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Abstract

The aim of General Game Playing (GGP) is to create intelligent agents that
can automatically learn how to play many different games well without any
human intervention, given only a description of the game rules. This forces
the agents to be able to learn a strategy without having any domain-specific
knowledge provided by their developers. The most successful GGP agents
have so far been based on the traditional approach of using game-tree search
augmented with an automatically learned evaluation function for encapsu-
lating the domain-specific knowledge. In this thesis we describe CADIA-
Player, a GGP agent that instead uses a simulation-based approach to reason
about its actions. More specifically, it uses Monte Carlo rollouts with upper
confidence bounds for trees (UCT) as its main search procedure. CADIA-
Player has already proven the effectiveness of this simulation-based approach
in the context of GGP by winning the Third Annual GGP Competition. We
describe its implementation as well as several algorithmic improvements for
making the simulations more effective. Empirical data is presented showing
that CADIA-Player outperforms naïve Monte Carlo by close to 90% win-
ning ratio on average on a wide range of games, including Checkers and
Othello. We further investigate the relative importance of UCT’s action-
selection rule, its memory model, and the various enhancements in achieving
this result.
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Útdráttur

Markmið Alhliða Leikjaspilunar (e. General Game Playing) er að búa til
greind forrit sem ekki eru einskorðuð við einn leik, heldur fá sem inntak
leikreglur og þurfa að geta lært að spila leikinn sem þær lýsa. Þetta neyðir
forritið til að mynda herkænsku sína á eigin spýtur án þess að styðjast við
upplýsingar um leikinn sem hönnuður þess hefur sett inn í það. Hingað
til hafa þau forrit sem notið hafa mestrar velgengni í alhliða leikjaspilun
notað hina hefðbundnu aðferð að leita í leiktrénu með sjálfvirkri uppgötvun
gildisákvörðunarfalls til að hjúpa þekkingu út frá lýsingu leiksins. Í þessari
ritgerð lýsum við CADIA-Player, alhliða leikjaspilara sem notar hermanir
til að draga ályktanir um leiki. Nánar tiltekið notar hann Monte Carlo út-
spilun með UCT (Upper Confidence Bound fyrir tré) sem aðal leitaraðferð
sína. CADIA-Player hefur þegar, með því að vinna þriðju árlegu keppni
slíkra forrita sannað hversu áhrifaríkar aðferðir byggðar á hermun geta verið
í alhliða leikjaspilun. Við lýsum útfærslu spilarans auk þess að sýna nokkrar
betrumbætur á algríminu sem auka afköst þess. Niðurstöður tilrauna eru
gefnar sem sýna að CADIA-Player hefur mikla yfirburði yfir einfaldan Monte
Carlo spilara, eða rétt undir 90% vinningshlutfall að meðaltali í hinum ýmsu
leikjum, þ.m.t. Checkers og Othello. Við rannsökum enn fremur tölfræðilegt
mikilvægi þess hvernig UCT velur aðgerðir, minnislíkans hans og hinna
ýmsu viðbóta við að ná þessum árangri.
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Chapter 1

Introduction

Many intelligent programs exist that are excellent game players and can defeat almost
any, if not all, human challengers. But even though these programs display a high level
of intelligence at the game they are programmed for, they have no chance of playing
anything else. Even the most simple game is out of their league. Today, it can be said
for AI gaming programs that they are good not at gaming, but good at a certain game.
Humans, on the other hand, do not have these limitations and can learn to play new games
when supplied with a set of rules for them and develop new strategies, sometimes even
drawn from similarities between games.

Research into General Game Playing (GGP) aims at building intelligent software agents
that can, given the rules of any game, automatically learn a strategy for playing that game
at an expert level without any human intervention. Successful realization of this task
poses many interesting research challenges for a wide variety of artificial intelligence sub-
disciplines including: knowledge representation, agent-based reasoning, heuristic search,
and machine learning. Substantial progress has been made towards this goal in the past
few years, and to facilitate further research into this area the Stanford Logic Group started
the General Game Playing Project (General Game Playing Project, n.d.) a few years ago,
along with the annual GGP competition (Genesereth, Love, & Pell, 2005). In part be-
cause of this initiative GGP has received a renewed interest from the artificial intelligence
community, and currently there are several prominent research groups world-wide work-
ing on developing techniques for state-of-the-art GGP systems (Clune, 2007; Schiffel &
Thielscher, 2007b; Kuhlmann, Dresner, & Stone, 2006).

In this thesis we describe CADIA-Player, a high-performance GGP agent. Unlike ex-
isting state-of-the-art GGP agents that use the traditional approach of game tree search
combined with (automatically learned) evaluation functions, our agent uses simulation-
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based approaches exclusively for reasoning about its actions. More specifically it uses
Monte-Carlo rollouts augmented with upper confidence bounds applied to trees, the so-
called UCT algorithm (Kocsis & Szepesvári, 2006). This algorithm is a recent and ex-
citing new approach for controlling simulation-based rollouts in game trees and has, for
example, proved quite effective in the game of Go (Coulom, 2006, 2007; Gelly, Wang,
Munos, & Teytaud, 2006). It also proved effective in our agent. CADIA-Player won the
Third Annual GGP Competition held at the AAAI conference this year (2007) and is cur-
rently the reigning GGP world champion. Furthermore, empirical evaluations presented
in this thesis show that UCT outperforms naïve Monte Carlo simulation approaches with
a significant margin on a wide range of adversary games.

The main contributions of this thesis are:

1. Showing the effectiveness of simulation-based approaches in the context of GGP.

2. The development of a world-class GGP agent.

3. Empirical evaluation of the UCT algorithm on a wide variety of games.

4. Introduction of new practical domain-independent techniques for further enhancing
UCT simulation rollouts in unseen parts of the game tree.

The thesis is structured as follows: In the next chapter we go over background work.
Chapter 3 describes the architecture and inner workings of CADIA-Player and Chapter 4
focuses on the search algorithms used in CADIA-Player. In Chapter 5 we present experi-
mental results and end by giving conclusions in Chapter 6.



Chapter 2

Background

In this chapter we give an overview of the most common algorithmic game-playing tech-
niques as well as providing the necessary background in General Game Playing. We
mainly focus on the search component of game playing as this is where the focus of the
thesis is.

2.1 AI and Game Playing

The mainstream method for applying AI to game playing is to use heuristic search.
Heuristic search is a method that uses evaluation from game-specific knowledge (e.g.
piece values in chess) and assigns a heuristic value to game positions indicating how
good they are. The higher the value, the better. Many such methods exist for single-player
games (puzzles) and we will describe one such named Enhanced Iterative Deepening A∗

which is a variation of the well known algorithm A∗. For two-player games the heuristic
approach usually is based on an algorithm known as MiniMax. Many enhancements and
extensions have been added to it, but for this thesis it is enough to understand MiniMax
and one of its enhancements named Alpha-Beta pruning.

Another approach is to run simulations to estimate the values of states. We explain one
such method called Monte Carlo Simulation. Simulation approaches have been used e.g.
in programs for the game of Go, and the best Go programs today are all based on such an
approach (Gelly et al., 2006; Coulom, 2006).
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2.1.1 Enhanced Iterative Deepening A∗

Iterative Deepening A∗ (IDA∗) (Korf, 1985) is a depth-first variation of A∗. It limits how
deep it searches and raises this bound iteratively while it has not found a solution. The
depth limit is controlled by a cost function which is evaluated at each node as the sum of
actual depth traversed plus the heuristic value of reaching a goal. When no goal is found
at a certain depth the next depth limit becomes the lowest cost value seen in the previous
iteration that was higher than the cost limit then.

The enhanced part in the name comes from the fact that this variation has a transposition
table and is therefore memory enhanced (Reinefeld & Marsland, 1994) .

CADIA-Player uses this algorithm as a first try for all single-player games.

2.1.2 MiniMax

MiniMax is a depth-first heuristic search method for adversary games that is centered
around the simple assumption that our opponent will try to minimize our gain as we try to
maximize it. It means that the actual gain of a move is limited by the minimal value the
opponent can select during his turn. Figure 2.1 shows a game tree with minimax values
calculated. The squares represent states where it is our turn to move and the circles when it
is our opponents turn. The bottom squares are leaves and their value is what the evaluation
function returns. An example evaluation function in checkers would, e.g. consider the
difference in piece count between the two players, making the search favor having more
pieces than the opponent. We traverse the tree depth-first so we look at the leaves for
the left-most branch and see that they have the values 7 and 5, respectively. Since it is
the opponent’s turn when transitioning into one of these leaves he or she will always try
to minimize the values available and select to go to the leaf that gives 5, therefore the
circular node connecting these leaves has the value 5. In the square node above that it is
now our turn to move and we can select between getting 1 and 5. We want to maximize
the value so we select the branch that gives us 5. All the values are calculated with these
maximizing and minimizing rules. Because we do not have the time to expand the whole
game tree for any game of interest, the search depth is usually bounded and we select the
move leading to the state with the highest minimax value as it is the best move we can see
on the “horizon”. The depth bound is thus raised iteratively until time is up.
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Figure 2.1: MiniMax game tree

2.1.3 Alpha-Beta Pruning

MiniMax is good in theory, but it is much too slow to be useable in practice in competitive
programs. One of the most effective enhancements to it is Alpha-Beta Pruning. As the
name indicates, this method prunes the game tree so we search a smaller tree and can
therefore expand our search horizon deeper. Alpha-Beta identifies nodes that lead to
subtrees that have no chance of changing the current game tree value. Look at the node
where it is the opponent’s turn in the second node in the fourth ply row in Figure 2.1.
There we evaluate the first child to have the value 3. This means that no matter what
the other children evaluate to, the opponent can select it so we will get at most 3. We
already know that we can get 5 by selecting the move that leads to the node left of this
one so we can conclude that there is no need to expand and evaluate any more children
of the node as it would return a lower value than the one we have already secured. This
way we can prune many irrelevant subtrees. Similarly we can see that when the opponent
is guaranteed to minimize some value, we do not need to explore branches that produce
higher values on the same level as the opponent will never select them. This extension
therefore forms a window around the nodes that can possibly change the MiniMax value
by storing a lower bound (α) and an upper bound (β) on each alternating level of the game
tree.
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2.1.4 Multi-Player Games

Maxn (Luckhart & Irani, 1986; Sturtevant & Korf, 2000) is an algorithm that extends
MiniMax to accommodate multi-player games. At each node a tuple with the scores of
all players is recorded and the Minimax values backed up the tree are the tuples resulting
from all players trying to maximize their own score when its their turn.

It is also possible to reduce multi-player games to two-player games, but it comes at a
cost and some information is lost. This is done by assuming that all the other players have
united against you and we therefore combine them all into a single player. This is known
as the Paranoid algorithm (Sturtevant & Korf, 2000).

As currently all GGP agents we are aware of do this simplification, including our; we will
not discuss it further here.

2.1.5 Monte Carlo

Monte Carlo (MC) (Sutton & Barto, 1998) methods are a form of reinforcement learn-
ing methods. They learn only from experience and therefore have no need for any prior
knowledge of the task they are applied to. To immediately start showing some intelligent
behavior, especially when playing games, it is not very effective to learn from real expe-
rience as learning good strategies may take tens or hundreds of games, even for a human.
If MC has an internal representation of the task at hand available, the experience can be
generated by simulating lots of games between moves during actual play. The next move
in the actual game will then be chosen from the experience gained from the simulations.
A simulated task that has finitely many steps is also known as an episodic task. A single
simulation through such a task is known as an episode and the sum of the rewards gained
during an episode is known as a return.

If we assume that all games have a state space too big to be exhaustively explored then
MC methods actually learn by just sampling the state space of a task by using the rewards
encountered to estimate state values. The rewards are discounted so rewards of equal
value when encountered will seem different to the evaluating state if the path to them is
different in length, making the one with the shorter path more preferable. Every state-
action pair in the model keeps track of the estimated total reward, Q(s, a), the player
can expect to get in the remainder of the task if action a in state s is taken. Each time
a simulated episode reaches a terminal state the rewards are backed up to all state-action
pairs included in the episode and are averaged into the estimated rewards. The collection
of all these estimated rewards make up the MC value function.
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To run the simulations there must be some kind of policy to select which actions to take,
whereof the random policy is the simplest one to ensure that every state will at some point
be visited as the number of simulations grows. The MC policy does not need to be fixed
and can evolve after each simulation. The simplest of these is the greedy policy, or just
“go to the state with the highest value”. Such a policy does not explore anything beyond
what initially appears to be the best course of action if the state value does not converge to
a lower value. In this case we can miss something because we do not explore, we just ex-
ploit what we already know, not wasting time rechecking or verifying anything. Intuition
therefore tells us that when we do not have time or space to examine everything, the way
exploration and exploitation is balanced in the policy will be the deciding factor in how
intelligent the program will be. MC policies can be learned on-line and off-line, and it is
even possible to learn one policy while following another. Therefore when playing a game
it is best to learn the greedy policy by following a more exploratory one so good actions
don’t get overlooked and moves in the actual game are not exploratory moves.

The averaging of state values can be implemented incrementally by storing only the cur-
rent value and number of visits for each node at time t in the following way:

Q(s, a)t = Q(s, a)t−1 +
1

N(s, a)t
× (Rt −Q(s, a)t−1)

where N(s, a) is the number of times the state-action pair (s, a) has been selected for
execution and Rt is the reward received when moving to state s. Note that the divider
N(s, a) can never be 0 because we count the visit to the node before we average its
value.

MC can also be used to estimate the average state values in just the same way as state-
action values.

UCT

The UCT algorithm (Kocsis & Szepesvári, 2006) is a recent and exiting development
in how to handle the exploration-exploitation tradeoff in MC simulations of games. We
discuss it in detail in Chapter 4, where we describe the search component of CADIA-
Player.
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2.2 General Game Playing

GGP is the brainchild of the Stanford Logic Group and provides a standard way of both
describing game rules and how players can communicate with each other to play. The aim
of an intelligent player in GGP is to be able to form a good strategy for any game described
to it. This ability to play any game sets GGP programs apart from any other game playing
programs that are programmed to play only a single game well. Such programs might
be able to play a very complex game at a master level but have absolutely no idea how
to play a simple game like Tic-Tac-Toe. An overview of the GGP concept can be found
in (Genesereth et al., 2005). An annual GGP Competition is held by The Stanford Logic
Group.

2.2.1 Game Description Language

The game rules in GGP are described by a language called Game Description Language

(GDL). GDL is a variant of Datalog which is a query and rule language similar to Prolog

and uses first order logic. GDL is expressive enough to describe a wide range of games,
including various single-agent puzzle games, different two-player adversary board games
(like Chess, Checkers, etc), and even multi-player games. The games can be adversary
and co-operative, and need not be zero-sum games. The two main current restrictions on
the game type are that they must be deterministic and complete information games.

In addition to general logic functions, GDL has some reserved keywords to describe things
like game states, transitions, and terminal conditions known as relations. To ensure that
the states of a GDL description are finite and its transition function is decidable, recursion
is restricted. GDL is presented in Knowledge Interchange Format (KIF) (Genesereth &
Fikes, 1992). Following is a brief overview of the GDL relations; the explanations of the
relations use the selected lines from Tic-Tac-Toe in Figure 2.2 as a reference (the complete
description of Tic-Tac-Toe in GDL/KIF can be found in Appendix A).

The role relation takes an atom as a parameter and declares that atom to be a name (role)
of a player participating in the game being described. We can see in Figure 2.2 that two
roles are declared, xplayer and oplayer. No roles may be added to or removed from the
knowledge base after the initial role declarations. The true and init relations take a rule or
an atom as a parameter and hold when that rule is present in the knowledge base as a part
of the current state. The difference between them is that init is used to create the initial
game state and is not used after that where as true is used throughout the game to evaluate
if something is true in the current game state. When the legal relations are evaluated with
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(role xplayer)
(role oplayer)
(init (cell 1 1 b))
(init (cell 1 2 b))
...
(init (control xplayer))

(<= (legal ?w (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?w)))

...
(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))
(true (cell ?m ?n b)))

...
(<= (row ?m ?x)

(true (cell ?m 1 ?x))
(true (cell ?m 2 ?x))
(true (cell ?m 3 ?x)))

...
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
...
(<= (goal xplayer 100)

(line x))
(<= (goal xplayer 0)

(line o))
...
(<= terminal

(line x))

Figure 2.2: Selected lines from Tic-Tac-Toe in GDL
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a given role name its solutions are the legal actions for that role in the current state. If we
take a look at the legal relation in Figure 2.2 we see that it contains some atoms beginning
with “?”. These are variables in KIF. We replace ?w with a role name and ask for solutions
to mark ?x ?y. The solutions are all those where a corresponding cell contains the atom b

and this role holds for the control predicate. If we apply this rule to our role in the game,
this rule tells us that if a cell on the board is blank and it is our turn, we may place a mark
in it. To actually place a mark in the cell we have to prepare the knowledge base for state
transition. One legal action per role is added to the knowledge base wrapped in the does

relation including the role name. This allows the next game state to be proven against the
current state with the actions the players choose to take. It is important to remember the
fact that a move is needed for all roles before a state transition can take place. This allows
for simultaneous moves, and when turn taking is simulated, players can only choose one
ineffectual action when it is not their turn. This action is often referred to as the noop

action. After the does relations have been added to the knowledge base, the next relation
can be proven. Its solutions are the rules that are true in the next game state. What the next

relation in Figure 2.2 states is really just, “if xplayer marks a cell that is currently blank,
it will contain x in the next state”. Note that the rules and atoms describing the prior state
should be discarded completely, as should the does relations when the new state has been
asserted into the knowledge base. The terminal relation takes no parameters and if it is
proven the game has reached a terminal state and is over. In Figure 2.2 we see that the
game is terminal if line x is true. The line predicate is declared a few lines above as
being a synonym for a row, column or a diagonal of a given symbol (x in this case).
Then above that we see how row (declarations for column and diagonal are omitted) is
declared from what is true about the cells in the current state. Finally we look at the goal

relation. Once a game has reached a terminal state the scoring for the game is performed
by proving the goal relation given a role name. Scores can vary from 0 to 100 and these
scoring atoms are the only ones that may be treated as having a numerical value in the
game description. We can see that in Figure 2.2 there are two goals declared for xplayer
who marks his cells with an x, one of a score 100 if there is a line of xs on the board when
the game is over, and the other of a score 0 if there is a line of os. In the full descriptions
the reverse of these goals is defined for oplayer. The complete GDL Specification is in
(Love, Hinrichs, & Genesereth, 2006).

2.2.2 GGP Communication Protocol

In order for a GGP agent to play a game it must be able to communicate with a Game

Master (GM). The GM is a server that stores game descriptions and has the ability to
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contact multiple GGP agents and broker a match between them, making sure it does not
get corrupted by illegal moves. To communicate with the GGP agents, GMs implement
HTTP clients that send requests to the GGP agents which in turn run HTTP servers. Be-
fore a game can be played all GGP agents participating in it must be registered at the GM.
The GM starts by sending all the players a match identifier, the game description, their
role in the game and the time limits they have for both preparing and playing. After all
players have responded, play commences by the GM requesting a move from all players
and once all have replied the GM sends another move request including all moves made
in the last round. This way each player can update its game state in accordance with what
moves the other players chose. This continues until the game reaches a terminal state.
If a player sends an illegal move to the GM, a random legal move is selected for that
player.

The time limits mentioned above for preparing and playing are positive integer values
called startclock and playclock. The value sent for them is presented in seconds and the
startclock indicates the time left until the game begins from receiving the rules and the
playclock indicates the think time the player has between moves.

More details, including the format of the HTTP message contents can be found in (Love
et al., 2006). A full description of the GM capabilities is given in (Genesereth et al.,
2005).

2.3 Conclusions

We gave a brief background of the workings of game-playing programs, and highlighted
the challenges of General Game Playing. In the next chapter we describe the architecture
of our GGP agent.



Chapter 3

CADIA-Player

Human beings, who are almost unique in having the ability to learn from
the experience of others, are also remarkable for their apparent disinclination
to do so.

Douglas Adams (1952-2001), Last Chance to See.

CADIA-Player gets its name from the AI research lab at Reykjavik University, Center for
Analysis and Design of Intelligent Agents (CADIA). The player was created to take part
in the annual GGP competition held by the Stanford Logic Group.

An agent competing in the GGP competition requires at least three components: a HTTP
server to interact with other players through the GM, the ability to reason using GDL and,
of course, AI to play the games presented to it. In this chapter we describe the architecture
of CADIA-Player and the extendable framework it is built on.

The player is written in C++ on Linux/Unix and can be compiled and run on both systems
unchanged.

3.1 Architecture

The architecture of CADIA-Player is shown in Figure 3.1. The topmost layer of the figure
is a HTTP server which runs the rest of the system as a child process and communicates
with it via standard pipes. Every time a new game begins a new process is spawned and the
old one suspended. This HTTP server can be thought of as an extension to CADIA-Player,
allowing it to communicate over HTTP to the GM, but it has nothing to do per se with
playing GGP games. CADIA-Player itself can be split up into three conceptual layers, the
Game Agent Interface, the Game Play Interface and the Game Logic Interface. On top
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Figure 3.1: Overview of the architecture of CADIA-Player

we have the Game Agent Interface which handles external communications in addition to
managing the flow of the game being played. The Game Agent Interface queries the Game
Play Interface for all intelligent behavior regarding the game.The bottom layer is called
Game Logic Interface and is where the state space of the game being played is calculated
and manipulated. CADIA-Player is a collaborative project, and the HTTP server, KIF to
Prolog conversion and the Prolog wrapper code were written by Yngvi Björnsson.
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3.1.1 Overview

The following subsections give a detailed description of each of the components of Figure
3.1. However, we start with a quick run-through example of how the components interact
when playing a game. All names in italics represent a component in Figure 3.1.

Starting a New Game

A game begins when the GGP HTTP Server gets a message from a GM announcing a
new game. The server starts a new CADIA-Player child process, extracts the content of
the HTTP request, which is the GM message to the player, and relays it to the process
through a standard pipe. It then waits for a reply from the process before responding to
the HTTP request. On the other end of the pipe the Game Agent Interface is waiting for
the message and channels it into the Game Flow which recognizes it as an announcement
of a new game. The Game Description included in the message is both written to a file
and sent through the Game Parser. The Game Parser initializes the Game Play Interface

with data from the game description and hands it back to the Game Flow. The Game

Flow proceeds to selecting the type of Game Controller to use. CADIA-Player uses
the Prolog Controller which utilizes the Prolog engine YAP (YAP Prolog, n.d.). When
the Prolog Controller starts, it locates the game description file saved earlier and runs
it through an external program that converts KIF to Prolog code and saves it to another
file. Then it calls the YAP Compiler on the Prolog Game Description and a handcrafted
file containing some Generic Game Logic. The compiled Prolog code is then loaded into
memory through the YAP Runtime Library and is used to represent the state space for the
new game. The control is now returned back to the Game Flow which selects the Game

Player that the Game Play Interface should use as its AI. This selection varies between
games. All this processing is happening on the startclock and for its remainder, the Game

Player is allowed to prepare for the game (e.g. start running simulations). When the
startclock is up a message indicating that CADIA-Player is ready to play is returned back
through the pipe to the GGP HTTP Server so it can notify the GM.

Making the First Move

When CADIA-Player has announced that it is ready a new HTTP request can be expected.
This time the GM is requesting a move decision. Like before the message is sent through
the pipe and ends up in the Game Flow. It then queries the Game Player for a move
decision. The Game Player makes its decision by using the Game Play Interface it is
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plugged into to get information about the game. Once a decision is reached it is returned
back to the Game Flow which relays it back to the GGP HTTP Server to be sent to the
GM.

Playing the Game

There is a difference between the first move and the rest of them. After the first one, all
move requests from the GM contain the list of moves that were made in the last round
by all players participating in the game. Remember that all GGP games use simultaneous
moves (see Section 2.2.1). CADIA-Player uses this move list to update the state space
in the Game Logic Interface so it reflects the current state. The move list is parsed with
the Game Parser into a structure the Game Play Interface understands. The Game Logic

Interface makes a transition in its state space based on these moves. Finally the Game

Player is queried for a move decision to send to the GM in the same way as for the first
move. This exchange of move lists and move decisions is now repeated until the game
ends.

Game Ends

A special stop message is sent from the GM when the game is over. This message contains
the last moves and after parsing them the state in the Game Logic Interface should be
terminal. The Game Logic Interface can now be queried for the final scores, i.e. the goals
the players have reached.

3.1.2 Game Agent Interface

This layer is responsible for connecting the communication from the GM to the actual
play logic. It has access to functionality to communicate with the GGP HTTP server
using structures rather than just the text content of the messages from the GM. It should
control the flow of the game with regards to the GM messages so that the player is in sync
with it.

As mentioned earlier the player starts by saving the game descriptions it gets to a file.
The file is named after the match identifier received from the GM and given the extension
“.kif” (as it is in KIF format). The match identifier is propagated throughout all major
parts of the player.
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It is the responsibility of this layer to initialize the Game Play Interface (see Section 3.1.3)
and, depending on the game description, to select what implementation of play logic to
use. Because the design for the play logic (called Game Players) uses an interface that
only requests an action given a game state (see Section 3.1.3), there is nothing that says
one has to stick with the same play logic for every game or even throughout a single
game. It just depends on how the Game Agent Interface is implemented. CADIA-Player
has two different Game Players and sometimes uses them both in the same game instance.
This layer is also responsible for which method to use for game advancement in the Game
Logic Interface. In the case of CADIA-Player it selects Prolog for this.

The two internal parts of the Game Agent Interface, Game Flow and Game Parser, have
the following purpose:

Game Flow

This represents the actual main function of CADIA-Player. It starts by initializing the
Game Play Interface and the play logic and then the execution enters a structure of con-
ditional statements that react to the incoming messages from the GM. This is basically
starting new games, updating the state space, replying to move requests, and trying to
restore communication synchronization if something unexpected happens like lag in the
HTTP.

Game Parser

This is a parser used to build an internal representation for the Game Play Interface from
the KIF game descriptions so it can reference any atom and also produce KIF strings
from it. While parsing, a symbol table is created that maps all strings in the KIF game
descriptions into unsigned integers. This lays the groundwork for the ability to model a
game tree in an efficient manner. The parser also converts moves sent from the GM into
the internal form.

The lexical analyzer of this parser was built using Flex (flex: The Fast Lexical Analyzer,
n.d.). This parser was originally created for a theorem prover that we built for move
generation but was discontinued later as YAP Prolog had better performance. The struc-
tures our theorem prover used were robust when it came to storing and looking up states
and actions and we therefore kept them and further developed them into a standardized
representation of the game logic in the framework.
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3.1.3 Game Play Interface

This interface manages the main AI part of the player. It keeps track of the current state
of the game and the history which led to it. Game Player implementations plug into this
layer and use its services to run their algorithms to decide on which action to take. In
order to do so this interface offers a robust class structure to represent states and actions
and the ability to translate those structures back to GDL/KIF.

The following subsections correspond to the internal parts of the Game Play Interface in
Figure 3.1.

Symbol Table

As everything is represented by strings in KIF and it is inefficient to do string comparisons
when looking up and storing, a symbol table is set up when the game description is parsed.
Every atom and variable are assigned an unique 32-bit unsigned integer value. As GDL
demands that the names of the atoms have no lexical meaning, no information is lost by
this transformation. Everything in the player uses this numeric representation, making
comparisons and hashing more efficient. The original strings can be looked up in the
symbol table for output from the player.

The symbol table uses one little trick to make it easier to do a lookup on role names.
When all roles have been parsed, the roles are moved to the front of the symbol table
in the order they were declared. The role names thus get values 0, 1, 2, . . ., which is
convenient because they are used as indices into play structures.

Game State

A game state is represented by multiple compound logical sentences i.e. the logical facts
that are true in it. The game history is stored on a stack and the state on top is the current
state. Figure 3.2 shows an example of a game history in Tic-Tac-Toe.

The Game Agent Interface is responsible for making any state changes that occur in the
actual game being played, as only actions that the GM announces can be used to advance
the game. Even though the player sent a legal move, it is possible that it reached the
GM too late and it selected a random move on behalf of the player instead. Without
obeying the GM the player is not guaranteed to be in the same state as the GM and can
unknowingly start to send illegal moves. The inner structure of the game state is explained
more thoroughly in Section 3.2.
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Figure 3.2: Example game state stack in Tic-Tac-Toe

Game Player

Game Player is a virtual class containing shared player logic and describes the interface a
player must implement to be plugged into the framework. The Game Agent Interface can
then query the Game Player for move decisions given the state of the Game Play Interface
it is plugged into. A detailed description of the Game Player interface can be seen in Table
3.1.

CADIA-Player uses two implementations of Game Player: one uses UCT search and the
other Enhanced Iterative-Deepening A∗.

UCT Player

An implementation of a game player that uses UCT search to decide on the next action.
This is the main player CADIA-Player uses. A detailed description of the inner workings
of the UCT player is given in Chapter 4

Enhanced IDA* Player

A player that implements the Enhanced IDA* search algorithm tries to solve single-player
games during the startclock. If it is successful in finding at least a partial solution (i.e. a
goal with more than 0 points reward) it is also used on the playclock. However, if unsuc-
cessful the Game Agent switches to the UCT player for the playclock searches.

The main focus in CADIA-Player is adversary games, so this single-player solver is still
rather rudimentary. In particular, because we use no domain-specific information the
heuristic function h(s) always returns 0. The cost function for the search, f(s), only uses



Hilmar Finnsson 19

Table 3.1: Game Player
Function Description
newGame Should be called when the underlying game is reset or a

different one is started.
setRole Set the role of the player. Implemented in the base class.
getRole Get the role of the player. Implemented in the base class.
play Queries the player for what action it would take given the

current state.
getPlayerName For logging purposes only to allow the programmer to iden-

tify the player implementation being used.
getLastPlayInfo For logging purposes, should contain description or some

statistical data about what the player was thinking during
last call to the play function.

isSolved Players should return true if they have constructed a solu-
tion for the game and actually require no more calculations
to win the game if they are playing adversary- or multi-
player games or to get at least some points in single player
games. This can be useful to the Game Agent layer to make
a decision about whether it should change player implemen-
tation during runtime.

setThinkTime Set the think time allowed for the player. Implemented in
the base class.

startTimer Starts an internal timer for the player that is used to measure
for how long the player has been thinking. This function is
implemented in the base class.

hasTime Checks if the internal timer has exceeded the think time al-
lowed for the player. This function is implemented in the
base class.

the g(s) part, evenly expanding all paths in an iterative-deepening depth-first fashion.
This player could improve dramatically with any form of heuristics that can be drawn out
of the game description.

Using this player ensures that for easy puzzles CADIA-Player is guaranteed to find the
optimal solution.

3.1.4 Game Logic Interface

The Game Logic Interface encapsulates the state space of the game, provides information
of available moves, how the state changes when a move is made, tells if a state is terminal
and if so, what the goal reward is. It uses classes implementing a well defined interface
called Game Controller.



20 CADIA-Player: A General Game Playing Agent

Table 3.2: Game Controller
Function Description
init To initialize the Game Controller. Should be called before

any other method.
getMoves Returns the list of available moves for a specific role.
make If given moves for all roles it should advance the game with

those moves, but if only given a move by a single player the
controller should add random moves for all other players
before advancing the game (remember from Section 2.2.1
that all games use simultaneous moves and turn taking is
actually simulated).

retract Undo the last move made by all roles.
isTerminal Returns true if the game is over, false otherwise.
goal Returns the value of the goal currently reached for a specific

role.
ask Does not need to be implemented for the standard Game

Play Interface and is for future development. Because the
game description is first order logic based it should be possi-
ble to ask any logical question of a knowledge base created
from the GDL.

muteRetract Disables retracts. Can be useful when running simulations
because no backtracking is needed.

syncRetract Restore the game state that was present when muteRetract
was called and re-enables retracts.

Game Controller

Game Controller is a well defined interface which the Game Play Interface connects to
for the services of the Game Logic Interface. It is thus easy to plug in different implemen-
tations beneath. As briefly mentioned before, we have tried two different theorem provers
as Game Controllers, YAP Prolog and a custom implementation.

A detailed description of this interface is provided in Table 3.2.

Yap Runtime Library

This is a C interface to YAP Prolog (Yet Another Prolog) (YAP Prolog, n.d.). YAP is
free to use in academic environments and is a high-performance Prolog compiler. An
advantage of this Prolog for our purposes is that it provides a runtime component making
it relatively straightforward to call it from other programming languages.
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Prolog Controller

This is the game controller implementation that CADIA-Player uses. As the name indi-
cates it uses Prolog as a theorem prover for the GDL logic of the game. It takes the KIF
description and converts it to a Prolog file using a home made tool (see File System box
in Figure 3.1). This tool parses the KIF description which is very similar to Prolog code
so it is easy to write it back out as such by making some minor syntactical changes like
format of parameters and operator symbols. Then it calls YAP through a system com-
mand making it load the converted file plus a file containing some predefined functions
(see Section 3.3) and compile them into a YAP state. The newly compiled state is loaded
into the controller using the YAP runtime library C interface. The controller uses the YAP
interface to construct Prolog queries to make state transitions in the YAP state and re-
trieve game information from it. The controller also handles the conversion from the YAP
structures into the internal structures used by the Game Play Interface. The predefined
Prolog functions are always the same for all games and are used to provide easy access to
extracting legal moves and play and retract them.

3.2 Game Tree

The player builds a game tree in memory by incrementally storing simulation results. The
game tree is modeled in the Game Play Interface of the architecture. An overview of the
implementation is given in Figure 3.3. As depicted in the figure, we have sets of states
stored in hash tables on different levels that form the game tree where each level stands
for a certain depth in the game tree. Every state has a collection of possible actions and
each action references a state-action pair node containing the data needed to maintain the
Monte Carlo value function.

The game tree uses 64-bit Zobrist keys (Zobrist, 1970) to identify its states and actions
and allows fast retrieval. When the game tree is initialized against a game description, it
builds a map where each symbol in the symbol table is assigned a 64-bit pseudo-random
number. Whenever a new state is encountered or a state lookup is needed, an identifier
for it is calculated as follows: As a state is represented by multiple compound logical
sentences, each containing possibly nested compound sentences, the calculations take all
symbols of every sentence into account to make the identifier unique. There is the chance
of getting non-unique identifiers, but with this scheme the chances are so remote that we
do not care in the cases it happens. An identifier for each of the compound sentences is
retrieved by applying XOR to the Zobrist keys for the atoms. These identifiers are then
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Figure 3.3: Overview of the game tree implementation

combined into a single identifier for the state using XOR. Algorithm 1 shows how we can
get an identifier for a compound sentence which can recursively call itself for any nested
compounds.

In Algorithm 1 the symbol function is used to get the identifier symbolizing the predicate
atom of the compound sentence denoted by C. The keymap function is used to look up the
Zobrist key for the identifier from the keymap in the model (see Figure 3.3). Shifting the
bits after every symbol is needed to maintain uniqueness. Consider these two compound
sentences that can be found in many states of the game Tic Tac Toe:

(cell 1 2 b)

(cell 2 1 b)

They have different meaning but contain exactly the same symbols. If these were to be
individually given an identifier without any bit-shifting they would get exactly the same
identifier because using XOR to combine each symbol key is indifferent when it comes
to operand ordering. Also the circulation of bits must be done in case of compound
predicates with many parameters. The shift makes the later parameters affect fewer and
fewer bits until they have been pushed completely out of the 64-bit key. This means that
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Algorithm 1 getZKey(Compound C)
1: key ← keymap(C.symbol())
2: shift← 7
3: for all ci ∈ args(C) do
4: key ← key ⊕ rotate(getZKey(ci), shift)
5: shift← (shift+ 7) mod 64
6: end for
7: return key

State A State B
(cell 1 b) (cell 1 x)
(cell 2 x) (cell 2 b)

Figure 3.4: Example game states

predicates with many parameters that only have the last one different from each other
would get exactly the same identifier if nothing is done.

Creating an identifier for the state itself is done using Algorithm 2.

The reason why this also needs to be bit-shifted is simple. Consider an example where
we have a game which can be at the two states shown in Figure 3.4 amongst others. Their
predicates and first parameter will map to the same identifier. Clearly what has any chance
of distinguishing them are the identifiers of the second parameters. But if all compound
sentences are offset the same, then the states will change their identifier by:

State A: rotate(getZKey(b), 14) ⊕ rotate(getZKey(x), 14)

State B: rotate(getZKey(x), 14) ⊕ rotate(getZKey(b), 14)

where rotate(id, offset) is defined as offsetting id by offset bits in a circular fashion. Both
these calculations will end up with the same identifier. To avoid this we need to have
different offsets of the entire compound sentence for different states.

Algorithm 2 getZKey(State S)
1: key ← 0
2: shift← 0
3: C ← getCompounds(S)
4: for all Ci ∈ C do
5: key ← key ⊕ rotate(getZKey(Ci), shift)
6: shift← (shift+ 1) mod 64
7: end for
8: return key
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Having to offset the compounds of the state adds one constraint. To be able to recognize a
state again, its compound sentence must appear in the same order so the offset of each one
will be identical to when it was first encountered. This forces us to introduce some sort of
consistent ordering to the sentences in the state. This is done by ordering on the numeric
identifiers of the atoms as they appear in the compound sentences while the sorting order
is unresolved.

3.2.1 Action Buffer

The box marked as Action Buffer in Figure 3.3 is a buffer for the actions encountered. As
an action can reoccur in multiple states (like being able to play the same pawn in many
different states at various game tree depths in chess), we save space by storing the action
on the internal form when first encountered and then just referencing it in the nodes.
Because the model now knows the available actions for any state that has been added to
it, there is no need to query the Game Logic Interface for available actions, as all data
needed to make a transition is stored in the Action Buffer.

3.3 State Space

Initially we built a simple theorem prover for finding available moves and making moves
based on GDL game descriptions. Later we abandoned it, and instead translated the GDL
descriptions into Prolog code as it improved performance significantly.

CADIA-Player uses Prolog to set up the functions for traversing the state space for every
game from the GDL description. Even though all logic concerning the state space is
included in the GDL, there are some things that need to be done extra in Prolog to get a
practical working state space.

3.3.1 Adapting the Game Description to Prolog

Before the first move is made the contents of the init relation are dropped from the de-
scription, moved into true relations and asserted into the knowledge base as the initial
state. Now we can start querying what moves are legal through the legal relation. Making
a move just using the logic in the GDL takes quite a few calls to the Prolog engine and
we would like to encapsulate this into a single function. The new function should take the
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Algorithm 3 makeTransition(Role[] r, Move[] m)
1: for i← 1 to length(r) do
2: addDoesRelation(r[i],m[i])
3: end for
4: S ′ ← proveNextRelations()
5: retractRelations(DOES)
6: retractRelations(TRUE)
7: C ← getCompounds(S ′)
8: for all Ci ∈ C do
9: addTrueRelation(Ci)

10: end for
11: return

actions of all the players and when it returns the knowledge base is in the new state. Algo-
rithm 3 outlines how we can do this. We begin by asserting all actions into the knowledge
base and then get all proofs of the next relations (which will be the new state). Then we
remove the actions and the current state from the knowledge base and end by asserting
the new state into it.

This poses one problem. There is nothing in the GDL that describes how to undo a
transition. Therefore we need to extract the current state before making the transition to
the next state. This can be done by pulling out a list of all proofs of the true relation and
store it for when we want to retract to this state. To retract a transition we finally add a new
function that takes in a list of stored rules as a parameter, removes the current state from
the knowledge base and asserts all elements of the list embedded in true relations.

Nothing needs to be done to simplify proving the terminal and goal relations.

GDL contains a predicate named distinct and takes two clauses as parameters and rep-
resents the not equal relationship between the parameters. This can be resolved in YAP
with:

distinct(_x,_y) :- _x \ = _y.

Similar predicate named or used to exist for the “logical or” relationship and could take
arbitrarily many parameters, but it has been deprecated. Still many KIF files exist that
contain it so it is good to implement it also which can be done in just the same way as
with distinct using multiple definitions for each parameter count. An example of the three
parameter version is the following:

or( _x, _y, _z ) :- _x ; _y ; _z.

In our experience no KIF file has included an or with more than six parameters.
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3.4 Search

As has been mentioned before, CADIA-Player is not restricted to use only one search
algorithm. It can select between two different algorithms, one for single-player games
and one for games with more players.

3.4.1 Single-Player Games

CADIA-Player runs an Enhanced IDA* search algorithm on the startclock for single-
player games. The algorithm runs on the startclock while no solution with 100 points is
found. The first solution found with any points is stored as the current best known solution
and gets replaced if another solution with a higher score is found. If any solution has been
found when the startclock runs out, CADIA player will stick to using the Enhanced IDA*
during each playclock until the game terminates or a solution with the score of 100 is
found. When the player decides on a move it simply pops the top action of the best
known solution. If the best known solution has a score of 100 there is no need to keep on
searching because 100 is the maximum possible score in GDL. At this point the player
replies instantly with the next action of the best known solution.

If no solution is found on the startclock it is assumed that no solutions will be found on the
playclock using the same algorithm and it is very probable that a good solution will not
be found because with every step we have no solution we are forced to make a random
move. To increase its chances, CADIA-Player switches to the UCT search because its
depth-first search has the chance of hitting some return that might guide the search better.
There might be some scheme that could be used to switch back to Enhanced IDA* when
UCT detects that it is getting close enough to the terminal states that the exhaustive search
of the Enhanced IDA* would become useful again, but we did not look into it.

3.4.2 Two- and Multi-Player Games

Two- and multi-player games are handled with UCT search from the start. The only dif-
ference in implementation is how the returns of the simulated episodes are calculated.
For two-player games the return is calculated as the difference between our and the op-
ponent’s return. In multi-player games the player takes the paranoid approach and just
uses its return unchanged, believing everyone else is against him. The logic behind this
is that if there is more than one additional participant then it is not possible to know if
you should maximize or minimize their returns from the game description so it is best to
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just stick to what we know is always true. Maximizing our own score is never bad, even
though it is debatable how good it is.

3.5 Related Work

Before GGP, Pell (Pell, 1996) suggested that AI programs should be able to play a whole
range of games where it was part of the program itself to analyze the game rules and figure
out how best to play the game they describe. From his theories he created the program
Metagamer. Pell restricted Metagamer to chess-like games.

There are two other successful players besides CADIA-Player that have participated in
the Annual GGP Competition and won. In the following section we will give an overview
of these players and of a technique to transfer knowledge between games.

3.5.1 Cluneplayer

Cluneplayer (Clune, 2007) is a GGP agent written by James Clune and was the winner
of the First Annual General Game Playing Competition in 2005. It uses an approach
that is quite different from CADIA-Player. This player extracts features from the GDL
description automatically to use in a heuristic evaluation function for the game states.
It then uses this heuristic evaluation function in a MiniMax tree search with alpha-beta
pruning, transposition tables and aspiration windows to play.

To discover usable features Cluneplayer begins by collecting candidate features that are
calculated from the GDL. They include how often atoms appear (e.g. number of pieces),
distances between atoms when set up in a graph whose edges are generated by GDL rules
that advance the game (e.g. distance to king promotion in checkers) and how close a
compound sentence that fulfills some goal is to being true. It also detects some additional
features to exploit symmetry in the game description. This method collects a large number
of candidates, many of which have no relevance when evaluating a state. The number of
pieces for example may be in there, but so can much other cardinality information that
has no value. There is nothing in the GDL that can help us directly pinpoint which of the
cardinality features is the actual piece count. This problem is solved by introducing the
notion of stability. A factor to estimate the stability of each candidate feature is calculated
and only those deemed stable are used in the evaluation function. The stability is a number
that is calculated by measuring how a feature changes through random plays of the game
at hand. The higher the number the more stable the feature is. For example, features that
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change incrementally get marked as very stable where as features which change up and
down unpredictably get marked as unstable. When calculating feature stability, the more
games that are measured the more accurate the results are so to guarantee at least some
answer and still give the best answer reachable, the player starts by evaluating 25 games
and then doubling that number and so on. The latest calculations that it was able to finish
before the startclock ran out are then used to evaluate the game states during play.

The discovered features are categorized by if they contribute to payoff or control. When
they all have been established they are weighted according to their stability and used in
the evaluation formula. The evaluation looks at how close the game is to terminating and
favors control features in the beginning of the game but shifts more towards the payoff
features as the game gets closer to termination.

3.5.2 Fluxplayer

Created by Stephan Shiffel and Michael Thielscher, Fluxplayer (Schiffel & Thielscher,
2007b) was the winner of the Second Annual General Game Playing Competition in 2006.
They use Thielscher’s Prolog-based implementation of the Fluent Calculus called FLUX
(hence the name of the player).

Fluxplayer uses Iterative-deepening depth-first search with transposition tables and the
history heuristic (Schaeffer, 1989) for move decision. To create the evaluation function
it recognizes structures in the semantical properties of the game description to retrieve
successor relations, order relations, quantities and game boards. From this information
Fluxplayer is able to estimate with Fuzzy Logic how close a positions is to being a winning
position.

3.5.3 Knowledge Transfer

Knowledge transfer in GGP refers to taking knowledge from one game and transferring it
to another. We will describe one of the approaches that researchers have worked on and
give references to more resources on the matter.

In (Banerjee, Kuhlmann, & Stone, 2006) it is shown how knowledge transfer can be
obtained with games of the same genre when using reinforcement learning. First a small
game that can be learned quickly and captures the genre is selected. Then a number of
features for it are identified and handcrafted. In this case the features are recognized from
the structure of the game tree, but can be expanded to other types of feature recognition.
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After learning the small game, each feature Fi is assigned the average value of theQ(s, a)

values where Fi ∈ (s, a). Now, with the aid of these feature values we can initialize states
in other games of the same genre. When a state-action pair is initialized we examine
which features it contains and use the highest value of these features. This way the value
function of the new game does not have to start from scratch. Two of the authors, Gregory
Kuhlmann and Peter Stone, have participated in all three GGP competitions with their
player UTexas LARG (Kuhlmann et al., 2006), which we expect will include knowledge
transfer techniques in the GGP competition next year.

To read more on the subject of knowledge transfer we refer to (Sherstov & Stone, 2005),
(Taylor, Whiteson, & Stone, 2006) and (Banerjee & Stone, 2007).

3.6 Conclusions

We have given insight into the architecture of CADIA-Player and how it can be divided
into three distinct interfaces. We have discussed in detail how the player builds a model
of the game tree in memory and also how we build the state space in Prolog. The way
CADIA-Player selects different algorithmic approaches to single and multi player games
has been shown and an overview of other successful GGP agents given. Chapter 4 will
discuss in detail the UCT search implemented in CADIA-Player.



Chapter 4

Search

CADIA-Player uses the UCT algorithm as its main search method. In this chapter we
explain this algorithm as well as its implementation in CADIA-Player. We also discuss
how CADIA-Player utilizes multiple CPUs and present an extension to its UCT search,
which was developed after the GGP Competition.

4.1 UCT

The UCT algorithm (Kocsis & Szepesvári, 2006) is a variation of the Upper Confidence
Bounds algorithm (UCB1) and simply stands for UCB applied to trees. UCB1 (Auer,
Cesa-Bianchi, & Fischer, 2002) is a simple yet effective way to balance exploration and
exploitation. It solves the exploration-exploitation tradeoff, which means that its regret
(loss from not always making the best action) growth rate is bounded by a constant times
the best possible regret rate. It keeps track of the average returns of all available actions
a ∈ A at time t and samples the one with the highest upper confidence bound given
as:

at = argmaxa∈At

Xa +

√
2 ln (t− 1)

s


where s is the number of times action a has been selected up to time t− 1. If there exists
an action that has never been selected and has therefore no estimated value, the algorithm
defaults to selecting it before any, previously sampled action. There are exceptions to
this rule, especially when we have some prior knowledge, allowing the action value to be
initialized differently. The confidence bound can be described as the average estimated
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value of taking an action plus the UCB bonus. Because of how the bonus is calculated
with respect to visits, actions gradually build up their bonus when they are not visited
and each time they are, the bonus drops. When visit counts are low the action with the
current best estimated return value is selected for sampling, but in time the bonuses kick
in and ensure the exploration of other actions that were initially estimated as suboptimal.
If the actions continue to look suboptimal they will have to rebuild their bonus value to
be considered again, which takes longer and longer each time, but if they pay off more
than initially believed, their average value rises and they get chosen more frequently for
sampling. The selection method chooses the actions from a confidence distribution. We
exploit the best action until the number of samples including it has generated a certain
level of confidence in its estimated return value. When a suboptimal action is explored, it
means that the confidence level of the best known action is high enough that it is better to
lower the uncertainty of the estimated value of the suboptimal action. The closer the value
of a suboptimal action is to the best action the sooner the need to select it arises.

To apply this algorithm to trees UCT adds a depth parameter to it, so instead of keeping
track of only the values for actions available in the current state,Q(s, a), it keeps track of
Q(s, a, d) where d is the depth in the game tree. To simplify, we will for the remainder
of the chapter assume that the depth d is a part of the state s, making states at each depth
distinct from states at other depths, and just refer to the value function as Q(s, a).

In order to be able to tune the UCB bonus, UCT uses it in the form:

2Cp

√
ln (t− 1)

s

where Cp = 1√
2

matches the UCB formula, but can now be tuned by altering Cp. To
simplify, we merge the constant into the Cp parameter and adjust the formula to use the
notation of the MC value update formula in Section 2.1.5. We do this to clarify how it is
used in the action selection of the MC rollout of CADIA-Player:

at = argmaxa∈At

Q(s, a) + Cp

√√√√ lnN(s)

N(s, a)


Recall that the N function returns the number of visits. CADIA-Player has the Cp param-
eter set to 40. This value was empirically selected by running it with various Cp settings,
ranging from 1 to 100, against a CADIA-Player instance with the original Cp setting. The
game used was Connect Four with both start and play clocks set to 30 seconds. The excact
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Algorithm 4 search()
1: if isTerminal() then
2: return goal(role)
3: end if
4: moves← getMoves(role)
5: move← selectAction(moves)
6: reward← make(moves[move])
7: q ← reward+ γ ∗ search()
8: retract()
9: updateV alue(moves[move], q)

10: return q

value is not critical and setting it a little larger or smaller has no significant effect. Future
work may include fine tuning this value and seeing if the most appropriate setting differs
between games or even between phases of a game.

4.2 Implementation

The implementation of the basic UCT algorithm is rather straightforward. It is used in
the MC rollout phase and changes how the next action in the simulation is selected. It
also constructs a tree in memory to keep track of future action values. The basic recursive
MC rollout encapsulating the UCT action selection can be seen as Algorithm 4 and the
UCT action selection itself is shown as Algorithm 5. Note that γ is a discount factor.
Discounting makes the algorithm prefer earlier rather than later payoffs and CADIA-
Player uses 0.99 as its discounting factor.

Algorithm 4 is a simplified version of the one used in CADIA-Player and is presented
first for clarity. It works by first checking if the current game has reached a terminal
state. If the game has terminated, the goal value for the role we are playing is returned.
However, if the game is not over, we start by getting all available moves for the role we
are playing and then select which one of them to play (line 5). Remember from Table 3.2
thatmake (line 6) will select a random move for all opponents when given only one move
(because all roles move simultaneously). Next we advance the game to the next state and
recursively search it (line 7). When the recursion starts to unwind, the returned value is
discounted. We then retract the action taken to restore the game state as it was when this
execution instance was entered. Now that we are in the correct state we can update the
action we sampled with the q value. Finally, we return the q value up the execution stack
so the previous state can discount and update its sampled action value.
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Algorithm 5 selectAction(Moves) for UCT
1: val← −∞
2: curV al← 0
3: foundmax← 0
4: randmax← ∅
5: for all mi ∈Moves do
6: node← statespace.getNode(Moves[i])
7: if node = NULL then
8: curV al = +∞
9: else

10: curV al← node.q + Cp ∗ sqrt (ln (node.state.n) /node.n)
11: end if
12: if curV al = val then
13: randmax[foundmax+ +]← i
14: end if
15: if curV al > val then
16: val← curV al
17: foundmax← 1
18: randmax[0]← i
19: end if
20: end for
21: M ← randmax[rand() mod foundmax]
22: return M

In Algorithm 5 we show how to choose among available actions (called in line 5 in Al-
gorithm 4). In it we loop over all the moves sent as a parameter into the algorithm and
store the ones having the highest UCT value in a list. Each loop starts by retrieving the
node for the current action from our game-tree model. If no such node exists1 (NULL is
returned) it gets a value of +∞ as it should be selected before all other sampled nodes.
We end by selecting an action for sampling, which is done by selecting randomly from
the list.

With many simulations, if storing the entire simulation tree, there is a possibility that the
UCT tree grows too large to store in memory. We have two ways of counteracting this.
First, after making a move, we can delete the parts of the tree that are no longer relevant
for the game (e.g. moves explored that were not played). Secondly, for every simulated
episode, only the first node beyond the UCT border (see Figure 4.1) is stored (Coulom,
2006). In order to do that we change the implementation of the updateV alue function
so that it does not update the state space model if the state-action pair being updated is
further than one ply away from the UCT border. An overview of a single UCT simulation

1 Or they have been buffered when the state was previously encountered, but never selected for simula-
tion.
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Figure 4.1: Conceptual overview of a single UCT simulation

is given in Figure 4.1. The start state is denoted by S, the terminal state with T and N is
the new state added to the model after the simulation finishes. Because GDL rules require
a move from all players for each state transition, the edges in the figure represent a set
of moves. When the GDL simulates a turn taking game, the players not having their turn
return a noop action that has no effect.

When the UCT border has been passed the model returns NULL nodes which have the
value of +∞ and are therefore explored first and if all nodes are NULL the tie breaking
scheme results in playing a random game to the end of the episode. Because better actions
are selected more often than suboptimal ones, the UCT tree grows asymmetrically. If an
action on top of a particular branch is consistently good, the UCT tree grows this branch
and in time completely takes over the random rollout below it. The opposite happens
when the algorithm shows little interest in some branch and explores it rarely. That UCT
branch does not grow much and we save memory by not wasting space on storing this
branch in its entirety. This memory scheme can be said to save space where the algorithm
saves time.

4.3 Opponent Modeling

Although UCT helps CADIA-Player to focus on its more promising paths, there still is a
risk of much time being spent on irrelevant paths, namely paths that the opponent would
never lead us down. Since CADIA-Player assumes no knowledge when the simulations
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Algorithm 6 search(ref qValues[])
1: if isTerminal() then
2: for all ri in getRoles() do
3: qV alues[i]← goal(i)
4: end for
5: return
6: end if
7: playMoves← ∅
8: rewards← ∅
9: for all ri in getRoles() do

10: moves← getMoves(ri)
11: stateSpace← StateSpaces[i]
12: move← selectAction(moves, stateSpace)
13: playMoves.insert(move)
14: moves.clear()
15: end for
16: rewards← make(playMoves)
17: search(qV alues)
18: retract()
19: for ri in getRoles() do
20: qV alues[i] = rewards[i] + γ ∗ qV alues[i]
21: stateSpace← StateSpaces[i]
22: updateV alue(playMoves[i], qV alues[i], stateSpace)
23: end for
24: return

begin it will have to learn from experience what is good for the opponent, but the same
logic applies here regarding action selection, it is better to explore the state space where
the opponent believes he will do better. So for each opponent in the game a separate game-
tree model is set up where estimates are built from the rewards received by that opponent.
Because GGP is not limited to zero-sum games, the opponents cannot be modeled by
using the negation of our rewards. Any participant can have its own agenda and therefore
needs its own value function. All these game-tree models still share the simulations of
the player and control action selection for the opponent they are modeling using the same
UCT algorithm as the actual player. In fact inside the game player, every role in the game
gets the same treatment during simulation and only the interfacing parts of the player see
the UCT player as having a specific role.

A modified version of Algorithm 4 taking this into account can be seen as Algorithm 6
and is the one used by CADIA-Player. The StateSpaces array stores the different models.
The functions selectAction and updateValue then use the model selected into stateSpace
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to make their selections and updates. When the time comes to select the best action
CADIA-Player’s model is queried for the action with the highest Q(s, a) value.

4.4 Parallelization

Simulations are an appealing choice when it comes to parallelization because it is easy to
run them concurrently and therefore distribute them between CPUs. Each CPU then runs
its own set of simulations. The main concerns are how to combine the results of all the
concurrent runs on another processor since results from one CPU may influence which
simulations to run next.

Because the UCT tree is grown one node per simulation at the most, the first node to be
selected randomly (if any) will be the only one of the randomly selected ones to need the
return value of the episode. To calculate the value of the new node we need to know the
number of actions from it until the episode terminated and the return of the episode. The
number of actions is needed to be able to discount the return correctly. The estimated
value of the new node will be γl ∗ return where l is the number of actions to the terminal
state of the episode. We then back this estimated value normally up the UCT tree.

To set up a simple parallel search: When we cross the UCT border the random run through
the state space can be unloaded to another CPU on the same or a different computer. When
CADIA-Player starts up, it reads a file which contains a list of identities, IP addresses
and port numbers, that indicate slaves that the processing can be unloaded to. Using
TCP/IP communication the slaves are initialized with the game descriptions so they can
simulate the game and, when needed, they are sent a representation of the current state
and their result can be collected later containing the length and return value they got from
running a random simulation from the state they were given. This parallelization scheme
is based on ideas presented in (Cazenave & Jouandeau, 2007) and the low level parallel
communication was written by Yngvi Björnsson.

4.4.1 Slave Programs for Parallelization

The slave programs used to run the random part of a simulation are a thin C++ layer on
top of the same kind of Prolog initialization that the master program uses. The C++ layer
contains the process communication and logic to randomly select moves to advance the
game state in YAP until a terminal state is reached and a goal value can be obtained to re-
turn to the master player. In order to lower the communication overhead, CADIA-Player
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also sends the slaves the discounting factor and a parameter indicating how many simula-
tions they should run. The discounting factor is needed so the result of all simulations run
can be averaged correctly into a single result, because taking averages of the path lengths
and the goals will not give the correct result when discounted, it must be done separately
for each simulation.

4.4.2 Other Parallelization Methods

Two other parallelization methods for UCT are presented in (Cazenave & Jouandeau,
2007). The first one is called Single-Run Parallelization and works by running many UCT
search slaves under a single master that do not share any information. When the slaves
run out of time they all report the estimated action values they calculated for their root.
The master then combines all this information into its own root and selects what action
to perform greedily from all available actions. The second method is called Multiple-

Runs Parallelization. The setup is similar, but now the slaves report back to the master at
predetermined intervals and at those intervals the information that the master calculates
as its root is communicated to the slaves and they start a new UCT search.

4.5 Selecting among Unexplored Actions

The following section describes improvements we made to CADIA-Player after the GGP
competition.

When encountering a state with unexplored actions CADIA-Player selects randomly from
them until in the end they have all been selected once because it has no criteria for guess-
ing which one is most likely to be best. One way to add such criteria in a domain indepen-
dent way is to exploit the fact that the same actions can occur in the game tree, although
at different states (Gelly & Silver, 2007). We can gather a form of history heuristics
about all actions encountered by keeping track of a special Qh(a) value for each action,
independent of the state it was executed in. Like with the Q(s, a) values, this value is
incrementally updated each time that action a is used in a simulation.

Now that we have our history heuristics, how do we use it to our advantage? We handle
action selection differently in states that have unexplored actions. Instead of selecting
randomly from the unexplored actions by assigning them all the initial value +∞, each
of them is checked to see if it has a history heuristic value and is assigned the historical
Qh(a) value if found. If no historical value is found, the action is assigned the maximum
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GGP goal value (100) to bias towards similar exploration as is the default in the UCT
algorithm. Future work may include examining different initialization values, like the
average action-value of the state, for actions with no historical data. Now we have a set of
actions that have been assigned a history value, and to select one of them we use a Gibbs
distribution. Gibbs distribution is a modified Boltzmann distibution, and we use it in the
form

P(play(a)) =
eQh(a)/τ

Σn
b=1e

Qh(b)/τ

where a and b are actions from the set of n available actions in the current state. Each
action a has its probabilities of being selected calculated by this formula and then the next
action is selected with these probabilities. The τ parameter is called the temperature. By
manipulating it one can bias the probability distribution. As τ → 0 the selection becomes
greedy and the action with the highest value is selected with probability 1. Higher values
for τ flatten the distribution, making the difference in selection probabilities between the
best and worst action become smaller.

Implementing this extension into CADIA-Player was done by storing theQh(a) value and
the instance counter for the incremental update to the actions stored in the Action Buffer

(see Section 3.2.1) maintained by the model. The new version adds to its updateV alue
function the updates to the Action Buffer, changes the selectAction function so it could
detect when a totally unexplored action was amongst the ones to choose from, and if
so switch to the Gibbs distribution action selection. An empirical comparison of the
effectiveness of this improved version of CADIA-Player is found in Chapter 5.

4.6 Related Work

The UCT algorithm has been a great success in the game of Go and is used by the best
computer Go programs today, e.g. MoGo (Gelly et al., 2006) and Crazy Stone (Coulom,
2006). Experiments showing how UCT can benefit from using an informed policy, in-
stead of random, when the rollout exceeds the UCT border in Go are presented in (Gelly
& Silver, 2007). The method, however, requires game-specific knowledge which makes
it difficult to apply to GGP. Also in (Gelly & Silver, 2007) they show how to speed up
the initial stages of the learning process in UCT by using Rapid Action Value Estimation

which when updating an state-action pair (s, a) also updates all of (s′, a) where s′ oc-
curred before s and action a was available. We did not experiment with this type of rapid
learning in GGP, but it can be expected that the game being played will highly influence
the benefits and perhaps there may be cases of negative effects.
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4.7 Conclusions

We explained the UCT algorithm and showed its implementation in CADIA-Player where
it is extended to play for all opponents to bias the simulations towards a more intelligent
rollout for all participants. Ways to extend the UCT search to use more than one CPU
were described. An improved technique to select from previously unexplored actions
was introduced, which utilizes knowledge gathered when these actions are encountered
at other states. Our implementation of the UCT search, along with the aforementioned
improvements, enhances the playing skills of CADIA-Player.

In the next chapter we empirically evaluate how efficient our UCT search implementation,
and the proposed algorithm enhancements, are in CADIA-Player.



Chapter 5

Results

In this chapter we give an empirical evaluation of CADIA-Player’s UCT search in the
context of GGP. The objective of the experiments is threefold: to demonstrate the effec-
tiveness of UCT over standard MC-based approaches, to see how more simulations affect
quality of play, and to evaluate the effectiveness of our improved action selection scheme
for choosing among unexplored actions. The first has two parts to it as UCT augments
MC in two ways, both by offering a different action-selection rule and by caching results
between moves. We evaluate the effects of these separately.

To perform these experiments we have two baseline players. The first baseline player is
a standard MC player that uses a uniform random distribution for action selection and
has no memory to retain information about the game tree between moves. This player
represents how of CADIA-Player would do if stripped of both the UCT action selection
rule and its memory scheme. The second player is an identical MC player, but with the
same memory scheme as the UCT algorithm. When compared to the first baseline player,
this player shows the benefits of adding game-tree memory. Furthermore, comparing it
to CADIA-Player shows the effectiveness of the UCT action selection scheme, the only
difference between the two players. To minimize the effect of implementation details
all players are built on the same software framework. Furthermore, no parallel roll-out
scheme was used in these experiments, each player only ran on a single CPU. In the
following sections the MC player without memory will be referred to as MCorg and the
one with memory as MCmem. CADIA-Player is referred to as CPuct and its version using
the improved action selection scheme for unexplored actions (see Section 4.5) is referred
to as CPimp. All the experiments use adversary games, which were our main focus when
developing CADIA-Player.
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5.1 UCT Competition Performance

To measure the level of improvement CPuct achieves using UCT we selected three well
known games as a testbed: Connect Four, Checkers and Othello. CPuct competed against
the two aforementioned baseline players and they also competed against each other.

5.1.1 Experiment Setup

The improvements from using UCT were measured by playing tournaments between
CPuct and the two baseline players, MCorg and MCmem. Each pair of players played
250-game matches, 125 games as each color. In total, nine such matches were played,
three for each type of game with three different time controls. For each game, tour-
naments with 10, 20, and 30 second start and play clocks were played. The GDL for
the games used were downloaded from http://games.stanford.edu (conn4.kif,
checkers.kif, and othello.kif).

The rows in the results tables in the following sections show the winning percentage of
each player against each of the other two. The Win ratio column shows the average win
percentage and the last column shows the 95% confidence bound.

All experiments were run on Linux 2.6.19-gentoo-r1 running on computers with two x86
Intel(R) Xeon(TM) 3.20GHz CPUs. Each game uses a single CPU.

5.1.2 Connect Four

The result of the three Connect Four tournaments can be seen in Table 5.1. Clearly
CADIA-Player is the superior player with an average winning percent ranging from
88.7% in the 10 second game, to 91.4% in the 30 seconds game. If we look at the outcome
of the 10 seconds game, we can see that having the memory gives MCmem a big advan-
tage over MCorg, but this advantage lessens quickly as the thinking time is increased.
The action selection of CPuct holds up well and when having the memory seems to have
lost the edge MCmem drops considerably in relation with MCorg, but CPuct does not. It
constantly improves more than MCmem but the numbers against MCorg are more stable
and could indicate that the model starts to make little difference when given enough time
to run many simulations as Connect Four is a relatively simply game, although its state
space is estimated to be about 1014 (Allis, 1994). The simulation count without the model
is probably achieving a similar ranking of the actions. In the 30 second game CPuct even
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Table 5.1: Connect four results
Player MCorg MCmem CPuct Win ratio 95% conf.
Start and play clock set to 10 seconds
MCorg N/A 29.0 % 6.8 % 17.9 % ± 3.33 %
MCmem 71.0 % N/A 15.8 % 43.4 % ± 4.31 %
CPuct 93.2 % 84.2 % N/A 88.7 % ± 2.73 %
Start and play clock set to 20 seconds
MCorg N/A 43.4 % 10.2 % 26.8 % ± 3.83 %
MCmem 56.6 % N/A 12.4 % 34.5 % ± 4.11 %
CPuct 89.8 % 87.6 % N/A 88.7 % ± 2.73 %
Start and play clock set to 30 seconds
MCorg N/A 41.8 % 8.8 % 25.3 % ± 3.71 %
MCmem 58.2 % N/A 8.4 % 33.3 % ± 4.03 %
CPuct 91.2 % 91.6 % N/A 91.4 % ± 2.35 %

gets a higher winning percentage against MCmem. This can be explained by the variance
because of the limited sample size.

5.1.3 Checkers

When we examine the tournament results from Checkers, which are found in Table 5.2, we
see more uniform results than in Connect Four. This is expected as Checkers is bigger with
a state space estimated to be 1018 (Allis, 1994), and needs much more complex strategy.
The game tree can even contain loops when both players have promoted a piece to a
king. The memory structure accounts for most of the improvements, but the UCT action
selection of CPuct still shows an definite advantage over MCmem, winning about 70% of
the games against it on average. Also, notice that MCorg is constantly by far the worst
player, showing the advantage of having a memory model. The reason why the memory
model helps so much in this game might be partly explained by the small branching
factor because of forced captures. This helps the model to keep a bigger share of relevant
information in memory between moves, even with random action selection.

5.1.4 Othello

Othello has a huge state space, about 1028 (Allis, 1994), but loops cannot occur, i.e. every
move brings the game closer towards the end. As seen in Table 5.3, the size of the state
space affects the accuracy of the model more than in the other two games and MCorg is
relatively not as bad as in Checkers. But what is interesting is that CPuct seems not to be
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Table 5.2: Checkers results
Player MCorg MCmem CPuct Win ratio 95% conf.
Start and play clock set to 10 seconds
MCorg N/A 14.6 % 6.8 % 10.7 % ± 2.51 %
MCmem 85.4 % N/A 31.2 % 58.3 % ± 4.12 %
CPuct 93.2 % 68.8 % N/A 81.0 % ± 3.22 %
Start and play clock set to 20 seconds
MCorg N/A 17.4 % 4.6 % 11.0 % ± 2.53 %
MCmem 82.6 % N/A 28.0 % 55.3 % ± 4.13 %
CPuct 95.4 % 72.0 % N/A 83.7 % ± 2.97 %
Start and play clock set to 30 seconds
MCorg N/A 15.4 % 8.2 % 11.8 % ± 2.57 %
MCmem 84.6 % N/A 28.6 % 56.6 % ± 4.10 %
CPuct 91.8 % 71.4 % N/A 81.6 % ± 3.07 %

Table 5.3: Othello results
Player MCorg MCmem CPuct Win ratio 95% conf.
Start and play clock set to 10 seconds
MCorg N/A 39.8 % 23.2 % 31.5 % ± 4.00 %
MCmem 60.2 % N/A 26.6 % 43.4 % ± 4.28 %
CPuct 76.8 % 73.4 % N/A 75.1 % ± 3.71 %
Start and play clock set to 20 seconds
MCorg N/A 33.2 % 16.0 % 24.6 % ± 3.75 %
MCmem 66.8 % N/A 29.4 % 48.1 % ± 4.36 %
CPuct 84.0 % 70.6 % N/A 77.3 % ± 3.64 %
Start and play clock set to 30 seconds
MCorg N/A 35.0 % 16.0 % 25.5 % ± 3.78 %
MCmem 65.0 % N/A 26.2 % 45.6 % ± 4.33 %
CPuct 84.0 % 73.8 % N/A 78.9 % ± 3.53 %

as affected as MCmem by the larger state space when playing MCorg and, even though not
by much, does better against MCmem than in Checkers. Here the UCT algorithm earns
its keep and obviously has an advantage from how it balances exploration and exploita-
tion.

5.2 Node Expansion

The result of the Checkers match shows the players with the memory model dominating
MCorg. Therefore we wanted to get a better idea of how much effect the model has on
node expansion. The model does in many cases bypass expensive action lookup in YAP
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Table 5.4: Node expansion count for CPuct and baseline players
Player Nodes expanded per second

Connect Four Checkers Othello
MCorg 536.96 211.04 102.56
MCmem 1124.89 484.58 134.38
CPuct 1060.30 478.58 135.31

by using cashed information. Doing so should increase the number of nodes expanded
per second. So to see how much impact adding the memory has on node expansion, and
what the overhead is by using the UCT algorithm in CPuct we ran experiments to measure
how many nodes each player expanded per second.

5.2.1 Experiment Setup

Each of the players was run against MCorg in three separate matches with 10, 20 and
30 second start and play clocks for each of the three test games. Then number of nodes
expanded for all move decisions during these games was averaged to get the average over
any position in the game tree.

All experiments were run on Linux 2.6.19-gentoo-r1 running on computers with two x86
Intel(R) Xeon(TM) 3.20GHz CPUs. Each match used one CPU.

5.2.2 Node Expansion Results

The results of the node expansion experiments are listed in Table 5.4. There we see
clearly that the game-tree model helps achieve faster node expansions and that is the
result of caching what moves are available in states that are added to the model (see
Section 3.2). This way they can be looked up when the state is encountered again instead
of having to let YAP prove them which is costly. Expanding more nodes means more
simulations which leads to a more reliable value function, so not only does the model
give an advantage in being able to remember simulation information between moves, but
also by speeding up the player significantly. In the case of these games, the complexity of
proving moves and transitions rises as the state space gets larger, resulting in lower node
expansion performance.

The overhead of using the UCT algorithm is notable in the figures for Connect Four and
Checkers but nothing to worry about, given its clear dominance when competing with the
other two. But the interesting thing is that in the huge state space of Othello, it actually
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achieves more node expansions than MCmem. This is an artifact of how it searches the
state space (see Chapter 4), because by concentrating on what is likely to pay off, number
of revisits increases.

5.3 Time Control Comparison

To see how more simulations will affect the performance of our UCT player, we ran
experiments where one player had double the time controls of the other. This is also a
good test for forecasting the benefits of using faster future hardware.

5.3.1 Experiment Setup

Two CPuct players competed in the three aforementioned test games using three different
time controls, with the second player always having half the amount of time the first one
had. The time controls of both start and play clock for the first player were set to 10, 20,
and 40 seconds and for each of this setting 250 games were played (125 each side).

The Win ratio column in Table 5.5 shows the winning percentage of the player with the
higher time controls. The last column shows the 95% confidence bound.

All experiments were run on Linux 2.6.19-gentoo-r1 running on computers with two x86
Intel(R) Xeon(TM) 3.20GHz CPUs. Each game uses a single CPU.

5.3.2 Time Control Comparison Results

The performance within each game show constant gain and any difference can be ex-
plained by the variance. Not showing any signs of diminishing returns, as time is in-
creased is a positive result for the simulation approach and indicates that this approach will
continue to gain momentum with new technology with even faster multi-core CPUs.

5.4 Improved CADIA-Player

The following experiment evaluates the enhancement of selecting unexplored actions
from a Gibbs distribution applied to history heuristic values (see Section 4.5). Is shows
us if it has a statistically sigificant impact on the original CADIA-Player.
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Table 5.5: Time control comparison for CPuct
Game Time controls Win ratio 95% conf.
Connect Four 10 sec 05 sec 64.2 % ± 5.81 %
Connect Four 20 sec 10 sec 63.2 % ± 5.83 %
Connect Four 40 sec 20 sec 65.4 % ± 5.79 %
Checkers 10 sec 05 sec 76.2 % ± 4.85 %
Checkers 20 sec 10 sec 72.2 % ± 4.96 %
Checkers 40 sec 20 sec 77.8 % ± 4.33 %
Othello 10 sec 05 sec 67.0 % ± 5.75 %
Othello 20 sec 10 sec 64.0 % ± 5.86 %
Othello 40 sec 20 sec 69.0 % ± 5.68 %

5.4.1 Experiment Setup

We set up a tournament between the original CPuct and CPimp. They competed in four
different games, the three test games mentioned earlier plus the game Amazons with both
clocks at 10, 20, and 30 seconds and each player as one side half of the time. As before,
for every game and clock setting, 250 games were played. Amazons was added to the
testbed because we where curious of what would happen given its large branching factor
(typically many hundreds of moves).

The temperature (see Section 4.5) of the Gibbs distribution was set to 10. This value was
empirically obtained by trying a range of temperature values on a small number of games
to be able to map out an appropriate setting for proof of concept. This value is not exact
and we do not claim that it should be the same for all games.

All experiments were run on Linux 2.6.19-gentoo-r1 running on computers with two x86
Intel(R) Xeon(TM) 3.20GHz CPUs or two x86 Intel(R) Xeon(TM) 3GHz CPUs. Each
experiment used one CPU that the players took turn using so in all games both participants
used exactly the same hardware.

5.4.2 Improved CADIA-Player Results

A summary of the results is presented in Table 5.6. The third column of the table contains
the winning percentage of CPimp and the fourth column the 95% confidence bound. The
last column shows the rounded down confidence for improvement using one tailed test.
The table shows us that CPimp wins each and every 250-game match, all games and all
time controls.
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Table 5.6: Tournament winning percentage for CPuct and CPimp
Game Time CPimp 95% conf. Improvement conf.

Connect Four 10 sec 53.6 % ± 6.09 % >87 %
Connect Four 20 sec 52.8 % ± 6.00 % >81 %
Connect Four 30 sec 54.2 % ± 6.08 % >91 %

Checkers 10 sec 54.0 % ± 5.80 % >91 %
Checkers 20 sec 54.4 % ± 5.80 % >93 %
Checkers 30 sec 54.4 % ± 5.77 % >93 %
Othello 10 sec 56.4 % ± 6.08 % >97 %
Othello 20 sec 65.2 % ± 5.81 % >99 %
Othello 30 sec 65.0 % ± 5.83 % >99 %

Amazons 10 sec 58.8 % ± 6.11 % >99 %
Amazons 20 sec 56.8 % ± 6.15 % >98 %
Amazons 30 sec 52.8 % ± 6.20 % >81 %
Average Winnings 56.53 %

In Figure 5.1 we see the numbers from Table 5.6 as a line chart sharing the win ratio
of CPimp in the games over the different time controls. We see that for both Connect
Four and Checkers there seems to be an constant level of improvement regardless of the
clock setting. Most noticeable is how well this improvement works for Othello. This
is most likely because of how stationary good moves are in that game. Putting a tile in
one of the corners or on the sides is usually when possible a good move when played in
many different game positions. In Amazons a move can become just as bad as it was
good if one of your Amazons is close to a certain threatening square instead of one of
your opponent’s. Also if the opponent manages to move an Amazon from an imminent
threat, the threatening move becomes a waste of time. The most likely reason for why the
improvement works so well for the 10 seconds game of Amazons is that the complexity
of the game is greater than the original player can handle with such a short time to think.
In other words, it does not have the sense to make the moves that disarm good moves for
CPimp. Given more time on the clocks, CPuct quickly catches up though.

There is no noticeable correlation between the branching factor and the level of improve-
ment, it has more to do with the characteristics of the game.

For the individual 250-game matches we can state for almost half of them with over 95%
statistical significance that CPimp is the better player (and the remaining with over 90%
significance for all except three). If we accumulate results based on all matches for a
game on the one hand, and on the other hand all matches of a given time control, we
can state with close to 99% significance that CPimp is better at all games and all time
controls.
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Figure 5.1: Improvements of CPimp

5.5 Conclusions

In Connect Four the CPuct variant dominated the others. It showed how simple games
can overcome the benefits of having the model, but still the UCT action selection gives
an unmistakable advantage. In Checkers we saw how useful the model can be when a
large portion of the game tree it models is still relevant after a move (because of a very
small branching factor). Othello showed how the UCT action selection handles huge
state spaces much better than random selection. UCT selective nature allows it to verify
promising paths while the random selection is likely to get similar values for all moves
because of the small size of samples it has for each of them. Overall, the CPuct gave
impressive results, demonstrating the strength of UCT.

Besides keeping information, a part of the benefits of adding the game-tree model is that
it can more than double average speed. The model also gets rid of the overhead of UCT
for very large state spaces as it uses cached information frequently to assert promising
paths.

Each time the time controls of the CPuct player are doubled we maintain a constant level of
improvement, indicating constant benefits from faster hardware or more robust processing
of the state space.

By enhancing UCT with the history heuristic we get a player that won every 250-game
test match against CPuct. By accumulating all matches of any game type or time controls
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we can state that the new player, CPimp, is better with over 95% statistical significance and
if we look at all matches for all games and time controls we get over 99% significance.
CPimp level of improvement in each game seems to be connected to the characteristics
of the game: mainly how likely an action that is good in one game position is likely to
be good in different positions. As far as we have observed, the branching factor does not
affect this enhancement.



Chapter 6

Conclusions

In this thesis we presented a complete GGP agent named CADIA-Player. It has already
proven its effectiveness by taking first place in the Third Annual General Game Playing
Competition. By this it demonstrated the effectiveness of simulation-based approaches in
the context of GGP.

We described the architecture of CADIA-Player and explained how it works and by do-
ing so we gave insight into one promising method of how a General Game Player can
be built. The main focus of CADIA-Player is adversary games, and it uses the UCT
algorithm for most of its game playing. The only exception is for single-player games
where it uses Enhanced IDA∗ by default. CADIA-Player models the game it is playing
and conserves memory by adding only one state per simulation to the game-tree model,
which in conjunction with the UCT algorithm causes memory usage to focus mostly on
the “interesting” branches of the game tree. We also discussed how CADIA-Player is
parallelized to use many CPUs. One appeal of our approach to GGP is how easily it can
be parallelized. This is an important feature as massively parallel multi-core processors
are now becoming increasingly more mainstream.

In Chapter 5 we gave empirical data showing how CADIA-Player improves in adversary
games when given its game-tree model and the UCT algorithm for action selection during
simulation. We compared it to two Monte Carlo players, one without the game-tree model
and one with it. By separating these two aspects we can more clearly see the impact of
both adding the game tree and the UCT action selection rule. As the complexity level
of the game increases, the overhead of UCT disappears. This is because the search now
spends more time in interesting parts of the game tree that have already been explored and
therefore cached in the memory model. We examined how better hardware would affect
CADIA-Player and found no signs of diminishing returns. For the improved version of
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CADIA-Player we give data that confirms that its performance over the original one is
statistically significant. The improvements appear to be linked to the characteristics of
the game being played, mainly of how persistent good moves are.

For future work there are some open issues that we have observed while developing
CADIA-Player. For example, the Cp parameter of the UCT algorithm needs to be in-
vestigated further. First of all, it is unlikely that it should be constant for all GGP games
and only connected to the goal value range. Instead one should dynamically determine
its most appropriate value based on the game description. It may even be that the Cp
parameter should change during a game. For the improved CADIA-Player there are simi-
lar questions that need to be answered for the temperature parameter. Also, the value that
unexplored actions with no historical data are initialized with needs to be investigated fur-
ther. These are all smaller questions regarding our player. There are grander challenges
ahead.

General game-playing systems are still in their infancy. There are still many interesting
research topics that need to be addressed to further advance the field. CADIA-Player,
with its simulation approach, adds a new promising look at one such avenue. We expect
to see many more similar approaches in future GGP competitions. Search is knowledge,
and is capable of discovering useful patterns dynamically that would be hard to do with
a static evaluation approach. One of the main future challenges in our view is how to
effectively combine traditional knowledge-based approaches with the new simulation-
based approaches.
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Appendix A

GDL Example

The KIF description of Tic-Tac-Toe is provided as an example of a game description in
GDL. The atoms that start with the character “?” are variables.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Tictactoe

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Roles

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role xplayer)

(role oplayer)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Initial State

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (cell 1 1 b))

(init (cell 1 2 b))

(init (cell 1 3 b))

(init (cell 2 1 b))

(init (cell 2 2 b))

(init (cell 2 3 b))

(init (cell 3 1 b))

(init (cell 3 2 b))

(init (cell 3 3 b))

(init (control xplayer))
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Dynamic Components

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Cell

(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (cell ?m ?n o))

(does oplayer (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (cell ?m ?n ?w))

(true (cell ?m ?n ?w))

(distinct ?w b))

(<= (next (cell ?m ?n b))

(does ?w (mark ?j ?k))

(true (cell ?m ?n b))

(or (distinct ?m ?j) (distinct ?n ?k)))

(<= (next (control xplayer))

(true (control oplayer)))

(<= (next (control oplayer))

(true (control xplayer)))

(<= (row ?m ?x)

(true (cell ?m 1 ?x))

(true (cell ?m 2 ?x))

(true (cell ?m 3 ?x)))

(<= (column ?n ?x)

(true (cell 1 ?n ?x))

(true (cell 2 ?n ?x))

(true (cell 3 ?n ?x)))
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(<= (diagonal ?x)

(true (cell 1 1 ?x))

(true (cell 2 2 ?x))

(true (cell 3 3 ?x)))

(<= (diagonal ?x)

(true (cell 1 3 ?x))

(true (cell 2 2 ?x))

(true (cell 3 1 ?x)))

(<= (line ?x) (row ?m ?x))

(<= (line ?x) (column ?m ?x))

(<= (line ?x) (diagonal ?x))

(<= open (true (cell ?m ?n b)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?w (mark ?x ?y))

(true (cell ?x ?y b))

(true (control ?w)))

(<= (legal xplayer noop)

(true (control oplayer)))

(<= (legal oplayer noop)

(true (control xplayer)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal xplayer 100)

(line x))

(<= (goal xplayer 50)

(not (line x))

(not (line o))

(not open))
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(<= (goal xplayer 0)

(line o))

(<= (goal oplayer 100)

(line o))

(<= (goal oplayer 50)

(not (line x))

(not (line o))

(not open))

(<= (goal oplayer 0)

(line x))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(line x))

(<= terminal

(line o))

(<= terminal

(not open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;



Appendix B

GGP Competition 2007

The preliminaries of the GGP Competition 2007 took place in the month of June and
spanned four weeks. Following are the final results of the preliminaires.

Table B.1: Results of the Third Annual GGP Competition preliminaries
Rank Player Total Points Institution

1 CADIA-Player 2723.50 Reykjavik University
2 Fluxplayer 2355.50 Technical University of Dresden
3 Ary 2252.75 University of Paris 8
4 ClunePlayer 2122.25 University of California, LA
5 UTexas LARG 1798.00 University of Texas, Austin
6 Jigsawbot 1524.00 India Institute of Technology
7 LuckyLemming 1250.50 Technical University of Dresden
8 WWolfe 821.25 Independent (Stanford student)

The finals took place at the AAAI conference in Vancouver in July 2007. They were in knock-

out elimination format. CADIA-Player also won that competition, defeating ClunePlayer in the

finals.

Following are short descriptions for all games played in the preliminaries as given by the Stanford

Logic Group. The game played in the semi finals were Breakthrough (week 3) and three variations

of Skirmish (week 4) were played in the final matches against Cluneplayer.

Week 1

Blocks-World : Single-player, easy puzzle.

Maze : Single-player.

8-puzzle : Single-player.
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Peg : Single-player, performance-correlated reward (goal is proportional to number of pegs re-

moved from board).

Blocker : Two-player, asymmetric roles, turn taking, zero-sum reward.

Tic Tac Toe : Two-player, asymmetric roles, turn taking, zero-sum reward.

Tic Tic Toe : Two-player, symmetric roles, simultaneous move, zero-sum reward.

Two Player Chinese Checkers : two-player, nearly symmetric roles, turn taking, performance-

correlated reward (goal is proportional to number of pegs that a player moves to the other end of

the board).

Four Player Chinese Checkers : four-player, nearly symmetric roles, turn taking, performance-

correlated reward (goal is proportional to number of pegs that a player moves to the other end of

the board).

Asteroids : Single-player, performance-correlated reward (goal is 50 if a player is able to stop the

ship from moving, 100 if he can do so in a particular location).

Beat-Mania : Single-player, performance-correlated reward (goal is proportional to the number

of blocks caught).

Mummy Maze : Two-player, asymmetric roles, turn taking, zero-sum reward.

Ghost Maze : Two-player, asymmetric roles, turn taking, zero-sum reward.

Pac Man : Three-player, asymmetric roles, turn taking, asymmetric reward profile (reward for

pacman are performance correlated - goal is proportional to number of pellets eaten, reward for

ghosts is zero sum, 100 if pacman is caught, 0 otherwise).

Week 2

Blocks-World (Parallel) : Two instances of Blocks-World from Week 1, played at the same time.

Neither interacts with the other. Single Player. Averaged zero-sum rewards.

Blocks-World (Serial) : Same as above except the two instances are played one after the other.

Asteroids (Parallel) : Two instances of Asteroids from Week 1, played at the same time. Neither

interacts with the other. Single Player. Averaged zero-sum rewards.

Asteroids (Serial) : Same as above except the two instances are played one after the other.

Tic-Tac-Toe (Parallel) : Two instances of Tic-Tac-Toe from Week 1, played at the same time.

Neither interacts with the other. Two Player, turn-taking. Averaged zero-sum rewards.

Tic-Tac-Toe (Serial) : Same as above except the two instances are played one after the other.
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Blocker (Parallel) : Two instances of Blocker from Week 1, played at the same time. Neither

interacts with the other. Two Player, asymmetric roles, simultaneous move. Averaged zero-sum

rewards.

Blocker (Serial) : Same as above except the two instances are played one after the other.

Rule-Depth (Linear) : A stress test where it is always legal to either give up or continue. The

amount of effort to prove it is legal to continue grows linearly with game length. Single Player,

performance-correlated reward (proportional to how long a player goes before giving up).

Rule-Depth (Quadratic) : A stress test where it is always legal to either give up or continue.

The amount of effort to prove it is legal to continue grows quadratically with game length. Sin-

gle Player, performance-correlated reward (proportional to how long a player goes before giving

up).

Rule-Depth (Exponential) : A stress test where it is always legal to either give up or continue.

The amount of effort to prove it is legal to continue grows exponentially with game length. Sin-

gle Player, performance-correlated reward (proportional to how long a player goes before giving

up).

Duplicate-State (Small) : A stress test based on tree search. Of 1000 nodes, only 5 are unique.

Single Player, performance-correlated reward (based on path taken through tree.)

Duplicate-State (Medium) : A stress test based on tree search. Of 1000000 nodes, only 10 are

unique. Single Player, performance-correlated reward (based on path taken through tree.)

Duplicate-State (Large) : A stress test based on tree search. Of 100000000 nodes, only 15 are

unique. Single Player, performance-correlated reward (based on path taken through tree.)

State-Space (Small) : A stress test based on the search of a tree containing 1000 nodes. Single

Player, performance-correlated reward (based on path taken through tree.)

State-Space (Medium) : A stress test based on the search of a tree containing 1000000 nodes.

Single Player, performance-correlated reward (based on path taken through tree.)

State-Space (Large) : A stress test based on the search of a tree containing 1000000000 nodes.

Single Player, performance-correlated reward (based on path taken through tree.)

Week 3

Large Tic-Tac-Toe : Tic-Tac-Toe played on a 5x5 grid. Two player, turn-taking. Zero- sum re-

wards.

Large Tic-Tac-Toe (Suicide) : Large Tic-Tac-Toe with inverted goals. Two player, turn-taking.

Zero-sum rewards.

Connect Four : Players win by forming a line of four or more of their pieces. Two player, turn-

taking. Zero-sum rewards.
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Connect Four (Suicide) : Connect Four with inverted goals. Two player, turn-taking. Zero- sum

rewards.

Bomberman : Players attempt to blow up their opponent by placing bombs, while at the same time

avoiding like attacks. Two player, simultaneous move, symmetric roles. Zero-sum rewards.

Quarto : Players win by forming a line of four tiles in which each tile shares one of four attributes.

Two player, turn-taking. Zero-sum rewards.

Othello : Players attempt to fill a board with more of their own pieces than their opponent’s. Two

player, turn-taking.

Breakthrough : Players win by moving one of their pieces to the other end of the board. Two

player, turn-taking. Zero-sum rewards. Ties are impossible.

Breakthrough (Suicide) : Breakthrough with inverted goals. Two player, turn-taking. Zero-sum

rewards. Ties are impossible.

Week 4

Pentago : Players win by forming a line of five of their pieces. Players can both place pieces and

rotate portions of the board. Two player, turn-taking. Positive-sum rewards.

Pentago (Suicide) : Pentago with inverted goals. Two player, turn-taking. Positive-sum re-

wards.

Amazons : Players win by preventing their opponent from making legal moves. Two player,

turn-taking. Zero-sum rewards. Ties are impossible.

Skirmish : Chess with modified rules. Players accumulate points by capturing pieces. Two player,

turn-taking. Positive-sum rewards.

Checkers : An important game in the history of AI. Players win by capturing all of their opponent’s

pieces. Two player, turn-taking. Zero-sum rewards.

Wargame : Military simulation game. Players attempt to capture a flag while avoiding and re-

pelling terrorists. Single player, Zero-sum rewards.





School of Computer Science

Reykjavík University

Kringlan 1, IS-103 Reykjavík, Iceland

Tel: +354 599 6200

Fax: +354 599 6301

http://www.ru.is


