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Abstract

A somewhat artificial scarcity of spectrum is due to static allocation to so
called Primary Users (PUs) who use it only intermittently. A promising so-
lution uses market approaches to redistribute limited time access rights to
so called Secondary Users (SUs) (Hoefer, Kesselheim, & Vöcking, 2011).
A reasonable approach, concisely termed "eBay in the Sky"(Zhou, Gandhi,
Suri, & Zheng, 2008), auctions licenses for SUs regularly.

We employ the physical or signal-to-interference-plus-noise-ratio (SINR)
model to model wireless communication in the plane. We auction m chan-
nels to n links randomly scattered in the plane, with probability p of attaching
to a previously placed link, known as preferential attachment (Ásgeirsson et
al., 2012). Links have symmetric and downward sloping valuations. Since
finding an optimal allocation is known to be NP-hard (Goussevskaia, Os-
wald, & Wattenhofer, 2007) we compare several approximation algorithms in
simulations, namely GREEDYLENGTH, GREEDYWEIGHT, BUCKETLENGTH,
BUCKETWEIGHT, LOCALRATIO, GREEDYINTERFERENCE, and a Linear
Programming Algorithm (LP) (Hoefer & Kesselheim, 2012). The perfor-
mance of all algorithms is compared varying three dimensions, n, m and p.
Algorithms GREEDYWEIGHT, LOCALRATIO and LP quite consistently rank
first, second and third, respectively. In further simulations, varying valua-
tions, LOCALRATIO outperformed GREEDYWEIGHT.

An attempt was made to turn GREEDYWEIGHT and LOCALRATIO into truth-
ful mechanisms using VCG-like payments. Neither payment scheme turned
out to be truthful. A known method turns LP solutions into truthful-in-
expectation mechanisms (Lavi & Swamy, 2005). While there is no known
truthful mechanism for GREEDYWEIGHT and LOCALRATIO, LP algorithm
may be used at the price of lower social welfare. In practice GREEDY-
WEIGHT and LOCALRATIO may be used to allocate channels in a first-price-
auction.



Greining með hermunum á hámörkun afkasta í fjölrása
tíðniuppboðum.

Hörður Ingi Björnsson

Júní 2013

Útdráttur

Skortur á tíðni fyrir þráðlaus samskipti er að hluta tilkominn vegna þess að
forgangsnotendur fá úthlutað tíðni til langs tíma en nota hana ekki stöðugt.
Markaðsaðferðir gætu komið sér vel til að endurúthluta tíðni til skamms tíma
til annarra notenda (Hoefer et al., 2011). Ein slík aðferð, nefnd "‘eBay á
himni"’ (Zhou et al., 2008), býður reglulega upp skammtímanotkunarleyfi á
tíðni til annarra notenda.

Við notumst við efnislega (SINR) líkanið fyrir þráðlaus samskipti á sléttu.
Boðnar eru upp m rásir sem n tenglar geta boðið í. Með líkum p er tengill
staðsettur nálægt einhverjum tengli sem er þegar á sléttunni, annars er staðset-
ning tengils valin af handahófi (Ásgeirsson et al., 2012). Tenglar hafa áhuga
á því hversu margar rásir þeir fá, en bjóða minna fyrir hverja viðbótarrás.
Samanlagt verðmat tengla fyrir rásir sem þeir fá úthlutað er skilgreint sem
velferð. Sýnt hefur verið að ekki er hægt að finna kjörlausn á margliðutíma
(Goussevskaia et al., 2007), því berum við saman velferð nokkurra nálgunar-
reiknita með hermunum, það er GREEDYLENGTH, GREEDYWEIGHT, BUCK-
ETLENGTH, BUCKETWEIGHT, LOCALRATIO, GREEDYINTERFERENCE og
reiknirit sem byggir á línulegri bestun (LP) (Hoefer & Kesselheim, 2012).
Velferð er borin saman á þremur víddum, það er n, m og p. Reikniritin
GREEDYWEIGHT, LOCALRATIO og LP, finna lausnir með mestri velferð.
Verðmati tengla var breytt í frekari hermunum, þar var LOCALRATIO með
meiri velferð en GREEDYWEIGHT.

Uppboð eru skilgreind sannorð ef bjóðendur hagnast á því að bjóða sitt rétta
verðmat. Reynt var að búa til sannorð uppboð fyrir GREEDYWEIGHT og
LOCALRATIO, með greiðslum sem svipa til VCG, en tókst í hvorugu tilviki.
Vitað er um aðferð sem breytir lausnum úr línulegum bestunarlíkönum í væn-
tanlega sannorð uppboð (Lavi & Swamy, 2005). Meðan ekki er vitað um
sannorð uppboð fyrir GREEDYWEIGHT and LOCALRATIO, er hægt að notast
við LP reiknitið með aðeins minni velferð. Notast má við GREEDYWEIGHT
og LOCALRATIO, ef tenglar eru látnir borga sama verð og þeir bjóða.
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Chapter 1

Introduction

The first public demonstration of a wireless packet data network became operational in
June 1971. It was developed at the University of Hawaii and got the name ALOHAnet, or
simply ALOHA (Schwartz & Abramson, 2009). In its simplest form, Pure ALOHA, a link
that has data to send, just sends it. If there is a collision, the link waits random time and
tries sending again. The maximum throughput in Pure ALOHA is 1

2e
≈ 18.4%(Abramson,

1970).

In slotted ALOHA each link l transmits with probability 1
n

in any given time slot, where
n is the number of links wanting to transmit. Given that the links know the number n and
that transmission is successful if exactly one link transmits, the probability of successful
transmission in each slot is 1

e
≈ 36.8% (Roberts, 1975). The introduction of discrete time

slots doubled the throughput achieved with the ALOHA protocol.

An obvious strength of ALOHA is that it is fully distributed. If there was a central author-
ity that could schedule the wireless communication of wireless links 100% throughput
could easily be achieved by scheduling one link in each time slot. Recent development in
wireless communication goes even further. If links are far apart they can transmit simul-
taneously without interrupting each others communication.

In a seminal paper, capacity of wireless networks is studied under two models of inter-
ference: the protocol model and the physical or signal-to-interference-plus-noise (SINR)
model (Gupta & Kumar, 2000). Let us look at each separately.

A link lv is defined as a sender-receiver pair (sv, rv), where sv and rv are points in the
plane. Suppose link lv transmits over a channel. In the protocol model the transmission
of lv is successful if
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|su − rv| ≥ (1 + ∆)|sv − rv|, (1.1)

for every other sender su simultaneously transmitting over the same channel, where (1 +

∆) is the ratio between transmission range and interference range. If the quantity ∆ > 0

a sender su can interfere with the communication of lv even though it is further away from
rv than sv.

In the SINR model the transmission of lv is successful if

Pv
|sv−rv |α∑

lw∈S\{lv}
Pw

|sw−rv |α +N
≥ β, (1.2)

where Pv is the transmitting power of lv,N is the ambient noise in the system, α > 2 is the
path-loss-coefficient and β is the minimum SINR required for successful communication.
If β > 1 the sender sv needs to be closer to rv than any other sender sw transmitting with
the same power.

A feasible set S is a set of links which can transmit simultaneously such that the com-
munication of all links l ∈ S is successful. The capacity problem can then be defined as
finding a set S of maximum size. Finding a schedule S1, . . . , Sm of minimum number of
slots, where all l ∈ S are scheduled, is known as the scheduling problem. Both problems
have been studied under both models of interference (Gupta & Kumar, 2000).

An advantage of the protocol model is that it is easy to analyze and many known algo-
rithms can be readily applied. The capacity problem in the protocol model is the same
as finding a maximum independent set. As an example, a simple greedy algorithm that
forms a maximal independent set by choosing the node with minimum degree and re-
moving its neighbours, achieves an approximation ratio of (∆ + 2)/3 on graphs with
maximum degree ∆ (Halldórsson & Radhakrishnan, 1997). The algorithm could then be
applied on the remaining links until there are none left to find aO(log(n))-approximation
to the scheduling problem.

The disadvantage of the protocol model is that it fails to take into account the additive
effect of wireless signals. Although a link lw far away from link lv would not interfere
with its transmission, the added interference of multiple far away links might. The SINR
model on the other hand takes that into account and is therefore considered more realistic.
We will only concern ourselves with the SINR model from here on. The disadvantage
of the SINR model is that it is harder to analyze and interference among links cannot be
represented by an unweighted conflict graph (Iyer, Rosenberg, & Karnik, 2006).
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Plenty of algorithmic results exist for wireless communication in the SINR model, i.e.
a simple greedy algorithm which finds a O(1)-approximation to the capacity problem.
The algorithm orders links in increasing order of length and greedily adds them to the
set S as long as the affectance from the links in S does not exceed a constant c. Then
outputs the feasible set S. Repeated application of this algorithm can then be used to
find a O(log(n))-approximation to the scheduling problem (Goussievskaia, Halldorsson,
Wattenhofer, & Welzl, 2009).

A natural extension to the capacity problem is giving links weights and maximize the sum
of weights possible to schedule under SINR constraints, known as the weighted capacity
problem. A simple bucket algorithm approximates the weighted capacity problem. Divide
links into buckets, such that a link lv has at most twice the weight of any other link lu in
the bucket. Then we apply the simple greedy algorithm on each bucket and return the
allocation with the highest sum of weights. This achieves a O(log(n))-approximation to
the weighted capacity problem. We will later see that spectrum auctions are an extension
of the weighted capacity problem.

Spectrum management is a major challenge of today’s wireless networks. We are observ-
ing a transition from voice-only communication to multimedia type applications. As a
result there is a growing need for higher data rates. Wireless communication takes place
in the natural frequency spectrum, which although in principle is infinite, only a finite part
of it is usable for wireless communication. The current static allocation of frequency can-
not support the increasing requirements (Yücek & Arslan, First Quarter 2009). One way
of increasing throughput in wireless communication is allocating frequency dynamically
to multiple non-interfering links.

Spectrum is becoming a scarce resource but this scarcity is somewhat artificial. Demands
for services vary at different times and in different areas. Causing frequency bands li-
censed to one application to become overloaded while other bands are idle at the same
time. A promising solution to this artificial scarcity is to use market approaches to redis-
tribute access rights for a limited time (Hoefer et al., 2011).

In the cognitive radio literature, the owner of the rights to use a specific frequency band
is known as primary user. Parts of the spectrum currently unused by primary users can
be offered to so-called secondary users for use in a local area. A reasonable approach,
concisely termed "eBay in the Sky"(Zhou et al., 2008), is to auction licenses for secondary
users regularly. Primary users will get a share in the price paid for temporary utilization
of their frequency band and will therefore have an incentive to report when and where it
will not be in use.
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This leads us to our setting, where we have n secondary users and m channels set up
for auction. We assume bidders have submodular, symmetric valuations, and will design
algorithms able to handle this kind of valuations specifically. The channel allocation prob-
lem is about finding an allocation of channels that maximizes the sum of valuations.

The valuation of each bidder will represent its weight, and the channel allocation problem
becomes an extension to the weighted capacity problem. We now have m channels and
want to maximize the sum of weights over all channels. Furthermore we have to deal with
strategic behaviour of links through mechanism design.

In Chapter 2 we will explain the SINR model of interference further and introduce im-
portant concepts in the auction literature. We will generalize combinatorial auctions to
auctions with weighted conflict graphs, such as SINR constraints and explain inductive
independence number ρ of graphs, a non-standard graph parameter used in two of the
algorithms.

In Chapter 3 we will go through several algorithms for the channel allocation problem.
Some of them have no proven approximation guarantees, and some will even be shown to
perform arbitrarily poorly on special cases. This does not mean that they will necessarily
perform poorly in real situations or randomly generated instances. An attempt was made
to design incentive compatible mechanisms for two of the algorithms. VCG-like mecha-
nisms using the allocations of the algorithms instead of the optimal solution are proposed
(see Section 2.2.2 for more on VCG mechanism).

In Chapter 4 we will present simulation results for the algorithms presented. We will
test different values of ρ for our LP algorithm and compare the fractional solution to the
rounded solution and an optimal solution. We find that the optimal solution to the channel
allocation problem can be found in reasonable time for n ≤ 40 and m ≤ 4. We will then
compare the performance of the algorithms presented, except optimal, on three dimen-
sions, the number of links n, number of channels m and the density of links, modeled as
probability p of links attaching to previously generated links. We will compare the per-
formance of two algorithms with payment computation. At the end of the chapter we will
further compare greedyWeight and localRatio with differently generated valuations.

In Chapter 5 we will evaluate our simulation results and what they mean to an auctioneer.
We provide some ideas for future work and discuss limitations of our simulations. Fi-
nally we give a conclusion and recommendation for an auctioneer conducting a spectrum
auction based on our findings.
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1.1 Related Work

The throughput maximization, or the capacity problem, has been shown to be NP-hard in
graph based models (Jain, Padhye, Padmanabhan, & Qiu, 2003). The capacity problem in
the SINR model has to take into account additive effects of wireless signals from all other
simultaneously transmitting links. The capacity problem and the scheduling problem in
the SINR model have also been shown to be NP-hard (Goussevskaia et al., 2007). For sake
of efficiency we must settle for approximating the optimal solution. Several algorithms
are known that approximate the capacity problem and the scheduling problem. We will
go through a few of them since the capacity problem relates to spectrum auctions.

Algorithm GreedyPhysical orders links based on their interference number, defined in the
following way. Interference number of link lv ∈ L is the number of links lu ∈ L prevented
from communicating at the same time as lv, even though no other links are transmitting.
Links are then ordered in decreasing order of interference number and greedily added
to the transmitting set S, if SINR feasibility conditions hold. The algorithm is once to
approximate the capacity problem, but repeatedly until all links have been scheduled to
approximate the scheduling problem (Brar, Blough, & Santi, 2006).

Algorithm ApproxDiversity divides the plane into sufficiently large squares and 4-colors
the squares. To approximate the capacity problem, for each color i pick one link from
each square of that color and put into the set Ci. Let Ci of maximum size be the set S of
transmitting links. To approximate the weighted capacity ApproxDiversity, each color i
picks the link with the highest weight in each square and puts into the set Ci. Then lets Ci
of maximum weight to be the set S of transmitting links. ApproxDiversity approximates
the scheduling problem by applying the algorithm for the unweighted capacity problem
repeatedly until there are no links left to schedule (Goussevskaia et al., 2007).

The Algorithm ApproxLogN produces a O(1)-approximation to the capacity problem
and a O(log(n))-approximation to the scheduling problem. To approximate the capac-
ity problem, the algorithm simply goes through the links in increasing order of length
and greedily schedules links if the SINR feasibility conditions hold. To approximate the
scheduling problem, the algorithm for the capacity problem is applied repeatedly until
there are no links left to schedule (Goussievskaia et al., 2009).

In a paper by Goussievskaia et al. (2009), the performance of GreedyPhysical, Approx-
Diversity and ApproxLogN was compared in simulations, both for random and clustered
topology. The clustered topology aims to simulate heterogeneous density distribution,
which is more typical in practice than uniform random distribution. For example, in a
sensor network, some areas of interest have higher density of sensors whereas in other
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locations there are only a minimum amount of nodes to maintain connectivity. In the
random topology GreedyPhysical presents slightly better performance than ApproxLogN
for low density (less than 1600 nodes) but for high density, ApproxLogN produces on
average 50% shorter schedules. ApproxLogN produces 2.5 times shorter schedules than
ApproxDiversity in high density situations (25600 nodes). GreedyPhysical is not able to
deal with clustered topology and computes 3 times longer schedule than ApproxLogN
for low density scenario (100 nodes) and 60 times longer schedule for high density sce-
nario (25600 nodes). The effects of varying the path loss exponent α was also analyzed.
GreedyPhysical is invariant to changes in α. For α < 3, GreedyPhysical outperforms the
other two algorithms in the random topology. Its performance in the clustered topology
is very poor for low values of α and deteriorates ApproxDiversity and ApproxLogN with
increasing α. ApproxLogN produces the shortest schedule α ≥ 3 in random topology
and for all values of α in the clustered topology (Goussievskaia et al., 2009). Simulation
results imply that the topology of the network and the value of the path loss coefficient α
affects the relative performance of the algorithms.

In a spectrum auction there may be multiple winners of each channel, subject to SINR
constraints. Algorithms for the capacity problem may give us ideas and valuable insight
into spectrum auctions. Although widely employed in other situations, the VCG mecha-
nism has serious drawbacks in multi-winner auctions. It is known to produce low revenue
and is vulnerable to bidder collusion. An auction framework, for spectrum auction in the
unit disk graph model, has been proposed to meet these drawbacks using Nash bargaining
solution to improve revenue and prevent collusion. The proposed mechanisms increase
revenue by 15% to 30% depending on the defined radius of interference (Wu, Wang, Liu,
& Clancy, 2008). It is uncertain whether these mechanisms could be extended to the more
realistic physical model.

Our goal will be to maximize the social welfare obtained, but in many situations revenue
maximization is a more natural goal. A primary user is often a privately owned company
which may have paid a considerable amount for spectrum rights, may be reluctant to share
its underutilized spectrum if revenue is too low. A suboptimal allocation mechanism,
which runs in polynomial time has been proposed and shown in simulations to produce
stable expected revenue (Jia, Zhang, Zhang, & Liu, 2009). However it is based on a
cellular topology and does not employ the SINR model, thus it fails to take into account
the additive effects of interference.

A natural extension to our work, is to apply auction mechanisms to routing. An optimal
algorithm exists for the unicast routing problem. Ad-hoc VCG is a truthful and cost-
efficient routing protocol for SINR networks with selfish agents. Finding a shortest route,
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also known as the unicast routing problem, is equivalent to the shortest path problem and
can easily be solved in polynomial time. The protocol first finds a shortest route, and then
calculates the external cost of each node, which then becomes its payment. Overpayment
is defined as VCG

|SP| , where |SP| is the cost of the shortest path and VCG = |SP|+ P, where
P is the total payment. The overpayment produced by ad-hoc VCG has an upper bound
of VCG
|SP| ≤ 2α+1 cmax

cmin
, where α is the path loss coefficient and cmax

cmin
is the ratio between

the highest valuation and the lowest valuation of any node. Simulation results imply that
over payment ratio can be expected to be well within this upper bound (Anderegg &
Eidenbenz, 2003).

The multicast routing problem is known to be NP-hard, by equivalence to the Steiner tree
problem. A few sub-optimal truthful mechanisms have been proposed and compared in
simulations. Least cost path tree (LCPT), finds a unicast route from source to each of the
destinations and combines these routes into a tree. Then VCG-like payments are applied
for the least cost path. Pruning minimum spanning tree (PMST), constructs a minimum
spanning tree and then prunes off edges that do not lead to a receiver. VCG like pay-
ments are then applied for the minimum spanning tree. Link weighted Steiner tree (LST),
constructs an approximate minimum cost Steiner tree, denoted as LST(d). VCG-like pay-
ments are then computed using LST(d) for each edge in the network. The payments used
are shown to be truthful and the performance of the algorithms are compared in simula-
tions. The simulations showed that LST produced considerably less costly solutions than
LCPT and PMST, with far less payments as well. The overpayment ratio was the highest
for PMST, but similar for LCPT and LST (Wang, Li, & Wang, 2004). Although routing
is not directly related to our work, it is an interesting extension.

The weighted maximum independent set problem (WMIS), is about finding an indepen-
dent set of nodes in a graph, with the maximum sum of weights. Spectrum auctions are
an extension of WMIS with conflict between links represented by weighted edges and
care must be taken to handle strategic behaviour of bidders. The maximum independent
set problem may be considered as a special case of WMIS where all nodes have equal
weights. A non-standard graph parameter, inductive independence number ρ (further
explained in Section 2.3), can be used to achieve O(ρ)-approximation to the weighted
maximum independent set problem (Ye & Borodin, 2009).

More closely related to our work is a linear programming (LP) formulation combined
with probabilistic rounding which finds a O(

√
k)-approximation to combinatorial spec-

trum auctions where k is the number of channels, and a O(
√
k log2(n))-approximation

for wireless links in the SINR model. The linear programming phase utilizes the induc-
tive independence ordering and the notion of backward neighbourhood. It can handle



8 Experimental analysis of throughput maximization for combinatorial spectrum auctions.

arbitrary valuations by querying demand oracles (Hoefer et al., 2011). The algorithm
was further developed for symmetric and submodular bidders to achieve a O(ρ log(n))-
approximation to the optimal social welfare in the SINR model (Hoefer & Kesselheim,
2012). Their approach can be combined with a LP-based framework to turn it into a
truthful-in-expectation mechanism (Lavi & Swamy, 2005).
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Chapter 2

Preliminaries

Before we can begin the coverage of the algorithms, there are some important definitions
that need to be explained. First we will cover the physical interference model of wireless
communication, which captures some fundamental characteristics of wireless communi-
cation, such as the additivity of signal strength and robustness of short links. Next the
simple auctions, where there is one item and multiple bidders, will be introduced and
important concepts in the auction literature will be explained. As we get a feel for the
terminology used we move onto combinatorial auctions, where there are multiple items
and multiple bidders, and each bidder can present different preferences for each subset of
item. We explain how interference among wireless links may be represented by weighted
conflict graphs. A realistic valuation function for wireless channels is presented and after
that we will introduce a non-standard graph parameter, inductive independence number,
which will be used in one of the algorithms covered. At the end of the chapter the channel
allocation problem is formally stated.

2.1 Physical Interference Model

To capture inherent characteristics in wireless networks, it is important to choose the com-
munication model well. Much existing literature concerns graph-based models, such as
the protocol model and unit disk graphs, where interference is modeled as binary con-
straints based on a local measure. Nodes represent communication requests and an edge
is put between two nodes if they are too close to each other. Such models may serve
as a useful abstraction but have some limitations. One limitation is that they ignore the
additivity of interference. A single transmitter that is far away may cause little inter-
ference, but the accumulated interference of several such transmitters may be enough to
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corrupt a transmission (Goussievskaia et al., 2009). Scheduling in the graph-based model
usually involves finding a maximum independent set, matching or coloring and has been
widely studied (Joo, Lin, & Shroff, 2008), (Kumar, Marathe, Parthasarathy, & Srinivasan,
2005a), (Kumar, Marathe, Parthasarathy, & Srinivasan, 2005b).

The physical model of wireless communication is a more realistic model. A signal is
received successfully if the signal to interference plus noise ratio (SINR) is below a certain
threshold. The interference measured at each receiver is the sum of the interference caused
by all transmitters concurrently transmitting plus the ambient noise. The SINR model
accounts for interference generated by transmitters located far away (Goussievskaia et
al., 2009). Determining the capacity of networks under SINR constraints theoretically
began with the pioneering work of Gupta and Kumar (Gupta & Kumar, 2000) and has
been of much interest since.

Inefficiency of graph-based scheduling protocols in the SINR model is well documented
and has been shown both theoretically and experimentally (Gronkvist & Hansson, 2001),
(Moscibroda, Wattenhofer, & Weber, 2006). We employ the SINR model as it is more
realistic and can account for transmitters far away.

2.1.1 The Model

A link lv consists of a sender-receiver pair (sv, rv). We denote the Euclidean distance
between two points p and q as d(p, q) and the length of a link lv is denoted dvv = d(sv, rv).
The distance from a sender sv to a receiver rw is denoted as dvw = d(sv, rw).

A link lv transmits with power Pv. A power assignment P is non-decreasing if Pv ≥ Pw,
when dvv ≥ dww and sub-linear if Pv

dαvv
≤ Pw

dαww
, when dvv ≥ dww and α is the path loss

exponent. Examples include uniform power assignment, where all links transmit with
the same power, linear power assignment where Pv = dαvv, and mean power assignment
where Pv = d

α/2
vv .

We assume the path loss radio propagation model for the reception of signals, where the
received signal from transmitter w at receiver v is Pwv = Pw/d

α
wv and α > 2.

Definition 1. The physical interference model states that a receiver rv successfully re-

ceives a message from sv if and only if

Pvv∑
lw∈S\{lv} Pwv +N

≥ β, (2.1)
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where N is the ambient noise, β denotes the minimum SINR required for successful com-

munication, and S is the set of concurrently scheduled links.

If inequality 2.1 holds for each link l ∈ S, we say that S is feasible. Now we can define
two fundamental problems which are closely related to secondary spectrum auction. We
are given a set L of n links. The former is the capacity problem, where we want to find a
feasible set S ∈ L of links of maximum size. The latter is the scheduling problem, where
we want to schedule all the links in L in the fewest possible number of time slots. Both
problems can be solved approximately by a simple greedy algorithm which achieves a
O(1)-approximation for the first problem, and a O(log n)-approximation for the second
problem (Goussievskaia et al., 2009).

More relevant to our concern though is the weighted capacity problem, where each link
has a weight and we want to find a feasible set S which maximizes the sum of the weights
of the links in the set. When links use linear power there exists a O(1)-algorithm for the
weighted capacity problem (Halldorsson & Mitra, 2011).

2.2 Auctions

2.2.1 Single Item Auctions

Setting up an auction is an efficient way to find the right price for an item when the market
price is unknown. For the allocation of a single item there are traditionally four types of
auctions (Krishna, 2002):

• Open ascending bid auction (English auction) in which the price is steadily raised
by the auctioneer and bidders drop out once the price becomes too high. When there
is only one bidder left he wins and pays the current price. A more common variant
of this type of auction is where bidders make open bids which must be higher than
previous bids until no bidder is willing to make a higher bid.

• Open descending bid auction (Dutch auction) in which the price starts with a suf-
ficiently high price that no bidder is willing to pay. The price is then progressively
lowered until one bidder is willing to pay the current price. He wins the auction and
pays the current price.

• First price sealed bid auction in which bidders submit bids in a sealed envelope to
the auctioneer. The auctioneer opens the envelopes and the highest bidder wins and
pays the amount that he bids.
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• Second price sealed bid auction (Vickrey auction) in which bidders submit bids in
a sealed envelope to the auctioneer. The auctioneer opens the envelopes and the
highest bidder wins and pays the amount of the second highest bid.

The utility of a bidder i is defined ui = bi−p, where bi is the valuation of the allocation and
p is the price he pays. If bidder i loses the auction, bi = 0 and p = 0, resulting in utility
ui = 0. If an auction mechanism never pays anything to bidders, i.e. p is nonnegative,
the mechanism has no positive transfers. If bidding truthfully never results in a negative
utility u the mechanism is individually rational.

When bidders bid their true valuation of an item, they are said to bid truthfully. The
Vickrey auction is commonly favoured since bidding truthfully is a weakly dominating
strategy (Vickrey, 1961), meaning that no other strategy gives higher utility.
Theorem 1. In a Vickrey auction a bidder i maximizes his utility ui by bidding his true

valuation bi (Vickrey, 1961; Clarke, 1971; Groves, 1973).

Proof. Assume that bidder i bids b∗i instead of his true valuation bi. Assume bi is a winning
bid; then any bid b∗i which is also a winning bid results in the same payment p and hence
the same utility ui. Now if b∗i is a losing bid, bidding b∗i will result in u∗i = 0 making
this deviation not profitable. If we assume bi is a losing bid, then any bid b∗i which is also
a losing bid will result in the same utility of zero. Any winning bid b∗i will result in a
payment higher than i’s true valuation, hence resulting in negative utility. Thus we have
shown that i cannot benefit from making a bid b∗i different from his true valuation.

It is easy to see that the same does not hold true for the first price sealed bid auction, since
bidding truthfully will always result in ui = 0 whereas making a bid b∗i < bi might give i
positive utility. A rational bidder will therefore never bid his true valuation in a first price
sealed bid auction.

A common goal of the auctioneer is to allocate the auctioned item to the bidder that will
make most use of it. We assume that the valuation of each bidder reveals how able they
are to use the auctioned item. We define social welfare in a single item auction as the
true valuation of the winner of the auction. A single item auction is socially efficient if
the winner of the auction is the one that values the item the most. In many applications,
revenue maximization is a more natural goal of the auctioneer, however less is known
about how to achieve that goal.
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2.2.2 Combinatorial Auctions

In many situations it may be beneficial to auction multiple items at the same time, allow-
ing bidders to submit bids for different subsets of items. Formally, there is a set of m
indivisible items which are concurrently auctioned among n bidders. Every bidder i has a
valuation function bi which describes his preference for different subsets of items.
Definition 2. A valuation b is a real-valued function that for each subset S of items, b(S)

is the value that bidder i obtains if he receives this subset of items. Here, a valuation must

have "free disposal", i.e., be monotone: for S ⊆ T we have that b(S) ≤ b(T ), and it

should be "normalized": b(∅) = 0.

The purpose of auctioning the items simultaneously is that a bidders valuation for a subset
of items need not be equal to the sum of the valuations of the items within this subset.
Implicit in the definition are two assumptions about bidder preferences: first, if bidder i
wins bundle S and pays a price p his utility is ui = bi(S) − p. Second, we assume that
bidders do not care how items they do not receive are allocated.
Definition 3. An allocation of the items among the bidders is S1, . . . , Sn where Si∩Sj = ∅
for every i 6= j. The social welfare obtained by an allocation is

∑
i bi(Si). A socially

efficient allocation is an allocation with maximum social welfare among all allocations.

Usually the valuation function bi of bidder i is private information, only known to i.
The goal is to design an auction mechanism that finds a socially efficient allocation.
There are several challenges we must deal with (Nisan, Roughgarden, Tardos, & Vazi-
rani, 2007):

• Computational complexity: Even for simple cases the allocation problem is NP-
complete.

• Representation and communication: Since bidders can have preferences for all dif-
ferent subsets, the valuation function of each bidder is exponential in size. How can
we represent them and transfer enough information to the auctioneer?

• Strategic behaviour: Can we design a mechanism that eliminates strategic be-
haviour of bidders?

As in the single item auction we want to find a socially efficient allocation. To be able to
do so we must ensure that bidders bid their true valuations. The Vickrey-Clarke-Groves

(VCG) mechanism is known to induce truthful bidding. For a set of auctioned items
M = {t1, . . . , tm} and a set of bidders N = {v1, . . . , vn}, let BM

N be a socially efficient
allocation for a given bid combination (assuming truthful bids). A bidder vi who wins a
set of items S ⊆M , pays pi = BM

N\{vi}−B
M\S
N\{vi}, which is exactly the amount vi needed
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to bid to win the auction. Hence, bidders maximize their utility by bidding truthfully.
VCG mechanism is named after authors of papers that successively generalized the idea
(Vickrey, 1961; Clarke, 1971; Groves, 1973).

However, VCG auction relies on finding a socially efficient allocation, which is analogous
to finding a maximum independent set in a graph. Finding an independent set is known
to be NP-complete, making VCG impractical.

Since finding the optimal solution is computationally intractable, we must settle for an
approximation. Care must be taken to make approximation mechanisms truthful. Com-
putationally tractable truthful mechanisms are known for some special cases of combina-
torial auction, e.g. single minded bidders (Lehmann, O’Callaghan, & Shoham, 2002). A
mechanism is truthful in expectation if a bidder maximizes his expected utility by bidding
his true valuation. This means that on average a bidder will be best off by bidding truth-
fully. A risk-neutral bidder will therefore bid his true valuation. A method is known that
turns linear programming algorithms into mechanisms that are truthful-in-expectation.
The main idea is to apply VCG payments for the fractional solution and since we are in
fractional domain, we can always scale down both the optimal LP solution and the VCG
prices by α, which does not affect truthfulness (Lavi & Swamy, 2005).

2.2.3 Combinatorial Auction with SINR Conflict Graph

Conflict between two bidders can be represented by a conflict graph C = {V,E}, where
V is the set of vertices and E is the set of edges. Vertices represent bidders and edges rep-
resent conflict between bidders (Hoefer et al., 2011). In a combinatorial auction with indi-
visible items the conflict graph would be a complete graph with unweighted edges.

Interference between wireless links in the SINR model would typically be represented by
a weighted bidirectional conflict graph. We denote the edge from link lv to lw as Cvw. The
weight of the edge Cvw = Pwv

Pvv
represents interference caused by sender sw on receiver

rv. A feasible set S is one in which
∑

lw∈S\lv Cvw + N
Pvv
≤ 1

β
for all lv ∈ S, which is

equivalent to the condition in Equation 2.1.

In a combinatorial auction m ≥ 1 items are set up for auction among n bidders, in our
case wireless channels and links, respectively. In a regular combinatorial auction there is
only one winner for each item auctioned. However in a combinatorial auction with SINR
conflict graph the winners of each channel may be any subset of links S for which SINR
feasibility conditions hold.
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2.2.4 Realistic Valuation Functions

In a combinatorial auction with n bidders and m items, there are 2m different subsets of
items. If we allow arbitrary valuations the number of valuations grows exponentially with
the number of items auctioned. All these valuations quickly become hard to represent and
work with as m grows. To deal with the complexities of arbitrary valuations we focus on
a special case of valuation functions that may be reasonable to expect.

Given that the channels set up for auction are of similar wavelengths, they will have sim-
ilar characteristics, such as transfer speed, distance we are able to transmit, and tolerance
to obstacles. Therefore it is reasonable to assume that bidders will only be interested in the
number of channels they get and not care about which specific channels; such valuations
are called symmetric.

It may also be reasonable to assume that bidders are willing to pay less for each additional
channel they receive than the one before, since they can order the communication requests
by priority; such valuations are called downward sloping.

To make our setting more manageable we will assume that valuations are symmetric and
downward sloping.

2.3 Inductive Independence Number

To improve the performance of graph algorithms it may be useful to analyze the graphs
and see if they have some distinguishable properties. One of the algorithms we are going
to investigate has a non-standard graph parameter as input.
Definition 4 (Inductive independence number ρ). An independent set is a set of ver-

tices in a graph, no two of which are adjacent. For a graph G = (V,E), the induc-

tive independence number ρ is the smallest number such that there is an ordering π

of the vertices satisfying: For all v ∈ V and all independent sets M ⊆ V , we have

|M ∩ {u ∈ V |{u, v} ∈ E, π(u) < π(v)}| ≤ ρ.

This means that for every vertex v ∈ V , the size of an independent set in the backward
neighbourhood of v, that is the set of neighbours u of v with π(u) < π(v), is at most
ρ. Conflict graphs derived from many simple binary models of wireless communication,
such as the protocol model and disk graphs have ρ = O(1) (Wan, 2009). In the case of
spectrum auctions in the SINR model we have weighted conflict graphs with weighted in-
dependent sets as defined in Section 2.2.3. The inductive independence number of conflict
graphs in the SINR model was shown to be ρ = O(log n) (Hoefer & Kesselheim, 2012),
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but has recently been improved to ρ = O(1), except for uniform power(Halldórsson,
Holzer, Mitra, & Wattenhofer, 2012).

2.4 Problem Statement

We are given a set of m channels that are going up for auction among n wireless links.
We know that multiple wireless links can operate on the same channel simultaneously
given that SINR constraints of Equation 2.1 hold. Our goal is to allocate the channels
such that social welfare is maximized. This means that the channels should be allocated
to the subsets of links that value them the most.
Problem 1. Given a set of m channels and n links, where each link has symmetric and

downward sloping valuations bi. Design an auction mechanism that allocates the chan-

nels to the links S1, . . . , Sn, that maximizes social welfare, max
∑
bi(|Si|).

One such mechanism is VCG. However it relies on finding the socially efficient allocation,
which is known to be computationally intractable except for small cases. For larger cases
we must settle for approximation mechanisms. It can be shown that the channel allocation
problem is NP -hard by equivalence to the maximum independent set.
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Chapter 3

Algorithms

We present several algorithms aimed at approximating a socially efficient allocation, each
explained in a separate subchapter. The purpose of this paper is not to prove theoretical
bounds on performance, but to find algorithms that perform well in practice. Some of the
algorithms presented will perform arbitrarily badly on special cases that are unlikely to
come up in practice, but may do well in more realistic situations.

3.1 Algorithm GREEDYLENGTH

The main strength of GREEDYLENGTH is its simplicity. It is inspired by a simple greedy
algorithm which achieves aO(1)-approximation for the unweighted capacity problem and
a O(log n)-approximation for the unweighted scheduling problem (Goussievskaia et al.,
2009). Its worst case performance can be arbitrarily bad in the weighted case.

Algorithm 1: Algorithm GREEDYLENGTH for downward sloping symmetric valua-
tions.
1 Order links in increasing order of length, d∗11 ≤ d∗22 ≤ · · · ≤ d∗nn

2 S ← ∅
3 for u = 1 to n do
4 if Pvv∑

w∈S∪{l∗u}\{lv}
Pwv+N

≥ β, ∀v ∈ S ∪ {l∗u} then

5 S ← S ∪ {l∗u}
6 end
7 end

Output:
• Allocate all m channels to the links in set S.



18 Experimental analysis of throughput maximization for combinatorial spectrum auctions.

The algorithm GREEDYLENGTH goes as follows. Start with an empty set S. Consider
each link lv in increasing order of length. If feasibility conditions hold for all links in
S ∪ lv, then add lv to S. When all links have been considered allocate all channels to the
links in S (see Algorithm 1).

In our setting each link wants as many channels as it can get. Since the ordering of the
links in GREEDYLENGTH does not depend on the valuation for an additional channel it is
sufficient to run the algorithm once.

Algorithm 1 can perform arbitrarily badly on special cases. Consider the case where we
have two links l1 and l2, of which l1 is shorter and both cannot be scheduled simultane-
ously. Their valuations are b1 and b2, arbitrarily small and arbitrarily large respectively.
One channel is set up for auction. Algorithm 1 would allocate the channel to l1 and be
arbitrarily far off from the optimal solution of allocating the channel to l2.

3.2 Algorithm GREEDYWEIGHT

Algorithm 2, called GREEDYWEIGHT, allocates channels greedily in decreasing order of
valuation. We first initialize empty sets S1, . . . , Sm, one for each channel. Then for each
channel k order the links in decreasing order of valuation for an additional channel and
greedily add links to Sk if feasibility conditions hold.

Algorithm 2: Algorithm GREEDYWEIGHT for downward sloping symmetric val-
uations.

1 S1, . . . , Sm ← ∅
2 for k ∈ {1, . . . ,m} do
3 Order links in decreasing order of valuations for an additional channel,

b∗1 ≥ b∗2 ≥ · · · ≥ b∗n

4 for u = 1 to n do
5 if Pvv∑

w∈Sk∪{l
∗
u}\{lv}

Pwv+N
≥ β, ∀v ∈ Sk ∪ {l∗u} then

6 Sk ← Sk ∪ {l∗u}
7 end
8 end
9 end

Output:
• Allocate each channel i to set Si of links, i = 1, . . . ,m.
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Notice that in GREEDYWEIGHT we need to reorder the links and find an allocation for
each channel, where as in GREEDYLENGTH it was enough to find one allocation. This is
due to that the valuation of links for an additional channel may be different if they were
allocated a channel previously, but the length of the links stays the same.

It seems intuitive and fair to give links precedence based on their valuations. However you
might have the situation where a long link excludes many other links from consideration
because of a slightly higher valuation. Algorithm 2 can perform arbitrarily badly in such
cases. Consider a long link l1 with valuation b1, which excludes short links l2, . . . , ln
which all form a feasible set and each has valuation b1 − ε, where ε is an arbitrarily small
number. One channel is set up for auction and Algorithm 2 allocates the channel to the
long link. The number of links n can be arbitrarily large and the allocation of Algorithm
2 arbitrarily far off from the optimal allocation.

3.2.1 Payment Computation for GREEDYWEIGHT

Our payment scheme is inspired by the payment scheme of the VCG mechanism. In
the VCG mechanism we go through each bidder and calculate its opportunity cost and
that becomes its payment. The VCG mechanism relies on finding the optimal alloca-
tion (Vickrey, 1961; Clarke, 1971; Groves, 1973), which is probably seldom the case in
Algorithm 2.

The payment computation for GREEDYWEIGHT goes as follows. Let S ∈ L be the allo-
cation found by GREEDYWEIGHT for an auction of m channels for the set of links L. Let
Pn×1 = 0 be a vector used to store the payment of each link. For all v ∈ S in any order,
let Tv be the allocation found by GREEDYWEIGHT for links L \ {v}, and m channels.
Define sw(A) to be the social welfare of allocation A. If sw(Tv) > sw(S) we let S = Tv

be our new allocation and go back to the beginning of the while loop. Otherwise we let
the payment of v be Pv = sw(Tv)−sw(S)+b(v), where b(v) is the sum of the valuations
of lv for the channels it received. When Algorithm 3 has passed through all links v ∈ S
it returns the best allocation found S and the payment vector P . If the algorithm finds
an allocation with higher social welfare during payment calculation it restarts with this
improved allocation. This can happen at most n times, since payments are calculated for
at most n links.
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Algorithm 3: Payment computation for GREEDYWEIGHT.

1 Let S be the allocation found by GREEDYWEIGHT

2 Let Pn×1 = 0 be the payment vector
3 for v ∈ S do
4 Let Tv be the allocation returned by GREEDYWEIGHT for links V \ {v},

and m channels
5 Pv = max(0, sw(Tv)− sw(S) + bv)

6 end

Output:
• Allocation S.
• Payment vector P .

We know that in the final allocation S, that for any link v, sw(Tv) ≤ sw(S), otherwise Tv
would have been chosen as an allocation instead. If lv is bidding truthfully, it will never
receive negative utility, since uv = bv − Pv ≥ bv − sw(Tv) + sw(S)− bv ≥ 0, hence it is
individually rational. Furthermore it has no positive transfers, since the payment of each
link v is Pv = max(0, sw(Tv)− sw(S) + bv), and must therefore be nonnegative.

However, the payments computed by Algorithm 3 do not turn GREEDYWEIGHT into a
truthful mechanism. Consider a single channel auction, m = 1, with a set of links V =

{l1, l2, l3, l4}, with valuations b1 = 3, b2 = 2, b3 = 2 − ε, b4 = 2 − ε. Let the maximal
feasible sets be S1 = {l1}, S2 = {l2}, S3 = {l3, l4} and no others. Algorithm 2 orders
the links in decreasing order of valuations l1, l2, l3, l4 and allocates the channel to S1.
Algorithm 3 would then order the links V \ {l1} in decreasing order of valuations l2, l3, l4
and greedily choose S2 as the runner up. The payment of l1 would then be P1 = sw(S2)−
sw(S1) + b1 = 2 − 3 + 3 = 2 and utility u1 = 3 − 2 = 1. The utility of other links is
u2 = u3 = u4 = 0.

Now see what happens when l3 makes a bid b∗3 = 2 + ε which is higher than its true
valuation b3 = 2− ε. Algorithm 2 would order the links in decreasing order of valuations
l1, l

∗
3, l2, l4 and still allocate the channel to S1. Algorithm 3 would then order the links

in V \ {l1} in decreasing order of valuations l∗3, l2, l4 and finds the allocation S3 which
is better than S1 and makes it the new allocation. Then it calculates the payments P ∗3 =

sw(S1) − sw(S3) + b∗3 = 3 − 4 + 2 + ε = 1 + ε and P4 = sw(S1) − sw(S3) + b4 =

3−4+2−ε = 1−ε. Now we can see that the utility of l3 is u∗3 = bv−p∗3 = 2−ε−1−ε =

1−2ε > u3, when it reports its valuation as b∗3 instead of its true valuation b3. Thereby we
have shown that Algorithm 2 with payments computed by Algorithm 3 is not a truthful
mechanism.
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3.3 Algorithm BUCKETLENGTH

Algorithm 4 is called BUCKETLENGTH. Initially links are divided into buckets T1, . . . , Tr
of roughly equal length, meaning that in any bucket Tt a link u ∈ Tt is at most twice the
size of any other link v ∈ Tt. Then we initialize empty sets S1, . . . , Sm for each channel to
be allocated. For each channel k, we find an allocation as follows. We initialize a tempo-
rary allocation Ut for each bucket t, which gets the allocation found by GREEDYWEIGHT

with the links in the bucket as input. The valuation of link lw ∈ Ut for an additional
channel is denoted as bw. Then Sk is allocated to Ut with the highest social welfare.

Algorithm 4: Algorithm BUCKETLENGTH for downward sloping sym-
metric valuations.

1 Divide links of similar lengths into buckets T1, . . . , Tr
2 S1, . . . , Sm ← ∅
3 for k ∈ {1, . . . ,m} do
4 for t ∈ {1, . . . , r} do
5 Ut ← GREEDYWEIGHT(Tt, 1)
6 end
7 t0 ← arg maxt∈{1,...,r}(

∑
lw∈Ut bw)

8 Sk ← Ut0

9 end

Output:
• Allocate each channel i to set Si of links, i = 1, . . . ,m.

With algorithm BUCKETLENGTH we eliminate the chance of a long link v ruling out a
feasible set S of smaller links of arbitrary size. Unless the valuation of v is higher than
the sum of all links in S, in which case it is better to allocate to v.

3.4 Algorithm BUCKETWEIGHT

Algorithm 5 begins by initializing empty sets S1, . . . , Sm for each channel to be allocated.
Then for each channel it puts the links into buckets T1, . . . , Tr, such that for any links
u, v ∈ Ti, the valuation of bu(1) of u is at most twice the valuation bv(1) of v for an
additional channel. Then GREEDYLENGTH takes links in each bucket and their valuation
for an additional channel and finds a temporary allocation assigned to Ut. The valuation
of link lw ∈ Ut for an additional channel is denoted as bw. Finally Sk gets the allocation
Ui which has the highest social welfare.
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Algorithm 5: Algorithm BUCKETWEIGHT for downward sloping
symmetric valuations.

1 S1, . . . , Sm ← ∅
2 for k ∈ {1, . . . ,m} do
3 Divide links of similar valuations for an additional channel into

buckets T1, . . . , Tr
4 for t ∈ {1, . . . , r} do
5 Ut ← GREEDYLENGTH(Tt, 1)
6 end
7 t0 ← arg maxt∈{1,...,r}(

∑
lw∈Ut bw)

8 Sk ← Ut0

9 end

Output:
• Allocate each channel i to set Si of links, i = 1, . . . ,m.

The problem with GREEDYLENGTH was that it finds an allocation based only on the
length of the links, with no regard to their valuation. When auctioning multiple channels
it allocates all the channels to the same links. The algorithm BUCKETWEIGHT applies
GREEDYLENGTH on buckets of links with similar valuations, which are recomputed for
each channel and hopefully results in higher social welfare than GREEDYLENGTH.

3.5 Algorithm LOCALRATIO

Algorithm 6, LOCALRATIO, is based upon a non-standard graph parameter ρ called in-
ductive independence number.

The algorithm orders the links in the inductive independent ordering, which happens
to be increasing order of length for the SINR model. Then it initializes empty sets
S1, . . . , Sm one for each channel to be allocated. For each channel k, we initialize a
vector Wn×1 = 0. Then for each link v in increasing order of length assign Wv =

max(0, bv(1) −
∑

u∈Prev(v)Wu · Cvu), where Prev(v) is the backward neighbourhood
of v. Then we go through each link v in decreasing order of length and if Wv > 0 and
feasibility conditions hold ∀u ∈ Sk ∪ v then v is added to Sk. The channels are then
allocated to the sets S1, . . . , Sm.
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Algorithm 6: Algorithm LOCALRATIO for downward sloping
symmetric valuations

1 Order links in increasing order of length, d∗11 ≤ d∗22 ≤ · · · ≤ d∗nn

2 S1, . . . , Sm ← ∅
3 for k ∈ {1, . . . ,m} do
4 Wn×1 = 0

5 for v = 1 to n do
6 Wv = max(0, b∗v(1)−

∑
u∈Prev(v)Wu · Cvu)

7 end
8 for v = n to 1 do
9 if Wv > 0 then

10 if Puu∑
w∈Sk∪{l

∗
v}\{lu}

Pwu+N
≥ β, ∀u ∈ Sk ∪ {l∗v} then

11 Sk ← Sk ∪ {l∗v}
12 end
13 end
14 end
15 end

Output:
• Allocate each channel i to set Si of links, i = 1, . . . ,m.

The main strength of LOCALRATIO is its approximation guarantee. It can be shown that
LOCALRATIO gives a ρ-approximation to the weighted capacity problem in graph-based
models (Ye & Borodin, 2009), and ρ for conflict graphs in the SINR model are in the
order of O(log(n)) (Hoefer & Kesselheim, 2012).

3.5.1 Payment Computation for LOCALRATIO

The payment computation for LOCALRATIO is also inspired by the VCG mechanism,
which is truthful but relies on finding the optimal allocation (Vickrey, 1961; Clarke, 1971;
Groves, 1973). We have no guarantee that we find the optimal allocation with LOCAL-
RATIO although it may happen once in a while.

The payment computation for LOCALRATIO goes as follows. Let S be the allocation
found by LOCALRATIO for links V and m channels. Let Pn×1 = 0 be a vector used
to store the payment of each link. For all v ∈ S in any order, let Tv be the allocation
found by LOCALRATIO for links V \ {v}, and m channels. Define sw(A) to be the
social welfare of allocation A. If sw(Tv) > sw(S), let S = Tv be our new allocation
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and go back to the beginning of the while loop. Otherwise we let the payment of v be
Pv = sw(Tv)−sw(S)+b(v), where b(v) is the sum of the valuations of v for the channels
it received. When Algorithm 3 has passed through all links v ∈ S, it returns the best
allocation S found and the payment vector P . If the algorithm finds an allocation with
higher social welfare during payment calculation it restarts with this improved allocation.
This can happen at most n times, since payments are calculated for at most n links.

Algorithm 7: Payment computation for LOCALRATIO.

1 Let S be the allocation found by LOCALRATIO

2 Let Pn×1 = 0 be the payment vector
3 for v ∈ S do
4 Let Tv be the allocation returned by LOCALRATIO for

links V \ {v}, and m channels
5 Pv = max(0, sw(Tv)− sw(S) + bv)

6 end

Output:
• Allocation S.
• Payment vector P .

We know that in the final allocation S, that for any link v, that sw(Tv) ≤ sw(S), otherwise
Tv would have been chosen as an allocation instead. If v is bidding truthfully, than it will
never receive negative utility, since uv = bv−Pv ≥ bv−sw(Tv)+sw(S)− bv ≥ 0, hence
it is individually rational. Furthermore it has no positive transfers, since the payment of
each link v is max(0, sw(Tv)− sw(S) + bv), and must therefore be nonnegative.

The payments computed by Algorithm 7 do not however turn LOCALRATIO into a truthful
mechanism. Consider a single channel auction, m = 1, with a set of links V = {l1, l2},
where l1 is the shorter link and conflict caused from l1 on l2, and vice versa is C1,2 =

C2,1 = ε. Let their true valuations be b1 = 1 and b2 = ε, respectively.

Algorithm 6 excludes l2 from consideration in the forward pass of the algorithm and
selects l1 into the allocation S in the backward pass. The social welfare of S is sw(S) = 1,
and Algorithm 7 calculates the payment of l1 as P1 = ε. Their utilities are then, u1 = 1−ε
and u2 = 0, respectively.

Let’s assume that l2 makes a bid b∗ = 2ε, which is higher than its true valuation bv = ε.
Now Algorithm 6 does not exclude it in the forward pass, and both links are accepted into
the set S∗ in the backward pass. The social welfare of S∗ in this case is sw(S∗) = 1 + ε

and the payment calculated by Algorithm 7 are P ∗1 = ε − 1 − ε + 1 = 0 and P ∗2 =

1− 1− ε + ε = 0, respectively. Their utilities are then, u∗1 = 1 and u∗2 = ε, respectively.
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Thus we have shown that l2 benefits from lying, since u∗2 > u2 and Algorithm 7 does not
turn Algorithm 6 into a truthful mechanism.

3.6 Algorithm GREEDYINTERFERENCE

Algorithm 8 is called GREEDYINTERFERENCE and is based on the intuition that it is
generally good to accept robust links with high valuation. Let L be the set of bidding links
and lv ∈ L. Then lv gets a value ωv, which is its SINR value scaled with its valuation for
an additional channel and the valuations of other links lw ∈ L \ {lv}.
Definition 5. Assign to each link lv a value ωv, called weighted SINR. It is the SINR value

of lv if all links lw ∈ L \ {lv} would transmit scaled with the valuation of each link,

ωv =
Pvv · bv∑

w∈L\{v} Pwv · bw
, (3.1)

where L is the set of all bidding links and bv is valuation of lv for an additional channel.

The algorithm begins by initializing empty sets S1, . . . , Sm, one for each channel to be
allocated. For each channel k, the algorithm greedily adds links in decreasing order of
weighted SINR ω if feasibility conditions hold. Finally the algorithm allocates one chan-
nel to each set S1, . . . , Sm.

Algorithm 8: Algorithm GREEDYINTERFERENCE for
downward sloping symmetric valuations.

1 S1, . . . , Sm ← ∅
2 for k ∈ {1, . . . ,m} do
3 Order links in decreasing order of weighted SINR,

ω∗1 ≥ ω∗2 ≥ · · · ≥ ω∗n

4 for v = 1 to n do
5 if Puu∑

w∈Sk∪{l
∗
v}\{lu}

Pwu+N
≥ β, ∀u ∈ Sk ∪ {l∗v} then

6 Sk ← Sk ∪ {l∗v}
7 end
8 end
9 end

Output:
• Allocate each channel i to set Si of links, i = 1, . . . ,m.
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Although GREEDYINTERFERENCE is meant to overcome the arbitrarily poor performance
of GREEDYLENGTH and GREEDYWEIGHT in special cases, it has no proven approxima-
tion guarantee.

3.7 Linear Programming Algorithm (LP)

Next algorithm is called LP and consists of two phases. First it needs to solve a Linear
Program (LP) which takes inductive independence number ρ as parameter. Its objective
function is to maximize the sum of valuations for all links for the number of channels
they are allocated, fractional allocations allowed. It is subject to constraints that the sum
of conflict caused by links u in the backward neighbourhood of any link v multiplied by
the number of channels allocated is less than or equal to ρ · m. The different fractional
allocations of number of channels to each link may not exceed 1 and allocations must be
nonnegative.

The LP relaxation reads

Maximize
∑
v∈V

m∑
i=1

bv(i) · xv,i

subject to
∑
u∈V

π(u)<π(v)

m∑
i=1

i · C(u, v) · xu,i ≤ ρ ·m ∀v ∈ V

m∑
i=1

xv,i ≤ 1 ∀v ∈ V

xv,i ≥ 0 ∀v ∈ V, i ∈ [m],

where bv(i) is the valuation of v for its i-th channel, x is the fractional allocation, C is
the conflict graph, ρ the inductive independence number, m the number of channels and
V the set of bidding links.

The first phase of the algorithm is formulated in the same way as suggested by the authors
(Hoefer & Kesselheim, 2012). Note that this relaxation does not describe the channel
allocation problem exactly, an integral solution might not be feasible for the channel allo-
cation problem.

We then use a different rounding phase than proposed, which seems to return allocations
with higher social welfare in simulations. We use Algorithm 9 to round the fractional LP
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solution. First initialize empty sets S1, . . . , Sm. Then we run the following randomized
algorithm a thousand times and return the allocation with the highest social welfare. Ini-
tialize empty temporary sets T1, . . . , Tm. Take the solution x, returned by the LP phase
and round each value xv,i to 1 with probability xv,i and 0 otherwise. Initialize a vector
R and let it have i copies of v for each xv,i equal to 1 after the rounding phase. Then
for all v ∈ R in random order check if it can be added to any channel without violating
SINR feasibility constraints and add it if possible. When all v ∈ R have been considered
compare the social welfare of the temporary solution T with S and if it has higher social
welfare let T be the new allocation S. After running this a thousand times the alogrithm
allocates each channel 1, . . . ,m to a correspondings set of links S1, . . . , Sm.

Algorithm 9: Rounding LP solution for downward
sloping symmetric valuations.

1 S1, . . . , Sm ← ∅
2 for t ∈ {1, . . . , 1000} do
3 T1, . . . , Tm ← ∅
4 xv,i = 1 with probability xv,i, 0 otherwise
5 Let R have i copies of v for each xv,i, where

xv,i = 1.
6 for v ∈ R in random order do
7 for k ∈ {1, . . .m} in random order do
8 if

Puu∑
w∈Tk∪{l

∗
v}\{lu}

Pwu+N
≥ β, ∀u ∈ Tk ∪ {l∗v}

then
9 Tk ← Tk ∪ {l∗v}

10 break

11 end
12 end
13 end
14 if sw(T ) > sw(S) then
15 S ← T

16 end
17 end

Output:
• Allocate each channel i to set Si of links, i = 1, . . . ,m.

The main strength of the LP algorithm with the original rounding phase is that it produces
social welfare of at least b∗

16
√
mρdlogne in expectation (Hoefer et al., 2011). By using our
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rounding phase instead we achieve higher social welfare in simulations although we can
offer no approximation expectation or guarantee.

3.8 Optimal Solution

We formulated a mixed integer program (MIP) which finds an optimal solution to the
channel allocation problem, if allowed enough time.

Let V be the set of links, I be the set of channels and let bv(i) be the valuation of link v
for its i-th channel. The binary variable yv,i takes the value 1 if lv gets its i-th channel, 0

otherwise. The binary variable xv,i takes the value 1 if v gets channel i, 0 otherwise. Let
M be a large number, C be the conflict graph and β represent the minimum SINR for a
feasible set.

The MIP reads

Maximize
∑
v∈V

∑
i∈I

bv(i) · yv,i

subject to M · xv,i +
∑

u∈V \{v}

C(u, v) · xu,i +
N

Pvv
≤M +

1

β
∀v ∈ V, i ∈ I

∑
i∈I

yv,i −
∑
i∈I

xv,i = 0 ∀v ∈ V

xv,i, yv,i ∈ {0, 1} ∀v ∈ V, i ∈ I.

The objective function is to maximize the sum of valuations over all links and is subject
to the constraints of SINR feasibility, formulated by using the conflict graph C. It is
also subject to the constraint that x and y are binary matrices and that for all v we have∑

i∈I yv,i −
∑

i∈I xv,i = 0.

The obvious advantage of the optimal MIP is that it returns an allocation with maxi-
mum social welfare. If the links are few and there is enough time, this algorithm should
definitely be applied with VCG payments. However for a large number of links this
algorithm is impractical and previously mentioned approximation algorithms are more
suitable.
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Chapter 4

Simulations

We generate the topology for our simulations by using a model inspired by the preferential
attachment model from network theory (Barabási & Albert, 1999) and further developed
for wireless communication in the SINR model (Ásgeirsson et al., 2012). To match phe-
nomena seen in real-world complex networks we generate graphs with power-law degree
distributions. For each simulation we generated a random instance of links as follows.
We begin with an empty x × y plane. For the first link l1 we find a random location in
the plane for the sender s1, a random angle θ = [0, 2π] to send to and place the receiver
r1 at a random distance between dmin and dmax. For all other links lv, with probability p
we place the center of lv close to some other previously placed link, distance randomly
generated from a Pareto distribution with minimum distance 0.1. Then choose a random
angle θ = [0, 2π] and distance dvv between dmin and dmax. Then we place the sender sv
at distance dvv

2
in direction θ from the center and the receiver rv is placed at distance dvv

2

in the opposite direction from the center. With probability 1− p, lv is placed randomly in
the plane like the first link. Each link lv transmits with mean power Pv = d

α/2
vv . We note

that p = 0 gives uniform random distribution.

Each link was then given downward sloping and symmetric valuations. This means that
they only care about how many channels they are allocated and they are willing to pay
less for each additional channel. Furthermore they do not care which of the other links
are allocated channels. The valuation of each link lv is generated in the following way.
Let rv be a random number between 0 and 1, and multiply it with the transmission power
Pv of lv. Then let bv,k = rv + rv · sin(3π

2
) · k−1

m
be the valuation of lv for its k-th additional

channel in an m channel auction.

In our simulations we place the links on a 20 × 20 plane (x = 20 and y = 20). The
minimum length of a link dmin = 0.01 and maximum length dmax = 5.12 was chosen



30 Experimental analysis of throughput maximization for combinatorial spectrum auctions.

such that there is a large range in the length of links but the number of buckets used in
BUCKETLENGTH is limited to ten. We chose the path loss coefficient α = 2.1, minimum
SINR β = 1 and ambient noise N = 0 (see Table 4.1).

Length of the plane (x) 20
Width of the plane (y) 20
Minimum length of link (dmin) 0.01
Maximum length of link (dmax) 5.12
Path loss coefficient (α) 2.1
Minimum SINR (β) 1
Ambient noise (N ) 0

Table 4.1: Constants used in all simulations.

In the first part of the simulations we compared social welfare of the fractional solution
of the LP algorithm to the rounded solution and to an optimal solution. The aim was to
find a value for the inductive independence number ρ which is an input in the LP algo-
rithm that gives the highest social welfare of the rounded LP solution. In the second part
of the simulations we compare the approximation algorithms when we vary the number
of links, in the third part we vary the number of channels and in the fourth part we vary
the probability of attaching. The aim of the second, third and fourth part of the simula-
tions is to give an auctioneer the opportunity to compare the algorithms performance in
different situations, such that he can choose the algorithm that fits best with his current
situation. In the fifth part of the simulations we compare the social welfare obtained by
GREEDYWEIGHT and LOCALRATIO after payment computation. We also compare the
total payments made when using these algorithms, which may be of interest to some auc-
tioneers. In the sixth part of the simulations we compare the social welfare obtained by
GREEDYWEIGHT and LOCALRATIO for varying valuation functions. The social welfare
of an optimal allocation is presented as comparison where it is computable in reasonable
time.

4.1 Finding a Good ρ

One of the inputs to the LP algorithm is the inductive independence number ρ. Since
we do not know the inductive independence number of the graph we run simulations and
examine the effects of changing the value ρ. We run the simulations with n = 40 links,
m = 4 channels and probability of attaching p = 0.4. For each value ρ = {1, 2, . . . , 10}
we repeat the simulations k = 80 times (see Table 4.2).
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Number of links (n) 40
Number of channels (m) 4
Probability of attaching (p) 0.4
Number of trials (k) 80

Table 4.2: Constants used in the simulation for varying ρ.

The optimal allocation had mean social welfare µ = 59.0 with standard deviation σ =

7.5. The social welfare of the optimal solution is not normally distributed according to
Kolmogorov-Smirnov test. Table 4.3 shows some characteristics of the social welfare of
the optimal solution in our k = 80 trials. We can see that the optimal social welfare is in
the range from 44.9 to 73.5.

Normally
µ σ distributed Min Q1 Median Q3 Max

59.0 7.5 No 44.9 53.2 58.7 65.2 73.5

Table 4.3: Social welfare of the optimal solution.

If the social welfare of the LP fractional solution is lower than the social welfare of the
optimal solution some links in the optimal solution never get a chance in the rounding
phase. On the other hand if the social welfare of the fractional solution is too much above
the social welfare of the optimal solution we are including too many links which makes it
unlikely that we find the optimal solution in the randomized rounding phase. Looking at
the extremes gives us deeper understanding of how the algorithm works. If we let ρ = 0

than no link is allocated any channel in the LP fractional solution, making the randomized
rounding phase useless. However if we let ρ =∞ then all links are allocated all channels
and it’s only up to the rounding phase to allocate the channels, making the LP phase
useless.

In Figure 4.1 we can see that for ρ = 1 the social welfare of the fractional LP solution
is on average lower than the social welfare of the optimal solution. For all other values
tested for ρ the social welfare of the LP fractional solution is well above the social welfare
of the optimal solution on average. However we see that increasing the value of ρ only
pays off up to ρ = 4, then the average social welfare of the rounded solution declines with
increasing values of ρ. The difference between social welfare obtained for different values
of ρ is small and their is lot of variance, we can therefore not exclude the possibility that
the differences observed are due to random variance (see Table A.1).

The finding of ρ = 4 giving the best results is in line with previous results which state that
ρ = O(log(n)) for wireless links in the SINR model (Hoefer & Kesselheim, 2012), since
log(40) ≈ 3.69. Therefore we let ρ = log(n) in other parts of the simulations.
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Figure 4.1: Social welfare of the LP fractional, LP rounded and optimal solution with
varying values for ρ.

4.2 Number of Links

What will probably vary the most is the number of links n. Therefore it is very important
for the auctioneer to know how the performance of the approximation algorithms varies
with number of links. For this part of the simulation we keep the number of channels
m = 4 constant and the probability of attaching p = 0.4. We run the algorithms on
k = 80 randomly generated instances for each number of links n = {10, 20, . . . , 100}
tested (see Table 4.4).

Number of channels (m) 4
Probability of attaching (p) 0.4
Number of trials (k) 80

Table 4.4: Constants used in the simulation for varying number of links (n).

In Figure 4.2 we can see the mean social welfare of the approximation algorithms. We
see that GREEDYLENGTH returns the lowest social welfare for all number of links tested,
this should be expected and is partly due to how the valuations for each link are generated
(see Table A.2).
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Figure 4.2: Social welfare of the algorithms when varying number of links.

The second worst is BUCKETWEIGHT (see Table A.5), which runs GREEDYLENGTH on
buckets of links with similar weights and picks the best one. It is interesting however to
see how much bucketWeight improves on GREEDYLENGTH.

Ranking fourth and fifth in average social welfare are BUCKETLENGTH and GREEDYIN-
TERFERENCE, with GREEDYINTERFERENCE producing higher social welfare on average
for n = {10, 20, ..., 60}, equally high for n = 70 and lower for n = {90, 100}. Possibly
GREEDYINTERFERENCE is better for small number of links, but then BUCKETLENGTH

is better, with more links in each bucket. Further simulations with higher number of links
could support or refute that hypothesis, but the variance is too large to be certain (see
Tables A.4 and A.7).

The LP algorithm ranks third, which relies on the inductive independence number ρ se-
lected and heavily relies on the rounding phase. By choosing the right ρ and improving
the rounding phase there might be room for improvement and higher ranking for the LP
(see Table A.8).

Ranking first and second are GREEDYWEIGHT and LOCALRATIO, with GREEDYWEIGHT

producing higher social welfare on average for all values of n except n = {80, 90}. One
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may be tempted to state that GREEDYWEIGHT is the best but the variance is large and
without further simulations it remains uncertain (see Tables A.3 and A.6).

The results of these simulations imply that the auctioneer should choose either GREEDY-
WEIGHT or LOCALRATIO no matter the number of links. The difference between the
two algorithms is small, with their relative ranking interchanging, but always higher than
all other algorithms. The difference between the social welfare obtained by GREEDY-
WEIGHT and LOCALRATIO is small, but seems to be increasing with the number of chan-
nels (see Table 4.3 for social welfare of the optimal solution).

4.3 Number of Channels

The number of channels m the auctioneer can put up for auction may vary. Being able
to compare the social welfare of allocations output by the approximation algorithms with
different number of channels is valuable information to the auctioneer who wishes to get
as high social welfare as possible. In this part of the simulations we keep the number
of links n = 40 constant as well as the probability of attaching p = 0.4. We run the
algorithms on k = 80 randomly generated instances for each number of channels m =

{1, 2, . . . , 10} (see Table 4.5).

Number of links (n) 40
Probability of attaching (p) 0.4
Number of trials (k) 80

Table 4.5: Constants used in the simulation for varying number of channels.

In Figure 4.3 we see that the ranking of the algorithms is very similar as when we var-
ied the number of links n. The worst social welfare of the approximation algorithms is
GREEDYLENGTH and second worst BUCKETWEIGHT (see Tables A.10 and A.13).

Consistently ranking fourth and fifth are GREEDYINTERFERENCE and BUCKETLENGTH,
respectively. This differs from what we saw when we varied the number of links n,
where GREEDYINTERFERENCE produced higher social welfare for small n but BUCK-
ETLENGTH was better for larger n (see Tables A.15 and A.12).

As previously LP ranks third (see Table A.16). The difference between GREEDYWEIGHT

and LOCALRATIO is small as before, but now GREEDYWEIGHT consistently produces
higher social welfare than LOCALRATIO. It is therefore safe to rank GREEDYWEIGHT

first and LOCALRATIO second in this part of the simulations (see Tables A.14 and A.11).
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Figure 4.3: Social welfare of the algorithms when varying number of channels.

It is interesting to see that the change in social welfare as we increase the number of
channels is close to linear for all algorithms. What differs is their starting point and the
slope of the lines. This is probably a product of how the valuation functions are computed.
With different valuation function we would see a completely different graph.

In this part of the simulations GREEDYWEIGHT consistently ranks first, with LOCALRA-
TIO close behind. These results give the auctioneer no reason to consider other algorithms
if his goal is to maximize social welfare. Furthermore we can see that the social welfare
of the optimal solution, for n ≤ 40 is not far away (see Table A.17).

4.4 Probability of Attaching

Ranging from p = 0 with all links randomly distributed on the plane, to p = 1 where all
links attach to previous links, the probability of attaching may be varied to model different
kinds of situations. The values between 0 and 1 produce more interesting situations,
going from rural to urban as p approaches 1. For this part of the simulations we keep
the number of links n = 40 constant as well as the number of channels m = 4. We
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run the algorithms on k = 80 randomly generated instances for probability of attaching
p = {0.1, 0.2, . . . , 1.0} (see Table 4.6).

Number of links (n) 40
Number of channels (m) 4
Number of trials (k) 80

Table 4.6: Constants used in the simulation for varying probability of attaching (p).

In Figure 4.4 we see the effects of changing p on the social welfare produced by our
approximation algorithms. For values of p ≤ 0.4 the effect is insubstantial, but as p gets
closer to 1 the social welfare produced drops quickly.

We see that GREEDYLENGTH produces the lowest social welfare for all values of p. Rank-
ing fifth and sixth are BUCKETLENGTH and BUCKETWEIGHT, respectively, except when
p is close to 1.0.
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Figure 4.4: Social welfare of the algorithms when varying the probability of attaching.

We see that when p gets closer to 1.0 the social welfare of GREEDYINTERFERENCE and
LP drops much faster than the social welfare of the other approximation algorithms, with
GREEDYINTERFERENCE ranking sixth and LP ranking fourth when p = 1.0. For lower
values of p LP and GREEDYINTERFERENCE rank third and fourth respectively. Consis-
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tently ranking first and second, without interchanging are GREEDYWEIGHT and LOCAL-
RATIO, respectively (see Tables A.18, A.19, A.20, A.21, A.22, A.23 and A.24).

We still see GREEDYWEIGHT and LOCALRATIO producing the highest social welfare, for
all values of p giving the decision maker little reason to consider any of the other approx-
imation algorithms presented. Furthermore we see that the social welfare of GREEDY-
WEIGHT and LOCALRATIO is close to the optimal social welfare especially for p close to
1.0 (see Table A.25).

4.5 Payments for GREEDYWEIGHT and LOCALRATIO

We tried varying the number of links, channels and probability of attaching. The ranking
of the average social welfare produced by the algorithms stayed roughly the same as we
explored these different dimensions with GREEDYWEIGHT and LOCALRATIO ranking
first and second, sometimes interchanging but always outperforming the other approxi-
mation algorithms. Our recommendations to the auctioneer are therefore to use one of
these two no matter the number of links, channels or the probability of attaching.

We vary the number of links n = {10, 20, . . . , 100}, but keep the number of channels
constant m = 4 and the probability of attaching p = 0.4. We randomly generate k = 80

instances to test the algorithms (see Table 4.7).

Number of channels (m) 4
Probability of attaching (p) 0.4
Number of trials (k) 80

Table 4.7: Constants used in the simulation for payment computation of GREEDYWEIGHT

and LOCALRATIO.

In Figure 4.5 we see the average social welfare produced by the two algorithms as well as
the average total payment computed. We see that the social welfare of GREEDYWEIGHT

is on average higher for smaller n but the social welfare of LOCALRATIO is on average
higher for larger n although the difference is small. The total payment computed is on
average higher for GREEDYWEIGHT for all number of links n. It is interesting to see that
the average payment rises up to n = 40, but then it declines. It would be interesting to see
what happens if we increase the number of links even further, whether the total payment
approaches 0 (see Tables A.26 and A.28).
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Figure 4.5: Social welfare (1) and total payment (2) of GREEDYWEIGHT and LOCALRA-
TIO when varying number of channels.

If we find an allocation with higher social welfare than the one given by the algorithm
we change our allocation to the improved one. In theory this could happen up to n times,
but it seems in practice that this happens seldom. In Figure 4.6 we can see how often
this happens on average for each algorithm. We see that the number of changes made on
average is generally higher for LOCALRATIO than GREEDYWEIGHT. The only downside
to this is increased time for payment computation. By looking at the graph it seems likely
that the number of changes made while computing payment follows some logarithmic
function at least in this simulation setup (see Tables A.27 and A.29).

4.6 Varying Valuations

To see the effect of different kinds of valuations, we let each link v have valuation bv =

dλvv, and vary the value of λ = {0.0, 0.1, . . . , 2.1}. Note that the there is no randomness
in the valuation of links, it is solely based on its length.
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LOCALRATIO.

Ranging from λ = 0 with all links having the same valuation, to p = 2.1 where valuations
are the same as in other parts of the simulations. We expect lower values of λ to produce
more difficulties for GREEDYWEIGHT as longer links valuations are only slightly higher
than that of shorter links. Algorithm GREEDYWEIGHT will go through the links in de-
creasing order of length and possibly allow long links with only slightly higher valuation
than short links into the allocation S.

For this part of the simulations we increase the number of links to n = 200 and decrease
the number of channels to m = 1. We run the algorithms on k = 80 randomly generated
instances for exponents λ = {0.0, 0.1, . . . , 2.1} (see Table 4.8).

Number of links (n) 200
Number of channels (m) 1
Probability of attaching (p) 0.4
Number of trials (k) 80

Table 4.8: Constants used in the simulation for varying exponent λ, used in valuations
generation.

In Figure 4.7 we see that there is little difference between GREEDYWEIGHT and LOCAL-
RATIO when λ = 0.0. This is the special case where all links have the same valuations.
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Algorithm GREEDYWEIGHT goes through the link in some order not specified since there
is no defined tie-breaker. Algorithm LOCALRATIO goes through the links in increasing
order of length in the forward pass and decreasing order of length in the backward pass
as before. In Tables A.30 and A.31 you can see the social welfare of GREEDYWEIGHT

and LOCALRATIO, respectively. In all cases the social welfare is on average higher for
LOCALRATIO.
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Figure 4.7: Social welfare of GREEDYWEIGHT and LOCALRATIO when varying λ to
generate valuations.

This part of the simulations was meant to show that GREEDYWEIGHT will not outper-
form LOCALRATIO in all cases. Algorithm GREEDYWEIGHT is vulnerable to special
cases where long links have slightly higher valuations. These special cases are likely to
come up in these simulations since long links are given slightly higher valuations and the
randomness in generation of valuations is removed. Although GREEDYWEIGHT does not
perform arbitrarily badly it is considerably far off from LOCALRATIO.

Further simulations were performed to know how much effect removing randomness in
valuation generation. Let Brandom be valuations generated as described in the beginning of
Chapter 4 and Bdeterministic be valuations generated in the same way except r = 1, instead
of a random value between 0 and 1. Then we defineBδ = δ ·Brandom +(1−δ) ·Bdeterministic,
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where delta can take any value between 0 and 1 and determine the level of randomness in
valuation generations.

In this part of the simulations we keep the number of links n = 200, the number of
channels m = 4, probability of attaching p = 0.4 and run k = 80 trials for each value of
δ (see Table 4.9).

Number of links (n) 200
Number of channels (m) 4
Probability of attaching (p) 0.4
Number of trials (k) 80

Table 4.9: Constants used in the simulation for varying δ used to determine the random-
ness in valuation generation.

In Figure 4.8 we can see that LOCALRATIO produces higher social welfare for all values of
δ tested. We can also see that the difference between the algorithms is larger for low values
of δ, when Bdeterministic is given relatively more weight (see Tables A.32 and A.33).
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Figure 4.8: Social welfare of GREEDYWEIGHT and LOCALRATIO when varying random-
ness factor δ in valuation generation.



42



43

Chapter 5

Conclusions and Future Work

We have presented several algorithms that find an allocation that approximates the social
welfare of a socially efficient allocation. Most of them have no proven approximation
guarantee, but that does not mean that they will not do well most of the time in prac-
tice.

We explored four dimensions, through simulation, that are likely to vary in a spectrum
auction, namely, number of links n, number of channels m, probability of attachment p
and exponent to generate valuations λ. For all values tested for these three dimensions,
two approximation algorithms consistently produced allocations with higher social wel-
fare than the other approximation algorithms tested, that is GREEDYWEIGHT and LOCAL-
RATIO (Algorithm 2 and 6, respectively). The social welfare obtained by these algorithms
was close to the social welfare of an optimal solution for n ≤ 40 and m ≤ 4, but we do
not know what happens for larger instances. We also see that the gap between the approx-
imation algorithms and social welfare of an optimal solution is larger for sparse instances,
that is with probability of attaching p close to 0.

Ranking third in most situations was LP (LP formulation in Section 3.7 combined with
Algorithm 9). In Figure 4.1 we can see the effects of varying ρ. The effect could mainly
be seen in the social welfare of the LP fractional solution. The social welfare of the
rounded solution did not differ much with varying values for ρ. We can also compare the
optimal social welfare to the fractional and rounded LP solution. We can see that when
ρ = 1 the optimal social welfare is higher than the social welfare of the fractional LP
solution, which tells us that the optimal solution has already been excluded.

The social welfare of the allocation found by LP was not far off from GREEDYWEIGHT

and LOCALRATIO, but considering that we need to solve an LP and go through a time
consuming rounding phase to find the allocation, we would want to see higher social
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welfare. There is however a method that turns the LP algorithm into a truthful in ex-
pectation mechanism, producing a α-approximation to the optimal social welfare, where
α = 8 ·

√
m · ρ (Hoefer & Kesselheim, 2012; Lavi & Swamy, 2005). The LP algorithm

may also be better able to handle different kinds of valuation functions (Hoefer et al.,
2011).

Producing the fourth highest social welfare in most situations was GREEDYINTERFER-
ENCE (Algorithm 8). It is based on the intuition that it is generally good to accept links
which have high valuation relative to the sum of interference it causes on all other links. In
a way this algorithm is similar to LOCALRATIO. A key difference between LOCALRATIO

and GREEDYINTERFERENCE is the notion of backward neighbourhood. The algorithm
LOCALRATIO cleverly uses the idea of backward neighbourhood and each link consid-
ers only interference coming from those, GREEDYINTERFERENCE on the other hand is
considering the interference each link causes to smaller links which may not be of impor-
tance.

Ranking fifth and sixth, are BUCKETLENGTH (Algorithm 4) and BUCKETWEIGHT (Al-
gorithm 5), respectively. Both algorithms rely on the same principle, divide the links
into buckets of a similar characteristic, find a good allocation for each bucket and re-
turn the best bucket as the final allocation. It is often a problem with bucket algorithms
that many links are excluded from the beginning by falling into the wrong bucket. The
algorithm BUCKETLENGTH produces significantly lower social welfare than the algo-
rithm it uses, GREEDYWEIGHT. This is perhaps what should be expected from randomly
generated instances, but this approach would overcome the special case where the social
welfare of GREEDYWEIGHT is arbitrarily far off from the optimal. The other bucket algo-
rithm, BUCKETWEIGHT produces significantly higher social welfare than the algorithm
GREEDYLENGTH which it uses to find an allocation for each bucket. This is in part due
to how valuations are generated.

The algorithm producing the lowest social welfare in all simulations was GREEDYLENGTH

(Algorithm 1). The algorithm is initially designed to approximate the unweighted capac-
ity and scheduling problem (Goussievskaia et al., 2009). Especially in the multi channel
auction m > 1, it performs poorly, since it allocates all channels to the same links, but
the valuations are constructed such that links are willing to pay less and less for each
additional channel.

Future work should focus on designing truthful mechanisms that give good approxima-
tion guarantees to the optimal social welfare and produce high social welfare in prac-
tice. The LOCALRATIO algorithm gives promising results in simulations and has good
approximation guarantees and is definitely an interesting option for spectrum auctions.
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A framework proposed to turn channel allocation algorithms into truthful in expectation
mechanisms might be applicable, but will reduce the social welfare of the final allocation
(Lavi & Swamy, 2005). A method to turn LOCALRATIO into a truthful mechanism would
be very desirable.

It can be shown that GREEDYWEIGHT can produce an allocation with social welfare arbi-
trarily far off from the optimal social welfare. An example is when a large link has slightly
higher valuation than an arbitrary number of smaller links that could form a feasible set.
The large link will be determined the winner of the auction by GREEDYWEIGHT although
the sum of the valuations the smaller links may be arbitrarily higher. However this special
case didn’t seem to come up in the simulations, except for varying valuations.

On the other hand it has been shown that LOCALRATIO can guarantee an allocation with
social welfare which ρ-approximates the optimal social welfare (Ye & Borodin, 2009),
where ρ is the inductive independence number of the underlying conflict graph. It has
also been shown that ρ = O(log(n)) for wireless communication in the SINR model
(Hoefer et al., 2011).

Although GREEDYWEIGHT produced high social welfare in simulations with randomly
generated instances of wireless links, this does not mean that it will always do so in
practice. Therefore it may be safer to use LOCALRATIO and have some guaranteed ap-
proximation.

We should be careful to make general conclusions based on simulation results since the
results might be heavily influenced by the way the simulations are constructed. Whether
the distribution of links in the plane, power assignment and valuations of links are realistic
is questionable. Attempts should be made to overcome these shortcomings, for example
by gathering information about locations of wireless devices, and using those locations
instead of randomly generated once. Or that information could be used to improve our
modelling of distribution of wireless links in the plane.

We limit our analysis and simulations to a special case of valuation functions, which may
or may not be realistic. We assume that the valuations of links are symmetric and down-
ward sloping. Symmetric valuations may be unrealistic for several reasons. Consecutive
channels offer better transmission rates then disperse channels and links may prefer some
channels to others due to hardware constraints. Downward sloping valuations may be
unrealistic in some situations. Some communication may require substantial bandwidth
or at least affect the quality of the communication. Some links may be willing to pay
increasing amounts for additional channels and may even not be interested unless they
get a minimum number of channels.
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The design of approximation algorithms could take at least two directions. One would
be to investigate what kind of valuation functions we should expect. Are symmetric and
downward sloping valuation functions reasonable or should we expect something differ-
ent? Another direction would be to design approximation algorithms which can handle
arbitrary valuations. They of course have the obvious advantage of not having to make
any assumptions about the valuation functions. The disadvantage of algorithms that allow
arbitrary valuations is that they are probably not as efficient.

An attempt was made to design mechanisms for GREEDYWEIGHT and LOCALRATIO

that are individually rational, produce no positive transfers and are truthful. A mechanism
for GREEDYWEIGHT is proposed in Algorithm 3 and for LOCALRATIO in Algorithm 7.
These mechanisms fulfill two of the goals, that is they are individually rational and they
produce no positive transfers, but they are not truthful. The lack of truthfulness poses
serious problems for an auctioneer trying to maximize social welfare. If the auctioneer
cannot assume that bidders are bidding truthfully he has no idea how far off the social
welfare of the allocation found is from the optimal social welfare.

It would also be desirable if the truthful mechanisms for GREEDYWEIGHT and LOCAL-
RATIO would not need to make any changes to the allocations found when calculating
payments. In Figure 4.6 we can see that the number of changes made to the allocations
was not large in these simulations, but in theory we might have to change the allocation
up to n times. This slows down the process of allocating channels significantly.

It might prove difficult to design a truthful mechanism for GREEDYWEIGHT since the
valuation of links affects the ordering in which they are considered. It may also be difficult
to design a truthful mechanism for LOCALRATIO since the valuation of links affects which
links are considered in the backward pass. A link which untruthfully reports its valuation
as higher than its true valuation might exclude some links from consideration that would
otherwise block it from the final allocation.

The results of the simulations are quite clear, GREEDYWEIGHT and LOCALRATIO are
the best options. It is tempting to conclude that the auctioneer should choose GREEDY-
WEIGHT, but its lack of approximation guarantee is problematic. The special case men-
tioned is unlikely to happen in randomly generated instances, at least as they were gen-
erated in these simulations, but we do not know whether they are unlikely to occur in
practice. In the second last part of the simulations LOCALRATIO performed considerably
better when we varied the exponent λ used to generate valuations. In the last part of the
simulations the randomness factor in valuation generation was varied. The gap between
the social welfare of LOCALRATIO and GREEDYWEIGHT was larger if more randomness
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is allowed (lower values of δ), in favour of LOCALRATIO. The performance of GREEDY-
WEIGHT seems to depend on the way valuations are generated.

In conclusion, we recommend finding the optimal solution and applying the VCG mech-
anism for small instances. In our simulations we could find the optimal solution in rea-
sonable amount of time for n ≤ 40 and m ≤ 4. While there is no known method of
turning LOCALRATIO into a truthful mechanism we recommend applying LOCALRA-
TIO with first price payments for large instances. Future work should focus on finding a
method that turns LOCALRATIO into a truthful mechanism without losing too much of the
social welfare obtained. Although the LP algorithm ranked third, it might be better suited
for different kinds of valuations. Incentive compatible mechanisms with approximation
guarantees have even been obtained for arbitrary valuations for the LP algorithm (Hoefer
& Kesselheim, 2012).
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Appendix A

Simulation results

A.1 Varying ρ

ρ µ σ Min Q1 Median Q3 Max

1
55.8 10.4 36.1 48.2 55.9 63.8 76.5
48.7 7.5 33.4 43.4 49.0 55.0 65.2

2
72.7 12.3 48.9 62.5 72.0 82.1 98.3
51.5 7.3 36.6 46.2 51.5 57.3 66.4

3
82.4 13.1 54.5 72.3 82.6 91.8 111.3
52.0 7.0 38.9 46.2 51.9 57.2 67.1

4
88.5 13.5 58.5 77.7 88.9 98.1 119.2
52.2 6.8 39.7 46.8 51.9 56.9 66.2

5
92.7 13.7 61.2 82.0 92.7 102.3 124.0
52.0 6.7 39.3 47.5 51.2 57.1 66.6

6
95.5 13.8 63.1 85.1 94.3 105.3 126.9
51.7 6.6 39.6 46.6 51.1 56.2 68.5

7
97.6 13.9 64.5 88.0 96.0 107.3 128.7
51.7 6.4 40.2 46.5 51.4 56.0 65.6

8
99.2 14.0 65.6 89.5 98.0 108.8 130.4
51.5 6.6 39.0 46.3 51.1 56.2 67.1

9
100.4 14.1 66.4 90.8 99.3 110.2 132.3
51.3 6.4 39.5 46.7 51.1 56.1 64.1

10
101.4 14.1 67.2 91.6 101.1 111.1 134.6
51.1 6.4 38.1 46.9 50.9 55.3 65.7

Table A.1: Social welfare of the solution given by the LP algorithm.
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A.2 Varying Number of Links

n µ σ Min Q1 Median Q3 Max

10 13.0 5.0 1.4 9.3 12.8 17.0 26.7
20 15.6 5.2 4.4 12.3 14.7 18.5 29.5
30 17.9 5.9 4.9 14.1 18.1 21.6 31.6
40 18.6 5.1 7.6 14.7 18.8 22.0 29.1
50 20.2 6.0 7.9 15.7 19.7 24.7 37.4
60 20.9 5.3 7.1 17.0 21.2 24.9 33.4
70 20.8 6.4 2.7 16.9 20.6 25.0 35.5
80 21.6 6.6 4.3 17.4 21.7 25.9 42.0
90 21.6 6.7 7.8 16.9 20.7 26.4 36.0

100 23.2 6.2 8.7 18.6 22.8 28.2 38.5

Table A.2: Social welfare of GREEDYLENGTH when varying number of links n.

n µ σ Min Q1 Median Q3 Max

10 22.0 6.2 12.9 17.6 21.1 26.5 42.3
20 35.2 6.7 21.8 29.5 34.9 38.8 50.6
30 46.1 5.9 33.7 42.2 45.3 49.4 58.6
40 53.1 7.3 36.9 49.1 52.5 58.4 75.7
50 60.0 7.9 44.6 54.0 61.2 65.4 77.1
60 62.1 7.6 44.6 56.6 61.8 67.2 78.6
70 65.6 7.6 43.4 61.5 66.5 70.9 78.4
80 69.6 7.2 55.6 64.3 70.4 74.6 85.5
90 70.0 7.6 49.8 64.9 69.7 75.0 91.5

100 72.8 7.1 50.0 67.9 72.9 77.8 86.9

Table A.3: Social welfare of GREEDYWEIGHT when varying number of links n.
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n µ σ Min Q1 Median Q3 Max

10 16.5 5.1 8.5 13.3 15.3 19.7 35.5
20 25.6 5.9 12.6 21.3 25.1 29.4 43.1
30 32.7 5.6 21.3 29.0 32.9 36.6 45.3
40 38.8 6.5 24.0 33.7 39.4 43.2 57.2
50 44.7 6.2 28.8 40.1 44.3 49.4 59.8
60 47.1 6.9 19.7 41.7 47.3 51.4 61.9
70 48.9 7.0 33.9 44.1 49.1 53.3 68.0
80 51.3 6.1 35.4 47.3 51.3 56.0 61.7
90 52.8 6.9 36.6 48.8 51.7 57.0 66.8

100 55.2 5.5 43.0 51.5 54.8 58.7 67.1

Table A.4: Social welfare of BUCKETLENGTH when varying number of links n.

n µ σ Min Q1 Median Q3 Max

10 16.0 5.1 7.9 12.1 14.8 19.3 32.5
20 23.6 5.4 13.1 20.0 22.3 27.2 35.9
30 29.5 5.4 17.6 25.7 28.8 33.1 52.3
40 35.3 6.6 18.0 30.6 35.5 39.3 58.0
50 39.5 7.1 22.8 34.8 39.6 45.0 55.0
60 42.4 6.5 29.7 37.3 41.6 46.7 61.0
70 45.1 7.1 30.3 40.6 44.8 49.3 64.2
80 47.7 6.0 33.6 43.9 47.7 50.9 63.5
90 48.8 6.2 31.9 44.9 49.2 52.5 65.4

100 49.7 6.3 38.8 44.8 49.3 54.1 65.1

Table A.5: Social welfare of BUCKETWEIGHT when varying number of links n.
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n µ σ Min Q1 Median Q3 Max

10 21.6 6.2 11.6 17.0 20.5 26.2 42.1
20 34.2 6.6 20.8 28.9 33.9 37.2 48.1
30 44.7 5.9 33.0 40.5 43.8 48.0 61.0
40 51.2 7.2 34.6 46.1 50.9 55.7 74.4
50 59.1 7.9 39.6 52.9 59.7 64.3 79.2
60 62.0 7.4 46.8 57.2 61.2 65.5 78.7
70 65.2 7.8 44.7 59.9 65.8 70.6 87.5
80 70.0 5.8 59.0 65.8 69.8 73.4 88.6
90 70.2 7.0 56.7 64.3 70.2 75.6 82.7

100 72.4 7.6 53.6 67.5 72.3 77.9 87.9

Table A.6: Social welfare of LOCALRATIO when varying number of links n.

n µ σ Min Q1 Median Q3 Max

10 20.2 6.1 8.3 15.6 19.8 24.3 38.5
20 30.2 6.2 18.6 25.6 29.6 34.7 45.1
30 37.7 6.2 21.2 33.2 38.2 42.7 50.8
40 41.0 7.6 23.7 36.3 41.5 45.1 62.6
50 46.9 8.0 27.4 42.0 46.8 51.7 68.0
60 48.2 7.3 30.5 42.0 48.2 52.6 64.4
70 49.2 6.8 25.1 45.9 48.3 52.9 65.0
80 51.3 8.0 31.9 45.8 51.9 56.8 68.6
90 51.1 7.6 31.9 45.7 51.1 56.2 71.6

100 53.7 6.8 35.5 48.9 53.4 59.3 65.6

Table A.7: Social welfare of GREEDYINTERFERENCE when varying number of links n.
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n µ σ Min Q1 Median Q3 Max

10 20.7 6.8 7.3 15.9 19.7 25.6 42.1
20 32.4 6.6 20.5 28.1 32.0 35.9 49.4
30 42.1 6.4 29.5 37.6 42.1 45.7 57.5
40 47.4 7.0 28.8 43.5 48.0 51.3 67.3
50 54.5 7.5 38.8 49.0 54.9 59.2 72.5
60 58.5 6.5 45.7 53.5 57.8 63.0 73.7
70 58.9 6.1 41.0 55.3 58.9 63.3 71.1
80 63.2 6.0 51.3 58.7 62.3 67.0 76.7
90 64.0 5.9 49.8 59.0 63.9 68.6 77.1

100 66.1 5.6 54.1 62.2 65.9 70.8 76.9

Table A.8: Social welfare of LP when varying number of links n.

n µ σ Min Q1 Median Q3 Max

10 22.1 6.4 12.9 17.4 21.2 26.7 42.1
20 36.2 6.9 22.7 30.9 36.4 40.5 52.0
30 48.9 6.4 34.2 43.9 48.1 54.0 64.9
40 57.8 7.7 40.0 52.5 58.2 62.6 82.3

Table A.9: Optimal social welfare when varying number of links n.

A.3 Varying Number of Channels

m µ σ Min Q1 Median Q3 Max

1 9.2 3.2 2.1 7.0 9.0 11.3 17.8
2 12.5 3.4 3.4 10.9 12.9 14.8 21.4
3 16.0 4.2 5.7 13.3 16.6 19.0 25.1
4 19.8 5.1 8.5 16.3 19.6 22.8 34.3
5 21.7 7.1 2.9 16.7 21.6 26.7 37.0
6 24.4 7.3 10.5 18.6 24.7 29.3 40.4
7 28.4 9.4 9.4 21.2 28.2 36.0 47.6
8 33.2 9.5 15.3 26.4 32.9 40.4 52.5
9 37.2 10.0 12.6 29.8 36.6 44.7 65.4

10 40.9 11.8 17.0 33.5 39.9 48.9 77.3

Table A.10: Social welfare of GREEDYLENGTH when varying the the number of channels
m.
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m µ σ Min Q1 Median Q3 Max

1 18.2 3.5 8.9 16.1 18.5 20.3 26.0
2 30.9 4.0 22.9 28.0 30.7 33.3 41.5
3 42.6 5.5 26.4 39.2 42.7 46.6 52.7
4 54.5 5.8 43.4 50.6 54.4 58.8 69.7
5 64.0 8.6 43.9 57.2 63.3 70.8 80.9
6 76.0 8.8 58.1 69.6 76.2 81.3 100.8
7 85.4 11.6 60.9 77.2 84.8 93.1 120.0
8 96.5 12.2 70.1 87.5 96.4 104.7 127.7
9 104.8 14.1 70.7 94.2 102.6 116.5 143.6

10 120.9 13.6 85.1 110.7 121.5 128.2 155.4

Table A.11: Social welfare of GREEDYWEIGHT when varying the the number of channels
m.

m µ σ Min Q1 Median Q3 Max

1 12.6 2.7 7.2 10.6 11.9 14.2 21.5
2 21.7 4.0 10.1 19.2 21.5 24.5 31.5
3 30.6 5.1 18.1 27.9 30.2 33.2 43.0
4 39.4 6.0 25.1 34.9 39.3 44.1 51.1
5 46.3 7.4 32.3 40.9 46.3 51.4 63.1
6 54.9 8.6 37.3 48.7 55.1 61.2 79.1
7 62.5 11.3 43.5 55.1 61.5 68.4 104.4
8 70.7 11.3 49.2 61.4 71.2 77.9 110.5
9 75.5 11.2 47.3 67.7 75.4 84.2 97.3

10 88.1 13.9 50.8 78.5 87.8 96.7 122.6

Table A.12: Social welfare of BUCKETLENGTH when varying the the number of channels
m.
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m µ σ Min Q1 Median Q3 Max

1 11.2 3.2 5.1 9.0 10.9 13.3 21.1
2 18.3 3.5 11.1 16.0 17.9 21.1 27.6
3 27.9 5.1 14.5 24.0 28.6 30.7 37.5
4 35.7 5.8 22.3 31.6 36.1 40.3 47.6
5 41.0 7.4 25.8 34.9 42.2 46.2 58.2
6 51.2 8.3 34.4 45.5 50.4 56.8 72.6
7 56.7 9.5 36.7 49.8 56.8 62.6 79.8
8 63.7 9.6 39.5 56.9 63.5 68.9 88.4
9 68.8 11.6 44.2 60.5 67.3 77.7 99.1

10 80.4 12.7 49.7 71.9 79.9 88.0 116.7

Table A.13: Social welfare of BUCKETWEIGHT when varying the the number of channels
m.

m µ σ Min Q1 Median Q3 Max

1 17.7 3.6 9.2 15.4 18.1 19.8 25.6
2 30.6 4.2 21.7 28.3 30.0 33.5 41.0
3 41.7 4.9 26.8 38.6 41.2 45.8 51.4
4 54.1 6.6 39.7 50.2 54.1 59.1 69.5
5 62.9 9.0 39.8 56.8 62.5 68.8 90.5
6 74.6 9.3 50.8 68.1 74.2 81.6 95.5
7 84.1 11.1 60.3 76.7 84.7 90.1 114.9
8 94.8 12.0 67.5 85.1 94.2 104.2 126.5
9 102.2 14.4 69.7 92.9 100.1 111.7 143.4

10 120.1 15.0 85.9 107.9 120.7 128.1 160.5

Table A.14: Social welfare of LOCALRATIO when varying the the number of channels m.
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m µ σ Min Q1 Median Q3 Max

1 14.4 3.1 6.8 12.2 14.3 16.7 21.0
2 25.1 4.5 15.7 22.1 24.7 28.2 35.1
3 34.0 5.2 21.8 30.5 34.0 37.4 46.1
4 43.4 6.8 26.3 38.9 42.7 48.7 59.2
5 49.9 8.3 28.3 45.0 48.3 56.5 67.9
6 59.8 9.5 37.5 54.1 60.1 66.1 79.2
7 69.4 10.9 40.8 62.6 69.7 76.5 95.7
8 77.3 12.2 46.8 70.7 77.5 85.6 103.7
9 84.0 13.4 54.0 75.1 84.1 94.1 113.7
10 94.2 14.0 62.6 82.1 95.3 104.3 130.2

Table A.15: Social welfare of GREEDYINTERFERENCE when varying the the number of
channels m.

m µ σ Min Q1 Median Q3 Max

1 17.7 2.8 11.6 16.0 17.6 19.4 25.6
2 29.6 4.0 21.9 26.7 29.9 32.3 38.4
3 39.1 5.1 24.3 36.5 39.1 43.4 47.9
4 49.5 6.5 32.1 45.4 50.2 54.1 66.8
5 56.3 9.2 35.3 50.0 55.9 63.4 84.6
6 67.2 10.0 43.4 60.2 66.7 74.3 88.9
7 75.1 11.7 44.4 67.4 75.7 83.5 105.4
8 84.6 12.5 57.4 77.0 85.0 92.7 122.6
9 91.5 15.0 56.3 81.3 91.0 102.7 125.7

10 106.0 14.5 80.5 96.2 105.5 115.3 143.4

Table A.16: Social welfare of LP when varying the the number of channels m.

m µ σ Min Q1 Median Q3 Max

1 19.7 2.2 14.1 18.2 19.4 21.1 25.5
2 34.5 4.1 26.5 31.3 35.1 36.8 45.1
3 46.5 5.9 33.1 42.0 46.3 51.0 60.5
4 57.8 7.7 40.0 52.5 58.2 62.6 82.3

Table A.17: Optimal social welfare when varying the the number of channels m.
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A.4 Varying the Probability of Attaching

p µ σ Min Q1 Median Q3 Max

0.0 21.3 6.3 5.2 17.7 21.9 25.8 32.7
0.2 21.6 5.3 12.0 18.0 21.7 25.4 36.3
0.4 18.5 5.2 4.6 15.5 18.9 22.3 28.1
0.6 16.4 5.8 3.0 12.1 16.3 20.5 28.2
0.8 12.8 6.0 2.7 8.7 12.1 15.6 30.0
1.0 3.2 2.5 0.4 1.2 2.4 5.1 10.2

Table A.18: Social welfare of GREEDYLENGTH when varying the probability of attaching
p.

p µ σ Min Q1 Median Q3 Max

0.0 56.6 6.3 43.8 51.7 56.8 60.7 72.5
0.2 56.4 7.6 43.1 50.1 55.7 62.6 76.8
0.4 53.8 7.0 36.1 49.8 54.1 58.8 70.7
0.6 48.0 7.3 30.8 42.9 47.8 53.1 65.9
0.8 40.0 9.0 20.1 32.9 40.0 44.4 65.5
1.0 19.3 2.8 12.8 17.4 19.3 21.4 28.9

Table A.19: Social welfare of GREEDYWEIGHT when varying the probability of attaching
p.

p µ σ Min Q1 Median Q3 Max

0.0 40.4 6.2 27.7 36.0 41.0 44.5 62.3
0.2 40.5 7.0 25.6 35.3 40.3 45.4 57.1
0.4 39.1 6.7 25.3 34.5 38.7 43.7 60.5
0.6 35.1 5.5 23.7 30.6 35.0 39.3 51.1
0.8 31.0 7.9 15.0 25.7 30.7 35.9 51.3
1.0 15.4 2.0 10.1 14.0 15.4 17.0 23.4

Table A.20: Social welfare of BUCKETLENGTH when varying the probability of attaching
p.
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p µ σ Min Q1 Median Q3 Max

0.0 37.9 6.1 24.3 34.7 37.6 42.5 52.9
0.2 36.5 7.0 21.4 30.9 36.2 41.6 57.2
0.4 34.7 6.3 20.9 30.7 35.1 39.7 47.6
0.6 31.0 6.1 17.9 26.4 30.6 35.1 56.5
0.8 26.1 7.5 11.0 20.7 25.1 29.4 49.9
1.0 13.4 2.0 7.8 12.2 13.2 14.4 18.7

Table A.21: Social welfare of BUCKETWEIGHT when varying the probability of attaching
p.

p µ σ Min Q1 Median Q3 Max

0.0 55.6 6.4 37.7 51.0 55.8 60.1 73.5
0.2 55.0 7.5 41.7 49.9 54.4 60.7 75.8
0.4 52.5 7.1 34.6 48.6 51.8 58.4 67.2
0.6 47.4 7.1 30.8 42.7 47.6 51.6 64.6
0.8 39.0 8.8 18.6 32.6 38.7 45.5 57.5
1.0 18.6 2.8 12.1 16.9 18.5 20.4 28.5

Table A.22: Social welfare of LOCALRATIO when varying the probability of attaching p.

p µ σ Min Q1 Median Q3 Max

0.0 46.8 6.9 30.5 42.6 46.5 50.4 62.3
0.2 45.3 7.4 27.9 39.7 44.8 51.1 64.0
0.4 41.7 7.0 27.0 36.3 41.5 46.3 60.8
0.6 36.7 6.5 20.1 32.9 36.4 41.8 50.7
0.8 29.2 7.9 10.1 23.7 28.5 33.5 53.0
1.0 10.5 3.4 2.5 8.0 10.4 13.1 20.0

Table A.23: Social welfare of GREEDYINTERFERENCE when varying the probability of
attaching p.
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p µ σ Min Q1 Median Q3 Max

0.0 52.5 6.0 40.4 47.7 53.0 57.5 65.2
0.2 52.2 7.1 37.0 46.8 51.9 57.4 69.1
0.4 49.1 6.9 31.2 44.3 48.7 54.2 67.7
0.6 42.5 7.4 25.4 36.8 42.5 48.0 60.6
0.8 35.1 8.8 13.7 28.6 35.3 41.1 59.4
1.0 14.6 2.6 9.7 13.2 14.5 16.4 23.9

Table A.24: Social welfare of LP when varying the probability of attaching p.

p µ σ Min Q1 Median Q3 Max

0.0 63.0 6.3 47.9 58.5 63.1 66.9 80.2
0.2 62.3 7.7 47.7 57.1 62.3 68.3 79.8
0.4 59.0 7.5 44.9 53.2 58.7 65.2 73.5
0.6 51.2 7.6 33.5 45.7 51.9 56.2 71.0
0.8 41.8 9.5 20.1 34.4 41.1 48.1 71.2
1.0 20.1 2.9 13.6 18.2 20.0 21.7 30.2

Table A.25: Optimal social welfare when varying the probability of attaching p.
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A.5 Social Welfare and Payments for GREEDYWEIGHT

and LOCALRATIO

Social welfare/
n Total Payment µ σ Min Q1 Median Q3 Max

10
Social welfare 21.3 6.1 5.7 16.9 21.4 24.3 38.5
Total payment 4.7 2.5 0.9 3.1 4.3 5.6 11.8

20
Social welfare 36.0 7.3 17.8 32.0 35.4 40.0 54.5
Total payment 10.3 3.7 2.5 7.5 9.8 12.7 20.8

30
Social welfare 47.5 6.6 31.3 42.7 47.5 52.4 60.6
Total payment 15.2 5.5 0.0 11.4 15.6 19.8 29.3

40
Social welfare 56.0 6.8 39.6 51.5 55.6 60.5 74.6
Total payment 15.5 6.9 0.0 9.5 15.9 20.0 34.6

50
Social welfare 60.2 7.0 45.5 55.2 59.1 65.6 81.5
Total payment 13.3 7.3 0.5 7.5 13.7 18.4 33.3

60
Social welfare 66.2 6.1 49.5 63.1 66.6 70.8 83.2
Total payment 13.5 8.1 0.0 7.1 12.6 19.3 33.0

70
Social welfare 70.3 6.1 59.4 65.4 70.6 74.1 84.7
Total payment 10.2 7.0 0.0 4.9 9.1 13.0 33.6

80
Social welfare 72.6 7.3 56.8 67.7 71.8 77.8 87.8
Total payment 9.6 7.3 0.0 3.7 8.9 14.3 29.9

90
Social welfare 75.6 7.1 59.6 70.2 75.1 80.6 93.0
Total payment 10.2 7.2 0.0 4.7 8.2 15.0 28.5

100
Social welfare 77.6 5.9 62.2 73.8 78.0 80.2 93.7
Total payment 11.4 8.5 0.0 4.3 10.1 17.5 34.1

Table A.26: Social welfare and total payment of GREEDYWEIGHT when varying number
of links n.
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n µ σ Min Q1 Median Q3 Max

10 0.1 0.3 0.0 0.0 0.0 0.0 1.0
20 0.5 0.7 0.0 0.0 0.0 1.0 3.0
30 1.0 0.9 0.0 0.0 1.0 2.0 3.0
40 1.7 1.4 0.0 1.0 1.0 2.0 8.0
50 1.8 1.2 0.0 1.0 2.0 2.5 6.0
60 2.0 1.1 0.0 1.0 2.0 3.0 5.0
70 2.0 1.0 0.0 1.0 2.0 2.5 5.0
80 2.3 1.1 0.0 1.5 2.0 3.0 6.0
90 2.4 1.2 1.0 1.0 2.0 3.0 6.0

100 2.5 1.2 1.0 2.0 2.0 3.0 6.0

Table A.27: Changes made to the allocation of GREEDYWEIGHT while calculating pay-
ments.
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Social welfare/
n Total Payment µ σ Min Q1 Median Q3 Max

10
Social welfare 20.9 6.0 5.6 16.6 20.9 24.0 37.7
Total payment 4.7 2.7 0.0 2.9 4.3 5.9 16.4

20
Social welfare 35.3 7.3 16.8 30.8 34.8 39.6 52.2
Total payment 8.9 4.3 0.7 5.9 8.4 10.9 22.8

30
Social welfare 46.9 6.4 34.0 42.4 46.8 51.0 58.9
Total payment 11.3 5.7 0.5 6.7 11.1 14.6 26.0

40
Social welfare 55.3 7.0 38.1 49.9 55.1 59.8 76.7
Total payment 12.0 6.6 0.0 7.1 11.8 16.8 31.9

50
Social welfare 59.7 7.0 44.5 55.2 59.1 64.2 76.1
Total payment 10.9 6.0 0.0 6.0 10.1 14.6 29.4

60
Social welfare 66.0 6.1 49.8 62.0 65.7 70.7 84.4
Total payment 10.7 6.4 0.8 6.0 9.3 14.8 29.7

70
Social welfare 71.2 6.2 55.5 66.9 71.1 75.2 88.6
Total payment 9.4 6.9 0.0 3.9 8.3 13.3 34.4

80
Social welfare 73.0 6.9 56.2 69.7 72.5 77.5 87.4
Total payment 9.1 5.7 0.0 4.7 8.3 13.1 22.1

90
Social welfare 77.0 7.2 62.5 71.6 76.6 83.0 94.8
Total payment 8.3 7.1 0.0 1.8 6.2 14.1 26.0

100
Social welfare 79.4 5.8 64.6 76.2 79.2 83.1 93.6
Total payment 8.8 6.5 0.0 3.2 8.0 12.8 25.5

Table A.28: Social welfare and total payment of LOCALRATIO when varying number of
links n.
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n µ σ Min Q1 Median Q3 Max

10 0.3 0.5 0.0 0.0 0.0 1.0 2.0
20 0.9 0.8 0.0 0.0 1.0 1.0 3.0
30 1.6 1.3 0.0 1.0 1.5 2.0 5.0
40 2.0 1.2 0.0 1.0 2.0 2.5 7.0
50 2.5 1.1 1.0 2.0 2.0 3.0 6.0
60 2.6 1.3 0.0 2.0 2.0 3.0 7.0
70 2.7 1.4 0.0 2.0 2.5 3.0 7.0
80 2.7 1.2 1.0 2.0 3.0 3.0 7.0
90 3.1 1.3 1.0 2.0 3.0 4.0 6.0

100 3.1 1.4 1.0 2.0 3.0 4.0 7.0

Table A.29: Changes made to the allocation of LOCALRATIO while calculating payments.
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A.6 Compare Valuations

λ µ σ Min Q1 Median Q3 Max

0.0 13.7 4.7 5.0 10.0 13.0 16.0 31.0
0.1 8.3 1.9 4.2 6.8 8.2 9.6 13.1
0.2 9.1 2.0 4.6 7.6 9.2 10.3 13.5
0.3 10.1 2.2 5.1 8.5 10.2 11.5 14.4
0.4 11.4 2.4 5.6 9.6 11.7 13.0 16.3
0.5 12.9 2.7 6.3 11.0 13.2 14.7 18.5
0.6 14.8 3.1 7.2 12.6 15.2 16.8 21.3
0.7 17.0 3.5 8.2 14.4 17.4 19.4 24.5
0.8 19.6 4.1 9.4 16.6 20.1 22.4 28.3
0.9 22.7 4.7 10.8 19.3 23.2 26.0 32.8
1.0 26.3 5.4 12.4 22.4 26.9 30.2 38.1
1.1 30.5 6.2 14.3 26.1 31.2 35.1 44.4
1.2 35.5 7.2 16.6 30.4 36.3 40.7 51.6
1.3 41.4 8.3 19.3 35.4 42.4 47.3 60.2
1.4 48.2 9.7 22.4 41.3 49.6 55.2 70.2
1.5 56.3 11.2 26.0 48.2 57.8 64.5 81.9
1.6 65.7 13.0 30.3 56.3 67.5 75.3 95.6
1.7 76.8 15.1 35.3 65.8 78.7 87.9 111.7
1.8 89.7 17.6 41.2 77.0 91.6 102.8 130.4
1.9 104.9 20.4 48.1 90.1 107.0 119.9 152.4
2.0 122.6 23.7 56.2 105.5 125.2 140.0 178.1
2.1 143.5 27.6 65.7 123.7 146.5 163.5 208.2

Table A.30: Social welfare of GREEDYWEIGHT when varying the exponent λ used for
generating valuations.
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λ µ σ Min Q1 Median Q3 Max

0.0 14.2 4.8 6.0 11.0 13.0 17.0 29.0
0.1 14.0 4.1 6.4 10.7 13.7 16.7 25.5
0.2 14.0 3.4 6.9 11.5 14.1 16.7 24.0
0.3 15.2 3.1 7.3 13.1 15.4 17.4 22.6
0.4 16.7 3.4 7.0 14.8 16.7 19.4 23.9
0.5 17.9 3.5 8.1 16.1 18.5 20.4 25.2
0.6 20.6 3.2 9.4 18.6 21.4 22.7 27.4
0.7 23.0 3.5 10.8 20.9 23.1 25.6 29.3
0.8 26.0 3.5 16.3 23.6 26.2 28.9 32.3
0.9 29.4 4.1 15.9 26.8 30.1 32.5 36.9
1.0 33.5 4.5 20.1 30.7 34.3 37.0 42.1
1.1 38.4 4.6 27.2 35.4 39.1 42.2 48.3
1.2 44.2 5.2 31.2 40.5 45.2 48.4 55.4
1.3 50.5 6.8 27.7 46.1 51.0 56.0 63.7
1.4 57.9 8.8 22.1 53.5 59.0 63.7 73.3
1.5 66.9 10.3 25.6 61.4 68.7 73.7 84.5
1.6 77.0 11.9 29.8 70.8 79.9 83.8 97.5
1.7 89.5 14.1 34.7 83.2 93.2 97.9 114.8
1.8 103.4 16.8 40.4 98.0 107.6 114.1 133.5
1.9 119.7 19.5 47.1 113.5 123.0 132.1 155.3
2.0 139.5 22.4 55.0 132.7 144.0 153.1 180.8
2.1 163.1 25.8 64.2 155.0 168.8 179.0 210.4

Table A.31: Social welfare of LOCALRATIO when varying the exponent λ used for gen-
erating valuations.
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δ µ σ Min Q1 Median Q3 Max

0.0 108.4 11.4 77.0 100.5 108.2 116.0 140.8
0.1 105.0 10.2 68.5 97.8 106.1 112.1 123.4
0.2 100.1 9.7 81.1 92.9 98.3 107.4 129.8
0.3 98.2 10.4 69.2 91.4 99.6 104.5 117.5
0.4 94.9 9.8 73.5 88.0 95.2 100.8 124.1
0.5 93.3 9.3 71.6 86.5 93.2 99.1 125.4
0.6 91.3 8.7 70.1 85.8 90.8 97.4 111.6
0.7 90.3 10.5 66.6 83.0 91.0 98.6 118.9
0.8 88.2 8.1 70.7 83.0 87.1 93.6 106.7
0.9 85.8 9.0 61.3 80.3 86.8 92.4 104.9
1.0 87.8 7.6 70.0 83.1 87.3 93.1 104.9

Table A.32: Social welfare of GREEDYWEIGHT when varying the randomness factor δ
used for generating valuations.

δ µ σ Min Q1 Median Q3 Max

0.0 123.0 10.5 99.3 115.6 124.7 130.7 141.5
0.1 116.6 9.8 95.6 107.9 116.6 124.4 138.3
0.2 112.7 8.9 90.8 106.5 113.1 119.5 133.6
0.3 108.6 8.3 91.9 102.9 107.9 114.3 136.7
0.4 103.3 8.1 84.9 98.7 103.5 107.2 120.3
0.5 99.4 9.1 64.3 94.1 100.1 104.7 117.5
0.6 97.6 7.2 79.7 93.0 98.1 102.5 114.4
0.7 95.1 8.5 73.4 89.5 94.4 100.6 119.6
0.8 90.4 8.2 69.8 84.5 90.3 96.1 108.6
0.9 89.0 10.6 45.2 82.9 88.4 95.6 112.2
1.0 89.9 7.9 72.7 83.3 91.0 96.0 113.7

Table A.33: Social welfare of LOCALRATIO when varying the randomness factor δ used
for generating valuations.
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