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Eiríkur Jónsson

May 2012

Abstract

Computational fluid dynamics (CFD) simulations are an important part of
modern design. High-fidelity CFD simulations are accurate and reliable, but
yet computationally expensive. The main objective of this work is to de-
velop a computationally, efficient and robust methodology for aerodynamic
shape optimization. We use surrogate-based optimization (SBO) in which
direct optimization is replaced by iterative updating and re-optimization of a
computationally cheap surrogate. The surrogate is constructed using a low-
fidelity model based on the same governing fluid flow equations as the high-
fidelity model, but with a coarser discretization and relaxed convergence cri-
teria. The low-fidelity model is then corrected using spaces mapping method-
ology where it becomes a reliable representation of the high-fidelity model.
The corrected model is then used to find an approximate optimum design of
the high-fidelity model. Due to noise in the low-fidelity model we introduce
polynomial approximation models based on sampled low-fidelity model data.
To our knowledge this is one of the first applications of space mapping us-
ing such methods in aerodynamic shape optimization. This methodology is
applied to two cases; (1) A constrained low-speed high-lift airfoil drag min-
imization in two-dimensional viscous flow. Here the algorithm requires less
than 31 high-fidelity model evaluations compared to 180 high-fidelity model
evaluations using direct optimization, and (2) a constrained transonic wing,
lift maximization case in three-dimensional viscous flow. Optimized designs
are obtained with less than 10 high-fidelity function evaluations.



Loftalffræðileg bestun með reiknilegum straumfræðilíkönum og
rýmisvörpun

Eiríkur Jónsson

Maí 2012

Útdráttur

Tölulegar straumfræðihermanir eru mikilvægar þegar kemur að verkfræði-
legri hönnun. Hágæða straumfræðilíkön eru nákvæm og áreiðanleg en ein-
nig reikniþung. Höfuðmarkmið þessa verkefnis er að þróa reiknifræðilega
hraðvirka og skilvirka bestunaraðferð fyrir loftaflfræðilega bestun. Aðfer-
ðin sem er lögð til í þessu verkefni byggir á bestunaraðferð þar sem notuð
eru leiðrétt lággæða straumfræðilíkön í staðinn fyrir hágæðalíkön. Lággæða
líkönin eru byggð á sömu straumfræðijöfnum og hágæðalíkönin en með mun
grófara reiknineti og slakari samleitni skilyrðum. Lággæðalíkanið er síðan
leiðrétt með rýmisvörpun (space mapping) og það notað sem nálgun við
hágæðalíkanið. Leiðrétta lággæðalíkanið er því næst notað til að finna bestu
lausn. Lággæðalíkönin innihalda mikið tölulegt suð og er því búið til mar-
gliðu nálgunarlíkan úr gögnum frá lággæðalíkönum. Aðferðarfræðin kynnt
hér hefur ekki verið notuð áður í hönnun á loftaflfræðilegum yfirborðum.
Sýnt er fram á hraðvirkni og áreiðanleika aðferðarinnar með tvenns konar
hönnunardæmum; (1) Fyrra dæmið er vængprófíll í lághraða tvíviðu seigu
flæði þar sem markmiðið er að hámarka lyftikraft. Aðferðin sem kynnt er hér
þarf eingöngu 31 ítrun með hágæðalíkaninu borið saman við 180 ef bestunin
er framkvæmd eingöngu með hágæðalíkaninu, (2) Seinna dæmið er þrívíður
vængur í seigu flæði nálægt hljóðhraða. Aðferðin sem kynnt er hér þarf
eingöngu 10 ítranir með hágæðalíkaninu til að finna bestu lausn.
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Chapter 1

Introduction

Aerodynamic and hydrodynamic shape optimization is of primary importance in many
engineering disciplines such as aircraft design [6] and turbomachinery [7]. In aircraft
design the wing shape is designed to provide maximum performance under a variety of
operating conditions such as takeoff, cruise, and landing [8] while for designing turbine
blades one seeks efficiency to maximize the turbines energy output [7]. Common to all
engineering disciplines is the fundamental goal of designing an aerodynamic shape such
that it maximizes efficiency or performance under a given set of operating conditions but
yet fulfills multiple design constraints [9, 7]. In order to optimize an aerodynamic shape
one must parametrize and analyse its geometry. Describing the geometry accurately, one
may need a number of parameters and constraints. As the number of parameters increases,
the computational cost increases. Therefore, the selection of computational methods,
both in terms of fluid flow analysis and optimization process, is imperative for a fast and
efficient design process.

Numerical optimization of airfoils and wings extends back to the mid 1970s, when Hicks
and Henne [8] applied gradient-based optimization techniques to airfoils and wings at
subsonic and transonic conditions. Adjoint methods introduced by Jameson [10] and
later extended by co-workers is an efficient gradient-based method. This method has
been applied on high-lift designs both on airfoils [10] and wings [9] using the viscous
Navier-Stokes equations.

The above methods directly apply the computational code in the optimization loop. More
recently, the drive has been towards including higher fidelity analyses in the design pro-
cess. As a result, design optimization, which requires large numbers of high-fidelity
model evaluations, becomes impractical and computationally expensive even when us-
ing cheap adjoint sensitivities. Computationally efficient optimization can be performed
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using surrogate-based optimization (SBO). One of the objectives of using SBO meth-
ods is to reduce the number of evaluations of the high-fidelity models, hence making
the optimization process more efficient. Surrogate-based optimization methods employ
computationally cheap surrogates in lieu of the computationally expensive high-fidelity
models [11, 12, 13].

The surrogate model can be constructed prior to using it in design and optimization by ap-
proximating sampled high-fidelity model data using, e.g., polynomial regression, Kriging
interpolation, radial basis functions or neural networks [13]. Approximation methods usu-
ally require a large number of high-fidelity function evaluations to ensure a decent model
accuracy since the number of samples grows exponentially with the number of design pa-
rameters. The computational cost can therefore become high. The approximation-based
surrogates are referred to as functional surrogates.

Physics-based surrogate models are not as versatile as approximation models because
they rely on the underlying low-fidelity models where the low-fidelity model is a simpli-
fied description of the high-fidelity model. These physics-based low-fidelity models can
be constructed by using simplified physics models, or by exploiting same CFD solver as
used to evaluate the high-fidelity model but with a coarser discretization and relaxed con-
vergence criterion [14]. Physics-based surrogates seem to offer better efficiency simply
because the low-fidelity model contains knowledge about the system which results in a
higher quality surrogate using a limited amount of high-fidelity model evaluations.

Space mapping (SM) [15, 13] is growing as a popular surrogate-based optimization algo-
rithm that exploits physical surrogates. Several other SBO algorithms exists such as the
Approximation and Model Management Optimization (AMMO) [16] framework and the
recently shape-preserving response prediction (SPRP) [17] technique.

Space mapping was developed for simulation-driven microwave engineering but is gain-
ing popularity in other areas of engineering. Despite of its potential and popularity in
microwave engineering, only few aerodynamic design optimizations studies have been
performed to our knowledge where little or no computational improvements have been
shown. However a recent study, optimizing an airfoil shape at transonic flow condition,
was performed within our research group, the Engineering Optimization & Modeling
Center (EOMC) at Reykjavik University where a simple variation of space mapping was
used [18]. A significant improvement was shown where computational cost was reduced
by 80% using space mapping compared to a direct optimization.

In this work we adopt the space mapping methodology and apply it to two cases, a two-
dimensional low-speed, high-lift airfoil design where the objective is to minimize drag
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with constraints on the lift, and a three-dimensional wing design at transonic flow condi-
tions where the objective is to maximize lift with constraints on drag and wing tip cross-
sectional area. In both cases, a physics-based low-fidelity model is constructed using the
same CFD solver but with a coarser grid and relaxed convergence criteria. Due to noise in
the low-fidelity model we extend the method by introducing polynomial approximation
models based on sampled low-fidelity model data. To our knowledge this is one of the
one of the first applications of space mapping using such methods in aerodynamic shape
optimization. We demonstrate that the approach yields a design improvement for both
applications where the computational cost is significantly decreased.

The thesis is outlined as follows. In Chapter 2, we introduce variable resolution mod-
elling using surrogate based optimization and space mapping. In Chapter 3, the proposed
method is applied to low-speed high-lift airfoil design and in Chapter 4 to a wing at tran-
sonic conditions. Chapter 5 concludes the thesis.
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Chapter 2

Variable-resolution Shape
Optimization

In this chapter, we start by presenting a general optimization formulation, and available
optimization techniques such as gradient-based and derivative-free methods. We then
introduce surrogate-based optimization (SBO), where the SBO concept, modelling and
correction techniques are presented. Space mapping methodology is then presented where
we introduce space mapping basics, give a mathematical formulation of the surrogate
model construction and present the optimization algorithm.

2.1 General Optimization Formulation

The computational burden increases rapidly by the increased number of design variables
as well as extending the flow solution domain to a three dimensional problem. The need
for a clever and computationally efficient optimization process are important in a fast de-
sign process is dominant in today’s environment. Two common approaches exist when
designing a wing or an airfoil. Firstly, the most common method, is the direct design
where the goal is to maximize the wing performance. Design setups often include lift
maximization, drag minimization and lift-to-drag maximization. The other method, the
inverse design, typically targets characteristic values to be obtained, e.g., a certain pres-
sure distribution or a flow behaviour.
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Table 2.1: Problem formulation for two-dimensional airfoil shape optimization. Con-
straints on minimum allowable area are also included in the design. Three dimensional
wing shape optimization is almost identical where the subscript on the coefficient would
change to capital letters.

Case f(x) g1(x)
Lift maximization −Cl(x) Cd(x)− C limit

d ≤ 0
Drag minimization Cd(x) C limit

l − Cl(x) ≤ 0
L/D maximization −Cl(x)/Cd(x) C limit

l − Cl(x) ≤ 0
Inverse design 1/2

∫
(Cp(x)− Ctarget

p )2ds

Generally, aerodynamic shape optimization can be formulated as a non-linear minimiza-
tion problem, i.e., for a given operating condition, solve

min
x
f(x)

s.t. gj(x) ≤ 0

l ≤ x ≤ u

(2.1.1)

where f(x) is the objective function, x is the design variable vector, gj(x) is the design
constraint and l and u are the lower and upper bounds for the design variables. Design
variables and detailed formulation are problem specific but a typical formulation for a
two-dimensional airfoil optimization is shown in Table 2.1. Similar formulation can be
applied to a three dimensional wing design. Additional constraints are often introduced.
Constraints concerning the physical structure of a wing one typically sets constraints for
airfoil cross-sectional area. Area constraint can be formally written as g2(x) = Amin −
A(x) ≤ 0, where A(x) is the cross-sectional area of the airfoil for the design vector
x and Amin is the minimum allowable cross-sectional area. Other constraints such as
mathematical models describing the structural weight of the wing are often included in
optimization [9].

2.2 Optimization Methods

Various optimizations methods exist and methods are usually chosen based on the prob-
lem at hand. The basic flow of a direct optimization is shown in Fig. 2.1 and can be
summarized in the following steps;

1. An initial design x(0) is considered and the high-fidelity CFD model is evaluated at
a given design resulting in values for the objective function and constraints.
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Figure 2.1: Flowchart of the direct optimization approach.

2. The optimization routine finds a new design x, evaluating the high-fidelity model
yielding new values for the objective function and constraints.

3. Based on the value of the objective function and constraints, violated, critical or
fulfilled, the optimizer either

(a) Finds another design to evaluate, or

(b) Uses current design for the ith design iteration to yield x(i)

4. The loop is repeated until a termination condition is met.

The high-fidelity model is usually evaluated many times during one design iteration. Ter-
mination conditions can be problem specific, but usually include maximum number of
allowable iterations. Termination condition can also be based on the change in shape
between two consecutive design iteration x(i) and x(i+1) [19].

2.2.1 Gradient-Based Methods

Gradient based methods have a long history in numerical optimization and have been
used for a quite some time in aerodynamic design optimization as Hicks and Henne [20]
coupled gradient-based solver with CFD codes. Many different methods exist, such as
Line Search, Steepest Decent and Newton-type methods. Development of new techniques
such as Adjoint methods is getting popular. Adjoint methods [9, 10] is an efficient gradi-
ent based method where the calculation of the gradient is effectively independent of the
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number of design variables. This method have been used both with inviscid and viscous
solvers in 2D and 3D [9].

Gradient based methods are robust for local search, but lack robustness in global search.
Also often a large number of high-fidelity function evaluations are needed which can
be prohibiting based on the total computational cost of the model. The objective func-
tion may not be continuous, hence not differentiable, and there may exist multiple local
minima. Numerical noise in the model can also be a serious issue for gradient-based
methods.

2.2.2 Derivative-Free Methods

All the issues with gradient-based methods mentioned in Section 2.2.1 give rise to derivative-
free methods. The main advantage of using these methods is that they do not require
gradient information and can be used with noisy models as well as discontinuous func-
tions. The downside of derivative-free methods is that they usually require large number
of function evaluations. Many methods exist and they can be divided into two categories,
local and global ones. Popular local search methods include:

• Pattern-search algorithms [21]

• Nelder-Mead algorithm [22]

Popular global search methods include algorithms such as

• Genetic Algorithms (GAs) [23]

• Evolutionary Algorithms (EAs) [24]

• Particle Swarm Optimization [25, 26]

• Random Search

In this thesis, Pattern-Search and Random Search are considered as optimization methods
of choice in Chapter 3.

2.3 Surrogate-Based Optimization (SBO)

In this section, we give a brief overview of surrogate-based optimization [12, 11]. First,
the concept of the SBO will be presented, followed by a discussion on creating surrogate-
based models, correction, and optimizing the models.
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2.3.1 SBO Concept

There are many reasons why direct optimization may be infeasible. In CFD, this is partic-
ularly the case when the computational cost of simulating a high-fidelity model, such as
a 3D wing, can take up to weeks as discussed in Appendix A.1.1. Numerical noise which
is always present in CFD solvers can also be difficult to cope with. Surrogate-based opti-
mization alleviates such problems by using auxiliary models or functions, the surrogates,
which are a sufficiently accurate description of the original model. These models need to
be analytically smooth and preferably computationally cheap so the cost of the entire op-
timization process is reduced. The surrogate-based optimization is an iterative procedure
where the design obtained through optimizing the surrogate model is verified by evalu-
ating the high-fidelity model or the original function. The high-fidelity data obtained by
this verification process is then used to update the surrogate.

The flow of the genetic SBO algorithm is shown in Fig. 2.2. The computational burden
is shifted from the high-fidelity model (denoted by f ) to the surrogate model (denoted
by s). The surrogate model is optimized giving a prediction or an approximation of the
minimizer for the high-fidelity model. This prediction is then verified by evaluating the
high-fidelity model, typically once at the beginning of a new design x(i+1). The optimiza-
tion process may terminate or continue after this verification depending on the results. If
the process continues, the surrogate model is updated using the high-fidelity data that was
obtained for the new design and re-optimized hopefully yielding a new and a better ap-
proximation of the high-fidelity model: The process described above can be summarized
as follows.

1. Generate the initial surrogate model.

2. Optimize surrogate and obtain an approximate solution.

3. Evaluate high-fidelity model at the approximate solution obtained in step 2.

4. Surrogate updated using new high-fidelity data obtained in step 3.

5. Stop if termination condition is met, otherwise repeat processes from step 2.

Because of the computational efficiency of the surrogate model optimization the cost of
the surrogate can usually be neglected so that the computational cost of the overall process
can be estimated as the total number of high-fidelity model evaluations. The number of
iterations needed by the surrogate-based algorithm described above can therefore be con-
siderably lower than while optimizing the high-fidelity model directly using, e.g., gradient
based method.



10 Aerodynamic Optimization by Variable-Resolution Modeling and Space Mapping

Initial Design

x
(0)

i = 0

Evaluate Model

  x
(i)

Update Surrogate Model

Optimize Surrogate Model

Termination

Condition?

      

      x
(i+1)

Final Design

    Yes

  No
i = i + 1

High-Fidelity 

CFD Simulation

Surrogate Model

Surrogate-Based

Optimization

Algorithm

x
(i)

Figure 2.2: Flowchart of the surrogate-based optimization

2.3.2 Surrogate Modeling and Correction

Surrogate models are generally split into two categories, functional and physics based
ones.

Functional Surrogates

The functional surrogates can be considered as a black-box method. The intention is to
build a surrogate without using any knowledge of the physical system. A typical black-
box approach involves sampling of the design space, called training data which is used
to train the surrogate. It is then validated with testing data from the same design space.
The construction of the surrogate consist of four steps which are design of experiments
(DoE), acquire output data by evaluating training points, model selection and identifica-
tion and finally model validation using test points. These steps are show in Fig. 2.3 and
are summarized here below:

• Design of Experiments (DoE): A sampling plan in the design variable space. Sam-
ple points or training points should be selected in such way that they maximize the
gained information of the design variable space with as few samples as possible be-
cause of computational cost[11]. Generally there are three types of DoE, factorial,
space filling and adaptive designs.
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1. Factorial designs are classical DoE methods. Used to estimate the gross effects
such as interaction between design variables. Samples are usually chosen to
be as far apart as possible in order to reduce random errors. This is good in
terms of physical experimental data which always include random errors [27].

2. Space filling designs are intended to treat all regions of the design space
equally and are popular choice today. Many methods exist such as, Random
sampling, Stratified random sampling and Latin hypercube sampling (LHS),
where LHS is the most commonly used [7]. This method will be used in this
thesis and here will be given brief description of its functionality.
LHS Divide each of n intervals into N subintervals where N is the number of
samples, yieldingNn bins in the design space. SelectN samples placing them
randomly inside a bin so that for all one-dimensional projection, no more than
one sample will be allocates in each bin [7].

3. Adaptive designs are methods that adjust the data by refining sample resolu-
tion at a specific or an interesting location.

• Acquire data: Training data or sample points obtained with the DoE methods are
evaluated in this step using the high-fidelity model.

• Model Detection and Identification: Here, the approximation model is chosen and
its parameters determined. There are number of models available such as polyno-
mial regression, radial basis functions, neural networks and Kriging, just to mention
a few popular choices [13].

• Model Validation: The model needs to be validated with test samples from the
design space. This determines the accuracy of the model and the generalization
error of the model. Several methods exist. The simplest ones are split-sample
method [12] where the points obtained in DoE are divided into two sets of data,
the training and the test set. If the total number of sampling points is limited, one
can use other methods. Probably the most popular method is the cross-validation
method [12] where sample points are divided into n subsets, and the surrogate is
constructed n times, where it is trained by n − 1 subsets and validated with the
remaining subset.

Functional surrogates are computationally cheap when set up but constructing the surro-
gate can require a large number of sample points for it to be a reasonable approximation
of the high-fidelity model. The main advantage is however that it is a generic method
which can be applied to a number of problems without having any prior knowledge of the
physical system.
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Figure 2.3: Flowchart of the key stages of the functional surrogate construction. If quality
of the model is insufficient, procedure can be iterated by adding more sample points.

Physics-Based Surrogates

Physics-based surrogates are constructed by correcting a low-fidelity model, denoted by
c. The low-fidelity model is an approximate description of the high-fidelity model and
can be based on one or all of the following approximations:

• Simplified physics: Simplifying flow physics is common where one replaces the
governing equations such as the RANS equations or Euler equation by the Potential
equations or even Transonic Small-Disturbance Equations [14]. This method is
referred to as variable-fidelity physics model.

• Coarse discretization: For the same governing equations and fluid model the com-
putational mesh is made coarser reducing the number of elements that need to be
solved [17]. This is referred as variable-resolution models.

• Relaxed convergence criteria: The number of maximum allowable iterations is
reduced. Residual may also be relaxed. This is referred as variable-accuracy mod-
els.

In general, physics-based models are based on particular knowledge on the system, they
are problem specific and usually more expensive to evaluate than the functional based
surrogates. They do, however, offer greater accuracy in a global sense than the functional-
based surrogates and the main advantage is that the number of high-fidelity model data
necessary to obtain an accurate response is substantially lower than for the functional-
based surrogates. The low-fidelity physics-based model inherit all the underlying physics
of the high-fidelity model and is therefore able to approximate globally the general re-
sponse of the high-fidelity model. This response needs to be corrected to match the sam-
pled data of the high-fidelity model to be an accurate prediction of the latter. This gives
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rise to methods used to correct the surrogate which is crucial within any surrogate-based
optimization methodology.

Several correction techniques exist such as, General Response Correction [16], Shape-
Preserving Response Prediction (SPRP) [17] and Space Mapping [13, 15]. Space map-
ping will be covered in Section 2.4.

Several optimization techniques that exploit surrogate models are available. To name a
few, Approximation Model Management Algorithm (AMMO) [16], Surrogate Manage-
ment Framework [28] and Space Mapping [15] are popular choices.

2.4 Optimization using Space Mapping

In this section, we give a mathematical formulation of Space Mapping [15, 13] opti-
mization methodology used in this thesis. The formulation will be given for a three-
dimensional wing body but it also applies to a two-dimensional airfoil problem [18].

The simulation-driven design can be generally formulated as a nonlinear minimization
problem as noted before. Refining Eq. (2.1.1) and constraints we define

x∗ = arg min
x
H (f(x)) , (2.4.1)

where x is a vector of design parameters, f the high-fidelity model to be minimized at
x and H is the objective function. x∗ is the optimum design vector. The high-fidelity
model will represent aerodynamic forces, lift and drag coefficient, as well as other scalar
responses such as cross-sectional areaA of the wing at interesting location. Area response
can be of a vector form A if one requires multiple area cross-sectional constraints at
various locations on the wing, e.g., the wing root and the wing tip. The response will
have to form

f(x) = [CL,f (x), CD,f (x), Af (x)]T , (2.4.2)

where CL,f and CD,f are the lift and drag coefficient for a 3D wing, respectively, gen-
erated by the high-fidelity model. We are interested in the maximizing lift case and the
minimizing drag case, so the objective function will take the form of

H (f(x)) = −CL, (2.4.3)

H (f(x)) = CD, (2.4.4)
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with the design constraints denoted as

C (f(x)) = [c1 (f(x)) , . . . , ck (f(x))]T . (2.4.5)

Maximizing lift will yield two nonlinear design constraints for drag and area,

c1 (f(x)) = CD,f (x)− CD,max ≤ 0, (2.4.6)

c2 (f(x)) = −Af (x) + Amin ≤ 0. (2.4.7)

Similarly, minimizing drag we have two nonlinear design constraints for lift and area,

c1 (f(x)) = −CL,f (x) + CL,min ≤ 0, (2.4.8)

c2 (f(x)) = −Af (x) + Amin ≤ 0. (2.4.9)

2.4.1 Space Mapping Basics

Starting from a initial design x(0) the genetic space mapping algorithm produces a se-
quence x(i), i = 0, 1 . . . of approximate solution to Eq. (2.4.1) as

x(i+1) = arg min
x
H
(
s(i)(x)

)
, (2.4.10)

where
s(i)(x) =

[
C

(i)
L,s(x), C

(i)
D,s(x), As(x)(i)

]T
, (2.4.11)

is the surrogate model at iteration i. As previously described, the accurate high-fidelity
CFD model f is accurate but computationally expensive. Using Space Mapping, the sur-
rogate s is a composition of the low-fidelity CFD model c and a simple linear transforma-
tions to correct the low-fidelity model response [15]. The corrected response is denoted
as s(x,p) where p represent a set of model parameters and at iteration i the surrogate
is

s(i)(x) = s(x,p). (2.4.12)

The SM parameters p are determined through a parameter extraction (PE) process. In
general this process is a nonlinear optimization problem where the objective is to mini-
mize the misalignment of surrogate response at some or all previous iteration high-fidelity
model data points [15]. The PE optimization problem can be defined as

p(i) = arg min
p

i∑
k=0

wi,k‖f(x(k))− s(x(k),p)‖2, (2.4.13)
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where wi,k are weight factors that control how much impact previous iterations affect the
SM parameters. Popular choices are

wi,k = 1 ∀i, k , (2.4.14)

and

wi,k =

{
1 k = i

0 otherwise
. (2.4.15)

In the first case, all previous SM iterations influence the parameters; in the second case,
the parameters depend only on the most recent SM iteration.

Four different groups of SM surrogate models exist in literature, they are, Input, Output,
Implicit and Frequency space mapping. Here, we give examples of SM surrogate models
using input and output SM [15, 29].

Input SM where response correction based on a parameter shift and scaling,

s(x,p) = s(x,B,q) = c(Bx + q). (2.4.16)

For parameter shift only B = I, where I is an identity matrix.

Output SM response correction is based on multiplicative and additive response correc-
tions and is given by

s(x,p) = s(x,A,d) = Ac(x) + d. (2.4.17)

Special cases, such as the multiplicative correction only, with d = 0, or additive
only, with A = I, are also common.

2.4.2 Low-Fidelity CFD Model

In this thesis, the low-fidelity CFD models are physics-based models where the same gov-
erning equations (RANS equations) as the high-fidelity one, but with a coarser grid and
relaxed convergence criteria. The low-fidelity model is obtained through a grid conver-
gence study.

Grid Convergence Study

A grid convergence study procedure consists of the following steps;
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1. Generate a grid using reasonable number of elements and analyse the model.

2. Regenerate the mesh with higher element density distribution, re-analyse and com-
pare the results to the previous mesh results.

3. Based on the result in step 2, keep increasing the mesh density and re-analysing the
model until the results converge satisfactorily.

The above steps are ideal when no prior knowledge is available on how dense the grid
must be to yield accurate enough results. If prior knowledge exists, one can also perform
the inverse study where starting from a known fine high density mesh with accurate results
make the grid as coarse as possible.

For relaxed convergence criteria, residuals and convergence history are inspected. Based
on the history one simply selects the appropriate number of iterations where the solution
has converged e.g. inspecting Fig. A.3b one could say that lift and drag coefficient have
converged after 80-100 iterations.

In this work, the low-fidelity CFD model can be very noisy and it is relatively expensive
to evaluate. To mitigate that, a Kriging model can be constructed using a clever DoE
sampling plan, and the coarse low-fidelity CFD model data which is obtained through a
grid convergence study.

2.4.3 Surrogate Model Construction

As mentioned above, the SM surrogate model s is a composition of the low-fidelity CFD
model c and corrections or linear transformations where model parameters p are extracted
using one of the PE processes described above. Parameter extraction and surrogate opti-
mization create a certain overhead on the whole process and this overhead can be up to 80-
90 % of the computational cost. This is due to the fact that the physics-based low-fidelity
models are in general relatively expensive to evaluate compared to the functional-based
ones. Despite this, SM may be beneficial [30].

To alleviate this problem, the output SM with both multiplicative and additive response
correction is exploited here with the surrogate model parameters extracted analytically.
We use the following formulation;

s(i)(x) = A(i) ◦ c(x) + D(i) + q(i) (2.4.18)

=
[
a

(i)
L CL,c(x) + d

(i)
L + q

(i)
L , a

(i)
D CD,c(x) + d

(i)
D + q

(i)
D , Ac(x)

]T
, (2.4.19)
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where ◦ is component wise multiplication. No mapping is needed for the area Ac(x)

where, Ac(x) = Af (x) ∀x since low- and high-fidelity model represent the same ge-
ometry. Parameters A(i) and D(i) are obtained using

[
A(i),D(i)

]
= arg min

A,D

i∑
k=0

‖f
(
x(k)
)
−A ◦ c

(
x(k)
)

+ D‖2, (2.4.20)

wherewi,k = 1, i.e., all previous iteration points are used to improve globally the response
of the low-fidelity model. The additive term q(i) is defined so as to ensure such a perfect
match between the surrogate and the high-fidelity model at design x(i), namely f

(
x(i)
)

=

s
(
x(i)
)

or a zero-order consistency [16]. We can write the additive term as

q(i) = f
(
x(i)
)
−
[
A(i) ◦ c(x(i)) + D(i)

]
. (2.4.21)

Since analytical solution exists for A(i),D(i) and q(i) there is no need for non-linear op-
timization solving Eq. (2.4.13) to obtain parameters. We can obtain A(i) and D(i) by
solving [

a
(i)
L

d
(i)
L

]
=
(
CT
LCL

)−1
CT
LFL , (2.4.22)[

a
(i)
D

d
(i)
D

]
=
(
CT
DCD

)−1
CT
DFD , (2.4.23)

where

CL =

[
CL,c(x

(0)) CL,c(x
(1)) . . . CL,c(x

(i))

1 1 . . . 1

]T
, (2.4.24)

FL =

[
CL,f (x

(0)) CL,f (x
(1)) . . . CL,f (x

(i))

1 1 . . . 1

]T
, (2.4.25)

CD =

[
CD,c(x

(0)) CD,c(x
(1)) . . . CD,c(x

(i))

1 1 . . . 1

]T
, (2.4.26)

FD =

[
CD,f (x

(0)) CD,f (x
(1)) . . . CD,f (x

(i))

1 1 . . . 1

]T
, (2.4.27)

which are the least-square optimal solutions to the linear regression problems

CLa
(i)
L + d

(i)
L = FL , (2.4.28)

CDa
(i)
D + d

(i)
D = FD . (2.4.29)
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Note that CT
LCL and CT

LCL are non-singular for i > 1 and assuming that x(k) 6= x(i) for
k 6= i. For i = 1 only the multiplicative SM correction with A(i) is used.

2.4.4 Optimization Algorithm

Here we formulate the optimization algorithm exploiting the SM based surrogate and a
trust-region convergence safeguard [11]. The trust-region parameter λ is updated after
each iteration. This algorithm will be used in applications presented in this thesis.

1. Set i = 0; Select λ, the trust region radius; Evaluate the high-fidelity model at the
initial solution, f(x(0));

2. Using data from the low-fidelity model c, and f at x(k), k = 0, 1, . . . , i, setup the
SM surrogate s(i); Perform PE;

3. Optimize s(i) to obtain x(i+1);

4. Evaluate f(x(i+1));

5. If H(f(x(i+1))) < H(f(x(i))), accept x(i+1); Otherwise set x(i+1) = x(i);

6. Update λ;

7. Set i = i+ 1;

8. If the termination condition is not satisfied, go to 2, else proceed;

9. End; Return x(i) as the optimum solution.

The above presented algorithm will be applied to two aerodynamic shape optimization
problems in the upcoming chapters. The first application is a two-dimensional high-lift
trawl-door geometry low-speed flow conditions where the objective is to optimize its
geometry to minimize drag and the second is a three dimensional wing at transonic flow
conditions where the objective is to increase lift.
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Chapter 3

Low-Speed High-Lift Airfoil
Optimization

In this chapter, the proposed surrogate based optimization methodology is applied to a
two dimensional high-lift trawl-door geometry at a low-speed flow condition. First, we
introduce the high-fidelity model where we define the governing equations of the flow,
wing geometry, computational grid, solver setup and boundary conditions. A grid conver-
gence study is then performed in order to verify the computational grid. The high-fidelity
model is validated using a NACA 0012 airfoil, where the CFD simulation data is com-
pared to experimental data from a NACA 0012 wind tunnel experiment. Performance
analysis is performed on three types of trawl-door geometry, the F11 trawl-doors and two
modified versions of the F11 trawl-door where slats have been removed. The design opti-
mization formulation is then presented defining the objective and constraints used in this
optimization. The low-fidelity model is constructed followed by presenting the optimiza-
tion results using the proposed method. The chapter concludes with a summary.

3.1 Problem Definition

Trawl-doors are essential equipment of the fishing gear used in today’s modern fishing
techniques. A typical fishing gear assembly, shown in Fig. 3.1, consists of a large net,
pair of trawl-doors to keep the net open and a cable assembly extending from the trawl-
doors to the boat and net. Although the trawl-doors are a small part of the fishing gear
they are responsible for roughly 30% of the total drag of the equipment needed [1]. The
motivation and benefit for optimizing the trawl-door shape is therefore clear. If the trawl-
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Figure 3.1: Trawl gear drag decomposition diagram [1]. Approximately 30% of the as-
sembly is due to the trawl-doors.

door can be redesigned in such way that drag is reduced one can reduce the ship fuel
consumption, hence, reduce cost.

Trawl-door designs that have been developed over the years mainly consist of a similar
design where they have been designed using physical tests, where the trawl-door is built
and tested. Little or no CFD analysis have been performed on trawl-doors in general.
Trawl-door designs are essentially steel plates, cut down, bent with a certain radius and
welded together. These designs have two key elements:

• Main element (ME) - is the largest element of the trawl-door

• Two slats - either of same size or different, located in front of the main element
intended to give higher lift for increased angle of attack.

Most designs are based on these three elements and typical designs are shown in Fig. 3.2.
Two dimensional cut thought any of the trawl-doors shown will yield a similar cross-
section. Example of such cross-section is shown in Fig. 3.5 and will be discussed further
in the following sections. Trawl-doors are normally operated at a very high angle of
attack, i.e., α = 30− 50◦ or higher.

The goal of this chapter is to optimize a modern trawl-door design, namely the F11 trawl-
door, with the proposed method presented in Section 2.4 in order to minimize its drag. We
start by defining the high-fidelity CFD model used in the optimization process. Following
that, we perform a performance analysis study on a modern trawl-door to simply set a
baseline for the optimization results. Finally the optimization results are presented and
discussed.
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(a) (b)

Figure 3.2: Typical trawl-doors. Source http://www.hlerar.is.

3.2 High-Fidelity CFD Model

In this section, we start by describing the governing equations of the fluid flow. Following
that, the trawl-door geometry, computational grid, solver setting and boundary conditions
are presented. The section concludes with a grid convergence study and high-fidelity
model validation study performed on a NACA 0012 airfoil.

3.2.1 Governing Equations

Trawl-doors are devices used in water, hence we can safely assume that the flow is in-
compressible. Further, the flow is assumed to be steady, viscous and with no body forces.
In Cartesian coordinates, the continuity equation is written as

∂ui
∂xi

= 0, (3.2.1)

and the momentum equation or the Navier-Stokes Equation as

ρ
Dui
Dt

= − ∂p

∂xi
+ ρgi + µ∇2ui, (3.2.2)

where D/Dt is the material derivative defined as

Dui
Dt

=
∂ui
∂t

+ uj
∂ui
∂xj

(3.2.3)
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and
∇2ui =

∂2ui
∂xj∂xj

=
∂2ui
∂x2

1

+
∂2ui
∂x2

2

, (3.2.4)

in two dimensions, where ui are the velocity components in each dimension, ρ is the
density, µ the dynamic viscosity and p the pressure [31]. In this work, we use the Reynolds
Average Navier-Stokes (RANS) equations and since no heat transfer is included in the
problem we only need to solve the averaged continuity and momentum equations. For
incompressible flow:

∂ūi
∂xi

= 0, (3.2.5)

∂

∂t
(ρūi) +

∂

∂xj
(ρūiūj) = − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρu′iu′j

]
, (3.2.6)

where ūi is the mean term in Reynolds decomposition ui = ūi + u′i and ū′i is the fluctu-
ating term and, −ρu′iu′j is the Reynolds stress tensor [32]. To model the Reynolds stress
tensor a turbulence model is needed. In this work we use the k-ω-SST turbulence model
[33].

3.2.2 Trawldoor Geometry

Here we will consider a simple chord-wise cross-sectional cut of the F11 trawl-door. The
CAD model geometry is shown in Fig. 3.3. The aspect ratio of this trawl-door is

AR =
b2

A
=

b2

b× c′
=
b

c′
=

5.8

2.4
= 2.4, (3.2.7)

which is a quite low and three dimensional flow effects may be significant. Aspect ratio
AR > 10 is considered high. There are three elements:

1. The main element (ME), which is the largest element of the assembly.

2. Slat 1, the middle element in the assembly. The one closest the ME leading edge.

3. Slat 2, farthest element from the ME in the assembly.

In order to create a numerical model for the F11 trawl-door the geometric shape and
parameters needs to be extracted from the manufacturer CAD drawings and formulated
so each element is available for optimization. We consider each element with a set of
design parameters. The design parameters of interest are chord length c, thickness t and
the plate curvature or radiusR of each element. Further we define the location of each slat
(x, y), relative to the leading edge of the main element which we define as (0, 0), and the
orientation θ of the slats in degrees, relative to x-axis, positive being counter clock-wise.
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Figure 3.3: CAD drawing of the F11 trawl-door elements. Main element (ME), Slat 1 and
Slat 2. The span is b = 5.8m and the extended chord length is c′ = 2.4m. This is a low
aspect ratio wing with AR = 2.4

Table 3.1: Normalized design parameters of the F11 trawl-door extracted from CAD
drawings Fig. 3.3

Variable Main Element Slat 1 Slat 2
Chord c 1 0.2531 0.2531
Thickness t/cME 0.0053 0.0063 0.0063
Radius R/cME 0.7368 0.7821 0.7821
Shift (x/cME, y/cME) (0,0) (-0.1192,0.0085) (-0.2457,0.0115)
Orientation θ [deg] 0 33.9 34.7

The following subscript notation will be used in the work to identify design parameters
on the above presented design parameter are

1. Main Element parameters will be denoted with ME.

2. Slat element parameters will be denoted with S1 for slat 1 and S2 for slat 2.

The available design parameters are illustrated in Fig. 3.4 where slat 2 has been omitted
for simplicity.

Parameters are extracted from CAD drawings and normalized with the chord length of
the ME cME such that the main element has a chord length of unity. Normalized design
parameter values are shown in Table 3.1. These values are used as an initial design for
slat location in the optimization process, see Section 3.4. The normalized geometry is
shown in Fig. 3.5. For the remainder of this chapter, the main element chord length cME

will be denoted as c to simplify notation. If there is any possibility of ambiguity due to
text context the chord length will be denoted by a subscript.
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Figure 3.4: Shift (xS1, yS1) relative to (0, 0) and orientation θS1 of one slat. The second
slat is omitted for simplicity. The chord length c of each element is defined from its lead-
ing edge to trailing edge and c′ is the extended chord length for the assembly. Thickness
tME and radius RME for the ME are shown but omitted for slat.
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Figure 3.5: Cross-section of the normalized F11 trawl-door with three elements, main
element (ME), slat 1 and slat 2.
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200 cME

200 cME

cME

c’

Figure 3.6: Farfield configured as a box topology. The leading edge of the trawl-door
airfoil is placed at (x/cME, y/cME) = (0, 0).

3.2.3 Computational Grid

Here, we describe the high-fidelity CFD grid used in this work. The density and prop-
erties of this grid is found by performing a grid convergence study. The study itself will
be covered in Section 3.2.5. The parameters acquired in that study for the high-fidelity
model are, however, presented here. The farfield is configured in a box-topology where
the trawl-door geometry is placed in the center of the box. The main element leading edge
(LE) is placed as the origin (x/cME, y/cME) = (0, 0), where the farfield extends 100 main
element (ME) chord lengths, 100cME away from the origin as shown in Fig. 3.6. The grid
is a unstructured triangular grid where elements are clustered around the trawl-door ge-
ometry, growing in size as they move further away from the trawl-door. The maximum
element size on geometry is set to 0.1% of the ME chord length, i.e., 0.1%cME . The max-
imum element size in domain is 10 ME chord lengths or 10cME . In order to capture the
viscous boundary layer, a prismatic inflation layer is extruded from all surfaces, i.e., the
main element and slats. The inflation layer has a initial height of 5 × 10−6cME , growing
with exponential growth ratio of 1.2 extending in total 20 layer from the surface. The ini-
tial layer height is chosen so that y+ < 1, defined as y+ = ρuτy/µ (see Appendix A.1.3).
In the wake region aft of the trawl-door the grid is made denser by applying a density grid
with a element size of 5% of the ME chord length. It extends 20 ME chord lengths, 20cME

aft of the trawl-door geometry. The density mesh is configured in an adaptive manner so
that it changes its orientation with the angle of attack, α. An example of this is shown in
Fig. 3.7b for α = 0 degrees and α = 30 degrees.
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The grid properties are summarized here for a quick reference:

• General Parameters

– Farfield extends 100 ME chord lengths, 100cME , from the origin (0, 0).

– Maximum element size on trawl-door surface set to 0.1% of the ME chord
length 0.001cME .

– The maximum element size in domain is 10 ME chord lengths or 10cME .

• Density Region

– Density region extends 20cME aft of the trawl-door.

– Density region element maximum size is 5%cME .

– Density region is adaptive, changes with angle of attack.

• Boundary Layer

– Initial layer height is 5× 10−6cME .

– Exponential growth ration is set 1.2.

– Number of prism layers are 20.

– Above properties give at any point on surface y+ < 1.

The high-fidelity CFD grid is generated with the computer code ANSYS ICEM CFD [34]
following the guideline given above. The mesh is shown in Fig. 3.7, where Fig. 3.7a shows
the farfield domain boundaries, and Fig. 3.7b gives a close up of the density region where
the trawl-door is in the lower left corner. In Fig. 3.7c to Fig. 3.7d the trawl-door is visible
and Fig. 3.7e and Fig. 3.7f are close ups of the slat and the prism layer respectively. The
total number of cells in the computational domain for the high-fidelity model is roughly
217000 cells.

3.2.4 Boundary Conditions and Solver Setup

Numerical fluid flow simulations are performed using the computer code ANSYS FLU-
ENT [32]. The flow solver is set to a coupled velocity-pressure-based formulation. Spatial
discretization schemes are set to second order consistency for all variables and gradient
information is found using the Green-Gauss node based method. Additionally, due to the
difficult flow condition at high angle of attacks, the pseudo-transient option and high-order
relaxation terms are used in order to get a stable converged solution [32]. The iterative
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: High-fidelity mesh for the angle of attack α = 50 degrees. Starting form the
domain boundaries figure a), increasing zoom in at trawl-door at each image ending with
figure f) a close up of the boundary layer.
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Velocity Inlet
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c’

Figure 3.8: Boundary types used. Cross-section of the normalized F11 trawl-door with
three elements, main element (ME), slat 1 and slat 2.

solution is performed with relaxation factors to prevent a numerical oscillation of the so-
lution that can lead to a no solution or errors. The residuals, which are the sum of the L2

norm of all governing equations in each cell, are monitored and checked for convergence.
The convergence criterion for the high-fidelity model is such that a solution is considered
to be converged if the residuals have dropped by six orders of magnitude, 10−6 or the total
number of iterations has reached 103. Also the lift and drag coefficients are monitored for
convergence. Here, convergence is observed in all cases where a steady-state solution is
obtained.

The working fluid used is water and the inlet boundary is a velocity-inlet with a freestream
velocity V∞ = 2m/s, (which is typical during trawling), is split into its x and y compo-
nents depending on the angle of attack α. The outlet boundary is a uniform pressure
pressure-outlet as shown in Fig. 3.8. Reynolds number is found to be

RecME
=
ρ∞V∞cME

µ∞
=

998.2× 2× 1

1.003× 10−3
u 2× 10−6, (3.2.8)

where ρ∞ = 998.2 kg/m3 is the freestream water density and µ∞ = 1.003×10−3 Ns/m2

is the dynamic viscosity at 20◦ Celsius. We assume that the inlet flow is calm, and close
to laminar conditions and turbulent intensity and viscosity ratio are set to 0.05 % and 1,
respectively. The pressure is set to standard atmospheric pressure. We summarize the
fluid properties and boundary conditions for quick reference in Table 3.2.

To validate whether the above presented grid is a good high-fidelity model representation
and will yield an accurate lift and drag coefficient values for the geometry we validate the
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Table 3.2: Water properties used for CFD simulation and boundary conditions for the
velocity-inlet and pressure-outlet.

Fluid Properties Value Units
Freestream density ρ∞ 998.2 kg/m3

Freestream viscosity µ∞ 1.003 ×10−3 Ns/m2

Boundary Conditions Value Units
Freestream velocity V∞ 2 m/s
Reynolds number RecME

2× 106 -
Turbulent intensity (%) 0.05 -
Turbulent viscosity ratio µt/µ 1 -

CFD model grid against known experimental results. In the next section, a NACA 0012
airfoil geometry will be used to validate the high-fidelity model grid.

3.2.5 Grid Convergence Study - NACA 0012

In order to find a sufficiently fine enough mesh for the high-fidelity model, a grid con-
vergence study is carried out. This study is performed using the NACA 0012 airfoil.
The formulation of the NACA 4 digit method is given in Section 4.2.2. One could argue
that the trawl-door should be used as the testing geometry because of its more complex
geometry, therefore yielding different flow characteristics. However, due to a lack of two-
dimensional experimental and computational data of the F11 trawl-door the NACA 0012
will be used instead.

Convergence Study Setup

The idea of this study is to acquire a sufficiently fine enough grid that will capture flow
physics properly and yield accurate enough aerodynamic results. The study is performed
using the NACA 0012 at the same conditions as the trawl-door is operating at where,
the fluid is water with freestream velocity of V∞ = 2m/s, giving a Reynolds number of
Re = 2 × 106. The angle of attack is chosen as α = 3◦. Other boundary conditions and
grid properties discussed in Section 3.2.4 and are the same as presented in Table 3.2.
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Convergence Study Results

The convergence study shown in Fig. 3.9a revealed that 197,620 grid elements are needed
for convergence using respective geometry. This grid will be used in the high-fidelity
model. The grid parameter details obtained through this study where previously pre-
sented and summarized in 3.2.3 above. The overall simulation time needed for one high-
fidelity CFD simulation was around 16 minutes, as shown in Fig. 3.9b, executed on four
Intel-i7-2600 processors in parallel. This execution time is based on 103 solver iterations
where the solver terminated due to the maximum number of iterations limit. The detailed
grid parameters, such as grid density on the surface, farfield and density region obtained
through this study where presented and summarized in 3.2.3.

3.2.6 CFD Model Validation - NACA 0012

Due to lack of two-dimensional experimental data for trawl-door shapes other geometries
must therefore be used to validate the high-fidelity model. NACA 4 digit airfoils have
been studied extensively, both in wind tunnels and computationally and are a popular
for verification cases. We consider the NACA 0012 airfoil as the validation case for the
high-fidelity CFD model presented in Section 3.2.

Validation Setup

The NACA 0012 geometry is generated with the standard NACA 4 digit method [35],
with a sharp trailing edge (TE) to get a better fit of the prism layer on the upper and
lower surface. A formulation of the NACA 4 digit method is given in Section 4.2.2.
The high-fidelity grid with the NACA 0012 airfoil is used in the validation is shown in
Fig. 3.10.

Here, the Reynolds number is Rec = 6 × 106 for this performance study. As before the
fluid is water. The angle of attack α is varied from -5 to 19 degrees, with increments of
5 degrees up to 15 degrees and from there with one degree increments to 19 where the
airfoil have stalled. Other boundary conditions and grid properties are as presented in
Table 3.2.
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Figure 3.9: Grid convergence study using the NACA 0012 airfoil at V∞ = 2m/s,Re =
2× 106 and angle of attack α = 3◦. a) Lift (Cl) and drag (Cd) coefficient versus number
of grid elements, b) simulation time versus number of grid elements.
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(a) (b) (c)

Figure 3.10: NACA 0012 computational grid for the angle of attack α = 10 degrees. As
shown in Fig. 3.10c the trailing edge (TE) is sharp.

Comparing Experimental Results

There exists a number of experimental results for the NACA 0012 airfoil [35, 3, 4, 2], as
well as computational [36], at various Reynolds numbers. It should be recognized that
two-dimensional experiments are extremely difficult to achieve, particularly at higher an-
gles of attack approaching stall and many available experimental results differ especially
near stall. It is important to note that experimental drag coefficient levels are greatly
affected by tripping the boundary layer at Reynolds numbers in this range of Reynolds
number [3]. For example comparing with fully turbulent CFD drag results tripped exper-
imental data, where the transition is fixed, is more appropriate than untripped. Therefore,
the experimental data is used in this work with that in mind.

Lift and Drag Coefficients

Comparing lift and drag coefficient results with experimental data the Ladson tripped
data [2] appear to be the most appropriate data sets for comparison with fully turbulent
boundary layer at Rec = 6× 106 [36].

Inspecting the overall computational results in Fig. 3.11 to Fig. 3.14 comparing it to the
Ladson experimental data [2] we see that for lift Cl versus angle of attack α in Fig. 3.11
that the agreement is excellent up to stall Cl,max where the airfoil stalls close to angle
of attack α = 17◦. Inspecting computational drag results in Fig. 3.12 we see that the
agreement is excellent up to α = 10◦ where separation is starting to get substantial. The
error, computational versus experimental drag coefficient Cd,comp/Cd,exp at α = 10◦ is
11% and at α = 16◦ is 33%. Similarly inspecting Fig. 3.13 and Fig. 3.14 we can see that
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the agreement is good but due to the discrepancy in experimental drag and computational
drag the results 10-30% off for α > 10◦

As noted above, drag is difficult to predict and at a high angle of attack separation becomes
massive and experimental results may not be two-dimensional. However, the overall trend
is good and we can therefore assume that the high-fidelity model will yield accurate result
for lift and drag coefficients.

Pressure Coefficient

For comparing surface pressure coefficients, Ladson data is not appropriate. The Ladson
data [4] does not appear to resolve the leading edge upper surface pressure peak well.
Here, we use the data Gregory and O’Reilly [3] pressure coefficient Cp data at Rec =

3 × 106 since they appear to be better resolved. Also, Gregory and O’Reilly data differ
from Ladson pressure data over the front half of the airfoil at α = 10◦ and α = 15◦.
Further, the Gregory data are likely more two-dimensional and hence more appropriate
for CFD validation of surface pressures. However since the Gregory data is measured
at Rec = 3 × 106 we include the Ladson Cp data as well since they are measured at
Rec = 6× 106.

Inspecting Fig. 3.15 to Fig. 3.17 we note that the overall agreement for both experimental
dataset is excellent. The computational Cp follows the experimental Gregory data well
and captures the pressure peak at the leading edge.
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Figure 3.11: Lift coefficient (Cl) versus angle of attack (α) of the NACA 0012 validation
case, shown with solid line (-o-). Experimental data from Ladson [2] show with squares.
Agreement is excellent up to the stall region.
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Figure 3.12: Drag coefficient (Cd) versus angle of attack (α) of the NACA 0012 validation
case, shown with solid line (-o-). Experimental data from Ladson [2] show with squares.
Agreement is excellent for lower α < 10◦, but not as good for higher angle of attack close
to the stall region
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Figure 3.13: Drag coefficient (Cd) versus Lift coefficient (Cl) of the NACA 0012 vali-
dation case, shown with solid line (-o-). Experimental data from Ladson [2] show with
squares. Agreement is excellent for low (Cl < 1)
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Figure 3.14: Lift to Drag coefficient ratio Cl/Cd versus angle of attack (α) of the NACA
0012 validation case, shown with solid line (-o-). Experimental data from Ladson [2]
show with squares. Agreement is excellent up to α < 5◦
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Figure 3.15: Pressure coefficient (Cp) of upper NACA 0012 surface for angle of attack
α = 0◦, shown with solid line (-). Cl u 0. Gregory experimental data [3] shown with
square markers and Ladson data [4] with circles.
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Figure 3.16: Pressure coefficient (Cp) of upper NACA 0012 surface for angle of attack
α = 10◦, shown with solid line (-). Cl u 1.1. Gregory experimental data [3] shown with
square markers and Ladson data [4] with circles.
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Figure 3.17: Pressure coefficient (Cp) of upper NACA 0012 surface for angle of attack
α = 15◦, shown with solid line (-). Cl u 1.5. Gregory experimental data [3] shown with
square markers and Ladson data [4] with circles.
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3.3 Performance Analysis of the F11 Trawl-Door

Here, the F11 trawl-door, shown in Fig. 3.5, will be analysed in order to determine its
performance. The high-fidelity CFD model proposed in Section 3.2 above and verified
in Section 3.2.6 will be used as the CFD model in order to obtain results regarding its
performance. The F11 trawl-door model is evaluated at number of different angle of
attacks or from α = −5◦ to α = 60◦ with 5 degree increments. Lift, drag, skin friction
and pressure coefficients are of special interest. In addition, velocity contour plots of the
flow over the geometry are useful in evaluation of separation. This analysis is important
step in investigating the F11 trawl-door characteristics and performance in addition to
serve as a baseline or for comparison against to the optimum design obtained with the
optimization process.

In addition to the analysis of the F11 trawl-door design we investigate the effects of the
slats by removing them one at a time and performing the performance analysis again. In
total three cases are considered:

1. Three (3) element analysis, main element and two slats. Analyse current F11 trawl-
door design.

2. Two (2) element analysis, main element and one slat. Modify the F11 trawl-door
geometry by removing only the slat furthest upstream. No other modification is
done to the geometry.

3. One (1) element analysis, main element only. Modify the F11 trawl-door geometry
by removing both slats. No other modification is done to geometry.

3.3.1 Results

Lift and drag performance analysis are presented in Fig. 3.18 to Fig. 3.21. Velocity con-
tours, skin friction and pressure coefficient plots for the F11 trawl-door design are shown
in Fig. 3.22 to Fig. 3.35. Note that main element chord length cME will be denoted as c
to minimize notation.

Inspecting Fig. 3.18 reveals that flow remains attached for relatively low angles of attack
when considering the main element only, and stall occurs close to α = 10◦. For the main
element with one slat the stall occurs at α = 20◦ and for the F11 design, main element
with two slats the stall occurs at α = 25◦. Adding slats seems to improve the performance
as expected by delaying the stall and increasing the Cl,max by extending the lift slope
similarly as shown in Fig. B.11. Leading edge slats are intended to hinder separation
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from the leading edge. Therefore, they are only needed for high angle of attacks where
flow separation starts to appear. They simply allow high-pressure fluid from lower surface
to flow over the upper surface delaying the separation and stall. They also increase the
area, which will increase lift as shown in Fig. B.11. Cl,max is increased as well as the stall
angle of attack [37, 38].

Inspecting Fig. 3.19 we can split the plot into three regions, first where stall has not
occurred where α < 20◦, after stall has occurred 20◦ < α < 35◦ and α > 35◦. As shown
in part α < 20◦ prior to stall drag increases as more slats are added to the assembly for
such low angle of attacks simply because of more area that flow needs to pass. As the
angle of attack is increased beyond stall α > αstall drag rises due to massive separation
as shown in the region 20◦ < α < 35◦. Effectiveness of slats are evident here where by
adding slats, flow remains attached longer reducing separation and drag. In the last region
α > 35◦ flow simply needs to pass more area as more slats are added increasing the drag
again.

Inspecting Fig. 3.21 we note that the efficiency, lift to drag coefficient ratio Cl/Cd is
highest at low angle of attack close to α = 5. Inspecting Fig. 3.22 to Fig. 3.35 we can
see that separation becomes massive close to and after stall. We can also note that at
various angle of attacks, e.g., α = 20◦ that separation bubbles form at upper or lower
surface on the leading edge on all elements, main element, slat 1 and slat 2. This effect
can be further seen by inspecting skin friction coefficient plot where we clearly note that
flow is reversed and separates at various locations where Cf = 0. Pressure coefficient
drops where separation occurs leading to a loss in lift. It must be noted that during CFD
simulation for high angles of attack that transient effects where dominant in the flow and
a steady-state analysis might be inaccurate.
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Figure 3.18: Lift coefficient (Cl) versus angle of attack (α) at V∞ = 2m/s,Rec = 2×106.
Computational results are shown with dotted dash line (.-.), dashed line (- -) and solid line
(–) for Main Element only (ME), ME + 1 slat and ME + 2 (the F11 trawl-door design)
respectively.
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Figure 3.19: Drag coefficient (Cd) versus angle of attack (α) at V∞ = 2m/s,Rec =
2× 106. Computational results are shown with dotted dash line (.-.), dashed line (- -) and
solid line (–) for Main Element only (ME), ME + 1 slat and ME + 2 (the F11 trawl-door
design) respectively.
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Figure 3.20: Drag coefficient (Cd) versus Lift coefficient (Cl) at V∞ = 2m/s,Rec =
2× 106. Computational results are shown with dotted dash line (.-.), dashed line (- -) and
solid line (–) for Main Element only (ME), ME + 1 slat and ME + 2 (the F11 trawl-door
design) respectively.
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Figure 3.21: Lift to Drag ratio Cl/Cd versus angle of attack (α) at V∞ = 2m/s,Rec =
2× 106. Computational results are shown with dotted dash line (.-.), dashed line (- -) and
solid line (–) for Main Element only (ME), ME + 1 slat and ME + 2 (the F11 trawl-door
design) respectively.
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Figure 3.22: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = −5◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient
(Cp)
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Figure 3.23: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 0◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.24: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 5◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.25: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 10◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.26: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 15◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.27: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 20◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.28: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 25◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.29: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 30◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)



50 Aerodynamic Optimization by Variable-Resolution Modeling and Space Mapping

(a)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 x/c

 C
f

 

 

Main Element
Slat 1
Slat 2

(b)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

 x/c

 C
p

 

 

Main Element
Slat 1
Slat 2

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

 x/c

 y
/c

(c)

Figure 3.30: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 35◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.31: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 40◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.32: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 45◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.33: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 50◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.34: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 55◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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Figure 3.35: F11 trawl-door characteristics at V∞ = 2m/s,Rec = 2×106, angle of attack
α = 60◦. a) Velocity contour, b) Skin friction coefficient (Cf ), c) Pressure coefficient (Cp)
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3.3.2 Numerical noise

In order for the optimization to perform as expected the robustness of both high-fidelity
and the low-fidelity have to be tested. The low-fidelity model is described in Section 3.4.2.
As noticed during the performance analysis a steady-state analysis of high angle of attack
may be difficult to obtain, in terms of a converged or a stable solution. The problem is
highly transient for high angles of attack. Numerical noise can become a dominant factor
in the solution when solver simply does not converge and oscillation exists in the steady
state solution.

In order to check high- and low-fidelity models for numerical noise we simply choose
two designs, x1 and x2 that are close to each other and vary linearly the design vari-
ables between these two designs and investigate their response or characteristics (x =

[x/c, y/c, θ, α]T , see Section 3.4.1 for definition). The intermediate designs are defined
as

x = ζx1 + (1− ζ)x2, (3.3.1)

where ζ is a number between 0 and 1. Using a sequence of different values of ζ , a number
of different intermediate designs can be tested. Selecting sufficiently many points between
the two designs the intermediate responses should change linearly only if numerical noise
is none. If noise is present in one or both models high- or low-fidelity model, the responses
will not be linear and problems can arise during optimization process. With noise in
the low-fidelity model and a consistent high-fidelity the low-fidelity model will not be
a good representation of the high-fidelity model since it does not follow the same trend
as the high-fidelity model. This can lead to the optimization algorithm not converging or
possibly inaccurate solution. We note that any two points within the design space are valid
for this kind of test since the high- and low-fidelity models should be consistent.

The proposed high- and low-fidelity models were tested for consistency and robustness.
We select two designs

x1 = [−0.2515,−0.0299, 22.3649, 2.8059], (3.3.2)

x2 = [−0.2495,−0.0289, 22.3649, 2.8059], (3.3.3)

at V∞ = 2m/s,Re = 2× 106 and varying ζ 10 times or from, ζ = [0, 0.1, . . . , 0.9, 1], re-
sulting in total 11 tests. As show in Fig. 3.36 there is an obvious noise or oscillation in the
low-fidelity response for both lift and drag. Linearity or consistency in response is much
better in terms of the high-fidelity model except for one point at ζ = 0.8. These results
suggest that the low-fidelity model is noisy with change in lift and drag being obvious.
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Oscillation around some mean response value is evident. This will mean that if an initial
design or any design is close to an optimum, and the drag response change is small be-
tween designs, the optimization algorithm will get stuck and yield no improvement. The
response must be smaller than the amplitude of the oscillation. Again, this means that
any design that is close to an optimum may never reach the optimum due to this inconsis-
tency in responses of the fine model and coarse model when geometry is varied slightly.
Optimization algorithm will get stuck and yield no improved solution. Despite of this,
improved designs may still be found globally if the difference in lift and drag coefficients
response is at least larger than the noise or the amplitude of the oscillation around its mean
value in the low-fidelity model.

3.3.3 Conclusion

Performance analysis of the three cases presented above reveals important knowledge
about the F11 trawl-door design. By removing slats from the F11 one after another and
performing the same analysis gives also important information about the improvements
the slats add to the F11 design. Slats effect extends lift coefficient curve, where αstall oc-
curs at a higher angle of attack, hence Cl,max increases. Drag can also be seen increasing
abruptly when stall occurs. The F11 trawl-door lacks smooth leading edges and aerody-
namic shape as can seen in velocity contour plots, skin friction and pressure coefficient
plots where separation bubbles form and pressure drops. This is a typical behaviour of a
thin airfoil, see Appendix B.6. At some point between α = 40 − 45◦ the flow seems to
reattach to the main element. This, however, is of little effect as pressure plot reveals and
lift continues to decrease with higher angle of attack.

Numerical noise and oscillation in response is present as shown above. It is evident based
on the discussion above that the resulting flow is difficult for steady state analysis since it
is highly transient due to a massive flow separation, vortex shedding even at low angles
of attack and numerical noise. It is therefore recommended that a transient analysis is
performed for this type of problem at high angles of attack.
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Figure 3.36: Linear validation between two designs x1 =
[−0.2515,−0.0299, 22.3649, 2.8059] and x2 = [−0.2495,−0.0289, 22.3649, 2.8059].
Validation is done at V∞ = 2m/s,Re = 2 × 106 at angle of attack α = 2.8059◦ a)
Low-fidelity model response. Noise due to transient flow effects or the solver not able
to converge are visible for the low-fidelity model. Obvious oscillation of lift and drag,
(squares and circles, respectively) around mean response values for lift (- -) and drag
(.-.). b) High-fidelity model response. Model shows consistency in lift and drag except
for one design.
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3.4 Design Optimization of the Trawl-door

We proceed with a low angle of attack steady-state analysis where we try to work in the
range where separation is limited, thus, avoiding strong transient effects. The goal is
to optimize the location of one slat design to match or exceed the performance of F11
trawl-door. Formulation of the problem and optimization is first given, followed by a
description of the low-fidelity model construction.

We consider a drag minimization case where we carry out the optimization of the trawl-
door, using direct optimization and in more computationally efficient manner follow the
space mapping (SM) methodology presented in Section 2.4.

3.4.1 Formulation

To simplify the geometry and the case study, the slat furthest upstream of the F11 design
is removed and we consider only the remaining geometry for optimization as shown in
Fig. 3.37. The trawl-door shape is parametrized such that design variables considered
in this work include the location of the slat (xS1/cME, yS1/cME) = (x/c, y/c), the slat
orientation θS1 = θ and the angle of attack α of the flow. This is shown in Fig. 3.4. The
design vector is written as x = [x/c, y/c, θ, α]T . Other variables are kept constant such
as the radius and thickness of either element and can be found in Table 3.1.

The objective is to minimize the drag coefficient Cd,f subject to constrain on the lift
coefficient Cl,f ≥ Cl,min. Here we select Cl,min = 1.5. Additional constrain include
validity check. Geometry of the proposed design must be validated. Design validity is
checked at every iteration such that the optimizer rejects designs if slat and main cross,
that is share the same points in space, or violate the minimum gap, Gap ≥ Gapmin,
or maximum overlap, Overlap ≤ Overlapmax, between elements. The minimum gap
between elements is defined as the minimum distance from any point on the main element
to any point on the slat. Maximum overlap is defined as the distance x/cwhich the trailing
edge of the slat overlaps the leading edge of the main element. Definition of gap and
overlap are shown in Fig. 3.38.

Lower and upper bounds are specified for each of the design variables (x/c, y/c, θ, α).
Due to the noise problem presented in the Section 3.3.2 we begin the optimization with
large design space, summarizing the starting conditions and constrains of the problem

x∗ = arg min
x
Cd, (3.4.1)
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Figure 3.37: Modified design of the F11 trawl-door where two element assembly, main
element and one slat, is considered as an initial design for optimization process.
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subject to
Cl,f ≥ Cl,min = 1.5,

Gap ≥ Gapmin = 0.05,

Overlap ≤ Overlapmax = 0.1,

(3.4.2)

with the following design variable bounds

−0.3 ≤x/c ≤ 0.2,

−0.3 ≤ y/c ≤ 0.2,

20 ≤ θ ≤ 50,

5 ≤α ≤ 50.

(3.4.3)

Termination condition for the optimization algorithms is set to ‖x(i)−x(i−1)‖ < 10−3.

3.4.2 Low-Fidelity CFD Model

The general underlying low-fidelity model c used for all cases is constructed in the same
way as the high-fidelity model f but with a coarser grid discretization and with a relaxed
convergence criteria. Referring back to the grid study carried out in Section 3.2.5 and
inspecting Fig. 3.9, we make our selection for the coarse low-fidelity model. Based on
time and accuracy with respect of lift and drag we select the grid parameters that represent
the fourth point from the right, giving 16,160 elements. Time necessary to evaluate the
low-fidelity model is 2.3 minutes on four Intel-i7-2600 processors in parallel. Inspecting
further the lift and drag convergence plot for the low-fidelity model Fig. 3.39 we note
that the solution has converged after 150-200 iterations. However maximum number of
iterations for the low-fidelity model is set to three times that, or 700 iterations, due to the
nature of problem and different geometry to be optimized that used to perform the grid
convergence study. This reduces the overall simulation time to 1.6 minutes. The ratio of
simulation times of the high- and low- fidelity model in this case is high/low = 16/1.6 =
10. This is based on the solver uses all 700 iterations in the low-fidelity model to obtain
a solution. As mentioned in 2.4, it is possible that space mapping (SM) will not perform
much better than direct optimization and reduce computational cost for such a small ratio.
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Figure 3.39: Lift and Drag coefficient convergence plot for low-fidelity model obtained
in grid convergence study simulation for NACA 0012 at Reynolds number Re = 2× 106

and angle of attack α = 3◦.

3.4.3 Direct Optimization Results

Using direct optimization the low-fidelity model is first optimized, using its optimum as
an initial design for the fine high-fidelity model which is then optimized.

Low-Fidelity Model Optimization

An attempt was made to create and use a Kriging model [11] as the coarse model, based
on the low-fidelity model described in Section 3.4.2. Kriging model training data was
obtained by uniform sampling the design space given in Eq. (3.4.3) with density of 5 for
each design variable resulting in 54 = 625 sample points. These points are however not
all valid because of the geometric validity check. The number of valid points turns out
to be 220. The coarse model is evaluated at all points and the Kriging model is trained
using the 220 point responses of the low-fidelity model. The Kriging model however
turns out to be unusable and a poor representation of the low-fidelity model. This is likely
a consequence of the noise in the low-fidelity model since Kriging interpolates between
training point responses which in this case include a heavy noise. The obtained Kriging
model therefore can add even more error and inaccuracy to the response than the low-
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Table 3.3: Numerical results of direct optimization, using random-search and pattern-
search optimizing the low-fidelity model and pattern-search optimizing high-fidelity
model. Shown are initial design, low-fidelity model optimum design (coarse) and the
high-fidelity optimum design parameters (fine).

Variable Initial Coarse Optimum ∆ Fine Optimum ∆
x/c -0.1192 -0.2611 - -0.2515 -
y/c 0.0085 0.0098 - -0.0298 -

θ [deg] 33.9 20.2289 - 22.3648 -
α [deg] 30.0 5.0151 - 2.8058 -
Cl 1.7925 1.3462 -25% 1.5634 -13%
Cd 0.5875 0.1289 -78% 0.0613 -90%

Cl/Cd 3.0511 10.4438 +242% 25.5041 +736%
Nc - 300 - -
Nf - - - 150

fidelity model, resulting in a poor representation of the high-fidelity model. Design space
is also relatively large and adding more training points may be considered to improve the
model response but due to the noise Kriging model is altogether dropped.

We proceed without using the Kriging model by optimizing directly the low-fidelity model
which is globally optimized using random-search and locally using pattern-search [21].
Numerical results for low-fidelity optimum is shown in Table 3.3.

Inspecting Table 3.3 we note that drag is reduced by -78% and lift to drag efficiency is
increased by +242% compared to the initial design. Optimizer is however not able to keep
lift above the constraintCl ≥ Cl,min where it is violated by 11%. This could be of previous
mentioned noise where the optimizer gets stuck and terminates. Also investigating the
coarse model optimum design values, we note that they are close to the boundaries of the
design space presented in Eq. (3.4.3). Coarse optimum was obtained using Nc = 300

low-fidelity function evaluations.

High-Fidelity Model Optimization

In general, assuming that the low-fidelity model is a good representation of the high-
fidelity model, the low-fidelity optimum should give a good idea of where the global
optimum for the high-fidelity model is. Before proceeding with optimizing the high-
fidelity model we change the side constraints of the design variables were we shrink the
design space and try to center around the coarse model optimum. New side constraints
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Figure 3.40: High-fidelity optimum design geometry obtained using direct optimization
with the initial design shown as well.

chosen are
−0.30 ≤x/c ≤ −0.22,

−0.04 ≤ y/c ≤ 0.06,

17 ≤ θ ≤ 27,

2 ≤α ≤ 8.

(3.4.4)

The initial design is set at the center of the new design space which is close to be the
low-fidelity model optimum or x(0) = [−0.26, 0.01, 22, 5] and is now optimize using
patter-search [21]. The high-fidelity design optimum is shown in Fig. 3.40 and numerical
results shown in Table 3.3. We note that the drag has been reduced by -90% and the lift
to drag ration has increased by +736% compared to the initial design. Lift is close to the
constraint as expected. Fine optimum was obtained usingNf = 150 high-fidelity function
evaluations.

To give a fair comparison we compare the direct optimization results of the high-fidelity
model to the F11 trawl-door at the same lift coefficient value Cl = 1.5634. Using the
results from performance analysis study presented in Section 3.3 by reading Fig. 3.18
we note that to obtain such lift, angle of attack is α = 1.9246◦. Using this angle of
attack α = 1.9246◦ we read off results for drag and lift to drag ratio from Fig. 3.19 and
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Table 3.4: High-fidelity optimum design compared to interpolated results obtained from
Fig. 3.18 to Fig. 3.21 for the F11 trawl-door design at lift Cl = 1.5634.

Variable F11 design Fine Optimum ∆
α [deg] 1.9246 2.8058 +45%
Cd 0.1059 0.0613 -42%

Cl/Cd 14.7619 25.5041 +73%

Fig. 3.21, respectively. We summarize characteristics of the F11 trawl-door if operated at
Cl = 1.5634 in Table 3.4.

Inspecting Table 3.4 we note that by comparing the optimized design and F11 trawl-door
at same lift performance Cl = 1.5634 the drag is reduced by -42% and lift to drag ratio is
increased by +73%.

By inspecting further the velocity contour, skin friction and pressure coefficient plots for
the optimal design shown in Fig. 3.41a to Fig. 3.41c respectively, we note that separation
is small and flow remains attacked over most of the upper surface on the main element.
Skin friction and pressure plot confirm this result although flow is reversed and circulates
at the lower surface of both elements.

An attempt was made to fix the angle of attack at α = 30◦ and α = 45◦ and optimize
these two cases with the objective of minimizing drag. The optimization setup, initial
conditions and procedure is the same as described above with the only difference of de-
sign variables are reduced to three x/c, y/c, θ and angle of attack α is kept fixed. These
values are a typical operation value for trawl-door of this type. However, due to the highly
transient nature of the problem at such high-angles of attack it was noted during the di-
rect optimization that the solver had convergence problems and noise were substantial at
some iteration steps. Although the optimization process minimized drag by finding better
designs the accuracy of theses solution are questioned and not presented here.

3.4.4 Space Mapping Optimization Results

We exploit the space mapping methodology as described in Section 2.4 to carry out a com-
putationally efficient optimization. Using the knowledge and low-fidelity optimum from
direct optimization here, another attempt is made to create a Kriging model [11], using
slightly modified and smaller design space. Based on the optimum design obtained by di-
rect optimization in Table 3.3 we make small adjustments on the design space boundaries.
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Figure 3.41: Direct optimization results V∞ = 2m/s,Rec = 2 × 106. Optimized de-
sign characteristics at angle of attack α = 2.8058◦. a) Velocity contour, b) Skin friction
coefficient (Cf ), c) Pressure coefficient (Cp)
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The new side constrains are;

−0.28 ≤x/c ≤ −0.22,

−0.05 ≤ y/c ≤ −0.01,

20 ≤ θ ≤ 30,

2 ≤α ≤ 8.

(3.4.5)

The Kriging model is trained using 440 training samples from the low-fidelity model.
However, due to numerical noise as described for direct optimization above the model
turned out to be unusable where tested data showed inconsistency between the Kriging
model and the low-fidelity model. Surrogate based optimization algorithms are sensitive
to noise and high- and low-fidelity models must show similar trends.

To try to overcome the numerical noise issue within the low-fidelity model a second order
polynomial approximation model is constructed [13] using 41 training points that where
randomly sampled from the low-fidelity model. As for the Kriging model attempt we use
Eq. (3.4.5) as the design space. The idea is to use relatively few points to construct the ap-
proximation model. The benefit is while Kriging interpolates between training data which
includes numerical noise, the second order polynomial approximates the low-fidelity data
response data. Polynomial regression [13] is used to fit the approximation model to the
training data. In addition, second order polynomial model has nice analytical properties
such as smoothness and convexity. This second order approximation model is used as the
low-fidelity model c or the coarse model in this work.

Initial design is set as x(0) = [−0.26, 0.01, 22, 5] for this SM optimization. Optimum
design and numerical results are show in Fig. 3.42 and Table 3.5, respectively. Results
using the proposed SM method are compared to the initial design of the modified F11
geometry design (two elements, main element and one slat), and the direct optimization
of that design. We note that the drag is substantially decreased or by 90% and lift to drag
ratio is increased by 668%. These are similar results as obtained with direct optimization.
Lift constraint is however slightly violated by less than 5%. Direct and SM optimum
designs agree quite well although SM results seem to hit the design value boundaries.
Here, the approximation model most likely over-predicts the lift response compared to
the high-fidelity model response where is does not violate the constrain resulting in the
algorithm terminates. The proposed method requires less than 31 high-fidelity model
evaluations, 250 surrogate and 5 high-fidelity which is considerably lower than if direct
optimization is applied which required 180 high-fidelity model evaluations.
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Figure 3.42: Optimum design geometry obtained using space mapping with the initial
design shown as well.

Table 3.5: Numerical results initial, direct and surrogate based optimization using space
mapping. The ratio of the high-fidelity model evaluation time to the low-fidelity is 10.

Variable Initial Direct This work (SM) ∆
x/c -0.1192 -0.2515 -0.2107 -
y/c 0.0085 -0.0298 -0.0100 -

θ [deg] 33.9 22.3648 24.0113 -
α [deg] 30.0 2.8058 2.0000 -
Cl 1.7925 1.5634 1.4382 -20%
Cd 0.5875 0.0613 0.0614 -90%

Cl/Cd 3.0511 25.5041 23.4235 +668%
Nc - 300 250
Nf - 150 6

Total Cost - 180 < 31
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Table 3.6: Space mapping optimum design compared to interpolated results obtained from
Fig. 3.18 to Fig. 3.21 for the F11 trawl-door design at lift Cl = 1.4382.

Variable F11 design This work (SM) ∆
α [deg] 0.7076 2.0000 +182%
Cd 0.1029 0.0614 -40%

Cl/Cd 13.9808 23.4235 +68%

As for direct optimization, the proposed algorithm is able to optimize the design such it
improves performance substantially as presented in Table 3.5. Further we compare the
F11 trawl-door at the same lift value as obtained with SM where Cl = 1.4382. Using
the results from performance analysis study presented in Section 3.3 by reading Fig. 3.18
we note that to obtain such lift angle of attack is α = 0.7076◦. Using this angle of
attack α = 0.7076◦ we read off results for drag and lift to drag ratio from Fig. 3.19 and
Fig. 3.21, respectively. We summarize characteristics of the F11 trawl-door if operated at
Cl = 1.4382 in Table 3.6.

Inspecting Table 3.6 we note that by comparing the SM optimized design and F11 trawl-
door at same lift performance Cl = 1.4382 the drag is reduced by -40% and lift to drag
ratio is increased by +68%.

The optimization history is shown in Fig. 3.43. One can observe the evolution of the
objective function Fig. 3.43a, convergence plot Fig. 3.43b and evolution of lift and drag
Fig. 3.43c and Fig. 3.43d respectively. It is observed that the algorithm shows a good con-
vergence although it does not reach the 103 stopping criterion. The algorithm forces the
lift to its constrain at Cl ≥ 1.5 where the constrain is violated slightly while minimizing
the drag.

Velocity contour, skin friction and pressure plots are shown in Fig. 3.44. Similarly as for
the direct optimization flow separation is reduced. This is evident on the pressure plot
where we can see that there is no sudden increase in pressure at the upper surface and the
flow stays attached for longer time.

A successful attempt was made to improve and refine the approximation model response
in order to yield better optimum results using the proposed method. Previously, the op-
timization process hit the boundaries and got terminated. Here, a second order approx-
imation model is constructed without using the mixed terms. The design space is made
smaller where the previously found optimum design x = [−0.2107,−0.0100, 24.0113, 2]
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Figure 3.43: Optimization history using the proposed SM methodology. a) Evolution of
the objective function; b) convergence Plot; c) evolution of lift coefficient where dash line
(- -) is the lift constrain and; d) evolution of drag coefficient
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Figure 3.44: Space Mapping optimization results V∞ = 2m/s,Rec = 2×106. Optimized
design characteristics at angle of attack α = 2◦. a) Velocity contour, b) Skin friction
coefficient (Cf ), c) Pressure coefficient (Cp)
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is at the center. New design boundaries are

−0.2307 ≤x/c ≤ −0.1907,

−0.0150 ≤ y/c ≤ −0.0050,

22.0113 ≤ θ ≤ 26.0113,

1 ≤α ≤ 3.

(3.4.6)

The approximation model is trained using 9 high-fidelity data points sampled at design
space boundaries in Eq. (3.4.6) (total of eight points) and at the center of the design space
x = [−0.2107,−0.0100, 24.0113, 2] (one point). Using the center as a intial design the
proposed method using the improved approximation model reaches minimum in 2 itera-
tions where the optimum design is x∗ = [−0.21444,−0.01278, 23.2191, 2.9375] which is
similar to previously found optimum as shown in Table 3.5.

3.5 Summary

Optimization of the modified F11 trawl-door geometry presented here turned out to be a
challenging task. Operating at a high angle of attack obtaining a steady-state solution was
difficult since the flow over the trawl-door geometry is highly transient where separation
is huge. Therefore the optimization is done for relatively low angle of attacks. In addition
the low-fidelity model presented here includes substantial noise. Despite of that a direct
optimization yielded a optimized design with drag reduction of 43% compared to the F11
design.

As described, the surrogate based optimization method is sensitive for numerical noise in
both low- and high-fidelity models. Low- and high-fidelity grids and flow solver method-
ologies must be redesigned and redone in such way a linear design variation will not yield
different lift and drag responses as observed here. This task is however quite challeng-
ing. Designing grids is a true art and transient flow solver solutions adds overhead to the
optimization process.

Results obtained with the proposed computationally efficient optimization methodology,
space mapping shows that the algorithm can be applied to such problem and yield ac-
curate results. The proposed method was able to reduce drag substantially or by 40%
compared to the F11 design. The proposed method requires less than 31 high-fidelity
model evaluations, 250 surrogate and 5 high-fidelity which is considerably lower than if
direct optimization is applies which required 180 high-fidelity model evaluations. The op-
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timization method used here therefore brings over -80% reduction in high-fidelity model
evaluations.
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Chapter 4

Transonic Wing Optimization

In this chapter, the proposed surrogate based optimization methodology is applied to a
three dimensional rectangular wing design at a transonic flow condition. The goal is to op-
timize its geometry in order to maximize its lift. First we introduce the high-fidelity model
where we define the governing equations of the flow, wing geometry, computational grid,
solver setup and boundary conditions. A grid convergence study is then performed in
order to verify the computational grid. The high-fidelity model is validated using a ON-
ERA M6 wing geometry, where CFD simulation data is compared to experimental data
from an ONERA M6 wing experiment. The design optimization formulation is presented
defining the objective and constraints used in this optimization. The low-fidelity model is
constructed followed by presenting the optimization results using the method introduced
in 2.4. This chapter concludes with a summary.

4.1 Problem Definition

The wing is the most important component of an aircraft, affecting, the overall perfor-
mance significantly. As the wing provides lift, it is at the same time the main source of
drag, responsible for about 2/3 of the total drag of the aircraft [38]. Reducing this wing
drag by a better design, hence minimizing cost, is therefore often the primary objective
of modern aircraft design. Yet another important perspective is to maximize lift, but keep
drag within constraints thereby increasing its lift to drag ratio, or the efficiency.

An aircraft wing is a three dimensional aerodynamic surface. Schematic of a trapezoidal
transonic wing planform is shown in Fig. 4.1. At each spanstation (numbered 1 through
7) the cross-section is defined by an airfoil shape. An airfoil is a streamlined aerody-



76 Aerodynamic Optimization by Variable-Resolution Modeling and Space Mapping

x

y1

2

3

4
5

6 7

Semi wing span b/2

W
in

g
 R

o
o
t 

c r

W
in

g
 T

ip
 c

t

V∞ 

Figure 4.1: Planform view of a trapezoidal wing of a semi-span b/2 and quarter chord
sweep angle Λ. Spanstations are marked 1 through 7 and freestream velocity is V∞.
Leading edge and trailing edge angles are φ and ψ is also shown. Other design parameters
are not shown.

namic surface which describes the shape of a wing as seen in cross-section such as one
in Fig. 4.2. The chord, denoted by c, is the distance from the leading edge (LE) to the
trailing edge (TE) of the body. The chord line, is the line connecting the LE and TE. The
LE is normally rounded and the TE is usually sharp either closed or open but can also be
blunt (closed). The mean camber line is the locus of points halfway between the upper
and lower surface. The curvature, called camber, is the distance from the chord line to the
mean chamber line measured perpendicular to the chord line. The thickness, denoted by
t, is the distance between the upper and lower surface measured also perpendicular to the
chord line [35].

Number of spanstation on a wing can be larger or fewer than shown here and depend on
the wing design. A straight line wrap is assumed between spanstations. Spanstations are
mainly used for two purposes, to define different types of airfoils than the adjacent ones
or simply defined as an interesting locations on the wing to observe pressure distributions
and skin friction. Design parameters controlling the planform shape include the wing
semi-span b/2, the quarter chord wing sweep angle Λ, thickness-to-chord ratio t/c at
each spanstation, the wing taper ratio λ and twist distribution γθ. The number of design
variables can therefore be much larger than for the two dimensional case. Lift and drag
coefficients for a three dimensional surface are defined as

CL =
L

q∞S
, (4.1.1)
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Figure 4.2: Airfoil wing cross-section (solid line) of thickness t and chord length c. V∞
is the freestream velocity and is at an angle of attack α relative to the x-axis. F is the
resulting aerodynamic force where l is the lift force, perpendicular to V∞ and d is the
drag force, parallel to V∞. p is the pressure acting normal to a surface element ds. τ is the
viscous wall shear stress acting parallel to the surface element. θ is the angle that p and τ
make relative to the z and x-axis, respectively where positive angle is clockwise.

CD =
D

q∞S
, (4.1.2)

where S is usually chosen as the planform area, L and D is the magnitude of the total lift
and drag forces respectively. The dynamic pressure q∞ is defined as

q∞ =
1

2
ρ∞V∞, (4.1.3)

where ρ∞ is the freestream density and V∞ is the magnitude of the freestream veloc-
ity.

In this study, we will consider a simple rectangular wing geometry consisting of two
airfoils, one at wing tip and one at wing root, at transonic flow conditions. The goal of this
study is to maximize its lift CL for a given drag constraint CD ≤ CD,max, by optimizing
the airfoil shape at the wing tip while keeping other wing variables fixed.

4.2 High-Fidelity CFD Model

In this section, we present the high-fidelity CFD model. We start by describing the gov-
erning equations of the fluid flow. Following that, the wing geometry, computational grid,
solver setting and boundary conditions are presented. The section concludes with a grid
convergence study and high-fidelity model validation study performed on the ONERA
M6 wing.
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4.2.1 Governing Equations

Commercial aircraft operates at high speeds in the transonic flow regime where the flow
is highly compressible. We assume that the fluid is air and is modelled by the ideal gas
law and use the Sutherland law for dynamic viscosity µ. The flow is further assumed
to be steady, viscous, and without body forces, mass-diffusion, chemical reactions or
external heat addition. We apply and solve the RANS equations with the one equation
Spalart-Allmaras turbulence model. See Appendix A.1 for the full Navier-Stokes equation
matrices, RANS equations and turbulence model description.

4.2.2 Wing Geometry

Here, we present the methods used in this work to construct and parametrize a wing
geometry. Generally, a wing consist of number of airfoil cross-sections. One needs to
be able to describe these airfoil cross-sections numerically in order to in order to control
the wing geometry. Several methods exists describing airfoil geometry numerically, each
method with its own benefit and drawbacks. Number of design parameters are often
closely related to the method selected to describe the geometry. In general there are two
different approaches describing the airfoil geometry numerically, either the airfoil shape
is parametrized or given an initial airfoil shape the deformation is parametrized. We
consider only airfoil parametrization. Numerous airfoil parametrization methods have
been developed. Non-Uniform Rational B-Spline (NURBS) and Bézier curves (special
case of NURBS) are the methods that are commonly used today. These methods use a set
of control points that describe the airfoil geometry and are general enough to be able to
create almost any airfoil shape [39]. One can vary the number of control points depending
on how accurately the airfoil geometry is to be controlled and in general, more points will
give greater control of the upper and lower surface of the airfoil. These methods however
come with a price. In aerodynamic shape optimization the afore mentioned control point
are a part of the design variables of a given problem. The more the design variables,
the more computational demanding the optimization will be. NURBS requires as few as
thirteen control points to represent a large family of airfoils [39]. Other parametrization
methods exists that require fewer control points.

For the sake of simplicity and having a small number of design variables, the NACA -
4 digit method is used to construct a wing geometry. It is one of the most studied and
researched airfoils where developed by the National Advisory Committee for Aeronau-
tics (NACA), the forefunner of NASA. The NACA four digit series was developed in
the 1930s and is based on the results of a number of wind tunnel experiments. Shapes
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generated by this method is therefore limited to those investigations. However due to
its simplicity requiring only three design parameters, NACA four digit parametrization
method can be used for constructing a relatively complex three dimensional wing body
with few design parameters making it computationally a feasible choice.

The rectangular wing consists of two NACA 4 digit airfoils one at the wing root and one
at the wing tip with a straight line wrap assumed between airfoils. The formulation of the
NACA 4 digit method is given here. The NACA 4 digit airfoil are denoted by convention
as NACA mpxx where:

m : the maximum ordinate of the mean camberline as a percent of the chord.

p : the chordwise position in tens of percents of the maximum ordinate

xx : the thickness-to-chord ratio in percents of chord t/c

The NACA airfoils are constructed by combining a thickness function zt(x) with a mean
chamber line function zc(x) [35]. The x and z coordinates are

xu,l = x∓ zt sin θ, (4.2.1)

zu,l = zc ± zt cos θ, (4.2.2)

where u and l are the upper and lower surfaces, respectively, and

θ = tan−1

(
dzc
dx

)
, (4.2.3)

is the mean camber line slope. The NACA four digit thickness distribution is given
by

zt = t
(
a0x

1/2 − a1xa2x
2 + a3x

3 − a4x
4
)
, (4.2.4)

where a0 = 1.4845, a1 = 0.6300, a2 = 1.7580, a3 = 1.4215, a4 = 0.5075, and t is the
maximum thickness. The mean chamber line is given by

zc =

{
m
p2

(2px− x2) x < p
m

(1−p)2 (1− 2p+ 2px− x2) x ≥ p
, (4.2.5)

Examples of a airfoils generated with NACA four digit method are shown in Fig. 4.3.
A finite wing can then be described by number of airfoils where each airfoil represents
the wings cross-section at a given spanstation as shown in Fig. 4.4. This offers great
scalability since each airfoil shape is free to change and can have different geometric
angle of attack and aerodynamic angle of attack.
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Figure 4.3: Examples of two airfoils sections generated with the NACA four digit method.
NACA 0012 m = 0, p = 0, t/c = 0.12 is shown by solid line (–) and is a symmetric
airfoil. NACA 0012 m = 0.04, p = 0.6, t/c = 0.08 is shown by dash line (- -).

In this work a simple constant chord wing, or a rectangular wing geometry is used. It
consists of two NACA four digit airfoils, one at wing root and the second at wing tip
as shown in Fig. 4.4a. A CAD drawing of the wing is shown in Fig. 4.4b. The method
developed in this work, using the NACA four digit method, is very flexible and not limited
to constant chord wings consisting of two airfoils only. By introducing sweep as a design
variable one can generate a more complex wing geometries. An example of more complex
wing is a conventional transport wing as shown in Fig. 4.5 where three airfoils and sweep
make up the wing geometry.
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Figure 4.4: Planform view of a constant chord wing used in this work. The rectangular
wing consisting of two NACA airfoils, shown at spanstations 1 the wing root and 2 wing
tip. Each airfoil has its own set of design parameters, m, c, t/c, describing the airfoil
cross-section.
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Figure 4.5: Planform view of a conventional transport wing consisting of 3 NACA 4 digit
airfoils where sweep has been introduced. Each spanstation 1− 3 is an airfoil which has
its own set of design parameters m, c, t/c.
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Figure 4.6: Farfield configured as a box topology. The leading edge of the wing root
airfoil is placed at (x, y, z) = (0, 0, 0).

4.2.3 Computational Grid

Working with three dimensional body, choosing the appropriate grid method and strategy
becomes very important since element count depend heavily on the method used. Here,
we give a description of the parameters used for the high-fidelity CFD grid. The grid pa-
rameter values representing the fine model are acquired through a grid convergence study
which is considered in Section 4.2.5. Modelling and acquiring accurate drag prediction
is a difficult task especially in three dimensions. The objective is to obtain a grid that
can be adapted in the sense that cell count can be refined in an efficient manner without
affecting its global topology. We follow the guidelines and procedures presented by the
Drag Prediction Workshop series in this work [40]. Developing an error free grid turned
out to be a formidable task. It must be noted that the grid strategy used here is only one of
many that were employed and tested although their details are not presented here.

An unstructured tri/tetra shell grid is created on all surfaces. The shell grid from the wing
is then extruded into the volume where the volume is flooded with tri/tetra elements. The
grid is made dense close to the wing where it then gradually grows in size as moving
away from the wing surfaces. To capture the viscous boundary layer an inflation layer or
a prism layer is created on the wing surfaces as well.

The farfield is set up as a box where the wing root is place in the center of the symmetry
plane with its leading edge placed at the origin (x, y, z) = (0, 0, 0) as shown in Fig. 4.6.
The farfield extends 100 chord lengths, 100c, in all directions from the wing, upstream,
above, below and aft of the wing where the maximum element size in the flow domain is
11 chord lengths or 11c. Resulting farfield shell grid is shown in Fig. 4.7e.
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The wing is discretized x and y direction, namely the stream-wise and span-wise direction,
respectively. In stream-wise direction number of elements on the wing is set to 100 on
both upper and lower surface. The bi-geometric bunching law with growth ratio of 1.2 is
also employed in the stream-wise direction over the wing to obtain a more dense element
distribution at the leading edge and the trailing edge. This is done in order to capture the
high pressure gradient at the leading edge and the separation at the trailing edge. Resulting
element density is sufficiently dense to capture the shock appearing on the upper surface.
The minimum element size which is located at the leading and trailing edge of the wing in
the stream-wise direction is set to 0.1% of the chord length, 0.1%c. In span-wise direction
number of elements are set to 100 and they are distributed uniformly over the semi-span.
Resulting grid is shown in Fig. 4.7a to Fig. 4.7c.

A prism layer is used to capture the viscous boundary layer. This layer consists of number
of structured elements that grow in size normal to the wing surface into the domain vol-
ume. The initial element height from the surface is usually orders of magnitude smaller
than the wing chord length. In this work the initial layer has the height of 5×10−6c where
it is grown 20 layers into the volume using a exponential law with ratio of 1.2. The initial
layer height is chosen such that y+ < 1 (see Appendix A.1.3) at all nodes on the wing
and is shown in Fig. 4.7d.

The resulting volume grid is shown in Fig. 4.8a to Fig. 4.8c. The high-fidelity grid is
generated with the computer code ANSYS ICEM CFD [34]. The resulting high-fidelity
grid has roughly 1.6 million elements. We summarize here the grid properties and param-
eters;

• General Parameters

– Farfield extends 100 chord lengths, 100c, from the origin (x, y, z) = (0, 0, 0)

in all directions, see Fig. 4.6.

– Maximum element size in the flow domain is 11 chord lengths or 11c, see
Fig. 4.7e.

• Wing Parameters

– Number of stream-wise nodes are 100, distributed using bigeometric bunching
law, see Fig. 4.7a.

∗ Growth ratio 1.2

∗ Minimum element size stream-wise is 0.1% of the chord length 0.001c.

– Number of nodes on span-wise direction are 100, distributed uniformly
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(a)

(b) (c)

(d) (e)

Figure 4.7: Shell grid shown for all surfaces. a) wing shell grid; b-c) symmetry plane
where the wing placed; d) prism layer applied close to the wing surface to capture the
viscous boundary layer; e) farfield volume
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(a)

(b) (c)

Figure 4.8: Volume grid a) looking in span-wise direction y-axis; b) looking in stream-
wise direction x-axis; c) looking from below along z-axis. We note how the elements are
dense close to the surface and gradually grow into the volume.
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• Boundary Layer

– Initial layer height is 5× 10−6c.

– Exponential growth ration is set 1.2.

– Number of prism layers are set to 20, see Fig. 4.8b.

– Above properties yield y+ < 1 at any point on the wing surfaces.

4.2.4 Boundary Conditions and Solver Setup

Numerical fluid flow simulations are performed using the computer code ANSYS FLU-
ENT [32]. Here, the implicit density-based solver is applied using the Roe-FDS flux type.
Spatial discretization schemes are set to second order consistency for all variables and
gradient information is found using the Green-Gauss node based method. The residuals,
which are the sum of the L2 norm of all governing equations in each cell, are monitored
and checked for convergence. The convergence criterion for the high-fidelity model is
such that a solution is considered to be converged if the residuals have dropped by six
orders of magnitude, 10−6, or the total number of iterations has reached 103. Also the lift
and drag coefficients are monitored for convergence.

To reflect the compressible nature of this problem two types of boundaries are used.
Pressure-farfield is set as the boundary on all surfaces except one where the wing pen-
etrates which is set as a symmetry boundary. A breakout of the boundary types is show in
Fig. 4.9.

Air is the working fluid at compressible transonic conditions. Free-stream Reynolds num-
ber Re∞,S = 11.72 × 106, where S is the reference area, which in this case is planform
area. Mach number is set toM∞ = 0.8395 and the angle of attack is set to α = 0◦. We as-
sume that the flow is calm at its boundaries and turbulent viscosity ratio set to µt/µ∞ = 1.
Further, boundary pressure and temperature is set to p∞ = 80507.2Pa and T∞ = 255.6K.
Other fluid properties and boundary condition are summarized in Table 4.1. The values
shown here are part of an experimental setup which found and calculated in Section 4.2.6.

4.2.5 Grid Convergence Study - ONERA M6

A grid convergence study is conducted. The idea of this grid convergence study is to
acquire fine enough grid that resolves the physics properly and yields an accurate enough
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Figure 4.9: Breakout of the boundary types used. All boundaries are set as pressure-
farfield (PF) except one the wing penetrates which is a symmetry boundary.

Table 4.1: Air properties and boundary conditions for pressure-farfield.

Fluid Properties Value Units
Density ρ∞ Ideal gas -
Specific Heat Capacity cp 1003.06 J/kg K
Thermal Conductivity k 0.0242 W/mK
Viscosity µ∞ Sutherland kg/ms
Molecular Mass 28.966 kg/kgmol

Boundary Conditions Value Units
Reynolds number Re∞,S 11.72× 106 -
Mach M∞ 0.8395 -
Turbulent viscosity ratio µt/µ∞ 1 -
Gauge Pressure p∞ 80507.2 Pa
Temperature T 255.6 K
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aerodynamic result. The study is performed using the ONEARA M6 wing [41]. Details
of geometry is presented in Section 4.2.6.

Convergence Study Setup

The ONERA M6 wing is simulated at various grid resolution at M∞ = 0.8395 and angle
of attack α = 3.06◦. The flow conditions are selected to match experimental flow condi-
tions of an ONERA M6 wing experiment 2308 conducted by Schmitt, V. and F. Charpin
[5], see Section 4.2.6. Other flow and boundary conditions are the same as presented in
Table 4.1.

Convergence Study Results

The grid convergence study shown in Fig. 4.10a revealed that 1,576,413 cells are needed
for convergence in lift. The drag, however, can still be improved as evident from Fig. 4.10a
where convergence has not been reached. This could be done by refining the grid further
and adding density region in the wake. However, due to limitations in the computational
resources we proceed with this grid as the high-fidelity model grid.

The overall simulation time needed for one high-fidelity CFD simulation was around 223
minutes, as shown in Fig. 4.10b, executed on four Intel-i7-2600 processors in parallel.
This execution time is based on 103 solver iterations where the solver terminated due to
the maximum number of iterations limit. The grid parameter details obtained through this
study where previously presented and summarized in 4.2.3 above.

4.2.6 CFD Model Validation - ONERA M6

The ONERA M6 wing is a commonly used CFD validation case for external flows be-
cause of its simple geometry combined with complexities of transonic flow, i.e., local
supersonic flow, shocks, and turbulent boundary layers separation. Here, we consider
the ONERA M6 wing as a validation case for the high-fidelity CFD model presented in
Section 4.2.

ONERA M6 Geometry

The ONERA M6 wing is a swept, semi-span wing with no twist and then symmetrical
ONERA D airfoil section [5]. The numerical coordinates of the airfoil section at the
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Figure 4.10: Grid convergence study using the ONERA M6 wing at M∞ = 0.8395 and
angle of attack α = 3.06◦. a) Lift (CL) and drag (CD) coefficient versus number of grid
elements, b) simulation time versus number of grid elements.
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Table 4.2: Geometry properties of the ONERA M6 wing.

Variable Value Unit
Chord length at wing root c 0.8059 m
Mean Aerodynamic Chord Length cmac 0.64607 m
Semi-span b/2 1.1963 m
Aspect Ratio AR 3.8 -
Taper Ratio λ 0.562 -
Leading Edge Sweep φ 30 deg
Trailing Edge Sweep ψ 15.8 deg
Reference Area S 0.7530 m2

Table 4.3: Flow condition of the ONERA M6 experiment 2308 conducted by Schmitt, V.
and F. Charpin [5].

Variable Value Unit
Reynolds Number Re∞,cmac 11.72× 106 -
Mach M∞ 0.8395 -
Freestream Temperature T∞ 255.6 K
Angle of attack α 3.06 deg

y/(b/2) = 0 are obtained from NASA [41]. The coordinates indicate that there is a
finite thickness to the trailing edge. In this work, we use a zero trailing edge thickness.
The airfoil coordinates are linearly scaled near the trailing edge so that the trailing edge
thickness is zero. Geometric properties of the ONERA M6 wing is found in Table 4.2.

Validation Setup

To validate the high-fidelity grid we need experimental data for comparison. We use
experimental data from a ONEARA M6 wing wind tunnel experiment 2308 conducted by
Schmitt, V. and F. Charpin [5]. The experimental flow conditions are listed in Table 4.3

In order to perform a CFD simulation, we need to calculate other flow properties and
boundary conditions such as the freestream pressure p∞. The free-stream speed of sound
a∞ for a perfect gas depends on temperature only and is defined and is found to be

a∞ =
√
γRT∞ =

√
1.401× 287× 255.6 = 320.5m/s, (4.2.6)
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where γ = 1.401 is the ratio of specific heats for air and R = 287J/kg K is the gas con-
stant for dry air [42]. Using the definition of Mach number we find the flow velocity

V∞ = Ma∞ = 0.8395× 320.5 = 269.1m/s, (4.2.7)

Using the freestream temperature we find the viscosity for air using Sutherland’s Law
[42]

µ∞ = µ0

(
T∞
T0

)3/2(
T0 + S

T∞ + S

)
= 1.62× 10−5 kg/ms, (4.2.8)

where at standard sea level S = 110, µ0 = 1.7894 × 10−5Kg/ms and T0 = 288.16K.
Now using Reynolds number definition Recmac = ρ∞V∞cmac/µ∞ and the ideal gas
law p∞ = ρ∞RT∞ solving the equations together we obtain the freestream static pres-
sure

p∞ =
Recmacµ∞RT∞

V∞cmac
= 80507.2Pa. (4.2.9)

Specific heat capacity is then found to be

cp =
γR

γ − 1
= 1003.06 J/Kg k. (4.2.10)

The above boundary conditions and fluid properties where previously presented and sum-
marized in Section 4.2.4 Table 4.1, respectively.

Validation Result

The available experimental data obtained by Schmitt and Charpin, consists of pressure co-
efficients (Cp) values at seven cross-sections along the span of the wing where the cross-
section are at y/(b/2) = 0.2, 0.44, 0.65, 0.8, 0.9, 0.95, 0.99. We simulate the ONERA
M6 geometry using the flow and boundary conditions presented above, extract pressure
data and compare the CFD data to the Schmitt and Charpin experimental data [5]. Results
are presented in Fig. 4.11 to Fig. 4.17. Inspecting the result we see that the correlation
between CFD data and experimental data is excellent although at y/(b/2) = 0.99, shown
in Fig. 4.17 there appears to be notable difference at the trailing edge upper surface. We
are able to resolve the steep pressure gradient at the leading edge as well as capture the
double shock with its distinctive "lambda" pattern appearing on the upper surface of the
wing as show in Fig. 4.18.
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Figure 4.11: Pressure coefficient (Cp) at y/(b/2) = 0.2 of ONERA M6 wing at M∞ =
0.8395 and angle of attack α = 3.06◦. CFD results shown with solid line (-). Wind tunnel
experiment 2308 conducted by Schmitt, V. and F. Charpin [5] shown with square markers.
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Figure 4.12: Pressure coefficient (Cp) at y/(b/2) = 0.44 of ONERA M6 wing at M∞ =
0.8395 and angle of attack α = 3.06◦. CFD results shown with solid line (-). Wind tunnel
experiment 2308 conducted by Schmitt, V. and F. Charpin [5] shown with square markers.
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Figure 4.13: Pressure coefficient (Cp) at y/(b/2) = 0.65 of ONERA M6 wing at M∞ =
0.8395 and angle of attack α = 3.06◦. CFD results shown with solid line (-). Wind tunnel
experiment 2308 conducted by Schmitt, V. and F. Charpin [5] shown with square markers.
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Figure 4.14: Pressure coefficient (Cp) at y/(b/2) = 0.8 of ONERA M6 wing at M∞ =
0.8395 and angle of attack α = 3.06◦. CFD results shown with solid line (-). Wind tunnel
experiment 2308 conducted by Schmitt, V. and F. Charpin [5] shown with square markers.
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Figure 4.15: Pressure coefficient (Cp) at y/(b/2) = 0.9 of ONERA M6 wing at M∞ =
0.8395 and angle of attack α = 3.06◦. CFD results shown with solid line (-). Wind tunnel
experiment 2308 conducted by Schmitt, V. and F. Charpin [5] shown with square markers.
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Figure 4.16: Pressure coefficient (Cp) at y/(b/2) = 0.95 of ONERA M6 wing at M∞ =
0.8395 and angle of attack α = 3.06◦. CFD results shown with solid line (-). Wind tunnel
experiment 2308 conducted by Schmitt, V. and F. Charpin [5] shown with square markers.
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Figure 4.17: Pressure coefficient (Cp) at y/(b/2) = 0.99 of ONERA M6 wing at M∞ =
0.8395 and angle of attack α = 3.06◦. CFD results shown with solid line (-). Wind tunnel
experiment 2308 conducted by Schmitt, V. and F. Charpin [5] shown with square markers.

Figure 4.18: Upper surface, pressure coefficient (Cp) contour plot of ONERA M6 wing
at M∞ = 0.8395 and angle of attack α = 3.06◦. Note the double shock on the surface,
one at the leading edge and one at mid wing, where they then merge close to the wing tip.
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Figure 4.19: Rectangular wing planform view. b/2 is the normalized wingspan and c is
the normalized wing chord length.

4.3 Wing Design Optimization at Transonic Flow Condi-
tions

In this study, we consider a lift maximization case of a rectangular wing at transonic
conditions where we carry out the optimization, using the space mapping methodology
presented in Section 2.4. No direct optimization of the problem will be done simply due to
the heavy computational cost of the high-fidelity model. Using a simple rectangular wing
consisting of two NACA 4 digit airfoils at wing root and wing tip. We want to design
the wing shape by optimizing only the wing tip airfoil, and keeping all other geometric
parameters fixed.

Formulation of the problem is given first, followed by a presentation on the low-fidelity
model construction used in this work. The section concludes by presenting the space
mapping optimization results.

4.3.1 Formulation

For the sake of simplicity, we consider a simple unswept and untwisted rectangular wing
as an illustration case for the proposed optimization algorithm. Planform view of the wing
is shown in Fig. 4.19.

The wing consists of two normalized NACA 4 digit airfoils with a normalized chord
length c = 1 and a straight line wrap between airfoils. The wing shape is parametrized
such that design variables considered in this work include only the wing tip NACA airfoil
parameters (m, p, t/c). A NACA 2412 airfoil is chosen as the wing root airfoil and kept
fixed. The initial design x(0) for the wing tip is chosen at random. The normalized semi-
wingspan is set as twice the wing chord length c as (b/2) = 2c. The wing aspect ratio is
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found to be;

AR =
b2

A
=

b2

b× c
=
b

c
=

4c

c
= 4, (4.3.1)

which is a low aspect ratio wing. With such low aspect ratio, induced drag effects from
downwash or vortexes at the wing tip affect the wing performance even more than it would
for a high aspect ratio wing. All other wing parameters are fixed during the optimization.
The design vector for optimizing the wing can be written as x = [m, p, t/c]T where the
variables represent the wing tip NACA airfoil parameters.

The objective is to maximize the lift coefficient CL,f subject to constraints on the drag
coefficient CD,f ≤ CD,max where CD,max = 0.03. Additionally, we set constraints on the
structure of the wing by setting a constraint on the wing tip normalized cross-sectional
area such that A ≥ Amin. Initially the area constraints was selected as Amin = 0.06.
This turned out to be too high where the proposed algorithm could not improve the design
since the cross-sectional area was already at its constraint boundary. The area constraint
was therefore reduced to Amin = 0.01 to alleviate the problem. Lower and upper bounds
are specified for each of the design variables x = [m, p, t/c]. The side constraints on the
design variables are 0 ≤ m ≤ 0.03, 0.4 ≤ p ≤ 0.8 and 0.07 ≤ t/c ≤ 0.12.

We summarize the optimization setup of the problem for convenience

x∗ = arg max
x

CL, (4.3.2)

subject to
CD,f ≤ CD,max = 0.03,

A ≥ Amin = 0.01,
(4.3.3)

with the following design variable bounds

0 ≤m ≤ 0.03,

0.4 ≤ p ≤ 0.8,

0.07 ≤ t/c ≤ 0.12.

(4.3.4)

Terminating condition for the optimization algorithm is set to ‖x(i)−x(i−1)‖ < 10−3.

4.3.2 Low-Fidelity CFD Model

The low-fidelity model c is constructed in the same way as the high-fidelity model f
but with a coarser grid discretization and with a relaxed convergence criteria. Referring
back to the grid study made in Section 4.2.5 inspecting Fig. 4.10a we make our selection
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Figure 4.20: Lift and Drag coefficient convergence plot for low-fidelity model obtained
in grid convergence study simulation using ONERA M6 wing at Mach number M∞ =
0.8395 and angle of attack α = 3.06◦.

for the coarse low-fidelity model. Based on time and accuracy with respect of lift and
drag we select the grid parameters that represent the second point from left, giving a
107,054 elements. The time taken to evaluate the low-fidelity model is 13.2 minutes on
four Intel-i7-2600 processors in parallel. Inspecting further the lift and drag convergence
plot for the low-fidelity model Fig. 4.20 we note that the solution has converged after
400-500 iterations. Maximum number of iterations for the low-fidelity model is set to 500
iterations. This reduces the overall simulation time to 6.6 minutes. The ratio of simulation
times of the high- and low- fidelity model in this case is high/low = 223/6.6 u 34. This
is based on the solver uses all 500 iterations in the low-fidelity model to obtain a solution.

4.3.3 Space Mapping Optimization Results

We exploit the space mapping methodology as described in Section 2.4 to carry out a
computationally efficient optimization.

An attempt was made to construct and use a Kriging model [11] as the coarse model,
based on the low-fidelity model described in Section 4.3.2. Kriging model training data
was obtained by uniform sampling the design space given in Eq. (4.3.4) with density of 5
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for each design variable resulting in 53 = 125 sample points. Kriging model was tested
with 20 additional training points sampled using Latin Hypercube Sampling (LHS) [7]
from the same design space as given in Eq. (4.3.4).

The Kriging model, however, turns out to be unusable and a poor representation of the
low-fidelity model. This is likely a consequence of the noise in the low-fidelity model.
Kriging model assumes the data is an accurate response and interpolates between training
point responses which in this case include a heavy noise. The Kriging model therefore can
add even more error and inaccuracy to the response than the low-fidelity model, resulting
in a poor representation of the high-fidelity model. Design space is also relatively large
and adding more training points may be considered to improve the model response but
due to the noise the Kriging approach is altogether dropped.

In order to alleviate the problem and to try to overcome the numerical noise issue present
in the low-fidelity model, a second order polynomial approximation model is constructed
[13] using 50 training points sampled using LHS from the low-fidelity model. These
points are sampled from a smaller design space where we update the design space bound-
aries:

0.02 ≤m ≤ 0.03,

0.7 ≤ p ≤ 0.9,

0.06 ≤ t/c ≤ 0.08.

(4.3.5)

As before the idea is to use relatively few points to construct the approximation model.
The benefit is while Kriging interpolates the training data, which includes numerical
noise, the second order polynomial approximates the low-fidelity data response data.
Polynomial regression [13] is used to fit the approximation model to the training data. In
addition, second order polynomial model has nice analytical properties such as smooth-
ness and convexity. This second order approximation model is used as the low-fidelity
model c or the coarse model in this work. The surrogate approximation model is opti-
mized using pattern-search [21] during the optimization.

The proposed method was executed twice with different initial designs that where cho-
sen at random within the design space presented in Eq. (4.3.5). Optimum numerical
results obtained by the proposed method for both runs are presented in the following
sections.
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Results for Run 1

For run number 1 the initial design is x(0) = [0.0200, 0.7000, 0.0628] for this SM opti-
mization run. Optimum numerical results obtained by the proposed method are shown in
Table 4.4, where they are compared to the initial design. Inspecting the table we see that
the proposed method is able to increase lift by +10%. The drag is pushed above its limit
at CD,max = 0.03, where the optimized drag coefficient CD = 0.0311 increases by +29%
and violates the constraint slightly, or by +4%, which is within the 5% constraint band
tolerance. The lift to drag ratio is decreased by 14%. The proposed method requires less
than 10 high-fidelity model evaluations, 50 low-fidelity model evaluations used to create
the approximation model and 8 high-fidelity model evaluations.

The optimized wing tip NACA airfoil section is shown in Fig. 4.21. It is evident that the
optimized wing tip airfoil is thicker. The normalized cross-sectional area is increased by
+26%, and the increased drag can be related to the increment in area. No change is in the
camber m but the location of the maximum camber p is moved slightly aft.

The optimization history for Run 1 is shown in Fig. 4.22. One can observe the evolution
of the objective function Fig. 4.22a, convergence plot Fig. 4.22b and evolution of lift and
drag Fig. 4.22c and Fig. 4.22d respectively. It is observed that the algorithm shows a
good convergence reaching the 103 stopping criterion. The algorithm is able to increase
lift while it forces the drag to its constraint at CD ≤ 0.03 where the constraint is slightly
violated. To underline the algorithm robustness, during the optimization, at iteration 3 the
flow solver crashed during a high-fidelity model evaluation due to a grid error resulting in
large negative values for lift and drag. However, the algorithm is able to recover.

Pressure coefficient plots comparison between the initial design and optimized designs
are given for airfoil cross-section at y/(b/2) = 0.2, 0.44, 0.65, 0.8, 0.9, 0.95, 0.99, and
are shown in Fig. 4.23 to Fig. 4.29. Further, a planform pressure coefficient contour plots
of the initial and optimized designs are shown in Fig. 4.30 and Fig. 4.31, respectively.
Both upper and lower surfaces are shown and compared. It is clear from the plots that by
moving the camber aft the pressure distribution opens up a little bit along the wing-span
but also induces another shock close to the trailing edge and the wing tip. The shock gets
stronger when moving along the span. The effect from this shock increases the lift but
also increases the drag.

Mach number contour plots comparing initial and optimized design for airfoil cross-
section at y/(b/2) = 0.2, 0.44, 0.65, 0.8, 0.9, 0.95, 0.99 are shown in Fig. 4.32 to Fig. 4.38.
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Table 4.4: Optimum numerical results for Run 1 compared to initial design x(0) =
[0.0200, 0.7000, 0.0628]. The ratio of the high-fidelity model evaluation time to the low-
fidelity is 34.

Variable Initial This work (SM) ∆
m 0.0200 0.0200 -
p 0.7000 0.8725 -
t/c 0.0628 0.0793 -
CL 0.2759 0.3047 +10%
CD 0.0241 0.0311 +29%

CL/CD 11.4481 9.7974 -14%
A 0.0422 0.0534 +26%
Nc - 50
Nf - 8

Total Cost - < 10
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Figure 4.21: Run 1 optimum design geometry of the NACA airfoil obtained using space
mapping algorithm shown with dashed line (- -). Initial design shown with solid line (–).
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Figure 4.22: Optimization history using the proposed SM methodology. a) Evolution
of the objective function; b) convergence Plot; c) evolution of lift coefficient and; d)
evolution of drag coefficient where dash line (- -) is the drag constraint. At iteration 3
flow solver crashes due to grid error.
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Figure 4.23: Run 1 pressure coefficient (Cp) at y/(b/2) = 0.2 where M∞ = 0.8395 and
angle of attack α = 0◦. Initial design shown with solid line (–). Optimum design shown
with dashed line (- -).
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Figure 4.24: Run 1 pressure coefficient (Cp) at y/(b/2) = 0.44 where M∞ = 0.8395 and
angle of attack α = 0◦. Initial design shown with solid line (–). Optimum design shown
with dashed line (- -).
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Figure 4.25: Run 1 pressure coefficient (Cp) at y/(b/2) = 0.65 where M∞ = 0.8395 and
angle of attack α = 0◦. Initial design shown with solid line (–). Optimum design shown
with dashed line (- -). Notice the shock close to the trailing edge.
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Figure 4.26: Run 1 pressure coefficient (Cp) at y/(b/2) = 0.8 where M∞ = 0.8395 and
angle of attack α = 0◦. Initial design shown with solid line (–). Optimum design shown
with dashed line (- -). Notice the shock close to the trailing edge.
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Figure 4.27: Run 1 pressure coefficient (Cp) at y/(b/2) = 0.9 where M∞ = 0.8395 and
angle of attack α = 0◦. Initial design shown with solid line (–). Optimum design shown
with dashed line (- -). Notice the shock close to the trailing edge.
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Figure 4.28: Run 1 pressure coefficient (Cp) at y/(b/2) = 0.95 where M∞ = 0.8395 and
angle of attack α = 0◦. Initial design shown with solid line (–). Optimum design shown
with dashed line (- -). Notice the shock close to the trailing edge.
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Figure 4.29: Run 1 pressure coefficient (Cp) at y/(b/2) = 0.99 where M∞ = 0.8395 and
angle of attack α = 0◦. Initial design shown with solid line (–). Optimum design shown
with dashed line (- -). Notice the shock close to the trailing edge.
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(a) Upper surface (b) Lower surface

Figure 4.30: Run 1 planform pressure coefficient contour plots of the initial design ge-
ometry. a) The upper surface shows a shocks at mid section of the wing. b) The lower
surface shows one shock at the leading edge.

(a) Upper surface (b) Lower surface

Figure 4.31: Run 1 planform pressure coefficient contour plots of the optimized design
geometry. a) The upper surface shows two shocks, one at mid section of the wing and
one close to the wing tip at the trailing edge. b) The lower surface shows one shock at the
leading edge.
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(a) Initial

(b) Optimized

Figure 4.32: Run 1 Mach number contour plot (M) at y/(b/2) = 0.2 whereM∞ = 0.8395
and angle of attack α = 0◦. a) Shows the initial design; b) Shows the optimized design.
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(a) Initial

(b) Optimized

Figure 4.33: Run 1 Mach number contour plot (M) at y/(b/2) = 0.44 where M∞ =
0.8395 and angle of attack α = 0◦. a) Shows the initial design; b) Shows the optimized
design.
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(a) Initial

(b) Optimized

Figure 4.34: Run 1 Mach number contour plot (M) at y/(b/2) = 0.65 where M∞ =
0.8395 and angle of attack α = 0◦. a) Shows the initial design; b) Shows the optimized
design.
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(a) Initial

(b) Optimized

Figure 4.35: Run 1 Mach number contour plot (M) at y/(b/2) = 0.8 whereM∞ = 0.8395
and angle of attack α = 0◦. a) Shows the initial design; b) Shows the optimized design.
Notice the shock at the trailing edge.
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(a) Initial

(b) Optimized

Figure 4.36: Run 1 Mach number contour plot (M) at y/(b/2) = 0.9 whereM∞ = 0.8395
and angle of attack α = 0◦. a) Shows the initial design; b) Shows the optimized design.
Notice the shock at the trailing edge.
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(a) Initial

(b) Optimized

Figure 4.37: Run 1 Mach number contour plot (M) at y/(b/2) = 0.95 where M∞ =
0.8395 and angle of attack α = 0◦. a) Shows the initial design; b) Shows the optimized
design. Notice the shock at the trailing edge.
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(a) Initial

(b) Optimized

Figure 4.38: Run 1 Mach number contour plot (M) at y/(b/2) = 0.99 where M∞ =
0.8395 and angle of attack α = 0◦. a) Shows the initial design; b) Shows the optimized
design.
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Results for Run 2

For the second run the initial design is x(0) = [0.0232, 0.8550, 0.0600]. Optimum nu-
merical results obtained by the proposed method are shown, in Table 4.5, where they are
compared to the initial design. Inspecting the initial design response we note that we al-
ready have high lift but the drag constraint is violated. The proposed algorithm is able to
push the drag to its constraint limit, CD,max = 0.03, where the optimized drag coefficient
CD = 0.0307 slightly violates the constraint by +2%, which is within the 5% constraint
band tolerance. Lift coefficient however only drops by -1% while the drag coefficient
is decreased by -11%. As a result the lift to drag ratio is increased by +11%. We see
that although the objective is to maximize lift, the proposed method is able to maintain
the initial design lift although the drag constrain is heavily violated at the initial design.
The proposed method requires less than 9 high-fidelity model evaluations, 50 low-fidelity
model evaluations used to create the approximation model and 7 high-fidelity model eval-
uations.

The optimized wing tip NACA airfoil section is shown in Fig. 4.39. The optimized wing
tip airfoil is thinner than the initial design as indicated by t/c. The normalized cross-
sectional area is reduced by -20%, where the decreased drag can be related to the decrease
in area. Camber m is slightly changed and maximum camber location p do not change
much.

The optimization history for Run 2 is shown in Fig. 4.40. One can observe the evolution
of the objective function Fig. 4.40a, convergence plot Fig. 4.40b and evolution of lift
and drag Fig. 4.40c and Fig. 4.40d respectively. It is observed that the algorithm shows a
good convergence reaching the 103 stopping criterion. The algorithm forces the drag to its
constraint at CD ≤ 0.03 where the constraint is violated slightly but within design.

Planform pressure coefficient contour plot, comparing initial design and optimum design
is shown in Fig. 4.41. The left figure shows the upper surface where two shocks appear,
one at mid section of the wing and another close to the wing tip at the trailing edge. The
right figure shows the lower surface shows one shock between the leading edge and mid
section of the wing.
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Table 4.5: Optimum numerical results for Run 2 compared to initial design x(0) =
[0.0232, 0.8550, 0.0600]. The ratio of the high-fidelity model evaluation time to the low-
fidelity is 34.

Variable Initial This work (SM) ∆
m 0.0259 0.0232 -
p 0.8531 0.8550 -
t/c 0.0750 0.0600 -
CL 0.3426 0.3388 -1%
CD 0.0344 0.0307 -11%

CL/CD 9.9593 11.0358 +11%
A 0.0505 0.0404 -20%
Nc - 50
Nf - 7

Total Cost - < 9
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Figure 4.39: Run 2 optimum design geometry of the NACA airfoil obtained using space
mapping algorithm shown with dashed line (- -). Initial design shown with solid line (- -).
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Figure 4.40: Optimization history using the proposed SM methodology. a) Evolution
of the objective function; b) convergence Plot; c) evolution of lift coefficient and; d)
evolution of drag coefficient where dash line (- -) is the lift constraint. At iteration 6 the
flow solver crashes due to grid error.
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Figure 4.41: Run 2 pressure contour plot of the optimum design geometry obtained using
space mapping. Left) The upper surface shows two shocks one at mid section of the wing
and another close to the wing tip at the trailing edge. Right) The lower surface shows one
shock between the leading edge and mid section of the wing.
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Table 4.6: Numerical comparison of Run 1 and Run 2, initial and optimized designs. The
ratio of the high-fidelity model evaluation time to the low-fidelity is 34.

Initial Optimized
Variable Run 1 Run 2 Run 1 Run 2

m 0.0200 0.0259 0.0200 0.0232
p 0.7000 0.8531 0.8725 0.8550
t/c 0.0628 0.0750 0.0793 0.0600
CL 0.2759 0.3426 0.3047 0.3388
CD 0.0241 0.0344 0.0311 0.0307

CL/CD 11.4481 9.9593 9.7974 11.0358
A 0.0422 0.0505 0.0534 0.0404
Nc - - 50 50
Nf - - 8 7

Total Cost - - < 10 < 9

Results Comparison

The results from Run 1 and Run 2 are compared and shown in Table 4.6. Further ini-
tial airfoil cross-sections and optimized airfoil cross-sections are show in Fig. 4.42a and
Fig. 4.42b, respectively. We note that although starting from different initial designs in
Run 1 and Run 2, the optimized designs show similarities in two of three design variables,
the maximum camber m and maximum camber location p. The third, the airfoil thickness
t/c differs. This is due to initial violation of the drag constraint in Run 2. We also note
that the difference in optimized lift between runs is 11% higher for optimum design found
in Run 2 although drag is similar and at constraints boundaries. The reason here is most
likely due to two different local minimums found in the design space. Optimum design is
obtain in less than 10 high-fidelity model evaluation for Run 1 and Run 2.
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Figure 4.42: Graphical comparison of Run 1 and Run 2, initial and optimized designs. a)
Initial design comparison b) Optimized comparison. Run 1 is shown with a solid lines
(–), and Run 2 with dashed lines (- -)
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4.4 Summary

Optimization of the transonic wing turned out to be a difficult task. Number of different
grid strategies where tested and as it turns out it is difficult to create robust, error free,
grid routine. Due to numerical noise in the low-fidelity model and after attempts creating
a Kriging model based on the low-fidelity CFD model a second order approximation
model was constructed.

The proposed algorithm turned out to be robust method. A simple rectangular wing ge-
ometry, consisting of two NACA 4 digit airfoils was considered where only the wing tip
airfoil was to be optimized while other parameters where kept fixed. The objective was
to maximize lift with constraint on drag. Starting from random initial airfoil design the
proposed method was able to increase lift by +10% during Run 1. At Run 2, starting from
a drag violation, the proposed method was able to decrease the drag by -11% while still
maintaining lift where the lift coefficient value decreased by only -1%. The optimized
designs are obtained using less than 10 high-fidelity model evaluations.
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Chapter 5

Conclusion and Future Work

Let us summarize what we have discussed and accomplished in this work. A robust and
computationally efficient methodology for designing aerodynamic shapes is presented.
The method exploits a computationally cheap, physics-based low-fidelity CFD model
which is corrected using the space mapping technique. The surrogate optimized is able to
predict an approximate optimum design solution to the computationally expensive high-
fidelity CFD model. The space mapping correction is applied both to the objectives and
constraints. Using output space mapping with addition and multiplication, we are able
to perform the parameter extraction analytically ensuring zero-order consistency and a
perfect alignment between the surrogate and the high-fidelity model. Numerical noise
in the low-fidelity models used in both applications turned out to be a big problem for
the optimization algorithm. Attempts to create Kriging models failed but using a second-
order approximation model turned out to be successful.

The proposed method is applied to two different aerodynamic applications. In the first
application, we considered a constrained, high-lift, trawl-door drag minimization problem
in a two-dimensional viscous low-speed flow where we optimize the location of one slat
relative to the main element of the trawl-door. In the second application, we considered
a simple three-dimensional rectangular wing at viscous transonic flow conditions where
a constrained lift maximization optimization is performed by optimizing wing tip airfoil
shape. In both cases, the optimized designs are obtained at a low number of high-fidelity
model evaluations, reducing computational cost by more then 80% compared to a direct
optimization, as shown in the trawl-door application. It is evident from the considered
applications that the proposed optimizations methodology is a computationally cheap and
efficient method that can be used in aerodynamic shape optimizations problems to obtain
improved designs at a low computational cost.
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In order to further validate and verify the computational efficiency of the proposed meth-
ods the high-fidelity model of the presented applications, trawl-door and wing need to
be optimized using optimization method such as Kriging with updates rather than direct
optimization.

In order to use variable-resolution low-fidelity models more successfully and without ap-
proximation models, more work needs to be done. Future work should include analysis
such as, when the coarse model breaks down, meaning when does the grid stop to rep-
resent the geometry under consideration. What is the coarsest model one can use, what
are the assumption we can make about the grid and when do the responses from the
high-fidelity model and low-fidelity more differ too much ? Using adaptive grid codes
that refine grids during flow solving may also be considered. In order to alleviate the
numerical noise present in the low-fidelity model one can use a simplified physics low-
fidelity model instead or in conjunction with a variable-resolution model. When dealing
with low-speed flow, numerous analytical methods exist and panel methods could be used
[42]. For high-speed transonic flow, the Euler, potential or transonic small-disturbance
equations could be applied as the governing flow equations [42]. Further, the scalability
in terms of computational cost needs to be studied in terms of increasing the number of
design variables.
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Appendix A

Computational Fluid Dynamic
Modeling

Computational fluid dynamics (CFD) is the methodology that enables us to get numerical
solutions of a fluid flow with the use of a computer by solving the governing equations of
a given fluid flow. Effective use of CFD is becoming the key ingredient in a successful
design a modern aerodynamic design. CFD simulation and modeling can be divided into
components and these components make up this chapter. In this chapter we introducing
the mathematical model defining the equations governing of the flow and setting up a
hierarchy defining the level of approximations to reality that are commonly used in ex-
ternal aerodynamic design. Next, the numerical modelling procedure is introduced. The
numerical model can be further divided into, defining the geometry, discretizing the flow
domain and the governing equations, selecting the appropriate numerical scheme for flow
solution.

A.1 Governing Equations

A.1.1 Navier Stokes Equations

The fundamental equations of fluid dynamics are based on three universal laws of con-
servation; the conservation of mass, momentum and energy. For a Newtonian fluid, the
nonlinear compressible viscous Navier-Stokes equations in three dimensional Cartesian
coordinates without body forces, mass diffusion, finite-rate chemical reactions or external
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heat addition are commonly written in a vector form as Eq. (A.1.1) [33]

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0 (A.1.1)

where U,E,F and G are vectors given by

U =


ρ

ρu

ρv

ρw

Et

 (A.1.2a)

E =


ρu

ρu2 + p− τxx
ρuv − τxy
ρuw − τxz

(Et + p)u− uτxx − vτxy − wτxz + qx

 (A.1.2b)

F =


ρv

ρuv − τxy
ρv2 + p− τyy
ρvw − τyz

(Et + p)v − uτxy − vτyy − wτyz + qy

 (A.1.2c)

G =


ρw

ρuw − τxz
ρvw − τyz

ρw2 + p− τzz
(Et + p)w − uτxz − vτyz − wτzz + qz

 (A.1.2d)

Fluid density is denoted by ρ, the fluid velocity components are denoted, u, v, w for x, y, z
direction respectively, p is the static pressure, Et = ρ

(
e+ V 2

2

)
is the total energy per unit

volume, e is the internal energy per unit mass, V 2/2 is the kinetic energy and τij is the
viscous shear stress tensor given in summation notation [33]

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij
∂uk
∂xk

]
i, j, k = 1, 2, 3 (A.1.3)

where µ is the dynamic viscosity, δ is the Kronecker delta function. First row in each vec-
tor in Eq. (A.1.2) is the continuity equation, second, third and fourth are the momentum
equations and the last is the energy equation. Strictly speaking the term Navier-Stokes
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equation refers only to the components of the momentum equation. It is however cus-
tomary to include the continuity and energy equations in the set of equations referred
to as the Navier-Stokes equation [33]. These scalar equations form a system of five,
fully coupled, time dependant, partial differential equations containing seven unknowns
namely (ρ, p, e, T, u, v, w). Here we assume that the µ, k the dynamic viscosity and ther-
mal conductivity can be related to the thermodynamic properties in the list of unknowns
[33]. Two equations are needed to close the system and they can be obtained by relating
thermodynamic variables. According to the state principle of thermodynamics the local
thermodynamic state is fixed by any two independent thermodynamic variables. Thus
choosing the internal energy e and density ρ as the independent variables the equations of
state

p = p(e, ρ) T = T (e, ρ) (A.1.4)

are necessary [33]. For most problems in gas dynamics it is sufficient to assume perfect
gas model, where perfect gas is defined as a gas where intermolecular forces are negligi-
ble. Perfect gas obeys the perfect gas equation of state

p = ρRT (A.1.5)

whereR is the gas constant per unit mass defined and is equal to the universal gas constant
divided by the molecular mass of the fluid [33] closing our set of equations.

Solving the set of afore mentioned equations numerically can be quite challenging even
for a simple laminar flow. Most real flow situations occurring in nature are however
turbulent complicating things further. Fluid flow will transition from a laminar flow to a
turbulent flow above a critical value of the Reynolds number,

ReL =
ρV L

µ
=
V L

ν
, (A.1.6)

where, V, µ, ν, L are the velocity, dynamic viscosity, kinematic viscosity, geometric length
scales respectively.

This form of instability is a consequence of the nonlinear convective terms. This insta-
bility generated in the turbulent regime can characterized by the presence of statistical
fluctuation of all flow quantities. These fluctuations are superimposed on a mean or an
average value and can attain in many situations 10% of the mean value. [43]. Clearly a nu-
merical description of the turbulent fluctuations is a formidable task demanding extreme
amount of computing resources. Direct Numerical Simulation (DNS) has the objective
to simulate the whole range of the turbulent statistical fluctuations from the smallest ed-
dies to the order of the physical dimension of the problem. Total computational effort for
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Navier-Stoke Equations

Newtonian fluid, compressible, viscous, unsteady, heat-conducting
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Direct Numerical 
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Figure A.1: A hierarchy of the governing equation along with approximations and asso-
ciated assumptions

DNS simulations is proportional to Re3 for a homogeneous turbulence [43]. This means
by increasing the Reynolds number by a factor of 10 requires a computational increase in
at least a factor 1000. DNS simulations are therefore not a realistic option for an exter-
nal flow application where its not uncommon to have a Reynolds number in the range of
105 − 107.

By making appropriate assumptions about the fluid flow one can simplify the governing
equations enabling the numerical description of turbulence in acceptable CPU time. Fig-
ure A.1 shows the hierarchy of equations and assumptions. Large eddy simulations (LES)
is the highest approximation and is similar to DNS. Its objective is to simulate directly the
turbulence fluctuations, but restrict to the larger scales and use models to account for the
smaller ones. This method is still very computationally expensive and is proportional to
Re9/4 [43]. The Reynolds Average Navier-Stoke (RANS) equations are the most widely
applied approximations in CFD today and is covered in the next section.

A.1.2 RANS equations

Variables of the instantaneous Navier-Stokes equations are decomposed into mean or
time-averaged and fluctuating components. For velocity
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ui = ūi + u′i (A.1.7)

where ui and u′i (i=1,2,3) are the mean and the fluctuating components [32]. Substituting
into the continuity and momentum equations and taking a time average and dropping
the over bar in the mean velocity ūi yields the ensemble-averaged momentum equations.
They can be written in Cartesian tensor form as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (A.1.8)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ul
∂xl

)]
+

∂

∂xj

(
−ρu′iu′j

)
(A.1.9)

where δij is the Kronecker delta [32]. This gives rise to a new term the Reynolds stress
tensor −ρu′iu′j , which can be interpreted as apparent stress gradients and heat flux quan-
tities associated with the turbulent motion [33]. This requires the RANS equations to be
supplemented with turbulence models for the Reynolds stresses. As a result, a loss in
accuracy of the solution is introduced since the turbulence models have limitations and
are usually designed and developed for limited operating range. By using these model the
RANS approach retains the viscous effect in the fluid flow but at the same time reduces
the computational effort since there is no need resolving all turbulent scales as done in
DNS and LES.

A.1.3 Turbulence Models

As previously noted, none of the available turbulence models available today are univer-
sal. Many turbulence models exists all having its own limitations. When using turbulence
models one must verify the validity of the solution by comparing results to experimental
data. Two turbulence models will be used in this work and a brief description of each will
be given here. The most common turbulence models used today in simulation past air-
foils and wings are the Spalart-Allmaras one-equation and the k−ω−SST two equation
turbulence models [33].
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Spalart-Allmaras Model

The Spalart-Allmaras mode is a one-equation model designed specifically for aerospace
applications involving wall-bounded flows and has proven to give good results for bound-
ary layers subjected to adverse pressure gradients [32]. In its original form Spalart-All-
maras model is effectively at low Reynolds-number model, requiring the viscosity af-
fected region of the boundary layer to be solved properly where y+ ∼ 1 and is defined
as

y+ =
ρuτy

µ
(A.1.10)

where ρ is the density, µ is the dynamic viscosity, y is the distance from the wall and uτ
is the friction velocity and is defined as

uτ =

√
τw
ρ

(A.1.11)

where τw is the wall shear stress.

For the Spalart-Allmaras model it has been shown to produce consistent results for wall
function resolution y∗ > 15 and for fine meshes y∗ < 3 [32]. Good numerical results
for the wall boundary layer can only be obtained if the overall resolution of the mesh
is sufficient [32]. Capturing the boundary layers successfully with good accuracy can
be achieved with approximately 20 prism cells in the normal direction of the wall. The
thickness of the prism layer should be designed so that around 15 cells fully cover the
boundary layer leaving the rest to act as a buffer in the design. The design thickness can
be checked after a solution is obtained, by looking at the turbulent viscosity which should
have its maximum in the middle of the boundary layer. Twice this thickness should give
an indication of where the boundary layer edge is and how thick the prism layers need to
be. It must be stressed that the prism layers must cover all the boundary layer plus some
extra layers for safety otherwise there is a danger that the prism layers confine the growth
of the boundary layer [32].

k-ω - SST Model

The shear-stress transport (SST) k−ω is a two equation model that has gained popularity
recently mainly because the model do not contain terms which are undefined at the wall.
It is computationally more expensive than Spalart-Allmaras and has proven to be robust
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for a wide range of boundary layer flows with pressure gradient and complex geometries.
This model is widely used in aerodynamic applications. [33, 32]

A.2 Numerical Modeling

In the following section the method used to construct all numerical models in this thesis
will be explained. The process of constructing a numerical model to be simulated and
optimized for a given problem can be split into several components as shown in Fig. A.2.
These components are, constructing the geometry to be analysed, generating mesh appro-
priate to capture the physics properly, obtain numerical solution of the governing equa-
tions extracting relevant information from the solution and finally calculate the objective
function and evaluating constrains.

Generate Geometry 

Generate Grid

Flow Solution

Evaluate objective(s) 

and constrains

Figure A.2: Basic flow diagram of a single CFD simulation in numerical wing shape
optimization

A.2.1 Geometry

Aerodynamic considerations of wings can be split into two parts, study of a section of
a wing or an airfoil, and the modification of airfoils properties to account for the com-
plete finite wing. Experiments on airfoils are performed in wind tunnels where a constant
chord wing spans the entire test section from one sidewall to the other. This is consid-
ered an infinite wing where the flow see the wing without wing tips. Because the airfoil
section is the same at any spanwise location, the properties of an airfoil and an infinite
wing are the same. Several methods exists describing airfoils geometry numerically, each
method with its own benefit and drawbacks. Number of design parameters are often
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closely related to the method selected to describe the geometry. In general there are two
different approaches describing the airfoil geometry numerically, either the airfoil shape
is parametrized or given an initial airfoil shape the deformation is parametrized. Here
we consider only airfoil parametrization. Numerous airfoil parametrization methods have
been developed. Non-Uniform Rational B-Spline (NURBS) and Bézier curves (special
case of NURBS) are the methods that are commonly used today. These methods use a set
of control points that describe the airfoil geometry and are general enough to be able to
create almost any airfoil shape [39]. One can vary the number of control points depending
on how accurately the airfoil geometry is to be controlled and in general, more points will
give greater control of the upper and lower surface of the airfoil. These methods however
come with a price. In aerodynamic shape optimization the afore mentioned control point
are a part of the design variables of a given problem. The more the design variables,
the more computational demanding the optimization will be. NURBS requires as few as
thirteen control points to represent a large family of airfoils [39]. Other parametrization
methods exists that require fewer control points. In this thesis the NACA 4 digit method
is defined in 4.2.2.

A.2.2 Computational Grid

Grid generation is a major component in CFD simulations and has a crucial role the CFD
process. It is the necessary step, since no simulation can be started without having defined
the mesh and its parameters. Tools have been developed to aid users to generate meshes
in as efficient and sophisticated way as possible. The importance of the mesh cannot be
emphasized enough since it plays essential role in overall quality and accuracy of the CFD
simulation. The governing equations are solved on a computational grid. The grid needs
to resolve the entire solution domain, as well as the detailed geometry. Further-more,
the grid needs to be sufficiently fine to capture the flow physics accurately. Too coarse
mesh gives bad or incorrect solution as very fine mesh take too much time to compute
a solution [43] For example, a fine grid resolution is necessary near the airfoil surface,
especially near the LE where the flow gradients are large. Also due to viscous effects
the grid needs to be fine near the entire airfoil surface. The grid can be much coarser
several chord lengths away from the geometry and in the far-field. The meshing process
is therefore often considered a true art. Software methods in support of the grid generators
are complex and difficult to make for any geometry. Many grid generators exist both free
and commercial but the free ones often tend to lack support and are poorly updated for bug
fixes. ANSYS ICEM CFD [34] is a commercial grid generator is widely used software. It
supports a number of advanced CAD/geometry readers and repair tools to allow the user
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to quickly progress to a variety of geometry-tolerant meshers and produce high-quality
volume or surface meshes with minimal effort. ANSYS ICEM CFD then also support
number of CFD solvers.

Generally grids can be classified into two types structured and unstructured whereas
the former is composed of families of intersecting lines, one for each dimension, where
each point in the grid is located at the intersection of one line, and only one line of each
family. Unstructured meshes on the other hand refer to a arbitrary distribution of mesh
points connecting for example triangles in 2D and polyhedrals in 3D. In the upcoming
subsections the basics of both mesh types will be covered briefly to give the reader insight
into the properties of each type [43]. For a detailed discussion on grid generation the
reader is referred to [33, 43].

In this thesis all grids will be hybrid, where far-field and volume will be unstructured with
triangles or polyhedral and prism layers are applied to capture the boundary layer at the
surface of the aerodynamic geometry. These prisms are constructed of either structured
quad or hex elements.

Structured Mesh

Structured mesh can be considered as most natural for flow problems as the flow is gen-
erally aligned with the solid body and the mesh often looks somewhat like streamlines in
some sense. The ideal mesh would be when all points are equidistant from each other, or
∆x = ∆y = ∆z in Cartesian coordinate system. This type of mesh will generally lead to
the highest accuracy [43]. However when the geometry include curved solid surfaces it is
not possible to work with the ideal meshes. Body-fitted meshes or curvilinear mesh are
then used instead to try to fit the mesh lines to the solid surface. Depending on the ori-
entation of the grid lines various configurations exist indicated by a letter to which they
resemble the most. To name few H-type, C-type, O-type and various configurations of
their combination [43].

H-Mesh Mesh lines are curvilinear, approaching a set of horizontal and vertical lines in a
pseudo-orthogonal configuration with a topology that can be associated to the letter
H.

C-Mesh Mesh lines are curvilinear, surrounding the geometry resembling to the letter C
on the leading edge but remaining open at the trailing edge.

O-Mesh Mesh lines are like the C-Mesh but surrounds the at the trailing edge as well.
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The drawback of structured grids comes clear when adding a point locally it implies
adding lines through that point which affect the whole domain. Several ways exist to
counter these constrains. One is to define multi-block meshes where each block cover
a subset the computational domain with it own structured mesh. Another is to have a
overlapping meshes where independent generated mesh around a fixed or moving solid
surface is made to overlap with a background fixed mesh. This method has however
limitations in 3D and becomes extremely challenging [43].

Structured grids, compared to unstructured grids often tend to take less CPU time and
memory and in CFD point of view be more efficient and accurate. However the time
taken to generate a good quality structured mesh can often take weeks or months, hence
commercial companies in today’s competitive environment tend to lean towards the auto-
matically generated unstructured meshes [43].

Unstructured Mesh

As mentioned earlier unstructured meshes have become the dominating approach to com-
mercial CFD due to the impossibility to generate automatically block-structured meshes
on arbitrary geometries. However unstructured meshes tend to have lower accuracy than
corresponding structured meshes [43]. Unstructured mesh on the other hand has a clear
advantage when performing local refinement in a certain region without affecting mesh
point distribution in the whole domain. This is normally referred as mesh adaptation.
Grid adaptation is based on adding mesh points in order to increase the accuracy in re-
gions of large flow variations and remove mesh points where solution is already accept-
able.

Unstructured mesh contains and is formed by, triangular/tetrahedral elements, hybrid
elements involving combinations of tetrahedral, pyramids and prisms and quadrilaterals
and hexahedra elements [43].

Triangle/Tetrahedra Cells Various methods exists generating triangle/tetrahedral mesh
for arbitrary solids. Most mesh generators require a initial surface mesh which has
to be generated prior to the volume mesh.

Quadrilaterals/Hexahedra Cells Often offers advantages compared to tetrahedral cell
in terms of memory usage and accuracy [43].

Hybrid Mesh One of triangle/tetrahedral meshes is that they do not capture the boundary
layer well enough in high Reynolds number flows. This is due to the grid density
in the normal direction has to be adapted to the boundary layer velocity profiles.
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Ration of mesh size should be optimally close to ∆x/∆y ∼
√
Re, where δx and δy

are the representative mesh sizes in the streamwise and normal directions, respec-
tively. This shows that larger the ratios of ∆x/∆y will lead to a poorly configured
triangles with a large height to base ratio, consequently, a significant loss in accu-
racy. To counter this problem hybrid grids are used where layers of quadrilaterals
or prisms are generated in the near-wall by form of extrusion process out from the
triangular surface mesh [43].

A.2.3 Flow solution

Commercial numerical solvers like FLUENT that will be used in this thesis are based
on the Finite Volume Method (FVM). FVM takes its name from the technique witch the
integral formulation of the conservation laws is discretized directly in the physical space.
FVM is based on cell-averaged values which appear as a most fundamental quantity in
CFD. The strength of FVM is its direct connection to the physical flow properties. This
distinguishes FVM from other methods such as Finite Difference (FDM) or Finite El-
ement Method (FEM) where numerical quantities are local function values at the mesh
point [32]. The grid is subdivided into finite volumes one control volume being asso-
ciated to each mesh point. To each local finite volume or a control volume the integral
conservation laws, mass, momentum and energy are applies to these finite volume.

The result is a set of linear algebraic equations one for each control volume. This set
of equations is then solved simultaneously and the solution then iterated. The iterative
solution is usually performed with relaxation factors to prevent a numerical oscillation of
the solution that can lead to no solution or errors. Solution is considered to be converged
if the difference in two subsequent iteration is smaller than a specified value. This value
is usually kept small and ranges from 10−3 − 10−6. The number of iterations needed for
a solution to converge is problem dependent.

Lift and drag coefficient are frequently used to determine convergence. Further reading
on FVM is found in [33, 32]. For illustration purposes results for a typical 2D flow using
k−ω turbulence model convergence plot for the residuals and lift and drag coefficients is
shown in Fig. A.3.
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Figure A.3: Convergence history of a typical simulation. a) Residual convergence history
b) lift and drag history
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Appendix B

Aerodynamics

Here fundamental aerodynamics topics will be covered. First aerodynamic forces

B.1 Airfoil geometry

An airfoil is a streamlined aerodynamic surface which describes the shape of a wing as
seen in cross-section such as one in Fig. B.1. The chord, denoted as c, is the distance

t
TELE

θ 

 

τ
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l
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A

N

Chord line

Camber
V∞ 

Figure B.1: Airfoil a wing cross-section (solid line) of thickness t and chord length c. V∞
is the freestream velocity and is at an angle of attack α relative to the x-axis. F is the
resulting aerodynamic force where L is the lift force, perpendicular to V∞ and D is the
drag force, parallel to V∞. p is the pressure acting normal to a surface element ds. τ is the
viscous wall shear stress acting parallel to the surface element. θ is the angle that p and τ
make relative to the z and x-axis, respectively where positive angle is clockwise.

from the leading edge (LE) to the trailing edge (TR) of the body. The chord line is the
line connecting the LE and TE. The LE is normally rounded and the TE is usually sharp
either closed or open but can also be blunt (closed). The mean camber line is the locus
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of points halfway between the upper and lower surface. The curvature is called camber

is the distance from the chord line to the mean chamber line measured perpendicular to
the chord line. The thickness, denoted as t, is the distance between the upper and lower
surface measured also perpendicular to the chord line [35].

Forces for a two and three dimensional bodies such as airfoils and wings can be written
in non-dimensional form as lift and drag coefficients. By convention aerodynamic coef-
ficients and forces are denoted by lowercase letters for two dimensional bodies. The lift
and drag coefficients are defined as

Cl =
l

q∞S
(B.1.1)

Cd =
d

q∞S
(B.1.2)

where l is the magnitude of the lift force, d the magnitude of the drag force, S is the
reference surface (usually is S = c for an airfoil). The dynamic pressure q∞ is defined
as

q∞ =
1

2
ρ∞V∞ (B.1.3)

where ρ∞ is the freestream density and V∞ is the magnitude of the freestream veloc-
ity.

B.2 Wing geometry

An aircraft wing or a turbine blade is a three dimensional aerodynamic surface. Schemat-
ics of a typical wing planform is shown in Fig. B.2. At each spanstation (numbered 1
through 7) the cross-section is defined by an airfoil shape. Number of spanstation can
be larger or fewer than shown here and depend on wing design. Between spanstations is
a straight line wrap. Spanstations are mainly used for two purposes, to define different
types of airfoils than the adjacent ones or simply defined as an interesting locations on the
wing to observe pressure distributions and skin friction. Design parameters controlling
the planform shape include the wing semi-span b/2, the quarter chord wing sweep angle
Λ, thickness-to-chord ratio at each spanstation, the wing taper ratio and twist distribution.
Number of design variables is therefore much larger than for an two dimensional case
such as an airfoil (single spanstation). Equivalently the lift and drag coefficients for a
three dimensional surface are defined as
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Figure B.2: Schematic of a wing planform of a semi-span b/2 and quarter chord sweep
angle Λ. Spanstations are marked 1 through 7 and freestream velocity is V∞. Leading
edge and trailing edge angles are φ and ψ is also shown. Other design parameters are not
shown.

CL =
L

q∞S
(B.2.1)

CD =
D

q∞S
(B.2.2)

where S is usually the planform area, L and D is the magnitude of the total lift and drag
force respectively. These forces are usually determined experimentally or computation-
ally.

B.3 Aerodynamic forces

An airfoil generates lift by forcing a change in velocity of the air passing over and un-
der the airfoil. The airfoil angle of attack or the camber causes the fluid to travel faster
over the upper surface of the wing than the lower surface. For subsonic flow Bernoulli’s
equation

p0 =
1

2
ρ∞V

2
∞ + p∞ (B.3.1)

where ρ∞, V∞, p∞ is the free-stream density, velocity and pressure, respectively, states
that total pressure p0 along a subsonic streamline remains constant. If the local air ve-
locity increases, the dynamic pressure 1/2ρ∞V

2
∞ has increased so the static pressure p∞

must decrease. Similarly a decrease in local velocity the static pressure must increase.
This shows that higher velocities produces lower pressure. The integrated difference in
pressure between the top and bottom surface generates a net force upward [38]. A typical
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Figure B.3: Typical airfoil or wing pressure distribution

pressure distribution for upper and lower surface of an airfoil at subsonic speeds is shown
in Fig. B.3.

Aerodynamic forces such as lift and drag acting on an airfoil or a wing need to be quanti-
fied. The airfoil main function is to generate lift force l at a range of operating conditions,
freestream velocities V∞ (Mach numbersM∞) and angle of attacks α. The angle of attack
α is defined as the angle between c and V∞. Hence, α is also the angle between lift force
l and N and between the drag force d and A, where N is the normal force and A is the
axial force. Geometric relations between these two sets of components is

l = N cosα− A sinα (B.3.2)

d = N sinα + A cosα (B.3.3)

These forces are due to two basic sources, the pressure distribution p and the shear stress
τ distribution acting normal and parallel to the body surface respectively. At a given point
the pressure is normal to the surface and oriented at an angle θ relative to perpendicular.
Shear stress is tangent and oriented at the same angle θ relative to the horizontal. Sign
convention for θ is positive when measured clockwise. The net effect of the p and τ

distributions integrated over the surface is a resultant aerodynamic force F. The pressure
and skin friction coefficients are defined as

Cp =
p− p∞
q∞

(B.3.4)

Cf =
τ

q∞
(B.3.5)

respectively, where q∞ is the dynamic pressure defined in Eq. (B.1.3). The normal and
axial forces for a two dimensional airfoil with unit span can be found by integrating over
the whole surface making use of the pressure and skin friction coefficient.

Cn =
1

c

[∫ c

0

(Cp,l − Cp,u) dx+

∫ c

0

(
Cf,u

dzu
dx
− Cf,l

dzl
dx

)
dx

]
(B.3.6)
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Figure B.4: Aerodynamic forces on an element of the body surface.

Ca =
1

c

[∫ c

0

(
Cp,u

dzu
dx
− Cp,l

dzl
dx

)
dx+

∫ c

0

(Cf,u − Cf,l) dx
]

(B.3.7)

where u and l denote upper and lower surface respectively. This is shown in Fig. B.4
for a unit span where ds is the length of the surface element, hence dx = ds cos θ and
dz = −ds sin θ. Similarly as in Eq. (B.3.3) the lift and drag coefficients can be written
as

Cl = Cn cosα− Ca sinα =
l

q∞S
(B.3.8)

Cd = Cn sinα + Ca cosα =
d

q∞S
(B.3.9)

B.4 Lift Coefficient

Typical variation on lift coefficient with angle of attack for airfoils and wings is shown in
Fig. B.5a. At low angles Cl varies linearly with α and the slope is called lift slope defined
as

a0 =
dCl
dα

(B.4.1)

In this region the flow remains attached to most of the surface of the airfoil. At certain
point as α becomes larger the flow tends to separate from the top surface creating a large
wake aft of the airfoil. In this region the flow is recirculating and part of the flow is
reversed. This is due to viscous effects. As a result the airfoil looses lift and the airfoil
is staid to stall [42]. The maximum lift just before stall is denoted by Cl,max and is an
important parameter since it determines the stall speed of the aircraft, as the higher the
Cl,max the lower the stalling speed. Stalling speed for a three dimensional body is defined
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Figure B.5: Effects on lift coefficient by varying angle of attack and camber.

as

Vstall =

√
2W

ρ∞SCL,max
(B.4.2)

whereW is the weight of the body. IncreasingCl,max is therefore often of primary interest
in modern aircraft design [42]. Examining Fig. B.5a further we see as α passes Cl,max the
airfoil stalls. The value when lift is zero is called zero-lift angle of attack and is denoted by
αL=0 [42]. The symmetric (uncambered) wing has no lift where αL=0 = 0 and cambered
wings have positive lift at zero angle of attack [38]. This is illustrated in Fig. B.5b.

B.4.1 Subsonic Lift-Curve slope

For 2D airfoil or an infinite-aspect ratio wing the theoretical subsonic is a0 = 2π. Actual
airfoils have 90-100% of the theoretical value and this percentage is referred to as airfoil
efficiency defined as η [38]. Semi-empirical formula exists for a complete wing lift-curve
slope and is valid up to drag-divergence Mach number.

CLα =
2πAR

2 +

√
4 + AR2β2

η2

(
1 + tan2(Λmax t)

β2

) (SexposedSref

)
(F ) (B.4.3)

where
β2 = 1−M2 (B.4.4)

η =
Clα

2π/β
(B.4.5)
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Figure B.6: Various sources of drag and the drag terminology

where Λmax t is the sweep of the wing at the chord length where the wing thickness is the
most, Sexposed is the exposed wing planform area. This is the reference area Sref minus
the area that the fuselage covers. F is the fuselage lift factor

F = 1.07(1 + d/b)2 (B.4.6)

where d is the fuselage diameter and b the span.

B.5 Drag Coefficient

As mentioned above are all drag forces due to only two sources, pressure and shear forces.
However many classification schemes exist. Here we will cover the most common sources
of drag although more exists. A drag terminology matrix show in B.6 summarizes the
commonly used drag terms based on the origin of the drag source (shear of pressure) and
how strongly related to lift the force is [38]. We will give a brief description below.

B.5.1 Parasite Drag

Drag forces not strongly related to lift are usually known as parasite drag. Drag can be
divided into pressure drag and skin friction

Skin friction For an aircraft in a subsonic cruise the parasite drag is mostly skin friction
drag which is related to the wetted area of the aircraft. Shear forces are strongly
related to Reynolds number.
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Figure B.7: Finite wing. Streamlines over the top and bottom surface shows that there
exists a component of flow in spanwise direction.

Viscous separation drag is also called form drag. For a blunt body most of the drag is
pressure drag. For a streamlined body most of the drag is skin friction drag. This
depends upon the location of the separation point of the body. This effect is covered
in detail in Appendix B.6. Separation points depends largely on the curvature of the
body and also the amount of energy in the flow. Turbulent flow has higher energy
than laminar so the turbulent boundary layer tends to delay separation.

Wave Drag is the drag caused by the formation of shock at subsonic or supersonic
speeds. At high subsonic speeds the shock first appears on the upper surface of
the wing and can appear on the lower as well.

Drag due to viscous separation and skin friction is commonly called profile drag.
[42, 38].

B.5.2 Induced drag

Yet another form of pressure drag is the induced drag which is related to the lift of the
wing and is produced at the wingtip due to the pressure difference above and below the
wing. As a result there is generally a spanwise component of flow from the tip towards
the root causing streamlines on the surface to bend towards the root as shown in B.7.
Similarly the streamlines bend towards the tip on the lower surface. As fluid below the
wing is drawn onto the top near the wing tips it establishes a swirling flow or vortices
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Figure B.8: Effect of downwash on the local flow over local airfoil section of wing.

trailing from the wing tips. The vortices drag surrounding fluid and generate a downward
velocity component w called downwash on the wing. The downwash adds to the local
freestream velocity creating a new fluid flow direction. The angle between the freestream
and new flow is denoted by αi, or the induced angle of attack. This behaviour changes the
angle of attack actually seen by the local airfoil. This is called effective angle of attack
denoted αeff = α−αi. This behaviour "induces" a drag force Di on the wing as shown in
B.8 [42].

B.5.3 Total drag

The total drag is the sum of induced drag Di, wave drag Dw, the skin friction drag Df

and the pressure drag Dp due to flow separation, latter two being viscous drag where the
sum is usually called profile drag. For low speed subsonic flow, profile drag coefficient is
usually obtained from airfoil theory and can be defined as

Cd =
Df −Dp

q∞S
(B.5.1)

and the induced drag coefficient as

CD,i =
Di

q∞S
=

C2
L

πeAR
(B.5.2)

where e is the span efficiency factor, AR the aspect ratio defined as AR = b2/S. For low
speed subsonic flow the total drag coefficient then defined as

CD = Cd + CD,i (B.5.3)
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Figure B.9: Types of stall

B.6 Flow Separation and Stall

As mentioned above when wing looses lift the wing has entered the stall region and flow
separation is extensive. Some airfoils exhibit a gradual reduction in lift while others
experience quite violent loss in lift. These difference reflects the existence of three types
of airfoil stall where each type is associated with the airfoil thickness [38].

Trailing edge stall occurs for airfoils that have a round leading edge and t/c greater than
14% where loss in lift occur gradually. Turbulent boundary layer increases with α
and starts to separate around 10 degrees [38].

Leading edge stall appears for thin airfoils. If thickness is moderate, t/c is about 6-14%,
the flow separates from the leading edge at small α but reattaches immediately so
little effect is felt. This is called a separation bubble. At moderate α the flow fails
to reattach which almost immediately stalls the entire airfoil [38].

Very thin airfoil stall has the same characteristics as previous type for low α. Separation
bubble is formed and the flow reattaches. However for a very thin airfoil the bubble
continues to grow towards the trailing edge. At maximum α the bubble is stretched
from the leading edge all the way to trailing edge. Increasing α further results in a
stall and the flow is separated from the whole airfoil. The loss in lift is gradual [38].

The three cases above are summarized in Fig. B.9. Stall characteristics for thinner airfoils
can be improved with high-lift devices such as slats. High lift devices will be covered
in Appendix B.7. Wing stall is directly related to airfoil stall only for high-aspect-ratio
unswept wings. For low-aspect-ratio wings the 3D effect dominated the stall characteris-
tics.
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Figure B.10: High lift devices nomenclature

B.7 High-Lift Devices

For transonic transport aircraft’s the high-lift system design is a critical part design due
to the functional requirements in the design. For cruise efficiency a wing should have
a little camber as for takeoff and landing a wing should have high lift as well as lot of
camber. For such requirements high-lift devices such as flaps and slats are applied [38].
Different configurations of high-lift devices exist and Fig. B.10 shows the geometry of a
commonly used high-lift system, a slotted fowler flat and a slotted leading edge flap or
a slat. When high-lift devices are deployed c′ is the modified chord length (solid lines)
compared to c when retracted (dotted line). δ and δf are the deflection angles for slat and
flat respectively [37].

When calculating the lift coefficientCL = L/q∞S it is referenced to the original reference
area S = c hence the angle of attack for CL,max remains the same but lift has increased.
[37, 38].

B.7.1 Flap Effect

Flap chord length can typically be around 30 % of the airfoil chord length c. For a typ-
ical airfoil the maximum lift occurs when flap deflection is close to 40-45 degrees [38].
Typical flap increases the lift by increasing the camber of the airfoil.

Effect of deploying typical plain flat and a slotted fowler flap is shown in Fig. B.11.
When deploying non-extending flap or a plain flap the angle of attack for CL,max is in
fact reduced but lift is increased. The lift curve moves to the left and up and lift slope is
unaffected.
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Figure B.11: The effects of high lift devices. Adding slat extends the lift slope hence
increases Clmax and stall is experienced ad higher angle of attack (αstall). Adding flap
shifts the lift curve up and aft, increasing Clmax but stall occurs at lower angle of attack
(αstall).

By extending the flap aft introducing a slot between the wing and flap permits high-
pressure air from the lower surface to exit through the slot and flow over the upper surface
on the flap. This referred as fresh boundary layer effect and reduces separation from the
upper surface, hence it increases the lift and reduces drag [38]. By using a fowler flap one
benefits from the increased camber as well as increased area or the chord length c′. The
lift slope is increased by approximately the ratio of the total extended wing area to the
original wing area. Flaps do not increase the angle of stall. To increase stall angle slats
are required.

B.7.2 Slats Effect

Leading edge slats are intended to hinder separation from the leading edge. Therefore
they are only needed for high angle of attacks where flow separation starts to appear.
They simply allow high-pressure fluid from lower surface to flow over the upper surface
delaying the separation and stall They also provide increased camber and increase the
area which will increase lift as shown in Fig. B.11. CL,max is increased as well as the stall
angle of attack [37, 38].
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B.8 Types of flow

In this study we consider viscous flow over bodies

B.8.1 Incompressible versus Compressible Flow

Flow is considered incompressible when the density ρ of the fluid is kept constant. In
contrast where the density is retained as a variable the flow is considered compressible.
In flows of homogeneous liquids one can assume that ρ = constant. For the flow of gases
at low Mach number is also essentially incompressible and for M < 0.3 it is always safe
to assume thant ρ = constant [42].

B.8.2 Mach Number and Flow Regimes

Distinction of flow in aerodynamics is base on the non-dimensional parameter, the Mach
number defined as

M∞ =
V∞
a∞

(B.8.1)

where V∞ and a∞ are the free-stream velocity and speed of sound, respectively [42]. The
Mach number is one of the most important parameters in aerodynamics. If M is the local
Mach number at an arbitrary point in the flow field then the flow is locally,

Subsonic if M < 1

Sonic if M = 1

Supersonic if M > 1

By analysing the flow whole field simultaneously four different speed regimes can be
identified using the Mach number criterion, subsonic, transonic, supersonic and hyper-
sonic flow. Here we briefly cover subsonic and transonic regimes since they are of primary
interest.

B.8.3 Subsonic Flow

In subsonic flow M < 1 at any point in the flow field of interest. Subsonic flow can be
characterized by smooth streamlines over the body as show in Fig. B.12. Mach number
less than 1 however does not guarantee a subsonic flow over a body. As fluid expands
over the aerodynamic body the flow velocity can be greater than the free-stream Mach
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Figure B.12: Different regimes of flow

number. If M∞ is close to 1 the local Mach number may become supersonic. This leads
to a rule of thumb where M∞ < 0.8 for subsonic flow over aerodynamic body. [42]

B.8.4 Transonic Flow

The transonic region is where subsonic flow and supersonic flow exist at the same time.
This means that M < 1 and M > 1. If M∞ is close to 1 the flow can become locally
supersonic. This is shown in Fig. B.12. The figure shows a pocket of supersonic flow
over the top surface terminated by a shock wave behind which the flow becomes subsonic
again. Weak shock waves are usually terminated at the trailing edge and as the Mach num-
ber increases the shock moves further aft and becomes stronger [42]. This shock affects
drag substantially and leads to a rapid increase in drag referred to as wave drag.
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