Processing Remote Sensing Data with Python

Ryan J. Dillon

Faculty of Life and Environmental Sciences
University of Iceland
Processing Remote Sensing Data with Python

Ryan J. Dillon

10 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Joint Nordic Masters Programme in Marine Ecosystems and Climate

Advisor / Faculty Representative
Guðrún Marteinsdóttir

Faculty of Life and Environmental Sciences
School of Engineering and Natural Sciences
University of Iceland
Reykjavik, June 2013
Processing Remote Sensing Data with Python
10 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Joint Nordic Masters Programme in Marine Ecosystems and Climate

Copyright © 2013 Ryan J. Dillon
All rights reserved

Faculty of Life and Environmental Sciences
School of Engineering and Natural Sciences
University of Iceland
Askja, Sturlugata 7
101, Reykjavik
Iceland

Telephone: 525 4600

Bibliographic information:
Dillon, Ryan J., 2013, Processing Remote Sensing Data with Python, Independent Study, Faculty of Life and Environmental Sciences, University of Iceland
CONTENTS

1 Acknowledgements 3

2 Introduction 5
2.1 Geosetup 5
2.2 Improving this Documentation 5

3 Brief Overview of Coordinate Systems and Map Projections 7
3.1 Coordinate Systems 7
3.2 Earth’s Shape and Datums 8
3.3 Map Projections 8

4 Getting Started with Ocean Color and Bathymetric Data 11
4.1 Data Formats 11
4.2 Data Properties 12
4.3 Focus Datasets 13
4.4 Previewing Data 18

5 Getting Started with Python 21
5.1 Science and Python 21
5.2 Troubleshooting 21
5.3 Important things to consider 22
5.4 Setting up your development environment 22

6 Importing netCDF and HDF Data with Python 25
6.1 netCDF4 25

7 Working with Projections Using Python 29
7.1 pyproj 29

8 Gridding and Resampling Data with Python 31
8.1 Deciding what to do 31
8.2 Gridding 31
8.3 Re-sampling to Grid 32

9 Plotting with Python 35
9.1 Matplotlib and Basemap 35
10 Writing Geospatial Data to Files
 10.1 Write file function .. 39

11 Geosetup - textdata .. 43

12 Geosetup - Pathfinder .. 45

13 Geosetup - CoRTAD .. 49

14 Geosetup - GlobColour .. 53
 14.1 Importing Mapped L3m Data 53
 14.2 Importing ISIN grid L3b Data 55

15 Geosetup - gebco ... 57

16 Geosetup - Main Program ... 61

17 Appendix: Temporal Coverage of Ocean Color Satellite Missions
 17.1 Missions .. 67

Bibliography ... 69
ACKNOWLEDGEMENTS

First, I would like to thank the American Scandinavian Foundation in their support of my work. I would also like to thank Guðrún Marteinsdóttir for her coordination and advising, and Thorvaldur Gunlaugsson and Mette Mauritzen for their advising on my project for which this coding is intended to support. Lastly, I am very appreciative toward Gíslí Víkingsson and Hafrannsóknastofnun for arranging a place for me to work.
INTRODUCTION

With public access available for numerous satellite imaging products, modelling in atmospheric and oceanographic applications has become increasingly more prevalent.

Though there are numerous tools available for geospatial development, their use is more commonly applied towards mapping applications. With this being the case, there are a number of valuable texts for using these tools in such mapping applications [11] [1]; though, documentation for processing of remote sensing datasets is limited to brief contributions on personal blogs or manual pages and tutorials specific to one library or dataset. Python programming methods for performing such tasks will be focused on here, collecting various code and information from these text, blogs, etc. and presenting original code that may be employed in scripts to perform commonly required tasks in processing remote sensing data.

For a general place to get started with geospatial work with Python, Erik Westra’s “Python Geospatial Development” is an excellent resource, and it will provide an excellent overview of geospatial work with python before looking at specific remote sensing datasets.

2.1 Geosetup

The tools presented here are collected into a Python program repository(currently under development) that will produce standardized gridded satellite data files that may be used as input for various models. This repository is publicly available on the collaborative coding site GitHub.

Link to repository on GitHub: https://github.com/ryanjdillon/geosetup

Or, you may download the code as a zip-archive.

If you are interested in collaborating on this effort, please feel encouraged to fork the repository on GitHub and offer your contributions.

2.2 Improving this Documentation

There are many improvements that can always be made in either the code shown here, or the explanation of a particular approach to something. If you find something broken, or stuck with an inadequate explanation, feel free to contact me so that I might correct it.
Thanks, Ryan ryanjamesdillon@gmail.com
CHAPTER
THREE

BRIEF OVERVIEW OF COORDINATE SYSTEMS AND MAP PROJECTIONS

Before working with georeferenced datasets, it is important to understand how things can be referenced geographically.

Positions on earth’s surface can be represented using different systems, the most accurate of these being geodetic positions determined by coordinates from a particular geographic coordinate system, or geodetic system.

In addition to coordinate systems, the assumed shape of the earth will affect how coordinate positions are translated to earth’s surface. Geodetic Datums are mathematical definitions of for the shape of the earth, which in turn defines a geodetic system.

3.1 Coordinate Systems

Coordinate systems are categorized into two groups, both of which being commonly used in representing remote sensing data:

- **unprojected coordinate systems** these are 3-dimensional coordinate systems, such as latitude and longitude (referred to as Geographic Coordinate System in common GIS software)

- **projected coordinate systems** these are 2-dimensional, there are many all of which having an advantage over another for a particular use.

Either system may be used depending on the data format (e.g. netCDF HDF containing arrays of unprojected data vs. GeoTIFF images containing projected data). When working with multiple datasets, or doing some processing of a dataset, you may need to change between different coordinate systems.

Most often data will coincide with a latitude and longitude (i.e. unprojected). If it is desired to interpolate or re-sample this data, transforming the data to a projected system allows for simpler and a greater variety of methods to be used.
3.2 Earth’s Shape and Datums

It is often easiest to make the assumption that the earth is a perfect sphere when working with spherical coordinates. However, the earth’s shape is in fact an oblate ellipsoid, with its polar radius being approximately 21 km less than the equatorial radius [9].

This shape has been calculated using different systems for both the entire globe and for regional areas, known as datums.

The most widely used datum for Geographic Information Systems is the World Geodetic System (WGS84), which is used by most Global Positions System (GPS) devices by default.

It is important to know which datum was used to record positions of data, as there can be sizable differences between actual physical position of points with the same coordinates, depending on the datum.

3.3 Map Projections

In order to better visualise the earths surface and simplify working with certain geographic information, 2-dimensional representations can be calculated using various mathematical transformations.

Depending on the size of the area of interest (i.e. a small coastal area vs. an entire ocean) different projections will provide the greatest accuracy when interpolation of data is necessary.

3.3.1 Mercator

The Mercator Projection is commonly used for general mapping applications where visualization is a priority over accuracy of size and shape near the poles. Variations of it are used for mapping applications, such as is used for Google Maps [15].

Though useful for many mapping applications, this projection should be avoided when interpolation of data is necessary due to increasing distortion error near the poles.

3.3.2 UTM

The Universal Transverse Mercator (UTM) projection is a variation of the Mercator projection, which uses a collection of different projections of 60 zones on the earths surface to allow accurate positioning and minimal distortion on a 2-dimensional projection [8].

Though this system provides a way of accurate approach to a Mercator, it becomes difficult to work with when the area of interest spans multiple zones.
Figure 3.1: Mercator projection with Tissot circles showing increased distortion near the poles [5].

Figure 3.2: Universal Transverse Mercator (UTM) projection displaying the different zones [8]
3.3.3 Albers Equal-Area

The Albers equal-area conic projection is a projection that is useful where area needs to be preserved for large geographical areas. When working with data, as is needed when interpolating data over such an area.

Figure 3.3: Albers Equal-Area Conic projection with Tissot circles [5].
GETTING STARTED WITH OCEAN COLOR AND BATHYMETRIC DATA

The datasets that will be focussed on are those containing parameters that are most generally applicable to marine ecosystem modeling: sea surface temperature, chlorophyll a, and bottom depth. The concepts and methods used for these may be extrapolated to other datasets, and should provide a good framework for processing such data.

4.1 Data Formats

4.1.1 netCDF HDF

The most common formats used for oceanographic and atmospheric datasets are Unidata’s Network Common Data Form (netCDF) and HDF Group’s Hierarchical Data Format (HDF) [18] [20].

Both of these formats have gone through multiple revisions, with different functionality and backwards compatibility being available between versions, with the latest versions being in most common use, netCDF-4 and HDF5 respectively.

As the name describes, HDF is hierarchical in its internal organization, which has many advantages particularly advanced organization of data and efficient storage and access to large amounts of data. HDF5 is the most current and widely used HDF format with many tools and libraries for accessing and creating datasets in this format.

4.1.2 GeoTIFF

Another common format for geospatial data is in the form of raster data, or data that is represented by grid cells particularly in the form of an image, such as GeoTIFF files.

The GeoTIFF format is a standardized file format, which is a modification of the Tagged Image File Format (TIFF) specially suited for storing datasets referenced in a projected coordinate system. Each data value will correspond to a grid cell (i.e. pixel) of the image, which is saved as a tag as metadata together with the image data [10]. The images pixel corresponds to an area enclosed by geographic boundaries defined by the projection used to create that GeoTIFF.
4.1.3 Arc/Info ASCII Grid and Binary Grid

Due to the popularity of ESRI’s ArcGIS software, another format commonly seen is Arc/Info ASCII grid format and binary grid format. Developed by ESRI for their ArcGIS software, both formats store data in a similar way to GeoTIFF in that they relate a set of data values to grid cell areas, defined by some geographic bounds.

The binary format is a proprietary format that was developed to add functionality and prevent unlicensed use of data produced by their software.

The Arc/Info ASCII Grid is a simple ASCII text file format that is still found in use by some due to its simple non-proprietary format. The ASCII format includes a series of header rows defining the rows and columns in the grid, position of the center and corners, cell size, fill value for missing data, and then space-delimited values. As described by the Oak Ridge National Laboratory site [17]:

\[
\begin{align*}
<NCOLS & xxx > \\
<NROWS & xxx > \\
<XLLCENTER & xxx > & XLLCORNER & xxx > \\
<YLLCENTER & xxx > & YLLCORNER & xxx > \\
<CELLSIZE & xxx > \\
\{NODATA_VALUE & xxx \} \\
row & 1 \\
row & 2 \\
. \\
. \\
row & n \\
\end{align*}
\]

Note: There are many other raster image formats besides GeoTIFF and Arc/Info grid formats that geospatial data can be stored in. The GDAL libraries are capable of working with most of them, a list of which can be found here [19].

4.2 Data Properties

4.2.1 Data Levels

In some instances one may want to perform their own processing of raw satellite data, but for our purposes here, we will just be concerned with working with data that has already been evaluated for quality and averaged into regular time allotments.

It is useful to be familiar with the different types of ‘levels’ that are available, so that you may select the proper data to begin working with [16]:

12 Chapter 4. Getting Started with Ocean Color and Bathymetric Data
<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>L0</td>
<td>Raw instrument data</td>
</tr>
<tr>
<td>Level 1A</td>
<td>L1A</td>
<td>Reconstructed raw instrument data</td>
</tr>
<tr>
<td>Level 1B</td>
<td>L1B</td>
<td>Products containing geolocated and calibrated spectral radiance and solar irradiance data</td>
</tr>
<tr>
<td>Level 2</td>
<td>L2</td>
<td>Products derived from the L1B product. One file per orbit</td>
</tr>
<tr>
<td>Level 3</td>
<td>L3</td>
<td>Averaged global gridded products, screened for bad data points</td>
</tr>
<tr>
<td>Level 4</td>
<td>L4</td>
<td>Model output; derived variables</td>
</tr>
</tbody>
</table>

With this information, we can see that we are most interested in the Level 3 (L3) data sets.

4.3 Focus Datasets

The datasets that will be covered are those for which methods have been written in Geosetup. For data that is accessible via an FTP server, any standard FTP-client can be used for downloading the data (e.g. Filezilla) [6]. On UNIX-like systems this can more easily be done by using the `wget` command.

4.3.1 Pathfinder

Pathfinder is a merged data product from the National Oceanographic Data Center (NODC) [23], an office of the National Oceanic and Atmospheric Association (NOAA).

Summary

- *Data Format:* HDF5
- *Timestamps:* in days from reference time ‘1981-01-01 00:00:00’
- *Data quality control:* variable containing quality flags for data points

Variables in Dataset

Downloading

Pathfinder data is available to download via HTTP, FTP, THREDDS (supporting OPeNDAP), and rendered images/KML [23].

Example for downloading all Pathfinder v5.2 data for 2007:

```

4.3. Focus Datasets 13
4.3.2 CoRTAD

CoRTAD is a reprocessed weekly average dataset of the Pathfinder data, developed by National Oceanographic Data Center (NODC) [22] for modelling and management of coral reef systems.

Summary

- **Data Format**: HDF5
- **Date Range**: 1981-2011 (gap from 1994-05-27 to 1995-07-01)
- **Timestamps**: in days from reference time ‘1981-01-01 00:00:00’
- **Data quality control**: Two separate data variables are included, including one where gaps due to clouds, etc. have been interpolated. Also included is an array of all bad data, and a variety of variables providing statistical evaluation of all data.

Variables in Dataset

**Downloading**

On UNIX-like systems, you may use a file with a list of the URL’s for all files you would like to download. Then you can use the `wget` command with the `-i` option to download all files in the list.

Example `cortad_wget-list.txt`

```bash
```

Example `wget` command:
Figure 4.2: Panoply output showing datasets included in CoRTAD datafile
wget -i cortad_wget-list.txt

4.3.3 GlobColour Chlorophyll-a Data

The European Space Agency (ESA) produces a merged chlorophyll dataset that combines data acquired from the SeaWiFS (NASA), MODIS (NASA), and MERIS (ESA) satellite imaging missions.

A very extensive explanation of the data and its derivation is covered in the GlobColour Product User Guide. You may download it from their website here:

http://www.globcolour.info/CDR_Docs/GlobCOLOUR_PUG.pdf

This merged data product is ideal for applications where your sampling period may extend beyond that covered by any one when your sampling period extends across the acquisition periods of each of the different missions offering imagery in a spectral range from which chlorophyll values may be processed from.

Note: See Temporal ranges of ocean color satellite missions for coverage of different datasets.

Different merging methods have been used, including:

- simple averaging
- weighted averaging
- GSM model

Grid Formats

Integerized Sinusoidal (ISIN) L3b Product

- Angular resolution: 1/24° (approx. 4.63 km spatial resolution)
- Uses rows and cols arrays to specify the latitudinal and longitudinal index of the bins, stored in the product (i.e. mean chlorophyll values in CHL1_mean)

Plate-Carré projection (Mapped) L3m Product

- Angular resolution: 0.25° and 1.0°
- latitude and longitude specifying the center of each cell

Note: The mapped (L3m) product is an easier format to work, as it uses standard coordinate and value organization, but you will need to use the ISIN grid (L3b) product if you require th ~4.63 km resolution.
Summary

- **Data Format:** netCDF-3
- **Date Range:** 1981-2011 (gap from 1994-05-27 to 1995-07-01)
- **Timestamps:** in hours from reference time ‘1981-01-01 00:00:00’
- **Data quality control:** variable containing quality flags for data points

Variables in Dataset

![Panoply output showing datasets included in Globcolour datafile](image)

**Figure 4.3:** Panoply output showing datasets included in Globcolour datafile

**Downloading**

Data can be downloaded for specific time periods and geographic extents through their gui download interface on the web:

http://hermes.acri.fr/GlobColour/index.php

ESA’s also maintains an ftp-server from which you may download GlobColour data in batch, for a large number of files.

**Example for downloading GSM averaged 1-Day Chlorophyll-a between 1997-2012:**

```bash
```

**4.3.4 GEBCO Bathymetric Data**

The General Bathymetric Chart of the Oceans is a compilation of a ship depth soundings and satellite gravity data and images. Using quality-controlled data to begin with, values between sounded depths have been interpolated with gravity data obtained by satellites [13].

Source Identifier (SID) Grid describes which measurements are from soundings or predictions.

**Summary**

- **Data Format:** netCDF-3
- **Angular resolution:** 30 sec and 1° grids
– (0, 0) position at northwest corner of file
– Grid pixels are center-registered

• **Data organization:** Single data file for whole globe
– 21,600 rows x 43,200 columns = 933,120,000 data points

• **Units:** depth in meters. Bathymetric depths are negative and topographic positive

• **Date Range:** Dates of soundings vary. Most recent 2010

• **Data quality control:** separate file with SID grid of data sources and quality.

### Variables in Dataset

<table>
<thead>
<tr>
<th>Name</th>
<th>Long Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gebco_08.nc</td>
<td></td>
<td>Local File</td>
</tr>
<tr>
<td>dimension</td>
<td>dimension</td>
<td>—</td>
</tr>
<tr>
<td>spacing</td>
<td>spacing</td>
<td>—</td>
</tr>
<tr>
<td>x_range</td>
<td>x_range</td>
<td>—</td>
</tr>
<tr>
<td>y_range</td>
<td>y_range</td>
<td>—</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
<td>—</td>
</tr>
<tr>
<td>z_range</td>
<td>z_range</td>
<td>—</td>
</tr>
</tbody>
</table>

Figure 4.4: Panoply output showing datasets included in GEBCO datafile

### Downloading

Before downloading the GEBCO data, you must register at their website first. Follow link to register

After registration, you can access the data here. You will have the option of downloading either the `gebco_08.nc` file for the 30sec gridded data or the `gridone.nc` file for the 1°.

You may also download the SID grid which contains flags corresponding to each data point as to whether it is a sounding or interpolated, and the quality of each.

### 4.4 Previewing Data

Various applications are available for viewing netCDF and HDF formatted data, but not all are capable of opening versions of both formats such as both HDF5 and netCDF3.

When writing code to work with such data sets, it is often necessary to know the names and dimensions of variables within the datafile, which a viewing application makes particularly easy.
4.4.1 Panoply

Panoply is a viewer application developed by NASA that allows a number of useful tools for exploring data in netCDF, HDF, and GRIB formats.

Note: Panoply is dependent on the Java runtime environment, which must be installed before installing. Download Java

Panoply Download Link:
http://www.giss.nasa.gov/tools/panoply/

Some Neat Features

- Slice and plot data sets, combining them, and save to image files
- Connect to OPeNDAP and THREDDS data servers to explore data remotely
- Create animations from collection of images

4.4.2 VISAT Beam

The ESA had commissioned the development BEAM of an open-source set of tools for viewing, analyzing and processing are large number of different satellite data products [14]. In addition they have developed the GUI desktop application VISAT for using these tools

Download LSAT/BEAM

4.4.3 Quantum GIS

Quantum GIS is an open source GIS application that is available for all major operating systems and has features similar to those found in much more costly GIS applications.

It is an excellent resource when viewing images created by your scripts, and has the ability to be extended with PyQGIS once you become familiar with Python and working with geospatial data.

Download Quantum GIS
GETTING STARTED WITH PYTHON

Quickstart

Skip to installation and package guide

If you have previous experience programming, learning Python is a fairly intuitive process with syntax that is easily read and remembered compared to other lower level languages like C/C++. A good place to start is with Google’s free online python course:

https://developers.google.com/edu/python/

5.1 Science and Python

Along with gaining a general familiarity in Python, you will want to become familiar with the use of NumPy, as this module is used extensively for working with large datasets in an efficient manner. In addition the netCDF4 module that is used here for opening netCDF and HDF datasets by default creates masked NumPy array when importing these datasets.

The SciPy team has a great NumPy tutorial to get started with:

http://www.scipy.org/Tentative_NumPy_Tutorial

Though not really covered in this article, the Python Data Analysis Library (Pandas) has incredible tools for data processing and working with statistical analysis and modelling. In combination together, Python, NumPy/SciPy, and Pandas offers a powerful data processing ability, rivalling R and Matlab with functionality that does not exist in either.

5.2 Troubleshooting

iPython is an excellent tool for working interactively with python, allowing you to test code, play with concepts you are exploring, and store various information in a workspace similar to R and Matlab work flows [2] [21].

When hitting stumbling blocks or just trying to improve your code, StackOverflow is a fantastic resource for receiving support and finding existing solutions to your problems.
5.3 Important things to consider

- Backup! In more than two places preferably. It takes a long time to code, and you don’t want to start over if something happens.

- Along with general backups, using a version control system such as Git, Subversion, or Mercurial. Doing so allows you to easily revert to previous versions of your code, collaborate with others, track problems, develop in stages, and more.

- Stick to the conventions: coding like everybody else (e.g. naming, spacing, commenting, etc.) makes things easier for you and for others to work with your code.

5.4 Setting up your development environment

The code here was developed using Python version 2.7; however it should be compatible with versions greater than 2.6.

5.4.1 Installing Python

Python can be downloaded from Python.org as source, as well as binary installers for Windows and Mac OSX.

Most distributions of Linux come with Python pre-installed. To see what version of python you are running, run the following from the command line `python -V`.

5.4.2 Additional Python Packages you will need

In order to properly run the code presented here, you will need to also install a number of other libraries/packages that are used.

It will just be assumed that if you are using another distribution of Linux/UNIX than Ubuntu, that you will be familiar enough to hunt down the packages/source and install them.

- **gdal**
  - Ubuntu (linux): https://launchpad.net/~ubuntugis/+archive/ppa/
  - Windows: Install OSGeo (with GDAL): http://trac.osgeo.org/osgeo4w/wiki
  - Mac OSX: Pre-compiled binaries http://www.kyngchaos.com/software/frameworks#gdal_complete

- **pyroj**
  - Ubuntu (linux): http://packages.ubuntu.com/search?keywords=python-pyproj
  - Windows: http://code.google.com/p/pyproj/downloads/list
• numpy
  – Ubuntu (linux): from command line  
    `sudo apt-get install python-numpy`
  – Mac OSX: http://www.scipy.org/Installing_SciPy/Mac_OS_X

• scipy
  – Ubuntu (linux): from command line  
    `sudo apt-get install python-scipy`
  – Mac OSX: http://www.scipy.org/Installing_SciPy/Mac_OS_X

• matplotlib
  – All operating systems:  
    http://matplotlib.org/faq/installing_faq.html#installation

• matplotlib.basemap
  – To be installed as above, just note that it must be installed in addition to matplotlib

5.4.3 Getting Geosetup

In order to collaborate to the code, it is preferable that you obtain the Geosetup code by forking the repository from GitHub.

If you’re new to Git, a comprehensive instructional book is available here [3]:

If you prefer you may download the code as a ZIP archive, or access it from the repository page on GitHub.
The first thing you’ll need to do to work with these datasets is to import it to

### 6.1 netCDF4

netCDF4 is a python package that utilizes NumPy to read and write files in netCDF and HDF formats [12]. It contains methods that allow the opening and writing of netCDF4, netCDF3 and HDF5 files.

Before importing the data, you’ll want to find the name of the dataset variable that you want to import. You can determine this by first opening the file with Panoply and checking the name of the variable. Examples for the different variables available from this paper’s focus datasets is found in the summaries sections of Focus Datasets.

Example showing the data import using netCDF4:

```python
import numpy as np
import netCDF4 as Dataset

filepath = /path/to/file.nc
Read in dataset (using 'r' switch, 'w' for write)
dataset = Dataset(filepath,'r')
Copy data to variables, '[;]' also copies missing values mask
lons = dataset.variables['lon'][:]
lats = dataset.variables['lat'][:]
sst = dataset.variables['sea_surface_temperature'][:]
dataset.close()
```

When data is copied to a variable in Python, it places it all into the system's temporary memory, which means there is a limit as to how much data can be loaded. With certain datasets, the dataset variables may be large enough to exceed the system memory.

Typically these datasets cover much larger geographic areas than are interested in (i.e. the whole earth), so it is possible to load only the data for the area of interest.

```python
Create list of data files to process given date-range
```
file_list = np.asarray(os.listdir(data_dir))
file_dates = np.asarray([datetime.datetime.strptime(re.split('-', filename)[0], '%Y%m%d%H%M%S') for filename in file_list])
data_files = np.sort(file_list[(file_dates >= data_time_start) & (file_dates <= data_time_end)])

# Get Lat/Lon from first data file in list
dataset = Dataset(os.path.join(data_dir, file_list[0]), 'r')
lons = dataset.variables['lon'][:, :]
lats = dataset.variables['lat'][:, :]

# Create indexes where lat/lons are between bounds
lons_idx = np.where((lons > math.floor(min_lon)) & (lons < math.ceil(max_lon)))[0]
lats_idx = np.where((lats > math.floor(min_lat)) & (lats < math.ceil(max_lat)))[0]
x_min = lons_idx.min()
x_max = lons_idx.max()
y_min = lats_idx.min()
y_max = lats_idx.max()

# Create arrays for performing averaging of files
vals_sum = np.zeros((y_max - y_min + 1, x_max - x_min + 1))
vals_sum = ma.masked_where(vals_sum < 0, vals_sum)
mask_sum = np.empty((y_max - y_min + 1, x_max - x_min + 1))

# Get average of chlorophyl values from date range
file_count = 0
for data_file in data_files:
current_file = os.path.join(data_dir, data_file)
dataset = Dataset(current_file, 'r')  # by default numpy masked array
vals = np.copy(dataset.variables[nc_var_name][0, y_min:y_max + 1, x_min:x_max + 1])
vals = ma.masked_where(vals < 0, vals)
vals = vals.clip(0)
vals_sum += vals
file_count += 1
dataset.close()
vals_mean = vals_sum / file_count  # TODO simple average

data_set.close()

# Mesh Lat/Lon the unravel to return lists
lons_mesh, lats_mesh = np.meshgrid(lons[lons_idx], lats[lats_idx])
lons = np.ravel(lons_mesh)
lats = np.ravel(lats_mesh)
vals_mean = np.ravel(vals_mean)

return lons, lats, vals_mean

Another option for avoiding this problem is by loading the data in chunks, using sparse arrays, or python libraries that allow loading the data onto the system hard drive, such as PyTables or h5py.

6.1.1 OPeNDAP & THREDDS

Rather than opening the data from files on your local machine, it is possible to open them remotely. Rather than creating the dataset from a local data file path, you simply reference the path to a file on a remote OPeNDAP or THREDDS server.

To create a dataset for data located at http://data.nodc.noaa.gov/opendap/pathfinder/Version5.2/1981/19811101025755-NODC-L3C_GHRSST-SSTskin-AVHRR_Pathfinder-PFV5.2_NOAA07_G_1981304_day-v02.0-fv01.0.nc.html, you would simply do the following:

```python
import numpy as np
import netCDF4 as Dataset

filepath = 'http://data.nodc.noaa.gov/opendap/pathfinder/Version5.2/1981/19811101025755-NODC-L3C_GHRSST-SSTskin-AVHRR_Pathfinder-PFV5.2_NOAA07_G_1981304_day-v02.0-fv01.0.nc.html

Read in dataset (using 'r' switch, 'w' for write)
dataset = Dataset(filepath, 'r')
```
For further information on these protocols, thorough explanations are presented on their websites.

OPeNDAP
THREDDS
7.1 pyproj

pyproj is a python interface to the PROJ.4 library which offers methods for working between geographic coordinates (e.g. latitude and longitude) and Cartesian coordinates (i.e. two dimensional projected coordinates - x,y) [4].

7.1.1 Defining variables from pyproj class instances

It is possible to extract information from pyproj ellipsoid and projection class instances if needed for other calculations.

As an example, let us first define an ellipsoid using the WGS84 datum:

```python
g = pyproj.Geod(ellps='WGS84')
```

If we were to want to use the radius of the earth of this ellipsoid for another calculation, we could extract the value to a variable from the pyproj ellipsoid class instance we defined above.

To find the value, you can use the `dir()` function to find the names that are defined by a module. We can see by the following that the first variable listed (i.e. not an `__attribute__`) is `a`:

```python
dir(g)
```

```python
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', ... '__weakref__', '_fwd', '_inv', '_npts', 'a', 'b', 'es', 'f', 'fwd', 'initstring', 'inv', 'npts', 'sphere']
```

You may access these by either `getattr` function (if you have the property name as a string or would like to access it dynamically) or more simply when we know the name of the property by just using the dot notation:

```python
>>> getattr(g,'a') # getattr function
6378137.0
```

```python
>>> g.a # dot notation
6378137.0
```
If we hadn’t already known that `a` was the value we were looking for, we could have just used the dot notation as above to have output the various values that were available in this object.

To make things easier to read later, you could do the following:

```python
earth_equa_radius = g.a # earth’s radius at the equator in meters
earth_pole_radius = g.b # earth’s radius through poles in meters
```

### 7.1.2 Defining a projection

Example of defining a projection using the EPSG code:

```python
import pyproj

LatLon with WGS84 datum used by GPS units and Google Earth
wgs84 = pyproj.Proj(init='EPSG:4326')

Lambert Conformal Conical (LCC)
lcc = pyproj.Proj(init='EPSG:3034')
```

Not all projections are available by using the ESPG reference code, but it is possible to define your own projection using `pyproj` and `gdal` in python.

**SpatialReference** is a great resource for finding the details for the projection you’d like to create (assuming it’s just not in the library; though, feel free to define a completely custom projection).

Example of defining the Albers projection:

```python
Albers Equal Area Conic (aea)
nplaea1 = pyproj.Proj("+proj=laea +lat_0=90 +lon_0=-40 +x_0=0 +y_0=0 "
 +ellps=WGS84 +datum=WGS84 +units=m +no_defs")
```
When using remote sensing data for model applications, you will want to somehow standardize everything to a uniform grid. Your data may be scattered, and the satellite data be arranged at different resolutions and grids (and perhaps using different projections).

8.1 Deciding what to do

8.1.1 Choosing an Interpolation Method

Depending on the type of data that you will be re-sampling to a grid, different interpolation methods may be better suited to your data.

It is possible to interpolate data referenced by an unprojected coordinate system; though, due to more complicated calculations involved and potential differences in the datasets, it may be easiest to first project the data. The type of projection that is chosen to project the data to before interpolating it using a 2-dimensional interpolation method depends upon the extent of the study area and latitudes at which the data exist.

8.1.2 Choosing a Cartesian Projection

In general, you should attempt to choose a projection that does not distort the area over which the area exists, introducing error in you interpolation product, such as using the Albers Equal Area projection for a large area extending into northern latitudes (e.g. the North Atlantic ocean) (see Map Projections).

8.2 Gridding

Before interpolating the data to a new grid, you will want to create that grid, defined by latitude and longitude coordinates.
8.2.1 Creating a grid

Create Grid:

```python
import numpy as np

def creategrid(min_lon, max_lon, min_lat, max_lat, cell_size_deg, mesh=False):
 '''Output grid within geobounds and specific cell size
 cell_size_deg should be in decimal degrees'''
 min_lon = math.floor(min_lon)
 max_lon = math.ceil(max_lon)
 min_lat = math.floor(min_lat)
 max_lat = math.ceil(max_lat)

 lon_num = (max_lon - min_lon)/cell_size_deg
 lat_num = (max_lat - min_lat)/cell_size_deg

 grid_lons = np.zeros(lon_num) # fill with lon_min
 grid_lats = np.zeros(lat_num) # fill with lon_max
 grid_lons = grid_lons + (np.arange(range(lon_num))*cell_size_deg)
 grid_lats = grid_lats + (np.arange(range(lat_num))*cell_size_deg)

 grid_lons, grid_lats = np.meshgrid(grid_lons, grid_lats)
 grid_lons = np.ravel(grid_lons)
 grid_lats = np.ravel(grid_lats)

 if mesh == True:
 grid_lons = grid_lons
 grid_lats = grid_lats

 return grid_lons, grid_lats
```

8.3 Re-sampling to Grid

8.3.1 Without Projecting

It is possible to take the geographic coordinates and interpolate them over a spherical surface, rather than first projecting the data, and then performing the interpolation on a 2-dimensional surface. This can be done using `scipy.interpolate.RectSphereBivariateSpline`'s smoothing spline approximation:

```python
import numpy as np
from scipy.interpolate import RectSphereBivariateSpline

def geointerp(lats,lons,data,grid_size_deg, mesh=False):
 '''We want to interpolate it to a global x-degree grid'''
 deg2rad = np.pi/180.
 new_lats = np.linspace(grid_size_deg, 180, 180/grid_size_deg)
 new_lons = np.linspace(grid_size_deg, 360, 360/grid_size_deg)
 new_lats_mesh, new_lons_mesh = np.meshgrid(new_lats*deg2rad, new_lons*deg2rad)

 lut = RectSphereBivariateSpline(lats*deg2rad, lons*deg2rad, data)

 data_interp = lut.ev(new_lats,new_lons)

 if mesh == True:
 new_lats = new_lats_mesh.ravel()
 new_lons = new_lons_mesh.ravel()
 data_interp = lut.ev(new_lats,new_lons)
```

---

Chapter 8. Gridding and Resampling Data with Python
data_interp = data_interp.reshape((360/grid_size_deg, 180/grid_size_deg)).T

return new_lats/deg2rad, new_lons/deg2rad, data_interp

Limitations:

• This method is restricted to using the smoothing spline approximation, which may not be the best method for your data

• It assumes a spherical earth, where using the WGS84 datum would more accurately represent the data on the ellipsoid earth.
9.1 Matplotlib and Basemap

Matplotlib is a versatile plotting library that was developed by John Hunter that may be used for everything from basic scatter plots to cartographic plots, along with remote sensing data.

Matplotlib basemap is an additional library to matplotlib which may be used for plotting maps and 2-dimensional data on them. It performs similar functionality to pyproj (and uses the same PROJ.4 libraries) to transform data to 2-dimensional projections.

9.1.1 Introduction

A collection of matplotlib.basemap example plotting scripts can be found here.

Just to get an idea, let’s say we want to plot a map of Iceland in the Albers Conic Conformal projection:

```python
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np

mapWidth = 600000
mapHeight = 600000
lat0center = 64.75
lon0center = -18.60

m = Basemap(width=mapWidth,height=mapHeight,
 rsphere=(6378137.00,6356752.3142),
 resolution='f',area_thresh=1000.,projection='lcc',
 lat_1=45.,lat_2=55.,
 lat_0=lat0center,lon_0=lon0center)

Draw parallels and meridians.
m.drawparallels(np.arange(-80.,81.,1.), labels=[1,0,0,0], fontsize=10)
m.drawmeridians(np.arange(-180.,181.,1.), labels=[0,0,0,1], fontsize=10)
m.drawmapboundary(fill_color='aqua')
m.drawcoastlines(linewidth=0.2)
m.fillcontinents(color='white', lake_color='aqua')
plt.show()
```

If you would like to plot data points on a map, and have the points show as increasingly larger markers, with increasing values, here is how you do it:
Figure 9.1: Plot of Iceland using matplotlib’s basemap library with one degree parallels and meridians.
```python
def plotSizedData(map_obj, lons, lats, values, symbol, min_size, max_size, lines=False):

 Plot data with varying sizes

 proj_x, proj_y = m(lons, lats)

 # Calculate marker sizes using y=mx+b
 # where y = marker size and x = data value
 slope = (max_size-min_size)/(max(values)-min(values))
 intercept = min_size-(slope*min(values))

 for x, y, val in zip(proj_x, proj_y, values):
 msize = (slope*val)+intercept
 map_obj.plot(x, y, symbol, markersize=msize)
```

To automatically center a map projected in a conic conformal projection, the following function will determine the correct center latitude, longitude, and proper width and height to encompass the data. You may also pass a scale to the function to make the width and height a desire percentage larger than the minimum plot area, so that there is a margin around the outermost points on the plot.

```python
def centerMap(lons, lats, scale):

 Set range of map. Assumes -90 < Lat < 90 and -180 < Lon < 180, and latitude and longitude are in decimal degrees

 north_lat = max(lats)
 south_lat = min(lats)
 west_lon = max(lons)
 east_lon = min(lons)

 # find center of data
 # average between max and min longitude
 lon0 = ((west_lon-east_lon)/2.0)+east_lon

 # define ellipsoid object for distance measurements
 g = pyproj.Geod(ellps='WGS84') # Use WGS84 ellipsoid TODO make variable
 earth_radius = g.a # earth’s radius in meters

 # Use pythagorean theorem to determine height of plot
 # divide b_dist by 2 to get width of triangle from center to edge of data area

 # a_dist = the height of the map (i.e. mapH)
 b_dist = g.inv(west_lon, north_lat, east_lon, north_lat)[2]/2
 c_dist = g.inv(west_lon, north_lat, lon0, south_lat)[2]

 mapH = pow(pow(c_dist,2)-pow(b_dist,2),1./2)
 lat0 = g.fwd(lon0, south_lat, 0, mapH/2)[1]

 # distance between max E and W longitude at most southern latitude
 mapW = g.inv(west_lon, south_lat, east_lon, south_lat)[2]

 return lon0, lat0, mapW*scale, mapH*scale
```

9.1. Matplotlib and Basemap 37
CHAPTER
TEN

WRITING GEOSPATIAL DATA TO FILES

Say you want to take the data that you have been working on, maybe do some calculations on, and put it into a file that you can import into a GIS application such as ArcGIS or Quantum GIS. This could be done by writing the data to a text format, such as ESRI’s ASCII grid format, but a more efficient way of doing this is by writing it to a GeoTIFF format using the bindings for GDAL libraries (TODO link).

10.1 Write file function

Imports:

```python
import numpy as np
import gdal
import os
from osgeo import gdal
from osgeo import osr
from osgeo import ogr
from osgeo.gdalconst import *
import pyproj
import scipy.sparse
import scipy
import gdal.AllRegister() # TODO remove? not necessary?
gdal.UseExceptions()
```

GeoPoint: Class for transforming points and writing to raster files:

```python
class GeoPoint:
 '''Transform coordinate system, projection, and write geospatial data'''

 """Ion/lat values in WGS84""
 # LatLon with WGS84 datum used by GPS units and Google Earth
 wgs84 = pyproj.Proj(init='EPSG:4326')
 # Lambert Conformal Conical (LCC)
 lcc = pyproj.Proj(init='EPSG:3395')
 # Albers Equal Area Conic (aea)
 nplaea = pyproj.Proj(init='EPGS:3395'
 +ellps=WGS84 +datum=WGS84 +units=m +no_defs)
 # North pole LAEA Atlantic
 nplae2 = pyproj.Proj(init='EPSG:3395')
 # WGS84 Web Mercator (Auxiliary Sphere; aka EPSG:900913)
 web_mercator = pyproj.Proj(init='EPSG:3857')
 # Why not to use the following: http://gis.stackexchange.com/a/50787
 # TODO add useful projections, or hopefully make automatic
```
```python
def __init__(self, x, y, vals, inproj=wgs84, outproj=nplaea,
 cell_width_meters=50., cell_height_meters=50.):
 self.x = x
 self.y = y
 self.vals = vals
 self.inproj = inproj
 self.outproj = outproj
 self.cellw = cell_width_meters
 self.cellh = cell_height_meters

def __del__(self):
 class_name = self.__class__.__name__
 print class_name, "destroyed"

def transform_point(self, x=None, y=None):
 if x is None:
 x = self.x
 if y is None:
 y = self.y
 return pyproj.transform(self.inproj, self.outproj, x, y)

def get_raster_size(self, point_x, point_y, cell_width_meters, cell_height_meters):
 """Determine the number of rows/columns given the bounds of the point
data and the desired cell size""
 # TODO convert points to 2D projection first
 cols = int(((max(point_x) - min(point_x)) / cell_width_meters) + 1)
 rows = int(((max(point_y) - min(point_y)) / abs(cell_height_meters)) + 1)
 print 'cols: ', cols
 print 'rows: ', rows
 return cols, rows

def create_geotransform(self, x_rotation=0, y_rotation=0):
 """Create geotransformation for converting 2D projected point from
pixels and inverse geotransformation to pixels (what I want, but need the
geotransform first).""
 # TODO make sure this works with negative & positive lons
 top_left_x, top_left_y = self.transform_point(min(self.x),
 max(self.y))

 lower_right_x, lower_right_y = self.transform_point(max(self.x),
 min(self.y))

 # GeoTransform parameters
 # -> need to know the area that will be covered to define the geo tranform
 # top left x, w-e pixel resolution, rotation, top left y, rotation, n-s pixel resolution
 # NOTE: cell height must be negative (-) to apply image space to map
 geotransform = [top_left_x, self.cellh, x_rotation,
 top_left_y, y_rotation, -self.cellh]

 # for mapping lat/lon to pixel
 success, inverse_geotransform = gdal.InvGeoTransform(geotransform)
 if not success:
 print 'gdal.InvGeoTransform(geotransform) failed!'
 sys.exit(1)
 return geotransform, inverse_geotransform

def point_to_pixel(self, point_x, point_y, inverse_geotransform):
 """Translates points from input projection (using the inverse
transformation of the output projection) to the grid pixel coordinates in data
array (zero start)""
 # apply inverse geotransformation to convert to pixels
 pixel_x, pixel_y = gdal.ApplyGeoTransform(inverse_geotransform,
 point_x, point_y)
 return pixel_x, pixel_y
```

Convert coordinate to pixel:

```python
```
Convert pixel to coordinate:

```python
def pixel_to_point(self, pixel_x, pixel_y, geotransform):
 """Translates grid pixels coordinates to output projection points
 (using the geotransformation of the output projection)"""
 point_x, point_y = gdal.ApplyGeoTransform(geotransform, pixel_x, pixel_y)
 return point_x, point_y
```

Write data to raster file:

```python
def create_raster(self, in_x=None, in_y=None, filename="data2raster.tiff",
 output_format="GTiff", cell_width_meters=1000.,
 cell_height_meters=1000.):
 """Create raster image of data using gdal bindings"""
 # if coords not provided, use default values from object
 if in_x is None:
 in_x = self.x
 if in_y is None:
 in_y = self.y

 # create empty raster
 current_dir = os.getcwd()+'/'+
 driver = gdal.GetDriverByName(output_format)
 number_of_bands = 1
 band_type = gdal.GDT_Float32
 NULL_VALUE = 0
 self.cellw = cell_width_meters
 self.cellh = cell_height_meters
 geotransform, inverse_geotransform = self.create_geotransform()

 # convert points to projected format for inverse geotransform
 # conversion to pixels
 points_x, points_y = self.transform_point(in_x, in_y)
 cols, rows = self.get_raster_size(points_x, points_y, cell_width_meters,
 cell_height_meters)
 pixel_x = list()
 pixel_y = list()
 for point_x, point_y in zip(points_x, points_y):
 # apply value to array
 x, y = self.point_to_pixel(point_x, point_y, inverse_geotransform)
 pixel_x.append(x)
 pixel_y.append(y)

 dataset = driver.Create(current_dir+filename, cols, rows, number_of_bands,
 band_type)
 # Set geographic coordinate system to handle lat/lon
 srs = osr.SpatialReference()
 srs.SetWellKnownGeogCS("WGS84") # TODO make this a variable/generalized
 dataset.SetGeoTransform(geotransform)
 dataset.SetProjection(srs.ExportToWkt())

 #NOTE Reverse order of point components for the sparse matrix
 data = scipy.sparse.csr_matrix((self.vals, (pixel_y, pixel_x)), dtype=float)

 # get the empty raster data array
 band = dataset.GetRasterBand(1) # index value
 offset = 1 # i.e. the number of rows of data array to write with each iteration
 for i in range(data.shape[0]):
 data_row = data[i,:].todense() # output row of sparse array as standard array
 band.WriteArray(data_row, 0, offset*i)
 band.SetNoDataValue(NULL_VALUE)
 band.FlushCache()

 # set dataset to None to "close" file
 dataset = None
```

Main Program:

10.1. Write file function
if __name__ == '__main__':

    # example coordinates, with function test
    lat = [45.3, 50.2, 47.4, 80.1]
    lon = [134.6, 136.2, 136.9, 0.5]
    val = [3, 6, 2, 8]

    # TODO clean-up test
    # Generate some random lats and lons
    #import random
    #lats = [random.uniform(45, 75) for r in xrange(500)]
    #lons = [random.uniform(-2, 65) for r in xrange(500)]
    #vals = [random.uniform(1, 15) for r in xrange(500)]

    lats = np.random.uniform(45, 75, 500)
    lons = np.random.uniform(-2, 65, 500)
    vals = np.random.uniform(1, 25, 500)

    print 'lats ', lats.shape

    # test data interpolation
    import datainterp
    lats, lons, vals = datainterp.geointerp(lats, lons, vals, 2, mesh=False)
    print 'lons ', lons.shape
    geo_obj = GeoPoint(x=lons, y=lats, vals=vals)
    geo_obj.create_raster()
CHAPTER
ELEVEN

GEOSETUP - TEXTDATA

This module can be modified to any comma separated value or text file data set that you would like to import alongside remote sensing data you have imported. Currently it is configured to import a dataset of sight surveying data, assigning data types and sizes to the various columns in the dataset.

Imports:

```python
import numpy as np
from netCDF4 import Dataset
import sys, os
from StringIO import StringIO
import datetime
```

Get data:

```python
def getData(data_file, skip_rows=0):
 with open(data_file) as fh:
 file_io = StringIO(fh.read().replace(',', '	'))

 # Define names and data types for sighting data
 record_types = np.dtype([('vessel',str,1),
 ('dates',str,6),
 ('times',str,6),
 ('lat',float),
 ('lon',float),
 ('beafort',str,2),
 ('weather',int),
 ('visibility',int),
 ('effort_sec',float),
 ('effort_nmil',float),
 ('lat0',float),
 ('lon0',float),
 ('num_observers',int),
 ('species',str,6),
 ('num_animals',int),
 ('sighting',int),
 ('rdist',float),
 ('angle',float),
 ('block',str,2),
 ('leg',int),
 ('observations',str,25)])

 # Import data to structured array
 data = np.genfromtxt(file_io, dtype = record_types, delimiter = '	',
 skip_header = skip_rows)

 # Correct longitude values
 data[‘lon’] = data[‘lon’]*(-1)
```
Processing Remote Sensing Data with Python Documentation, Release 1

```python
Print a summary of geo data
print('Sighting Data Information')
print('---')
print('Data Path: ' + data_file)
print('First sighting: ', min(data['dates']))
print('Last sighting: ', max(data['dates']))

return data

TODO remove following
TODO calculate distance between start points and sighting point and
compare

Create array of unique survey block IDs
#blocks = np.unique(data['block'])

Use WGS84 ellipsoid
#g = pyproj.Geod(ellps='WGS84')
#f_azimuth, b_azimuth, dist =
#g.inv(data['lon'],data['lat'],data['lon0'],data['lat0'])

#last_idx = 0
#idx_pos = 0
#minke_effort = np.zeros_like(minke_idx, dtype=float)
#for idx in minke_idx:
minke_effort[idx_pos] = dist[last_idx:(idx+1)].sum()
last_idx = idx
idx_pos = idx_pos+1

generate list of indexes where effort was greater than zero
#effort_idx = np.where(data['effort_sec'] * data['effort_nmil'] != 0)

spue = data['num_animals'][effort_idx] / (data['effort_sec'][effort_idx] * data['effort_nmil'][effort_idx])

append spue calculations to structured array dataset
#data = np.lib.recfunctions.append_fields(data,'spue',data=spue)

Main program:

```
The following are a series of functions defined in the Geosetup package module pathfinder that can be used for importing NOAA’s pathfinder dataset.

Import:

```python
import numpy as np
from netCDF4 import Dataset
import sys, os
import math
```

Covert coordinates to index position:

```python
def coord2idx(coord, deg_range, cell_size, limit_keyword):
 '''Round decimal degrees or minutes to a defined limit'''
 # check that coordinate is valid
 if (coord < -deg_range) or (coord > deg_range):
 print('
Bathymetric grid coordinate range incorrect. Exiting.
')
 sys.exit()

 # Calculate index position from provided coordinate
 idx = (coord/cell_size)+(deg_range/cell_size/2)

 # Round index to integer value up or down depending on boundary
 if limit_keyword == 'min':
 idx = int(math.floor(idx))
 elif limit_keyword == 'max':
 idx = int(math.ceil(idx))
 else:
 print('
Coordinate keyword invalid. Exiting.
')
 sys.exit()

 # Calculate decimal coordinate at rounded index position
 new_coord = (idx - (deg_range/cell_size/2))*cell_size
 return new_coord, idx
```

Print summary output:

```python
def summary(file_path):
 '''Extract gebco bathymetry data summary.''

 # Get Lat/Lon from first data file in list
 dataset = Dataset(file_path,'r')

 cols, rows = dataset.variables['dimension']
 grid_w_deg, grid_h_deg = dataset.variables['spacing']
 min_lon, max_lon = dataset.variables['x_range']
 min_lat, max_lat = dataset.variables['y_range']
 min_z, max_z = dataset.variables['z_range']
 z = dataset.variables['z'][:,5]
```
dataset.close()

print 'Gebco Bathymetric Data Summary:'
print '------------------------------------'
print 'cols: %i  rows: %i' % (cols, rows)
print 'grid width: %6.5f  grid height: %6.5f' % (grid_w_deg, grid_h_deg)
print 'min_lon: %5.1f  max_lon: %5.1f' % (min_lon, max_lon)
print 'min_lat: %5.1f  max_lat: %5.1f' % (min_lat, max_lat)
print 'min_z: %i  max_z: %i' % (min_z, max_z)
print 'First five z: ', z

def getGebcoData(file_path, min_lon, max_lon, min_lat, max_lat):
    '''Extract gebco bathymetric data from geographic bounds
    The depth data is a 1-D array. Given its size, it is faster
to use fancy indexing to extract the geographical subsection.
    '''
    dataset = Dataset(file_path, 'r')
    cell_size = dataset.variables['spacing'][0]
    cols, rows = dataset.variables['dimension']
    # Set lon (column) index and lat (row) index, retrieve adjusted coords
    min_lon, min_lon_idx = coord2idx(min_lon, 360, cell_size, 'min')
    max_lon, max_lon_idx = coord2idx(max_lon, 360, cell_size, 'max')
    min_lat, min_lat_idx = coord2idx(min_lat, 180, cell_size, 'min')
    max_lat, max_lat_idx = coord2idx(max_lat, 180, cell_size, 'max')
    # TODO check if incorrect to offset by one
    lon_range = (max_lon_idx - min_lon_idx) + 1
    lat_range = (max_lat_idx - min_lat_idx) + 1
    data_range = lon_range * lat_range
    zi = 0
    # Create zero array with the appropriate length for the data subset
    z = np.zeros(data_range)
    # Process number of rows for which data is being extracted
    for i in range((max_lat_idx - min_lat_idx) + 1):
        # Pull row, then desired elements of that row into buffer
        tmp = (dataset.variables['z'][(i*cols):((i*cols)+cols)])[min_lon_idx:max_lon_idx]
        # Add each item in buffer sequentially to data array
        for j in tmp:
            z[zi] = j
        # Keep a count of what index position the next data point goes to
        zi += 1
    dataset.close()

    # Create latitude and longitude arrays
    lon_const = 360./cell_size/2
    lat_const = 180./cell_size/2
    lons = (np.asarray(range(lon_range)) + min_lon_idx - lon_const)*cell_size
    lats = (np.asarray(range(lat_range)) + min_lat_idx - lat_const)*cell_size
    lons, lats = np.meshgrid(lons, lats)
    lons = lons.ravel()
    lats = lats.ravel()

    # TODO remove
    print 'len_lons: ', lons.shape
    print 'len_lats: ', lats.shape
    print 'len_z: ', z.shape

    return lons, lats, z

Main Program:
if __name__ == '__main__':

    # commandline usage
    if len(sys.argv) < 2:
        print >>sys.stderr, 'Usage:', sys.argv[0], '<data directory>
        sys.exit(1)

    data_dir = sys.argv[1]
    data_file = 'gridone.nc'

    file_path = os.path.join(data_dir, data_file)

    summary(file_path)

    # getGebcoData(file_path, min_lon, max_lon, min_lat, max_lat):
    lons, lats, z = getGebcoData(file_path, -20, 20, -20, 20)

    print 'lons: ', lons[:]
    print 'lats: ', lats[:]
    print 'z: ', z[:]


As described by Trond Kristiansen on his blog [7]. The following are methods developed by him to import data from NOAA’s CoRTAD data series.

Imports:

```python
import os, sys, datetime, string
import numpy as np
from netCDF4 import Dataset
import numpy.ma as ma
import matplotlib.pyplot as plt
from pylab import *
import mpl_util
```

Get CoRTAD Time:

```python
def getCORTADtime():
 base='/media/data/storage02/asf-fellowship/data/CoRTAD/version4/
 file1='cortadv4_row00_col05.nc'
 filename1=base+file1
 cdf1=Dataset(filename1)
 print "Time: Extracting timedata from openDAP: %s"%(filename1)
 time=np.squeeze(cdf1.variables["time"][:])
 cdf1.close()
 return time
```

Open CoRTAD Files:

```python
def openCoRTAD():
 # TODO Generalize to accept dates and geobounds, data dir
 """ Info on the different tiles used to identify a region is found here:
 http://www.nodc.noaa.gov/SatelliteData/Cortad/TileMap.jpg"
 base='/media/data/storage02/asf-fellowship/data/CoRTAD/version4/
 file1="cortadv4_row00_col05.nc",
 file2="cortadv4_row00_col06.nc",
 file3="cortadv4_row00_col07.nc",
 file4="cortadv4_row00_col08.nc",
 file5="cortadv4_row00_col09.nc",
 file6="cortadv4_row01_col05.nc",
 file7="cortadv4_row01_col06.nc",
 file8="cortadv4_row01_col07.nc"
```
Processing Remote Sensing Data with Python Documentation, Release 1

```python
file9="cortadv4_row01_col08.nc"
file10="cortadv4_row01_col09.nc"

filename1=base+file1
filename2=base+file2
filename3=base+file3
filename4=base+file4
filename5=base+file5
filename6=base+file6
filename7=base+file7
filename8=base+file8
filename9=base+file9
filename10=base+file10

cdf1=Dataset(filename1)
cdf2=Dataset(filename2)
cdf3=Dataset(filename3)
cdf4=Dataset(filename4)
cdf5=Dataset(filename5)
cdf6=Dataset(filename6)
cdf7=Dataset(filename7)
cdf8=Dataset(filename8)
cdf9=Dataset(filename9)
cdf10=Dataset(filename10)

return cdf1,cdf2,cdf3,cdf4,cdf5,cdf6,cdf7,cdf8,cdf9,cdf10

def extractCoRTADLongLat():
 ""
 Routine that extracts the longitude and latitudes for the
 combination of tiles. This is only necessary to do once so it is
 separated from the extraction of SST.""
 # cdf1,cdf2,cdf3,cdf4,cdf5,cdf6=openCoRTAD()
cdf1,cdf2,cdf3,cdf4,cdf5,cdf6,cdf7,cdf8,cdf9,cdf10=openCoRTAD()

 longitude1=np.squeeze(cdf1.variables["lon"][:])
 latitude1=np.squeeze(cdf1.variables["lat"][:])
 longitude2=np.squeeze(cdf2.variables["lon"][:])
 latitude2=np.squeeze(cdf2.variables["lat"][:])
 longitude3=np.squeeze(cdf3.variables["lon"][:])
 latitude3=np.squeeze(cdf3.variables["lat"][:])
 longitude4=np.squeeze(cdf4.variables["lon"][:])
 latitude4=np.squeeze(cdf4.variables["lat"][:])
 longitude5=np.squeeze(cdf5.variables["lon"][:])
 latitude5=np.squeeze(cdf5.variables["lat"][:])
 longitude6=np.squeeze(cdf6.variables["lon"][:])
 latitude6=np.squeeze(cdf6.variables["lat"][:])
 longitude7=np.squeeze(cdf7.variables["lon"][:])
 latitude7=np.squeeze(cdf7.variables["lat"][:])
 longitude8=np.squeeze(cdf8.variables["lon"][:])
 latitude8=np.squeeze(cdf8.variables["lat"][:])
 longitude9=np.squeeze(cdf9.variables["lon"][:])
 latitude9=np.squeeze(cdf9.variables["lat"][:])
 longitude10=np.squeeze(cdf9.variables["lon"][:])
 latitude10=np.squeeze(cdf9.variables["lat"][:])

cdf1.close();cdf2.close();cdf3.close();cdf4.close();cdf5.close();cdf6.close();cdf7.close();cdf8.close();cdf9.close();cdf10.close();

 longitude=concatenate((longitude1,longitude2,longitude3,longitude4,longitude5)) # 1-D array, axis irrelevant
 latitude=concatenate((latitude6,latitude1)) # 1-D array, axis irrelevant

 """We have to flip this array so that we have increasing latitude
 values required by np.interp function. This means we also have to
 flip the input SST array""
```

Chapter 13. Geosetup - CoRTAD
# latitude=np.flipud(latitude) # flipping does not appear to be necessary
lons, lats = np.meshgrid(longitude, latitude)

print "Extracted longitude-latitude for CoRTAD region"
print "Long min: %s Lat min: %s"%(longitude.min(), latitude.min())
print "Long max: %s Lat max: %s"%(longitude.max(), latitude.max())

return lons, lats, longitude, latitude

# Extract CoRTAD SST:

def extractCORTADSSST(timestamp_start, timestamp_end, masked=True):
    """Routine that extracts the SST values for the specific tiles and time-period (t)"""
    cdf1, cdf2, cdf3, cdf4, cdf5, cdf6, cdf7, cdf8, cdf9, cdf10 = openCoRTAD()

    # calculate days from ref date to first and last sighting
    ref_date = datetime.datetime(1980, 12, 31, 12, 0, 0)
    print ref_date
    days = 60. * 60. * 24.  # sec*min*hr
    t1 = int(round((timestamp_start - ref_date).total_seconds() / days))
    t2 = int(round((timestamp_end - ref_date).total_seconds() / days))

    cortad_time = np.squeeze(cdf1.variables['time'][:])

    # use binary search to find index of nearest time value to data times
    idx1 = (np.abs(cortad_time - t1)).argmin()
    idx2 = (np.abs(cortad_time - t2)).argmin()

    # TODO make sure data is being averaged correctly
    filledSST1 = np.average((cdf1.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST2 = np.average((cdf2.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST3 = np.average((cdf3.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST4 = np.average((cdf4.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST5 = np.average((cdf5.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST6 = np.average((cdf6.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST7 = np.average((cdf7.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST8 = np.average((cdf8.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST9 = np.average((cdf9.variables['FilledSST'][idx1:idx2, :, :]), axis=0)
    filledSST10 = np.average((cdf10.variables['FilledSST'][idx1:idx2, :, :]), axis=0)

    offset = cdf1.variables['FilledSST'].__getattribute__('add_offset')

    filledMaskedSST1 = filledSST1 - offset
    filledMaskedSST2 = filledSST2 - offset
    filledMaskedSST3 = filledSST3 - offset
    filledMaskedSST4 = filledSST4 - offset
    filledMaskedSST5 = filledSST5 - offset
    filledMaskedSST6 = filledSST6 - offset
    filledMaskedSST7 = filledSST7 - offset
    filledMaskedSST8 = filledSST8 - offset
    filledMaskedSST9 = filledSST9 - offset
    filledMaskedSST10 = filledSST10 - offset

    filledMaskedSST_lower = concatenate((filledMaskedSST1, filledMaskedSST2, filledMaskedSST3, filledMaskedSST4), axis=1)
    filledMaskedSST_upper = concatenate((filledMaskedSST6, filledMaskedSST7, filledMaskedSST8, filledMaskedSST9), axis=1)
    filledMaskedSST_all = concatenate((filledMaskedSST_upper, filledMaskedSST_lower), axis=0)

    offset = cdf1.variables['FilledSST'].__getattribute__('_getattribute_')('add_offset')
    cdf1.close(); cdf2.close(); cdf3.close(); cdf4.close(); cdf5.close(); cdf6.close(); cdf7.close(); cdf8.close();

    # """Now we have all the data in 4 different arrays that we need to concenate. First we add the horizontal tiles, and finally we stack the two horizonal ones on top of each other."""
    filledMaskedSST_all = concatenate((filledMaskedSST_lower, filledMaskedSST_upper, filledMaskedSST_all), axis=0)

    # flipping does not appear to be necessary
    filledMaskedSST_all = np.flipud(filledMaskedSST_all)
```python
Scale and offset is automatically detected and edited by netcdf, but we need to mask the values that are not filled:
filledMaskedSST_final = ma.masked_less(filledMaskedSST_all, -2.)

print "Min and max of SST: \$s - \$s\"%(filledMaskedSST_final.min(),filledMaskedSST_final.max())
print "-----------------------\n"

return filledMaskedSST_final
```

Main function:
```
if __name__ == "__main__":
 main()
```
CHAPTER
FOURTEEN

GEOSETUP - GLOBCOLOUR

The following are methods from the globcolour module in the Geosetup package for importing chlorophyll data from the GlobColour data series produced by ESA.

14.1 Importing Mapped L3m Data

Extract GlobColour chlorophyll data from netCDFs

```python
import sys, os
from netCDF4 import Dataset
import numpy as np
import numpy.ma as ma
import isingrid as grid
import re
import csv
import datetime
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
```

Subset geospatials data (remove?):

```python
def subset_geodata(max_lon, min_lon, max_lat, min_lat,lons, lats, values):
 '''subset_geodata returns a subset of lat/lon/value data from defined
 defined bounds in decimal degrees'''
 subset_lons = lons[(lons<max_lon)&(lons>min_lon)&(lats<max_lat)&(lats>min_lat)]
 subset_lats = lats[(lons<max_lon)&(lons>min_lon)&(lats<max_lat)&(lats>min_lat)]
 subset_vals = values[(lons<max_lon)&(lons>min_lon)&(lats<max_lat)&(lats>min_lat)]
 return subset_lons, subset_lats, subset_vals
```

Find nearest value in array, and return the index position of it:

```python
def find_nearest(array,value):
 '''
 Returns index position of element nearest to given value
 '''
 idx = (np.abs(array-value)).argmin()
 #return array[idx] # return value
 return idx # return index
```

Get Mapped GlobColour Data:

```python
def getMappedGlob(data_dir, min_lon, max_lon, min_lat, max_lat, data_time_start, data_time_end):
 '''
 Extracts subset of globcolour data based on lat/lon bounds and dates in the
 iso format '2012-01-31'
 '''
```
# TODO figure out if this is right
file_list = np.asarray(os.listdir(data_dir))
file_dates = np.asarray([datetime.datetime.strptime(re.split('[._]', filename)[1], '%Y%m%d') for filename in file_list])
data_files = file_list[(file_dates >= data_time_start) & (file_dates <= data_time_end)]

# Get Lat/Lon from first data file in list
dataset = Dataset(os.path.join(data_dir, file_list[0]), 'r')
lons = dataset.variables['lon'][:]
lats = dataset.variables['lat'][:]
vals_sum = np.zeros_like(dataset.variables['CHL1_mean'][:][:])
mask_sum = np.empty(np.shape(vals_sum), dtype=bool)
dataset.close()

# Create cumulative mask before averaging data
for data_file in data_files:
current_file = os.path.join(data_dir, data_file)
dataset = Dataset(current_file, 'r') # by default numpy masked array
mask = (dataset.variables['CHL1_mean'][:][:]).mask
mask_sum = mask + mask_sum
vals_sum.mask = mask_sum
vals_mean = vals_sum / file_count
#TODO remove
# printstuff(vals, vals_sum, file_count)
dataset.close()

vals_mean = vals / file_count  # TODO simple average

# Mesh Lat/Lon the unravel to return lists
# TODO make mesh optional (i.e. return grid or lists)
lons_mesh, lats_mesh = np.meshgrid(lons, lats)
lons = np.ravel(lons_mesh)
lats = np.ravel(lats_mesh)

# Print GlobColour Information
print('Chl-a Information')
print('-------------------------------------------')
print('Start Date: ', data_time_start)
print('End Date: ', data_time_end)
print('Max Chl-a: ', np.amax(vals_mean))
print('Min Chl-a: ', np.amin(vals_mean))

return lons, lats, vals_mean

Main Program:

if __name__ == '__main__':

# Commandline usage #
if len(sys.argv) < 2:
    print >> sys.stderr, 'Usage: ', sys.argv[0], '<data directory>
    sys.exit(1)
data_dir = sys.argv[1]
lons, lats, vals_mean = getMappedGlobcolour(data_dir, 0., 50., 0.5, 60., '2007-08-01', '2007-08-30')
print lons
14.2 Importing ISIN grid L3b Data

The following methods can be used to convert data in the ISIN grid format into latitude and longitude data, which is a Python translation of the R code that was posted on the following blog page:


Import:

```python
import numpy as np

from: http://menugget.blogspot.no/2012/04/working-with-globcolour-data.html#more

This function is used converts ISIN grid information used by Globcolour to latitude and longitude for a perfect sphere, as well as to construct associated polygons for use in mapping.

The raw Globcolour .nc files come with column and row pointers as to the the grid's location. For 4.63 km resolution data, this translates to 4320 latitudinal rows with varying number of associated longitudinal columns depending on the latitudinal circumference.

Input must be either a vector of grid numbers ["grd"] or a dataframe with column and row identifiers ["coord", e.g. columns in coord$col and rows in coord$row]

When the argument "polygon=FALSE" (Default), the function will output a dataframe object containing grid information (gridnumber["output$grd"], column["output$col"], row["output$row"], longitude["output$lon"], and latitude["output$lat"])

If the argument "polygon=TRUE", then the putput will be a list with polygon shapes in a dataframe(longitudinal coordinates of corners ["[i]"$x"], latitudinal coordinates of corners ["[i]"$y"])

Convert ISIN grid to Lat Lon Coordinates:

```
```python
cum_Nlon = np.cumsum(Nlon)
TODO the following doesn’t work for array [1,2,3,4], matters?
grid_rows = np.asarray([np.amax(np.where(cum_Nlon < point)) for point in grid])
grid_cols = grid - cum_Nlon[grid_rows]
calculate longitude and latitude
grid_lats = lat[grid_rows]
Nlon_rows = Nlon[grid_rows]
grid_lons = (360*(grid_cols-0.5)/Nlon_rows)-180

if (coord is not None):
 # calculate coordinates
 grid_rows = coord[:,0]
 grid_cols = coord[:,1]
 print grid_rows
 print grid_cols
 # calculate longitude and latitude
 Nlon_rows = Nlon[grid_rows]
 grid_lons = (360*(grid_cols-0.5)/Nlon_rows)-180
 # calculate grid
 cum_Nlon = np.cumsum(Nlon)
 grid = cum_Nlon[grid_rows] + grid_cols # TODO check what this does
 cum_Nlon = np.cumsum(Nlon)
 return grid_lats, grid_lons

if (polygons is not None):
 Nlon_rows = Nlon[grid_rows]
 grid_width = 360/Nlon_rows
 grid_height = 180/Nlat
 # create list 1 to (number of elements in grid)
 polys = range(0,len(grid))
 xs = np.hstack([grid_lons[polys]-grid_width/2, grid_lons[polys]-grid_width/2, grid_lons[polys]+grid_width/2, grid_lons[polys]+grid_width/2])
 # TODO check that what’s return
 #
 return xs,ys #np.vstack([xs,ys])

if (polygons is None):
 array = np.vstack([grid,grid_cols,grid_rows,grid_lons,grid_lats])
```

Main function:
```
if __name__ == "__main__":
 grid = np.array([20,35,60,900])
 print isin_convert(grid)
```
The methods in the `gebco` module of the Geosetup package allow for importing of the GEBCO Bathymetric data provided by the British Oceanographic Data Centre.

Imports:

```python
import numpy as np
from netCDF4 import Dataset
import sys, os
import math
```

Convert coordinates to index positions:

```python
def coord2idx(coord, deg_range, cell_size, limit_keyword):
 '''Round decimal degrees or minutes to a defined limit'''

 # check that coordinate is valid
 if (coord < -deg_range) or (coord > deg_range):
 print('
 Bathymetric grid coordinate range incorrect. Exiting.
 sys.exit()

 # Calculate index position from provided coordinate
 idx = (coord/cell_size)+(deg_range/cell_size/2)

 # Round index to integer value up or down depending on boundary
 if limit_keyword == 'min':
 idx = int(math.floor(idx))
 elif limit_keyword == 'max':
 idx = int(math.ceil(idx))
 else:
 print('
 Coordinate keyword invalid. Exiting.
 sys.exit()

 # Calculate decimal coordinate at rounded index position
 new_coord = (idx - (deg_range/cell_size/2))*cell_size

 return new_coord, idx
```

Print summary info:

```python
def summary(file_path):
 ''' Extract gebco bathymetry data summary.''

 # Get Lat/Lon from first data file in list
 dataset = Dataset(file_path,'r')

 cols, rows = dataset.variables['dimension']
 grid_w_deg, grid_h_deg = dataset.variables['spacing']
 min_lon, max_lon = dataset.variables['x_range']
 min_lat, max_lat = dataset.variables['y_range']
 min_z, max_z = dataset.variables['z_range']
 z = dataset.variables['z'][:,5]
```
Get GEBCO data:

```python
def getGEBCOData(file_path, min_lon, max_lon, min_lat, max_lat):
 '''Extract gebcobathymetric data from geographic bounds
 cell_size: decimal degree x & y dimension of grid cells
 The depth data is a 1-D array. Given its size, it is faster
to use fancy indexing to extract the geographical subsection.
 '''
 dataset = Dataset(file_path, 'r')
cell_size = dataset.variables['spacing'][0]
cols, rows = dataset.variables['dimension']

 # Set lon (column) index and lat (row) index, retrieve adjusted coords
 min_lon, min_lon_idx = coord2idx(min_lon, 360, cell_size, 'min')
 max_lon, max_lon_idx = coord2idx(max_lon, 360, cell_size, 'max')
 min_lat, min_lat_idx = coord2idx(min_lat, 180, cell_size, 'min')
 max_lat, max_lat_idx = coord2idx(max_lat, 180, cell_size, 'max')

 # TODO remove
 print('min_lon_idx', min_lon_idx, 'min_lon', min_lon)
 print('max_lon_idx', max_lon_idx, 'max_lon', max_lon)
 print('min_lat_idx', min_lat_idx, 'min_lat', min_lat)
 print('max_lat_idx', max_lat_idx, 'max_lat', max_lat)

 # TODO check if incorrect to offset by one
 lon_range = (max_lon_idx - min_lon_idx) + 1
 lat_range = (max_lat_idx - min_lat_idx) + 1
 data_range = lon_range * lat_range

 zi = 0
 # Create zero array with the appropriate length for the data subset
 z = np.zeros(data_range)
 # Process number of rows for which data is being extracted
 for i in range(max_lat_idx - min_lat_idx):
 # Pull row, then desired elements of that row into buffer
 tmp = (dataset.variables['z'][(i*cols):((i*cols)+cols)])[min_lon_idx:max_lon_idx]
 # Add each item in buffer sequentially to data array
 for j in tmp:
 z[zi] = j
 # Keep a count of what index position the next data point goes to
 zi += 1

 dataset.close()

 # Create latitude and longitude arrays
 lon_const = 360. / cell_size / 2
 lat_const = 180. / cell_size / 2
 lons = (np.asarray(range(lon_range)) + min_lon_idx - lon_const) * cell_size
 lats = (np.asarray(range(lat_range)) + min_lat_idx - lat_const) * cell_size
 lons, lats = np.meshgrid(lons, lats)
lons = np.ravel(lons)
lats = np.ravel(lats)

 # TODO remove
 print('len_lons: ', lons.shape
 print('len_lats: ', lats.shape
 print('len_z: ', z.shape

 return lons, lats, z
```

Main Program:

```python
if __name__ == '__main__':
 # commandline usage
 if len(sys.argv) < 2:
 print >>sys.stderr,'Usage:',sys.argv[0],'<data directory>
 sys.exit(1)
 data_dir = sys.argv[1]
 data_file = 'gridone.nc'
 file_path = os.path.join(data_dir,data_file)
 summary(file_path)
 # getGEBCOData(file_path,min_lon,max_lon,min_lat,max_lat):
 lons, lats, z = getGEBCOData(file_path,-20,20,-20,20)
 print 'lons: ', lons[:]
 print 'lats: ', lats[:]
 print 'z: ', z[:]
```
The following is the main program script for the Geosetup package that will import data from a comma separated text file and automatically produce sea surface temperature, chlorophyll a, and bathymetry datasets bound by the geographic bounds of the data provided.

Import:

```python
#usr/bin/env python
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
import sys, os, errno
import re
import math
import datetime
import numpy.lib.recfunctions
import pyproj
from StringIO import StringIO
import geosetup.mpl_util
from geosetup.globcolour import globcolour
from geosetup.pathfinder import pathfinder
from geosetup.gebco import gebco
from geosetup.interpolate import invdistgis, invdist
from geosetup.interpolate.datainterp import geointerp
from geosetup.writefile import data2raster
from geosetup.sightsurvey import sightsurvey

prevent creation of .pyc files
sys.dont_write_bytecode = True
```

```python
def plotSizedData(map_obj, lons, lats, values, symbol, min_size, max_size, lines=False):
 '''
 Plot data with varying sizes
 '''
 proj_x, proj_y = m(lons, lats)
 # Calculate marker sizes using y=mx+b
 # where y = marker size and x = data value
 slope = (max_size-min_size)/(max(values)-min(values))
 intercept = min_size-(slope*min(values))
 for x, y, val in zip(proj_x, proj_y, values):
 msize = (slope*val)+intercept
 map_obj.plot(x, y, symbol, markersize=msize)

def plotLines(map_obj, lons, lats, lw=1.0, color='k'):
 '''
 Draw a line between each set of coordinates
 '''
```
for i in range(len(lons)-1):
    map_obj.drawgreatcircle(lons[i],lats[i],lons[i+1],lats[i+1],linewidth=1.0,color='k')

def centerMap(lons,lats,scale):
    '''
    Set range of map. Assumes -90 < Lat < 90 and -180 < Lon < 180, and
    latitude and longitude are in decimal degrees
    '''
    north_lat = max(lats)
south_lat = min(lats)
west_lon = max(lons)
east_lon = min(lons)

    # find center of data
    # average between max and min longitude
    lon0 = ((west_lon-east_lon)/2.0)+east_lon

    # define ellipsoid object for distance measurements
g = pyproj.Geod(ellps='WGS84')  # Use WGS84 ellipsoid TODO make variable
earth_radius = g.a  # earth's radius in meters

    # Use pythagorean theorem to determine height of plot
    # divide b_dist by 2 to get width of triangle from center to edge of data area
    # a_dist = the height of the map (i.e. mapH)
b_dist = g.inv(west_lon, north_lat, east_lon, north_lat)[2]/2
c_dist = g.inv(west_lon, north_lat, lon0, south_lat)[2]

    mapH = pow(pow(c_dist,2)-pow(b_dist,2),1./2)
    lat0 = g.fwd(lon0,south_lat,0,mapH/2)[1]

    # distance between max E and W longitude at most southern latitude
    mapW = g.inv(west_lon, south_lat, east_lon, south_lat)[2]

    return lon0, lat0, mapW*scale, mapH*scale

def drawsst(ax, map_object, longSST, latSST, filledSST, myalpha):
    '''Draw Sea surface temperature
    Author - Trond Kristiansen'''

    # Input arrays have to be 2D
    print "Drawing SST: max %s and min %s"%(filledSST.min(), filledSST.max())
x2, y2 = map_object(longSST,latSST)

    # TODO correct issue with colormap
    if myalpha > 0.99:
        CS2 = map_object.contourf(x2, y2, filledSST, levels,
                        #cmap=mpl_util.LevelColormap(levels,cmap=cm.RdYlBu_r),
                        cmap = plt.cm.jet,
                        extend = 'upper', alpha=myalpha)
    else:
        CS2 = map_object.contourf(x2, y2, filledSST, levels,
                        #cmap=mpl_util.LevelColormap(levels,cmap=cm.RdYlBu_r),
                        cmap = plt.cm.jet,
                        extend = 'upper', alpha=myalpha)

    # TODO correct or remove
    #CS2 = map_object.contourf(x2,y2,filledSST,levels,
    #    #cmap=mpl_util.LevelColormap(levels,cmap=cm.Greys),
    #    #extend='upper',alpha=myalpha)

def find_nearest(array, value):
    '''
    TODO
    '''
    idx = (np.abs(array - value)).argmin()
    #return array[idx]  # return value
    return idx  # return index
```python
def filter2bool(regexp, array):
 '''
 Create array of positive boolean where elements match regex
 '''
 return np.array([bool(re.search(regexp, element)) for element in array])

if __name__ == '__main__':
 #########################
 # Commandline Usage #
 #########################
 if len(sys.argv) < 3:
 print >>sys.stderr,'Usage:',sys.argv[0],'<datafile> <#rows to skip>
 sys.exit(1)
 #########################
 # Configuration parameters #
 #########################
 PROJ_DIR = '/home/ryan/Desktop/asf-fellowship/code/geosetup/
 SST_DIR = 'data/pathfinder/
 CHL_DIR = 'data/globcolour/
 BTM_DIR = 'data/gebco/gridone.nc'
 SIGHT_DATA = sys.argv[1] # 'data/survey/na07.tab'
 OUT_DIR = 'output/'
 GRD_SIZE = 50 # km or deg?
 # Test that output directory exists, if not create it
 try:
 os.makedirs(OUT_DIR)
 except OSError, e:
 if e.errno != errno.EEXIST:
 raise
 #########################
 # Process Sighting Data #
 #########################
 # Get sight surveying data and geographical and time bounds for data
 data = sightsurvey.getData(SIGHT_DATA, skip_rows=0)
 # Get date information for subsampling environment data
 datetimes = list()
 for data_date, data_time in zip(data['dates'], data['times']):
 data_datetime = data_date + data_time
 datetimes.append(datetime.datetime.strptime(data_datetime, '%y%m%d%H%M%S'))
 LON_START = min(data['lon'])
 LON_END = max(data['lon'])
 LAT_START = min(data['lat'])
 LAT_END = max(data['lat'])
 TIME_START = min(datetimes)
 TIME_END = max(datetimes)
 # Print sighting data information
 print 'Sighting Period: ', TIME_START, TIME_END, TIME_END - TIME_START
 #########################
 # Create Grid #
 #########################
 grid_lat_start = math.floor(LAT_START)
 grid_lon_start = math.floor(LON_START)
 grid_lat_end = math.ceil(LAT_END)
 grid_lon_end = math.ceil(LON_END)
 grid_lats = np.linspace(GRD_SIZE, 180, 180/GRD_SIZE)
 grid_lons = np.linspace(GRD_SIZE, 180, 180/GRD_SIZE)
```

# Calculate Sightings per unit effort #
#######################################
# 'BM' Blue Whale (Balaenoptera musculus)
# 'BP' Fin Whale (Balaenoptera physalus)
# 'BB' Sei Whale (Balaenoptera borealis)
# 'BA' Minke whales (Balaenoptera acutorostrata)
# 'MN' Humpback Whale (Megaptera novaeangliae)

# Create array of indexes for minke whales
# TODO verify the effort calc is correct
minke_idx = np.where(filter2bool('BA', data['species']) == True)[0]
minke_effort = data['effort_nmil'][minke_idx]
minke_lat = data['lat'][minke_idx]
minke_lon = data['lon'][minke_idx]

# Create Effort Gtiff
effortGeopoint = data2raster.GeoPoint(minke_lon, minke_lat, minke_effort)
effortGeopoint.create_raster(filename = OUT_DIR + "effort.tiff", output_format="GTiff")

# Interpolate / Plot Minke effort
minke_x, minke_y = effortGeopoint.transform_point()
ZI = invdist.invDist(minke_lat, minke_lon, minke_effort)
XI, YI = np.meshgrid(minke_x, minke_y)
n = plt.normalize(0.0, 1000.0)
plt.subplot(1, 1, 1)
plt.pcolor(XI, YI, ZI)
plt.colorbar()
plt.show()

# Process CorTAD Data # TODO review / remove
#######################################
# Get cortad SST within date period
# TODO modify method to subset lat/lon
filledSST = cortad.extractCORTADSST("North Sea", TIME_START, TIME_END)
lonSST2D, latSST2D, sst_lon, sst_lat = cortad.extractCoRTADLongLat()
sst_lon, sst_lat = np.meshgrid(sst_lon, sst_lat)
sst_lon = np.ravel(sst_lon)
sst_lat = np.ravel(sst_lat)
filledSST_flat = np.ravel(filledSST)

# Create SST Gtiff
sstGeopoint = data2raster.GeoPoint(sst_lon, sst_lat, filledSST_flat)
sstGeopoint.create_raster(filename = OUT_DIR + "sst.tiff", output_format="GTiff")

# Process Pathfinder SST Data #
#######################################
# Extract Chl-a data
# getnetcdffdata(data_dir, nc_var_name, min_lon, max_lon, min_lat, max_lat, data_time_start, data_time_end)
# sst_lons, sst_lats, sst_vals = pathfinder.getnetcdffdata(PROJ_DIR + SST_DIR, 'sea_surface_temperature',
# LON_START, LON_END,
# LAT_START, LAT_END,
# TIME_START, TIME_END)

# Create SST Gtiff
sstGeopoint = data2raster.GeoPoint(sst_lons, sst_lats, sst_vals)
sstGeopoint.create_raster(filename = OUT_DIR + "sst.tiff", output_format="GTiff", cell_width_meters = 5000, cell_height_meters = 5000)

# Process Globcolour Chl-a Data #
#######################################
# Extract Chl-a data
# chla_lons, chla_lats, chla_vals = globcolour.getMappedGlob(PROJ_DIR+CHL_DIR,
```python
chla_vals = np.ravel(chla_vals)

Create Chla Gtiff
chlaGeopoint = data2raster.GeoPoint(chla_lons, chla_lats, chla_vals)
chlaGeopoint.create_raster(filename = OUT_DIR + "chla.tiff", output_format="GTiff",
cell_width_meters = 5000, cell_height_meters = 5000)

Extract bathymetric data
bathy_lons, bathy_lats, bathy_z = gebco.getGebcoData(BTM_DIR, LON_START, LON_END,
LAT_START, LAT_END)

Create Bathy Gtiff
bathyGeopoint = data2raster.GeoPoint(bathy_lons, bathy_lats, bathy_z)
bathyGeopoint.create_raster(filename = OUT_DIR + "bathy.tiff", output_format="GTiff")

Create Plot
fig = plt.figure(figsize=(12,12))
ax = fig.add_subplot(111)

Calculate map's center lat and lon from sampling data
lon0center, lat0center, mapWidth, mapHeight = centerMap(data['lon'], data['lat'], 1.1)

Lambert Conformal Projection Plot
lat_1 is first standard parallel.
lat_2 is second standard parallel (defaults to lat_1).
TODO check that following isn’t more accurate from pyProj
rsphere=(6378137.00,6356752.3142) specifies WGS4 ellipsoid
area_thresh=1000 means don’t plot coastline features less
than 1000 km2 in area.
m = Basemap(width=mapWidth, height=mapHeight,
 rsphere=(6378137.00,6356752.3142),
 resolution='l', area_thresh=1000, projection='lcc',
 lat_1=45., lat_2=55.,
 lat_0=lat0center, lon_0=lon0center)

Plot STT
#drawsst(ax,m,lonSST2D,latSST2D,filledSST,0.25)

Plot Chl-a
#TODO
#drawchla()

Plot Depth
#TODO
#drawbottom()

Draw parallels and meridians.
m.drawparallels(np.arange(-80., 81., 20.), labels=[1,0,0,0], fontsize=10)
m.drawmeridians(np.arange(-180., 181., 20.), labels=[0,0,0,1], fontsize=10)
m.drawmapboundary(fill_color='aqua')
m.drawcoastlines linewidth=0.2)
m.fillcontinents(color='white', lake_color='aqua')

Plot data points
plotSizedData(m,minke_lon,minke_lat,minke_effort,'ro',4,20)
plotLines(m,data['lon'],data['lat'],lw=1.0,color='k')
#x, y = m(data['lon'],data['lat'])
#m.scatter(x,y,2,marker='o',color='k')

Print Plot Information
print ‘
\nPlot Information’
```
print '---------------------------------------------'
print "Map lat/lon center: ",lat0center,lon0center
print "Map height/width: ",mapWidth,mapHeight
# TODO write metadata to image file
# http://stackoverflow.com/questions/10532614/can-matplotlib-add-metadata-to-saved-figures
# plt.title("Example")
# plotfile='SST_northsea_'+str(currentDate)+'.png'
# print "Saving map to file %s"%(plotfile)
# plt.savefig(plotfile)
plt.show()
APPENDIX: TEMPORAL COVERAGE OF OCEAN COLOR SATELLITE MISSIONS

17.1 Missions

- SeaWiFS
- MODIS
- MERIS
- Pathfinder (merged)
- CoRTAD (merged)
- GlobColour (merged)

Figure 17.1: Temporal ranges of ocean color satellite missions


