation.

4. Asynchronicity
The framework description does not explicitly address asynchronicity but the modular design
accounts for the possibility of asynchronous actions. Neither synchronicity nor asynchronicity
is forced upon the user — the user is free to make controller interactions synchronous or asyn-
chronous.

5. Dynamism
The framework allows both static environments and dynamic environments, but all dynamic
behavior must be programmed in by the designer of the task-environment.

6. Observability
The observability of task-environments is determined by the interface between the environment
and the controller interacting with it. Sensors are the primary control for observability in the
framework. See 3.1.1 on Sensors. Sensors can be tuned to tune the observability of a task-
environment by distorting the value and/or rounding the result off to a specified number of
significant digits.

7. Controllability
Controllability is the control that the agent can exercise over the environment to achieve its
goals. The controllability of the task-environment is controlled with the exposure of Motors to
the controller. See 3.1.1 on Motors. By modifying motor properties and interactions between
motors (specifically in custom transition functions), the controllability of a task-environment can
be tuned.

8. Multiple Parallel Causal Chains
Multiple parallel causal chains are supported because any object could individually start a causal
chain (provided that transition functions describing object interactions are present).

9. Number of Agents
The framework does not restrict the number of agents nor what interactions can take place. Even
if multiple agents have access to the same motor objects, the framework regards the most recent
setting to be the current setting. However, it should be noted that until asynchronicity is fully
integrated into the framework, there is significant external overhead in coordinating multiple
agents in a single task-environment.

10. Periodicity
The framework does not specifically tackle periodicity, which can be controlled implicitly by
configuring the behaviors of task-environments. No explicit tuning is provided other than giving
task-environment designers the ability to implement transition functions for this purpose.

11. Repeatability
The framework comes very close to creating fully repeatable task-environments, as long as the
same random seed is used. However, agents and sensors must use their own random number
generators (and seeds) to avoid tampering with task-environment repeatability. This property
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cannot be fully considered satisfied due to the possibility of inconsistent ordering in the data
structures used by the framework. In order to circumvent this, strict iteration order must be
enforced in the framework.

It seems clear that although the framework description does not explicitly cover all of the properties,
the design of the framework lays a foundation for features supporting these properties to be easily
implemented.
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Chapter 5

Use Cases

Reinforcement learning is an area of machine learning in which software agents take actions in order
to maximize reward. Since there are no currently existing AGI systems at our disposal, we limit
our testing of the framework to evaluations of reinforcement learning algorithms and domain-specific
controllers. This chapter will reveal that results are rather positive regarding potential for scaling,
although future work is obviously needed.

Some basic agents were implemented to demonstrate FraMoTEC’s capabilities and to test the
framework as an evaluation tool. In this chapter, we will show results from evaluating the current
implementation of the framework that was discussed in chapter 4, examining domain specific agent
evaluation and scaling in multi-dimensional task-environment evaluations.

In section 1.2, we discussed some motivations for the work outlined in chapters 3 and 4 and presented
an example of a plot demonstrating time and energy requirements for agents’ solutions to some task.
In this chapter, we will demonstrate some of the current features described in chapter 4 and show
that we can already use the framework for rudimentary agent and task-environment evaluations and
comparisons. The presented plots in this chapter also demonstrate the ease at which relevant data can
be gathered and presented by the framework.

By demonstrating the implemented prototype of FraMoTEC and its current capabilities, we hope
to show the potential power of a fully-implemented version of the framework. We will do this by first
comparing a SARSA agent in two task-environments, followed by a comparison of two domain-specific
agent implementations in one task-environment and finally a comparison of two task-environments
that differ only in the number of dimensions. Although we will not delve into what the results of
these specific examples represent, we will hint at what kind of information can be gauged from the
evaluations.

Our early Task Theory allows dissection of tasks into dimensions that must be controlled; simpler
tasks contain only a few dimensions to be controlled sequentially; more complex tasks have a large
number of dimensions, some of which must be controlled simultaneously. We will begin evaluating
reinforcement learning in simple task-environments, moving onwards to domain-specific controllers and
finally we will evaluate a domain-specific controller in complex (multi-dimensional) task-environments.
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5.1 Q-Learning / SARSA

A SARSA agent was implemented in order to test the framework. Although reinforcement learners
are quite far from any AGI-aspiring systems, they still serve as some of the most basic learners that
can be situated in environments such as those constructed with the framework. SARSA learners are
generally better suited for online learning, which is why SARSA was favored over a more standard
Q-Learner.

The agent was introduced to two similar environments. The first environment had the goal of
moving the position object into goal_position with a tolerance of 5, with 5000J and 60 seconds
as the maximum expendable time and energy (essentially, the 1D drag racing example in 3.2.1). The
second environment expanded upon this environment, requiring a “plotter” to be activated when the
position is correct — both goals needed to be satisfied to consider the task solved (essentially the
plotting example in 3.2.1). An additional transition in the second environment locked the position
while the plotter was activated.

5.1.1 Agent Implementation

An agent was implemented with an underlying SARSA reinforcement learning algorithm. The state
exposed to the agent was an n-tuple of all sensor readings along with the velocity of one of the objects
in the model1. A scoring function was implemented to determine rewards2.

Reinforcement learners generally learn slower as the state × action space increases, therefore the
agent enumerates the available actions as the setting of a single motor at one of three power levels: (i) 0

(ii) Pmax and (iii) −Pmax. We experimented with an agent that included the settings (iv)
Pmax

2
and

(v) −Pmax

2
, but we found that these settings unnecessarily crippled the agent and removed them3.

The agent implements a method perform(self, dt) that creates an experience for the agent by:
(a) setting the current state (b) selecting and executing the reward-maximizing action (c) ticking the
simulation by dt seconds (d) rewarding the learner based on the value of the scoring function and the
new state. This method is called repeatedly in the evaluation, see section 5.1.3

5.1.2 Task-Environments

Two simple task-environments were constructed in which to test the SARSA agent, the latter being
an expansion on the first. These environments are described in 3.2.1. The first environment will be
referred to as ’1D drag racing’ and can be described like so (see figure 5.1 for a visual representation):

• One object: position

• One fully reversible motor affecting position with 200W maximum input
1 This was implemented as either the last instance in the goal_vars collection or the first instance with a corresponding

target goal value greater than 10.

2 Implemented as
(
−

N∑
i=0
|sobjecti − sgoali | − εi

)
where s represents the position (value) of either the object or the

goal associated with a Goal in the task-environment’s solution.
3 SARSA (and other Q-learning algorithms) stores its policy in a Q-matrix representative of state×action→ reward

mapping, increasing the number of actions significantly increases the search space (and number of actions required to
fully populate the Q-matrix).
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Figure 5.1: Instance diagram of the 1D drag racing task-environment. Objects are represented as
circles, systems are represented by rounded rectangles and goals are represented by parallelograms.

• One sensor for position

• Goal: position within goal_position ± goal_epsilon

• Max time and energy: 60 s, 5000 J

The second environment will be referred to as ’1D locking plotter’ and can be described like so:

• Two objects: position and plot_it

• One fully reversible motor affecting position with 200 W maximum input

• One non-reversible motor affecting plot_it with 5 W maximum output4

• One sensor for each object

• New transition function: If plot_it > 0.5: position is locked, otherwise it is unlocked.

• Goal prerequisite: position between goal_position ± goal_epsilon

• Goal: plot_it is 1± 0.1

• Max time and energy: 60 s, 10000 J
4 One could imagine a solenoid with an off button.
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Figure 5.2: Instance diagram of a controller interacting with the locking plotter task-environment. Ob-
jects are represented as circles, systems are represented by rounded rectangles and goals are represented
by parallelograms.

The second task-environment increases the task difficulty when compared to 1D drag racing by
adding a new object (complete with sensor and motor), changing the behavior (with the transition
function that locks the position object) and by expanding on the original goal. Figures 5.1 and 5.2
depict visual representations of the two environments and their differences. Note that the position ob-
ject is initialized in a random position within a specified range, introducing some variety for evaluating
deterministic controllers.

5.1.3 Evaluation

The SARSA agent was evaluated in the two task-environments described in section 5.1.2. The evalu-
ations were identical:

First, the agent is tasked to solve some training environments, which are copies of the target
environment, except with a more favorable starting position. The training environments gradually
get more difficult by increasing the distance between the starting position and the goal. Once this
training is complete, the agent gets 200 chances to satisfy the goal(s) in the original task-environment.
To visualize the data, we used the result plotting method mentioned in section 4.5. Figures 5.3, 5.5
and 5.6 show the results for the 1D drag racing task-environment. Figures 5.4, 5.7 and 5.8 show the
results for the 1D locking plotter task-environment. Note that the agent continues to learn by creating
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Figure 5.3: Resulting plot for 200 evaluations of a SARSA agent in the 1D drag racing task-environment
after having received some basic training in easier task-environment variants. (The blue line represents
the energy required to complete the task within x seconds. The red line represents the maximum amount
of expendable energy due to motor power limitations. Each data point represents a single evaluation.
The shading (or coloring) of each data point indicates the order. Lighter shading (green) precedes
darker shading (red)).

experiences during the evaluation (i.e. learning is not “switched off”). The evaluation works as follows:

• While the task is not solved:

1. If the task has been failed, stop

2. Invoke the agent’s perform method (with dt set to 0.25s, see section 5.1.1).

• Finally, report time and energy usage (and indicate if the task failed).

Figures 5.3 through 5.8 indicate that the SARSA agent becomes increasingly capable of solving
the 1D drag racing task-environment, but that adding a layer of complexity drastically decreases the
number of successful evaluations. This is what we would expect knowing the limitations of Q-learning
agents (and how badly they scale with added complexity).
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Figure 5.4: Resulting plot for 200 evaluations of a SARSA agent in the 1D locking plotter task-
environment after having received some basic training in easier task-environment variants.

Figure 5.5: Energy/time usage progression plot for 200 evaluations in the 1D drag racing environment.
The size of the markers indicate the time taken to complete the task. Lighter markers represent failed
evaluations.
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Figure 5.6: Time/energy usage progression plot for 200 evaluations in the 1D drag racing environment.
The size of the markers indicate the energy expended to complete the task. Lighter markers represent
failed evaluations.

Figure 5.7: Energy/time usage progression plot for 200 evaluations in the 1D locking plotter environ-
ment. The size of the markers indicate the time taken to complete the task. Lighter markers represent
failed evaluations.
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Figure 5.8: Time/energy usage progression plot for 200 evaluations in the 1D locking plotter environ-
ment. The size of the markers indicate the energy expended to complete the task. Lighter markers
represent failed evaluations.

5.2 Agent Comparison

5.2.1 Controller

In order to demonstrate how different agents can be compared just as different environments can be
compared, a custom agent implementation was compared with the SARSA implementation in the 1D
locking plotter environment. The custom agent roughly implements the following algorithm in the
perform method:

• Compute distance between position and the corresponding goal

– If the distance is small enough, deactivate the position motor and activate the plot_it
motor.

– If the distance is positive, maximum power to the position motor and deactivate the
plot_it motor.

– If the distance is negative, maximum negative power to the position motor and deactivate
the plot_it motor.

• Tick the simulation by dt seconds

It should be obvious that the above algorithm is specifically tailored to outperform the SARSA
agent, as it includes domain knowledge which the SARSA agent would need to come up with on its
own. Two of these agents were evaluated, the difference between them being that the improved version
deactivated the position motor prematurely to compensate for momentum.
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Figure 5.9: Resulting plot for 200 evaluations in the 1D locking plotter environment using an agent
with a domain-specific implementation. Data points are overlapping in this figure, and therefore some
early data points are not visible. (The blue line represents the energy required to complete the task
within x seconds. The red line represents the maximum amount of expendable energy due to motor
power limitations. Each data point represents a single evaluation. The shading (or coloring) of each
data point indicates the order. Lighter shading (green) precedes darker shading (red)).

Figure 5.10: Resulting plot for 200 evaluations in the 1D locking plotter environment using an agent
with an improved domain-specific implementation. All 200 data points are within the visible area of
the graph (overlapped by neighboring datapoints).
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Figure 5.11: Energy/time usage progression plot for 200 evaluations of a domain specific implementa-
tion in the 1D locking plotter environment. The size of the markers indicate the time taken to complete
the task. Lighter markers represent failed evaluations.

Figure 5.12: Time/energy usage progression plot for 200 evaluations of a domain specific implementa-
tion in the 1D locking plotter environment. The size of the markers indicate the energy expended to
complete the task. Lighter markers represent failed evaluations.
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Figure 5.13: Energy/time usage progression plot for 200 evaluations of an improved specific imple-
mentation in the 1D locking plotter environment. The size of the markers indicate the time taken to
complete the task. Lighter markers represent failed evaluations.

Figure 5.14: Time/energy usage progression plot for 200 evaluations of an improved specific implemen-
tation in the 1D locking plotter environment. The size of the markers indicate the energy expended
to complete the task. Lighter markers represent failed evaluations.
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5.2.2 Results

The difference between the standard domain-specific implementation and the improved counterpart is
only in the distance from the goal at which the controller deactivates its motor (this naturally implies
that the “improved” implementation could be worse-off in task-environments with a shorter distance to
travel). The plots clearly depict exactly what we should expect from comparing these implementations
— figure 5.9 shows that the task-environment is consistently solved with similar time and energy
expenditure. Figure 5.10 shows that the improvement to the domain-specific implementation results
in a significant reduction of time and energy expenditure for tasks in this domain. As before, our
plots give us a nice overview of the agents’ performance in task-environments from identical domains.
Figures 5.11 through 5.14 are included to show detail, but since the agent does not use learning, the
performance is the same for each evaluation (with only slight differences in results attributable to
differences in the environment instances of the domains).

5.3 N-Dimensional Task Comparison

While flat 1- and 2-D tasks are suitable for simple reinforcement learners, more advanced learners
and controllers would call for tasks with more dimensions, whether simultaneously or sequentially
controlled. Here we consider every Motor that necessarily must be controlled (at least indirectly)
to accomplish some goal a dimension (requiring only independence, not orthogonality); to elaborate
on this — the 1D plotter environment from example 3.2.1 actually has two dimensions: One for the
movement on what we would traditionally call the x axis and one for the movement on the z axis (note
that the relationship between these imaginary axes has not been defined). Here we explore how task
consisting of multiple dimensions can be constructed in the framework.

5.3.1 Task-Environment Domain

A generic N-dimensional task-environment generator is included in the samples as sample_N_task.
The generator returns a task-environment with N identical objects with a default starting position of
3 ± 2 (the difference is customizable) and a goal of reaching 10 ± 0.5 (the upper bound is set to 10,
preventing any possibility of overshooting the goal). The environment system includes all N objects
(including a sensor for each one) and two systems: (i) a control system which contains two objects with
associated motors and sensors and a transition function that sets the power level of some hidden motor
to some value depending on the values of the objects in the control system. (ii) hidden motor system
which ensures that activating the hidden motors for each of the N variables results in that power
usage being counted. The maximum time and energy specifications scale linearly with the number of
dimensions.

The control system includes the motors that the agent should have direct access to. The main
power motor determines how much power is input into the hidden motors while the selection motor
determines which hidden motor is activated.

5.3.2 Controller

A simple controller was created to solve the class of task-environments described in the previous section.
The algorithm is quite simple, the below should demonstrate the agents perform method (dt was fixed
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Figure 5.15: Resulting plot for 200 evaluations in a generic 10-dimensional task-environment. (The
blue line represents the energy required to complete an average task in this domain within x seconds.
The red line represents the maximum amount of expendable energy due to motor power limitations.
Each data point represents a single evaluation.

at 1):

• Activate the main power motor

• Determine the object that is furthest from the goal, call it min_o

• Determine the direction of power required to enable min_o’s actuator

• Activate the selection motor in the appropriate direction (towards min_o)

• Tick the simulation by dt seconds

5.3.3 Results

Three variations of the N-dimensional task were attempted with 10, 20 and 50 dimensions respectively.
Figures 5.15 and 5.16 show the trade-off plots for 10 and 20 dimensional task-environments. The trade-
off plot was omitted for 50 the dimensional task-environment evaluation since the data points greatly
shadow each other. Figures 5.17 through 5.22 show the time and energy usage of the implementations
in the different domains along with any failures during the evaluations (colored orange in the plots). It
should not come as a surprise that the task-environments with fewer dimensions were solved in less time
and with less energy. Furthermore, we can see that increasing the number of dimensions also increases
the number of failures, with zero failures in the 10 dimensional tasks, 19 in the 20 dimensional tasks
and 41 failures in the 50 dimensional tasks. This tells us that the the performance of this controller
does not scale well with the number of dimensions in the task-environment.
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Figure 5.16: Resulting plot for 200 evaluations in a generic 20-dimensional task-environment.

Figure 5.17: Energy/time usage progression plot for 200 evaluations in a generic 10-dimensional task-
environment. The size of the markers indicate the time taken to complete the task. Lighter markers
represent failed evaluations.
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Figure 5.18: Time/energy usage progression plot for 200 evaluations in a generic 10-dimensional task-
environment. The size of the markers indicate the energy expended to complete the task. Lighter
markers represent failed evaluations.

Figure 5.19: Energy/time usage progression plot for 200 evaluations in a generic 20-dimensional task-
environment. The size of the markers indicate the time taken to complete the task. Lighter markers
represent failed evaluations.
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Figure 5.20: Time/energy usage progression plot for 200 evaluations in a generic 20-dimensional task-
environment. The size of the markers indicate the energy expended to complete the task. Lighter
markers represent failed evaluations.

Figure 5.21: Energy/time usage progression plot for 200 evaluations in a generic 50-dimensional task-
environment. The size of the markers indicate the time taken to complete the task. Lighter markers
represent failed evaluations.
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Figure 5.22: Time/energy usage progression plot for 200 evaluations in a generic 50-dimensional task-
environment. The size of the markers indicate the energy expended to complete the task. Lighter
markers represent failed evaluations.

5.4 Summary

In this chapter, we have outlined some use cases for the framework, demonstrating how it can be
used to evaluate both agents and task-environments. We saw controllers compete against each other
in the identical environments, but we also saw the same controller attempting to deal with different
environments. By plotting the result data, we can see the relationship between the time and energy
expenditure of an agent in the context of solving a task in an environment and determine the perfor-
mance of the agent over time. This chapter also demonstrates some additional in-depth examples of
task-environments.

The domain specific agents built on the SARSA agent, but did not make use of the learning
component. Instead, the perform method was overwritten, leaving the rest of the agent code as it
is. This facilitated connecting the agents to the framework, since that part of the framework is still
immature.

It is clear that much of the work proposed in 1.2 has been done, although some work remains.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we have presented ideas for a framework for modular task-environment construction
along with a prototype implementation. FraMoTEC aims to facilitate the evaluation of intelligent
control systems across the entire spectrum of AI sophistication on practical tasks. The implementation
and supporting ideas rests on some assumptions about the ability to dissect tasks into small atomic
components, that when put together in different ways can approximate physical tasks and task families
of various kinds, as proposed in Thórisson et al. [2015]1. Understanding fundamental properties of var-
ious types of task-environments and how they relate to each other would greatly facilitate comparisons
of control systems along with quantifiable measurements of features such as learning speed, energy
efficiency and scheduling.

Thórisson et al. [2015] outlines requirements for a hypothetical evaluation tool: facilitation of easy
construction, procedural generation and in-depth analysis. FraMoTEC lays the groundwork for such
an evaluation tool. The analysis capabilities of the framework are currently quite limited, although
they could be expanded upon as task theory research advances. Easy construction is already possible
although an intermediary modeling language would be desirable (see 6.2.2), as this would also pave the
way for procedural generation of similar task-environments (the current implementation allows values
to be randomized, but this does not make two randomly initialized instances fundamentally different).

Being a framework for task-environment construction and evaluation, FraMoTEC’s modular de-
sign allows for simple construction, composition, decomposition and scaling of task-environments.
Adding, removing, or combining parts from task-environments enables complexity to be tuned such
that it grows with the AI system under test. Section 4.6 covers an evaluation of FraMoTEC with
respect to the requirements and desired tunable properties listed in Thórisson et al. [2015].

While a lot of work remains to be done, we believe that this framework will be able to eventually
fulfill the requirements outlined in Thórisson et al. [2015] and significantly contribute to the field of
AI evaluation, task theory and by proxy: AI itself.

1Further steps towards a proper Task Theory have been taken in Thórisson et al. [2016].
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6.2 Future Work

As mentioned throughout, FraMoTEC’s current implementation lays the groundwork for a task-
environment construction and comprehensive evaluation toolkit that takes time and energy into account
and meets the requirements in Thórisson et al. [2015]. This section discusses future work towards a
fully implemented toolkit for comprehensive evaluation of AGI-aspiring systems.

6.2.1 Simulation

The current design of FraMoTEC incorporates the simulation engine into the task-environment
model. Although this approach works very well for prototyping, future optimization can be facilitated
by decoupling the simulator from the model at an early stage. The scope of simulation within the
framework is currently quite limited — being used only for agent evaluation. Regardless, simulation
is an important feature in the framework as it provides a means to evaluate and compare agents in
task-environments.

The framework should allow high-fidelity modeling of 3D task-environments. Recall that the physics
currently provided by the framework operate in single dimensions. Expanding the simulation engine
to specifically cover 3D environments enables construction of task-environments with (hopefully) iso-
morphic real-world counterparts.

Finally, the considerations in 6.2.5 point towards potential for implementing an actor-based system
to deal with asynchronicity, by for instance implementing the simulation engine as a reactive actor-
based system operating on the model.

6.2.2 High-level Description Language

A highly useful addition would be a compact way to represent task-environments, such as with a task-
environment description language. Coupled with the framework’s power of (de-)composability, task-
units or ’prefabs’ could be constructed and re-used between task-environments with ease. Thórisson
et al. [2015]’s Proposal section (4) outlines the usefulness of such a description language.

The modular approach to modeling task-environments comes from the proto task theory partly
discussed in section 2.4. A modular approach allows for easy construction and decomposition while
facilitating analysis. Task-environments are created with python code which could be generated from
a more high-level description language — although such a description language should support raw
python code as well, in order to facilitate transition construction and design.

6.2.3 Supporting Tools

At this early stage, the software to supplement the framework has not been implemented (with the
exception of the plotting software described in 4.5 which could use improvement). A suite of integrated
supporting tools such as comprehensive data visualization and simulation bootstrapping software would
go a long way in facilitating standardized evaluations of a wide range of AI systems.

Supporting tools related to the proposed high-level description language (see 6.2.2) would be in-
dispensable. Tools for generating environment variants (possibly even with fixed agent body specifi-
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cations) and tools for static analysis of task-environment descriptions could be used to procedurally
generate (and evaluate agents in) task-environments, the results of which could be used to comprehen-
sively compare agents’ control strategies and profile their strengths and weaknesses in various domains.

6.2.4 Visualization

Directly following section 6.2.1, it would be highly desirable to visualize 3D task-environment models.
Realtime monitoring provides a means to compare real world task-environments with their simulable
counterparts.

We can also envision custom task-environments visualization techniques, perhaps implemented as
filters on visible dimensions. A general approach such as this could be used to represent 3D task-
environments without being tightly integrated with some underlying 3-D physics engine.

The framework currently includes plotting software to visualize agent evaluation data. Powerful
data visualization can enable evaluation and/or comparison of various features “at a glance”, which
might otherwise require careful data processing. See 6.2.3.

6.2.5 General Improvements

The framework currently suffers in its analytical capabilities due to a lack of a proper task theory.
The ideas presented in Thórisson et al. [2016] are sufficient to prototype an evaluation framework, but
more work needs to be done in this field in order to be able to comparatively analyze properties of
tasks and how they relate to control systems.

A crucial improvement to the framework would be to properly implement asynchronicity on the
framework side. The framework currently leaves asynchronicity to the user. Implementing proper
asynchronicity opens the door for increasing the number of agents in arbitrary ways without issue,
although it might cause problems in repeatability if random usage is not carefully controlled (although
we have already mentioned that there are other problems with repeatability).

Another major concern is the facilitation of easy interfacing between controllers and task-environments.
With task-environments embodying agents, a standardized method of interfacing with the environ-
ment is necessary to perform comprehensive comparative evaluation of control systems. Although
some preliminary standards could theoretically be set, it might be prudent to base specifications for a
standardized format on task theory (which, as mentioned in 2.4, has not been definitively fleshed out).
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